packet_mmap.txt 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725
  1. --------------------------------------------------------------------------------
  2. + ABSTRACT
  3. --------------------------------------------------------------------------------
  4. This file documents the mmap() facility available with the PACKET
  5. socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for
  6. i) capture network traffic with utilities like tcpdump, ii) transmit network
  7. traffic, or any other that needs raw access to network interface.
  8. You can find the latest version of this document at:
  9. http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap
  10. Howto can be found at:
  11. http://wiki.gnu-log.net (packet_mmap)
  12. Please send your comments to
  13. Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es>
  14. Johann Baudy <johann.baudy@gnu-log.net>
  15. -------------------------------------------------------------------------------
  16. + Why use PACKET_MMAP
  17. --------------------------------------------------------------------------------
  18. In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very
  19. inefficient. It uses very limited buffers and requires one system call to
  20. capture each packet, it requires two if you want to get packet's timestamp
  21. (like libpcap always does).
  22. In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size
  23. configurable circular buffer mapped in user space that can be used to either
  24. send or receive packets. This way reading packets just needs to wait for them,
  25. most of the time there is no need to issue a single system call. Concerning
  26. transmission, multiple packets can be sent through one system call to get the
  27. highest bandwidth. By using a shared buffer between the kernel and the user
  28. also has the benefit of minimizing packet copies.
  29. It's fine to use PACKET_MMAP to improve the performance of the capture and
  30. transmission process, but it isn't everything. At least, if you are capturing
  31. at high speeds (this is relative to the cpu speed), you should check if the
  32. device driver of your network interface card supports some sort of interrupt
  33. load mitigation or (even better) if it supports NAPI, also make sure it is
  34. enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
  35. supported by devices of your network. CPU IRQ pinning of your network interface
  36. card can also be an advantage.
  37. --------------------------------------------------------------------------------
  38. + How to use mmap() to improve capture process
  39. --------------------------------------------------------------------------------
  40. From the user standpoint, you should use the higher level libpcap library, which
  41. is a de facto standard, portable across nearly all operating systems
  42. including Win32.
  43. Said that, at time of this writing, official libpcap 0.8.1 is out and doesn't include
  44. support for PACKET_MMAP, and also probably the libpcap included in your distribution.
  45. I'm aware of two implementations of PACKET_MMAP in libpcap:
  46. http://wiki.ipxwarzone.com/ (by Simon Patarin, based on libpcap 0.6.2)
  47. http://public.lanl.gov/cpw/ (by Phil Wood, based on lastest libpcap)
  48. The rest of this document is intended for people who want to understand
  49. the low level details or want to improve libpcap by including PACKET_MMAP
  50. support.
  51. --------------------------------------------------------------------------------
  52. + How to use mmap() directly to improve capture process
  53. --------------------------------------------------------------------------------
  54. From the system calls stand point, the use of PACKET_MMAP involves
  55. the following process:
  56. [setup] socket() -------> creation of the capture socket
  57. setsockopt() ---> allocation of the circular buffer (ring)
  58. option: PACKET_RX_RING
  59. mmap() ---------> mapping of the allocated buffer to the
  60. user process
  61. [capture] poll() ---------> to wait for incoming packets
  62. [shutdown] close() --------> destruction of the capture socket and
  63. deallocation of all associated
  64. resources.
  65. socket creation and destruction is straight forward, and is done
  66. the same way with or without PACKET_MMAP:
  67. int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
  68. where mode is SOCK_RAW for the raw interface were link level
  69. information can be captured or SOCK_DGRAM for the cooked
  70. interface where link level information capture is not
  71. supported and a link level pseudo-header is provided
  72. by the kernel.
  73. The destruction of the socket and all associated resources
  74. is done by a simple call to close(fd).
  75. Next I will describe PACKET_MMAP settings and its constraints,
  76. also the mapping of the circular buffer in the user process and
  77. the use of this buffer.
