book3s_64_mmu_hv.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  14. *
  15. * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  16. */
  17. #include <linux/types.h>
  18. #include <linux/string.h>
  19. #include <linux/kvm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/highmem.h>
  22. #include <linux/gfp.h>
  23. #include <linux/slab.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/srcu.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/file.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/kvm_ppc.h>
  31. #include <asm/kvm_book3s.h>
  32. #include <asm/mmu-hash64.h>
  33. #include <asm/hvcall.h>
  34. #include <asm/synch.h>
  35. #include <asm/ppc-opcode.h>
  36. #include <asm/cputable.h>
  37. /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
  38. #define MAX_LPID_970 63
  39. /* Power architecture requires HPT is at least 256kB */
  40. #define PPC_MIN_HPT_ORDER 18
  41. static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  42. long pte_index, unsigned long pteh,
  43. unsigned long ptel, unsigned long *pte_idx_ret);
  44. static void kvmppc_rmap_reset(struct kvm *kvm);
  45. long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
  46. {
  47. unsigned long hpt;
  48. struct revmap_entry *rev;
  49. struct kvmppc_linear_info *li;
  50. long order = kvm_hpt_order;
  51. if (htab_orderp) {
  52. order = *htab_orderp;
  53. if (order < PPC_MIN_HPT_ORDER)
  54. order = PPC_MIN_HPT_ORDER;
  55. }
  56. /*
  57. * If the user wants a different size from default,
  58. * try first to allocate it from the kernel page allocator.
  59. */
  60. hpt = 0;
  61. if (order != kvm_hpt_order) {
  62. hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  63. __GFP_NOWARN, order - PAGE_SHIFT);
  64. if (!hpt)
  65. --order;
  66. }
  67. /* Next try to allocate from the preallocated pool */
  68. if (!hpt) {
  69. li = kvm_alloc_hpt();
  70. if (li) {
  71. hpt = (ulong)li->base_virt;
  72. kvm->arch.hpt_li = li;
  73. order = kvm_hpt_order;
  74. }
  75. }
  76. /* Lastly try successively smaller sizes from the page allocator */
  77. while (!hpt && order > PPC_MIN_HPT_ORDER) {
  78. hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  79. __GFP_NOWARN, order - PAGE_SHIFT);
  80. if (!hpt)
  81. --order;
  82. }
  83. if (!hpt)
  84. return -ENOMEM;
  85. kvm->arch.hpt_virt = hpt;
  86. kvm->arch.hpt_order = order;
  87. /* HPTEs are 2**4 bytes long */
  88. kvm->arch.hpt_npte = 1ul << (order - 4);
  89. /* 128 (2**7) bytes in each HPTEG */
  90. kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
  91. /* Allocate reverse map array */
  92. rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
  93. if (!rev) {
  94. pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
  95. goto out_freehpt;
  96. }
  97. kvm->arch.revmap = rev;
  98. kvm->arch.sdr1 = __pa(hpt) | (order - 18);
  99. pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
  100. hpt, order, kvm->arch.lpid);
  101. if (htab_orderp)
  102. *htab_orderp = order;
  103. return 0;
  104. out_freehpt:
  105. if (kvm->arch.hpt_li)
  106. kvm_release_hpt(kvm->arch.hpt_li);
  107. else
  108. free_pages(hpt, order - PAGE_SHIFT);
  109. return -ENOMEM;
  110. }
  111. long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
  112. {
  113. long err = -EBUSY;
  114. long order;
  115. mutex_lock(&kvm->lock);
  116. if (kvm->arch.rma_setup_done) {
  117. kvm->arch.rma_setup_done = 0;
  118. /* order rma_setup_done vs. vcpus_running */
  119. smp_mb();
  120. if (atomic_read(&kvm->arch.vcpus_running)) {
  121. kvm->arch.rma_setup_done = 1;
  122. goto out;
  123. }
  124. }
  125. if (kvm->arch.hpt_virt) {
  126. order = kvm->arch.hpt_order;
  127. /* Set the entire HPT to 0, i.e. invalid HPTEs */
  128. memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
  129. /*
  130. * Reset all the reverse-mapping chains for all memslots
  131. */
  132. kvmppc_rmap_reset(kvm);
  133. /* Ensure that each vcpu will flush its TLB on next entry. */
  134. cpumask_setall(&kvm->arch.need_tlb_flush);
  135. *htab_orderp = order;
  136. err = 0;
  137. } else {
  138. err = kvmppc_alloc_hpt(kvm, htab_orderp);
  139. order = *htab_orderp;
  140. }
  141. out:
  142. mutex_unlock(&kvm->lock);
  143. return err;
  144. }
  145. void kvmppc_free_hpt(struct kvm *kvm)
  146. {
  147. kvmppc_free_lpid(kvm->arch.lpid);
  148. vfree(kvm->arch.revmap);
  149. if (kvm->arch.hpt_li)
  150. kvm_release_hpt(kvm->arch.hpt_li);
  151. else
  152. free_pages(kvm->arch.hpt_virt,
  153. kvm->arch.hpt_order - PAGE_SHIFT);
  154. }
  155. /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
  156. static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
  157. {
  158. return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
  159. }
  160. /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
  161. static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
  162. {
  163. return (pgsize == 0x10000) ? 0x1000 : 0;
  164. }
  165. void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
  166. unsigned long porder)
  167. {
  168. unsigned long i;
  169. unsigned long npages;
  170. unsigned long hp_v, hp_r;
  171. unsigned long addr, hash;
  172. unsigned long psize;
  173. unsigned long hp0, hp1;
  174. unsigned long idx_ret;
  175. long ret;
  176. struct kvm *kvm = vcpu->kvm;
  177. psize = 1ul << porder;
  178. npages = memslot->npages >> (porder - PAGE_SHIFT);
  179. /* VRMA can't be > 1TB */
  180. if (npages > 1ul << (40 - porder))
  181. npages = 1ul << (40 - porder);
  182. /* Can't use more than 1 HPTE per HPTEG */
  183. if (npages > kvm->arch.hpt_mask + 1)
  184. npages = kvm->arch.hpt_mask + 1;
  185. hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
  186. HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
  187. hp1 = hpte1_pgsize_encoding(psize) |
  188. HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
  189. for (i = 0; i < npages; ++i) {
  190. addr = i << porder;
  191. /* can't use hpt_hash since va > 64 bits */
  192. hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
  193. /*
  194. * We assume that the hash table is empty and no
  195. * vcpus are using it at this stage. Since we create
  196. * at most one HPTE per HPTEG, we just assume entry 7
  197. * is available and use it.
