camellia-aesni-avx-asm_64.S 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092
  1. /*
  2. * x86_64/AVX/AES-NI assembler implementation of Camellia
  3. *
  4. * Copyright © 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. */
  12. /*
  13. * Version licensed under 2-clause BSD License is available at:
  14. * http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
  15. */
  16. #include <linux/linkage.h>
  17. #define CAMELLIA_TABLE_BYTE_LEN 272
  18. /* struct camellia_ctx: */
  19. #define key_table 0
  20. #define key_length CAMELLIA_TABLE_BYTE_LEN
  21. /* register macros */
  22. #define CTX %rdi
  23. /**********************************************************************
  24. 16-way camellia
  25. **********************************************************************/
  26. #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  27. vpand x, mask4bit, tmp0; \
  28. vpandn x, mask4bit, x; \
  29. vpsrld $4, x, x; \
  30. \
  31. vpshufb tmp0, lo_t, tmp0; \
  32. vpshufb x, hi_t, x; \
  33. vpxor tmp0, x, x;
  34. /*
  35. * IN:
  36. * x0..x7: byte-sliced AB state
  37. * mem_cd: register pointer storing CD state
  38. * key: index for key material
  39. * OUT:
  40. * x0..x7: new byte-sliced CD state
  41. */
  42. #define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  43. t7, mem_cd, key) \
  44. /* \
  45. * S-function with AES subbytes \
  46. */ \
  47. vmovdqa .Linv_shift_row, t4; \
  48. vbroadcastss .L0f0f0f0f, t7; \
  49. vmovdqa .Lpre_tf_lo_s1, t0; \
  50. vmovdqa .Lpre_tf_hi_s1, t1; \
  51. \
  52. /* AES inverse shift rows */ \
  53. vpshufb t4, x0, x0; \
  54. vpshufb t4, x7, x7; \
  55. vpshufb t4, x1, x1; \
  56. vpshufb t4, x4, x4; \
  57. vpshufb t4, x2, x2; \
  58. vpshufb t4, x5, x5; \
  59. vpshufb t4, x3, x3; \
  60. vpshufb t4, x6, x6; \
  61. \
  62. /* prefilter sboxes 1, 2 and 3 */ \
  63. vmovdqa .Lpre_tf_lo_s4, t2; \
  64. vmovdqa .Lpre_tf_hi_s4, t3; \
  65. filter_8bit(x0, t0, t1, t7, t6); \
  66. filter_8bit(x7, t0, t1, t7, t6); \
  67. filter_8bit(x1, t0, t1, t7, t6); \
  68. filter_8bit(x4, t0, t1, t7, t6); \
  69. filter_8bit(x2, t0, t1, t7, t6); \
  70. filter_8bit(x5, t0, t1, t7, t6); \
  71. \
  72. /* prefilter sbox 4 */ \
  73. vpxor t4, t4, t4; \
  74. filter_8bit(x3, t2, t3, t7, t6); \
  75. filter_8bit(x6, t2, t3, t7, t6); \
  76. \
  77. /* AES subbytes + AES shift rows */ \
  78. vmovdqa .Lpost_tf_lo_s1, t0; \
  79. vmovdqa .Lpost_tf_hi_s1, t1; \
  80. vaesenclast t4, x0, x0; \
  81. vaesenclast t4, x7, x7; \
  82. vaesenclast t4, x1, x1; \
  83. vaesenclast t4, x4, x4; \
  84. vaesenclast t4, x2, x2; \
  85. vaesenclast t4, x5, x5; \
  86. vaesenclast t4, x3, x3; \
  87. vaesenclast t4, x6, x6; \
  88. \
  89. /* postfilter sboxes 1 and 4 */ \
  90. vmovdqa .Lpost_tf_lo_s3, t2; \
  91. vmovdqa .Lpost_tf_hi_s3, t3; \
  92. filter_8bit(x0, t0, t1, t7, t6); \
  93. filter_8bit(x7, t0, t1, t7, t6); \
  94. filter_8bit(x3, t0, t1, t7, t6); \
  95. filter_8bit(x6, t0, t1, t7, t6); \
  96. \
  97. /* postfilter sbox 3 */ \
  98. vmovdqa .Lpost_tf_lo_s2, t4; \
  99. vmovdqa .Lpost_tf_hi_s2, t5; \
  100. filter_8bit(x2, t2, t3, t7, t6); \
  101. filter_8bit(x5, t2, t3, t7, t6); \
  102. \
  103. vpxor t6, t6, t6; \
  104. vmovq key, t0; \
  105. \
  106. /* postfilter sbox 2 */ \
  107. filter_8bit(x1, t4, t5, t7, t2); \
  108. filter_8bit(x4, t4, t5, t7, t2); \
  109. \
  110. vpsrldq $5, t0, t5; \
  111. vpsrldq $1, t0, t1; \
  112. vpsrldq $2, t0, t2; \
  113. vpsrldq $3, t0, t3; \
  114. vpsrldq $4, t0, t4; \
  115. vpshufb t6, t0, t0; \
  116. vpshufb t6, t1, t1; \
  117. vpshufb t6, t2, t2; \
  118. vpshufb t6, t3, t3; \
  119. vpshufb t6, t4, t4; \
  120. vpsrldq $2, t5, t7; \
  121. vpshufb t6, t7, t7; \
  122. \
  123. /* \
  124. * P-function \
  125. */ \
  126. vpxor x5, x0, x0; \
  127. vpxor x6, x1, x1; \
  128. vpxor x7, x2, x2; \
  129. vpxor x4, x3, x3; \
  130. \
  131. vpxor x2, x4, x4; \
  132. vpxor x3, x5, x5; \
  133. vpxor x0, x6, x6; \
  134. vpxor x1, x7, x7; \
  135. \
  136. vpxor x7, x0, x0; \
  137. vpxor x4, x1, x1; \
  138. vpxor x5, x2, x2; \
  139. vpxor x6, x3, x3; \
  140. \
  141. vpxor x3, x4, x4; \
  142. vpxor x0, x5, x5; \