  78. --------------------------------------------------------------------------------
  79. + How to use mmap() directly to improve transmission process
  80. --------------------------------------------------------------------------------
  81. Transmission process is similar to capture as shown below.
  82. [setup] socket() -------> creation of the transmission socket
  83. setsockopt() ---> allocation of the circular buffer (ring)
  84. option: PACKET_TX_RING
  85. bind() ---------> bind transmission socket with a network interface
  86. mmap() ---------> mapping of the allocated buffer to the
  87. user process
  88. [transmission] poll() ---------> wait for free packets (optional)
  89. send() ---------> send all packets that are set as ready in
  90. the ring
  91. The flag MSG_DONTWAIT can be used to return
  92. before end of transfer.
  93. [shutdown] close() --------> destruction of the transmission socket and
  94. deallocation of all associated resources.
  95. Binding the socket to your network interface is mandatory (with zero copy) to
  96. know the header size of frames used in the circular buffer.
  97. As capture, each frame contains two parts:
  98. --------------------
  99. | struct tpacket_hdr | Header. It contains the status of
  100. | | of this frame
  101. |--------------------|
  102. | data buffer |
  103. . . Data that will be sent over the network interface.
  104. . .
  105. --------------------
  106. bind() associates the socket to your network interface thanks to
  107. sll_ifindex parameter of struct sockaddr_ll.
  108. Initialization example:
  109. struct sockaddr_ll my_addr;
  110. struct ifreq s_ifr;
  111. ...
  112. strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
  113. /* get interface index of eth0 */
  114. ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
  115. /* fill sockaddr_ll struct to prepare binding */
  116. my_addr.sll_family = AF_PACKET;
  117. my_addr.sll_protocol = htons(ETH_P_ALL);
  118. my_addr.sll_ifindex = s_ifr.ifr_ifindex;
  119. /* bind socket to eth0 */
  120. bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
  121. A complete tutorial is available at: http://wiki.gnu-log.net/
  122. By default, the user should put data at :
  123. frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)
  124. So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
  125. the beginning of the user data will be at :
  126. frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
  127. If you wish to put user data at a custom offset from the beginning of
  128. the frame (for payload alignment with SOCK_RAW mode for instance) you
  129. can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
  130. to make this work it must be enabled previously with setsockopt()
  131. and the PACKET_TX_HAS_OFF option.
  132. --------------------------------------------------------------------------------
  133. + PACKET_MMAP settings
  134. --------------------------------------------------------------------------------
  135. To setup PACKET_MMAP from user level code is done with a call like
  136. - Capture process
  137. setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
  138. - Transmission process
  139. setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
  140. The most significant argument in the previous call is the req parameter,
  141. this parameter must to have the following structure:
  142. struct tpacket_req
  143. {
  144. unsigned int tp_block_size; /* Minimal size of contiguous block */
  145. unsigned int tp_block_nr; /* Number of blocks */
  146. unsigned int tp_frame_size; /* Size of frame */
  147. unsigned int tp_frame_nr; /* Total number of frames */
  148. };
  149. This structure is defined in /usr/include/linux/if_packet.h and establishes a
  150. circular buffer (ring) of unswappable memory.
  151. Being mapped in the capture process allows reading the captured frames and
  152. related meta-information like timestamps without requiring a system call.
  153. Frames are grouped in blocks. Each block is a physically contiguous
  154. region of memory and holds tp_block_size/tp_frame_size frames. The total number
  155. of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because
  156. frames_per_block = tp_block_size/tp_frame_size
  157. indeed, packet_set_ring checks that the following condition is true
  158. frames_per_block * tp_block_nr == tp_frame_nr
  159. Lets see an example, with the following values:
  160. tp_block_size= 4096
  161. tp_frame_size= 2048
  162. tp_block_nr = 4
  163. tp_frame_nr = 8
  164. we will get the following buffer structure:
  165. block #1 block #2
  166. +---------+---------+ +---------+---------+
  167. | frame 1 | frame 2 | | frame 3 | frame 4 |
  168. +---------+---------+ +---------+---------+
  169. block #3 block #4
  170. +---------+---------+ +---------+---------+
  171. | frame 5 | frame 6 | | frame 7 | frame 8 |
  172. +---------+---------+ +---------+---------+
  173. A frame can be of any size with the only condition it can fit in a block. A block
  174. can only hold an integer number of frames, or in other words, a frame cannot
  175. be spawned across two blocks, so there are some details you have to take into
  176. account when choosing the frame_size. See "Mapping and use of the circular
  177. buffer (ring)".