  198. */
  199. hash = (hash << 3) + 7;
  200. hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
  201. hp_r = hp1 | addr;
  202. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
  203. &idx_ret);
  204. if (ret != H_SUCCESS) {
  205. pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
  206. addr, ret);
  207. break;
  208. }
  209. }
  210. }
  211. int kvmppc_mmu_hv_init(void)
  212. {
  213. unsigned long host_lpid, rsvd_lpid;
  214. if (!cpu_has_feature(CPU_FTR_HVMODE))
  215. return -EINVAL;
  216. /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
  217. if (cpu_has_feature(CPU_FTR_ARCH_206)) {
  218. host_lpid = mfspr(SPRN_LPID); /* POWER7 */
  219. rsvd_lpid = LPID_RSVD;
  220. } else {
  221. host_lpid = 0; /* PPC970 */
  222. rsvd_lpid = MAX_LPID_970;
  223. }
  224. kvmppc_init_lpid(rsvd_lpid + 1);
  225. kvmppc_claim_lpid(host_lpid);
  226. /* rsvd_lpid is reserved for use in partition switching */
  227. kvmppc_claim_lpid(rsvd_lpid);
  228. return 0;
  229. }
  230. void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
  231. {
  232. }
  233. static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
  234. {
  235. kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
  236. }
  237. /*
  238. * This is called to get a reference to a guest page if there isn't
  239. * one already in the memslot->arch.slot_phys[] array.
  240. */
  241. static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
  242. struct kvm_memory_slot *memslot,
  243. unsigned long psize)
  244. {
  245. unsigned long start;
  246. long np, err;
  247. struct page *page, *hpage, *pages[1];
  248. unsigned long s, pgsize;
  249. unsigned long *physp;
  250. unsigned int is_io, got, pgorder;
  251. struct vm_area_struct *vma;
  252. unsigned long pfn, i, npages;
  253. physp = memslot->arch.slot_phys;
  254. if (!physp)
  255. return -EINVAL;
  256. if (physp[gfn - memslot->base_gfn])
  257. return 0;
  258. is_io = 0;
  259. got = 0;
  260. page = NULL;
  261. pgsize = psize;
  262. err = -EINVAL;
  263. start = gfn_to_hva_memslot(memslot, gfn);
  264. /* Instantiate and get the page we want access to */
  265. np = get_user_pages_fast(start, 1, 1, pages);
  266. if (np != 1) {
  267. /* Look up the vma for the page */
  268. down_read(&current->mm->mmap_sem);
  269. vma = find_vma(current->mm, start);
  270. if (!vma || vma->vm_start > start ||
  271. start + psize > vma->vm_end ||
  272. !(vma->vm_flags & VM_PFNMAP))
  273. goto up_err;
  274. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  275. pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  276. /* check alignment of pfn vs. requested page size */
  277. if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
  278. goto up_err;
  279. up_read(&current->mm->mmap_sem);
  280. } else {
  281. page = pages[0];
  282. got = KVMPPC_GOT_PAGE;
  283. /* See if this is a large page */
  284. s = PAGE_SIZE;
  285. if (PageHuge(page)) {
  286. hpage = compound_head(page);
  287. s <<= compound_order(hpage);
  288. /* Get the whole large page if slot alignment is ok */
  289. if (s > psize && slot_is_aligned(memslot, s) &&
  290. !(memslot->userspace_addr & (s - 1))) {
  291. start &= ~(s - 1);
  292. pgsize = s;
  293. get_page(hpage);
  294. put_page(page);
  295. page = hpage;
  296. }
  297. }
  298. if (s < psize)
  299. goto out;
  300. pfn = page_to_pfn(page);
  301. }
  302. npages = pgsize >> PAGE_SHIFT;
  303. pgorder = __ilog2(npages);
  304. physp += (gfn - memslot->base_gfn) & ~(npages - 1);
  305. spin_lock(&kvm->arch.slot_phys_lock);
  306. for (i = 0; i < npages; ++i) {
  307. if (!physp[i]) {
  308. physp[i] = ((pfn + i) << PAGE_SHIFT) +
  309. got + is_io + pgorder;
  310. got = 0;
  311. }
  312. }
  313. spin_unlock(&kvm->arch.slot_phys_lock);
  314. err = 0;
  315. out:
  316. if (got)
  317. put_page(page);
  318. return err;
  319. up_err:
  320. up_read(&current->mm->mmap_sem);
  321. return err;
  322. }
  323. long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  324. long pte_index, unsigned long pteh,
  325. unsigned long ptel, unsigned long *pte_idx_ret)
  326. {
  327. unsigned long psize, gpa, gfn;
  328. struct kvm_memory_slot *memslot;
  329. long ret;
  330. if (kvm->arch.using_mmu_notifiers)
  331. goto do_insert;
  332. psize = hpte_page_size(pteh, ptel);
  333. if (!psize)
  334. return H_PARAMETER;
  335. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  336. /* Find the memslot (if any) for this address */
  337. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  338. gfn = gpa >> PAGE_SHIFT;
  339. memslot = gfn_to_memslot(kvm, gfn);
  340. if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
  341. if (!slot_is_aligned(memslot, psize))
  342. return H_PARAMETER;
  343. if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
  344. return H_PARAMETER;
  345. }
  346. do_insert:
  347. /* Protect linux PTE lookup from page table destruction */
  348. rcu_read_lock_sched(); /* this disables preemption too */
  349. ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
  350. current->mm->pgd, false, pte_idx_ret);
  351. rcu_read_unlock_sched();
  352. if (ret == H_TOO_HARD) {
  353. /* this can't happen */
  354. pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
  355. ret = H_RESOURCE; /* or something */
  356. }
  357. return ret;
  358. }
  359. /*
  360. * We come here on a H_ENTER call from the guest when we are not
  361. * using mmu notifiers and we don't have the requested page pinned
  362. * already.