  143. vpxor x1, x6, x6; \
  144. vpxor x2, x7, x7; /* note: high and low parts swapped */ \
  145. \
  146. /* \
  147. * Add key material and result to CD (x becomes new CD) \
  148. */ \
  149. \
  150. vpxor t3, x4, x4; \
  151. vpxor 0 * 16(mem_cd), x4, x4; \
  152. \
  153. vpxor t2, x5, x5; \
  154. vpxor 1 * 16(mem_cd), x5, x5; \
  155. \
  156. vpsrldq $1, t5, t3; \
  157. vpshufb t6, t5, t5; \
  158. vpshufb t6, t3, t6; \
  159. \
  160. vpxor t1, x6, x6; \
  161. vpxor 2 * 16(mem_cd), x6, x6; \
  162. \
  163. vpxor t0, x7, x7; \
  164. vpxor 3 * 16(mem_cd), x7, x7; \
  165. \
  166. vpxor t7, x0, x0; \
  167. vpxor 4 * 16(mem_cd), x0, x0; \
  168. \
  169. vpxor t6, x1, x1; \
  170. vpxor 5 * 16(mem_cd), x1, x1; \
  171. \
  172. vpxor t5, x2, x2; \
  173. vpxor 6 * 16(mem_cd), x2, x2; \
  174. \
  175. vpxor t4, x3, x3; \
  176. vpxor 7 * 16(mem_cd), x3, x3;
  177. /*
  178. * Size optimization... with inlined roundsm16, binary would be over 5 times
  179. * larger and would only be 0.5% faster (on sandy-bridge).
  180. */
  181. .align 8
  182. roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
  183. roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  184. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
  185. %rcx, (%r9));
  186. ret;
  187. ENDPROC(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
  188. .align 8
  189. roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
  190. roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
  191. %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
  192. %rax, (%r9));
  193. ret;
  194. ENDPROC(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
  195. /*
  196. * IN/OUT:
  197. * x0..x7: byte-sliced AB state preloaded
  198. * mem_ab: byte-sliced AB state in memory
  199. * mem_cb: byte-sliced CD state in memory
  200. */
  201. #define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  202. y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
  203. leaq (key_table + (i) * 8)(CTX), %r9; \
  204. call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
  205. \
  206. vmovdqu x4, 0 * 16(mem_cd); \
  207. vmovdqu x5, 1 * 16(mem_cd); \
  208. vmovdqu x6, 2 * 16(mem_cd); \
  209. vmovdqu x7, 3 * 16(mem_cd); \
  210. vmovdqu x0, 4 * 16(mem_cd); \
  211. vmovdqu x1, 5 * 16(mem_cd); \
  212. vmovdqu x2, 6 * 16(mem_cd); \
  213. vmovdqu x3, 7 * 16(mem_cd); \
  214. \
  215. leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
  216. call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
  217. \
  218. store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
  219. #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
  220. #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
  221. /* Store new AB state */ \
  222. vmovdqu x0, 0 * 16(mem_ab); \
  223. vmovdqu x1, 1 * 16(mem_ab); \
  224. vmovdqu x2, 2 * 16(mem_ab); \
  225. vmovdqu x3, 3 * 16(mem_ab); \
  226. vmovdqu x4, 4 * 16(mem_ab); \
  227. vmovdqu x5, 5 * 16(mem_ab); \
  228. vmovdqu x6, 6 * 16(mem_ab); \
  229. vmovdqu x7, 7 * 16(mem_ab);
  230. #define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  231. y6, y7, mem_ab, mem_cd, i) \
  232. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  233. y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
  234. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  235. y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
  236. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  237. y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
  238. #define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  239. y6, y7, mem_ab, mem_cd, i) \
  240. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  241. y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
  242. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  243. y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
  244. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  245. y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
  246. /*
  247. * IN:
  248. * v0..3: byte-sliced 32-bit integers
  249. * OUT:
  250. * v0..3: (IN <<< 1)
  251. */
  252. #define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
  253. vpcmpgtb v0, zero, t0; \
