cfq-iosched.c 119 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "blk-cgroup.h"
  19. /*
  20. * tunables
  21. */
  22. /* max queue in one round of service */
  23. static const int cfq_quantum = 8;
  24. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  25. /* maximum backwards seek, in KiB */
  26. static const int cfq_back_max = 16 * 1024;
  27. /* penalty of a backwards seek */
  28. static const int cfq_back_penalty = 2;
  29. static const int cfq_slice_sync = HZ / 10;
  30. static int cfq_slice_async = HZ / 25;
  31. static const int cfq_slice_async_rq = 2;
  32. static int cfq_slice_idle = HZ / 125;
  33. static int cfq_group_idle = HZ / 125;
  34. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  35. static const int cfq_hist_divisor = 4;
  36. /*
  37. * offset from end of service tree
  38. */
  39. #define CFQ_IDLE_DELAY (HZ / 5)
  40. /*
  41. * below this threshold, we consider thinktime immediate
  42. */
  43. #define CFQ_MIN_TT (2)
  44. #define CFQ_SLICE_SCALE (5)
  45. #define CFQ_HW_QUEUE_MIN (5)
  46. #define CFQ_SERVICE_SHIFT 12
  47. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  48. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  49. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  50. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  51. #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
  54. static struct kmem_cache *cfq_pool;
  55. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  56. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  57. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  58. #define sample_valid(samples) ((samples) > 80)
  59. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  60. struct cfq_ttime {
  61. unsigned long last_end_request;
  62. unsigned long ttime_total;
  63. unsigned long ttime_samples;
  64. unsigned long ttime_mean;
  65. };
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. u64 min_vdisktime;
  77. struct cfq_ttime ttime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  80. .ttime = {.last_end_request = jiffies,},}
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending priority requests */
  118. int prio_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_class_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. struct cfqg_stats {
  152. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  153. /* total bytes transferred */
  154. struct blkg_rwstat service_bytes;
  155. /* total IOs serviced, post merge */
  156. struct blkg_rwstat serviced;
  157. /* number of ios merged */
  158. struct blkg_rwstat merged;
  159. /* total time spent on device in ns, may not be accurate w/ queueing */
  160. struct blkg_rwstat service_time;
  161. /* total time spent waiting in scheduler queue in ns */
  162. struct blkg_rwstat wait_time;
  163. /* number of IOs queued up */
  164. struct blkg_rwstat queued;
  165. /* total sectors transferred */
  166. struct blkg_stat sectors;
  167. /* total disk time and nr sectors dispatched by this group */
  168. struct blkg_stat time;
  169. #ifdef CONFIG_DEBUG_BLK_CGROUP
  170. /* time not charged to this cgroup */
  171. struct blkg_stat unaccounted_time;
  172. /* sum of number of ios queued across all samples */
  173. struct blkg_stat avg_queue_size_sum;
  174. /* count of samples taken for average */
  175. struct blkg_stat avg_queue_size_samples;
  176. /* how many times this group has been removed from service tree */
  177. struct blkg_stat dequeue;
  178. /* total time spent waiting for it to be assigned a timeslice. */
  179. struct blkg_stat group_wait_time;
  180. /* time spent idling for this blkcg_gq */
  181. struct blkg_stat idle_time;
  182. /* total time with empty current active q with other requests queued */
  183. struct blkg_stat empty_time;
  184. /* fields after this shouldn't be cleared on stat reset */
  185. uint64_t start_group_wait_time;
  186. uint64_t start_idle_time;
  187. uint64_t start_empty_time;
  188. uint16_t flags;
  189. #endif /* CONFIG_DEBUG_BLK_CGROUP */
  190. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  191. };
  192. /* This is per cgroup per device grouping structure */
  193. struct cfq_group {
  194. /* must be the first member */
  195. struct blkg_policy_data pd;
  196. /* group service_tree member */
  197. struct rb_node rb_node;
  198. /* group service_tree key */
  199. u64 vdisktime;
  200. /*
  201. * The number of active cfqgs and sum of their weights under this
  202. * cfqg. This covers this cfqg's leaf_weight and all children's
  203. * weights, but does not cover weights of further descendants.
  204. *
  205. * If a cfqg is on the service tree, it's active. An active cfqg
  206. * also activates its parent and contributes to the children_weight
  207. * of the parent.
  208. */
  209. int nr_active;
  210. unsigned int children_weight;
  211. /*
  212. * vfraction is the fraction of vdisktime that the tasks in this
  213. * cfqg are entitled to. This is determined by compounding the
  214. * ratios walking up from this cfqg to the root.
  215. *
  216. * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
  217. * vfractions on a service tree is approximately 1. The sum may
  218. * deviate a bit due to rounding errors and fluctuations caused by
  219. * cfqgs entering and leaving the service tree.
  220. */
  221. unsigned int vfraction;
  222. /*
  223. * There are two weights - (internal) weight is the weight of this
  224. * cfqg against the sibling cfqgs. leaf_weight is the wight of
  225. * this cfqg against the child cfqgs. For the root cfqg, both
  226. * weights are kept in sync for backward compatibility.
  227. */
  228. unsigned int weight;
  229. unsigned int new_weight;
  230. unsigned int dev_weight;
  231. unsigned int leaf_weight;
  232. unsigned int new_leaf_weight;
  233. unsigned int dev_leaf_weight;
  234. /* number of cfqq currently on this group */
  235. int nr_cfqq;
  236. /*
  237. * Per group busy queues average. Useful for workload slice calc. We
  238. * create the array for each prio class but at run time it is used
  239. * only for RT and BE class and slot for IDLE class remains unused.
  240. * This is primarily done to avoid confusion and a gcc warning.
  241. */
  242. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  243. /*
  244. * rr lists of queues with requests. We maintain service trees for
  245. * RT and BE classes. These trees are subdivided in subclasses
  246. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  247. * class there is no subclassification and all the cfq queues go on
  248. * a single tree service_tree_idle.
  249. * Counts are embedded in the cfq_rb_root
  250. */
  251. struct cfq_rb_root service_trees[2][3];
  252. struct cfq_rb_root service_tree_idle;
  253. unsigned long saved_wl_slice;
  254. enum wl_type_t saved_wl_type;
  255. enum wl_class_t saved_wl_class;
  256. /* number of requests that are on the dispatch list or inside driver */
  257. int dispatched;
  258. struct cfq_ttime ttime;
  259. struct cfqg_stats stats; /* stats for this cfqg */
  260. struct cfqg_stats dead_stats; /* stats pushed from dead children */
  261. };
  262. struct cfq_io_cq {
  263. struct io_cq icq; /* must be the first member */
  264. struct cfq_queue *cfqq[2];
  265. struct cfq_ttime ttime;
  266. int ioprio; /* the current ioprio */
  267. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  268. uint64_t blkcg_id; /* the current blkcg ID */
  269. #endif
  270. };
  271. /*
  272. * Per block device queue structure
  273. */
  274. struct cfq_data {
  275. struct request_queue *queue;
  276. /* Root service tree for cfq_groups */
  277. struct cfq_rb_root grp_service_tree;
  278. struct cfq_group *root_group;
  279. /*
  280. * The priority currently being served
  281. */
  282. enum wl_class_t serving_wl_class;
  283. enum wl_type_t serving_wl_type;
  284. unsigned long workload_expires;
  285. struct cfq_group *serving_group;
  286. /*
  287. * Each priority tree is sorted by next_request position. These
  288. * trees are used when determining if two or more queues are
  289. * interleaving requests (see cfq_close_cooperator).
  290. */
  291. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  292. unsigned int busy_queues;
  293. unsigned int busy_sync_queues;
  294. int rq_in_driver;
  295. int rq_in_flight[2];
  296. /*
  297. * queue-depth detection
  298. */
  299. int rq_queued;
  300. int hw_tag;
  301. /*
  302. * hw_tag can be
  303. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  304. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  305. * 0 => no NCQ
  306. */
  307. int hw_tag_est_depth;
  308. unsigned int hw_tag_samples;
  309. /*
  310. * idle window management
  311. */
  312. struct timer_list idle_slice_timer;
  313. struct work_struct unplug_work;
  314. struct cfq_queue *active_queue;
  315. struct cfq_io_cq *active_cic;
  316. /*
  317. * async queue for each priority case
  318. */
  319. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  320. struct cfq_queue *async_idle_cfqq;
  321. sector_t last_position;
  322. /*
  323. * tunables, see top of file
  324. */
  325. unsigned int cfq_quantum;
  326. unsigned int cfq_fifo_expire[2];
  327. unsigned int cfq_back_penalty;
  328. unsigned int cfq_back_max;
  329. unsigned int cfq_slice[2];
  330. unsigned int cfq_slice_async_rq;
  331. unsigned int cfq_slice_idle;
  332. unsigned int cfq_group_idle;
  333. unsigned int cfq_latency;
  334. unsigned int cfq_target_latency;
  335. /*
  336. * Fallback dummy cfqq for extreme OOM conditions
  337. */
  338. struct cfq_queue oom_cfqq;
  339. unsigned long last_delayed_sync;
  340. };
  341. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  342. static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
  343. enum wl_class_t class,
  344. enum wl_type_t type)
  345. {
  346. if (!cfqg)
  347. return NULL;
  348. if (class == IDLE_WORKLOAD)
  349. return &cfqg->service_tree_idle;
  350. return &cfqg->service_trees[class][type];
  351. }
  352. enum cfqq_state_flags {
  353. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  354. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  355. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  356. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  357. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  358. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  359. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  360. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  361. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  362. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  363. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  364. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  365. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  366. };
  367. #define CFQ_CFQQ_FNS(name) \
  368. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  369. { \
  370. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  371. } \
  372. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  373. { \
  374. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  375. } \
  376. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  377. { \
  378. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  379. }
  380. CFQ_CFQQ_FNS(on_rr);
  381. CFQ_CFQQ_FNS(wait_request);
  382. CFQ_CFQQ_FNS(must_dispatch);
  383. CFQ_CFQQ_FNS(must_alloc_slice);
  384. CFQ_CFQQ_FNS(fifo_expire);
  385. CFQ_CFQQ_FNS(idle_window);
  386. CFQ_CFQQ_FNS(prio_changed);
  387. CFQ_CFQQ_FNS(slice_new);
  388. CFQ_CFQQ_FNS(sync);
  389. CFQ_CFQQ_FNS(coop);
  390. CFQ_CFQQ_FNS(split_coop);
  391. CFQ_CFQQ_FNS(deep);
  392. CFQ_CFQQ_FNS(wait_busy);
  393. #undef CFQ_CFQQ_FNS
  394. static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
  395. {
  396. return pd ? container_of(pd, struct cfq_group, pd) : NULL;
  397. }
  398. static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
  399. {
  400. return pd_to_blkg(&cfqg->pd);
  401. }
  402. #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
  403. /* cfqg stats flags */
  404. enum cfqg_stats_flags {
  405. CFQG_stats_waiting = 0,
  406. CFQG_stats_idling,
  407. CFQG_stats_empty,
  408. };
  409. #define CFQG_FLAG_FNS(name) \
  410. static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
  411. { \
  412. stats->flags |= (1 << CFQG_stats_##name); \
  413. } \
  414. static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
  415. { \
  416. stats->flags &= ~(1 << CFQG_stats_##name); \
  417. } \
  418. static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
  419. { \
  420. return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
  421. } \
  422. CFQG_FLAG_FNS(waiting)
  423. CFQG_FLAG_FNS(idling)
  424. CFQG_FLAG_FNS(empty)
  425. #undef CFQG_FLAG_FNS
  426. /* This should be called with the queue_lock held. */
  427. static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
  428. {
  429. unsigned long long now;
  430. if (!cfqg_stats_waiting(stats))
  431. return;
  432. now = sched_clock();
  433. if (time_after64(now, stats->start_group_wait_time))
  434. blkg_stat_add(&stats->group_wait_time,
  435. now - stats->start_group_wait_time);
  436. cfqg_stats_clear_waiting(stats);
  437. }
  438. /* This should be called with the queue_lock held. */
  439. static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
  440. struct cfq_group *curr_cfqg)
  441. {
  442. struct cfqg_stats *stats = &cfqg->stats;
  443. if (cfqg_stats_waiting(stats))
  444. return;
  445. if (cfqg == curr_cfqg)
  446. return;
  447. stats->start_group_wait_time = sched_clock();
  448. cfqg_stats_mark_waiting(stats);
  449. }
  450. /* This should be called with the queue_lock held. */
  451. static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
  452. {
  453. unsigned long long now;
  454. if (!cfqg_stats_empty(stats))
  455. return;
  456. now = sched_clock();
  457. if (time_after64(now, stats->start_empty_time))
  458. blkg_stat_add(&stats->empty_time,
  459. now - stats->start_empty_time);
  460. cfqg_stats_clear_empty(stats);
  461. }
  462. static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
  463. {
  464. blkg_stat_add(&cfqg->stats.dequeue, 1);
  465. }
  466. static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
  467. {
  468. struct cfqg_stats *stats = &cfqg->stats;
  469. if (blkg_rwstat_total(&stats->queued))
  470. return;
  471. /*
  472. * group is already marked empty. This can happen if cfqq got new
  473. * request in parent group and moved to this group while being added
  474. * to service tree. Just ignore the event and move on.
  475. */
  476. if (cfqg_stats_empty(stats))
  477. return;
  478. stats->start_empty_time = sched_clock();
  479. cfqg_stats_mark_empty(stats);
  480. }
  481. static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
  482. {
  483. struct cfqg_stats *stats = &cfqg->stats;
  484. if (cfqg_stats_idling(stats)) {
  485. unsigned long long now = sched_clock();
  486. if (time_after64(now, stats->start_idle_time))
  487. blkg_stat_add(&stats->idle_time,
  488. now - stats->start_idle_time);
  489. cfqg_stats_clear_idling(stats);
  490. }
  491. }
  492. static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
  493. {
  494. struct cfqg_stats *stats = &cfqg->stats;
  495. BUG_ON(cfqg_stats_idling(stats));
  496. stats->start_idle_time = sched_clock();
  497. cfqg_stats_mark_idling(stats);
  498. }
  499. static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
  500. {
  501. struct cfqg_stats *stats = &cfqg->stats;
  502. blkg_stat_add(&stats->avg_queue_size_sum,
  503. blkg_rwstat_total(&stats->queued));
  504. blkg_stat_add(&stats->avg_queue_size_samples, 1);
  505. cfqg_stats_update_group_wait_time(stats);
  506. }
  507. #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
  508. static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
  509. static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
  510. static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
  511. static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
  512. static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
  513. static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
  514. static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
  515. #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
  516. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  517. static struct blkcg_policy blkcg_policy_cfq;
  518. static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
  519. {
  520. return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
  521. }
  522. static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
  523. {
  524. struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
  525. return pblkg ? blkg_to_cfqg(pblkg) : NULL;
  526. }
  527. static inline void cfqg_get(struct cfq_group *cfqg)
  528. {
  529. return blkg_get(cfqg_to_blkg(cfqg));
  530. }
  531. static inline void cfqg_put(struct cfq_group *cfqg)
  532. {
  533. return blkg_put(cfqg_to_blkg(cfqg));
  534. }
  535. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
  536. char __pbuf[128]; \
  537. \
  538. blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
  539. blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
  540. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  541. cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
  542. __pbuf, ##args); \
  543. } while (0)
  544. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
  545. char __pbuf[128]; \
  546. \
  547. blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
  548. blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
  549. } while (0)
  550. static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
  551. struct cfq_group *curr_cfqg, int rw)
  552. {
  553. blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
  554. cfqg_stats_end_empty_time(&cfqg->stats);
  555. cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
  556. }
  557. static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
  558. unsigned long time, unsigned long unaccounted_time)
  559. {
  560. blkg_stat_add(&cfqg->stats.time, time);
  561. #ifdef CONFIG_DEBUG_BLK_CGROUP
  562. blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
  563. #endif
  564. }
  565. static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
  566. {
  567. blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
  568. }
  569. static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
  570. {
  571. blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
  572. }
  573. static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
  574. uint64_t bytes, int rw)
  575. {
  576. blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
  577. blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
  578. blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
  579. }
  580. static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
  581. uint64_t start_time, uint64_t io_start_time, int rw)
  582. {
  583. struct cfqg_stats *stats = &cfqg->stats;
  584. unsigned long long now = sched_clock();
  585. if (time_after64(now, io_start_time))
  586. blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
  587. if (time_after64(io_start_time, start_time))
  588. blkg_rwstat_add(&stats->wait_time, rw,
  589. io_start_time - start_time);
  590. }
  591. /* @stats = 0 */
  592. static void cfqg_stats_reset(struct cfqg_stats *stats)
  593. {
  594. /* queued stats shouldn't be cleared */
  595. blkg_rwstat_reset(&stats->service_bytes);
  596. blkg_rwstat_reset(&stats->serviced);
  597. blkg_rwstat_reset(&stats->merged);
  598. blkg_rwstat_reset(&stats->service_time);
  599. blkg_rwstat_reset(&stats->wait_time);
  600. blkg_stat_reset(&stats->time);
  601. #ifdef CONFIG_DEBUG_BLK_CGROUP
  602. blkg_stat_reset(&stats->unaccounted_time);
  603. blkg_stat_reset(&stats->avg_queue_size_sum);
  604. blkg_stat_reset(&stats->avg_queue_size_samples);
  605. blkg_stat_reset(&stats->dequeue);
  606. blkg_stat_reset(&stats->group_wait_time);
  607. blkg_stat_reset(&stats->idle_time);
  608. blkg_stat_reset(&stats->empty_time);
  609. #endif
  610. }
  611. /* @to += @from */
  612. static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
  613. {
  614. /* queued stats shouldn't be cleared */
  615. blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
  616. blkg_rwstat_merge(&to->serviced, &from->serviced);
  617. blkg_rwstat_merge(&to->merged, &from->merged);
  618. blkg_rwstat_merge(&to->service_time, &from->service_time);
  619. blkg_rwstat_merge(&to->wait_time, &from->wait_time);
  620. blkg_stat_merge(&from->time, &from->time);
  621. #ifdef CONFIG_DEBUG_BLK_CGROUP
  622. blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
  623. blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
  624. blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
  625. blkg_stat_merge(&to->dequeue, &from->dequeue);
  626. blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
  627. blkg_stat_merge(&to->idle_time, &from->idle_time);
  628. blkg_stat_merge(&to->empty_time, &from->empty_time);
  629. #endif
  630. }
  631. /*
  632. * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
  633. * recursive stats can still account for the amount used by this cfqg after
  634. * it's gone.