  363. */
  364. long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  365. long pte_index, unsigned long pteh,
  366. unsigned long ptel)
  367. {
  368. return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
  369. pteh, ptel, &vcpu->arch.gpr[4]);
  370. }
  371. static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
  372. gva_t eaddr)
  373. {
  374. u64 mask;
  375. int i;
  376. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  377. if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
  378. continue;
  379. if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
  380. mask = ESID_MASK_1T;
  381. else
  382. mask = ESID_MASK;
  383. if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
  384. return &vcpu->arch.slb[i];
  385. }
  386. return NULL;
  387. }
  388. static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
  389. unsigned long ea)
  390. {
  391. unsigned long ra_mask;
  392. ra_mask = hpte_page_size(v, r) - 1;
  393. return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
  394. }
  395. static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  396. struct kvmppc_pte *gpte, bool data)
  397. {
  398. struct kvm *kvm = vcpu->kvm;
  399. struct kvmppc_slb *slbe;
  400. unsigned long slb_v;
  401. unsigned long pp, key;
  402. unsigned long v, gr;
  403. unsigned long *hptep;
  404. int index;
  405. int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
  406. /* Get SLB entry */
  407. if (virtmode) {
  408. slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
  409. if (!slbe)
  410. return -EINVAL;
  411. slb_v = slbe->origv;
  412. } else {
  413. /* real mode access */
  414. slb_v = vcpu->kvm->arch.vrma_slb_v;
  415. }
  416. /* Find the HPTE in the hash table */
  417. index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
  418. HPTE_V_VALID | HPTE_V_ABSENT);
  419. if (index < 0)
  420. return -ENOENT;
  421. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  422. v = hptep[0] & ~HPTE_V_HVLOCK;
  423. gr = kvm->arch.revmap[index].guest_rpte;
  424. /* Unlock the HPTE */
  425. asm volatile("lwsync" : : : "memory");
  426. hptep[0] = v;
  427. gpte->eaddr = eaddr;
  428. gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
  429. /* Get PP bits and key for permission check */
  430. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  431. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  432. key &= slb_v;
  433. /* Calculate permissions */
  434. gpte->may_read = hpte_read_permission(pp, key);
  435. gpte->may_write = hpte_write_permission(pp, key);
  436. gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
  437. /* Storage key permission check for POWER7 */
  438. if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
  439. int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
  440. if (amrfield & 1)
  441. gpte->may_read = 0;
  442. if (amrfield & 2)
  443. gpte->may_write = 0;
  444. }
  445. /* Get the guest physical address */
  446. gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
  447. return 0;
  448. }
  449. /*
  450. * Quick test for whether an instruction is a load or a store.
  451. * If the instruction is a load or a store, then this will indicate
  452. * which it is, at least on server processors. (Embedded processors
  453. * have some external PID instructions that don't follow the rule
  454. * embodied here.) If the instruction isn't a load or store, then
  455. * this doesn't return anything useful.
  456. */
  457. static int instruction_is_store(unsigned int instr)
  458. {
  459. unsigned int mask;
  460. mask = 0x10000000;
  461. if ((instr & 0xfc000000) == 0x7c000000)
  462. mask = 0x100; /* major opcode 31 */
  463. return (instr & mask) != 0;
  464. }
  465. static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
  466. unsigned long gpa, gva_t ea, int is_store)
  467. {
  468. int ret;
  469. u32 last_inst;
  470. unsigned long srr0 = kvmppc_get_pc(vcpu);
  471. /* We try to load the last instruction. We don't let
  472. * emulate_instruction do it as it doesn't check what
  473. * kvmppc_ld returns.
  474. * If we fail, we just return to the guest and try executing it again.
  475. */
  476. if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
  477. ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
  478. if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
  479. return RESUME_GUEST;
  480. vcpu->arch.last_inst = last_inst;
  481. }
  482. /*
  483. * WARNING: We do not know for sure whether the instruction we just
  484. * read from memory is the same that caused the fault in the first
  485. * place. If the instruction we read is neither an load or a store,
  486. * then it can't access memory, so we don't need to worry about
  487. * enforcing access permissions. So, assuming it is a load or
  488. * store, we just check that its direction (load or store) is
  489. * consistent with the original fault, since that's what we
  490. * checked the access permissions against. If there is a mismatch
  491. * we just return and retry the instruction.
  492. */
  493. if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
  494. return RESUME_GUEST;
  495. /*
  496. * Emulated accesses are emulated by looking at the hash for
  497. * translation once, then performing the access later. The
  498. * translation could be invalidated in the meantime in which
  499. * point performing the subsequent memory access on the old
  500. * physical address could possibly be a security hole for the
  501. * guest (but not the host).
  502. *
  503. * This is less of an issue for MMIO stores since they aren't
  504. * globally visible. It could be an issue for MMIO loads to
  505. * a certain extent but we'll ignore it for now.