  254. vpaddb v0, v0, v0; \
  255. vpabsb t0, t0; \
  256. \
  257. vpcmpgtb v1, zero, t1; \
  258. vpaddb v1, v1, v1; \
  259. vpabsb t1, t1; \
  260. \
  261. vpcmpgtb v2, zero, t2; \
  262. vpaddb v2, v2, v2; \
  263. vpabsb t2, t2; \
  264. \
  265. vpor t0, v1, v1; \
  266. \
  267. vpcmpgtb v3, zero, t0; \
  268. vpaddb v3, v3, v3; \
  269. vpabsb t0, t0; \
  270. \
  271. vpor t1, v2, v2; \
  272. vpor t2, v3, v3; \
  273. vpor t0, v0, v0;
  274. /*
  275. * IN:
  276. * r: byte-sliced AB state in memory
  277. * l: byte-sliced CD state in memory
  278. * OUT:
  279. * x0..x7: new byte-sliced CD state
  280. */
  281. #define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
  282. tt1, tt2, tt3, kll, klr, krl, krr) \
  283. /* \
  284. * t0 = kll; \
  285. * t0 &= ll; \
  286. * lr ^= rol32(t0, 1); \
  287. */ \
  288. vpxor tt0, tt0, tt0; \
  289. vmovd kll, t0; \
  290. vpshufb tt0, t0, t3; \
  291. vpsrldq $1, t0, t0; \
  292. vpshufb tt0, t0, t2; \
  293. vpsrldq $1, t0, t0; \
  294. vpshufb tt0, t0, t1; \
  295. vpsrldq $1, t0, t0; \
  296. vpshufb tt0, t0, t0; \
  297. \
  298. vpand l0, t0, t0; \
  299. vpand l1, t1, t1; \
  300. vpand l2, t2, t2; \
  301. vpand l3, t3, t3; \
  302. \
  303. rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
  304. \
  305. vpxor l4, t0, l4; \
  306. vmovdqu l4, 4 * 16(l); \
  307. vpxor l5, t1, l5; \
  308. vmovdqu l5, 5 * 16(l); \
  309. vpxor l6, t2, l6; \
  310. vmovdqu l6, 6 * 16(l); \
  311. vpxor l7, t3, l7; \
  312. vmovdqu l7, 7 * 16(l); \
  313. \
  314. /* \
  315. * t2 = krr; \
  316. * t2 |= rr; \
  317. * rl ^= t2; \
  318. */ \
  319. \
  320. vmovd krr, t0; \
  321. vpshufb tt0, t0, t3; \
  322. vpsrldq $1, t0, t0; \
  323. vpshufb tt0, t0, t2; \
  324. vpsrldq $1, t0, t0; \
  325. vpshufb tt0, t0, t1; \
  326. vpsrldq $1, t0, t0; \
  327. vpshufb tt0, t0, t0; \
  328. \
  329. vpor 4 * 16(r), t0, t0; \
  330. vpor 5 * 16(r), t1, t1; \
  331. vpor 6 * 16(r), t2, t2; \
  332. vpor 7 * 16(r), t3, t3; \
  333. \
  334. vpxor 0 * 16(r), t0, t0; \
  335. vpxor 1 * 16(r), t1, t1; \
  336. vpxor 2 * 16(r), t2, t2; \
  337. vpxor 3 * 16(r), t3, t3; \
  338. vmovdqu t0, 0 * 16(r); \
  339. vmovdqu t1, 1 * 16(r); \
  340. vmovdqu t2, 2 * 16(r); \
  341. vmovdqu t3, 3 * 16(r); \
  342. \
  343. /* \
  344. * t2 = krl; \
  345. * t2 &= rl; \
  346. * rr ^= rol32(t2, 1); \
  347. */ \
  348. vmovd krl, t0; \
  349. vpshufb tt0, t0, t3; \
  350. vpsrldq $1, t0, t0; \
  351. vpshufb tt0, t0, t2; \
  352. vpsrldq $1, t0, t0; \
  353. vpshufb tt0, t0, t1; \
  354. vpsrldq $1, t0, t0; \
  355. vpshufb tt0, t0, t0; \
  356. \
  357. vpand 0 * 16(r), t0, t0; \
  358. vpand 1 * 16(r), t1, t1; \
  359. vpand 2 * 16(r), t2, t2; \
  360. vpand 3 * 16(r), t3, t3; \
  361. \
  362. rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
  363. \
  364. vpxor 4 * 16(r), t0, t0; \
  365. vpxor 5 * 16(r), t1, t1; \
  366. vpxor 6 * 16(r), t2, t2; \
  367. vpxor 7 * 16(r), t3, t3; \
  368. vmovdqu t0, 4 * 16(r); \
  369. vmovdqu t1, 5 * 16(r); \
  370. vmovdqu t2, 6 * 16(r); \
  371. vmovdqu t3, 7 * 16(r); \
  372. \
  373. /* \
  374. * t0 = klr; \
  375. * t0 |= lr; \
  376. * ll ^= t0; \
  377. */ \
  378. \
  379. vmovd klr, t0; \
  380. vpshufb tt0, t0, t3; \
  381. vpsrldq $1, t0, t0; \
  382. vpshufb tt0, t0, t2; \
  383. vpsrldq $1, t0, t0; \
  384. vpshufb tt0, t0, t1; \
  385. vpsrldq $1, t0, t0; \
  386. vpshufb tt0, t0, t0; \
  387. \
  388. vpor l4, t0, t0; \
  389. vpor l5, t1, t1; \
  390. vpor l6, t2, t2; \
  391. vpor l7, t3, t3; \
  392. \
  393. vpxor l0, t0, l0; \
  394. vmovdqu l0, 0 * 16(l); \
  395. vpxor l1, t1, l1; \
  396. vmovdqu l1, 1 * 16(l); \
  397. vpxor l2, t2, l2; \
  398. vmovdqu l2, 2 * 16(l); \
  399. vpxor l3, t3, l3; \
  400. vmovdqu l3, 3 * 16(l);
  401. #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
  402. vpunpckhdq x1, x0, t2; \
  403. vpunpckldq x1, x0, x0; \
  404. \
  405. vpunpckldq x3, x2, t1; \
  406. vpunpckhdq x3, x2, x2; \
  407. \
  408. vpunpckhqdq t1, x0, x1; \
  409. vpunpcklqdq t1, x0, x0; \
  410. \
  411. vpunpckhqdq x2, t2, x3; \
  412. vpunpcklqdq x2, t2, x2;
  413. #define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
