sched.c 173 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/freezer.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/tsacct_kern.h>
  52. #include <linux/kprobes.h>
  53. #include <linux/delayacct.h>
  54. #include <asm/tlb.h>
  55. #include <asm/unistd.h>
  56. /*
  57. * Scheduler clock - returns current time in nanosec units.
  58. * This is default implementation.
  59. * Architectures and sub-architectures can override this.
  60. */
  61. unsigned long long __attribute__((weak)) sched_clock(void)
  62. {
  63. return (unsigned long long)jiffies * (1000000000 / HZ);
  64. }
  65. /*
  66. * Convert user-nice values [ -20 ... 0 ... 19 ]
  67. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  68. * and back.
  69. */
  70. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  71. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  72. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  73. /*
  74. * 'User priority' is the nice value converted to something we
  75. * can work with better when scaling various scheduler parameters,
  76. * it's a [ 0 ... 39 ] range.
  77. */
  78. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  79. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  80. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  81. /*
  82. * Some helpers for converting nanosecond timing to jiffy resolution
  83. */
  84. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  85. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  86. /*
  87. * These are the 'tuning knobs' of the scheduler:
  88. *
  89. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  90. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  91. * Timeslices get refilled after they expire.
  92. */
  93. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  94. #define DEF_TIMESLICE (100 * HZ / 1000)
  95. #define ON_RUNQUEUE_WEIGHT 30
  96. #define CHILD_PENALTY 95
  97. #define PARENT_PENALTY 100
  98. #define EXIT_WEIGHT 3
  99. #define PRIO_BONUS_RATIO 25
  100. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  101. #define INTERACTIVE_DELTA 2
  102. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  103. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  104. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  105. /*
  106. * If a task is 'interactive' then we reinsert it in the active
  107. * array after it has expired its current timeslice. (it will not
  108. * continue to run immediately, it will still roundrobin with
  109. * other interactive tasks.)
  110. *
  111. * This part scales the interactivity limit depending on niceness.
  112. *
  113. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  114. * Here are a few examples of different nice levels:
  115. *
  116. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  117. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  118. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  119. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  120. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  121. *
  122. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  123. * priority range a task can explore, a value of '1' means the
  124. * task is rated interactive.)
  125. *
  126. * Ie. nice +19 tasks can never get 'interactive' enough to be
  127. * reinserted into the active array. And only heavily CPU-hog nice -20
  128. * tasks will be expired. Default nice 0 tasks are somewhere between,
  129. * it takes some effort for them to get interactive, but it's not
  130. * too hard.
  131. */
  132. #define CURRENT_BONUS(p) \
  133. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  134. MAX_SLEEP_AVG)
  135. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  136. #ifdef CONFIG_SMP
  137. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  138. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  139. num_online_cpus())
  140. #else
  141. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  142. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  143. #endif
  144. #define SCALE(v1,v1_max,v2_max) \
  145. (v1) * (v2_max) / (v1_max)
  146. #define DELTA(p) \
  147. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  148. INTERACTIVE_DELTA)
  149. #define TASK_INTERACTIVE(p) \
  150. ((p)->prio <= (p)->static_prio - DELTA(p))
  151. #define INTERACTIVE_SLEEP(p) \
  152. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  153. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  154. #define TASK_PREEMPTS_CURR(p, rq) \
  155. ((p)->prio < (rq)->curr->prio)
  156. #define SCALE_PRIO(x, prio) \
  157. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  158. static unsigned int static_prio_timeslice(int static_prio)
  159. {
  160. if (static_prio < NICE_TO_PRIO(0))
  161. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  162. else
  163. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  164. }
  165. /*
  166. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  167. * to time slice values: [800ms ... 100ms ... 5ms]
  168. *
  169. * The higher a thread's priority, the bigger timeslices
  170. * it gets during one round of execution. But even the lowest
  171. * priority thread gets MIN_TIMESLICE worth of execution time.
  172. */
  173. static inline unsigned int task_timeslice(struct task_struct *p)
  174. {
  175. return static_prio_timeslice(p->static_prio);
  176. }
  177. /*
  178. * These are the runqueue data structures:
  179. */
  180. struct prio_array {
  181. unsigned int nr_active;
  182. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  183. struct list_head queue[MAX_PRIO];
  184. };
  185. /*
  186. * This is the main, per-CPU runqueue data structure.
  187. *
  188. * Locking rule: those places that want to lock multiple runqueues
  189. * (such as the load balancing or the thread migration code), lock
  190. * acquire operations must be ordered by ascending &runqueue.
  191. */
  192. struct rq {
  193. spinlock_t lock;
  194. /*
  195. * nr_running and cpu_load should be in the same cacheline because
  196. * remote CPUs use both these fields when doing load calculation.
  197. */
  198. unsigned long nr_running;
  199. unsigned long raw_weighted_load;
  200. #ifdef CONFIG_SMP
  201. unsigned long cpu_load[3];
  202. unsigned char idle_at_tick;
  203. #endif
  204. unsigned long long nr_switches;
  205. /*
  206. * This is part of a global counter where only the total sum
  207. * over all CPUs matters. A task can increase this counter on
  208. * one CPU and if it got migrated afterwards it may decrease
  209. * it on another CPU. Always updated under the runqueue lock:
  210. */
  211. unsigned long nr_uninterruptible;
  212. unsigned long expired_timestamp;
  213. /* Cached timestamp set by update_cpu_clock() */
  214. unsigned long long most_recent_timestamp;
  215. struct task_struct *curr, *idle;
  216. unsigned long next_balance;
  217. struct mm_struct *prev_mm;
  218. struct prio_array *active, *expired, arrays[2];
  219. int best_expired_prio;
  220. atomic_t nr_iowait;
  221. #ifdef CONFIG_SMP
  222. struct sched_domain *sd;
  223. /* For active balancing */
  224. int active_balance;
  225. int push_cpu;
  226. int cpu; /* cpu of this runqueue */
  227. struct task_struct *migration_thread;
  228. struct list_head migration_queue;
  229. #endif
  230. #ifdef CONFIG_SCHEDSTATS
  231. /* latency stats */
  232. struct sched_info rq_sched_info;
  233. /* sys_sched_yield() stats */
  234. unsigned long yld_exp_empty;
  235. unsigned long yld_act_empty;
  236. unsigned long yld_both_empty;
  237. unsigned long yld_cnt;
  238. /* schedule() stats */
  239. unsigned long sched_switch;
  240. unsigned long sched_cnt;
  241. unsigned long sched_goidle;
  242. /* try_to_wake_up() stats */
  243. unsigned long ttwu_cnt;
  244. unsigned long ttwu_local;
  245. #endif
  246. struct lock_class_key rq_lock_key;
  247. };
  248. static DEFINE_PER_CPU(struct rq, runqueues);
  249. static inline int cpu_of(struct rq *rq)
  250. {
  251. #ifdef CONFIG_SMP
  252. return rq->cpu;
  253. #else
  254. return 0;
  255. #endif
  256. }
  257. /*
  258. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  259. * See detach_destroy_domains: synchronize_sched for details.
  260. *
  261. * The domain tree of any CPU may only be accessed from within
  262. * preempt-disabled sections.
  263. */
  264. #define for_each_domain(cpu, __sd) \
  265. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  266. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  267. #define this_rq() (&__get_cpu_var(runqueues))
  268. #define task_rq(p) cpu_rq(task_cpu(p))
  269. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  270. #ifndef prepare_arch_switch
  271. # define prepare_arch_switch(next) do { } while (0)
  272. #endif
  273. #ifndef finish_arch_switch
  274. # define finish_arch_switch(prev) do { } while (0)
  275. #endif
  276. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  277. static inline int task_running(struct rq *rq, struct task_struct *p)
  278. {
  279. return rq->curr == p;
  280. }
  281. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  282. {
  283. }
  284. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  285. {
  286. #ifdef CONFIG_DEBUG_SPINLOCK
  287. /* this is a valid case when another task releases the spinlock */
  288. rq->lock.owner = current;
  289. #endif
  290. /*
  291. * If we are tracking spinlock dependencies then we have to
  292. * fix up the runqueue lock - which gets 'carried over' from
  293. * prev into current:
  294. */
  295. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  296. spin_unlock_irq(&rq->lock);
  297. }
  298. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  299. static inline int task_running(struct rq *rq, struct task_struct *p)
  300. {
  301. #ifdef CONFIG_SMP
  302. return p->oncpu;
  303. #else
  304. return rq->curr == p;
  305. #endif
  306. }
  307. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  308. {
  309. #ifdef CONFIG_SMP
  310. /*
  311. * We can optimise this out completely for !SMP, because the
  312. * SMP rebalancing from interrupt is the only thing that cares
  313. * here.
  314. */
  315. next->oncpu = 1;
  316. #endif
  317. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  318. spin_unlock_irq(&rq->lock);
  319. #else
  320. spin_unlock(&rq->lock);
  321. #endif
  322. }
  323. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  324. {
  325. #ifdef CONFIG_SMP
  326. /*
  327. * After ->oncpu is cleared, the task can be moved to a different CPU.
  328. * We must ensure this doesn't happen until the switch is completely
  329. * finished.
  330. */
  331. smp_wmb();
  332. prev->oncpu = 0;
  333. #endif
  334. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  335. local_irq_enable();
  336. #endif
  337. }
  338. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  339. /*
  340. * __task_rq_lock - lock the runqueue a given task resides on.
  341. * Must be called interrupts disabled.
  342. */
  343. static inline struct rq *__task_rq_lock(struct task_struct *p)
  344. __acquires(rq->lock)
  345. {
  346. struct rq *rq;
  347. repeat_lock_task:
  348. rq = task_rq(p);
  349. spin_lock(&rq->lock);
  350. if (unlikely(rq != task_rq(p))) {
  351. spin_unlock(&rq->lock);
  352. goto repeat_lock_task;
  353. }
  354. return rq;
  355. }
  356. /*
  357. * task_rq_lock - lock the runqueue a given task resides on and disable
  358. * interrupts. Note the ordering: we can safely lookup the task_rq without
  359. * explicitly disabling preemption.