  635. */
  636. static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
  637. {
  638. struct cfq_group *parent = cfqg_parent(cfqg);
  639. lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
  640. if (unlikely(!parent))
  641. return;
  642. cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
  643. cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
  644. cfqg_stats_reset(&cfqg->stats);
  645. cfqg_stats_reset(&cfqg->dead_stats);
  646. }
  647. #else /* CONFIG_CFQ_GROUP_IOSCHED */
  648. static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
  649. static inline void cfqg_get(struct cfq_group *cfqg) { }
  650. static inline void cfqg_put(struct cfq_group *cfqg) { }
  651. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  652. blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
  653. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  654. cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
  655. ##args)
  656. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  657. static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
  658. struct cfq_group *curr_cfqg, int rw) { }
  659. static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
  660. unsigned long time, unsigned long unaccounted_time) { }
  661. static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
  662. static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
  663. static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
  664. uint64_t bytes, int rw) { }
  665. static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
  666. uint64_t start_time, uint64_t io_start_time, int rw) { }
  667. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  668. #define cfq_log(cfqd, fmt, args...) \
  669. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  670. /* Traverses through cfq group service trees */
  671. #define for_each_cfqg_st(cfqg, i, j, st) \
  672. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  673. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  674. : &cfqg->service_tree_idle; \
  675. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  676. (i == IDLE_WORKLOAD && j == 0); \
  677. j++, st = i < IDLE_WORKLOAD ? \
  678. &cfqg->service_trees[i][j]: NULL) \
  679. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  680. struct cfq_ttime *ttime, bool group_idle)
  681. {
  682. unsigned long slice;
  683. if (!sample_valid(ttime->ttime_samples))
  684. return false;
  685. if (group_idle)
  686. slice = cfqd->cfq_group_idle;
  687. else
  688. slice = cfqd->cfq_slice_idle;
  689. return ttime->ttime_mean > slice;
  690. }
  691. static inline bool iops_mode(struct cfq_data *cfqd)
  692. {
  693. /*
  694. * If we are not idling on queues and it is a NCQ drive, parallel
  695. * execution of requests is on and measuring time is not possible
  696. * in most of the cases until and unless we drive shallower queue
  697. * depths and that becomes a performance bottleneck. In such cases
  698. * switch to start providing fairness in terms of number of IOs.
  699. */
  700. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  701. return true;
  702. else
  703. return false;
  704. }
  705. static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
  706. {
  707. if (cfq_class_idle(cfqq))
  708. return IDLE_WORKLOAD;
  709. if (cfq_class_rt(cfqq))
  710. return RT_WORKLOAD;
  711. return BE_WORKLOAD;
  712. }
  713. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  714. {
  715. if (!cfq_cfqq_sync(cfqq))
  716. return ASYNC_WORKLOAD;
  717. if (!cfq_cfqq_idle_window(cfqq))
  718. return SYNC_NOIDLE_WORKLOAD;
  719. return SYNC_WORKLOAD;
  720. }
  721. static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
  722. struct cfq_data *cfqd,
  723. struct cfq_group *cfqg)
  724. {
  725. if (wl_class == IDLE_WORKLOAD)
  726. return cfqg->service_tree_idle.count;
  727. return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
  728. cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
  729. cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
  730. }
  731. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  732. struct cfq_group *cfqg)
  733. {
  734. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
  735. cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  736. }
  737. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  738. static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
  739. struct cfq_io_cq *cic, struct bio *bio,
  740. gfp_t gfp_mask);
  741. static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  742. {
  743. /* cic->icq is the first member, %NULL will convert to %NULL */
  744. return container_of(icq, struct cfq_io_cq, icq);
  745. }
  746. static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  747. struct io_context *ioc)
  748. {
  749. if (ioc)
  750. return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  751. return NULL;
  752. }
  753. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  754. {
  755. return cic->cfqq[is_sync];
  756. }
  757. static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  758. bool is_sync)
  759. {
  760. cic->cfqq[is_sync] = cfqq;
  761. }
  762. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  763. {
  764. return cic->icq.q->elevator->elevator_data;
  765. }
  766. /*
  767. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  768. * set (in which case it could also be direct WRITE).
  769. */
  770. static inline bool cfq_bio_sync(struct bio *bio)
  771. {
  772. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  773. }
  774. /*
  775. * scheduler run of queue, if there are requests pending and no one in the
  776. * driver that will restart queueing
  777. */
  778. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  779. {
  780. if (cfqd->busy_queues) {
  781. cfq_log(cfqd, "schedule dispatch");
  782. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  783. }
  784. }
  785. /*
  786. * Scale schedule slice based on io priority. Use the sync time slice only
  787. * if a queue is marked sync and has sync io queued. A sync queue with async
  788. * io only, should not get full sync slice length.
  789. */
  790. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  791. unsigned short prio)
  792. {
  793. const int base_slice = cfqd->cfq_slice[sync];
  794. WARN_ON(prio >= IOPRIO_BE_NR);
  795. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  796. }
  797. static inline int
  798. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  799. {
  800. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  801. }
  802. /**
  803. * cfqg_scale_charge - scale disk time charge according to cfqg weight
  804. * @charge: disk time being charged
  805. * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
  806. *
  807. * Scale @charge according to @vfraction, which is in range (0, 1]. The
  808. * scaling is inversely proportional.
  809. *
  810. * scaled = charge / vfraction
  811. *
  812. * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
  813. */
  814. static inline u64 cfqg_scale_charge(unsigned long charge,
  815. unsigned int vfraction)
  816. {
  817. u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
  818. /* charge / vfraction */
  819. c <<= CFQ_SERVICE_SHIFT;
  820. do_div(c, vfraction);
  821. return c;
  822. }
  823. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  824. {
  825. s64 delta = (s64)(vdisktime - min_vdisktime);
  826. if (delta > 0)
  827. min_vdisktime = vdisktime;
  828. return min_vdisktime;
  829. }
  830. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  831. {
  832. s64 delta = (s64)(vdisktime - min_vdisktime);
  833. if (delta < 0)
  834. min_vdisktime = vdisktime;
  835. return min_vdisktime;
  836. }
  837. static void update_min_vdisktime(struct cfq_rb_root *st)
  838. {
  839. struct cfq_group *cfqg;
  840. if (st->left) {
  841. cfqg = rb_entry_cfqg(st->left);
  842. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  843. cfqg->vdisktime);
  844. }
  845. }
  846. /*
  847. * get averaged number of queues of RT/BE priority.
  848. * average is updated, with a formula that gives more weight to higher numbers,
  849. * to quickly follows sudden increases and decrease slowly
  850. */
  851. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  852. struct cfq_group *cfqg, bool rt)
  853. {
  854. unsigned min_q, max_q;
  855. unsigned mult = cfq_hist_divisor - 1;
  856. unsigned round = cfq_hist_divisor / 2;
  857. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  858. min_q = min(cfqg->busy_queues_avg[rt], busy);
  859. max_q = max(cfqg->busy_queues_avg[rt], busy);
  860. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  861. cfq_hist_divisor;
  862. return cfqg->busy_queues_avg[rt];
  863. }
  864. static inline unsigned
  865. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  866. {
  867. return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
  868. }
  869. static inline unsigned
  870. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  871. {
  872. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  873. if (cfqd->cfq_latency) {
  874. /*
  875. * interested queues (we consider only the ones with the same
  876. * priority class in the cfq group)
  877. */
  878. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  879. cfq_class_rt(cfqq));
  880. unsigned sync_slice = cfqd->cfq_slice[1];
  881. unsigned expect_latency = sync_slice * iq;
  882. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  883. if (expect_latency > group_slice) {
  884. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  885. /* scale low_slice according to IO priority
  886. * and sync vs async */
  887. unsigned low_slice =
  888. min(slice, base_low_slice * slice / sync_slice);
  889. /* the adapted slice value is scaled to fit all iqs
  890. * into the target latency */
  891. slice = max(slice * group_slice / expect_latency,
  892. low_slice);
  893. }
  894. }
  895. return slice;
  896. }
  897. static inline void
  898. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  899. {
  900. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  901. cfqq->slice_start = jiffies;
  902. cfqq->slice_end = jiffies + slice;
  903. cfqq->allocated_slice = slice;
  904. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  905. }
  906. /*
  907. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  908. * isn't valid until the first request from the dispatch is activated
  909. * and the slice time set.
  910. */
  911. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  912. {
  913. if (cfq_cfqq_slice_new(cfqq))
  914. return false;
  915. if (time_before(jiffies, cfqq->slice_end))
  916. return false;
  917. return true;
  918. }
  919. /*
  920. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  921. * We choose the request that is closest to the head right now. Distance
  922. * behind the head is penalized and only allowed to a certain extent.
  923. */
  924. static struct request *
  925. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  926. {
  927. sector_t s1, s2, d1 = 0, d2 = 0;
  928. unsigned long back_max;
  929. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  930. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  931. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  932. if (rq1 == NULL || rq1 == rq2)
  933. return rq2;
  934. if (rq2 == NULL)
  935. return rq1;
  936. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  937. return rq_is_sync(rq1) ? rq1 : rq2;
  938. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  939. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  940. s1 = blk_rq_pos(rq1);
  941. s2 = blk_rq_pos(rq2);
  942. /*
  943. * by definition, 1KiB is 2 sectors
  944. */
  945. back_max = cfqd->cfq_back_max * 2;
  946. /*
  947. * Strict one way elevator _except_ in the case where we allow
  948. * short backward seeks which are biased as twice the cost of a
  949. * similar forward seek.
  950. */
  951. if (s1 >= last)
  952. d1 = s1 - last;
  953. else if (s1 + back_max >= last)
  954. d1 = (last - s1) * cfqd->cfq_back_penalty;
  955. else
  956. wrap |= CFQ_RQ1_WRAP;
  957. if (s2 >= last)
  958. d2 = s2 - last;
  959. else if (s2 + back_max >= last)
  960. d2 = (last - s2) * cfqd->cfq_back_penalty;
  961. else
  962. wrap |= CFQ_RQ2_WRAP;
  963. /* Found required data */
  964. /*
  965. * By doing switch() on the bit mask "wrap" we avoid having to
  966. * check two variables for all permutations: --> faster!
  967. */
  968. switch (wrap) {
  969. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  970. if (d1 < d2)
  971. return rq1;
  972. else if (d2 < d1)
  973. return rq2;
  974. else {
  975. if (s1 >= s2)
  976. return rq1;
  977. else
  978. return rq2;
  979. }
  980. case CFQ_RQ2_WRAP:
  981. return rq1;
  982. case CFQ_RQ1_WRAP:
  983. return rq2;
  984. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  985. default:
  986. /*
  987. * Since both rqs are wrapped,
  988. * start with the one that's further behind head
  989. * (--> only *one* back seek required),
  990. * since back seek takes more time than forward.
  991. */
  992. if (s1 <= s2)
  993. return rq1;
  994. else
  995. return rq2;
  996. }
  997. }
  998. /*
  999. * The below is leftmost cache rbtree addon
  1000. */
  1001. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  1002. {
  1003. /* Service tree is empty */
  1004. if (!root->count)
  1005. return NULL;
  1006. if (!root->left)
  1007. root->left = rb_first(&root->rb);
  1008. if (root->left)
  1009. return rb_entry(root->left, struct cfq_queue, rb_node);
  1010. return NULL;
  1011. }
  1012. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  1013. {
  1014. if (!root->left)
  1015. root->left = rb_first(&root->rb);
  1016. if (root->left)
  1017. return rb_entry_cfqg(root->left);
  1018. return NULL;
  1019. }
  1020. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  1021. {
  1022. rb_erase(n, root);
  1023. RB_CLEAR_NODE(n);
  1024. }
  1025. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  1026. {
  1027. if (root->left == n)
  1028. root->left = NULL;
  1029. rb_erase_init(n, &root->rb);
  1030. --root->count;
  1031. }
  1032. /*
  1033. * would be nice to take fifo expire time into account as well
  1034. */
  1035. static struct request *
  1036. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1037. struct request *last)
  1038. {
  1039. struct rb_node *rbnext = rb_next(&last->rb_node);
  1040. struct rb_node *rbprev = rb_prev(&last->rb_node);
  1041. struct request *next = NULL, *prev = NULL;
  1042. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  1043. if (rbprev)
  1044. prev = rb_entry_rq(rbprev);
  1045. if (rbnext)
  1046. next = rb_entry_rq(rbnext);
  1047. else {
  1048. rbnext = rb_first(&cfqq->sort_list);
  1049. if (rbnext && rbnext != &last->rb_node)
  1050. next = rb_entry_rq(rbnext);
  1051. }
  1052. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  1053. }
  1054. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  1055. struct cfq_queue *cfqq)
  1056. {
  1057. /*
  1058. * just an approximation, should be ok.
  1059. */
  1060. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  1061. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  1062. }
  1063. static inline s64
  1064. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  1065. {
  1066. return cfqg->vdisktime - st->min_vdisktime;
  1067. }
  1068. static void
  1069. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  1070. {
  1071. struct rb_node **node = &st->rb.rb_node;
  1072. struct rb_node *parent = NULL;
  1073. struct cfq_group *__cfqg;
  1074. s64 key = cfqg_key(st, cfqg);
  1075. int left = 1;
  1076. while (*node != NULL) {
  1077. parent = *node;
  1078. __cfqg = rb_entry_cfqg(parent);
  1079. if (key < cfqg_key(st, __cfqg))
  1080. node = &parent->rb_left;
  1081. else {
  1082. node = &parent->rb_right;
  1083. left = 0;
  1084. }
  1085. }
  1086. if (left)
  1087. st->left = &cfqg->rb_node;
  1088. rb_link_node(&cfqg->rb_node, parent, node);
  1089. rb_insert_color(&cfqg->rb_node, &st->rb);
  1090. }
  1091. static void
  1092. cfq_update_group_weight(struct cfq_group *cfqg)
  1093. {
  1094. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  1095. if (cfqg->new_weight) {
  1096. cfqg->weight = cfqg->new_weight;
  1097. cfqg->new_weight = 0;
  1098. }
  1099. if (cfqg->new_leaf_weight) {
  1100. cfqg->leaf_weight = cfqg->new_leaf_weight;
  1101. cfqg->new_leaf_weight = 0;
  1102. }
  1103. }
  1104. static void
  1105. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  1106. {
  1107. unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
  1108. struct cfq_group *pos = cfqg;
  1109. struct cfq_group *parent;
  1110. bool propagate;
  1111. /* add to the service tree */
  1112. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  1113. cfq_update_group_weight(cfqg);
  1114. __cfq_group_service_tree_add(st, cfqg);
  1115. /*
  1116. * Activate @cfqg and calculate the portion of vfraction @cfqg is
  1117. * entitled to. vfraction is calculated by walking the tree
  1118. * towards the root calculating the fraction it has at each level.