  414. b3, c3, d3, st0, st1) \
  415. vmovdqu d2, st0; \
  416. vmovdqu d3, st1; \
  417. transpose_4x4(a0, a1, a2, a3, d2, d3); \
  418. transpose_4x4(b0, b1, b2, b3, d2, d3); \
  419. vmovdqu st0, d2; \
  420. vmovdqu st1, d3; \
  421. \
  422. vmovdqu a0, st0; \
  423. vmovdqu a1, st1; \
  424. transpose_4x4(c0, c1, c2, c3, a0, a1); \
  425. transpose_4x4(d0, d1, d2, d3, a0, a1); \
  426. \
  427. vmovdqu .Lshufb_16x16b, a0; \
  428. vmovdqu st1, a1; \
  429. vpshufb a0, a2, a2; \
  430. vpshufb a0, a3, a3; \
  431. vpshufb a0, b0, b0; \
  432. vpshufb a0, b1, b1; \
  433. vpshufb a0, b2, b2; \
  434. vpshufb a0, b3, b3; \
  435. vpshufb a0, a1, a1; \
  436. vpshufb a0, c0, c0; \
  437. vpshufb a0, c1, c1; \
  438. vpshufb a0, c2, c2; \
  439. vpshufb a0, c3, c3; \
  440. vpshufb a0, d0, d0; \
  441. vpshufb a0, d1, d1; \
  442. vpshufb a0, d2, d2; \
  443. vpshufb a0, d3, d3; \
  444. vmovdqu d3, st1; \
  445. vmovdqu st0, d3; \
  446. vpshufb a0, d3, a0; \
  447. vmovdqu d2, st0; \
  448. \
  449. transpose_4x4(a0, b0, c0, d0, d2, d3); \
  450. transpose_4x4(a1, b1, c1, d1, d2, d3); \
  451. vmovdqu st0, d2; \
  452. vmovdqu st1, d3; \
  453. \
  454. vmovdqu b0, st0; \
  455. vmovdqu b1, st1; \
  456. transpose_4x4(a2, b2, c2, d2, b0, b1); \
  457. transpose_4x4(a3, b3, c3, d3, b0, b1); \
  458. vmovdqu st0, b0; \
  459. vmovdqu st1, b1; \
  460. /* does not adjust output bytes inside vectors */
  461. /* load blocks to registers and apply pre-whitening */
  462. #define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  463. y6, y7, rio, key) \
  464. vmovq key, x0; \
  465. vpshufb .Lpack_bswap, x0, x0; \
  466. \
  467. vpxor 0 * 16(rio), x0, y7; \
  468. vpxor 1 * 16(rio), x0, y6; \
  469. vpxor 2 * 16(rio), x0, y5; \
  470. vpxor 3 * 16(rio), x0, y4; \
  471. vpxor 4 * 16(rio), x0, y3; \
  472. vpxor 5 * 16(rio), x0, y2; \
  473. vpxor 6 * 16(rio), x0, y1; \
  474. vpxor 7 * 16(rio), x0, y0; \
  475. vpxor 8 * 16(rio), x0, x7; \
  476. vpxor 9 * 16(rio), x0, x6; \
  477. vpxor 10 * 16(rio), x0, x5; \
  478. vpxor 11 * 16(rio), x0, x4; \
  479. vpxor 12 * 16(rio), x0, x3; \
  480. vpxor 13 * 16(rio), x0, x2; \
  481. vpxor 14 * 16(rio), x0, x1; \
  482. vpxor 15 * 16(rio), x0, x0;
  483. /* byteslice pre-whitened blocks and store to temporary memory */
  484. #define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  485. y6, y7, mem_ab, mem_cd) \
  486. byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
  487. y5, y6, y7, (mem_ab), (mem_cd)); \
  488. \
  489. vmovdqu x0, 0 * 16(mem_ab); \
  490. vmovdqu x1, 1 * 16(mem_ab); \
  491. vmovdqu x2, 2 * 16(mem_ab); \
  492. vmovdqu x3, 3 * 16(mem_ab); \
  493. vmovdqu x4, 4 * 16(mem_ab); \
  494. vmovdqu x5, 5 * 16(mem_ab); \
  495. vmovdqu x6, 6 * 16(mem_ab); \
  496. vmovdqu x7, 7 * 16(mem_ab); \
  497. vmovdqu y0, 0 * 16(mem_cd); \
  498. vmovdqu y1, 1 * 16(mem_cd); \
  499. vmovdqu y2, 2 * 16(mem_cd); \
  500. vmovdqu y3, 3 * 16(mem_cd); \
  501. vmovdqu y4, 4 * 16(mem_cd); \
  502. vmovdqu y5, 5 * 16(mem_cd); \
  503. vmovdqu y6, 6 * 16(mem_cd); \
  504. vmovdqu y7, 7 * 16(mem_cd);
  505. /* de-byteslice, apply post-whitening and store blocks */
  506. #define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
  507. y5, y6, y7, key, stack_tmp0, stack_tmp1) \
  508. byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
  509. y7, x3, x7, stack_tmp0, stack_tmp1); \
  510. \
  511. vmovdqu x0, stack_tmp0; \
  512. \
  513. vmovq key, x0; \
  514. vpshufb .Lpack_bswap, x0, x0; \
  515. \
  516. vpxor x0, y7, y7; \
  517. vpxor x0, y6, y6; \
  518. vpxor x0, y5, y5; \
  519. vpxor x0, y4, y4; \
  520. vpxor x0, y3, y3; \
  521. vpxor x0, y2, y2; \
  522. vpxor x0, y1, y1; \
  523. vpxor x0, y0, y0; \
  524. vpxor x0, x7, x7; \
  525. vpxor x0, x6, x6; \
  526. vpxor x0, x5, x5; \
  527. vpxor x0, x4, x4; \
  528. vpxor x0, x3, x3; \
  529. vpxor x0, x2, x2; \
  530. vpxor x0, x1, x1; \
  531. vpxor stack_tmp0, x0, x0;
  532. #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  533. y6, y7, rio) \
  534. vmovdqu x0, 0 * 16(rio); \
  535. vmovdqu x1, 1 * 16(rio); \
  536. vmovdqu x2, 2 * 16(rio); \
  537. vmovdqu x3, 3 * 16(rio); \