  360. */
  361. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  362. __acquires(rq->lock)
  363. {
  364. struct rq *rq;
  365. repeat_lock_task:
  366. local_irq_save(*flags);
  367. rq = task_rq(p);
  368. spin_lock(&rq->lock);
  369. if (unlikely(rq != task_rq(p))) {
  370. spin_unlock_irqrestore(&rq->lock, *flags);
  371. goto repeat_lock_task;
  372. }
  373. return rq;
  374. }
  375. static inline void __task_rq_unlock(struct rq *rq)
  376. __releases(rq->lock)
  377. {
  378. spin_unlock(&rq->lock);
  379. }
  380. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  381. __releases(rq->lock)
  382. {
  383. spin_unlock_irqrestore(&rq->lock, *flags);
  384. }
  385. #ifdef CONFIG_SCHEDSTATS
  386. /*
  387. * bump this up when changing the output format or the meaning of an existing
  388. * format, so that tools can adapt (or abort)
  389. */
  390. #define SCHEDSTAT_VERSION 14
  391. static int show_schedstat(struct seq_file *seq, void *v)
  392. {
  393. int cpu;
  394. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  395. seq_printf(seq, "timestamp %lu\n", jiffies);
  396. for_each_online_cpu(cpu) {
  397. struct rq *rq = cpu_rq(cpu);
  398. #ifdef CONFIG_SMP
  399. struct sched_domain *sd;
  400. int dcnt = 0;
  401. #endif
  402. /* runqueue-specific stats */
  403. seq_printf(seq,
  404. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  405. cpu, rq->yld_both_empty,
  406. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  407. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  408. rq->ttwu_cnt, rq->ttwu_local,
  409. rq->rq_sched_info.cpu_time,
  410. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  411. seq_printf(seq, "\n");
  412. #ifdef CONFIG_SMP
  413. /* domain-specific stats */
  414. preempt_disable();
  415. for_each_domain(cpu, sd) {
  416. enum idle_type itype;
  417. char mask_str[NR_CPUS];
  418. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  419. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  420. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  421. itype++) {
  422. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
  423. "%lu",
  424. sd->lb_cnt[itype],
  425. sd->lb_balanced[itype],
  426. sd->lb_failed[itype],
  427. sd->lb_imbalance[itype],
  428. sd->lb_gained[itype],
  429. sd->lb_hot_gained[itype],
  430. sd->lb_nobusyq[itype],
  431. sd->lb_nobusyg[itype]);
  432. }
  433. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
  434. " %lu %lu %lu\n",
  435. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  436. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  437. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  438. sd->ttwu_wake_remote, sd->ttwu_move_affine,
  439. sd->ttwu_move_balance);
  440. }
  441. preempt_enable();
  442. #endif
  443. }
  444. return 0;
  445. }
  446. static int schedstat_open(struct inode *inode, struct file *file)
  447. {
  448. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  449. char *buf = kmalloc(size, GFP_KERNEL);
  450. struct seq_file *m;
  451. int res;
  452. if (!buf)
  453. return -ENOMEM;
  454. res = single_open(file, show_schedstat, NULL);
  455. if (!res) {
  456. m = file->private_data;
  457. m->buf = buf;
  458. m->size = size;
  459. } else
  460. kfree(buf);
  461. return res;
  462. }
  463. const struct file_operations proc_schedstat_operations = {
  464. .open = schedstat_open,
  465. .read = seq_read,
  466. .llseek = seq_lseek,
  467. .release = single_release,
  468. };
  469. /*
  470. * Expects runqueue lock to be held for atomicity of update
  471. */
  472. static inline void
  473. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  474. {
  475. if (rq) {
  476. rq->rq_sched_info.run_delay += delta_jiffies;
  477. rq->rq_sched_info.pcnt++;
  478. }
  479. }
  480. /*
  481. * Expects runqueue lock to be held for atomicity of update
  482. */
  483. static inline void
  484. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  485. {
  486. if (rq)
  487. rq->rq_sched_info.cpu_time += delta_jiffies;
  488. }
  489. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  490. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  491. #else /* !CONFIG_SCHEDSTATS */
  492. static inline void
  493. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  494. {}
  495. static inline void
  496. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  497. {}
  498. # define schedstat_inc(rq, field) do { } while (0)
  499. # define schedstat_add(rq, field, amt) do { } while (0)
  500. #endif
  501. /*
  502. * this_rq_lock - lock this runqueue and disable interrupts.
  503. */
  504. static inline struct rq *this_rq_lock(void)
  505. __acquires(rq->lock)
  506. {
  507. struct rq *rq;
  508. local_irq_disable();
  509. rq = this_rq();
  510. spin_lock(&rq->lock);
  511. return rq;
  512. }
  513. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  514. /*
  515. * Called when a process is dequeued from the active array and given
  516. * the cpu. We should note that with the exception of interactive
  517. * tasks, the expired queue will become the active queue after the active
  518. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  519. * expired queue. (Interactive tasks may be requeued directly to the
  520. * active queue, thus delaying tasks in the expired queue from running;
  521. * see scheduler_tick()).
  522. *
  523. * This function is only called from sched_info_arrive(), rather than
  524. * dequeue_task(). Even though a task may be queued and dequeued multiple
  525. * times as it is shuffled about, we're really interested in knowing how
  526. * long it was from the *first* time it was queued to the time that it
  527. * finally hit a cpu.
  528. */
  529. static inline void sched_info_dequeued(struct task_struct *t)
  530. {
  531. t->sched_info.last_queued = 0;
  532. }
  533. /*
  534. * Called when a task finally hits the cpu. We can now calculate how
  535. * long it was waiting to run. We also note when it began so that we
  536. * can keep stats on how long its timeslice is.
  537. */
  538. static void sched_info_arrive(struct task_struct *t)
  539. {
  540. unsigned long now = jiffies, delta_jiffies = 0;
  541. if (t->sched_info.last_queued)
  542. delta_jiffies = now - t->sched_info.last_queued;
  543. sched_info_dequeued(t);
  544. t->sched_info.run_delay += delta_jiffies;
  545. t->sched_info.last_arrival = now;
  546. t->sched_info.pcnt++;
  547. rq_sched_info_arrive(task_rq(t), delta_jiffies);
  548. }
  549. /*
  550. * Called when a process is queued into either the active or expired
  551. * array. The time is noted and later used to determine how long we
  552. * had to wait for us to reach the cpu. Since the expired queue will
  553. * become the active queue after active queue is empty, without dequeuing
  554. * and requeuing any tasks, we are interested in queuing to either. It
  555. * is unusual but not impossible for tasks to be dequeued and immediately
  556. * requeued in the same or another array: this can happen in sched_yield(),
  557. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  558. * to runqueue.
  559. *
  560. * This function is only called from enqueue_task(), but also only updates
  561. * the timestamp if it is already not set. It's assumed that
  562. * sched_info_dequeued() will clear that stamp when appropriate.
  563. */
  564. static inline void sched_info_queued(struct task_struct *t)
  565. {
  566. if (unlikely(sched_info_on()))
  567. if (!t->sched_info.last_queued)
  568. t->sched_info.last_queued = jiffies;
  569. }
  570. /*
  571. * Called when a process ceases being the active-running process, either
  572. * voluntarily or involuntarily. Now we can calculate how long we ran.
  573. */
  574. static inline void sched_info_depart(struct task_struct *t)
  575. {
  576. unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
  577. t->sched_info.cpu_time += delta_jiffies;
  578. rq_sched_info_depart(task_rq(t), delta_jiffies);
  579. }
  580. /*
  581. * Called when tasks are switched involuntarily due, typically, to expiring
  582. * their time slice. (This may also be called when switching to or from
  583. * the idle task.) We are only called when prev != next.
  584. */
  585. static inline void
  586. __sched_info_switch(struct task_struct *prev, struct task_struct *next)
  587. {
  588. struct rq *rq = task_rq(prev);
  589. /*
  590. * prev now departs the cpu. It's not interesting to record
  591. * stats about how efficient we were at scheduling the idle
  592. * process, however.
  593. */
  594. if (prev != rq->idle)
  595. sched_info_depart(prev);
  596. if (next != rq->idle)
  597. sched_info_arrive(next);
  598. }
  599. static inline void
  600. sched_info_switch(struct task_struct *prev, struct task_struct *next)
  601. {
  602. if (unlikely(sched_info_on()))
  603. __sched_info_switch(prev, next);
  604. }
  605. #else
  606. #define sched_info_queued(t) do { } while (0)
  607. #define sched_info_switch(t, next) do { } while (0)
  608. #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
  609. /*
  610. * Adding/removing a task to/from a priority array:
  611. */
  612. static void dequeue_task(struct task_struct *p, struct prio_array *array)
  613. {
  614. array->nr_active--;
  615. list_del(&p->run_list);
  616. if (list_empty(array->queue + p->prio))
  617. __clear_bit(p->prio, array->bitmap);
  618. }
  619. static void enqueue_task(struct task_struct *p, struct prio_array *array)
  620. {
  621. sched_info_queued(p);
  622. list_add_tail(&p->run_list, array->queue + p->prio);
  623. __set_bit(p->prio, array->bitmap);
  624. array->nr_active++;
  625. p->array = array;
  626. }
  627. /*
  628. * Put task to the end of the run list without the overhead of dequeue
  629. * followed by enqueue.
  630. */
  631. static void requeue_task(struct task_struct *p, struct prio_array *array)
  632. {
  633. list_move_tail(&p->run_list, array->queue + p->prio);
  634. }
  635. static inline void
  636. enqueue_task_head(struct task_struct *p, struct prio_array *array)
  637. {
  638. list_add(&p->run_list, array->queue + p->prio);
  639. __set_bit(p->prio, array->bitmap);
  640. array->nr_active++;
  641. p->array = array;
  642. }
  643. /*
  644. * __normal_prio - return the priority that is based on the static
  645. * priority but is modified by bonuses/penalties.