  1119. * The compounded ratio is how much vfraction @cfqg owns.
  1120. *
  1121. * Start with the proportion tasks in this cfqg has against active
  1122. * children cfqgs - its leaf_weight against children_weight.
  1123. */
  1124. propagate = !pos->nr_active++;
  1125. pos->children_weight += pos->leaf_weight;
  1126. vfr = vfr * pos->leaf_weight / pos->children_weight;
  1127. /*
  1128. * Compound ->weight walking up the tree. Both activation and
  1129. * vfraction calculation are done in the same loop. Propagation
  1130. * stops once an already activated node is met. vfraction
  1131. * calculation should always continue to the root.
  1132. */
  1133. while ((parent = cfqg_parent(pos))) {
  1134. if (propagate) {
  1135. propagate = !parent->nr_active++;
  1136. parent->children_weight += pos->weight;
  1137. }
  1138. vfr = vfr * pos->weight / parent->children_weight;
  1139. pos = parent;
  1140. }
  1141. cfqg->vfraction = max_t(unsigned, vfr, 1);
  1142. }
  1143. static void
  1144. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1145. {
  1146. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1147. struct cfq_group *__cfqg;
  1148. struct rb_node *n;
  1149. cfqg->nr_cfqq++;
  1150. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  1151. return;
  1152. /*
  1153. * Currently put the group at the end. Later implement something
  1154. * so that groups get lesser vtime based on their weights, so that
  1155. * if group does not loose all if it was not continuously backlogged.
  1156. */
  1157. n = rb_last(&st->rb);
  1158. if (n) {
  1159. __cfqg = rb_entry_cfqg(n);
  1160. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  1161. } else
  1162. cfqg->vdisktime = st->min_vdisktime;
  1163. cfq_group_service_tree_add(st, cfqg);
  1164. }
  1165. static void
  1166. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  1167. {
  1168. struct cfq_group *pos = cfqg;
  1169. bool propagate;
  1170. /*
  1171. * Undo activation from cfq_group_service_tree_add(). Deactivate
  1172. * @cfqg and propagate deactivation upwards.
  1173. */
  1174. propagate = !--pos->nr_active;
  1175. pos->children_weight -= pos->leaf_weight;
  1176. while (propagate) {
  1177. struct cfq_group *parent = cfqg_parent(pos);
  1178. /* @pos has 0 nr_active at this point */
  1179. WARN_ON_ONCE(pos->children_weight);
  1180. pos->vfraction = 0;
  1181. if (!parent)
  1182. break;
  1183. propagate = !--parent->nr_active;
  1184. parent->children_weight -= pos->weight;
  1185. pos = parent;
  1186. }
  1187. /* remove from the service tree */
  1188. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  1189. cfq_rb_erase(&cfqg->rb_node, st);
  1190. }
  1191. static void
  1192. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1193. {
  1194. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1195. BUG_ON(cfqg->nr_cfqq < 1);
  1196. cfqg->nr_cfqq--;
  1197. /* If there are other cfq queues under this group, don't delete it */
  1198. if (cfqg->nr_cfqq)
  1199. return;
  1200. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  1201. cfq_group_service_tree_del(st, cfqg);
  1202. cfqg->saved_wl_slice = 0;
  1203. cfqg_stats_update_dequeue(cfqg);
  1204. }
  1205. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  1206. unsigned int *unaccounted_time)
  1207. {
  1208. unsigned int slice_used;
  1209. /*
  1210. * Queue got expired before even a single request completed or
  1211. * got expired immediately after first request completion.
  1212. */
  1213. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  1214. /*
  1215. * Also charge the seek time incurred to the group, otherwise
  1216. * if there are mutiple queues in the group, each can dispatch
  1217. * a single request on seeky media and cause lots of seek time
  1218. * and group will never know it.
  1219. */
  1220. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  1221. 1);
  1222. } else {
  1223. slice_used = jiffies - cfqq->slice_start;
  1224. if (slice_used > cfqq->allocated_slice) {
  1225. *unaccounted_time = slice_used - cfqq->allocated_slice;
  1226. slice_used = cfqq->allocated_slice;
  1227. }
  1228. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  1229. *unaccounted_time += cfqq->slice_start -
  1230. cfqq->dispatch_start;
  1231. }
  1232. return slice_used;
  1233. }
  1234. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  1235. struct cfq_queue *cfqq)
  1236. {
  1237. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1238. unsigned int used_sl, charge, unaccounted_sl = 0;
  1239. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  1240. - cfqg->service_tree_idle.count;
  1241. unsigned int vfr;
  1242. BUG_ON(nr_sync < 0);
  1243. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  1244. if (iops_mode(cfqd))
  1245. charge = cfqq->slice_dispatch;
  1246. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  1247. charge = cfqq->allocated_slice;
  1248. /*
  1249. * Can't update vdisktime while on service tree and cfqg->vfraction
  1250. * is valid only while on it. Cache vfr, leave the service tree,
  1251. * update vdisktime and go back on. The re-addition to the tree
  1252. * will also update the weights as necessary.
  1253. */
  1254. vfr = cfqg->vfraction;
  1255. cfq_group_service_tree_del(st, cfqg);
  1256. cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
  1257. cfq_group_service_tree_add(st, cfqg);
  1258. /* This group is being expired. Save the context */
  1259. if (time_after(cfqd->workload_expires, jiffies)) {
  1260. cfqg->saved_wl_slice = cfqd->workload_expires
  1261. - jiffies;
  1262. cfqg->saved_wl_type = cfqd->serving_wl_type;
  1263. cfqg->saved_wl_class = cfqd->serving_wl_class;
  1264. } else
  1265. cfqg->saved_wl_slice = 0;
  1266. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  1267. st->min_vdisktime);
  1268. cfq_log_cfqq(cfqq->cfqd, cfqq,
  1269. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  1270. used_sl, cfqq->slice_dispatch, charge,
  1271. iops_mode(cfqd), cfqq->nr_sectors);
  1272. cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
  1273. cfqg_stats_set_start_empty_time(cfqg);
  1274. }
  1275. /**
  1276. * cfq_init_cfqg_base - initialize base part of a cfq_group
  1277. * @cfqg: cfq_group to initialize
  1278. *
  1279. * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
  1280. * is enabled or not.
  1281. */
  1282. static void cfq_init_cfqg_base(struct cfq_group *cfqg)
  1283. {
  1284. struct cfq_rb_root *st;
  1285. int i, j;
  1286. for_each_cfqg_st(cfqg, i, j, st)
  1287. *st = CFQ_RB_ROOT;
  1288. RB_CLEAR_NODE(&cfqg->rb_node);
  1289. cfqg->ttime.last_end_request = jiffies;
  1290. }
  1291. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1292. static void cfq_pd_init(struct blkcg_gq *blkg)
  1293. {
  1294. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  1295. cfq_init_cfqg_base(cfqg);
  1296. cfqg->weight = blkg->blkcg->cfq_weight;
  1297. cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
  1298. }
  1299. static void cfq_pd_offline(struct blkcg_gq *blkg)
  1300. {
  1301. /*
  1302. * @blkg is going offline and will be ignored by
  1303. * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
  1304. * that they don't get lost. If IOs complete after this point, the
  1305. * stats for them will be lost. Oh well...
  1306. */
  1307. cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
  1308. }
  1309. /* offset delta from cfqg->stats to cfqg->dead_stats */
  1310. static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
  1311. offsetof(struct cfq_group, stats);
  1312. /* to be used by recursive prfill, sums live and dead stats recursively */
  1313. static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
  1314. {
  1315. u64 sum = 0;
  1316. sum += blkg_stat_recursive_sum(pd, off);
  1317. sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
  1318. return sum;
  1319. }
  1320. /* to be used by recursive prfill, sums live and dead rwstats recursively */
  1321. static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
  1322. int off)
  1323. {
  1324. struct blkg_rwstat a, b;
  1325. a = blkg_rwstat_recursive_sum(pd, off);
  1326. b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
  1327. blkg_rwstat_merge(&a, &b);
  1328. return a;
  1329. }
  1330. static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
  1331. {
  1332. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  1333. cfqg_stats_reset(&cfqg->stats);
  1334. cfqg_stats_reset(&cfqg->dead_stats);
  1335. }
  1336. /*
  1337. * Search for the cfq group current task belongs to. request_queue lock must
  1338. * be held.
  1339. */
  1340. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  1341. struct blkcg *blkcg)
  1342. {
  1343. struct request_queue *q = cfqd->queue;
  1344. struct cfq_group *cfqg = NULL;
  1345. /* avoid lookup for the common case where there's no blkcg */
  1346. if (blkcg == &blkcg_root) {
  1347. cfqg = cfqd->root_group;
  1348. } else {
  1349. struct blkcg_gq *blkg;
  1350. blkg = blkg_lookup_create(blkcg, q);
  1351. if (!IS_ERR(blkg))
  1352. cfqg = blkg_to_cfqg(blkg);
  1353. }
  1354. return cfqg;
  1355. }
  1356. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  1357. {
  1358. /* Currently, all async queues are mapped to root group */
  1359. if (!cfq_cfqq_sync(cfqq))
  1360. cfqg = cfqq->cfqd->root_group;
  1361. cfqq->cfqg = cfqg;
  1362. /* cfqq reference on cfqg */
  1363. cfqg_get(cfqg);
  1364. }
  1365. static u64 cfqg_prfill_weight_device(struct seq_file *sf,
  1366. struct blkg_policy_data *pd, int off)
  1367. {
  1368. struct cfq_group *cfqg = pd_to_cfqg(pd);
  1369. if (!cfqg->dev_weight)
  1370. return 0;
  1371. return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
  1372. }
  1373. static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
  1374. struct seq_file *sf)
  1375. {
  1376. blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
  1377. cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
  1378. false);
  1379. return 0;
  1380. }
  1381. static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
  1382. struct blkg_policy_data *pd, int off)
  1383. {
  1384. struct cfq_group *cfqg = pd_to_cfqg(pd);
  1385. if (!cfqg->dev_leaf_weight)
  1386. return 0;
  1387. return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
  1388. }
  1389. static int cfqg_print_leaf_weight_device(struct cgroup *cgrp,
  1390. struct cftype *cft,
  1391. struct seq_file *sf)
  1392. {
  1393. blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
  1394. cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 0,
  1395. false);
  1396. return 0;
  1397. }
  1398. static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
  1399. struct seq_file *sf)
  1400. {
  1401. seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
  1402. return 0;
  1403. }
  1404. static int cfq_print_leaf_weight(struct cgroup *cgrp, struct cftype *cft,
  1405. struct seq_file *sf)
  1406. {
  1407. seq_printf(sf, "%u\n",
  1408. cgroup_to_blkcg(cgrp)->cfq_leaf_weight);
  1409. return 0;
  1410. }
  1411. static int __cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
  1412. const char *buf, bool is_leaf_weight)
  1413. {
  1414. struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
  1415. struct blkg_conf_ctx ctx;
  1416. struct cfq_group *cfqg;
  1417. int ret;
  1418. ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
  1419. if (ret)
  1420. return ret;
  1421. ret = -EINVAL;
  1422. cfqg = blkg_to_cfqg(ctx.blkg);
  1423. if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
  1424. if (!is_leaf_weight) {
  1425. cfqg->dev_weight = ctx.v;
  1426. cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
  1427. } else {
  1428. cfqg->dev_leaf_weight = ctx.v;
  1429. cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
  1430. }
  1431. ret = 0;
  1432. }
  1433. blkg_conf_finish(&ctx);
  1434. return ret;
  1435. }
  1436. static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
  1437. const char *buf)
  1438. {
  1439. return __cfqg_set_weight_device(cgrp, cft, buf, false);
  1440. }
  1441. static int cfqg_set_leaf_weight_device(struct cgroup *cgrp, struct cftype *cft,
  1442. const char *buf)
  1443. {
  1444. return __cfqg_set_weight_device(cgrp, cft, buf, true);
  1445. }
  1446. static int __cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val,
  1447. bool is_leaf_weight)
  1448. {
  1449. struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
  1450. struct blkcg_gq *blkg;
  1451. if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
  1452. return -EINVAL;
  1453. spin_lock_irq(&blkcg->lock);
  1454. if (!is_leaf_weight)
  1455. blkcg->cfq_weight = val;
  1456. else
  1457. blkcg->cfq_leaf_weight = val;
  1458. hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
  1459. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  1460. if (!cfqg)
  1461. continue;
  1462. if (!is_leaf_weight) {
  1463. if (!cfqg->dev_weight)
  1464. cfqg->new_weight = blkcg->cfq_weight;
  1465. } else {
  1466. if (!cfqg->dev_leaf_weight)
  1467. cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
  1468. }
  1469. }
  1470. spin_unlock_irq(&blkcg->lock);
  1471. return 0;
  1472. }
  1473. static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1474. {
  1475. return __cfq_set_weight(cgrp, cft, val, false);
  1476. }
  1477. static int cfq_set_leaf_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1478. {
  1479. return __cfq_set_weight(cgrp, cft, val, true);
  1480. }
  1481. static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
  1482. struct seq_file *sf)
  1483. {
  1484. struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
  1485. blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
  1486. cft->private, false);
  1487. return 0;
  1488. }
  1489. static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
  1490. struct seq_file *sf)
  1491. {
  1492. struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
  1493. blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
  1494. cft->private, true);
  1495. return 0;
  1496. }
  1497. static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
  1498. struct blkg_policy_data *pd, int off)
  1499. {
  1500. u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
  1501. return __blkg_prfill_u64(sf, pd, sum);
  1502. }
  1503. static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
  1504. struct blkg_policy_data *pd, int off)
  1505. {
  1506. struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
  1507. return __blkg_prfill_rwstat(sf, pd, &sum);
  1508. }
  1509. static int cfqg_print_stat_recursive(struct cgroup *cgrp, struct cftype *cft,
  1510. struct seq_file *sf)
  1511. {
  1512. struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
  1513. blkcg_print_blkgs(sf, blkcg, cfqg_prfill_stat_recursive,
  1514. &blkcg_policy_cfq, cft->private, false);
  1515. return 0;
  1516. }
  1517. static int cfqg_print_rwstat_recursive(struct cgroup *cgrp, struct cftype *cft,
  1518. struct seq_file *sf)
  1519. {
  1520. struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
  1521. blkcg_print_blkgs(sf, blkcg, cfqg_prfill_rwstat_recursive,
  1522. &blkcg_policy_cfq, cft->private, true);
  1523. return 0;
  1524. }
  1525. #ifdef CONFIG_DEBUG_BLK_CGROUP
  1526. static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
  1527. struct blkg_policy_data *pd, int off)
  1528. {
  1529. struct cfq_group *cfqg = pd_to_cfqg(pd);
  1530. u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
  1531. u64 v = 0;
  1532. if (samples) {
  1533. v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
  1534. do_div(v, samples);
  1535. }
  1536. __blkg_prfill_u64(sf, pd, v);
  1537. return 0;
  1538. }
  1539. /* print avg_queue_size */
  1540. static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
  1541. struct seq_file *sf)
  1542. {
  1543. struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
  1544. blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
  1545. &blkcg_policy_cfq, 0, false);
  1546. return 0;
  1547. }
  1548. #endif /* CONFIG_DEBUG_BLK_CGROUP */
  1549. static struct cftype cfq_blkcg_files[] = {
  1550. /* on root, weight is mapped to leaf_weight */
  1551. {
  1552. .name = "weight_device",
  1553. .flags = CFTYPE_ONLY_ON_ROOT,
  1554. .read_seq_string = cfqg_print_leaf_weight_device,
  1555. .write_string = cfqg_set_leaf_weight_device,
  1556. .max_write_len = 256,
  1557. },
  1558. {
  1559. .name = "weight",
  1560. .flags = CFTYPE_ONLY_ON_ROOT,
  1561. .read_seq_string = cfq_print_leaf_weight,