  538. vmovdqu x4, 4 * 16(rio); \
  539. vmovdqu x5, 5 * 16(rio); \
  540. vmovdqu x6, 6 * 16(rio); \
  541. vmovdqu x7, 7 * 16(rio); \
  542. vmovdqu y0, 8 * 16(rio); \
  543. vmovdqu y1, 9 * 16(rio); \
  544. vmovdqu y2, 10 * 16(rio); \
  545. vmovdqu y3, 11 * 16(rio); \
  546. vmovdqu y4, 12 * 16(rio); \
  547. vmovdqu y5, 13 * 16(rio); \
  548. vmovdqu y6, 14 * 16(rio); \
  549. vmovdqu y7, 15 * 16(rio);
  550. .data
  551. .align 16
  552. #define SHUFB_BYTES(idx) \
  553. 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
  554. .Lshufb_16x16b:
  555. .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
  556. .Lpack_bswap:
  557. .long 0x00010203
  558. .long 0x04050607
  559. .long 0x80808080
  560. .long 0x80808080
  561. /* For CTR-mode IV byteswap */
  562. .Lbswap128_mask:
  563. .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
  564. /*
  565. * pre-SubByte transform
  566. *
  567. * pre-lookup for sbox1, sbox2, sbox3:
  568. * swap_bitendianness(
  569. * isom_map_camellia_to_aes(
  570. * camellia_f(
  571. * swap_bitendianess(in)
  572. * )
  573. * )
  574. * )
  575. *
  576. * (note: '⊕ 0xc5' inside camellia_f())
  577. */
  578. .Lpre_tf_lo_s1:
  579. .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
  580. .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
  581. .Lpre_tf_hi_s1:
  582. .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
  583. .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
  584. /*
  585. * pre-SubByte transform
  586. *
  587. * pre-lookup for sbox4:
  588. * swap_bitendianness(
  589. * isom_map_camellia_to_aes(
  590. * camellia_f(
  591. * swap_bitendianess(in <<< 1)
  592. * )
  593. * )
  594. * )
  595. *
  596. * (note: '⊕ 0xc5' inside camellia_f())
  597. */
  598. .Lpre_tf_lo_s4:
  599. .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
  600. .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
  601. .Lpre_tf_hi_s4:
  602. .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
  603. .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
  604. /*
  605. * post-SubByte transform
  606. *
  607. * post-lookup for sbox1, sbox4:
  608. * swap_bitendianness(
  609. * camellia_h(
  610. * isom_map_aes_to_camellia(
  611. * swap_bitendianness(
  612. * aes_inverse_affine_transform(in)
  613. * )
  614. * )
  615. * )
  616. * )
  617. *
  618. * (note: '⊕ 0x6e' inside camellia_h())
  619. */
  620. .Lpost_tf_lo_s1:
  621. .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
  622. .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
  623. .Lpost_tf_hi_s1:
  624. .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
  625. .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
  626. /*
  627. * post-SubByte transform
  628. *
  629. * post-lookup for sbox2:
  630. * swap_bitendianness(
  631. * camellia_h(
  632. * isom_map_aes_to_camellia(
  633. * swap_bitendianness(
  634. * aes_inverse_affine_transform(in)
  635. * )
  636. * )
  637. * )
  638. * ) <<< 1
  639. *
  640. * (note: '⊕ 0x6e' inside camellia_h())
  641. */
  642. .Lpost_tf_lo_s2:
  643. .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
  644. .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
  645. .Lpost_tf_hi_s2:
  646. .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
  647. .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
  648. /*
  649. * post-SubByte transform
  650. *
  651. * post-lookup for sbox3:
  652. * swap_bitendianness(
  653. * camellia_h(
  654. * isom_map_aes_to_camellia(
  655. * swap_bitendianness(
  656. * aes_inverse_affine_transform(in)
  657. * )
  658. * )
  659. * )
  660. * ) >>> 1
  661. *
  662. * (note: '⊕ 0x6e' inside camellia_h())
  663. */
  664. .Lpost_tf_lo_s3:
  665. .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
  666. .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
  667. .Lpost_tf_hi_s3:
  668. .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
  669. .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
  670. /* For isolating SubBytes from AESENCLAST, inverse shift row */
  671. .Linv_shift_row:
  672. .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
