time.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758
  1. /*
  2. * Copyright 2001 MontaVista Software Inc.
  3. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
  4. * Copyright (c) 2003, 2004 Maciej W. Rozycki
  5. *
  6. * Common time service routines for MIPS machines. See
  7. * Documentation/mips/time.README.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2 of the License, or (at your
  12. * option) any later version.
  13. */
  14. #include <linux/config.h>
  15. #include <linux/types.h>
  16. #include <linux/kernel.h>
  17. #include <linux/init.h>
  18. #include <linux/sched.h>
  19. #include <linux/param.h>
  20. #include <linux/time.h>
  21. #include <linux/timex.h>
  22. #include <linux/smp.h>
  23. #include <linux/kernel_stat.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/module.h>
  27. #include <asm/bootinfo.h>
  28. #include <asm/cache.h>
  29. #include <asm/compiler.h>
  30. #include <asm/cpu.h>
  31. #include <asm/cpu-features.h>
  32. #include <asm/div64.h>
  33. #include <asm/sections.h>
  34. #include <asm/time.h>
  35. /*
  36. * The integer part of the number of usecs per jiffy is taken from tick,
  37. * but the fractional part is not recorded, so we calculate it using the
  38. * initial value of HZ. This aids systems where tick isn't really an
  39. * integer (e.g. for HZ = 128).
  40. */
  41. #define USECS_PER_JIFFY TICK_SIZE
  42. #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
  43. #define TICK_SIZE (tick_nsec / 1000)
  44. u64 jiffies_64 = INITIAL_JIFFIES;
  45. EXPORT_SYMBOL(jiffies_64);
  46. /*
  47. * forward reference
  48. */
  49. extern volatile unsigned long wall_jiffies;
  50. DEFINE_SPINLOCK(rtc_lock);
  51. /*
  52. * By default we provide the null RTC ops
  53. */
  54. static unsigned long null_rtc_get_time(void)
  55. {
  56. return mktime(2000, 1, 1, 0, 0, 0);
  57. }
  58. static int null_rtc_set_time(unsigned long sec)
  59. {
  60. return 0;
  61. }
  62. unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
  63. int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
  64. int (*rtc_set_mmss)(unsigned long);
  65. /* usecs per counter cycle, shifted to left by 32 bits */
  66. static unsigned int sll32_usecs_per_cycle;
  67. /* how many counter cycles in a jiffy */
  68. static unsigned long cycles_per_jiffy __read_mostly;
  69. /* Cycle counter value at the previous timer interrupt.. */
  70. static unsigned int timerhi, timerlo;
  71. /* expirelo is the count value for next CPU timer interrupt */
  72. static unsigned int expirelo;
  73. /*
  74. * Null timer ack for systems not needing one (e.g. i8254).
  75. */
  76. static void null_timer_ack(void) { /* nothing */ }
  77. /*
  78. * Null high precision timer functions for systems lacking one.
  79. */
  80. static unsigned int null_hpt_read(void)
  81. {
  82. return 0;
  83. }
  84. static void null_hpt_init(unsigned int count)
  85. {
  86. /* nothing */
  87. }
  88. /*
  89. * Timer ack for an R4k-compatible timer of a known frequency.
  90. */
  91. static void c0_timer_ack(void)
  92. {
  93. unsigned int count;
  94. #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
  95. /* Ack this timer interrupt and set the next one. */
  96. expirelo += cycles_per_jiffy;
  97. #endif
  98. write_c0_compare(expirelo);
  99. /* Check to see if we have missed any timer interrupts. */
  100. count = read_c0_count();
  101. if ((count - expirelo) < 0x7fffffff) {
  102. /* missed_timer_count++; */
  103. expirelo = count + cycles_per_jiffy;
  104. write_c0_compare(expirelo);
  105. }
  106. }
  107. /*
  108. * High precision timer functions for a R4k-compatible timer.