  1562. .write_u64 = cfq_set_leaf_weight,
  1563. },
  1564. /* no such mapping necessary for !roots */
  1565. {
  1566. .name = "weight_device",
  1567. .flags = CFTYPE_NOT_ON_ROOT,
  1568. .read_seq_string = cfqg_print_weight_device,
  1569. .write_string = cfqg_set_weight_device,
  1570. .max_write_len = 256,
  1571. },
  1572. {
  1573. .name = "weight",
  1574. .flags = CFTYPE_NOT_ON_ROOT,
  1575. .read_seq_string = cfq_print_weight,
  1576. .write_u64 = cfq_set_weight,
  1577. },
  1578. {
  1579. .name = "leaf_weight_device",
  1580. .read_seq_string = cfqg_print_leaf_weight_device,
  1581. .write_string = cfqg_set_leaf_weight_device,
  1582. .max_write_len = 256,
  1583. },
  1584. {
  1585. .name = "leaf_weight",
  1586. .read_seq_string = cfq_print_leaf_weight,
  1587. .write_u64 = cfq_set_leaf_weight,
  1588. },
  1589. /* statistics, covers only the tasks in the cfqg */
  1590. {
  1591. .name = "time",
  1592. .private = offsetof(struct cfq_group, stats.time),
  1593. .read_seq_string = cfqg_print_stat,
  1594. },
  1595. {
  1596. .name = "sectors",
  1597. .private = offsetof(struct cfq_group, stats.sectors),
  1598. .read_seq_string = cfqg_print_stat,
  1599. },
  1600. {
  1601. .name = "io_service_bytes",
  1602. .private = offsetof(struct cfq_group, stats.service_bytes),
  1603. .read_seq_string = cfqg_print_rwstat,
  1604. },
  1605. {
  1606. .name = "io_serviced",
  1607. .private = offsetof(struct cfq_group, stats.serviced),
  1608. .read_seq_string = cfqg_print_rwstat,
  1609. },
  1610. {
  1611. .name = "io_service_time",
  1612. .private = offsetof(struct cfq_group, stats.service_time),
  1613. .read_seq_string = cfqg_print_rwstat,
  1614. },
  1615. {
  1616. .name = "io_wait_time",
  1617. .private = offsetof(struct cfq_group, stats.wait_time),
  1618. .read_seq_string = cfqg_print_rwstat,
  1619. },
  1620. {
  1621. .name = "io_merged",
  1622. .private = offsetof(struct cfq_group, stats.merged),
  1623. .read_seq_string = cfqg_print_rwstat,
  1624. },
  1625. {
  1626. .name = "io_queued",
  1627. .private = offsetof(struct cfq_group, stats.queued),
  1628. .read_seq_string = cfqg_print_rwstat,
  1629. },
  1630. /* the same statictics which cover the cfqg and its descendants */
  1631. {
  1632. .name = "time_recursive",
  1633. .private = offsetof(struct cfq_group, stats.time),
  1634. .read_seq_string = cfqg_print_stat_recursive,
  1635. },
  1636. {
  1637. .name = "sectors_recursive",
  1638. .private = offsetof(struct cfq_group, stats.sectors),
  1639. .read_seq_string = cfqg_print_stat_recursive,
  1640. },
  1641. {
  1642. .name = "io_service_bytes_recursive",
  1643. .private = offsetof(struct cfq_group, stats.service_bytes),
  1644. .read_seq_string = cfqg_print_rwstat_recursive,
  1645. },
  1646. {
  1647. .name = "io_serviced_recursive",
  1648. .private = offsetof(struct cfq_group, stats.serviced),
  1649. .read_seq_string = cfqg_print_rwstat_recursive,
  1650. },
  1651. {
  1652. .name = "io_service_time_recursive",
  1653. .private = offsetof(struct cfq_group, stats.service_time),
  1654. .read_seq_string = cfqg_print_rwstat_recursive,
  1655. },
  1656. {
  1657. .name = "io_wait_time_recursive",
  1658. .private = offsetof(struct cfq_group, stats.wait_time),
  1659. .read_seq_string = cfqg_print_rwstat_recursive,
  1660. },
  1661. {
  1662. .name = "io_merged_recursive",
  1663. .private = offsetof(struct cfq_group, stats.merged),
  1664. .read_seq_string = cfqg_print_rwstat_recursive,
  1665. },
  1666. {
  1667. .name = "io_queued_recursive",
  1668. .private = offsetof(struct cfq_group, stats.queued),
  1669. .read_seq_string = cfqg_print_rwstat_recursive,
  1670. },
  1671. #ifdef CONFIG_DEBUG_BLK_CGROUP
  1672. {
  1673. .name = "avg_queue_size",
  1674. .read_seq_string = cfqg_print_avg_queue_size,
  1675. },
  1676. {
  1677. .name = "group_wait_time",
  1678. .private = offsetof(struct cfq_group, stats.group_wait_time),
  1679. .read_seq_string = cfqg_print_stat,
  1680. },
  1681. {
  1682. .name = "idle_time",
  1683. .private = offsetof(struct cfq_group, stats.idle_time),
  1684. .read_seq_string = cfqg_print_stat,
  1685. },
  1686. {
  1687. .name = "empty_time",
  1688. .private = offsetof(struct cfq_group, stats.empty_time),
  1689. .read_seq_string = cfqg_print_stat,
  1690. },
  1691. {
  1692. .name = "dequeue",
  1693. .private = offsetof(struct cfq_group, stats.dequeue),
  1694. .read_seq_string = cfqg_print_stat,
  1695. },
  1696. {
  1697. .name = "unaccounted_time",
  1698. .private = offsetof(struct cfq_group, stats.unaccounted_time),
  1699. .read_seq_string = cfqg_print_stat,
  1700. },
  1701. #endif /* CONFIG_DEBUG_BLK_CGROUP */
  1702. { } /* terminate */
  1703. };
  1704. #else /* GROUP_IOSCHED */
  1705. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  1706. struct blkcg *blkcg)
  1707. {
  1708. return cfqd->root_group;
  1709. }
  1710. static inline void
  1711. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1712. cfqq->cfqg = cfqg;
  1713. }
  1714. #endif /* GROUP_IOSCHED */
  1715. /*
  1716. * The cfqd->service_trees holds all pending cfq_queue's that have
  1717. * requests waiting to be processed. It is sorted in the order that
  1718. * we will service the queues.
  1719. */
  1720. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1721. bool add_front)
  1722. {
  1723. struct rb_node **p, *parent;
  1724. struct cfq_queue *__cfqq;
  1725. unsigned long rb_key;
  1726. struct cfq_rb_root *st;
  1727. int left;
  1728. int new_cfqq = 1;
  1729. st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
  1730. if (cfq_class_idle(cfqq)) {
  1731. rb_key = CFQ_IDLE_DELAY;
  1732. parent = rb_last(&st->rb);
  1733. if (parent && parent != &cfqq->rb_node) {
  1734. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1735. rb_key += __cfqq->rb_key;
  1736. } else
  1737. rb_key += jiffies;
  1738. } else if (!add_front) {
  1739. /*
  1740. * Get our rb key offset. Subtract any residual slice
  1741. * value carried from last service. A negative resid
  1742. * count indicates slice overrun, and this should position
  1743. * the next service time further away in the tree.
  1744. */
  1745. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1746. rb_key -= cfqq->slice_resid;
  1747. cfqq->slice_resid = 0;
  1748. } else {
  1749. rb_key = -HZ;
  1750. __cfqq = cfq_rb_first(st);
  1751. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1752. }
  1753. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1754. new_cfqq = 0;
  1755. /*
  1756. * same position, nothing more to do
  1757. */
  1758. if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
  1759. return;
  1760. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1761. cfqq->service_tree = NULL;
  1762. }
  1763. left = 1;
  1764. parent = NULL;
  1765. cfqq->service_tree = st;
  1766. p = &st->rb.rb_node;
  1767. while (*p) {
  1768. parent = *p;
  1769. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1770. /*
  1771. * sort by key, that represents service time.
  1772. */
  1773. if (time_before(rb_key, __cfqq->rb_key))
  1774. p = &parent->rb_left;
  1775. else {
  1776. p = &parent->rb_right;
  1777. left = 0;
  1778. }
  1779. }
  1780. if (left)
  1781. st->left = &cfqq->rb_node;
  1782. cfqq->rb_key = rb_key;
  1783. rb_link_node(&cfqq->rb_node, parent, p);
  1784. rb_insert_color(&cfqq->rb_node, &st->rb);
  1785. st->count++;
  1786. if (add_front || !new_cfqq)
  1787. return;
  1788. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1789. }
  1790. static struct cfq_queue *
  1791. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1792. sector_t sector, struct rb_node **ret_parent,
  1793. struct rb_node ***rb_link)
  1794. {
  1795. struct rb_node **p, *parent;
  1796. struct cfq_queue *cfqq = NULL;
  1797. parent = NULL;
  1798. p = &root->rb_node;
  1799. while (*p) {
  1800. struct rb_node **n;
  1801. parent = *p;
  1802. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1803. /*
  1804. * Sort strictly based on sector. Smallest to the left,
  1805. * largest to the right.
  1806. */
  1807. if (sector > blk_rq_pos(cfqq->next_rq))
  1808. n = &(*p)->rb_right;
  1809. else if (sector < blk_rq_pos(cfqq->next_rq))
  1810. n = &(*p)->rb_left;
  1811. else
  1812. break;
  1813. p = n;
  1814. cfqq = NULL;
  1815. }
  1816. *ret_parent = parent;
  1817. if (rb_link)
  1818. *rb_link = p;
  1819. return cfqq;
  1820. }
  1821. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1822. {
  1823. struct rb_node **p, *parent;
  1824. struct cfq_queue *__cfqq;
  1825. if (cfqq->p_root) {
  1826. rb_erase(&cfqq->p_node, cfqq->p_root);
  1827. cfqq->p_root = NULL;
  1828. }
  1829. if (cfq_class_idle(cfqq))
  1830. return;
  1831. if (!cfqq->next_rq)
  1832. return;
  1833. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1834. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1835. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1836. if (!__cfqq) {
  1837. rb_link_node(&cfqq->p_node, parent, p);
  1838. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1839. } else
  1840. cfqq->p_root = NULL;
  1841. }
  1842. /*
  1843. * Update cfqq's position in the service tree.
  1844. */
  1845. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1846. {
  1847. /*
  1848. * Resorting requires the cfqq to be on the RR list already.
  1849. */
  1850. if (cfq_cfqq_on_rr(cfqq)) {
  1851. cfq_service_tree_add(cfqd, cfqq, 0);
  1852. cfq_prio_tree_add(cfqd, cfqq);
  1853. }
  1854. }
  1855. /*
  1856. * add to busy list of queues for service, trying to be fair in ordering
  1857. * the pending list according to last request service
  1858. */
  1859. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1860. {
  1861. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1862. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1863. cfq_mark_cfqq_on_rr(cfqq);
  1864. cfqd->busy_queues++;
  1865. if (cfq_cfqq_sync(cfqq))
  1866. cfqd->busy_sync_queues++;
  1867. cfq_resort_rr_list(cfqd, cfqq);
  1868. }
  1869. /*
  1870. * Called when the cfqq no longer has requests pending, remove it from
  1871. * the service tree.
  1872. */
  1873. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1874. {
  1875. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1876. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1877. cfq_clear_cfqq_on_rr(cfqq);
  1878. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1879. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1880. cfqq->service_tree = NULL;
  1881. }
  1882. if (cfqq->p_root) {
  1883. rb_erase(&cfqq->p_node, cfqq->p_root);
  1884. cfqq->p_root = NULL;
  1885. }
  1886. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1887. BUG_ON(!cfqd->busy_queues);
  1888. cfqd->busy_queues--;
  1889. if (cfq_cfqq_sync(cfqq))
  1890. cfqd->busy_sync_queues--;
  1891. }
  1892. /*
  1893. * rb tree support functions
  1894. */
  1895. static void cfq_del_rq_rb(struct request *rq)
  1896. {
  1897. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1898. const int sync = rq_is_sync(rq);
  1899. BUG_ON(!cfqq->queued[sync]);
  1900. cfqq->queued[sync]--;
  1901. elv_rb_del(&cfqq->sort_list, rq);
  1902. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1903. /*
  1904. * Queue will be deleted from service tree when we actually
  1905. * expire it later. Right now just remove it from prio tree
  1906. * as it is empty.
  1907. */
  1908. if (cfqq->p_root) {
  1909. rb_erase(&cfqq->p_node, cfqq->p_root);
  1910. cfqq->p_root = NULL;
  1911. }
  1912. }
  1913. }
  1914. static void cfq_add_rq_rb(struct request *rq)
  1915. {
  1916. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1917. struct cfq_data *cfqd = cfqq->cfqd;
  1918. struct request *prev;
  1919. cfqq->queued[rq_is_sync(rq)]++;
  1920. elv_rb_add(&cfqq->sort_list, rq);
  1921. if (!cfq_cfqq_on_rr(cfqq))
  1922. cfq_add_cfqq_rr(cfqd, cfqq);
  1923. /*
  1924. * check if this request is a better next-serve candidate
  1925. */
  1926. prev = cfqq->next_rq;
  1927. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1928. /*
  1929. * adjust priority tree position, if ->next_rq changes
  1930. */
  1931. if (prev != cfqq->next_rq)
  1932. cfq_prio_tree_add(cfqd, cfqq);
  1933. BUG_ON(!cfqq->next_rq);
  1934. }
  1935. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1936. {
  1937. elv_rb_del(&cfqq->sort_list, rq);
  1938. cfqq->queued[rq_is_sync(rq)]--;
  1939. cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
  1940. cfq_add_rq_rb(rq);
  1941. cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
  1942. rq->cmd_flags);
  1943. }
  1944. static struct request *
  1945. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1946. {
  1947. struct task_struct *tsk = current;
  1948. struct cfq_io_cq *cic;
  1949. struct cfq_queue *cfqq;
  1950. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1951. if (!cic)
  1952. return NULL;
  1953. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1954. if (cfqq) {
  1955. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1956. return elv_rb_find(&cfqq->sort_list, sector);
  1957. }
  1958. return NULL;
  1959. }
  1960. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1961. {
  1962. struct cfq_data *cfqd = q->elevator->elevator_data;
  1963. cfqd->rq_in_driver++;
  1964. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1965. cfqd->rq_in_driver);
  1966. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1967. }
  1968. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1969. {
  1970. struct cfq_data *cfqd = q->elevator->elevator_data;
  1971. WARN_ON(!cfqd->rq_in_driver);
  1972. cfqd->rq_in_driver--;
  1973. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1974. cfqd->rq_in_driver);
  1975. }
  1976. static void cfq_remove_request(struct request *rq)
  1977. {
  1978. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1979. if (cfqq->next_rq == rq)
  1980. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1981. list_del_init(&rq->queuelist);
  1982. cfq_del_rq_rb(rq);
  1983. cfqq->cfqd->rq_queued--;
  1984. cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
  1985. if (rq->cmd_flags & REQ_PRIO) {
  1986. WARN_ON(!cfqq->prio_pending);
  1987. cfqq->prio_pending--;
  1988. }
  1989. }
  1990. static int cfq_merge(struct request_queue *q, struct request **req,
  1991. struct bio *bio)
  1992. {
  1993. struct cfq_data *cfqd = q->elevator->elevator_data;
  1994. struct request *__rq;
  1995. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1996. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1997. *req = __rq;
  1998. return ELEVATOR_FRONT_MERGE;
  1999. }
  2000. return ELEVATOR_NO_MERGE;
  2001. }
  2002. static void cfq_merged_request(struct request_queue *q, struct request *req,
  2003. int type)
  2004. {
  2005. if (type == ELEVATOR_FRONT_MERGE) {
  2006. struct cfq_queue *cfqq = RQ_CFQQ(req);
  2007. cfq_reposition_rq_rb(cfqq, req);
  2008. }
  2009. }
  2010. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  2011. struct bio *bio)
  2012. {
  2013. cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
  2014. }
  2015. static void
  2016. cfq_merged_requests(struct request_queue *q, struct request *rq,
  2017. struct request *next)
  2018. {
  2019. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2020. struct cfq_data *cfqd = q->elevator->elevator_data;
  2021. /*
  2022. * reposition in fifo if next is older than rq
  2023. */
  2024. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  2025. time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
  2026. cfqq == RQ_CFQQ(next)) {
  2027. list_move(&rq->queuelist, &next->queuelist);
  2028. rq_set_fifo_time(rq, rq_fifo_time(next));
  2029. }
  2030. if (cfqq->next_rq == next)
  2031. cfqq->next_rq = rq;
  2032. cfq_remove_request(next);
  2033. cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
  2034. cfqq = RQ_CFQQ(next);
  2035. /*
  2036. * all requests of this queue are merged to other queues, delete it
  2037. * from the service tree. If it's the active_queue,
  2038. * cfq_dispatch_requests() will choose to expire it or do idle
  2039. */
  2040. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
  2041. cfqq != cfqd->active_queue)
  2042. cfq_del_cfqq_rr(cfqd, cfqq);
  2043. }
  2044. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  2045. struct bio *bio)
  2046. {
  2047. struct cfq_data *cfqd = q->elevator->elevator_data;
  2048. struct cfq_io_cq *cic;
  2049. struct cfq_queue *cfqq;
  2050. /*
  2051. * Disallow merge of a sync bio into an async request.