  178. --------------------------------------------------------------------------------
  179. + PACKET_MMAP setting constraints
  180. --------------------------------------------------------------------------------
  181. In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
  182. the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
  183. 16384 in a 64 bit architecture. For information on these kernel versions
  184. see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt
  185. Block size limit
  186. ------------------
  187. As stated earlier, each block is a contiguous physical region of memory. These
  188. memory regions are allocated with calls to the __get_free_pages() function. As
  189. the name indicates, this function allocates pages of memory, and the second
  190. argument is "order" or a power of two number of pages, that is
  191. (for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes,
  192. order=2 ==> 16384 bytes, etc. The maximum size of a
  193. region allocated by __get_free_pages is determined by the MAX_ORDER macro. More
  194. precisely the limit can be calculated as:
  195. PAGE_SIZE << MAX_ORDER
  196. In a i386 architecture PAGE_SIZE is 4096 bytes
  197. In a 2.4/i386 kernel MAX_ORDER is 10
  198. In a 2.6/i386 kernel MAX_ORDER is 11
  199. So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel
  200. respectively, with an i386 architecture.
  201. User space programs can include /usr/include/sys/user.h and
  202. /usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations.
  203. The pagesize can also be determined dynamically with the getpagesize (2)
  204. system call.
  205. Block number limit
  206. --------------------
  207. To understand the constraints of PACKET_MMAP, we have to see the structure
  208. used to hold the pointers to each block.
  209. Currently, this structure is a dynamically allocated vector with kmalloc
  210. called pg_vec, its size limits the number of blocks that can be allocated.
  211. +---+---+---+---+
  212. | x | x | x | x |
  213. +---+---+---+---+
  214. | | | |
  215. | | | v
  216. | | v block #4
  217. | v block #3
  218. v block #2
  219. block #1
  220. kmalloc allocates any number of bytes of physically contiguous memory from
  221. a pool of pre-determined sizes. This pool of memory is maintained by the slab
  222. allocator which is at the end the responsible for doing the allocation and
  223. hence which imposes the maximum memory that kmalloc can allocate.
  224. In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The
  225. predetermined sizes that kmalloc uses can be checked in the "size-<bytes>"
  226. entries of /proc/slabinfo
  227. In a 32 bit architecture, pointers are 4 bytes long, so the total number of
  228. pointers to blocks is
  229. 131072/4 = 32768 blocks
  230. PACKET_MMAP buffer size calculator
  231. ------------------------------------
  232. Definitions:
  233. <size-max> : is the maximum size of allocable with kmalloc (see /proc/slabinfo)
  234. <pointer size>: depends on the architecture -- sizeof(void *)
  235. <page size> : depends on the architecture -- PAGE_SIZE or getpagesize (2)
  236. <max-order> : is the value defined with MAX_ORDER
  237. <frame size> : it's an upper bound of frame's capture size (more on this later)
  238. from these definitions we will derive
  239. <block number> = <size-max>/<pointer size>
  240. <block size> = <pagesize> << <max-order>
  241. so, the max buffer size is
  242. <block number> * <block size>
  243. and, the number of frames be
  244. <block number> * <block size> / <frame size>
  245. Suppose the following parameters, which apply for 2.6 kernel and an
  246. i386 architecture:
  247. <size-max> = 131072 bytes
  248. <pointer size> = 4 bytes
  249. <pagesize> = 4096 bytes
  250. <max-order> = 11
  251. and a value for <frame size> of 2048 bytes. These parameters will yield
  252. <block number> = 131072/4 = 32768 blocks
  253. <block size> = 4096 << 11 = 8 MiB.
  254. and hence the buffer will have a 262144 MiB size. So it can hold
  255. 262144 MiB / 2048 bytes = 134217728 frames
  256. Actually, this buffer size is not possible with an i386 architecture.
  257. Remember that the memory is allocated in kernel space, in the case of
  258. an i386 kernel's memory size is limited to 1GiB.
  259. All memory allocations are not freed until the socket is closed. The memory
  260. allocations are done with GFP_KERNEL priority, this basically means that
  261. the allocation can wait and swap other process' memory in order to allocate
  262. the necessary memory, so normally limits can be reached.