  109. */
  110. static unsigned int c0_hpt_read(void)
  111. {
  112. return read_c0_count();
  113. }
  114. /* For use solely as a high precision timer. */
  115. static void c0_hpt_init(unsigned int count)
  116. {
  117. write_c0_count(read_c0_count() - count);
  118. }
  119. /* For use both as a high precision timer and an interrupt source. */
  120. static void c0_hpt_timer_init(unsigned int count)
  121. {
  122. count = read_c0_count() - count;
  123. expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
  124. write_c0_count(expirelo - cycles_per_jiffy);
  125. write_c0_compare(expirelo);
  126. write_c0_count(count);
  127. }
  128. int (*mips_timer_state)(void);
  129. void (*mips_timer_ack)(void);
  130. unsigned int (*mips_hpt_read)(void);
  131. void (*mips_hpt_init)(unsigned int);
  132. /*
  133. * This version of gettimeofday has microsecond resolution and better than
  134. * microsecond precision on fast machines with cycle counter.
  135. */
  136. void do_gettimeofday(struct timeval *tv)
  137. {
  138. unsigned long seq;
  139. unsigned long lost;
  140. unsigned long usec, sec;
  141. unsigned long max_ntp_tick = tick_usec - tickadj;
  142. do {
  143. seq = read_seqbegin(&xtime_lock);
  144. usec = do_gettimeoffset();
  145. lost = jiffies - wall_jiffies;
  146. /*
  147. * If time_adjust is negative then NTP is slowing the clock
  148. * so make sure not to go into next possible interval.
  149. * Better to lose some accuracy than have time go backwards..
  150. */
  151. if (unlikely(time_adjust < 0)) {
  152. usec = min(usec, max_ntp_tick);
  153. if (lost)
  154. usec += lost * max_ntp_tick;
  155. } else if (unlikely(lost))
  156. usec += lost * tick_usec;
  157. sec = xtime.tv_sec;
  158. usec += (xtime.tv_nsec / 1000);
  159. } while (read_seqretry(&xtime_lock, seq));
  160. while (usec >= 1000000) {
  161. usec -= 1000000;
  162. sec++;
  163. }
  164. tv->tv_sec = sec;
  165. tv->tv_usec = usec;
  166. }
  167. EXPORT_SYMBOL(do_gettimeofday);
  168. int do_settimeofday(struct timespec *tv)
  169. {
  170. time_t wtm_sec, sec = tv->tv_sec;
  171. long wtm_nsec, nsec = tv->tv_nsec;
  172. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  173. return -EINVAL;
  174. write_seqlock_irq(&xtime_lock);
  175. /*
  176. * This is revolting. We need to set "xtime" correctly. However,
  177. * the value in this location is the value at the most recent update
  178. * of wall time. Discover what correction gettimeofday() would have
  179. * made, and then undo it!
  180. */
  181. nsec -= do_gettimeoffset() * NSEC_PER_USEC;
  182. nsec -= (jiffies - wall_jiffies) * tick_nsec;
  183. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  184. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  185. set_normalized_timespec(&xtime, sec, nsec);
  186. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  187. ntp_clear();
  188. write_sequnlock_irq(&xtime_lock);
  189. clock_was_set();
  190. return 0;
  191. }
  192. EXPORT_SYMBOL(do_settimeofday);
  193. /*
  194. * Gettimeoffset routines. These routines returns the time duration
  195. * since last timer interrupt in usecs.
  196. *
  197. * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
  198. * Otherwise use calibrate_gettimeoffset()
  199. *
  200. * If the CPU does not have the counter register, you can either supply
  201. * your own gettimeoffset() routine, or use null_gettimeoffset(), which
  202. * gives the same resolution as HZ.