  646. *
  647. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  648. * into the -5 ... 0 ... +5 bonus/penalty range.
  649. *
  650. * We use 25% of the full 0...39 priority range so that:
  651. *
  652. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  653. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  654. *
  655. * Both properties are important to certain workloads.
  656. */
  657. static inline int __normal_prio(struct task_struct *p)
  658. {
  659. int bonus, prio;
  660. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  661. prio = p->static_prio - bonus;
  662. if (prio < MAX_RT_PRIO)
  663. prio = MAX_RT_PRIO;
  664. if (prio > MAX_PRIO-1)
  665. prio = MAX_PRIO-1;
  666. return prio;
  667. }
  668. /*
  669. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  670. * of tasks with abnormal "nice" values across CPUs the contribution that
  671. * each task makes to its run queue's load is weighted according to its
  672. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  673. * scaled version of the new time slice allocation that they receive on time
  674. * slice expiry etc.
  675. */
  676. /*
  677. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  678. * If static_prio_timeslice() is ever changed to break this assumption then
  679. * this code will need modification
  680. */
  681. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  682. #define LOAD_WEIGHT(lp) \
  683. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  684. #define PRIO_TO_LOAD_WEIGHT(prio) \
  685. LOAD_WEIGHT(static_prio_timeslice(prio))
  686. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  687. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  688. static void set_load_weight(struct task_struct *p)
  689. {
  690. if (has_rt_policy(p)) {
  691. #ifdef CONFIG_SMP
  692. if (p == task_rq(p)->migration_thread)
  693. /*
  694. * The migration thread does the actual balancing.
  695. * Giving its load any weight will skew balancing
  696. * adversely.
  697. */
  698. p->load_weight = 0;
  699. else
  700. #endif
  701. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  702. } else
  703. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  704. }
  705. static inline void
  706. inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  707. {
  708. rq->raw_weighted_load += p->load_weight;
  709. }
  710. static inline void
  711. dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  712. {
  713. rq->raw_weighted_load -= p->load_weight;
  714. }
  715. static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
  716. {
  717. rq->nr_running++;
  718. inc_raw_weighted_load(rq, p);
  719. }
  720. static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
  721. {
  722. rq->nr_running--;
  723. dec_raw_weighted_load(rq, p);
  724. }
  725. /*
  726. * Calculate the expected normal priority: i.e. priority
  727. * without taking RT-inheritance into account. Might be
  728. * boosted by interactivity modifiers. Changes upon fork,
  729. * setprio syscalls, and whenever the interactivity
  730. * estimator recalculates.
  731. */
  732. static inline int normal_prio(struct task_struct *p)
  733. {
  734. int prio;
  735. if (has_rt_policy(p))
  736. prio = MAX_RT_PRIO-1 - p->rt_priority;
  737. else
  738. prio = __normal_prio(p);
  739. return prio;
  740. }
  741. /*
  742. * Calculate the current priority, i.e. the priority
  743. * taken into account by the scheduler. This value might
  744. * be boosted by RT tasks, or might be boosted by
  745. * interactivity modifiers. Will be RT if the task got
  746. * RT-boosted. If not then it returns p->normal_prio.
  747. */
  748. static int effective_prio(struct task_struct *p)
  749. {
  750. p->normal_prio = normal_prio(p);
  751. /*
  752. * If we are RT tasks or we were boosted to RT priority,
  753. * keep the priority unchanged. Otherwise, update priority
  754. * to the normal priority:
  755. */
  756. if (!rt_prio(p->prio))
  757. return p->normal_prio;
  758. return p->prio;
  759. }
  760. /*
  761. * __activate_task - move a task to the runqueue.
  762. */
  763. static void __activate_task(struct task_struct *p, struct rq *rq)
  764. {
  765. struct prio_array *target = rq->active;
  766. if (batch_task(p))
  767. target = rq->expired;
  768. enqueue_task(p, target);
  769. inc_nr_running(p, rq);
  770. }
  771. /*
  772. * __activate_idle_task - move idle task to the _front_ of runqueue.
  773. */
  774. static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
  775. {
  776. enqueue_task_head(p, rq->active);
  777. inc_nr_running(p, rq);
  778. }
  779. /*
  780. * Recalculate p->normal_prio and p->prio after having slept,
  781. * updating the sleep-average too:
  782. */
  783. static int recalc_task_prio(struct task_struct *p, unsigned long long now)
  784. {
  785. /* Caller must always ensure 'now >= p->timestamp' */
  786. unsigned long sleep_time = now - p->timestamp;
  787. if (batch_task(p))
  788. sleep_time = 0;
  789. if (likely(sleep_time > 0)) {
  790. /*
  791. * This ceiling is set to the lowest priority that would allow
  792. * a task to be reinserted into the active array on timeslice
  793. * completion.
  794. */
  795. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  796. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  797. /*
  798. * Prevents user tasks from achieving best priority
  799. * with one single large enough sleep.
  800. */
  801. p->sleep_avg = ceiling;
  802. /*
  803. * Using INTERACTIVE_SLEEP() as a ceiling places a
  804. * nice(0) task 1ms sleep away from promotion, and
  805. * gives it 700ms to round-robin with no chance of
  806. * being demoted. This is more than generous, so
  807. * mark this sleep as non-interactive to prevent the
  808. * on-runqueue bonus logic from intervening should
  809. * this task not receive cpu immediately.
  810. */
  811. p->sleep_type = SLEEP_NONINTERACTIVE;
  812. } else {
  813. /*
  814. * Tasks waking from uninterruptible sleep are
  815. * limited in their sleep_avg rise as they
  816. * are likely to be waiting on I/O
  817. */
  818. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  819. if (p->sleep_avg >= ceiling)
  820. sleep_time = 0;
  821. else if (p->sleep_avg + sleep_time >=
  822. ceiling) {
  823. p->sleep_avg = ceiling;
  824. sleep_time = 0;
  825. }
  826. }
  827. /*
  828. * This code gives a bonus to interactive tasks.
  829. *
  830. * The boost works by updating the 'average sleep time'
  831. * value here, based on ->timestamp. The more time a
  832. * task spends sleeping, the higher the average gets -
  833. * and the higher the priority boost gets as well.
  834. */
  835. p->sleep_avg += sleep_time;
  836. }
  837. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  838. p->sleep_avg = NS_MAX_SLEEP_AVG;
  839. }
  840. return effective_prio(p);
  841. }
  842. /*
  843. * activate_task - move a task to the runqueue and do priority recalculation
  844. *
  845. * Update all the scheduling statistics stuff. (sleep average
  846. * calculation, priority modifiers, etc.)
  847. */
  848. static void activate_task(struct task_struct *p, struct rq *rq, int local)
  849. {
  850. unsigned long long now;
  851. if (rt_task(p))
  852. goto out;
  853. now = sched_clock();
  854. #ifdef CONFIG_SMP
  855. if (!local) {
  856. /* Compensate for drifting sched_clock */
  857. struct rq *this_rq = this_rq();
  858. now = (now - this_rq->most_recent_timestamp)
  859. + rq->most_recent_timestamp;
  860. }
  861. #endif
  862. /*
  863. * Sleep time is in units of nanosecs, so shift by 20 to get a
  864. * milliseconds-range estimation of the amount of time that the task
  865. * spent sleeping:
  866. */
  867. if (unlikely(prof_on == SLEEP_PROFILING)) {
  868. if (p->state == TASK_UNINTERRUPTIBLE)
  869. profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
  870. (now - p->timestamp) >> 20);
  871. }
  872. p->prio = recalc_task_prio(p, now);
  873. /*
  874. * This checks to make sure it's not an uninterruptible task
  875. * that is now waking up.
  876. */
  877. if (p->sleep_type == SLEEP_NORMAL) {
  878. /*
  879. * Tasks which were woken up by interrupts (ie. hw events)
  880. * are most likely of interactive nature. So we give them
  881. * the credit of extending their sleep time to the period
  882. * of time they spend on the runqueue, waiting for execution
  883. * on a CPU, first time around:
  884. */
  885. if (in_interrupt())
  886. p->sleep_type = SLEEP_INTERRUPTED;
  887. else {
  888. /*
  889. * Normal first-time wakeups get a credit too for
  890. * on-runqueue time, but it will be weighted down:
  891. */
  892. p->sleep_type = SLEEP_INTERACTIVE;
  893. }
  894. }
  895. p->timestamp = now;
  896. out:
  897. __activate_task(p, rq);
  898. }
  899. /*
  900. * deactivate_task - remove a task from the runqueue.
  901. */
  902. static void deactivate_task(struct task_struct *p, struct rq *rq)
  903. {
  904. dec_nr_running(p, rq);
  905. dequeue_task(p, p->array);
  906. p->array = NULL;
  907. }
  908. /*
  909. * resched_task - mark a task 'to be rescheduled now'.
  910. *
  911. * On UP this means the setting of the need_resched flag, on SMP it
  912. * might also involve a cross-CPU call to trigger the scheduler on
  913. * the target CPU.
  914. */
  915. #ifdef CONFIG_SMP
  916. #ifndef tsk_is_polling
  917. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  918. #endif
  919. static void resched_task(struct task_struct *p)
  920. {
  921. int cpu;
  922. assert_spin_locked(&task_rq(p)->lock);
  923. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  924. return;
  925. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  926. cpu = task_cpu(p);
  927. if (cpu == smp_processor_id())
  928. return;
  929. /* NEED_RESCHED must be visible before we test polling */
  930. smp_mb();
  931. if (!tsk_is_polling(p))
  932. smp_send_reschedule(cpu);
  933. }
  934. #else
  935. static inline void resched_task(struct task_struct *p)
  936. {
  937. assert_spin_locked(&task_rq(p)->lock);
  938. set_tsk_need_resched(p);
  939. }
  940. #endif
  941. /**
  942. * task_curr - is this task currently executing on a CPU?