  506. */
  507. vcpu->arch.paddr_accessed = gpa;
  508. vcpu->arch.vaddr_accessed = ea;
  509. return kvmppc_emulate_mmio(run, vcpu);
  510. }
  511. int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
  512. unsigned long ea, unsigned long dsisr)
  513. {
  514. struct kvm *kvm = vcpu->kvm;
  515. unsigned long *hptep, hpte[3], r;
  516. unsigned long mmu_seq, psize, pte_size;
  517. unsigned long gpa, gfn, hva, pfn;
  518. struct kvm_memory_slot *memslot;
  519. unsigned long *rmap;
  520. struct revmap_entry *rev;
  521. struct page *page, *pages[1];
  522. long index, ret, npages;
  523. unsigned long is_io;
  524. unsigned int writing, write_ok;
  525. struct vm_area_struct *vma;
  526. unsigned long rcbits;
  527. /*
  528. * Real-mode code has already searched the HPT and found the
  529. * entry we're interested in. Lock the entry and check that
  530. * it hasn't changed. If it has, just return and re-execute the
  531. * instruction.
  532. */
  533. if (ea != vcpu->arch.pgfault_addr)
  534. return RESUME_GUEST;
  535. index = vcpu->arch.pgfault_index;
  536. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  537. rev = &kvm->arch.revmap[index];
  538. preempt_disable();
  539. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  540. cpu_relax();
  541. hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
  542. hpte[1] = hptep[1];
  543. hpte[2] = r = rev->guest_rpte;
  544. asm volatile("lwsync" : : : "memory");
  545. hptep[0] = hpte[0];
  546. preempt_enable();
  547. if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
  548. hpte[1] != vcpu->arch.pgfault_hpte[1])
  549. return RESUME_GUEST;
  550. /* Translate the logical address and get the page */
  551. psize = hpte_page_size(hpte[0], r);
  552. gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
  553. gfn = gpa >> PAGE_SHIFT;
  554. memslot = gfn_to_memslot(kvm, gfn);
  555. /* No memslot means it's an emulated MMIO region */
  556. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  557. return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
  558. dsisr & DSISR_ISSTORE);
  559. if (!kvm->arch.using_mmu_notifiers)
  560. return -EFAULT; /* should never get here */
  561. /* used to check for invalidations in progress */
  562. mmu_seq = kvm->mmu_notifier_seq;
  563. smp_rmb();
  564. is_io = 0;
  565. pfn = 0;
  566. page = NULL;
  567. pte_size = PAGE_SIZE;
  568. writing = (dsisr & DSISR_ISSTORE) != 0;
  569. /* If writing != 0, then the HPTE must allow writing, if we get here */
  570. write_ok = writing;
  571. hva = gfn_to_hva_memslot(memslot, gfn);
  572. npages = get_user_pages_fast(hva, 1, writing, pages);
  573. if (npages < 1) {
  574. /* Check if it's an I/O mapping */
  575. down_read(&current->mm->mmap_sem);
  576. vma = find_vma(current->mm, hva);
  577. if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
  578. (vma->vm_flags & VM_PFNMAP)) {
  579. pfn = vma->vm_pgoff +
  580. ((hva - vma->vm_start) >> PAGE_SHIFT);
  581. pte_size = psize;
  582. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  583. write_ok = vma->vm_flags & VM_WRITE;
  584. }
  585. up_read(&current->mm->mmap_sem);
  586. if (!pfn)
  587. return -EFAULT;
  588. } else {
  589. page = pages[0];
  590. if (PageHuge(page)) {
  591. page = compound_head(page);
  592. pte_size <<= compound_order(page);
  593. }
  594. /* if the guest wants write access, see if that is OK */
  595. if (!writing && hpte_is_writable(r)) {
  596. pte_t *ptep, pte;
  597. /*
  598. * We need to protect against page table destruction
  599. * while looking up and updating the pte.
  600. */
  601. rcu_read_lock_sched();
  602. ptep = find_linux_pte_or_hugepte(current->mm->pgd,
  603. hva, NULL);
  604. if (ptep && pte_present(*ptep)) {
  605. pte = kvmppc_read_update_linux_pte(ptep, 1);
  606. if (pte_write(pte))
  607. write_ok = 1;
  608. }
  609. rcu_read_unlock_sched();
  610. }
  611. pfn = page_to_pfn(page);
  612. }
  613. ret = -EFAULT;
  614. if (psize > pte_size)
  615. goto out_put;
  616. /* Check WIMG vs. the actual page we're accessing */
  617. if (!hpte_cache_flags_ok(r, is_io)) {
  618. if (is_io)
  619. return -EFAULT;
  620. /*
  621. * Allow guest to map emulated device memory as
  622. * uncacheable, but actually make it cacheable.
  623. */
  624. r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
  625. }
  626. /* Set the HPTE to point to pfn */
  627. r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
  628. if (hpte_is_writable(r) && !write_ok)
  629. r = hpte_make_readonly(r);
  630. ret = RESUME_GUEST;
  631. preempt_disable();
  632. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  633. cpu_relax();
  634. if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
  635. rev->guest_rpte != hpte[2])
  636. /* HPTE has been changed under us; let the guest retry */
  637. goto out_unlock;
  638. hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  639. rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
  640. lock_rmap(rmap);
  641. /* Check if we might have been invalidated; let the guest retry if so */
  642. ret = RESUME_GUEST;
  643. if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
  644. unlock_rmap(rmap);
  645. goto out_unlock;
  646. }
  647. /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
  648. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  649. r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  650. if (hptep[0] & HPTE_V_VALID) {
  651. /* HPTE was previously valid, so we need to invalidate it */
  652. unlock_rmap(rmap);
  653. hptep[0] |= HPTE_V_ABSENT;
  654. kvmppc_invalidate_hpte(kvm, hptep, index);
  655. /* don't lose previous R and C bits */
  656. r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
  657. } else {
  658. kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
  659. }
  660. hptep[1] = r;
  661. eieio();
  662. hptep[0] = hpte[0];
  663. asm volatile("ptesync" : : : "memory");
  664. preempt_enable();
  665. if (page && hpte_is_writable(r))
  666. SetPageDirty(page);
  667. out_put:
  668. if (page) {
  669. /*
  670. * We drop pages[0] here, not page because page might
  671. * have been set to the head page of a compound, but
  672. * we have to drop the reference on the correct tail
  673. * page to match the get inside gup()
  674. */
  675. put_page(pages[0]);
  676. }
  677. return ret;
  678. out_unlock:
  679. hptep[0] &= ~HPTE_V_HVLOCK;
  680. preempt_enable();
  681. goto out_put;
  682. }
  683. static void kvmppc_rmap_reset(struct kvm *kvm)
  684. {
  685. struct kvm_memslots *slots;
  686. struct kvm_memory_slot *memslot;
  687. int srcu_idx;
  688. srcu_idx = srcu_read_lock(&kvm->srcu);
  689. slots = kvm->memslots;
  690. kvm_for_each_memslot(memslot, slots) {
  691. /*
  692. * This assumes it is acceptable to lose reference and
  693. * change bits across a reset.