  203. */
  204. static unsigned long null_gettimeoffset(void)
  205. {
  206. return 0;
  207. }
  208. /* The function pointer to one of the gettimeoffset funcs. */
  209. unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
  210. static unsigned long fixed_rate_gettimeoffset(void)
  211. {
  212. u32 count;
  213. unsigned long res;
  214. /* Get last timer tick in absolute kernel time */
  215. count = mips_hpt_read();
  216. /* .. relative to previous jiffy (32 bits is enough) */
  217. count -= timerlo;
  218. __asm__("multu %1,%2"
  219. : "=h" (res)
  220. : "r" (count), "r" (sll32_usecs_per_cycle)
  221. : "lo", GCC_REG_ACCUM);
  222. /*
  223. * Due to possible jiffies inconsistencies, we need to check
  224. * the result so that we'll get a timer that is monotonic.
  225. */
  226. if (res >= USECS_PER_JIFFY)
  227. res = USECS_PER_JIFFY - 1;
  228. return res;
  229. }
  230. /*
  231. * Cached "1/(clocks per usec) * 2^32" value.
  232. * It has to be recalculated once each jiffy.
  233. */
  234. static unsigned long cached_quotient;
  235. /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
  236. static unsigned long last_jiffies;
  237. /*
  238. * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
  239. */
  240. static unsigned long calibrate_div32_gettimeoffset(void)
  241. {
  242. u32 count;
  243. unsigned long res, tmp;
  244. unsigned long quotient;
  245. tmp = jiffies;
  246. quotient = cached_quotient;
  247. if (last_jiffies != tmp) {
  248. last_jiffies = tmp;
  249. if (last_jiffies != 0) {
  250. unsigned long r0;
  251. do_div64_32(r0, timerhi, timerlo, tmp);
  252. do_div64_32(quotient, USECS_PER_JIFFY,
  253. USECS_PER_JIFFY_FRAC, r0);
  254. cached_quotient = quotient;
  255. }
  256. }
  257. /* Get last timer tick in absolute kernel time */
  258. count = mips_hpt_read();
  259. /* .. relative to previous jiffy (32 bits is enough) */
  260. count -= timerlo;
  261. __asm__("multu %1,%2"
  262. : "=h" (res)
  263. : "r" (count), "r" (quotient)
  264. : "lo", GCC_REG_ACCUM);
  265. /*
  266. * Due to possible jiffies inconsistencies, we need to check
  267. * the result so that we'll get a timer that is monotonic.
  268. */
  269. if (res >= USECS_PER_JIFFY)
  270. res = USECS_PER_JIFFY - 1;
  271. return res;
  272. }
  273. static unsigned long calibrate_div64_gettimeoffset(void)
  274. {
  275. u32 count;
  276. unsigned long res, tmp;
  277. unsigned long quotient;
  278. tmp = jiffies;
  279. quotient = cached_quotient;
  280. if (last_jiffies != tmp) {
  281. last_jiffies = tmp;
  282. if (last_jiffies) {
  283. unsigned long r0;
  284. __asm__(".set push\n\t"
  285. ".set mips3\n\t"
  286. "lwu %0,%3\n\t"
  287. "dsll32 %1,%2,0\n\t"
  288. "or %1,%1,%0\n\t"
  289. "ddivu $0,%1,%4\n\t"
  290. "mflo %1\n\t"
  291. "dsll32 %0,%5,0\n\t"
  292. "or %0,%0,%6\n\t"
  293. "ddivu $0,%0,%1\n\t"
  294. "mflo %0\n\t"
  295. ".set pop"
  296. : "=&r" (quotient), "=&r" (r0)
  297. : "r" (timerhi), "m" (timerlo),
  298. "r" (tmp), "r" (USECS_PER_JIFFY),
  299. "r" (USECS_PER_JIFFY_FRAC)
  300. : "hi", "lo", GCC_REG_ACCUM);
  301. cached_quotient = quotient;
  302. }
  303. }
  304. /* Get last timer tick in absolute kernel time */
  305. count = mips_hpt_read();
  306. /* .. relative to previous jiffy (32 bits is enough) */
  307. count -= timerlo;
  308. __asm__("multu %1,%2"
  309. : "=h" (res)
  310. : "r" (count), "r" (quotient)
  311. : "lo", GCC_REG_ACCUM);
  312. /*
  313. * Due to possible jiffies inconsistencies, we need to check
  314. * the result so that we'll get a timer that is monotonic.
