time.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. /*
  2. * linux/arch/cris/arch-v32/kernel/time.c
  3. *
  4. * Copyright (C) 2003-2010 Axis Communications AB
  5. *
  6. */
  7. #include <linux/timex.h>
  8. #include <linux/time.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/swap.h>
  12. #include <linux/sched.h>
  13. #include <linux/init.h>
  14. #include <linux/threads.h>
  15. #include <linux/cpufreq.h>
  16. #include <asm/types.h>
  17. #include <asm/signal.h>
  18. #include <asm/io.h>
  19. #include <asm/delay.h>
  20. #include <asm/irq.h>
  21. #include <asm/irq_regs.h>
  22. #include <hwregs/reg_map.h>
  23. #include <hwregs/reg_rdwr.h>
  24. #include <hwregs/timer_defs.h>
  25. #include <hwregs/intr_vect_defs.h>
  26. #ifdef CONFIG_CRIS_MACH_ARTPEC3
  27. #include <hwregs/clkgen_defs.h>
  28. #endif
  29. /* Watchdog defines */
  30. #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
  31. #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
  32. /* Number of 763 counts before watchdog bites */
  33. #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
  34. /* Register the continuos readonly timer available in FS and ARTPEC-3. */
  35. static cycle_t read_cont_rotime(struct clocksource *cs)
  36. {
  37. return (u32)REG_RD(timer, regi_timer0, r_time);
  38. }
  39. static struct clocksource cont_rotime = {
  40. .name = "crisv32_rotime",
  41. .rating = 300,
  42. .read = read_cont_rotime,
  43. .mask = CLOCKSOURCE_MASK(32),
  44. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  45. };
  46. static int __init etrax_init_cont_rotime(void)
  47. {
  48. clocksource_register_khz(&cont_rotime, 100000);
  49. return 0;
  50. }
  51. arch_initcall(etrax_init_cont_rotime);
  52. unsigned long timer_regs[NR_CPUS] =
  53. {
  54. regi_timer0,
  55. #ifdef CONFIG_SMP
  56. regi_timer2
  57. #endif
  58. };
  59. extern int set_rtc_mmss(unsigned long nowtime);
  60. #ifdef CONFIG_CPU_FREQ
  61. static int
  62. cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
  63. void *data);
  64. static struct notifier_block cris_time_freq_notifier_block = {
  65. .notifier_call = cris_time_freq_notifier,
  66. };
  67. #endif
  68. unsigned long get_ns_in_jiffie(void)
  69. {
  70. reg_timer_r_tmr0_data data;
  71. unsigned long ns;
  72. data = REG_RD(timer, regi_timer0, r_tmr0_data);
  73. ns = (TIMER0_DIV - data) * 10;
  74. return ns;
  75. }
  76. /* From timer MDS describing the hardware watchdog:
  77. * 4.3.1 Watchdog Operation
  78. * The watchdog timer is an 8-bit timer with a configurable start value.
  79. * Once started the watchdog counts downwards with a frequency of 763 Hz
  80. * (100/131072 MHz). When the watchdog counts down to 1, it generates an
  81. * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
  82. * chip.
  83. */
  84. /* This gives us 1.3 ms to do something useful when the NMI comes */
  85. /* Right now, starting the watchdog is the same as resetting it */
  86. #define start_watchdog reset_watchdog
  87. #if defined(CONFIG_ETRAX_WATCHDOG)
  88. static short int watchdog_key = 42; /* arbitrary 7 bit number */
  89. #endif
  90. /* Number of pages to consider "out of memory". It is normal that the memory
  91. * is used though, so set this really low. */
  92. #define WATCHDOG_MIN_FREE_PAGES 8
  93. void reset_watchdog(void)
  94. {
  95. #if defined(CONFIG_ETRAX_WATCHDOG)
  96. reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
  97. /* Only keep watchdog happy as long as we have memory left! */
  98. if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
  99. /* Reset the watchdog with the inverse of the old key */
  100. /* Invert key, which is 7 bits */
  101. watchdog_key ^= ETRAX_WD_KEY_MASK;
  102. wd_ctrl.cnt = ETRAX_WD_CNT;
  103. wd_ctrl.cmd = regk_timer_start;
  104. wd_ctrl.key = watchdog_key;
  105. REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
  106. }
  107. #endif
  108. }
  109. /* stop the watchdog - we still need the correct key */
  110. void stop_watchdog(void)
  111. {
  112. #if defined(CONFIG_ETRAX_WATCHDOG)
  113. reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
  114. watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
  115. wd_ctrl.cnt = ETRAX_WD_CNT;
  116. wd_ctrl.cmd = regk_timer_stop;
  117. wd_ctrl.key = watchdog_key;
  118. REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
  119. #endif
  120. }
  121. extern void show_registers(struct pt_regs *regs);
  122. void handle_watchdog_bite(struct pt_regs *regs)
  123. {
  124. #if defined(CONFIG_ETRAX_WATCHDOG)
  125. extern int cause_of_death;
  126. oops_in_progress = 1;
  127. printk(KERN_WARNING "Watchdog bite\n");
  128. /* Check if forced restart or unexpected watchdog */
  129. if (cause_of_death == 0xbedead) {
  130. #ifdef CONFIG_CRIS_MACH_ARTPEC3
  131. /* There is a bug in Artpec-3 (voodoo TR 78) that requires
  132. * us to go to lower frequency for the reset to be reliable
  133. */
  134. reg_clkgen_rw_clk_ctrl ctrl =
  135. REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
  136. ctrl.pll = 0;
  137. REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
  138. #endif
  139. while(1);
  140. }
  141. /* Unexpected watchdog, stop the watchdog and dump registers. */
  142. stop_watchdog();
  143. printk(KERN_WARNING "Oops: bitten by watchdog\n");
  144. show_registers(regs);
  145. oops_in_progress = 0;
  146. #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
  147. reset_watchdog();
  148. #endif
  149. while(1) /* nothing */;
  150. #endif
  151. }
  152. /*
  153. * timer_interrupt() needs to keep up the real-time clock,
  154. * as well as call the "xtime_update()" routine every clocktick.