  2052. */
  2053. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  2054. return false;
  2055. /*
  2056. * Lookup the cfqq that this bio will be queued with and allow
  2057. * merge only if rq is queued there.
  2058. */
  2059. cic = cfq_cic_lookup(cfqd, current->io_context);
  2060. if (!cic)
  2061. return false;
  2062. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  2063. return cfqq == RQ_CFQQ(rq);
  2064. }
  2065. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2066. {
  2067. del_timer(&cfqd->idle_slice_timer);
  2068. cfqg_stats_update_idle_time(cfqq->cfqg);
  2069. }
  2070. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  2071. struct cfq_queue *cfqq)
  2072. {
  2073. if (cfqq) {
  2074. cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
  2075. cfqd->serving_wl_class, cfqd->serving_wl_type);
  2076. cfqg_stats_update_avg_queue_size(cfqq->cfqg);
  2077. cfqq->slice_start = 0;
  2078. cfqq->dispatch_start = jiffies;
  2079. cfqq->allocated_slice = 0;
  2080. cfqq->slice_end = 0;
  2081. cfqq->slice_dispatch = 0;
  2082. cfqq->nr_sectors = 0;
  2083. cfq_clear_cfqq_wait_request(cfqq);
  2084. cfq_clear_cfqq_must_dispatch(cfqq);
  2085. cfq_clear_cfqq_must_alloc_slice(cfqq);
  2086. cfq_clear_cfqq_fifo_expire(cfqq);
  2087. cfq_mark_cfqq_slice_new(cfqq);
  2088. cfq_del_timer(cfqd, cfqq);
  2089. }
  2090. cfqd->active_queue = cfqq;
  2091. }
  2092. /*
  2093. * current cfqq expired its slice (or was too idle), select new one
  2094. */
  2095. static void
  2096. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2097. bool timed_out)
  2098. {
  2099. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  2100. if (cfq_cfqq_wait_request(cfqq))
  2101. cfq_del_timer(cfqd, cfqq);
  2102. cfq_clear_cfqq_wait_request(cfqq);
  2103. cfq_clear_cfqq_wait_busy(cfqq);
  2104. /*
  2105. * If this cfqq is shared between multiple processes, check to
  2106. * make sure that those processes are still issuing I/Os within
  2107. * the mean seek distance. If not, it may be time to break the
  2108. * queues apart again.
  2109. */
  2110. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  2111. cfq_mark_cfqq_split_coop(cfqq);
  2112. /*
  2113. * store what was left of this slice, if the queue idled/timed out
  2114. */
  2115. if (timed_out) {
  2116. if (cfq_cfqq_slice_new(cfqq))
  2117. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  2118. else
  2119. cfqq->slice_resid = cfqq->slice_end - jiffies;
  2120. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  2121. }
  2122. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  2123. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  2124. cfq_del_cfqq_rr(cfqd, cfqq);
  2125. cfq_resort_rr_list(cfqd, cfqq);
  2126. if (cfqq == cfqd->active_queue)
  2127. cfqd->active_queue = NULL;
  2128. if (cfqd->active_cic) {
  2129. put_io_context(cfqd->active_cic->icq.ioc);
  2130. cfqd->active_cic = NULL;
  2131. }
  2132. }
  2133. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  2134. {
  2135. struct cfq_queue *cfqq = cfqd->active_queue;
  2136. if (cfqq)
  2137. __cfq_slice_expired(cfqd, cfqq, timed_out);
  2138. }
  2139. /*
  2140. * Get next queue for service. Unless we have a queue preemption,
  2141. * we'll simply select the first cfqq in the service tree.
  2142. */
  2143. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  2144. {
  2145. struct cfq_rb_root *st = st_for(cfqd->serving_group,
  2146. cfqd->serving_wl_class, cfqd->serving_wl_type);
  2147. if (!cfqd->rq_queued)
  2148. return NULL;
  2149. /* There is nothing to dispatch */
  2150. if (!st)
  2151. return NULL;
  2152. if (RB_EMPTY_ROOT(&st->rb))
  2153. return NULL;
  2154. return cfq_rb_first(st);
  2155. }
  2156. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  2157. {
  2158. struct cfq_group *cfqg;
  2159. struct cfq_queue *cfqq;
  2160. int i, j;
  2161. struct cfq_rb_root *st;
  2162. if (!cfqd->rq_queued)
  2163. return NULL;
  2164. cfqg = cfq_get_next_cfqg(cfqd);
  2165. if (!cfqg)
  2166. return NULL;
  2167. for_each_cfqg_st(cfqg, i, j, st)
  2168. if ((cfqq = cfq_rb_first(st)) != NULL)
  2169. return cfqq;
  2170. return NULL;
  2171. }
  2172. /*
  2173. * Get and set a new active queue for service.
  2174. */
  2175. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  2176. struct cfq_queue *cfqq)
  2177. {
  2178. if (!cfqq)
  2179. cfqq = cfq_get_next_queue(cfqd);
  2180. __cfq_set_active_queue(cfqd, cfqq);
  2181. return cfqq;
  2182. }
  2183. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  2184. struct request *rq)
  2185. {
  2186. if (blk_rq_pos(rq) >= cfqd->last_position)
  2187. return blk_rq_pos(rq) - cfqd->last_position;
  2188. else
  2189. return cfqd->last_position - blk_rq_pos(rq);
  2190. }
  2191. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2192. struct request *rq)
  2193. {
  2194. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  2195. }
  2196. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  2197. struct cfq_queue *cur_cfqq)
  2198. {
  2199. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  2200. struct rb_node *parent, *node;
  2201. struct cfq_queue *__cfqq;
  2202. sector_t sector = cfqd->last_position;
  2203. if (RB_EMPTY_ROOT(root))
  2204. return NULL;
  2205. /*
  2206. * First, if we find a request starting at the end of the last
  2207. * request, choose it.
  2208. */
  2209. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  2210. if (__cfqq)
  2211. return __cfqq;
  2212. /*
  2213. * If the exact sector wasn't found, the parent of the NULL leaf
  2214. * will contain the closest sector.
  2215. */
  2216. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  2217. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  2218. return __cfqq;
  2219. if (blk_rq_pos(__cfqq->next_rq) < sector)
  2220. node = rb_next(&__cfqq->p_node);
  2221. else
  2222. node = rb_prev(&__cfqq->p_node);
  2223. if (!node)
  2224. return NULL;
  2225. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  2226. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  2227. return __cfqq;
  2228. return NULL;
  2229. }
  2230. /*
  2231. * cfqd - obvious
  2232. * cur_cfqq - passed in so that we don't decide that the current queue is
  2233. * closely cooperating with itself.
  2234. *
  2235. * So, basically we're assuming that that cur_cfqq has dispatched at least
  2236. * one request, and that cfqd->last_position reflects a position on the disk
  2237. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  2238. * assumption.
  2239. */
  2240. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  2241. struct cfq_queue *cur_cfqq)
  2242. {
  2243. struct cfq_queue *cfqq;
  2244. if (cfq_class_idle(cur_cfqq))
  2245. return NULL;
  2246. if (!cfq_cfqq_sync(cur_cfqq))
  2247. return NULL;
  2248. if (CFQQ_SEEKY(cur_cfqq))
  2249. return NULL;
  2250. /*
  2251. * Don't search priority tree if it's the only queue in the group.
  2252. */
  2253. if (cur_cfqq->cfqg->nr_cfqq == 1)
  2254. return NULL;
  2255. /*
  2256. * We should notice if some of the queues are cooperating, eg
  2257. * working closely on the same area of the disk. In that case,
  2258. * we can group them together and don't waste time idling.
  2259. */
  2260. cfqq = cfqq_close(cfqd, cur_cfqq);
  2261. if (!cfqq)
  2262. return NULL;
  2263. /* If new queue belongs to different cfq_group, don't choose it */
  2264. if (cur_cfqq->cfqg != cfqq->cfqg)
  2265. return NULL;
  2266. /*
  2267. * It only makes sense to merge sync queues.
  2268. */
  2269. if (!cfq_cfqq_sync(cfqq))
  2270. return NULL;
  2271. if (CFQQ_SEEKY(cfqq))
  2272. return NULL;
  2273. /*
  2274. * Do not merge queues of different priority classes
  2275. */
  2276. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  2277. return NULL;
  2278. return cfqq;
  2279. }
  2280. /*
  2281. * Determine whether we should enforce idle window for this queue.
  2282. */
  2283. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2284. {
  2285. enum wl_class_t wl_class = cfqq_class(cfqq);
  2286. struct cfq_rb_root *st = cfqq->service_tree;
  2287. BUG_ON(!st);
  2288. BUG_ON(!st->count);
  2289. if (!cfqd->cfq_slice_idle)
  2290. return false;
  2291. /* We never do for idle class queues. */
  2292. if (wl_class == IDLE_WORKLOAD)
  2293. return false;
  2294. /* We do for queues that were marked with idle window flag. */
  2295. if (cfq_cfqq_idle_window(cfqq) &&
  2296. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  2297. return true;
  2298. /*
  2299. * Otherwise, we do only if they are the last ones
  2300. * in their service tree.
  2301. */
  2302. if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
  2303. !cfq_io_thinktime_big(cfqd, &st->ttime, false))
  2304. return true;
  2305. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
  2306. return false;
  2307. }
  2308. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  2309. {
  2310. struct cfq_queue *cfqq = cfqd->active_queue;
  2311. struct cfq_io_cq *cic;
  2312. unsigned long sl, group_idle = 0;
  2313. /*
  2314. * SSD device without seek penalty, disable idling. But only do so
  2315. * for devices that support queuing, otherwise we still have a problem
  2316. * with sync vs async workloads.
  2317. */
  2318. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  2319. return;
  2320. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  2321. WARN_ON(cfq_cfqq_slice_new(cfqq));
  2322. /*
  2323. * idle is disabled, either manually or by past process history
  2324. */
  2325. if (!cfq_should_idle(cfqd, cfqq)) {
  2326. /* no queue idling. Check for group idling */
  2327. if (cfqd->cfq_group_idle)
  2328. group_idle = cfqd->cfq_group_idle;
  2329. else
  2330. return;
  2331. }
  2332. /*
  2333. * still active requests from this queue, don't idle
  2334. */
  2335. if (cfqq->dispatched)
  2336. return;
  2337. /*
  2338. * task has exited, don't wait
  2339. */
  2340. cic = cfqd->active_cic;
  2341. if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
  2342. return;
  2343. /*
  2344. * If our average think time is larger than the remaining time
  2345. * slice, then don't idle. This avoids overrunning the allotted
  2346. * time slice.
  2347. */
  2348. if (sample_valid(cic->ttime.ttime_samples) &&
  2349. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  2350. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  2351. cic->ttime.ttime_mean);
  2352. return;
  2353. }
  2354. /* There are other queues in the group, don't do group idle */
  2355. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  2356. return;
  2357. cfq_mark_cfqq_wait_request(cfqq);
  2358. if (group_idle)
  2359. sl = cfqd->cfq_group_idle;
  2360. else
  2361. sl = cfqd->cfq_slice_idle;
  2362. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  2363. cfqg_stats_set_start_idle_time(cfqq->cfqg);
  2364. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  2365. group_idle ? 1 : 0);
  2366. }
  2367. /*
  2368. * Move request from internal lists to the request queue dispatch list.
  2369. */
  2370. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  2371. {
  2372. struct cfq_data *cfqd = q->elevator->elevator_data;
  2373. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2374. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  2375. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  2376. cfq_remove_request(rq);
  2377. cfqq->dispatched++;
  2378. (RQ_CFQG(rq))->dispatched++;
  2379. elv_dispatch_sort(q, rq);
  2380. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  2381. cfqq->nr_sectors += blk_rq_sectors(rq);
  2382. cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
  2383. }
  2384. /*
  2385. * return expired entry, or NULL to just start from scratch in rbtree
  2386. */
  2387. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  2388. {
  2389. struct request *rq = NULL;
  2390. if (cfq_cfqq_fifo_expire(cfqq))
  2391. return NULL;
  2392. cfq_mark_cfqq_fifo_expire(cfqq);
  2393. if (list_empty(&cfqq->fifo))
  2394. return NULL;
  2395. rq = rq_entry_fifo(cfqq->fifo.next);
  2396. if (time_before(jiffies, rq_fifo_time(rq)))
  2397. rq = NULL;
  2398. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  2399. return rq;
  2400. }
  2401. static inline int
  2402. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2403. {
  2404. const int base_rq = cfqd->cfq_slice_async_rq;
  2405. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  2406. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  2407. }
  2408. /*
  2409. * Must be called with the queue_lock held.
  2410. */
  2411. static int cfqq_process_refs(struct cfq_queue *cfqq)
  2412. {
  2413. int process_refs, io_refs;
  2414. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  2415. process_refs = cfqq->ref - io_refs;
  2416. BUG_ON(process_refs < 0);
  2417. return process_refs;
  2418. }
  2419. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  2420. {
  2421. int process_refs, new_process_refs;
  2422. struct cfq_queue *__cfqq;
  2423. /*
  2424. * If there are no process references on the new_cfqq, then it is
  2425. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  2426. * chain may have dropped their last reference (not just their
  2427. * last process reference).
  2428. */
  2429. if (!cfqq_process_refs(new_cfqq))
  2430. return;
  2431. /* Avoid a circular list and skip interim queue merges */
  2432. while ((__cfqq = new_cfqq->new_cfqq)) {
  2433. if (__cfqq == cfqq)
  2434. return;
  2435. new_cfqq = __cfqq;
  2436. }
  2437. process_refs = cfqq_process_refs(cfqq);
  2438. new_process_refs = cfqq_process_refs(new_cfqq);
  2439. /*
  2440. * If the process for the cfqq has gone away, there is no
  2441. * sense in merging the queues.
  2442. */
  2443. if (process_refs == 0 || new_process_refs == 0)
  2444. return;
  2445. /*
  2446. * Merge in the direction of the lesser amount of work.
  2447. */
  2448. if (new_process_refs >= process_refs) {
  2449. cfqq->new_cfqq = new_cfqq;
  2450. new_cfqq->ref += process_refs;
  2451. } else {
  2452. new_cfqq->new_cfqq = cfqq;
  2453. cfqq->ref += new_process_refs;
  2454. }
  2455. }
  2456. static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
  2457. struct cfq_group *cfqg, enum wl_class_t wl_class)
  2458. {
  2459. struct cfq_queue *queue;
  2460. int i;
  2461. bool key_valid = false;
  2462. unsigned long lowest_key = 0;
  2463. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  2464. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  2465. /* select the one with lowest rb_key */
  2466. queue = cfq_rb_first(st_for(cfqg, wl_class, i));
  2467. if (queue &&
  2468. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  2469. lowest_key = queue->rb_key;
  2470. cur_best = i;
  2471. key_valid = true;
  2472. }
  2473. }
  2474. return cur_best;
  2475. }
  2476. static void
  2477. choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
  2478. {
  2479. unsigned slice;
  2480. unsigned count;
  2481. struct cfq_rb_root *st;
  2482. unsigned group_slice;
  2483. enum wl_class_t original_class = cfqd->serving_wl_class;
  2484. /* Choose next priority. RT > BE > IDLE */
  2485. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  2486. cfqd->serving_wl_class = RT_WORKLOAD;
  2487. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  2488. cfqd->serving_wl_class = BE_WORKLOAD;
  2489. else {
  2490. cfqd->serving_wl_class = IDLE_WORKLOAD;
  2491. cfqd->workload_expires = jiffies + 1;
  2492. return;
  2493. }
  2494. if (original_class != cfqd->serving_wl_class)
  2495. goto new_workload;
  2496. /*
  2497. * For RT and BE, we have to choose also the type
  2498. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  2499. * expiration time
  2500. */
  2501. st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
  2502. count = st->count;
  2503. /*
  2504. * check workload expiration, and that we still have other queues ready
  2505. */
  2506. if (count && !time_after(jiffies, cfqd->workload_expires))
  2507. return;
  2508. new_workload:
  2509. /* otherwise select new workload type */
  2510. cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
  2511. cfqd->serving_wl_class);
  2512. st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
  2513. count = st->count;
  2514. /*
  2515. * the workload slice is computed as a fraction of target latency
  2516. * proportional to the number of queues in that workload, over
  2517. * all the queues in the same priority class
  2518. */
  2519. group_slice = cfq_group_slice(cfqd, cfqg);
  2520. slice = group_slice * count /
  2521. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
  2522. cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
  2523. cfqg));
  2524. if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
  2525. unsigned int tmp;
  2526. /*
  2527. * Async queues are currently system wide. Just taking
  2528. * proportion of queues with-in same group will lead to higher
  2529. * async ratio system wide as generally root group is going
  2530. * to have higher weight. A more accurate thing would be to
  2531. * calculate system wide asnc/sync ratio.