  315. */
  316. if (res >= USECS_PER_JIFFY)
  317. res = USECS_PER_JIFFY - 1;
  318. return res;
  319. }
  320. /* last time when xtime and rtc are sync'ed up */
  321. static long last_rtc_update;
  322. /*
  323. * local_timer_interrupt() does profiling and process accounting
  324. * on a per-CPU basis.
  325. *
  326. * In UP mode, it is invoked from the (global) timer_interrupt.
  327. *
  328. * In SMP mode, it might invoked by per-CPU timer interrupt, or
  329. * a broadcasted inter-processor interrupt which itself is triggered
  330. * by the global timer interrupt.
  331. */
  332. void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  333. {
  334. if (current->pid)
  335. profile_tick(CPU_PROFILING, regs);
  336. update_process_times(user_mode(regs));
  337. }
  338. /*
  339. * High-level timer interrupt service routines. This function
  340. * is set as irqaction->handler and is invoked through do_IRQ.
  341. */
  342. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  343. {
  344. unsigned long j;
  345. unsigned int count;
  346. count = mips_hpt_read();
  347. mips_timer_ack();
  348. /* Update timerhi/timerlo for intra-jiffy calibration. */
  349. timerhi += count < timerlo; /* Wrap around */
  350. timerlo = count;
  351. /*
  352. * call the generic timer interrupt handling
  353. */
  354. do_timer(regs);
  355. /*
  356. * If we have an externally synchronized Linux clock, then update
  357. * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
  358. * called as close as possible to 500 ms before the new second starts.
  359. */
  360. write_seqlock(&xtime_lock);
  361. if (ntp_synced() &&
  362. xtime.tv_sec > last_rtc_update + 660 &&
  363. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  364. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  365. if (rtc_set_mmss(xtime.tv_sec) == 0) {
  366. last_rtc_update = xtime.tv_sec;
  367. } else {
  368. /* do it again in 60 s */
  369. last_rtc_update = xtime.tv_sec - 600;
  370. }
  371. }
  372. write_sequnlock(&xtime_lock);
  373. /*
  374. * If jiffies has overflown in this timer_interrupt, we must
  375. * update the timer[hi]/[lo] to make fast gettimeoffset funcs
  376. * quotient calc still valid. -arca
  377. *
  378. * The first timer interrupt comes late as interrupts are
  379. * enabled long after timers are initialized. Therefore the
  380. * high precision timer is fast, leading to wrong gettimeoffset()
  381. * calculations. We deal with it by setting it based on the
  382. * number of its ticks between the second and the third interrupt.
  383. * That is still somewhat imprecise, but it's a good estimate.
  384. * --macro
  385. */
  386. j = jiffies;
  387. if (j < 4) {
  388. static unsigned int prev_count;
  389. static int hpt_initialized;
  390. switch (j) {
  391. case 0:
  392. timerhi = timerlo = 0;
  393. mips_hpt_init(count);
  394. break;
  395. case 2:
  396. prev_count = count;
  397. break;
  398. case 3:
  399. if (!hpt_initialized) {
  400. unsigned int c3 = 3 * (count - prev_count);
  401. timerhi = 0;
  402. timerlo = c3;
  403. mips_hpt_init(count - c3);
  404. hpt_initialized = 1;
  405. }
  406. break;
  407. default:
  408. break;
  409. }
  410. }
  411. /*
  412. * In UP mode, we call local_timer_interrupt() to do profiling
  413. * and process accouting.
  414. *
  415. * In SMP mode, local_timer_interrupt() is invoked by appropriate
  416. * low-level local timer interrupt handler.