  155. */
  156. extern void cris_do_profile(struct pt_regs *regs);
  157. static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
  158. {
  159. struct pt_regs *regs = get_irq_regs();
  160. int cpu = smp_processor_id();
  161. reg_timer_r_masked_intr masked_intr;
  162. reg_timer_rw_ack_intr ack_intr = { 0 };
  163. /* Check if the timer interrupt is for us (a tmr0 int) */
  164. masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
  165. if (!masked_intr.tmr0)
  166. return IRQ_NONE;
  167. /* Acknowledge the timer irq. */
  168. ack_intr.tmr0 = 1;
  169. REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
  170. /* Reset watchdog otherwise it resets us! */
  171. reset_watchdog();
  172. /* Update statistics. */
  173. update_process_times(user_mode(regs));
  174. cris_do_profile(regs); /* Save profiling information */
  175. /* The master CPU is responsible for the time keeping. */
  176. if (cpu != 0)
  177. return IRQ_HANDLED;
  178. /* Call the real timer interrupt handler */
  179. xtime_update(1);
  180. return IRQ_HANDLED;
  181. }
  182. /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
  183. * It needs to be IRQF_DISABLED to make the jiffies update work properly.
  184. */
  185. static struct irqaction irq_timer = {
  186. .handler = timer_interrupt,
  187. .flags = IRQF_SHARED | IRQF_DISABLED,
  188. .name = "timer"
  189. };
  190. void __init cris_timer_init(void)
  191. {
  192. int cpu = smp_processor_id();
  193. reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
  194. reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
  195. reg_timer_rw_intr_mask timer_intr_mask;
  196. /* Setup the etrax timers.
  197. * Base frequency is 100MHz, divider 1000000 -> 100 HZ
  198. * We use timer0, so timer1 is free.
  199. * The trig timer is used by the fasttimer API if enabled.
  200. */
  201. tmr0_ctrl.op = regk_timer_ld;
  202. tmr0_ctrl.freq = regk_timer_f100;
  203. REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
  204. REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
  205. tmr0_ctrl.op = regk_timer_run;
  206. REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
  207. /* Enable the timer irq. */
  208. timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
  209. timer_intr_mask.tmr0 = 1;
  210. REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
  211. }
  212. void __init time_init(void)
  213. {
  214. reg_intr_vect_rw_mask intr_mask;
  215. /* Probe for the RTC and read it if it exists.
  216. * Before the RTC can be probed the loops_per_usec variable needs
  217. * to be initialized to make usleep work. A better value for
  218. * loops_per_usec is calculated by the kernel later once the
  219. * clock has started.
  220. */
  221. loops_per_usec = 50;
  222. /* Start CPU local timer. */
  223. cris_timer_init();
  224. /* Enable the timer irq in global config. */
  225. intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
  226. intr_mask.timer0 = 1;
  227. REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
  228. /* Now actually register the timer irq handler that calls
  229. * timer_interrupt(). */
  230. setup_irq(TIMER0_INTR_VECT, &irq_timer);
  231. /* Enable watchdog if we should use one. */
  232. #if defined(CONFIG_ETRAX_WATCHDOG)
  233. printk(KERN_INFO "Enabling watchdog...\n");
  234. start_watchdog();
  235. /* If we use the hardware watchdog, we want to trap it as an NMI
  236. * and dump registers before it resets us. For this to happen, we
  237. * must set the "m" NMI enable flag (which once set, is unset only
  238. * when an NMI is taken). */
  239. {
  240. unsigned long flags;
  241. local_save_flags(flags);
  242. flags |= (1<<30); /* NMI M flag is at bit 30 */
  243. local_irq_restore(flags);
  244. }
  245. #endif
  246. #ifdef CONFIG_CPU_FREQ
  247. cpufreq_register_notifier(&cris_time_freq_notifier_block,
  248. CPUFREQ_TRANSITION_NOTIFIER);
  249. #endif
  250. }
  251. #ifdef CONFIG_CPU_FREQ
  252. static int
  253. cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
  254. void *data)
  255. {
  256. struct cpufreq_freqs *freqs = data;
  257. if (val == CPUFREQ_POSTCHANGE) {
  258. reg_timer_r_tmr0_data data;
  259. reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
  260. do {
  261. data = REG_RD(timer, timer_regs[freqs->cpu],
  262. r_tmr0_data);
  263. } while (data > 20);
  264. REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
  265. }
  266. return 0;
  267. }
  268. #endif