  943. * @p: the task in question.
  944. */
  945. inline int task_curr(const struct task_struct *p)
  946. {
  947. return cpu_curr(task_cpu(p)) == p;
  948. }
  949. /* Used instead of source_load when we know the type == 0 */
  950. unsigned long weighted_cpuload(const int cpu)
  951. {
  952. return cpu_rq(cpu)->raw_weighted_load;
  953. }
  954. #ifdef CONFIG_SMP
  955. struct migration_req {
  956. struct list_head list;
  957. struct task_struct *task;
  958. int dest_cpu;
  959. struct completion done;
  960. };
  961. /*
  962. * The task's runqueue lock must be held.
  963. * Returns true if you have to wait for migration thread.
  964. */
  965. static int
  966. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  967. {
  968. struct rq *rq = task_rq(p);
  969. /*
  970. * If the task is not on a runqueue (and not running), then
  971. * it is sufficient to simply update the task's cpu field.
  972. */
  973. if (!p->array && !task_running(rq, p)) {
  974. set_task_cpu(p, dest_cpu);
  975. return 0;
  976. }
  977. init_completion(&req->done);
  978. req->task = p;
  979. req->dest_cpu = dest_cpu;
  980. list_add(&req->list, &rq->migration_queue);
  981. return 1;
  982. }
  983. /*
  984. * wait_task_inactive - wait for a thread to unschedule.
  985. *
  986. * The caller must ensure that the task *will* unschedule sometime soon,
  987. * else this function might spin for a *long* time. This function can't
  988. * be called with interrupts off, or it may introduce deadlock with
  989. * smp_call_function() if an IPI is sent by the same process we are
  990. * waiting to become inactive.
  991. */
  992. void wait_task_inactive(struct task_struct *p)
  993. {
  994. unsigned long flags;
  995. struct rq *rq;
  996. int preempted;
  997. repeat:
  998. rq = task_rq_lock(p, &flags);
  999. /* Must be off runqueue entirely, not preempted. */
  1000. if (unlikely(p->array || task_running(rq, p))) {
  1001. /* If it's preempted, we yield. It could be a while. */
  1002. preempted = !task_running(rq, p);
  1003. task_rq_unlock(rq, &flags);
  1004. cpu_relax();
  1005. if (preempted)
  1006. yield();
  1007. goto repeat;
  1008. }
  1009. task_rq_unlock(rq, &flags);
  1010. }
  1011. /***
  1012. * kick_process - kick a running thread to enter/exit the kernel
  1013. * @p: the to-be-kicked thread
  1014. *
  1015. * Cause a process which is running on another CPU to enter
  1016. * kernel-mode, without any delay. (to get signals handled.)
  1017. *
  1018. * NOTE: this function doesnt have to take the runqueue lock,
  1019. * because all it wants to ensure is that the remote task enters
  1020. * the kernel. If the IPI races and the task has been migrated
  1021. * to another CPU then no harm is done and the purpose has been
  1022. * achieved as well.
  1023. */
  1024. void kick_process(struct task_struct *p)
  1025. {
  1026. int cpu;
  1027. preempt_disable();
  1028. cpu = task_cpu(p);
  1029. if ((cpu != smp_processor_id()) && task_curr(p))
  1030. smp_send_reschedule(cpu);
  1031. preempt_enable();
  1032. }
  1033. /*
  1034. * Return a low guess at the load of a migration-source cpu weighted
  1035. * according to the scheduling class and "nice" value.
  1036. *
  1037. * We want to under-estimate the load of migration sources, to
  1038. * balance conservatively.
  1039. */
  1040. static inline unsigned long source_load(int cpu, int type)
  1041. {
  1042. struct rq *rq = cpu_rq(cpu);
  1043. if (type == 0)
  1044. return rq->raw_weighted_load;
  1045. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  1046. }
  1047. /*
  1048. * Return a high guess at the load of a migration-target cpu weighted
  1049. * according to the scheduling class and "nice" value.
  1050. */
  1051. static inline unsigned long target_load(int cpu, int type)
  1052. {
  1053. struct rq *rq = cpu_rq(cpu);
  1054. if (type == 0)
  1055. return rq->raw_weighted_load;
  1056. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  1057. }
  1058. /*
  1059. * Return the average load per task on the cpu's run queue
  1060. */
  1061. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1062. {
  1063. struct rq *rq = cpu_rq(cpu);
  1064. unsigned long n = rq->nr_running;
  1065. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  1066. }
  1067. /*
  1068. * find_idlest_group finds and returns the least busy CPU group within the
  1069. * domain.
  1070. */
  1071. static struct sched_group *
  1072. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1073. {
  1074. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1075. unsigned long min_load = ULONG_MAX, this_load = 0;
  1076. int load_idx = sd->forkexec_idx;
  1077. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1078. do {
  1079. unsigned long load, avg_load;
  1080. int local_group;
  1081. int i;
  1082. /* Skip over this group if it has no CPUs allowed */
  1083. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1084. goto nextgroup;
  1085. local_group = cpu_isset(this_cpu, group->cpumask);
  1086. /* Tally up the load of all CPUs in the group */
  1087. avg_load = 0;
  1088. for_each_cpu_mask(i, group->cpumask) {
  1089. /* Bias balancing toward cpus of our domain */
  1090. if (local_group)
  1091. load = source_load(i, load_idx);
  1092. else
  1093. load = target_load(i, load_idx);
  1094. avg_load += load;
  1095. }
  1096. /* Adjust by relative CPU power of the group */
  1097. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1098. if (local_group) {
  1099. this_load = avg_load;
  1100. this = group;
  1101. } else if (avg_load < min_load) {
  1102. min_load = avg_load;
  1103. idlest = group;
  1104. }
  1105. nextgroup:
  1106. group = group->next;
  1107. } while (group != sd->groups);
  1108. if (!idlest || 100*this_load < imbalance*min_load)
  1109. return NULL;
  1110. return idlest;
  1111. }
  1112. /*
  1113. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1114. */
  1115. static int
  1116. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1117. {
  1118. cpumask_t tmp;
  1119. unsigned long load, min_load = ULONG_MAX;
  1120. int idlest = -1;
  1121. int i;
  1122. /* Traverse only the allowed CPUs */
  1123. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1124. for_each_cpu_mask(i, tmp) {
  1125. load = weighted_cpuload(i);
  1126. if (load < min_load || (load == min_load && i == this_cpu)) {
  1127. min_load = load;
  1128. idlest = i;
  1129. }
  1130. }
  1131. return idlest;
  1132. }
  1133. /*
  1134. * sched_balance_self: balance the current task (running on cpu) in domains
  1135. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1136. * SD_BALANCE_EXEC.
  1137. *
  1138. * Balance, ie. select the least loaded group.
  1139. *
  1140. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1141. *
  1142. * preempt must be disabled.
  1143. */
  1144. static int sched_balance_self(int cpu, int flag)
  1145. {
  1146. struct task_struct *t = current;
  1147. struct sched_domain *tmp, *sd = NULL;
  1148. for_each_domain(cpu, tmp) {
  1149. /*
  1150. * If power savings logic is enabled for a domain, stop there.
  1151. */
  1152. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1153. break;
  1154. if (tmp->flags & flag)
  1155. sd = tmp;
  1156. }
  1157. while (sd) {
  1158. cpumask_t span;
  1159. struct sched_group *group;
  1160. int new_cpu, weight;
  1161. if (!(sd->flags & flag)) {
  1162. sd = sd->child;
  1163. continue;
  1164. }
  1165. span = sd->span;
  1166. group = find_idlest_group(sd, t, cpu);
  1167. if (!group) {
  1168. sd = sd->child;
  1169. continue;
  1170. }
  1171. new_cpu = find_idlest_cpu(group, t, cpu);
  1172. if (new_cpu == -1 || new_cpu == cpu) {
  1173. /* Now try balancing at a lower domain level of cpu */
  1174. sd = sd->child;
  1175. continue;
  1176. }
  1177. /* Now try balancing at a lower domain level of new_cpu */
  1178. cpu = new_cpu;
  1179. sd = NULL;
  1180. weight = cpus_weight(span);
  1181. for_each_domain(cpu, tmp) {
  1182. if (weight <= cpus_weight(tmp->span))
  1183. break;
  1184. if (tmp->flags & flag)
  1185. sd = tmp;
  1186. }
  1187. /* while loop will break here if sd == NULL */
  1188. }
  1189. return cpu;
  1190. }
  1191. #endif /* CONFIG_SMP */
  1192. /*
  1193. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1194. * not idle and an idle cpu is available. The span of cpus to
  1195. * search starts with cpus closest then further out as needed,
  1196. * so we always favor a closer, idle cpu.
  1197. *
  1198. * Returns the CPU we should wake onto.
  1199. */
  1200. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1201. static int wake_idle(int cpu, struct task_struct *p)
  1202. {
  1203. cpumask_t tmp;
  1204. struct sched_domain *sd;
  1205. int i;
  1206. if (idle_cpu(cpu))
  1207. return cpu;
  1208. for_each_domain(cpu, sd) {
  1209. if (sd->flags & SD_WAKE_IDLE) {
  1210. cpus_and(tmp, sd->span, p->cpus_allowed);
  1211. for_each_cpu_mask(i, tmp) {
  1212. if (idle_cpu(i))
  1213. return i;
  1214. }
  1215. }
  1216. else
  1217. break;
  1218. }
  1219. return cpu;
  1220. }
  1221. #else
  1222. static inline int wake_idle(int cpu, struct task_struct *p)
  1223. {
  1224. return cpu;
  1225. }
  1226. #endif
  1227. /***
  1228. * try_to_wake_up - wake up a thread
  1229. * @p: the to-be-woken-up thread
  1230. * @state: the mask of task states that can be woken
  1231. * @sync: do a synchronous wakeup?
  1232. *
  1233. * Put it on the run-queue if it's not already there. The "current"
  1234. * thread is always on the run-queue (except when the actual
  1235. * re-schedule is in progress), and as such you're allowed to do
  1236. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1237. * runnable without the overhead of this.