  417. */
  418. local_timer_interrupt(irq, dev_id, regs);
  419. return IRQ_HANDLED;
  420. }
  421. asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
  422. {
  423. irq_enter();
  424. kstat_this_cpu.irqs[irq]++;
  425. /* we keep interrupt disabled all the time */
  426. timer_interrupt(irq, NULL, regs);
  427. irq_exit();
  428. }
  429. asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
  430. {
  431. irq_enter();
  432. if (smp_processor_id() != 0)
  433. kstat_this_cpu.irqs[irq]++;
  434. /* we keep interrupt disabled all the time */
  435. local_timer_interrupt(irq, NULL, regs);
  436. irq_exit();
  437. }
  438. /*
  439. * time_init() - it does the following things.
  440. *
  441. * 1) board_time_init() -
  442. * a) (optional) set up RTC routines,
  443. * b) (optional) calibrate and set the mips_hpt_frequency
  444. * (only needed if you intended to use fixed_rate_gettimeoffset
  445. * or use cpu counter as timer interrupt source)
  446. * 2) setup xtime based on rtc_get_time().
  447. * 3) choose a appropriate gettimeoffset routine.
  448. * 4) calculate a couple of cached variables for later usage
  449. * 5) board_timer_setup() -
  450. * a) (optional) over-write any choices made above by time_init().
  451. * b) machine specific code should setup the timer irqaction.
  452. * c) enable the timer interrupt
  453. */
  454. void (*board_time_init)(void);
  455. void (*board_timer_setup)(struct irqaction *irq);
  456. unsigned int mips_hpt_frequency;
  457. static struct irqaction timer_irqaction = {
  458. .handler = timer_interrupt,
  459. .flags = SA_INTERRUPT,
  460. .name = "timer",
  461. };
  462. static unsigned int __init calibrate_hpt(void)
  463. {
  464. u64 frequency;
  465. u32 hpt_start, hpt_end, hpt_count, hz;
  466. const int loops = HZ / 10;
  467. int log_2_loops = 0;
  468. int i;
  469. /*
  470. * We want to calibrate for 0.1s, but to avoid a 64-bit
  471. * division we round the number of loops up to the nearest
  472. * power of 2.
  473. */
  474. while (loops > 1 << log_2_loops)
  475. log_2_loops++;
  476. i = 1 << log_2_loops;
  477. /*
  478. * Wait for a rising edge of the timer interrupt.
  479. */
  480. while (mips_timer_state());
  481. while (!mips_timer_state());
  482. /*
  483. * Now see how many high precision timer ticks happen
  484. * during the calculated number of periods between timer
  485. * interrupts.
  486. */
  487. hpt_start = mips_hpt_read();
  488. do {
  489. while (mips_timer_state());
  490. while (!mips_timer_state());
  491. } while (--i);
  492. hpt_end = mips_hpt_read();
  493. hpt_count = hpt_end - hpt_start;
  494. hz = HZ;
  495. frequency = (u64)hpt_count * (u64)hz;
  496. return frequency >> log_2_loops;
  497. }
  498. void __init time_init(void)
  499. {
  500. if (board_time_init)
  501. board_time_init();
  502. if (!rtc_set_mmss)
  503. rtc_set_mmss = rtc_set_time;
  504. xtime.tv_sec = rtc_get_time();
  505. xtime.tv_nsec = 0;
  506. set_normalized_timespec(&wall_to_monotonic,
  507. -xtime.tv_sec, -xtime.tv_nsec);
  508. /* Choose appropriate high precision timer routines. */
  509. if (!cpu_has_counter && !mips_hpt_read) {
  510. /* No high precision timer -- sorry. */
  511. mips_hpt_read = null_hpt_read;
  512. mips_hpt_init = null_hpt_init;
  513. } else if (!mips_hpt_frequency && !mips_timer_state) {
  514. /* A high precision timer of unknown frequency. */
  515. if (!mips_hpt_read) {
  516. /* No external high precision timer -- use R4k. */
  517. mips_hpt_read = c0_hpt_read;
  518. mips_hpt_init = c0_hpt_init;
  519. }
  520. if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
  521. (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
  522. (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
  523. /*
  524. * We need to calibrate the counter but we don't have
  525. * 64-bit division.
  526. */
  527. do_gettimeoffset = calibrate_div32_gettimeoffset;
  528. else
  529. /*
  530. * We need to calibrate the counter but we *do* have
  531. * 64-bit division.
