smp.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. #include <linux/types.h>
  2. #include <asm/delay.h>
  3. #include <irq.h>
  4. #include <hwregs/intr_vect.h>
  5. #include <hwregs/intr_vect_defs.h>
  6. #include <asm/tlbflush.h>
  7. #include <asm/mmu_context.h>
  8. #include <hwregs/asm/mmu_defs_asm.h>
  9. #include <hwregs/supp_reg.h>
  10. #include <linux/atomic.h>
  11. #include <linux/err.h>
  12. #include <linux/init.h>
  13. #include <linux/timex.h>
  14. #include <linux/sched.h>
  15. #include <linux/kernel.h>
  16. #include <linux/cpumask.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #define IPI_SCHEDULE 1
  20. #define IPI_CALL 2
  21. #define IPI_FLUSH_TLB 4
  22. #define IPI_BOOT 8
  23. #define FLUSH_ALL (void*)0xffffffff
  24. /* Vector of locks used for various atomic operations */
  25. spinlock_t cris_atomic_locks[] = {
  26. [0 ... LOCK_COUNT - 1] = __SPIN_LOCK_UNLOCKED(cris_atomic_locks)
  27. };
  28. /* CPU masks */
  29. cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  30. EXPORT_SYMBOL(phys_cpu_present_map);
  31. /* Variables used during SMP boot */
  32. volatile int cpu_now_booting = 0;
  33. volatile struct thread_info *smp_init_current_idle_thread;
  34. /* Variables used during IPI */
  35. static DEFINE_SPINLOCK(call_lock);
  36. static DEFINE_SPINLOCK(tlbstate_lock);
  37. struct call_data_struct {
  38. void (*func) (void *info);
  39. void *info;
  40. int wait;
  41. };
  42. static struct call_data_struct * call_data;
  43. static struct mm_struct* flush_mm;
  44. static struct vm_area_struct* flush_vma;
  45. static unsigned long flush_addr;
  46. /* Mode registers */
  47. static unsigned long irq_regs[NR_CPUS] = {
  48. regi_irq,
  49. regi_irq2
  50. };
  51. static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
  52. static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
  53. static struct irqaction irq_ipi = {
  54. .handler = crisv32_ipi_interrupt,
  55. .flags = IRQF_DISABLED,
  56. .name = "ipi",
  57. };
  58. extern void cris_mmu_init(void);
  59. extern void cris_timer_init(void);
  60. /* SMP initialization */
  61. void __init smp_prepare_cpus(unsigned int max_cpus)
  62. {
  63. int i;
  64. /* From now on we can expect IPIs so set them up */
  65. setup_irq(IPI_INTR_VECT, &irq_ipi);
  66. /* Mark all possible CPUs as present */
  67. for (i = 0; i < max_cpus; i++)
  68. cpumask_set_cpu(i, &phys_cpu_present_map);
  69. }
  70. void smp_prepare_boot_cpu(void)
  71. {
  72. /* PGD pointer has moved after per_cpu initialization so
  73. * update the MMU.
  74. */
  75. pgd_t **pgd;
  76. pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
  77. SUPP_BANK_SEL(1);
  78. SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  79. SUPP_BANK_SEL(2);
  80. SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  81. set_cpu_online(0, true);
  82. cpumask_set_cpu(0, &phys_cpu_present_map);
  83. set_cpu_possible(0, true);
  84. }
  85. void __init smp_cpus_done(unsigned int max_cpus)
  86. {
  87. }
  88. /* Bring one cpu online.*/
  89. static int __init
  90. smp_boot_one_cpu(int cpuid, struct task_struct idle)
  91. {
  92. unsigned timeout;
  93. cpumask_t cpu_mask;
  94. cpumask_clear(&cpu_mask);
  95. task_thread_info(idle)->cpu = cpuid;
  96. /* Information to the CPU that is about to boot */
  97. smp_init_current_idle_thread = task_thread_info(idle);
  98. cpu_now_booting = cpuid;
  99. /* Kick it */
  100. set_cpu_online(cpuid, true);
  101. cpumask_set_cpu(cpuid, &cpu_mask);
  102. send_ipi(IPI_BOOT, 0, cpu_mask);
  103. set_cpu_online(cpuid, false);
  104. /* Wait for CPU to come online */
  105. for (timeout = 0; timeout < 10000; timeout++) {
  106. if(cpu_online(cpuid)) {
  107. cpu_now_booting = 0;
  108. smp_init_current_idle_thread = NULL;
  109. return 0; /* CPU online */
  110. }
  111. udelay(100);
  112. barrier();
  113. }
  114. printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
  115. return -1;
  116. }
  117. /* Secondary CPUs starts using C here. Here we need to setup CPU
  118. * specific stuff such as the local timer and the MMU. */
  119. void __init smp_callin(void)
  120. {
  121. extern void cpu_idle(void);
  122. int cpu = cpu_now_booting;
  123. reg_intr_vect_rw_mask vect_mask = {0};
  124. /* Initialise the idle task for this CPU */
  125. atomic_inc(&init_mm.mm_count);
  126. current->active_mm = &init_mm;
  127. /* Set up MMU */
  128. cris_mmu_init();
  129. __flush_tlb_all();
  130. /* Setup local timer. */
  131. cris_timer_init();
  132. /* Enable IRQ and idle */
  133. REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
  134. crisv32_unmask_irq(IPI_INTR_VECT);
  135. crisv32_unmask_irq(TIMER0_INTR_VECT);
  136. preempt_disable();
  137. notify_cpu_starting(cpu);
  138. local_irq_enable();
  139. set_cpu_online(cpu, true);
  140. cpu_idle();
  141. }
  142. /* Stop execution on this CPU.*/
  143. void stop_this_cpu(void* dummy)
  144. {
  145. local_irq_disable();
  146. asm volatile("halt");
  147. }
  148. /* Other calls */
  149. void smp_send_stop(void)
  150. {
  151. smp_call_function(stop_this_cpu, NULL, 0);
  152. }
  153. int setup_profiling_timer(unsigned int multiplier)
  154. {
  155. return -EINVAL;
  156. }
  157. /* cache_decay_ticks is used by the scheduler to decide if a process
  158. * is "hot" on one CPU. A higher value means a higher penalty to move
  159. * a process to another CPU. Our cache is rather small so we report
  160. * 1 tick.