  673. .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
  674. /* 4-bit mask */
  675. .align 4
  676. .L0f0f0f0f:
  677. .long 0x0f0f0f0f
  678. .text
  679. .align 8
  680. __camellia_enc_blk16:
  681. /* input:
  682. * %rdi: ctx, CTX
  683. * %rax: temporary storage, 256 bytes
  684. * %xmm0..%xmm15: 16 plaintext blocks
  685. * output:
  686. * %xmm0..%xmm15: 16 encrypted blocks, order swapped:
  687. * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
  688. */
  689. leaq 8 * 16(%rax), %rcx;
  690. inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  691. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  692. %xmm15, %rax, %rcx);
  693. enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  694. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  695. %xmm15, %rax, %rcx, 0);
  696. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  697. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  698. %xmm15,
  699. ((key_table + (8) * 8) + 0)(CTX),
  700. ((key_table + (8) * 8) + 4)(CTX),
  701. ((key_table + (8) * 8) + 8)(CTX),
  702. ((key_table + (8) * 8) + 12)(CTX));
  703. enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  704. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  705. %xmm15, %rax, %rcx, 8);
  706. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  707. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  708. %xmm15,
  709. ((key_table + (16) * 8) + 0)(CTX),
  710. ((key_table + (16) * 8) + 4)(CTX),
  711. ((key_table + (16) * 8) + 8)(CTX),
  712. ((key_table + (16) * 8) + 12)(CTX));
  713. enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  714. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  715. %xmm15, %rax, %rcx, 16);
  716. movl $24, %r8d;
  717. cmpl $16, key_length(CTX);
  718. jne .Lenc_max32;
  719. .Lenc_done:
  720. /* load CD for output */
  721. vmovdqu 0 * 16(%rcx), %xmm8;
  722. vmovdqu 1 * 16(%rcx), %xmm9;
  723. vmovdqu 2 * 16(%rcx), %xmm10;
  724. vmovdqu 3 * 16(%rcx), %xmm11;
  725. vmovdqu 4 * 16(%rcx), %xmm12;
  726. vmovdqu 5 * 16(%rcx), %xmm13;
  727. vmovdqu 6 * 16(%rcx), %xmm14;
  728. vmovdqu 7 * 16(%rcx), %xmm15;
  729. outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  730. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  731. %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
  732. ret;
  733. .align 8
  734. .Lenc_max32:
  735. movl $32, %r8d;
  736. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  737. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  738. %xmm15,
  739. ((key_table + (24) * 8) + 0)(CTX),
  740. ((key_table + (24) * 8) + 4)(CTX),
  741. ((key_table + (24) * 8) + 8)(CTX),
  742. ((key_table + (24) * 8) + 12)(CTX));
  743. enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  744. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  745. %xmm15, %rax, %rcx, 24);
  746. jmp .Lenc_done;
  747. ENDPROC(__camellia_enc_blk16)
  748. .align 8
  749. __camellia_dec_blk16:
  750. /* input:
  751. * %rdi: ctx, CTX
  752. * %rax: temporary storage, 256 bytes
  753. * %r8d: 24 for 16 byte key, 32 for larger
  754. * %xmm0..%xmm15: 16 encrypted blocks
  755. * output:
  756. * %xmm0..%xmm15: 16 plaintext blocks, order swapped:
  757. * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
  758. */
  759. leaq 8 * 16(%rax), %rcx;
  760. inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  761. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  762. %xmm15, %rax, %rcx);
  763. cmpl $32, %r8d;
  764. je .Ldec_max32;
  765. .Ldec_max24:
  766. dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  767. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  768. %xmm15, %rax, %rcx, 16);
  769. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  770. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  771. %xmm15,
  772. ((key_table + (16) * 8) + 8)(CTX),
  773. ((key_table + (16) * 8) + 12)(CTX),
  774. ((key_table + (16) * 8) + 0)(CTX),
  775. ((key_table + (16) * 8) + 4)(CTX));
  776. dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  777. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  778. %xmm15, %rax, %rcx, 8);
  779. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  780. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  781. %xmm15,