  532. */
  533. do_gettimeoffset = calibrate_div64_gettimeoffset;
  534. } else {
  535. /* We know counter frequency. Or we can get it. */
  536. if (!mips_hpt_read) {
  537. /* No external high precision timer -- use R4k. */
  538. mips_hpt_read = c0_hpt_read;
  539. if (mips_timer_state)
  540. mips_hpt_init = c0_hpt_init;
  541. else {
  542. /* No external timer interrupt -- use R4k. */
  543. mips_hpt_init = c0_hpt_timer_init;
  544. mips_timer_ack = c0_timer_ack;
  545. }
  546. }
  547. if (!mips_hpt_frequency)
  548. mips_hpt_frequency = calibrate_hpt();
  549. do_gettimeoffset = fixed_rate_gettimeoffset;
  550. /* Calculate cache parameters. */
  551. cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
  552. /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
  553. do_div64_32(sll32_usecs_per_cycle,
  554. 1000000, mips_hpt_frequency / 2,
  555. mips_hpt_frequency);
  556. /* Report the high precision timer rate for a reference. */
  557. printk("Using %u.%03u MHz high precision timer.\n",
  558. ((mips_hpt_frequency + 500) / 1000) / 1000,
  559. ((mips_hpt_frequency + 500) / 1000) % 1000);
  560. }
  561. if (!mips_timer_ack)
  562. /* No timer interrupt ack (e.g. i8254). */
  563. mips_timer_ack = null_timer_ack;
  564. /* This sets up the high precision timer for the first interrupt. */
  565. mips_hpt_init(mips_hpt_read());
  566. /*
  567. * Call board specific timer interrupt setup.
  568. *
  569. * this pointer must be setup in machine setup routine.
  570. *
  571. * Even if a machine chooses to use a low-level timer interrupt,
  572. * it still needs to setup the timer_irqaction.
  573. * In that case, it might be better to set timer_irqaction.handler
  574. * to be NULL function so that we are sure the high-level code
  575. * is not invoked accidentally.
  576. */
  577. board_timer_setup(&timer_irqaction);
  578. }
  579. #define FEBRUARY 2
  580. #define STARTOFTIME 1970
  581. #define SECDAY 86400L
  582. #define SECYR (SECDAY * 365)
  583. #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
  584. #define days_in_year(y) (leapyear(y) ? 366 : 365)
  585. #define days_in_month(m) (month_days[(m) - 1])
  586. static int month_days[12] = {
  587. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  588. };
  589. void to_tm(unsigned long tim, struct rtc_time *tm)
  590. {
  591. long hms, day, gday;
  592. int i;
  593. gday = day = tim / SECDAY;
  594. hms = tim % SECDAY;
  595. /* Hours, minutes, seconds are easy */
  596. tm->tm_hour = hms / 3600;
  597. tm->tm_min = (hms % 3600) / 60;
  598. tm->tm_sec = (hms % 3600) % 60;
  599. /* Number of years in days */
  600. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  601. day -= days_in_year(i);
  602. tm->tm_year = i;
  603. /* Number of months in days left */
  604. if (leapyear(tm->tm_year))
  605. days_in_month(FEBRUARY) = 29;
  606. for (i = 1; day >= days_in_month(i); i++)
  607. day -= days_in_month(i);
  608. days_in_month(FEBRUARY) = 28;
  609. tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
  610. /* Days are what is left over (+1) from all that. */
  611. tm->tm_mday = day + 1;
  612. /*
  613. * Determine the day of week
  614. */
  615. tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
  616. }
  617. EXPORT_SYMBOL(rtc_lock);
  618. EXPORT_SYMBOL(to_tm);
  619. EXPORT_SYMBOL(rtc_set_time);
  620. EXPORT_SYMBOL(rtc_get_time);
  621. unsigned long long sched_clock(void)
  622. {
  623. return (unsigned long long)jiffies*(1000000000/HZ);
  624. }