  694. */
  695. memset(memslot->arch.rmap, 0,
  696. memslot->npages * sizeof(*memslot->arch.rmap));
  697. }
  698. srcu_read_unlock(&kvm->srcu, srcu_idx);
  699. }
  700. static int kvm_handle_hva_range(struct kvm *kvm,
  701. unsigned long start,
  702. unsigned long end,
  703. int (*handler)(struct kvm *kvm,
  704. unsigned long *rmapp,
  705. unsigned long gfn))
  706. {
  707. int ret;
  708. int retval = 0;
  709. struct kvm_memslots *slots;
  710. struct kvm_memory_slot *memslot;
  711. slots = kvm_memslots(kvm);
  712. kvm_for_each_memslot(memslot, slots) {
  713. unsigned long hva_start, hva_end;
  714. gfn_t gfn, gfn_end;
  715. hva_start = max(start, memslot->userspace_addr);
  716. hva_end = min(end, memslot->userspace_addr +
  717. (memslot->npages << PAGE_SHIFT));
  718. if (hva_start >= hva_end)
  719. continue;
  720. /*
  721. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  722. * {gfn, gfn+1, ..., gfn_end-1}.
  723. */
  724. gfn = hva_to_gfn_memslot(hva_start, memslot);
  725. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  726. for (; gfn < gfn_end; ++gfn) {
  727. gfn_t gfn_offset = gfn - memslot->base_gfn;
  728. ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
  729. retval |= ret;
  730. }
  731. }
  732. return retval;
  733. }
  734. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  735. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  736. unsigned long gfn))
  737. {
  738. return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
  739. }
  740. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  741. unsigned long gfn)
  742. {
  743. struct revmap_entry *rev = kvm->arch.revmap;
  744. unsigned long h, i, j;
  745. unsigned long *hptep;
  746. unsigned long ptel, psize, rcbits;
  747. for (;;) {
  748. lock_rmap(rmapp);
  749. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  750. unlock_rmap(rmapp);
  751. break;
  752. }
  753. /*
  754. * To avoid an ABBA deadlock with the HPTE lock bit,
  755. * we can't spin on the HPTE lock while holding the
  756. * rmap chain lock.
  757. */
  758. i = *rmapp & KVMPPC_RMAP_INDEX;
  759. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  760. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  761. /* unlock rmap before spinning on the HPTE lock */
  762. unlock_rmap(rmapp);
  763. while (hptep[0] & HPTE_V_HVLOCK)
  764. cpu_relax();
  765. continue;
  766. }
  767. j = rev[i].forw;
  768. if (j == i) {
  769. /* chain is now empty */
  770. *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  771. } else {
  772. /* remove i from chain */
  773. h = rev[i].back;
  774. rev[h].forw = j;
  775. rev[j].back = h;
  776. rev[i].forw = rev[i].back = i;
  777. *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
  778. }
  779. /* Now check and modify the HPTE */
  780. ptel = rev[i].guest_rpte;
  781. psize = hpte_page_size(hptep[0], ptel);
  782. if ((hptep[0] & HPTE_V_VALID) &&
  783. hpte_rpn(ptel, psize) == gfn) {
  784. if (kvm->arch.using_mmu_notifiers)
  785. hptep[0] |= HPTE_V_ABSENT;
  786. kvmppc_invalidate_hpte(kvm, hptep, i);
  787. /* Harvest R and C */
  788. rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
  789. *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  790. rev[i].guest_rpte = ptel | rcbits;
  791. }
  792. unlock_rmap(rmapp);
  793. hptep[0] &= ~HPTE_V_HVLOCK;
  794. }
  795. return 0;
  796. }
  797. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  798. {
  799. if (kvm->arch.using_mmu_notifiers)
  800. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  801. return 0;
  802. }
  803. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  804. {
  805. if (kvm->arch.using_mmu_notifiers)
  806. kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
  807. return 0;
  808. }
  809. void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
  810. {
  811. unsigned long *rmapp;
  812. unsigned long gfn;
  813. unsigned long n;
  814. rmapp = memslot->arch.rmap;
  815. gfn = memslot->base_gfn;
  816. for (n = memslot->npages; n; --n) {
  817. /*
  818. * Testing the present bit without locking is OK because
  819. * the memslot has been marked invalid already, and hence
  820. * no new HPTEs referencing this page can be created,
  821. * thus the present bit can't go from 0 to 1.