  782. ((key_table + (8) * 8) + 8)(CTX),
  783. ((key_table + (8) * 8) + 12)(CTX),
  784. ((key_table + (8) * 8) + 0)(CTX),
  785. ((key_table + (8) * 8) + 4)(CTX));
  786. dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  787. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  788. %xmm15, %rax, %rcx, 0);
  789. /* load CD for output */
  790. vmovdqu 0 * 16(%rcx), %xmm8;
  791. vmovdqu 1 * 16(%rcx), %xmm9;
  792. vmovdqu 2 * 16(%rcx), %xmm10;
  793. vmovdqu 3 * 16(%rcx), %xmm11;
  794. vmovdqu 4 * 16(%rcx), %xmm12;
  795. vmovdqu 5 * 16(%rcx), %xmm13;
  796. vmovdqu 6 * 16(%rcx), %xmm14;
  797. vmovdqu 7 * 16(%rcx), %xmm15;
  798. outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  799. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  800. %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
  801. ret;
  802. .align 8
  803. .Ldec_max32:
  804. dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  805. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  806. %xmm15, %rax, %rcx, 24);
  807. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  808. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  809. %xmm15,
  810. ((key_table + (24) * 8) + 8)(CTX),
  811. ((key_table + (24) * 8) + 12)(CTX),
  812. ((key_table + (24) * 8) + 0)(CTX),
  813. ((key_table + (24) * 8) + 4)(CTX));
  814. jmp .Ldec_max24;
  815. ENDPROC(__camellia_dec_blk16)
  816. ENTRY(camellia_ecb_enc_16way)
  817. /* input:
  818. * %rdi: ctx, CTX
  819. * %rsi: dst (16 blocks)
  820. * %rdx: src (16 blocks)
  821. */
  822. inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  823. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  824. %xmm15, %rdx, (key_table)(CTX));
  825. /* now dst can be used as temporary buffer (even in src == dst case) */
  826. movq %rsi, %rax;
  827. call __camellia_enc_blk16;
  828. write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
  829. %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
  830. %xmm8, %rsi);
  831. ret;
  832. ENDPROC(camellia_ecb_enc_16way)
  833. ENTRY(camellia_ecb_dec_16way)
  834. /* input:
  835. * %rdi: ctx, CTX
  836. * %rsi: dst (16 blocks)
  837. * %rdx: src (16 blocks)
  838. */
  839. cmpl $16, key_length(CTX);
  840. movl $32, %r8d;
  841. movl $24, %eax;
  842. cmovel %eax, %r8d; /* max */
  843. inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  844. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  845. %xmm15, %rdx, (key_table)(CTX, %r8, 8));
  846. /* now dst can be used as temporary buffer (even in src == dst case) */
  847. movq %rsi, %rax;
  848. call __camellia_dec_blk16;
  849. write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
  850. %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
  851. %xmm8, %rsi);
  852. ret;
  853. ENDPROC(camellia_ecb_dec_16way)
  854. ENTRY(camellia_cbc_dec_16way)
  855. /* input:
  856. * %rdi: ctx, CTX
  857. * %rsi: dst (16 blocks)
  858. * %rdx: src (16 blocks)
  859. */
  860. cmpl $16, key_length(CTX);
  861. movl $32, %r8d;
  862. movl $24, %eax;
  863. cmovel %eax, %r8d; /* max */
  864. inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  865. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  866. %xmm15, %rdx, (key_table)(CTX, %r8, 8));
  867. /*
  868. * dst might still be in-use (in case dst == src), so use stack for
  869. * temporary storage.
  870. */
  871. subq $(16 * 16), %rsp;
  872. movq %rsp, %rax;
  873. call __camellia_dec_blk16;
  874. addq $(16 * 16), %rsp;
  875. vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
  876. vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
  877. vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
  878. vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
  879. vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
  880. vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
  881. vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
  882. vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
  883. vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
  884. vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