  1238. *
  1239. * returns failure only if the task is already active.
  1240. */
  1241. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1242. {
  1243. int cpu, this_cpu, success = 0;
  1244. unsigned long flags;
  1245. long old_state;
  1246. struct rq *rq;
  1247. #ifdef CONFIG_SMP
  1248. struct sched_domain *sd, *this_sd = NULL;
  1249. unsigned long load, this_load;
  1250. int new_cpu;
  1251. #endif
  1252. rq = task_rq_lock(p, &flags);
  1253. old_state = p->state;
  1254. if (!(old_state & state))
  1255. goto out;
  1256. if (p->array)
  1257. goto out_running;
  1258. cpu = task_cpu(p);
  1259. this_cpu = smp_processor_id();
  1260. #ifdef CONFIG_SMP
  1261. if (unlikely(task_running(rq, p)))
  1262. goto out_activate;
  1263. new_cpu = cpu;
  1264. schedstat_inc(rq, ttwu_cnt);
  1265. if (cpu == this_cpu) {
  1266. schedstat_inc(rq, ttwu_local);
  1267. goto out_set_cpu;
  1268. }
  1269. for_each_domain(this_cpu, sd) {
  1270. if (cpu_isset(cpu, sd->span)) {
  1271. schedstat_inc(sd, ttwu_wake_remote);
  1272. this_sd = sd;
  1273. break;
  1274. }
  1275. }
  1276. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1277. goto out_set_cpu;
  1278. /*
  1279. * Check for affine wakeup and passive balancing possibilities.
  1280. */
  1281. if (this_sd) {
  1282. int idx = this_sd->wake_idx;
  1283. unsigned int imbalance;
  1284. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1285. load = source_load(cpu, idx);
  1286. this_load = target_load(this_cpu, idx);
  1287. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1288. if (this_sd->flags & SD_WAKE_AFFINE) {
  1289. unsigned long tl = this_load;
  1290. unsigned long tl_per_task;
  1291. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1292. /*
  1293. * If sync wakeup then subtract the (maximum possible)
  1294. * effect of the currently running task from the load
  1295. * of the current CPU:
  1296. */
  1297. if (sync)
  1298. tl -= current->load_weight;
  1299. if ((tl <= load &&
  1300. tl + target_load(cpu, idx) <= tl_per_task) ||
  1301. 100*(tl + p->load_weight) <= imbalance*load) {
  1302. /*
  1303. * This domain has SD_WAKE_AFFINE and
  1304. * p is cache cold in this domain, and
  1305. * there is no bad imbalance.
  1306. */
  1307. schedstat_inc(this_sd, ttwu_move_affine);
  1308. goto out_set_cpu;
  1309. }
  1310. }
  1311. /*
  1312. * Start passive balancing when half the imbalance_pct
  1313. * limit is reached.
  1314. */
  1315. if (this_sd->flags & SD_WAKE_BALANCE) {
  1316. if (imbalance*this_load <= 100*load) {
  1317. schedstat_inc(this_sd, ttwu_move_balance);
  1318. goto out_set_cpu;
  1319. }
  1320. }
  1321. }
  1322. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1323. out_set_cpu:
  1324. new_cpu = wake_idle(new_cpu, p);
  1325. if (new_cpu != cpu) {
  1326. set_task_cpu(p, new_cpu);
  1327. task_rq_unlock(rq, &flags);
  1328. /* might preempt at this point */
  1329. rq = task_rq_lock(p, &flags);
  1330. old_state = p->state;
  1331. if (!(old_state & state))
  1332. goto out;
  1333. if (p->array)
  1334. goto out_running;
  1335. this_cpu = smp_processor_id();
  1336. cpu = task_cpu(p);
  1337. }
  1338. out_activate:
  1339. #endif /* CONFIG_SMP */
  1340. if (old_state == TASK_UNINTERRUPTIBLE) {
  1341. rq->nr_uninterruptible--;
  1342. /*
  1343. * Tasks on involuntary sleep don't earn
  1344. * sleep_avg beyond just interactive state.
  1345. */
  1346. p->sleep_type = SLEEP_NONINTERACTIVE;
  1347. } else
  1348. /*
  1349. * Tasks that have marked their sleep as noninteractive get
  1350. * woken up with their sleep average not weighted in an
  1351. * interactive way.
  1352. */
  1353. if (old_state & TASK_NONINTERACTIVE)
  1354. p->sleep_type = SLEEP_NONINTERACTIVE;
  1355. activate_task(p, rq, cpu == this_cpu);
  1356. /*
  1357. * Sync wakeups (i.e. those types of wakeups where the waker
  1358. * has indicated that it will leave the CPU in short order)
  1359. * don't trigger a preemption, if the woken up task will run on
  1360. * this cpu. (in this case the 'I will reschedule' promise of
  1361. * the waker guarantees that the freshly woken up task is going
  1362. * to be considered on this CPU.)
  1363. */
  1364. if (!sync || cpu != this_cpu) {
  1365. if (TASK_PREEMPTS_CURR(p, rq))
  1366. resched_task(rq->curr);
  1367. }
  1368. success = 1;
  1369. out_running:
  1370. p->state = TASK_RUNNING;
  1371. out:
  1372. task_rq_unlock(rq, &flags);
  1373. return success;
  1374. }
  1375. int fastcall wake_up_process(struct task_struct *p)
  1376. {
  1377. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1378. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1379. }
  1380. EXPORT_SYMBOL(wake_up_process);
  1381. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1382. {
  1383. return try_to_wake_up(p, state, 0);
  1384. }
  1385. static void task_running_tick(struct rq *rq, struct task_struct *p);
  1386. /*
  1387. * Perform scheduler related setup for a newly forked process p.
  1388. * p is forked by current.
  1389. */
  1390. void fastcall sched_fork(struct task_struct *p, int clone_flags)
  1391. {
  1392. int cpu = get_cpu();
  1393. #ifdef CONFIG_SMP
  1394. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1395. #endif
  1396. set_task_cpu(p, cpu);
  1397. /*
  1398. * We mark the process as running here, but have not actually
  1399. * inserted it onto the runqueue yet. This guarantees that
  1400. * nobody will actually run it, and a signal or other external
  1401. * event cannot wake it up and insert it on the runqueue either.
  1402. */
  1403. p->state = TASK_RUNNING;
  1404. /*
  1405. * Make sure we do not leak PI boosting priority to the child:
  1406. */
  1407. p->prio = current->normal_prio;
  1408. INIT_LIST_HEAD(&p->run_list);
  1409. p->array = NULL;
  1410. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1411. if (unlikely(sched_info_on()))
  1412. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1413. #endif
  1414. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1415. p->oncpu = 0;
  1416. #endif
  1417. #ifdef CONFIG_PREEMPT
  1418. /* Want to start with kernel preemption disabled. */
  1419. task_thread_info(p)->preempt_count = 1;
  1420. #endif
  1421. /*
  1422. * Share the timeslice between parent and child, thus the
  1423. * total amount of pending timeslices in the system doesn't change,
  1424. * resulting in more scheduling fairness.
  1425. */
  1426. local_irq_disable();
  1427. p->time_slice = (current->time_slice + 1) >> 1;
  1428. /*
  1429. * The remainder of the first timeslice might be recovered by
  1430. * the parent if the child exits early enough.
  1431. */
  1432. p->first_time_slice = 1;
  1433. current->time_slice >>= 1;
  1434. p->timestamp = sched_clock();
  1435. if (unlikely(!current->time_slice)) {
  1436. /*
  1437. * This case is rare, it happens when the parent has only
  1438. * a single jiffy left from its timeslice. Taking the
  1439. * runqueue lock is not a problem.
  1440. */
  1441. current->time_slice = 1;
  1442. task_running_tick(cpu_rq(cpu), current);
  1443. }
  1444. local_irq_enable();
  1445. put_cpu();
  1446. }
  1447. /*
  1448. * wake_up_new_task - wake up a newly created task for the first time.
  1449. *
  1450. * This function will do some initial scheduler statistics housekeeping
  1451. * that must be done for every newly created context, then puts the task
  1452. * on the runqueue and wakes it.
  1453. */
  1454. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1455. {
  1456. struct rq *rq, *this_rq;
  1457. unsigned long flags;
  1458. int this_cpu, cpu;
  1459. rq = task_rq_lock(p, &flags);
  1460. BUG_ON(p->state != TASK_RUNNING);
  1461. this_cpu = smp_processor_id();
  1462. cpu = task_cpu(p);
  1463. /*
  1464. * We decrease the sleep average of forking parents
  1465. * and children as well, to keep max-interactive tasks
  1466. * from forking tasks that are max-interactive. The parent
  1467. * (current) is done further down, under its lock.
  1468. */
  1469. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1470. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1471. p->prio = effective_prio(p);
  1472. if (likely(cpu == this_cpu)) {
  1473. if (!(clone_flags & CLONE_VM)) {
  1474. /*
  1475. * The VM isn't cloned, so we're in a good position to
  1476. * do child-runs-first in anticipation of an exec. This
  1477. * usually avoids a lot of COW overhead.
  1478. */
  1479. if (unlikely(!current->array))
  1480. __activate_task(p, rq);
  1481. else {
  1482. p->prio = current->prio;
  1483. p->normal_prio = current->normal_prio;
  1484. list_add_tail(&p->run_list, &current->run_list);
  1485. p->array = current->array;
  1486. p->array->nr_active++;
  1487. inc_nr_running(p, rq);
  1488. }
  1489. set_need_resched();
  1490. } else
  1491. /* Run child last */
  1492. __activate_task(p, rq);
  1493. /*
  1494. * We skip the following code due to cpu == this_cpu
  1495. *
  1496. * task_rq_unlock(rq, &flags);
  1497. * this_rq = task_rq_lock(current, &flags);
  1498. */
  1499. this_rq = rq;
  1500. } else {
  1501. this_rq = cpu_rq(this_cpu);
  1502. /*
  1503. * Not the local CPU - must adjust timestamp. This should
  1504. * get optimised away in the !CONFIG_SMP case.