  822. */
  823. if (*rmapp & KVMPPC_RMAP_PRESENT)
  824. kvm_unmap_rmapp(kvm, rmapp, gfn);
  825. ++rmapp;
  826. ++gfn;
  827. }
  828. }
  829. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  830. unsigned long gfn)
  831. {
  832. struct revmap_entry *rev = kvm->arch.revmap;
  833. unsigned long head, i, j;
  834. unsigned long *hptep;
  835. int ret = 0;
  836. retry:
  837. lock_rmap(rmapp);
  838. if (*rmapp & KVMPPC_RMAP_REFERENCED) {
  839. *rmapp &= ~KVMPPC_RMAP_REFERENCED;
  840. ret = 1;
  841. }
  842. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  843. unlock_rmap(rmapp);
  844. return ret;
  845. }
  846. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  847. do {
  848. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  849. j = rev[i].forw;
  850. /* If this HPTE isn't referenced, ignore it */
  851. if (!(hptep[1] & HPTE_R_R))
  852. continue;
  853. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  854. /* unlock rmap before spinning on the HPTE lock */
  855. unlock_rmap(rmapp);
  856. while (hptep[0] & HPTE_V_HVLOCK)
  857. cpu_relax();
  858. goto retry;
  859. }
  860. /* Now check and modify the HPTE */
  861. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
  862. kvmppc_clear_ref_hpte(kvm, hptep, i);
  863. rev[i].guest_rpte |= HPTE_R_R;
  864. ret = 1;
  865. }
  866. hptep[0] &= ~HPTE_V_HVLOCK;
  867. } while ((i = j) != head);
  868. unlock_rmap(rmapp);
  869. return ret;
  870. }
  871. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  872. {
  873. if (!kvm->arch.using_mmu_notifiers)
  874. return 0;
  875. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  876. }
  877. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  878. unsigned long gfn)
  879. {
  880. struct revmap_entry *rev = kvm->arch.revmap;
  881. unsigned long head, i, j;
  882. unsigned long *hp;
  883. int ret = 1;
  884. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  885. return 1;
  886. lock_rmap(rmapp);
  887. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  888. goto out;
  889. if (*rmapp & KVMPPC_RMAP_PRESENT) {
  890. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  891. do {
  892. hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
  893. j = rev[i].forw;
  894. if (hp[1] & HPTE_R_R)
  895. goto out;
  896. } while ((i = j) != head);
  897. }
  898. ret = 0;
  899. out:
  900. unlock_rmap(rmapp);
  901. return ret;
  902. }
  903. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  904. {
  905. if (!kvm->arch.using_mmu_notifiers)
  906. return 0;
  907. return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
  908. }
  909. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  910. {
  911. if (!kvm->arch.using_mmu_notifiers)
  912. return;
  913. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  914. }
  915. static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  916. {
  917. struct revmap_entry *rev = kvm->arch.revmap;
  918. unsigned long head, i, j;
  919. unsigned long *hptep;
  920. int ret = 0;
  921. retry:
  922. lock_rmap(rmapp);
  923. if (*rmapp & KVMPPC_RMAP_CHANGED) {
  924. *rmapp &= ~KVMPPC_RMAP_CHANGED;
  925. ret = 1;
  926. }
  927. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  928. unlock_rmap(rmapp);
  929. return ret;
  930. }
  931. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  932. do {
  933. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  934. j = rev[i].forw;
  935. if (!(hptep[1] & HPTE_R_C))
  936. continue;
  937. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  938. /* unlock rmap before spinning on the HPTE lock */
  939. unlock_rmap(rmapp);
  940. while (hptep[0] & HPTE_V_HVLOCK)
  941. cpu_relax();
  942. goto retry;
  943. }
  944. /* Now check and modify the HPTE */
  945. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
  946. /* need to make it temporarily absent to clear C */
  947. hptep[0] |= HPTE_V_ABSENT;
  948. kvmppc_invalidate_hpte(kvm, hptep, i);
  949. hptep[1] &= ~HPTE_R_C;
  950. eieio();
  951. hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  952. rev[i].guest_rpte |= HPTE_R_C;
  953. ret = 1;
  954. }
  955. hptep[0] &= ~HPTE_V_HVLOCK;
  956. } while ((i = j) != head);
  957. unlock_rmap(rmapp);
  958. return ret;
  959. }
  960. long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
  961. unsigned long *map)
  962. {
  963. unsigned long i;
  964. unsigned long *rmapp;
  965. preempt_disable();
  966. rmapp = memslot->arch.rmap;
  967. for (i = 0; i < memslot->npages; ++i) {
  968. if (kvm_test_clear_dirty(kvm, rmapp) && map)
  969. __set_bit_le(i, map);
  970. ++rmapp;
  971. }
  972. preempt_enable();
  973. return 0;
  974. }
  975. void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
  976. unsigned long *nb_ret)
  977. {
  978. struct kvm_memory_slot *memslot;
  979. unsigned long gfn = gpa >> PAGE_SHIFT;
  980. struct page *page, *pages[1];
  981. int npages;
  982. unsigned long hva, psize, offset;
  983. unsigned long pa;
  984. unsigned long *physp;
  985. int srcu_idx;
  986. srcu_idx = srcu_read_lock(&kvm->srcu);
  987. memslot = gfn_to_memslot(kvm, gfn);
  988. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  989. goto err;
  990. if (!kvm->arch.using_mmu_notifiers) {
  991. physp = memslot->arch.slot_phys;
  992. if (!physp)
  993. goto err;
  994. physp += gfn - memslot->base_gfn;
  995. pa = *physp;
  996. if (!pa) {
  997. if (kvmppc_get_guest_page(kvm, gfn, memslot,
  998. PAGE_SIZE) < 0)
  999. goto err;
  1000. pa = *physp;
  1001. }
  1002. page = pfn_to_page(pa >> PAGE_SHIFT);
  1003. get_page(page);
  1004. } else {
  1005. hva = gfn_to_hva_memslot(memslot, gfn);
  1006. npages = get_user_pages_fast(hva, 1, 1, pages);
  1007. if (npages < 1)
  1008. goto err;
  1009. page = pages[0];
  1010. }
  1011. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1012. psize = PAGE_SIZE;
  1013. if (PageHuge(page)) {
  1014. page = compound_head(page);
  1015. psize <<= compound_order(page);
  1016. }
  1017. offset = gpa & (psize - 1);
  1018. if (nb_ret)
  1019. *nb_ret = psize - offset;
  1020. return page_address(page) + offset;
  1021. err:
  1022. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1023. return NULL;
  1024. }
  1025. void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
  1026. {
  1027. struct page *page = virt_to_page(va);
  1028. put_page(page);
  1029. }
  1030. /*
  1031. * Functions for reading and writing the hash table via reads and
  1032. * writes on a file descriptor.