  885. vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
  886. vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
  887. vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
  888. vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
  889. vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
  890. write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
  891. %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
  892. %xmm8, %rsi);
  893. ret;
  894. ENDPROC(camellia_cbc_dec_16way)
  895. #define inc_le128(x, minus_one, tmp) \
  896. vpcmpeqq minus_one, x, tmp; \
  897. vpsubq minus_one, x, x; \
  898. vpslldq $8, tmp, tmp; \
  899. vpsubq tmp, x, x;
  900. ENTRY(camellia_ctr_16way)
  901. /* input:
  902. * %rdi: ctx, CTX
  903. * %rsi: dst (16 blocks)
  904. * %rdx: src (16 blocks)
  905. * %rcx: iv (little endian, 128bit)
  906. */
  907. subq $(16 * 16), %rsp;
  908. movq %rsp, %rax;
  909. vmovdqa .Lbswap128_mask, %xmm14;
  910. /* load IV and byteswap */
  911. vmovdqu (%rcx), %xmm0;
  912. vpshufb %xmm14, %xmm0, %xmm15;
  913. vmovdqu %xmm15, 15 * 16(%rax);
  914. vpcmpeqd %xmm15, %xmm15, %xmm15;
  915. vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */
  916. /* construct IVs */
  917. inc_le128(%xmm0, %xmm15, %xmm13);
  918. vpshufb %xmm14, %xmm0, %xmm13;
  919. vmovdqu %xmm13, 14 * 16(%rax);
  920. inc_le128(%xmm0, %xmm15, %xmm13);
  921. vpshufb %xmm14, %xmm0, %xmm13;
  922. vmovdqu %xmm13, 13 * 16(%rax);
  923. inc_le128(%xmm0, %xmm15, %xmm13);
  924. vpshufb %xmm14, %xmm0, %xmm12;
  925. inc_le128(%xmm0, %xmm15, %xmm13);
  926. vpshufb %xmm14, %xmm0, %xmm11;
  927. inc_le128(%xmm0, %xmm15, %xmm13);
  928. vpshufb %xmm14, %xmm0, %xmm10;
  929. inc_le128(%xmm0, %xmm15, %xmm13);
  930. vpshufb %xmm14, %xmm0, %xmm9;
  931. inc_le128(%xmm0, %xmm15, %xmm13);
  932. vpshufb %xmm14, %xmm0, %xmm8;
  933. inc_le128(%xmm0, %xmm15, %xmm13);
  934. vpshufb %xmm14, %xmm0, %xmm7;
  935. inc_le128(%xmm0, %xmm15, %xmm13);
  936. vpshufb %xmm14, %xmm0, %xmm6;
  937. inc_le128(%xmm0, %xmm15, %xmm13);
  938. vpshufb %xmm14, %xmm0, %xmm5;
  939. inc_le128(%xmm0, %xmm15, %xmm13);
  940. vpshufb %xmm14, %xmm0, %xmm4;
  941. inc_le128(%xmm0, %xmm15, %xmm13);
  942. vpshufb %xmm14, %xmm0, %xmm3;
  943. inc_le128(%xmm0, %xmm15, %xmm13);
  944. vpshufb %xmm14, %xmm0, %xmm2;
  945. inc_le128(%xmm0, %xmm15, %xmm13);
  946. vpshufb %xmm14, %xmm0, %xmm1;
  947. inc_le128(%xmm0, %xmm15, %xmm13);
  948. vmovdqa %xmm0, %xmm13;
  949. vpshufb %xmm14, %xmm0, %xmm0;
  950. inc_le128(%xmm13, %xmm15, %xmm14);
  951. vmovdqu %xmm13, (%rcx);
  952. /* inpack16_pre: */
  953. vmovq (key_table)(CTX), %xmm15;
  954. vpshufb .Lpack_bswap, %xmm15, %xmm15;
  955. vpxor %xmm0, %xmm15, %xmm0;
  956. vpxor %xmm1, %xmm15, %xmm1;
  957. vpxor %xmm2, %xmm15, %xmm2;
  958. vpxor %xmm3, %xmm15, %xmm3;
  959. vpxor %xmm4, %xmm15, %xmm4;
  960. vpxor %xmm5, %xmm15, %xmm5;
  961. vpxor %xmm6, %xmm15, %xmm6;
  962. vpxor %xmm7, %xmm15, %xmm7;
  963. vpxor %xmm8, %xmm15, %xmm8;
  964. vpxor %xmm9, %xmm15, %xmm9;
  965. vpxor %xmm10, %xmm15, %xmm10;
  966. vpxor %xmm11, %xmm15, %xmm11;
  967. vpxor %xmm12, %xmm15, %xmm12;
  968. vpxor 13 * 16(%rax), %xmm15, %xmm13;
  969. vpxor 14 * 16(%rax), %xmm15, %xmm14;
  970. vpxor 15 * 16(%rax), %xmm15, %xmm15;
  971. call __camellia_enc_blk16;
  972. addq $(16 * 16), %rsp;
  973. vpxor 0 * 16(%rdx), %xmm7, %xmm7;
  974. vpxor 1 * 16(%rdx), %xmm6, %xmm6;
  975. vpxor 2 * 16(%rdx), %xmm5, %xmm5;
  976. vpxor 3 * 16(%rdx), %xmm4, %xmm4;
  977. vpxor 4 * 16(%rdx), %xmm3, %xmm3;
  978. vpxor 5 * 16(%rdx), %xmm2, %xmm2;
  979. vpxor 6 * 16(%rdx), %xmm1, %xmm1;
  980. vpxor 7 * 16(%rdx), %xmm0, %xmm0;
  981. vpxor 8 * 16(%rdx), %xmm15, %xmm15;
  982. vpxor 9 * 16(%rdx), %xmm14, %xmm14;
  983. vpxor 10 * 16(%rdx), %xmm13, %xmm13;
  984. vpxor 11 * 16(%rdx), %xmm12, %xmm12;
  985. vpxor 12 * 16(%rdx), %xmm11, %xmm11;
  986. vpxor 13 * 16(%rdx), %xmm10, %xmm10;
  987. vpxor 14 * 16(%rdx), %xmm9, %xmm9;
  988. vpxor 15 * 16(%rdx), %xmm8, %xmm8;
  989. write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
  990. %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
  991. %xmm8, %rsi);
  992. ret;
  993. ENDPROC(camellia_ctr_16way)