  1505. */
  1506. p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
  1507. + rq->most_recent_timestamp;
  1508. __activate_task(p, rq);
  1509. if (TASK_PREEMPTS_CURR(p, rq))
  1510. resched_task(rq->curr);
  1511. /*
  1512. * Parent and child are on different CPUs, now get the
  1513. * parent runqueue to update the parent's ->sleep_avg:
  1514. */
  1515. task_rq_unlock(rq, &flags);
  1516. this_rq = task_rq_lock(current, &flags);
  1517. }
  1518. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1519. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1520. task_rq_unlock(this_rq, &flags);
  1521. }
  1522. /*
  1523. * Potentially available exiting-child timeslices are
  1524. * retrieved here - this way the parent does not get
  1525. * penalized for creating too many threads.
  1526. *
  1527. * (this cannot be used to 'generate' timeslices
  1528. * artificially, because any timeslice recovered here
  1529. * was given away by the parent in the first place.)
  1530. */
  1531. void fastcall sched_exit(struct task_struct *p)
  1532. {
  1533. unsigned long flags;
  1534. struct rq *rq;
  1535. /*
  1536. * If the child was a (relative-) CPU hog then decrease
  1537. * the sleep_avg of the parent as well.
  1538. */
  1539. rq = task_rq_lock(p->parent, &flags);
  1540. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1541. p->parent->time_slice += p->time_slice;
  1542. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1543. p->parent->time_slice = task_timeslice(p);
  1544. }
  1545. if (p->sleep_avg < p->parent->sleep_avg)
  1546. p->parent->sleep_avg = p->parent->sleep_avg /
  1547. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1548. (EXIT_WEIGHT + 1);
  1549. task_rq_unlock(rq, &flags);
  1550. }
  1551. /**
  1552. * prepare_task_switch - prepare to switch tasks
  1553. * @rq: the runqueue preparing to switch
  1554. * @next: the task we are going to switch to.
  1555. *
  1556. * This is called with the rq lock held and interrupts off. It must
  1557. * be paired with a subsequent finish_task_switch after the context
  1558. * switch.
  1559. *
  1560. * prepare_task_switch sets up locking and calls architecture specific
  1561. * hooks.
  1562. */
  1563. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1564. {
  1565. prepare_lock_switch(rq, next);
  1566. prepare_arch_switch(next);
  1567. }
  1568. /**
  1569. * finish_task_switch - clean up after a task-switch
  1570. * @rq: runqueue associated with task-switch
  1571. * @prev: the thread we just switched away from.
  1572. *
  1573. * finish_task_switch must be called after the context switch, paired
  1574. * with a prepare_task_switch call before the context switch.
  1575. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1576. * and do any other architecture-specific cleanup actions.
  1577. *
  1578. * Note that we may have delayed dropping an mm in context_switch(). If
  1579. * so, we finish that here outside of the runqueue lock. (Doing it
  1580. * with the lock held can cause deadlocks; see schedule() for
  1581. * details.)
  1582. */
  1583. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1584. __releases(rq->lock)
  1585. {
  1586. struct mm_struct *mm = rq->prev_mm;
  1587. long prev_state;
  1588. rq->prev_mm = NULL;
  1589. /*
  1590. * A task struct has one reference for the use as "current".
  1591. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1592. * schedule one last time. The schedule call will never return, and
  1593. * the scheduled task must drop that reference.
  1594. * The test for TASK_DEAD must occur while the runqueue locks are
  1595. * still held, otherwise prev could be scheduled on another cpu, die
  1596. * there before we look at prev->state, and then the reference would
  1597. * be dropped twice.
  1598. * Manfred Spraul <manfred@colorfullife.com>
  1599. */
  1600. prev_state = prev->state;
  1601. finish_arch_switch(prev);
  1602. finish_lock_switch(rq, prev);
  1603. if (mm)
  1604. mmdrop(mm);
  1605. if (unlikely(prev_state == TASK_DEAD)) {
  1606. /*
  1607. * Remove function-return probe instances associated with this
  1608. * task and put them back on the free list.
  1609. */
  1610. kprobe_flush_task(prev);
  1611. put_task_struct(prev);
  1612. }
  1613. }
  1614. /**
  1615. * schedule_tail - first thing a freshly forked thread must call.
  1616. * @prev: the thread we just switched away from.
  1617. */
  1618. asmlinkage void schedule_tail(struct task_struct *prev)
  1619. __releases(rq->lock)
  1620. {
  1621. struct rq *rq = this_rq();
  1622. finish_task_switch(rq, prev);
  1623. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1624. /* In this case, finish_task_switch does not reenable preemption */
  1625. preempt_enable();
  1626. #endif
  1627. if (current->set_child_tid)
  1628. put_user(current->pid, current->set_child_tid);
  1629. }
  1630. /*
  1631. * context_switch - switch to the new MM and the new
  1632. * thread's register state.
  1633. */
  1634. static inline struct task_struct *
  1635. context_switch(struct rq *rq, struct task_struct *prev,
  1636. struct task_struct *next)
  1637. {
  1638. struct mm_struct *mm = next->mm;
  1639. struct mm_struct *oldmm = prev->active_mm;
  1640. /*
  1641. * For paravirt, this is coupled with an exit in switch_to to
  1642. * combine the page table reload and the switch backend into
  1643. * one hypercall.
  1644. */
  1645. arch_enter_lazy_cpu_mode();
  1646. if (!mm) {
  1647. next->active_mm = oldmm;
  1648. atomic_inc(&oldmm->mm_count);
  1649. enter_lazy_tlb(oldmm, next);
  1650. } else
  1651. switch_mm(oldmm, mm, next);
  1652. if (!prev->mm) {
  1653. prev->active_mm = NULL;
  1654. WARN_ON(rq->prev_mm);
  1655. rq->prev_mm = oldmm;
  1656. }
  1657. /*
  1658. * Since the runqueue lock will be released by the next
  1659. * task (which is an invalid locking op but in the case
  1660. * of the scheduler it's an obvious special-case), so we
  1661. * do an early lockdep release here:
  1662. */
  1663. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1664. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1665. #endif
  1666. /* Here we just switch the register state and the stack. */
  1667. switch_to(prev, next, prev);
  1668. return prev;
  1669. }
  1670. /*
  1671. * nr_running, nr_uninterruptible and nr_context_switches:
  1672. *
  1673. * externally visible scheduler statistics: current number of runnable
  1674. * threads, current number of uninterruptible-sleeping threads, total
  1675. * number of context switches performed since bootup.
  1676. */
  1677. unsigned long nr_running(void)
  1678. {
  1679. unsigned long i, sum = 0;
  1680. for_each_online_cpu(i)
  1681. sum += cpu_rq(i)->nr_running;
  1682. return sum;
  1683. }
  1684. unsigned long nr_uninterruptible(void)
  1685. {
  1686. unsigned long i, sum = 0;
  1687. for_each_possible_cpu(i)
  1688. sum += cpu_rq(i)->nr_uninterruptible;
  1689. /*
  1690. * Since we read the counters lockless, it might be slightly
  1691. * inaccurate. Do not allow it to go below zero though:
  1692. */
  1693. if (unlikely((long)sum < 0))
  1694. sum = 0;
  1695. return sum;
  1696. }
  1697. unsigned long long nr_context_switches(void)
  1698. {
  1699. int i;
  1700. unsigned long long sum = 0;
  1701. for_each_possible_cpu(i)
  1702. sum += cpu_rq(i)->nr_switches;
  1703. return sum;
  1704. }
  1705. unsigned long nr_iowait(void)
  1706. {
  1707. unsigned long i, sum = 0;
  1708. for_each_possible_cpu(i)
  1709. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1710. return sum;
  1711. }
  1712. unsigned long nr_active(void)
  1713. {
  1714. unsigned long i, running = 0, uninterruptible = 0;
  1715. for_each_online_cpu(i) {
  1716. running += cpu_rq(i)->nr_running;
  1717. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1718. }
  1719. if (unlikely((long)uninterruptible < 0))
  1720. uninterruptible = 0;
  1721. return running + uninterruptible;
  1722. }
  1723. #ifdef CONFIG_SMP
  1724. /*
  1725. * Is this task likely cache-hot:
  1726. */
  1727. static inline int
  1728. task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
  1729. {
  1730. return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
  1731. }
  1732. /*
  1733. * double_rq_lock - safely lock two runqueues
  1734. *
  1735. * Note this does not disable interrupts like task_rq_lock,
  1736. * you need to do so manually before calling.
  1737. */
  1738. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1739. __acquires(rq1->lock)
  1740. __acquires(rq2->lock)
  1741. {
  1742. BUG_ON(!irqs_disabled());
  1743. if (rq1 == rq2) {
  1744. spin_lock(&rq1->lock);
  1745. __acquire(rq2->lock); /* Fake it out ;) */
  1746. } else {
  1747. if (rq1 < rq2) {
  1748. spin_lock(&rq1->lock);
  1749. spin_lock(&rq2->lock);
  1750. } else {
  1751. spin_lock(&rq2->lock);
  1752. spin_lock(&rq1->lock);
  1753. }
  1754. }
  1755. }
  1756. /*
  1757. * double_rq_unlock - safely unlock two runqueues
  1758. *
  1759. * Note this does not restore interrupts like task_rq_unlock,
  1760. * you need to do so manually after calling.