  1033. *
  1034. * Reads return the guest view of the hash table, which has to be
  1035. * pieced together from the real hash table and the guest_rpte
  1036. * values in the revmap array.
  1037. *
  1038. * On writes, each HPTE written is considered in turn, and if it
  1039. * is valid, it is written to the HPT as if an H_ENTER with the
  1040. * exact flag set was done. When the invalid count is non-zero
  1041. * in the header written to the stream, the kernel will make
  1042. * sure that that many HPTEs are invalid, and invalidate them
  1043. * if not.
  1044. */
  1045. struct kvm_htab_ctx {
  1046. unsigned long index;
  1047. unsigned long flags;
  1048. struct kvm *kvm;
  1049. int first_pass;
  1050. };
  1051. #define HPTE_SIZE (2 * sizeof(unsigned long))
  1052. static long record_hpte(unsigned long flags, unsigned long *hptp,
  1053. unsigned long *hpte, struct revmap_entry *revp,
  1054. int want_valid, int first_pass)
  1055. {
  1056. unsigned long v, r;
  1057. int ok = 1;
  1058. int valid, dirty;
  1059. /* Unmodified entries are uninteresting except on the first pass */
  1060. dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
  1061. if (!first_pass && !dirty)
  1062. return 0;
  1063. valid = 0;
  1064. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  1065. valid = 1;
  1066. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
  1067. !(hptp[0] & HPTE_V_BOLTED))
  1068. valid = 0;
  1069. }
  1070. if (valid != want_valid)
  1071. return 0;
  1072. v = r = 0;
  1073. if (valid || dirty) {
  1074. /* lock the HPTE so it's stable and read it */
  1075. preempt_disable();
  1076. while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
  1077. cpu_relax();
  1078. v = hptp[0];
  1079. if (v & HPTE_V_ABSENT) {
  1080. v &= ~HPTE_V_ABSENT;
  1081. v |= HPTE_V_VALID;
  1082. }
  1083. /* re-evaluate valid and dirty from synchronized HPTE value */
  1084. valid = !!(v & HPTE_V_VALID);
  1085. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
  1086. valid = 0;
  1087. r = revp->guest_rpte | (hptp[1] & (HPTE_R_R | HPTE_R_C));
  1088. dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
  1089. /* only clear modified if this is the right sort of entry */
  1090. if (valid == want_valid && dirty) {
  1091. r &= ~HPTE_GR_MODIFIED;
  1092. revp->guest_rpte = r;
  1093. }
  1094. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  1095. hptp[0] &= ~HPTE_V_HVLOCK;
  1096. preempt_enable();
  1097. if (!(valid == want_valid && (first_pass || dirty)))
  1098. ok = 0;
  1099. }
  1100. hpte[0] = v;
  1101. hpte[1] = r;
  1102. return ok;
  1103. }
  1104. static ssize_t kvm_htab_read(struct file *file, char __user *buf,
  1105. size_t count, loff_t *ppos)
  1106. {
  1107. struct kvm_htab_ctx *ctx = file->private_data;
  1108. struct kvm *kvm = ctx->kvm;
  1109. struct kvm_get_htab_header hdr;
  1110. unsigned long *hptp;
  1111. struct revmap_entry *revp;
  1112. unsigned long i, nb, nw;
  1113. unsigned long __user *lbuf;
  1114. struct kvm_get_htab_header __user *hptr;
  1115. unsigned long flags;
  1116. int first_pass;
  1117. unsigned long hpte[2];
  1118. if (!access_ok(VERIFY_WRITE, buf, count))
  1119. return -EFAULT;
  1120. first_pass = ctx->first_pass;
  1121. flags = ctx->flags;
  1122. i = ctx->index;
  1123. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1124. revp = kvm->arch.revmap + i;
  1125. lbuf = (unsigned long __user *)buf;
  1126. nb = 0;
  1127. while (nb + sizeof(hdr) + HPTE_SIZE < count) {
  1128. /* Initialize header */
  1129. hptr = (struct kvm_get_htab_header __user *)buf;
  1130. hdr.n_valid = 0;
  1131. hdr.n_invalid = 0;
  1132. nw = nb;
  1133. nb += sizeof(hdr);
  1134. lbuf = (unsigned long __user *)(buf + sizeof(hdr));
  1135. /* Skip uninteresting entries, i.e. clean on not-first pass */
  1136. if (!first_pass) {
  1137. while (i < kvm->arch.hpt_npte &&
  1138. !(revp->guest_rpte & HPTE_GR_MODIFIED)) {
  1139. ++i;
  1140. hptp += 2;
  1141. ++revp;
  1142. }
  1143. }
  1144. hdr.index = i;
  1145. /* Grab a series of valid entries */
  1146. while (i < kvm->arch.hpt_npte &&
  1147. hdr.n_valid < 0xffff &&
  1148. nb + HPTE_SIZE < count &&
  1149. record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
  1150. /* valid entry, write it out */
  1151. ++hdr.n_valid;
  1152. if (__put_user(hpte[0], lbuf) ||
  1153. __put_user(hpte[1], lbuf + 1))
  1154. return -EFAULT;
  1155. nb += HPTE_SIZE;
  1156. lbuf += 2;
  1157. ++i;
  1158. hptp += 2;
  1159. ++revp;
  1160. }
  1161. /* Now skip invalid entries while we can */
  1162. while (i < kvm->arch.hpt_npte &&
  1163. hdr.n_invalid < 0xffff &&
  1164. record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
  1165. /* found an invalid entry */
  1166. ++hdr.n_invalid;
  1167. ++i;
  1168. hptp += 2;
  1169. ++revp;
  1170. }
  1171. if (hdr.n_valid || hdr.n_invalid) {
  1172. /* write back the header */
  1173. if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
  1174. return -EFAULT;
  1175. nw = nb;
  1176. buf = (char __user *)lbuf;
  1177. } else {
  1178. nb = nw;
  1179. }
  1180. /* Check if we've wrapped around the hash table */
  1181. if (i >= kvm->arch.hpt_npte) {
  1182. i = 0;
  1183. ctx->first_pass = 0;
  1184. break;
  1185. }
  1186. }
  1187. ctx->index = i;