  161. */
  162. unsigned long cache_decay_ticks = 1;
  163. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
  164. {
  165. smp_boot_one_cpu(cpu, tidle);
  166. return cpu_online(cpu) ? 0 : -ENOSYS;
  167. }
  168. void smp_send_reschedule(int cpu)
  169. {
  170. cpumask_t cpu_mask;
  171. cpumask_clear(&cpu_mask);
  172. cpumask_set_cpu(cpu, &cpu_mask);
  173. send_ipi(IPI_SCHEDULE, 0, cpu_mask);
  174. }
  175. /* TLB flushing
  176. *
  177. * Flush needs to be done on the local CPU and on any other CPU that
  178. * may have the same mapping. The mm->cpu_vm_mask is used to keep track
  179. * of which CPUs that a specific process has been executed on.
  180. */
  181. void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
  182. {
  183. unsigned long flags;
  184. cpumask_t cpu_mask;
  185. spin_lock_irqsave(&tlbstate_lock, flags);
  186. cpu_mask = (mm == FLUSH_ALL ? cpu_all_mask : *mm_cpumask(mm));
  187. cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
  188. flush_mm = mm;
  189. flush_vma = vma;
  190. flush_addr = addr;
  191. send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
  192. spin_unlock_irqrestore(&tlbstate_lock, flags);
  193. }
  194. void flush_tlb_all(void)
  195. {
  196. __flush_tlb_all();
  197. flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
  198. }
  199. void flush_tlb_mm(struct mm_struct *mm)
  200. {
  201. __flush_tlb_mm(mm);
  202. flush_tlb_common(mm, FLUSH_ALL, 0);
  203. /* No more mappings in other CPUs */
  204. cpumask_clear(mm_cpumask(mm));
  205. cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
  206. }
  207. void flush_tlb_page(struct vm_area_struct *vma,
  208. unsigned long addr)
  209. {
  210. __flush_tlb_page(vma, addr);
  211. flush_tlb_common(vma->vm_mm, vma, addr);
  212. }
  213. /* Inter processor interrupts
  214. *
  215. * The IPIs are used for:
  216. * * Force a schedule on a CPU
  217. * * FLush TLB on other CPUs
  218. * * Call a function on other CPUs
  219. */
  220. int send_ipi(int vector, int wait, cpumask_t cpu_mask)
  221. {
  222. int i = 0;
  223. reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
  224. int ret = 0;
  225. /* Calculate CPUs to send to. */
  226. cpumask_and(&cpu_mask, &cpu_mask, cpu_online_mask);
  227. /* Send the IPI. */
  228. for_each_cpu(i, &cpu_mask)
  229. {
  230. ipi.vector |= vector;
  231. REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
  232. }
  233. /* Wait for IPI to finish on other CPUS */
  234. if (wait) {
  235. for_each_cpu(i, &cpu_mask) {
  236. int j;
  237. for (j = 0 ; j < 1000; j++) {
  238. ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
  239. if (!ipi.vector)
  240. break;
  241. udelay(100);
  242. }
  243. /* Timeout? */
  244. if (ipi.vector) {
  245. printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
  246. ret = -ETIMEDOUT;
  247. dump_stack();
  248. }
  249. }
  250. }
  251. return ret;
  252. }
  253. /*
  254. * You must not call this function with disabled interrupts or from a
  255. * hardware interrupt handler or from a bottom half handler.
  256. */
  257. int smp_call_function(void (*func)(void *info), void *info, int wait)
  258. {
  259. cpumask_t cpu_mask;
  260. struct call_data_struct data;
  261. int ret;
  262. cpumask_setall(&cpu_mask);
  263. cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
  264. WARN_ON(irqs_disabled());
  265. data.func = func;
  266. data.info = info;
  267. data.wait = wait;
  268. spin_lock(&call_lock);
  269. call_data = &data;
  270. ret = send_ipi(IPI_CALL, wait, cpu_mask);
  271. spin_unlock(&call_lock);
  272. return ret;
  273. }
  274. irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
  275. {
  276. void (*func) (void *info) = call_data->func;
  277. void *info = call_data->info;
  278. reg_intr_vect_rw_ipi ipi;
  279. ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
  280. if (ipi.vector & IPI_SCHEDULE) {
  281. scheduler_ipi();
  282. }
  283. if (ipi.vector & IPI_CALL) {
  284. func(info);
  285. }
  286. if (ipi.vector & IPI_FLUSH_TLB) {
  287. if (flush_mm == FLUSH_ALL)
  288. __flush_tlb_all();
  289. else if (flush_vma == FLUSH_ALL)
  290. __flush_tlb_mm(flush_mm);
  291. else
  292. __flush_tlb_page(flush_vma, flush_addr);
  293. }
  294. ipi.vector = 0;
  295. REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
  296. return IRQ_HANDLED;
  297. }