  1761. */
  1762. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1763. __releases(rq1->lock)
  1764. __releases(rq2->lock)
  1765. {
  1766. spin_unlock(&rq1->lock);
  1767. if (rq1 != rq2)
  1768. spin_unlock(&rq2->lock);
  1769. else
  1770. __release(rq2->lock);
  1771. }
  1772. /*
  1773. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1774. */
  1775. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1776. __releases(this_rq->lock)
  1777. __acquires(busiest->lock)
  1778. __acquires(this_rq->lock)
  1779. {
  1780. if (unlikely(!irqs_disabled())) {
  1781. /* printk() doesn't work good under rq->lock */
  1782. spin_unlock(&this_rq->lock);
  1783. BUG_ON(1);
  1784. }
  1785. if (unlikely(!spin_trylock(&busiest->lock))) {
  1786. if (busiest < this_rq) {
  1787. spin_unlock(&this_rq->lock);
  1788. spin_lock(&busiest->lock);
  1789. spin_lock(&this_rq->lock);
  1790. } else
  1791. spin_lock(&busiest->lock);
  1792. }
  1793. }
  1794. /*
  1795. * If dest_cpu is allowed for this process, migrate the task to it.
  1796. * This is accomplished by forcing the cpu_allowed mask to only
  1797. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1798. * the cpu_allowed mask is restored.
  1799. */
  1800. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1801. {
  1802. struct migration_req req;
  1803. unsigned long flags;
  1804. struct rq *rq;
  1805. rq = task_rq_lock(p, &flags);
  1806. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1807. || unlikely(cpu_is_offline(dest_cpu)))
  1808. goto out;
  1809. /* force the process onto the specified CPU */
  1810. if (migrate_task(p, dest_cpu, &req)) {
  1811. /* Need to wait for migration thread (might exit: take ref). */
  1812. struct task_struct *mt = rq->migration_thread;
  1813. get_task_struct(mt);
  1814. task_rq_unlock(rq, &flags);
  1815. wake_up_process(mt);
  1816. put_task_struct(mt);
  1817. wait_for_completion(&req.done);
  1818. return;
  1819. }
  1820. out:
  1821. task_rq_unlock(rq, &flags);
  1822. }
  1823. /*
  1824. * sched_exec - execve() is a valuable balancing opportunity, because at
  1825. * this point the task has the smallest effective memory and cache footprint.
  1826. */
  1827. void sched_exec(void)
  1828. {
  1829. int new_cpu, this_cpu = get_cpu();
  1830. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1831. put_cpu();
  1832. if (new_cpu != this_cpu)
  1833. sched_migrate_task(current, new_cpu);
  1834. }
  1835. /*
  1836. * pull_task - move a task from a remote runqueue to the local runqueue.
  1837. * Both runqueues must be locked.
  1838. */
  1839. static void pull_task(struct rq *src_rq, struct prio_array *src_array,
  1840. struct task_struct *p, struct rq *this_rq,
  1841. struct prio_array *this_array, int this_cpu)
  1842. {
  1843. dequeue_task(p, src_array);
  1844. dec_nr_running(p, src_rq);
  1845. set_task_cpu(p, this_cpu);
  1846. inc_nr_running(p, this_rq);
  1847. enqueue_task(p, this_array);
  1848. p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
  1849. + this_rq->most_recent_timestamp;
  1850. /*
  1851. * Note that idle threads have a prio of MAX_PRIO, for this test
  1852. * to be always true for them.
  1853. */
  1854. if (TASK_PREEMPTS_CURR(p, this_rq))
  1855. resched_task(this_rq->curr);
  1856. }
  1857. /*
  1858. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1859. */
  1860. static
  1861. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1862. struct sched_domain *sd, enum idle_type idle,
  1863. int *all_pinned)
  1864. {
  1865. /*
  1866. * We do not migrate tasks that are:
  1867. * 1) running (obviously), or
  1868. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1869. * 3) are cache-hot on their current CPU.
  1870. */
  1871. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1872. return 0;
  1873. *all_pinned = 0;
  1874. if (task_running(rq, p))
  1875. return 0;
  1876. /*
  1877. * Aggressive migration if:
  1878. * 1) task is cache cold, or
  1879. * 2) too many balance attempts have failed.
  1880. */
  1881. if (sd->nr_balance_failed > sd->cache_nice_tries) {
  1882. #ifdef CONFIG_SCHEDSTATS
  1883. if (task_hot(p, rq->most_recent_timestamp, sd))
  1884. schedstat_inc(sd, lb_hot_gained[idle]);
  1885. #endif
  1886. return 1;
  1887. }
  1888. if (task_hot(p, rq->most_recent_timestamp, sd))
  1889. return 0;
  1890. return 1;
  1891. }
  1892. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1893. /*
  1894. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1895. * load from busiest to this_rq, as part of a balancing operation within
  1896. * "domain". Returns the number of tasks moved.
  1897. *
  1898. * Called with both runqueues locked.
  1899. */
  1900. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1901. unsigned long max_nr_move, unsigned long max_load_move,
  1902. struct sched_domain *sd, enum idle_type idle,
  1903. int *all_pinned)
  1904. {
  1905. int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
  1906. best_prio_seen, skip_for_load;
  1907. struct prio_array *array, *dst_array;
  1908. struct list_head *head, *curr;
  1909. struct task_struct *tmp;
  1910. long rem_load_move;
  1911. if (max_nr_move == 0 || max_load_move == 0)
  1912. goto out;
  1913. rem_load_move = max_load_move;
  1914. pinned = 1;
  1915. this_best_prio = rq_best_prio(this_rq);
  1916. best_prio = rq_best_prio(busiest);
  1917. /*
  1918. * Enable handling of the case where there is more than one task
  1919. * with the best priority. If the current running task is one
  1920. * of those with prio==best_prio we know it won't be moved
  1921. * and therefore it's safe to override the skip (based on load) of
  1922. * any task we find with that prio.
  1923. */
  1924. best_prio_seen = best_prio == busiest->curr->prio;
  1925. /*
  1926. * We first consider expired tasks. Those will likely not be
  1927. * executed in the near future, and they are most likely to
  1928. * be cache-cold, thus switching CPUs has the least effect
  1929. * on them.
  1930. */
  1931. if (busiest->expired->nr_active) {
  1932. array = busiest->expired;
  1933. dst_array = this_rq->expired;
  1934. } else {
  1935. array = busiest->active;
  1936. dst_array = this_rq->active;
  1937. }
  1938. new_array:
  1939. /* Start searching at priority 0: */
  1940. idx = 0;
  1941. skip_bitmap:
  1942. if (!idx)
  1943. idx = sched_find_first_bit(array->bitmap);
  1944. else
  1945. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1946. if (idx >= MAX_PRIO) {
  1947. if (array == busiest->expired && busiest->active->nr_active) {
  1948. array = busiest->active;
  1949. dst_array = this_rq->active;
  1950. goto new_array;
  1951. }
  1952. goto out;
  1953. }
  1954. head = array->queue + idx;
  1955. curr = head->prev;
  1956. skip_queue:
  1957. tmp = list_entry(curr, struct task_struct, run_list);
  1958. curr = curr->prev;
  1959. /*
  1960. * To help distribute high priority tasks accross CPUs we don't
  1961. * skip a task if it will be the highest priority task (i.e. smallest
  1962. * prio value) on its new queue regardless of its load weight
  1963. */
  1964. skip_for_load = tmp->load_weight > rem_load_move;
  1965. if (skip_for_load && idx < this_best_prio)
  1966. skip_for_load = !best_prio_seen && idx == best_prio;
  1967. if (skip_for_load ||
  1968. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1969. best_prio_seen |= idx == best_prio;
  1970. if (curr != head)
  1971. goto skip_queue;
  1972. idx++;
  1973. goto skip_bitmap;
  1974. }
  1975. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1976. pulled++;
  1977. rem_load_move -= tmp->load_weight;
  1978. /*
  1979. * We only want to steal up to the prescribed number of tasks
  1980. * and the prescribed amount of weighted load.
  1981. */
  1982. if (pulled < max_nr_move && rem_load_move > 0) {
  1983. if (idx < this_best_prio)
  1984. this_best_prio = idx;
  1985. if (curr != head)
  1986. goto skip_queue;
  1987. idx++;
  1988. goto skip_bitmap;
  1989. }
  1990. out:
  1991. /*
  1992. * Right now, this is the only place pull_task() is called,
  1993. * so we can safely collect pull_task() stats here rather than
  1994. * inside pull_task().
  1995. */
  1996. schedstat_add(sd, lb_gained[idle], pulled);
  1997. if (all_pinned)
  1998. *all_pinned = pinned;
  1999. return pulled;
  2000. }
  2001. /*
  2002. * find_busiest_group finds and returns the busiest CPU group within the
  2003. * domain. It calculates and returns the amount of weighted load which
  2004. * should be moved to restore balance via the imbalance parameter.
  2005. */
  2006. static struct sched_group *
  2007. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2008. unsigned long *imbalance, enum idle_type idle, int *sd_idle,
  2009. cpumask_t *cpus, int *balance)
  2010. {
  2011. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2012. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2013. unsigned long max_pull;
  2014. unsigned long busiest_load_per_task, busiest_nr_running;
  2015. unsigned long this_load_per_task, this_nr_running;
  2016. int load_idx;
  2017. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2018. int power_savings_balance = 1;
  2019. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2020. unsigned long min_nr_running = ULONG_MAX;
  2021. struct sched_group *group_min = NULL, *group_leader = NULL;
  2022. #endif
  2023. max_load = this_load = total_load = total_pwr = 0;
  2024. busiest_load_per_task = busiest_nr_running = 0;
  2025. this_load_per_task = this_nr_running = 0;
  2026. if (idle == NOT_IDLE)
  2027. load_idx = sd->busy_idx;
  2028. else if (idle == NEWLY_IDLE)
  2029. load_idx = sd->newidle_idx;
  2030. else
  2031. load_idx = sd->idle_idx;
  2032. do {
  2033. unsigned long load, group_capacity;
  2034. int local_group;
  2035. int i;
  2036. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2037. unsigned long sum_nr_running, sum_weighted_load;
  2038. local_group = cpu_isset(this_cpu, group->cpumask);
  2039. if (local_group)
  2040. balance_cpu = first_cpu(group->cpumask);
  2041. /* Tally up the load of all CPUs in the group */
  2042. sum_weighted_load = sum_nr_running = avg_load = 0;
  2043. for_each_cpu_mask(i, group->cpumask) {
  2044. struct rq *rq;
  2045. if (!cpu_isset(i, *cpus))
  2046. continue;
  2047. rq = cpu_rq(i);
  2048. if (*sd_idle && !idle_cpu(i))
  2049. *sd_idle = 0;
  2050. /* Bias balancing toward cpus of our domain */
  2051. if (local_group) {
  2052. if (idle_cpu(i) && !first_idle_cpu) {
  2053. first_idle_cpu = 1;
  2054. balance_cpu = i;
  2055. }
  2056. load = target_load(i, load_idx);
  2057. } else
  2058. load = source_load(i, load_idx);
  2059. avg_load += load;
  2060. sum_nr_running += rq->nr_running;
  2061. sum_weighted_load += rq->raw_weighted_load;
  2062. }
  2063. /*
  2064. * First idle cpu or the first cpu(busiest) in this sched group
  2065. * is eligible for doing load balancing at this and above
  2066. * domains.