  263. Other constraints
  264. -------------------
  265. If you check the source code you will see that what I draw here as a frame
  266. is not only the link level frame. At the beginning of each frame there is a
  267. header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
  268. meta information like timestamp. So what we draw here a frame it's really
  269. the following (from include/linux/if_packet.h):
  270. /*
  271. Frame structure:
  272. - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
  273. - struct tpacket_hdr
  274. - pad to TPACKET_ALIGNMENT=16
  275. - struct sockaddr_ll
  276. - Gap, chosen so that packet data (Start+tp_net) aligns to
  277. TPACKET_ALIGNMENT=16
  278. - Start+tp_mac: [ Optional MAC header ]
  279. - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
  280. - Pad to align to TPACKET_ALIGNMENT=16
  281. */
  282. The following are conditions that are checked in packet_set_ring
  283. tp_block_size must be a multiple of PAGE_SIZE (1)
  284. tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
  285. tp_frame_size must be a multiple of TPACKET_ALIGNMENT
  286. tp_frame_nr must be exactly frames_per_block*tp_block_nr
  287. Note that tp_block_size should be chosen to be a power of two or there will
  288. be a waste of memory.
  289. --------------------------------------------------------------------------------
  290. + Mapping and use of the circular buffer (ring)
  291. --------------------------------------------------------------------------------
  292. The mapping of the buffer in the user process is done with the conventional
  293. mmap function. Even the circular buffer is compound of several physically
  294. discontiguous blocks of memory, they are contiguous to the user space, hence
  295. just one call to mmap is needed:
  296. mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
  297. If tp_frame_size is a divisor of tp_block_size frames will be
  298. contiguously spaced by tp_frame_size bytes. If not, each
  299. tp_block_size/tp_frame_size frames there will be a gap between
  300. the frames. This is because a frame cannot be spawn across two
  301. blocks.
  302. At the beginning of each frame there is an status field (see
  303. struct tpacket_hdr). If this field is 0 means that the frame is ready
  304. to be used for the kernel, If not, there is a frame the user can read
  305. and the following flags apply:
  306. +++ Capture process:
  307. from include/linux/if_packet.h
  308. #define TP_STATUS_COPY 2
  309. #define TP_STATUS_LOSING 4
  310. #define TP_STATUS_CSUMNOTREADY 8
  311. TP_STATUS_COPY : This flag indicates that the frame (and associated
  312. meta information) has been truncated because it's
  313. larger than tp_frame_size. This packet can be
  314. read entirely with recvfrom().
  315. In order to make this work it must to be
  316. enabled previously with setsockopt() and
  317. the PACKET_COPY_THRESH option.
  318. The number of frames than can be buffered to
  319. be read with recvfrom is limited like a normal socket.
  320. See the SO_RCVBUF option in the socket (7) man page.
  321. TP_STATUS_LOSING : indicates there were packet drops from last time
  322. statistics where checked with getsockopt() and
  323. the PACKET_STATISTICS option.
  324. TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which
  325. its checksum will be done in hardware. So while
  326. reading the packet we should not try to check the
  327. checksum.
  328. for convenience there are also the following defines:
  329. #define TP_STATUS_KERNEL 0
  330. #define TP_STATUS_USER 1
  331. The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
  332. receives a packet it puts in the buffer and updates the status with
  333. at least the TP_STATUS_USER flag. Then the user can read the packet,
  334. once the packet is read the user must zero the status field, so the kernel
  335. can use again that frame buffer.
  336. The user can use poll (any other variant should apply too) to check if new
  337. packets are in the ring:
  338. struct pollfd pfd;
  339. pfd.fd = fd;
  340. pfd.revents = 0;
  341. pfd.events = POLLIN|POLLRDNORM|POLLERR;
  342. if (status == TP_STATUS_KERNEL)
  343. retval = poll(&pfd, 1, timeout);
  344. It doesn't incur in a race condition to first check the status value and
  345. then poll for frames.