  1188. return nb;
  1189. }
  1190. static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
  1191. size_t count, loff_t *ppos)
  1192. {
  1193. struct kvm_htab_ctx *ctx = file->private_data;
  1194. struct kvm *kvm = ctx->kvm;
  1195. struct kvm_get_htab_header hdr;
  1196. unsigned long i, j;
  1197. unsigned long v, r;
  1198. unsigned long __user *lbuf;
  1199. unsigned long *hptp;
  1200. unsigned long tmp[2];
  1201. ssize_t nb;
  1202. long int err, ret;
  1203. int rma_setup;
  1204. if (!access_ok(VERIFY_READ, buf, count))
  1205. return -EFAULT;
  1206. /* lock out vcpus from running while we're doing this */
  1207. mutex_lock(&kvm->lock);
  1208. rma_setup = kvm->arch.rma_setup_done;
  1209. if (rma_setup) {
  1210. kvm->arch.rma_setup_done = 0; /* temporarily */
  1211. /* order rma_setup_done vs. vcpus_running */
  1212. smp_mb();
  1213. if (atomic_read(&kvm->arch.vcpus_running)) {
  1214. kvm->arch.rma_setup_done = 1;
  1215. mutex_unlock(&kvm->lock);
  1216. return -EBUSY;
  1217. }
  1218. }
  1219. err = 0;
  1220. for (nb = 0; nb + sizeof(hdr) <= count; ) {
  1221. err = -EFAULT;
  1222. if (__copy_from_user(&hdr, buf, sizeof(hdr)))
  1223. break;
  1224. err = 0;
  1225. if (nb + hdr.n_valid * HPTE_SIZE > count)
  1226. break;
  1227. nb += sizeof(hdr);
  1228. buf += sizeof(hdr);
  1229. err = -EINVAL;
  1230. i = hdr.index;
  1231. if (i >= kvm->arch.hpt_npte ||
  1232. i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
  1233. break;
  1234. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1235. lbuf = (unsigned long __user *)buf;
  1236. for (j = 0; j < hdr.n_valid; ++j) {
  1237. err = -EFAULT;
  1238. if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
  1239. goto out;
  1240. err = -EINVAL;
  1241. if (!(v & HPTE_V_VALID))
  1242. goto out;
  1243. lbuf += 2;
  1244. nb += HPTE_SIZE;
  1245. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1246. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1247. err = -EIO;
  1248. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
  1249. tmp);
  1250. if (ret != H_SUCCESS) {
  1251. pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
  1252. "r=%lx\n", ret, i, v, r);
  1253. goto out;
  1254. }
  1255. if (!rma_setup && is_vrma_hpte(v)) {
  1256. unsigned long psize = hpte_page_size(v, r);
  1257. unsigned long senc = slb_pgsize_encoding(psize);
  1258. unsigned long lpcr;
  1259. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  1260. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1261. lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
  1262. lpcr |= senc << (LPCR_VRMASD_SH - 4);
  1263. kvm->arch.lpcr = lpcr;
  1264. rma_setup = 1;
  1265. }
  1266. ++i;
  1267. hptp += 2;
  1268. }
  1269. for (j = 0; j < hdr.n_invalid; ++j) {
  1270. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1271. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1272. ++i;
  1273. hptp += 2;
  1274. }
  1275. err = 0;
  1276. }
  1277. out:
  1278. /* Order HPTE updates vs. rma_setup_done */
  1279. smp_wmb();
  1280. kvm->arch.rma_setup_done = rma_setup;
  1281. mutex_unlock(&kvm->lock);
  1282. if (err)
  1283. return err;
  1284. return nb;
  1285. }
  1286. static int kvm_htab_release(struct inode *inode, struct file *filp)
  1287. {
  1288. struct kvm_htab_ctx *ctx = filp->private_data;
  1289. filp->private_data = NULL;
  1290. if (!(ctx->flags & KVM_GET_HTAB_WRITE))
  1291. atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
  1292. kvm_put_kvm(ctx->kvm);
  1293. kfree(ctx);
  1294. return 0;
  1295. }
  1296. static struct file_operations kvm_htab_fops = {
  1297. .read = kvm_htab_read,
  1298. .write = kvm_htab_write,
  1299. .llseek = default_llseek,
  1300. .release = kvm_htab_release,
  1301. };
  1302. int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
  1303. {
  1304. int ret;
  1305. struct kvm_htab_ctx *ctx;
  1306. int rwflag;
  1307. /* reject flags we don't recognize */
  1308. if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
  1309. return -EINVAL;
  1310. ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
  1311. if (!ctx)
  1312. return -ENOMEM;
  1313. kvm_get_kvm(kvm);
  1314. ctx->kvm = kvm;
  1315. ctx->index = ghf->start_index;
  1316. ctx->flags = ghf->flags;
  1317. ctx->first_pass = 1;
  1318. rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
  1319. ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag);
  1320. if (ret < 0) {
  1321. kvm_put_kvm(kvm);
  1322. return ret;
  1323. }
  1324. if (rwflag == O_RDONLY) {
  1325. mutex_lock(&kvm->slots_lock);
  1326. atomic_inc(&kvm->arch.hpte_mod_interest);
  1327. /* make sure kvmppc_do_h_enter etc. see the increment */
  1328. synchronize_srcu_expedited(&kvm->srcu);
  1329. mutex_unlock(&kvm->slots_lock);
  1330. }
  1331. return ret;
  1332. }
  1333. void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
  1334. {
  1335. struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
  1336. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1337. vcpu->arch.slb_nr = 32; /* POWER7 */
  1338. else
  1339. vcpu->arch.slb_nr = 64;
  1340. mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
  1341. mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
  1342. vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
  1343. }