  2532. */
  2533. tmp = cfqd->cfq_target_latency *
  2534. cfqg_busy_async_queues(cfqd, cfqg);
  2535. tmp = tmp/cfqd->busy_queues;
  2536. slice = min_t(unsigned, slice, tmp);
  2537. /* async workload slice is scaled down according to
  2538. * the sync/async slice ratio. */
  2539. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  2540. } else
  2541. /* sync workload slice is at least 2 * cfq_slice_idle */
  2542. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  2543. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  2544. cfq_log(cfqd, "workload slice:%d", slice);
  2545. cfqd->workload_expires = jiffies + slice;
  2546. }
  2547. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  2548. {
  2549. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  2550. struct cfq_group *cfqg;
  2551. if (RB_EMPTY_ROOT(&st->rb))
  2552. return NULL;
  2553. cfqg = cfq_rb_first_group(st);
  2554. update_min_vdisktime(st);
  2555. return cfqg;
  2556. }
  2557. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  2558. {
  2559. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  2560. cfqd->serving_group = cfqg;
  2561. /* Restore the workload type data */
  2562. if (cfqg->saved_wl_slice) {
  2563. cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
  2564. cfqd->serving_wl_type = cfqg->saved_wl_type;
  2565. cfqd->serving_wl_class = cfqg->saved_wl_class;
  2566. } else
  2567. cfqd->workload_expires = jiffies - 1;
  2568. choose_wl_class_and_type(cfqd, cfqg);
  2569. }
  2570. /*
  2571. * Select a queue for service. If we have a current active queue,
  2572. * check whether to continue servicing it, or retrieve and set a new one.
  2573. */
  2574. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  2575. {
  2576. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2577. cfqq = cfqd->active_queue;
  2578. if (!cfqq)
  2579. goto new_queue;
  2580. if (!cfqd->rq_queued)
  2581. return NULL;
  2582. /*
  2583. * We were waiting for group to get backlogged. Expire the queue
  2584. */
  2585. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  2586. goto expire;
  2587. /*
  2588. * The active queue has run out of time, expire it and select new.
  2589. */
  2590. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  2591. /*
  2592. * If slice had not expired at the completion of last request
  2593. * we might not have turned on wait_busy flag. Don't expire
  2594. * the queue yet. Allow the group to get backlogged.
  2595. *
  2596. * The very fact that we have used the slice, that means we
  2597. * have been idling all along on this queue and it should be
  2598. * ok to wait for this request to complete.
  2599. */
  2600. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  2601. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2602. cfqq = NULL;
  2603. goto keep_queue;
  2604. } else
  2605. goto check_group_idle;
  2606. }
  2607. /*
  2608. * The active queue has requests and isn't expired, allow it to
  2609. * dispatch.
  2610. */
  2611. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2612. goto keep_queue;
  2613. /*
  2614. * If another queue has a request waiting within our mean seek
  2615. * distance, let it run. The expire code will check for close
  2616. * cooperators and put the close queue at the front of the service
  2617. * tree. If possible, merge the expiring queue with the new cfqq.
  2618. */
  2619. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  2620. if (new_cfqq) {
  2621. if (!cfqq->new_cfqq)
  2622. cfq_setup_merge(cfqq, new_cfqq);
  2623. goto expire;
  2624. }
  2625. /*
  2626. * No requests pending. If the active queue still has requests in
  2627. * flight or is idling for a new request, allow either of these
  2628. * conditions to happen (or time out) before selecting a new queue.
  2629. */
  2630. if (timer_pending(&cfqd->idle_slice_timer)) {
  2631. cfqq = NULL;
  2632. goto keep_queue;
  2633. }
  2634. /*
  2635. * This is a deep seek queue, but the device is much faster than
  2636. * the queue can deliver, don't idle
  2637. **/
  2638. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2639. (cfq_cfqq_slice_new(cfqq) ||
  2640. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2641. cfq_clear_cfqq_deep(cfqq);
  2642. cfq_clear_cfqq_idle_window(cfqq);
  2643. }
  2644. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2645. cfqq = NULL;
  2646. goto keep_queue;
  2647. }
  2648. /*
  2649. * If group idle is enabled and there are requests dispatched from
  2650. * this group, wait for requests to complete.
  2651. */
  2652. check_group_idle:
  2653. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  2654. cfqq->cfqg->dispatched &&
  2655. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  2656. cfqq = NULL;
  2657. goto keep_queue;
  2658. }
  2659. expire:
  2660. cfq_slice_expired(cfqd, 0);
  2661. new_queue:
  2662. /*
  2663. * Current queue expired. Check if we have to switch to a new
  2664. * service tree
  2665. */
  2666. if (!new_cfqq)
  2667. cfq_choose_cfqg(cfqd);
  2668. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2669. keep_queue:
  2670. return cfqq;
  2671. }
  2672. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2673. {
  2674. int dispatched = 0;
  2675. while (cfqq->next_rq) {
  2676. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2677. dispatched++;
  2678. }
  2679. BUG_ON(!list_empty(&cfqq->fifo));
  2680. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2681. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2682. return dispatched;
  2683. }
  2684. /*
  2685. * Drain our current requests. Used for barriers and when switching
  2686. * io schedulers on-the-fly.
  2687. */
  2688. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2689. {
  2690. struct cfq_queue *cfqq;
  2691. int dispatched = 0;
  2692. /* Expire the timeslice of the current active queue first */
  2693. cfq_slice_expired(cfqd, 0);
  2694. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2695. __cfq_set_active_queue(cfqd, cfqq);
  2696. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2697. }
  2698. BUG_ON(cfqd->busy_queues);
  2699. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2700. return dispatched;
  2701. }
  2702. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2703. struct cfq_queue *cfqq)
  2704. {
  2705. /* the queue hasn't finished any request, can't estimate */
  2706. if (cfq_cfqq_slice_new(cfqq))
  2707. return true;
  2708. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2709. cfqq->slice_end))
  2710. return true;
  2711. return false;
  2712. }
  2713. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2714. {
  2715. unsigned int max_dispatch;
  2716. /*
  2717. * Drain async requests before we start sync IO
  2718. */
  2719. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2720. return false;
  2721. /*
  2722. * If this is an async queue and we have sync IO in flight, let it wait
  2723. */
  2724. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2725. return false;
  2726. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2727. if (cfq_class_idle(cfqq))
  2728. max_dispatch = 1;
  2729. /*
  2730. * Does this cfqq already have too much IO in flight?
  2731. */
  2732. if (cfqq->dispatched >= max_dispatch) {
  2733. bool promote_sync = false;
  2734. /*
  2735. * idle queue must always only have a single IO in flight
  2736. */
  2737. if (cfq_class_idle(cfqq))
  2738. return false;
  2739. /*
  2740. * If there is only one sync queue
  2741. * we can ignore async queue here and give the sync
  2742. * queue no dispatch limit. The reason is a sync queue can
  2743. * preempt async queue, limiting the sync queue doesn't make
  2744. * sense. This is useful for aiostress test.
  2745. */
  2746. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2747. promote_sync = true;
  2748. /*
  2749. * We have other queues, don't allow more IO from this one
  2750. */
  2751. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2752. !promote_sync)
  2753. return false;
  2754. /*
  2755. * Sole queue user, no limit
  2756. */
  2757. if (cfqd->busy_queues == 1 || promote_sync)
  2758. max_dispatch = -1;
  2759. else
  2760. /*
  2761. * Normally we start throttling cfqq when cfq_quantum/2
  2762. * requests have been dispatched. But we can drive
  2763. * deeper queue depths at the beginning of slice
  2764. * subjected to upper limit of cfq_quantum.
  2765. * */
  2766. max_dispatch = cfqd->cfq_quantum;
  2767. }
  2768. /*
  2769. * Async queues must wait a bit before being allowed dispatch.
  2770. * We also ramp up the dispatch depth gradually for async IO,
  2771. * based on the last sync IO we serviced
  2772. */
  2773. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2774. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2775. unsigned int depth;
  2776. depth = last_sync / cfqd->cfq_slice[1];
  2777. if (!depth && !cfqq->dispatched)
  2778. depth = 1;
  2779. if (depth < max_dispatch)
  2780. max_dispatch = depth;
  2781. }
  2782. /*
  2783. * If we're below the current max, allow a dispatch
  2784. */
  2785. return cfqq->dispatched < max_dispatch;
  2786. }
  2787. /*
  2788. * Dispatch a request from cfqq, moving them to the request queue
  2789. * dispatch list.
  2790. */
  2791. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2792. {
  2793. struct request *rq;
  2794. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2795. if (!cfq_may_dispatch(cfqd, cfqq))
  2796. return false;
  2797. /*
  2798. * follow expired path, else get first next available
  2799. */
  2800. rq = cfq_check_fifo(cfqq);
  2801. if (!rq)
  2802. rq = cfqq->next_rq;
  2803. /*
  2804. * insert request into driver dispatch list
  2805. */
  2806. cfq_dispatch_insert(cfqd->queue, rq);
  2807. if (!cfqd->active_cic) {
  2808. struct cfq_io_cq *cic = RQ_CIC(rq);
  2809. atomic_long_inc(&cic->icq.ioc->refcount);
  2810. cfqd->active_cic = cic;
  2811. }
  2812. return true;
  2813. }
  2814. /*
  2815. * Find the cfqq that we need to service and move a request from that to the
  2816. * dispatch list
  2817. */
  2818. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2819. {
  2820. struct cfq_data *cfqd = q->elevator->elevator_data;
  2821. struct cfq_queue *cfqq;
  2822. if (!cfqd->busy_queues)
  2823. return 0;
  2824. if (unlikely(force))
  2825. return cfq_forced_dispatch(cfqd);
  2826. cfqq = cfq_select_queue(cfqd);
  2827. if (!cfqq)
  2828. return 0;
  2829. /*
  2830. * Dispatch a request from this cfqq, if it is allowed
  2831. */
  2832. if (!cfq_dispatch_request(cfqd, cfqq))
  2833. return 0;
  2834. cfqq->slice_dispatch++;
  2835. cfq_clear_cfqq_must_dispatch(cfqq);
  2836. /*
  2837. * expire an async queue immediately if it has used up its slice. idle
  2838. * queue always expire after 1 dispatch round.
  2839. */
  2840. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2841. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2842. cfq_class_idle(cfqq))) {
  2843. cfqq->slice_end = jiffies + 1;
  2844. cfq_slice_expired(cfqd, 0);
  2845. }
  2846. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2847. return 1;
  2848. }
  2849. /*
  2850. * task holds one reference to the queue, dropped when task exits. each rq
  2851. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2852. *
  2853. * Each cfq queue took a reference on the parent group. Drop it now.
  2854. * queue lock must be held here.
  2855. */
  2856. static void cfq_put_queue(struct cfq_queue *cfqq)
  2857. {
  2858. struct cfq_data *cfqd = cfqq->cfqd;
  2859. struct cfq_group *cfqg;
  2860. BUG_ON(cfqq->ref <= 0);
  2861. cfqq->ref--;
  2862. if (cfqq->ref)
  2863. return;
  2864. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2865. BUG_ON(rb_first(&cfqq->sort_list));
  2866. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2867. cfqg = cfqq->cfqg;
  2868. if (unlikely(cfqd->active_queue == cfqq)) {
  2869. __cfq_slice_expired(cfqd, cfqq, 0);
  2870. cfq_schedule_dispatch(cfqd);
  2871. }
  2872. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2873. kmem_cache_free(cfq_pool, cfqq);
  2874. cfqg_put(cfqg);
  2875. }
  2876. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2877. {
  2878. struct cfq_queue *__cfqq, *next;
  2879. /*
  2880. * If this queue was scheduled to merge with another queue, be
  2881. * sure to drop the reference taken on that queue (and others in
  2882. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2883. */
  2884. __cfqq = cfqq->new_cfqq;
  2885. while (__cfqq) {
  2886. if (__cfqq == cfqq) {
  2887. WARN(1, "cfqq->new_cfqq loop detected\n");
  2888. break;
  2889. }
  2890. next = __cfqq->new_cfqq;
  2891. cfq_put_queue(__cfqq);
  2892. __cfqq = next;
  2893. }
  2894. }
  2895. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2896. {
  2897. if (unlikely(cfqq == cfqd->active_queue)) {
  2898. __cfq_slice_expired(cfqd, cfqq, 0);
  2899. cfq_schedule_dispatch(cfqd);
  2900. }
  2901. cfq_put_cooperator(cfqq);
  2902. cfq_put_queue(cfqq);
  2903. }
  2904. static void cfq_init_icq(struct io_cq *icq)
  2905. {
  2906. struct cfq_io_cq *cic = icq_to_cic(icq);
  2907. cic->ttime.last_end_request = jiffies;
  2908. }
  2909. static void cfq_exit_icq(struct io_cq *icq)
  2910. {
  2911. struct cfq_io_cq *cic = icq_to_cic(icq);
  2912. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2913. if (cic->cfqq[BLK_RW_ASYNC]) {
  2914. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2915. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2916. }
  2917. if (cic->cfqq[BLK_RW_SYNC]) {
  2918. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2919. cic->cfqq[BLK_RW_SYNC] = NULL;
  2920. }
  2921. }
  2922. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
  2923. {
  2924. struct task_struct *tsk = current;
  2925. int ioprio_class;
  2926. if (!cfq_cfqq_prio_changed(cfqq))
  2927. return;
  2928. ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  2929. switch (ioprio_class) {
  2930. default:
  2931. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2932. case IOPRIO_CLASS_NONE:
  2933. /*
  2934. * no prio set, inherit CPU scheduling settings
  2935. */
  2936. cfqq->ioprio = task_nice_ioprio(tsk);
  2937. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2938. break;
  2939. case IOPRIO_CLASS_RT:
  2940. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2941. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2942. break;
  2943. case IOPRIO_CLASS_BE:
  2944. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2945. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2946. break;
  2947. case IOPRIO_CLASS_IDLE:
  2948. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2949. cfqq->ioprio = 7;
  2950. cfq_clear_cfqq_idle_window(cfqq);
  2951. break;
  2952. }
  2953. /*
  2954. * keep track of original prio settings in case we have to temporarily
  2955. * elevate the priority of this queue
  2956. */
  2957. cfqq->org_ioprio = cfqq->ioprio;
  2958. cfq_clear_cfqq_prio_changed(cfqq);
  2959. }
  2960. static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
  2961. {
  2962. int ioprio = cic->icq.ioc->ioprio;
  2963. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2964. struct cfq_queue *cfqq;
  2965. /*
  2966. * Check whether ioprio has changed. The condition may trigger
  2967. * spuriously on a newly created cic but there's no harm.
  2968. */
  2969. if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
  2970. return;
  2971. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2972. if (cfqq) {
  2973. struct cfq_queue *new_cfqq;
  2974. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
  2975. GFP_ATOMIC);
  2976. if (new_cfqq) {
  2977. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2978. cfq_put_queue(cfqq);
  2979. }
  2980. }
  2981. cfqq = cic->cfqq[BLK_RW_SYNC];
  2982. if (cfqq)
  2983. cfq_mark_cfqq_prio_changed(cfqq);
  2984. cic->ioprio = ioprio;
  2985. }
  2986. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2987. pid_t pid, bool is_sync)
  2988. {
  2989. RB_CLEAR_NODE(&cfqq->rb_node);
  2990. RB_CLEAR_NODE(&cfqq->p_node);
  2991. INIT_LIST_HEAD(&cfqq->fifo);
  2992. cfqq->ref = 0;
  2993. cfqq->cfqd = cfqd;
  2994. cfq_mark_cfqq_prio_changed(cfqq);
  2995. if (is_sync) {
  2996. if (!cfq_class_idle(cfqq))
  2997. cfq_mark_cfqq_idle_window(cfqq);
  2998. cfq_mark_cfqq_sync(cfqq);
  2999. }
  3000. cfqq->pid = pid;
  3001. }
  3002. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3003. static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
  3004. {
  3005. struct cfq_data *cfqd = cic_to_cfqd(cic);
  3006. struct cfq_queue *sync_cfqq;
  3007. uint64_t id;
  3008. rcu_read_lock();
  3009. id = bio_blkcg(bio)->id;
  3010. rcu_read_unlock();
  3011. /*
  3012. * Check whether blkcg has changed. The condition may trigger
  3013. * spuriously on a newly created cic but there's no harm.