  346. ++ Transmission process
  347. Those defines are also used for transmission:
  348. #define TP_STATUS_AVAILABLE 0 // Frame is available
  349. #define TP_STATUS_SEND_REQUEST 1 // Frame will be sent on next send()
  350. #define TP_STATUS_SENDING 2 // Frame is currently in transmission
  351. #define TP_STATUS_WRONG_FORMAT 4 // Frame format is not correct
  352. First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
  353. packet, the user fills a data buffer of an available frame, sets tp_len to
  354. current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
  355. This can be done on multiple frames. Once the user is ready to transmit, it
  356. calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
  357. forwarded to the network device. The kernel updates each status of sent
  358. frames with TP_STATUS_SENDING until the end of transfer.
  359. At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
  360. header->tp_len = in_i_size;
  361. header->tp_status = TP_STATUS_SEND_REQUEST;
  362. retval = send(this->socket, NULL, 0, 0);
  363. The user can also use poll() to check if a buffer is available:
  364. (status == TP_STATUS_SENDING)
  365. struct pollfd pfd;
  366. pfd.fd = fd;
  367. pfd.revents = 0;
  368. pfd.events = POLLOUT;
  369. retval = poll(&pfd, 1, timeout);
  370. -------------------------------------------------------------------------------
  371. + What TPACKET versions are available and when to use them?
  372. -------------------------------------------------------------------------------
  373. int val = tpacket_version;
  374. setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
  375. getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
  376. where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
  377. TPACKET_V1:
  378. - Default if not otherwise specified by setsockopt(2)
  379. - RX_RING, TX_RING available
  380. - VLAN metadata information available for packets
  381. (TP_STATUS_VLAN_VALID)
  382. TPACKET_V1 --> TPACKET_V2:
  383. - Made 64 bit clean due to unsigned long usage in TPACKET_V1
  384. structures, thus this also works on 64 bit kernel with 32 bit
  385. userspace and the like
  386. - Timestamp resolution in nanoseconds instead of microseconds
  387. - RX_RING, TX_RING available
  388. - How to switch to TPACKET_V2:
  389. 1. Replace struct tpacket_hdr by struct tpacket2_hdr
  390. 2. Query header len and save
  391. 3. Set protocol version to 2, set up ring as usual
  392. 4. For getting the sockaddr_ll,
  393. use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of
  394. (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
  395. TPACKET_V2 --> TPACKET_V3:
  396. - Flexible buffer implementation:
  397. 1. Blocks can be configured with non-static frame-size
  398. 2. Read/poll is at a block-level (as opposed to packet-level)
  399. 3. Added poll timeout to avoid indefinite user-space wait
  400. on idle links
  401. 4. Added user-configurable knobs:
  402. 4.1 block::timeout
  403. 4.2 tpkt_hdr::sk_rxhash
  404. - RX Hash data available in user space
  405. - Currently only RX_RING available
  406. -------------------------------------------------------------------------------
  407. + AF_PACKET fanout mode
  408. -------------------------------------------------------------------------------
  409. In the AF_PACKET fanout mode, packet reception can be load balanced among
  410. processes. This also works in combination with mmap(2) on packet sockets.
  411. Minimal example code by David S. Miller (try things like "./test eth0 hash",
  412. "./test eth0 lb", etc.):
  413. #include <stddef.h>
  414. #include <stdlib.h>
  415. #include <stdio.h>
  416. #include <string.h>
  417. #include <sys/types.h>
  418. #include <sys/wait.h>
  419. #include <sys/socket.h>
  420. #include <sys/ioctl.h>
  421. #include <unistd.h>
  422. #include <linux/if_ether.h>
  423. #include <linux/if_packet.h>
  424. #include <net/if.h>
  425. static const char *device_name;
  426. static int fanout_type;
  427. static int fanout_id;
  428. #ifndef PACKET_FANOUT
  429. # define PACKET_FANOUT 18
  430. # define PACKET_FANOUT_HASH 0
  431. # define PACKET_FANOUT_LB 1
  432. #endif
  433. static int setup_socket(void)
  434. {