  3014. */
  3015. if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
  3016. return;
  3017. sync_cfqq = cic_to_cfqq(cic, 1);
  3018. if (sync_cfqq) {
  3019. /*
  3020. * Drop reference to sync queue. A new sync queue will be
  3021. * assigned in new group upon arrival of a fresh request.
  3022. */
  3023. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  3024. cic_set_cfqq(cic, NULL, 1);
  3025. cfq_put_queue(sync_cfqq);
  3026. }
  3027. cic->blkcg_id = id;
  3028. }
  3029. #else
  3030. static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
  3031. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  3032. static struct cfq_queue *
  3033. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  3034. struct bio *bio, gfp_t gfp_mask)
  3035. {
  3036. struct blkcg *blkcg;
  3037. struct cfq_queue *cfqq, *new_cfqq = NULL;
  3038. struct cfq_group *cfqg;
  3039. retry:
  3040. rcu_read_lock();
  3041. blkcg = bio_blkcg(bio);
  3042. cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
  3043. cfqq = cic_to_cfqq(cic, is_sync);
  3044. /*
  3045. * Always try a new alloc if we fell back to the OOM cfqq
  3046. * originally, since it should just be a temporary situation.
  3047. */
  3048. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3049. cfqq = NULL;
  3050. if (new_cfqq) {
  3051. cfqq = new_cfqq;
  3052. new_cfqq = NULL;
  3053. } else if (gfp_mask & __GFP_WAIT) {
  3054. rcu_read_unlock();
  3055. spin_unlock_irq(cfqd->queue->queue_lock);
  3056. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  3057. gfp_mask | __GFP_ZERO,
  3058. cfqd->queue->node);
  3059. spin_lock_irq(cfqd->queue->queue_lock);
  3060. if (new_cfqq)
  3061. goto retry;
  3062. else
  3063. return &cfqd->oom_cfqq;
  3064. } else {
  3065. cfqq = kmem_cache_alloc_node(cfq_pool,
  3066. gfp_mask | __GFP_ZERO,
  3067. cfqd->queue->node);
  3068. }
  3069. if (cfqq) {
  3070. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  3071. cfq_init_prio_data(cfqq, cic);
  3072. cfq_link_cfqq_cfqg(cfqq, cfqg);
  3073. cfq_log_cfqq(cfqd, cfqq, "alloced");
  3074. } else
  3075. cfqq = &cfqd->oom_cfqq;
  3076. }
  3077. if (new_cfqq)
  3078. kmem_cache_free(cfq_pool, new_cfqq);
  3079. rcu_read_unlock();
  3080. return cfqq;
  3081. }
  3082. static struct cfq_queue **
  3083. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  3084. {
  3085. switch (ioprio_class) {
  3086. case IOPRIO_CLASS_RT:
  3087. return &cfqd->async_cfqq[0][ioprio];
  3088. case IOPRIO_CLASS_NONE:
  3089. ioprio = IOPRIO_NORM;
  3090. /* fall through */
  3091. case IOPRIO_CLASS_BE:
  3092. return &cfqd->async_cfqq[1][ioprio];
  3093. case IOPRIO_CLASS_IDLE:
  3094. return &cfqd->async_idle_cfqq;
  3095. default:
  3096. BUG();
  3097. }
  3098. }
  3099. static struct cfq_queue *
  3100. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  3101. struct bio *bio, gfp_t gfp_mask)
  3102. {
  3103. const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  3104. const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  3105. struct cfq_queue **async_cfqq = NULL;
  3106. struct cfq_queue *cfqq = NULL;
  3107. if (!is_sync) {
  3108. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  3109. cfqq = *async_cfqq;
  3110. }
  3111. if (!cfqq)
  3112. cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
  3113. /*
  3114. * pin the queue now that it's allocated, scheduler exit will prune it
  3115. */
  3116. if (!is_sync && !(*async_cfqq)) {
  3117. cfqq->ref++;
  3118. *async_cfqq = cfqq;
  3119. }
  3120. cfqq->ref++;
  3121. return cfqq;
  3122. }
  3123. static void
  3124. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  3125. {
  3126. unsigned long elapsed = jiffies - ttime->last_end_request;
  3127. elapsed = min(elapsed, 2UL * slice_idle);
  3128. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  3129. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  3130. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  3131. }
  3132. static void
  3133. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  3134. struct cfq_io_cq *cic)
  3135. {
  3136. if (cfq_cfqq_sync(cfqq)) {
  3137. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  3138. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  3139. cfqd->cfq_slice_idle);
  3140. }
  3141. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3142. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  3143. #endif
  3144. }
  3145. static void
  3146. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  3147. struct request *rq)
  3148. {
  3149. sector_t sdist = 0;
  3150. sector_t n_sec = blk_rq_sectors(rq);
  3151. if (cfqq->last_request_pos) {
  3152. if (cfqq->last_request_pos < blk_rq_pos(rq))
  3153. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  3154. else
  3155. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  3156. }
  3157. cfqq->seek_history <<= 1;
  3158. if (blk_queue_nonrot(cfqd->queue))
  3159. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  3160. else
  3161. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  3162. }
  3163. /*
  3164. * Disable idle window if the process thinks too long or seeks so much that
  3165. * it doesn't matter
  3166. */
  3167. static void
  3168. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  3169. struct cfq_io_cq *cic)
  3170. {
  3171. int old_idle, enable_idle;
  3172. /*
  3173. * Don't idle for async or idle io prio class
  3174. */
  3175. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  3176. return;
  3177. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  3178. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  3179. cfq_mark_cfqq_deep(cfqq);
  3180. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  3181. enable_idle = 0;
  3182. else if (!atomic_read(&cic->icq.ioc->active_ref) ||
  3183. !cfqd->cfq_slice_idle ||
  3184. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  3185. enable_idle = 0;
  3186. else if (sample_valid(cic->ttime.ttime_samples)) {
  3187. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  3188. enable_idle = 0;
  3189. else
  3190. enable_idle = 1;
  3191. }
  3192. if (old_idle != enable_idle) {
  3193. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  3194. if (enable_idle)
  3195. cfq_mark_cfqq_idle_window(cfqq);
  3196. else
  3197. cfq_clear_cfqq_idle_window(cfqq);
  3198. }
  3199. }
  3200. /*
  3201. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  3202. * no or if we aren't sure, a 1 will cause a preempt.
  3203. */
  3204. static bool
  3205. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  3206. struct request *rq)
  3207. {
  3208. struct cfq_queue *cfqq;
  3209. cfqq = cfqd->active_queue;
  3210. if (!cfqq)
  3211. return false;
  3212. if (cfq_class_idle(new_cfqq))
  3213. return false;
  3214. if (cfq_class_idle(cfqq))
  3215. return true;
  3216. /*
  3217. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  3218. */
  3219. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  3220. return false;
  3221. /*
  3222. * if the new request is sync, but the currently running queue is
  3223. * not, let the sync request have priority.
  3224. */
  3225. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  3226. return true;
  3227. if (new_cfqq->cfqg != cfqq->cfqg)
  3228. return false;
  3229. if (cfq_slice_used(cfqq))
  3230. return true;
  3231. /* Allow preemption only if we are idling on sync-noidle tree */
  3232. if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
  3233. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  3234. new_cfqq->service_tree->count == 2 &&
  3235. RB_EMPTY_ROOT(&cfqq->sort_list))
  3236. return true;
  3237. /*
  3238. * So both queues are sync. Let the new request get disk time if
  3239. * it's a metadata request and the current queue is doing regular IO.
  3240. */
  3241. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  3242. return true;
  3243. /*
  3244. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  3245. */
  3246. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  3247. return true;
  3248. /* An idle queue should not be idle now for some reason */
  3249. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  3250. return true;
  3251. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  3252. return false;
  3253. /*
  3254. * if this request is as-good as one we would expect from the
  3255. * current cfqq, let it preempt
  3256. */
  3257. if (cfq_rq_close(cfqd, cfqq, rq))
  3258. return true;
  3259. return false;
  3260. }
  3261. /*
  3262. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  3263. * let it have half of its nominal slice.
  3264. */
  3265. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  3266. {
  3267. enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
  3268. cfq_log_cfqq(cfqd, cfqq, "preempt");
  3269. cfq_slice_expired(cfqd, 1);
  3270. /*
  3271. * workload type is changed, don't save slice, otherwise preempt
  3272. * doesn't happen
  3273. */
  3274. if (old_type != cfqq_type(cfqq))
  3275. cfqq->cfqg->saved_wl_slice = 0;
  3276. /*
  3277. * Put the new queue at the front of the of the current list,
  3278. * so we know that it will be selected next.
  3279. */
  3280. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  3281. cfq_service_tree_add(cfqd, cfqq, 1);
  3282. cfqq->slice_end = 0;
  3283. cfq_mark_cfqq_slice_new(cfqq);
  3284. }
  3285. /*
  3286. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  3287. * something we should do about it
  3288. */
  3289. static void
  3290. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  3291. struct request *rq)
  3292. {
  3293. struct cfq_io_cq *cic = RQ_CIC(rq);
  3294. cfqd->rq_queued++;
  3295. if (rq->cmd_flags & REQ_PRIO)
  3296. cfqq->prio_pending++;
  3297. cfq_update_io_thinktime(cfqd, cfqq, cic);
  3298. cfq_update_io_seektime(cfqd, cfqq, rq);
  3299. cfq_update_idle_window(cfqd, cfqq, cic);
  3300. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  3301. if (cfqq == cfqd->active_queue) {
  3302. /*
  3303. * Remember that we saw a request from this process, but
  3304. * don't start queuing just yet. Otherwise we risk seeing lots
  3305. * of tiny requests, because we disrupt the normal plugging
  3306. * and merging. If the request is already larger than a single
  3307. * page, let it rip immediately. For that case we assume that
  3308. * merging is already done. Ditto for a busy system that
  3309. * has other work pending, don't risk delaying until the
  3310. * idle timer unplug to continue working.
  3311. */
  3312. if (cfq_cfqq_wait_request(cfqq)) {
  3313. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  3314. cfqd->busy_queues > 1) {
  3315. cfq_del_timer(cfqd, cfqq);
  3316. cfq_clear_cfqq_wait_request(cfqq);
  3317. __blk_run_queue(cfqd->queue);
  3318. } else {
  3319. cfqg_stats_update_idle_time(cfqq->cfqg);
  3320. cfq_mark_cfqq_must_dispatch(cfqq);
  3321. }
  3322. }
  3323. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  3324. /*
  3325. * not the active queue - expire current slice if it is
  3326. * idle and has expired it's mean thinktime or this new queue
  3327. * has some old slice time left and is of higher priority or
  3328. * this new queue is RT and the current one is BE
  3329. */
  3330. cfq_preempt_queue(cfqd, cfqq);
  3331. __blk_run_queue(cfqd->queue);
  3332. }
  3333. }
  3334. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  3335. {
  3336. struct cfq_data *cfqd = q->elevator->elevator_data;
  3337. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3338. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  3339. cfq_init_prio_data(cfqq, RQ_CIC(rq));
  3340. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  3341. list_add_tail(&rq->queuelist, &cfqq->fifo);
  3342. cfq_add_rq_rb(rq);
  3343. cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
  3344. rq->cmd_flags);
  3345. cfq_rq_enqueued(cfqd, cfqq, rq);
  3346. }
  3347. /*
  3348. * Update hw_tag based on peak queue depth over 50 samples under
  3349. * sufficient load.
  3350. */
  3351. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  3352. {
  3353. struct cfq_queue *cfqq = cfqd->active_queue;
  3354. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  3355. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  3356. if (cfqd->hw_tag == 1)
  3357. return;
  3358. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  3359. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  3360. return;
  3361. /*
  3362. * If active queue hasn't enough requests and can idle, cfq might not
  3363. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  3364. * case
  3365. */
  3366. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  3367. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  3368. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  3369. return;
  3370. if (cfqd->hw_tag_samples++ < 50)
  3371. return;
  3372. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  3373. cfqd->hw_tag = 1;
  3374. else
  3375. cfqd->hw_tag = 0;
  3376. }
  3377. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  3378. {
  3379. struct cfq_io_cq *cic = cfqd->active_cic;
  3380. /* If the queue already has requests, don't wait */
  3381. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3382. return false;
  3383. /* If there are other queues in the group, don't wait */
  3384. if (cfqq->cfqg->nr_cfqq > 1)
  3385. return false;
  3386. /* the only queue in the group, but think time is big */
  3387. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  3388. return false;
  3389. if (cfq_slice_used(cfqq))
  3390. return true;
  3391. /* if slice left is less than think time, wait busy */
  3392. if (cic && sample_valid(cic->ttime.ttime_samples)
  3393. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  3394. return true;
  3395. /*
  3396. * If think times is less than a jiffy than ttime_mean=0 and above
  3397. * will not be true. It might happen that slice has not expired yet
  3398. * but will expire soon (4-5 ns) during select_queue(). To cover the
  3399. * case where think time is less than a jiffy, mark the queue wait
  3400. * busy if only 1 jiffy is left in the slice.
  3401. */
  3402. if (cfqq->slice_end - jiffies == 1)
  3403. return true;
  3404. return false;
  3405. }
  3406. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  3407. {
  3408. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3409. struct cfq_data *cfqd = cfqq->cfqd;
  3410. const int sync = rq_is_sync(rq);
  3411. unsigned long now;
  3412. now = jiffies;
  3413. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  3414. !!(rq->cmd_flags & REQ_NOIDLE));
  3415. cfq_update_hw_tag(cfqd);
  3416. WARN_ON(!cfqd->rq_in_driver);
  3417. WARN_ON(!cfqq->dispatched);
  3418. cfqd->rq_in_driver--;
  3419. cfqq->dispatched--;
  3420. (RQ_CFQG(rq))->dispatched--;
  3421. cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
  3422. rq_io_start_time_ns(rq), rq->cmd_flags);
  3423. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  3424. if (sync) {
  3425. struct cfq_rb_root *st;
  3426. RQ_CIC(rq)->ttime.last_end_request = now;
  3427. if (cfq_cfqq_on_rr(cfqq))
  3428. st = cfqq->service_tree;
  3429. else
  3430. st = st_for(cfqq->cfqg, cfqq_class(cfqq),
  3431. cfqq_type(cfqq));
  3432. st->ttime.last_end_request = now;
  3433. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  3434. cfqd->last_delayed_sync = now;
  3435. }
  3436. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3437. cfqq->cfqg->ttime.last_end_request = now;
  3438. #endif
  3439. /*
  3440. * If this is the active queue, check if it needs to be expired,
  3441. * or if we want to idle in case it has no pending requests.
  3442. */
  3443. if (cfqd->active_queue == cfqq) {
  3444. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3445. if (cfq_cfqq_slice_new(cfqq)) {
  3446. cfq_set_prio_slice(cfqd, cfqq);
  3447. cfq_clear_cfqq_slice_new(cfqq);
  3448. }
  3449. /*
  3450. * Should we wait for next request to come in before we expire
  3451. * the queue.
  3452. */
  3453. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3454. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3455. if (!cfqd->cfq_slice_idle)
  3456. extend_sl = cfqd->cfq_group_idle;
  3457. cfqq->slice_end = jiffies + extend_sl;
  3458. cfq_mark_cfqq_wait_busy(cfqq);
  3459. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3460. }
  3461. /*
  3462. * Idling is not enabled on:
  3463. * - expired queues
  3464. * - idle-priority queues
  3465. * - async queues
  3466. * - queues with still some requests queued
  3467. * - when there is a close cooperator
  3468. */
  3469. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3470. cfq_slice_expired(cfqd, 1);
  3471. else if (sync && cfqq_empty &&
  3472. !cfq_close_cooperator(cfqd, cfqq)) {
  3473. cfq_arm_slice_timer(cfqd);
  3474. }
  3475. }
  3476. if (!cfqd->rq_in_driver)
  3477. cfq_schedule_dispatch(cfqd);
  3478. }
  3479. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3480. {
  3481. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3482. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3483. return ELV_MQUEUE_MUST;
  3484. }
  3485. return ELV_MQUEUE_MAY;
  3486. }
  3487. static int cfq_may_queue(struct request_queue *q, int rw)
  3488. {
  3489. struct cfq_data *cfqd = q->elevator->elevator_data;
  3490. struct task_struct *tsk = current;
  3491. struct cfq_io_cq *cic;
  3492. struct cfq_queue *cfqq;
  3493. /*
  3494. * don't force setup of a queue from here, as a call to may_queue
  3495. * does not necessarily imply that a request actually will be queued.