  435. int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
  436. struct sockaddr_ll ll;
  437. struct ifreq ifr;
  438. int fanout_arg;
  439. if (fd < 0) {
  440. perror("socket");
  441. return EXIT_FAILURE;
  442. }
  443. memset(&ifr, 0, sizeof(ifr));
  444. strcpy(ifr.ifr_name, device_name);
  445. err = ioctl(fd, SIOCGIFINDEX, &ifr);
  446. if (err < 0) {
  447. perror("SIOCGIFINDEX");
  448. return EXIT_FAILURE;
  449. }
  450. memset(&ll, 0, sizeof(ll));
  451. ll.sll_family = AF_PACKET;
  452. ll.sll_ifindex = ifr.ifr_ifindex;
  453. err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
  454. if (err < 0) {
  455. perror("bind");
  456. return EXIT_FAILURE;
  457. }
  458. fanout_arg = (fanout_id | (fanout_type << 16));
  459. err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
  460. &fanout_arg, sizeof(fanout_arg));
  461. if (err) {
  462. perror("setsockopt");
  463. return EXIT_FAILURE;
  464. }
  465. return fd;
  466. }
  467. static void fanout_thread(void)
  468. {
  469. int fd = setup_socket();
  470. int limit = 10000;
  471. if (fd < 0)
  472. exit(fd);
  473. while (limit-- > 0) {
  474. char buf[1600];
  475. int err;
  476. err = read(fd, buf, sizeof(buf));
  477. if (err < 0) {
  478. perror("read");
  479. exit(EXIT_FAILURE);
  480. }
  481. if ((limit % 10) == 0)
  482. fprintf(stdout, "(%d) \n", getpid());
  483. }
  484. fprintf(stdout, "%d: Received 10000 packets\n", getpid());
  485. close(fd);
  486. exit(0);
  487. }
  488. int main(int argc, char **argp)
  489. {
  490. int fd, err;
  491. int i;
  492. if (argc != 3) {
  493. fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
  494. return EXIT_FAILURE;
  495. }
  496. if (!strcmp(argp[2], "hash"))
  497. fanout_type = PACKET_FANOUT_HASH;
  498. else if (!strcmp(argp[2], "lb"))
  499. fanout_type = PACKET_FANOUT_LB;
  500. else {
  501. fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
  502. exit(EXIT_FAILURE);
  503. }
  504. device_name = argp[1];
  505. fanout_id = getpid() & 0xffff;
  506. for (i = 0; i < 4; i++) {
  507. pid_t pid = fork();
  508. switch (pid) {
  509. case 0:
  510. fanout_thread();
  511. case -1:
  512. perror("fork");
  513. exit(EXIT_FAILURE);
  514. }
  515. }
  516. for (i = 0; i < 4; i++) {
  517. int status;
  518. wait(&status);
  519. }
  520. return 0;
  521. }
  522. -------------------------------------------------------------------------------
  523. + PACKET_TIMESTAMP
  524. -------------------------------------------------------------------------------
  525. The PACKET_TIMESTAMP setting determines the source of the timestamp in
  526. the packet meta information. If your NIC is capable of timestamping
  527. packets in hardware, you can request those hardware timestamps to used.
  528. Note: you may need to enable the generation of hardware timestamps with
  529. SIOCSHWTSTAMP.
  530. PACKET_TIMESTAMP accepts the same integer bit field as
  531. SO_TIMESTAMPING. However, only the SOF_TIMESTAMPING_SYS_HARDWARE
  532. and SOF_TIMESTAMPING_RAW_HARDWARE values are recognized by
  533. PACKET_TIMESTAMP. SOF_TIMESTAMPING_SYS_HARDWARE takes precedence over
  534. SOF_TIMESTAMPING_RAW_HARDWARE if both bits are set.
  535. int req = 0;
  536. req |= SOF_TIMESTAMPING_SYS_HARDWARE;
  537. setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))
  538. If PACKET_TIMESTAMP is not set, a software timestamp generated inside
  539. the networking stack is used (the behavior before this setting was added).
  540. See include/linux/net_tstamp.h and Documentation/networking/timestamping
  541. for more information on hardware timestamps.
  542. -------------------------------------------------------------------------------
  543. + Miscellaneous bits
  544. -------------------------------------------------------------------------------
  545. - Packet sockets work well together with Linux socket filters, thus you also
  546. might want to have a look at Documentation/networking/filter.txt
  547. --------------------------------------------------------------------------------
  548. + THANKS
  549. --------------------------------------------------------------------------------
  550. Jesse Brandeburg, for fixing my grammathical/spelling errors