  3496. * so just lookup a possibly existing queue, or return 'may queue'
  3497. * if that fails
  3498. */
  3499. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3500. if (!cic)
  3501. return ELV_MQUEUE_MAY;
  3502. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3503. if (cfqq) {
  3504. cfq_init_prio_data(cfqq, cic);
  3505. return __cfq_may_queue(cfqq);
  3506. }
  3507. return ELV_MQUEUE_MAY;
  3508. }
  3509. /*
  3510. * queue lock held here
  3511. */
  3512. static void cfq_put_request(struct request *rq)
  3513. {
  3514. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3515. if (cfqq) {
  3516. const int rw = rq_data_dir(rq);
  3517. BUG_ON(!cfqq->allocated[rw]);
  3518. cfqq->allocated[rw]--;
  3519. /* Put down rq reference on cfqg */
  3520. cfqg_put(RQ_CFQG(rq));
  3521. rq->elv.priv[0] = NULL;
  3522. rq->elv.priv[1] = NULL;
  3523. cfq_put_queue(cfqq);
  3524. }
  3525. }
  3526. static struct cfq_queue *
  3527. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
  3528. struct cfq_queue *cfqq)
  3529. {
  3530. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3531. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3532. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3533. cfq_put_queue(cfqq);
  3534. return cic_to_cfqq(cic, 1);
  3535. }
  3536. /*
  3537. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3538. * was the last process referring to said cfqq.
  3539. */
  3540. static struct cfq_queue *
  3541. split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
  3542. {
  3543. if (cfqq_process_refs(cfqq) == 1) {
  3544. cfqq->pid = current->pid;
  3545. cfq_clear_cfqq_coop(cfqq);
  3546. cfq_clear_cfqq_split_coop(cfqq);
  3547. return cfqq;
  3548. }
  3549. cic_set_cfqq(cic, NULL, 1);
  3550. cfq_put_cooperator(cfqq);
  3551. cfq_put_queue(cfqq);
  3552. return NULL;
  3553. }
  3554. /*
  3555. * Allocate cfq data structures associated with this request.
  3556. */
  3557. static int
  3558. cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
  3559. gfp_t gfp_mask)
  3560. {
  3561. struct cfq_data *cfqd = q->elevator->elevator_data;
  3562. struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
  3563. const int rw = rq_data_dir(rq);
  3564. const bool is_sync = rq_is_sync(rq);
  3565. struct cfq_queue *cfqq;
  3566. might_sleep_if(gfp_mask & __GFP_WAIT);
  3567. spin_lock_irq(q->queue_lock);
  3568. check_ioprio_changed(cic, bio);
  3569. check_blkcg_changed(cic, bio);
  3570. new_queue:
  3571. cfqq = cic_to_cfqq(cic, is_sync);
  3572. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3573. cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
  3574. cic_set_cfqq(cic, cfqq, is_sync);
  3575. } else {
  3576. /*
  3577. * If the queue was seeky for too long, break it apart.
  3578. */
  3579. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3580. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3581. cfqq = split_cfqq(cic, cfqq);
  3582. if (!cfqq)
  3583. goto new_queue;
  3584. }
  3585. /*
  3586. * Check to see if this queue is scheduled to merge with
  3587. * another, closely cooperating queue. The merging of
  3588. * queues happens here as it must be done in process context.
  3589. * The reference on new_cfqq was taken in merge_cfqqs.
  3590. */
  3591. if (cfqq->new_cfqq)
  3592. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3593. }
  3594. cfqq->allocated[rw]++;
  3595. cfqq->ref++;
  3596. cfqg_get(cfqq->cfqg);
  3597. rq->elv.priv[0] = cfqq;
  3598. rq->elv.priv[1] = cfqq->cfqg;
  3599. spin_unlock_irq(q->queue_lock);
  3600. return 0;
  3601. }
  3602. static void cfq_kick_queue(struct work_struct *work)
  3603. {
  3604. struct cfq_data *cfqd =
  3605. container_of(work, struct cfq_data, unplug_work);
  3606. struct request_queue *q = cfqd->queue;
  3607. spin_lock_irq(q->queue_lock);
  3608. __blk_run_queue(cfqd->queue);
  3609. spin_unlock_irq(q->queue_lock);
  3610. }
  3611. /*
  3612. * Timer running if the active_queue is currently idling inside its time slice
  3613. */
  3614. static void cfq_idle_slice_timer(unsigned long data)
  3615. {
  3616. struct cfq_data *cfqd = (struct cfq_data *) data;
  3617. struct cfq_queue *cfqq;
  3618. unsigned long flags;
  3619. int timed_out = 1;
  3620. cfq_log(cfqd, "idle timer fired");
  3621. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3622. cfqq = cfqd->active_queue;
  3623. if (cfqq) {
  3624. timed_out = 0;
  3625. /*
  3626. * We saw a request before the queue expired, let it through
  3627. */
  3628. if (cfq_cfqq_must_dispatch(cfqq))
  3629. goto out_kick;
  3630. /*
  3631. * expired
  3632. */
  3633. if (cfq_slice_used(cfqq))
  3634. goto expire;
  3635. /*
  3636. * only expire and reinvoke request handler, if there are
  3637. * other queues with pending requests
  3638. */
  3639. if (!cfqd->busy_queues)
  3640. goto out_cont;
  3641. /*
  3642. * not expired and it has a request pending, let it dispatch
  3643. */
  3644. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3645. goto out_kick;
  3646. /*
  3647. * Queue depth flag is reset only when the idle didn't succeed
  3648. */
  3649. cfq_clear_cfqq_deep(cfqq);
  3650. }
  3651. expire:
  3652. cfq_slice_expired(cfqd, timed_out);
  3653. out_kick:
  3654. cfq_schedule_dispatch(cfqd);
  3655. out_cont:
  3656. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3657. }
  3658. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3659. {
  3660. del_timer_sync(&cfqd->idle_slice_timer);
  3661. cancel_work_sync(&cfqd->unplug_work);
  3662. }
  3663. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3664. {
  3665. int i;
  3666. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3667. if (cfqd->async_cfqq[0][i])
  3668. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3669. if (cfqd->async_cfqq[1][i])
  3670. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3671. }
  3672. if (cfqd->async_idle_cfqq)
  3673. cfq_put_queue(cfqd->async_idle_cfqq);
  3674. }
  3675. static void cfq_exit_queue(struct elevator_queue *e)
  3676. {
  3677. struct cfq_data *cfqd = e->elevator_data;
  3678. struct request_queue *q = cfqd->queue;
  3679. cfq_shutdown_timer_wq(cfqd);
  3680. spin_lock_irq(q->queue_lock);
  3681. if (cfqd->active_queue)
  3682. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3683. cfq_put_async_queues(cfqd);
  3684. spin_unlock_irq(q->queue_lock);
  3685. cfq_shutdown_timer_wq(cfqd);
  3686. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3687. blkcg_deactivate_policy(q, &blkcg_policy_cfq);
  3688. #else
  3689. kfree(cfqd->root_group);
  3690. #endif
  3691. kfree(cfqd);
  3692. }
  3693. static int cfq_init_queue(struct request_queue *q)
  3694. {
  3695. struct cfq_data *cfqd;
  3696. struct blkcg_gq *blkg __maybe_unused;
  3697. int i, ret;
  3698. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3699. if (!cfqd)
  3700. return -ENOMEM;
  3701. cfqd->queue = q;
  3702. q->elevator->elevator_data = cfqd;
  3703. /* Init root service tree */
  3704. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3705. /* Init root group and prefer root group over other groups by default */
  3706. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3707. ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
  3708. if (ret)
  3709. goto out_free;
  3710. cfqd->root_group = blkg_to_cfqg(q->root_blkg);
  3711. #else
  3712. ret = -ENOMEM;
  3713. cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
  3714. GFP_KERNEL, cfqd->queue->node);
  3715. if (!cfqd->root_group)
  3716. goto out_free;
  3717. cfq_init_cfqg_base(cfqd->root_group);
  3718. #endif
  3719. cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
  3720. cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
  3721. /*
  3722. * Not strictly needed (since RB_ROOT just clears the node and we
  3723. * zeroed cfqd on alloc), but better be safe in case someone decides
  3724. * to add magic to the rb code
  3725. */
  3726. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3727. cfqd->prio_trees[i] = RB_ROOT;
  3728. /*
  3729. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3730. * Grab a permanent reference to it, so that the normal code flow
  3731. * will not attempt to free it. oom_cfqq is linked to root_group
  3732. * but shouldn't hold a reference as it'll never be unlinked. Lose
  3733. * the reference from linking right away.
  3734. */
  3735. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3736. cfqd->oom_cfqq.ref++;
  3737. spin_lock_irq(q->queue_lock);
  3738. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
  3739. cfqg_put(cfqd->root_group);
  3740. spin_unlock_irq(q->queue_lock);
  3741. init_timer(&cfqd->idle_slice_timer);
  3742. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3743. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3744. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3745. cfqd->cfq_quantum = cfq_quantum;
  3746. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3747. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3748. cfqd->cfq_back_max = cfq_back_max;
  3749. cfqd->cfq_back_penalty = cfq_back_penalty;
  3750. cfqd->cfq_slice[0] = cfq_slice_async;
  3751. cfqd->cfq_slice[1] = cfq_slice_sync;
  3752. cfqd->cfq_target_latency = cfq_target_latency;
  3753. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3754. cfqd->cfq_slice_idle = cfq_slice_idle;
  3755. cfqd->cfq_group_idle = cfq_group_idle;
  3756. cfqd->cfq_latency = 1;
  3757. cfqd->hw_tag = -1;
  3758. /*
  3759. * we optimistically start assuming sync ops weren't delayed in last
  3760. * second, in order to have larger depth for async operations.
  3761. */
  3762. cfqd->last_delayed_sync = jiffies - HZ;
  3763. return 0;
  3764. out_free:
  3765. kfree(cfqd);
  3766. return ret;
  3767. }
  3768. /*
  3769. * sysfs parts below -->
  3770. */
  3771. static ssize_t
  3772. cfq_var_show(unsigned int var, char *page)
  3773. {
  3774. return sprintf(page, "%d\n", var);
  3775. }
  3776. static ssize_t
  3777. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3778. {
  3779. char *p = (char *) page;
  3780. *var = simple_strtoul(p, &p, 10);
  3781. return count;
  3782. }
  3783. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3784. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3785. { \
  3786. struct cfq_data *cfqd = e->elevator_data; \
  3787. unsigned int __data = __VAR; \
  3788. if (__CONV) \
  3789. __data = jiffies_to_msecs(__data); \
  3790. return cfq_var_show(__data, (page)); \
  3791. }
  3792. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3793. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3794. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3795. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3796. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3797. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3798. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3799. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3800. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3801. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3802. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3803. SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
  3804. #undef SHOW_FUNCTION
  3805. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3806. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3807. { \
  3808. struct cfq_data *cfqd = e->elevator_data; \
  3809. unsigned int __data; \
  3810. int ret = cfq_var_store(&__data, (page), count); \
  3811. if (__data < (MIN)) \
  3812. __data = (MIN); \
  3813. else if (__data > (MAX)) \
  3814. __data = (MAX); \
  3815. if (__CONV) \
  3816. *(__PTR) = msecs_to_jiffies(__data); \
  3817. else \
  3818. *(__PTR) = __data; \
  3819. return ret; \
  3820. }
  3821. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3822. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3823. UINT_MAX, 1);
  3824. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3825. UINT_MAX, 1);
  3826. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3827. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3828. UINT_MAX, 0);
  3829. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3830. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3831. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3832. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3833. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3834. UINT_MAX, 0);
  3835. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3836. STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
  3837. #undef STORE_FUNCTION
  3838. #define CFQ_ATTR(name) \
  3839. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3840. static struct elv_fs_entry cfq_attrs[] = {
  3841. CFQ_ATTR(quantum),
  3842. CFQ_ATTR(fifo_expire_sync),
  3843. CFQ_ATTR(fifo_expire_async),
  3844. CFQ_ATTR(back_seek_max),
  3845. CFQ_ATTR(back_seek_penalty),
  3846. CFQ_ATTR(slice_sync),
  3847. CFQ_ATTR(slice_async),
  3848. CFQ_ATTR(slice_async_rq),
  3849. CFQ_ATTR(slice_idle),
  3850. CFQ_ATTR(group_idle),
  3851. CFQ_ATTR(low_latency),
  3852. CFQ_ATTR(target_latency),
  3853. __ATTR_NULL
  3854. };
  3855. static struct elevator_type iosched_cfq = {
  3856. .ops = {
  3857. .elevator_merge_fn = cfq_merge,
  3858. .elevator_merged_fn = cfq_merged_request,
  3859. .elevator_merge_req_fn = cfq_merged_requests,
  3860. .elevator_allow_merge_fn = cfq_allow_merge,
  3861. .elevator_bio_merged_fn = cfq_bio_merged,
  3862. .elevator_dispatch_fn = cfq_dispatch_requests,
  3863. .elevator_add_req_fn = cfq_insert_request,
  3864. .elevator_activate_req_fn = cfq_activate_request,
  3865. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3866. .elevator_completed_req_fn = cfq_completed_request,
  3867. .elevator_former_req_fn = elv_rb_former_request,
  3868. .elevator_latter_req_fn = elv_rb_latter_request,
  3869. .elevator_init_icq_fn = cfq_init_icq,
  3870. .elevator_exit_icq_fn = cfq_exit_icq,
  3871. .elevator_set_req_fn = cfq_set_request,
  3872. .elevator_put_req_fn = cfq_put_request,
  3873. .elevator_may_queue_fn = cfq_may_queue,
  3874. .elevator_init_fn = cfq_init_queue,
  3875. .elevator_exit_fn = cfq_exit_queue,
  3876. },
  3877. .icq_size = sizeof(struct cfq_io_cq),
  3878. .icq_align = __alignof__(struct cfq_io_cq),
  3879. .elevator_attrs = cfq_attrs,
  3880. .elevator_name = "cfq",
  3881. .elevator_owner = THIS_MODULE,
  3882. };
  3883. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3884. static struct blkcg_policy blkcg_policy_cfq = {
  3885. .pd_size = sizeof(struct cfq_group),
  3886. .cftypes = cfq_blkcg_files,
  3887. .pd_init_fn = cfq_pd_init,
  3888. .pd_offline_fn = cfq_pd_offline,
  3889. .pd_reset_stats_fn = cfq_pd_reset_stats,
  3890. };
  3891. #endif
  3892. static int __init cfq_init(void)
  3893. {
  3894. int ret;
  3895. /*
  3896. * could be 0 on HZ < 1000 setups
  3897. */
  3898. if (!cfq_slice_async)
  3899. cfq_slice_async = 1;
  3900. if (!cfq_slice_idle)
  3901. cfq_slice_idle = 1;
  3902. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3903. if (!cfq_group_idle)
  3904. cfq_group_idle = 1;
  3905. ret = blkcg_policy_register(&blkcg_policy_cfq);
  3906. if (ret)
  3907. return ret;
  3908. #else
  3909. cfq_group_idle = 0;
  3910. #endif
  3911. ret = -ENOMEM;
  3912. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3913. if (!cfq_pool)
  3914. goto err_pol_unreg;
  3915. ret = elv_register(&iosched_cfq);
  3916. if (ret)
  3917. goto err_free_pool;
  3918. return 0;
  3919. err_free_pool:
  3920. kmem_cache_destroy(cfq_pool);
  3921. err_pol_unreg:
  3922. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3923. blkcg_policy_unregister(&blkcg_policy_cfq);
  3924. #endif
  3925. return ret;
  3926. }
  3927. static void __exit cfq_exit(void)
  3928. {
  3929. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3930. blkcg_policy_unregister(&blkcg_policy_cfq);
  3931. #endif
  3932. elv_unregister(&iosched_cfq);
  3933. kmem_cache_destroy(cfq_pool);
  3934. }
  3935. module_init(cfq_init);
  3936. module_exit(cfq_exit);
  3937. MODULE_AUTHOR("Jens Axboe");
  3938. MODULE_LICENSE("GPL");
  3939. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");