  2067. */
  2068. if (local_group && balance_cpu != this_cpu && balance) {
  2069. *balance = 0;
  2070. goto ret;
  2071. }
  2072. total_load += avg_load;
  2073. total_pwr += group->cpu_power;
  2074. /* Adjust by relative CPU power of the group */
  2075. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2076. group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
  2077. if (local_group) {
  2078. this_load = avg_load;
  2079. this = group;
  2080. this_nr_running = sum_nr_running;
  2081. this_load_per_task = sum_weighted_load;
  2082. } else if (avg_load > max_load &&
  2083. sum_nr_running > group_capacity) {
  2084. max_load = avg_load;
  2085. busiest = group;
  2086. busiest_nr_running = sum_nr_running;
  2087. busiest_load_per_task = sum_weighted_load;
  2088. }
  2089. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2090. /*
  2091. * Busy processors will not participate in power savings
  2092. * balance.
  2093. */
  2094. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2095. goto group_next;
  2096. /*
  2097. * If the local group is idle or completely loaded
  2098. * no need to do power savings balance at this domain
  2099. */
  2100. if (local_group && (this_nr_running >= group_capacity ||
  2101. !this_nr_running))
  2102. power_savings_balance = 0;
  2103. /*
  2104. * If a group is already running at full capacity or idle,
  2105. * don't include that group in power savings calculations
  2106. */
  2107. if (!power_savings_balance || sum_nr_running >= group_capacity
  2108. || !sum_nr_running)
  2109. goto group_next;
  2110. /*
  2111. * Calculate the group which has the least non-idle load.
  2112. * This is the group from where we need to pick up the load
  2113. * for saving power
  2114. */
  2115. if ((sum_nr_running < min_nr_running) ||
  2116. (sum_nr_running == min_nr_running &&
  2117. first_cpu(group->cpumask) <
  2118. first_cpu(group_min->cpumask))) {
  2119. group_min = group;
  2120. min_nr_running = sum_nr_running;
  2121. min_load_per_task = sum_weighted_load /
  2122. sum_nr_running;
  2123. }
  2124. /*
  2125. * Calculate the group which is almost near its
  2126. * capacity but still has some space to pick up some load
  2127. * from other group and save more power
  2128. */
  2129. if (sum_nr_running <= group_capacity - 1) {
  2130. if (sum_nr_running > leader_nr_running ||
  2131. (sum_nr_running == leader_nr_running &&
  2132. first_cpu(group->cpumask) >
  2133. first_cpu(group_leader->cpumask))) {
  2134. group_leader = group;
  2135. leader_nr_running = sum_nr_running;
  2136. }
  2137. }
  2138. group_next:
  2139. #endif
  2140. group = group->next;
  2141. } while (group != sd->groups);
  2142. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2143. goto out_balanced;
  2144. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2145. if (this_load >= avg_load ||
  2146. 100*max_load <= sd->imbalance_pct*this_load)
  2147. goto out_balanced;
  2148. busiest_load_per_task /= busiest_nr_running;
  2149. /*
  2150. * We're trying to get all the cpus to the average_load, so we don't
  2151. * want to push ourselves above the average load, nor do we wish to
  2152. * reduce the max loaded cpu below the average load, as either of these
  2153. * actions would just result in more rebalancing later, and ping-pong
  2154. * tasks around. Thus we look for the minimum possible imbalance.
  2155. * Negative imbalances (*we* are more loaded than anyone else) will
  2156. * be counted as no imbalance for these purposes -- we can't fix that
  2157. * by pulling tasks to us. Be careful of negative numbers as they'll
  2158. * appear as very large values with unsigned longs.
  2159. */
  2160. if (max_load <= busiest_load_per_task)
  2161. goto out_balanced;
  2162. /*
  2163. * In the presence of smp nice balancing, certain scenarios can have
  2164. * max load less than avg load(as we skip the groups at or below
  2165. * its cpu_power, while calculating max_load..)
  2166. */
  2167. if (max_load < avg_load) {
  2168. *imbalance = 0;
  2169. goto small_imbalance;
  2170. }
  2171. /* Don't want to pull so many tasks that a group would go idle */
  2172. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2173. /* How much load to actually move to equalise the imbalance */
  2174. *imbalance = min(max_pull * busiest->cpu_power,
  2175. (avg_load - this_load) * this->cpu_power)
  2176. / SCHED_LOAD_SCALE;
  2177. /*
  2178. * if *imbalance is less than the average load per runnable task
  2179. * there is no gaurantee that any tasks will be moved so we'll have
  2180. * a think about bumping its value to force at least one task to be
  2181. * moved
  2182. */
  2183. if (*imbalance < busiest_load_per_task) {
  2184. unsigned long tmp, pwr_now, pwr_move;
  2185. unsigned int imbn;
  2186. small_imbalance:
  2187. pwr_move = pwr_now = 0;
  2188. imbn = 2;
  2189. if (this_nr_running) {
  2190. this_load_per_task /= this_nr_running;
  2191. if (busiest_load_per_task > this_load_per_task)
  2192. imbn = 1;
  2193. } else
  2194. this_load_per_task = SCHED_LOAD_SCALE;
  2195. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2196. *imbalance = busiest_load_per_task;
  2197. return busiest;
  2198. }
  2199. /*
  2200. * OK, we don't have enough imbalance to justify moving tasks,
  2201. * however we may be able to increase total CPU power used by
  2202. * moving them.
  2203. */
  2204. pwr_now += busiest->cpu_power *
  2205. min(busiest_load_per_task, max_load);
  2206. pwr_now += this->cpu_power *
  2207. min(this_load_per_task, this_load);
  2208. pwr_now /= SCHED_LOAD_SCALE;
  2209. /* Amount of load we'd subtract */
  2210. tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
  2211. busiest->cpu_power;
  2212. if (max_load > tmp)
  2213. pwr_move += busiest->cpu_power *
  2214. min(busiest_load_per_task, max_load - tmp);
  2215. /* Amount of load we'd add */
  2216. if (max_load * busiest->cpu_power <
  2217. busiest_load_per_task * SCHED_LOAD_SCALE)
  2218. tmp = max_load * busiest->cpu_power / this->cpu_power;
  2219. else
  2220. tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
  2221. this->cpu_power;
  2222. pwr_move += this->cpu_power *
  2223. min(this_load_per_task, this_load + tmp);
  2224. pwr_move /= SCHED_LOAD_SCALE;
  2225. /* Move if we gain throughput */
  2226. if (pwr_move <= pwr_now)
  2227. goto out_balanced;
  2228. *imbalance = busiest_load_per_task;
  2229. }
  2230. return busiest;
  2231. out_balanced:
  2232. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2233. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2234. goto ret;
  2235. if (this == group_leader && group_leader != group_min) {
  2236. *imbalance = min_load_per_task;
  2237. return group_min;
  2238. }
  2239. #endif
  2240. ret:
  2241. *imbalance = 0;
  2242. return NULL;
  2243. }
  2244. /*
  2245. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2246. */
  2247. static struct rq *
  2248. find_busiest_queue(struct sched_group *group, enum idle_type idle,
  2249. unsigned long imbalance, cpumask_t *cpus)
  2250. {
  2251. struct rq *busiest = NULL, *rq;
  2252. unsigned long max_load = 0;
  2253. int i;
  2254. for_each_cpu_mask(i, group->cpumask) {
  2255. if (!cpu_isset(i, *cpus))
  2256. continue;
  2257. rq = cpu_rq(i);
  2258. if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
  2259. continue;
  2260. if (rq->raw_weighted_load > max_load) {
  2261. max_load = rq->raw_weighted_load;
  2262. busiest = rq;
  2263. }
  2264. }
  2265. return busiest;
  2266. }
  2267. /*
  2268. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2269. * so long as it is large enough.
  2270. */
  2271. #define MAX_PINNED_INTERVAL 512
  2272. static inline unsigned long minus_1_or_zero(unsigned long n)
  2273. {
  2274. return n > 0 ? n - 1 : 0;
  2275. }
  2276. /*
  2277. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2278. * tasks if there is an imbalance.
  2279. */
  2280. static int load_balance(int this_cpu, struct rq *this_rq,
  2281. struct sched_domain *sd, enum idle_type idle,
  2282. int *balance)
  2283. {
  2284. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2285. struct sched_group *group;
  2286. unsigned long imbalance;
  2287. struct rq *busiest;
  2288. cpumask_t cpus = CPU_MASK_ALL;
  2289. unsigned long flags;
  2290. /*
  2291. * When power savings policy is enabled for the parent domain, idle
  2292. * sibling can pick up load irrespective of busy siblings. In this case,
  2293. * let the state of idle sibling percolate up as IDLE, instead of
  2294. * portraying it as NOT_IDLE.
  2295. */
  2296. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2297. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2298. sd_idle = 1;
  2299. schedstat_inc(sd, lb_cnt[idle]);
  2300. redo:
  2301. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2302. &cpus, balance);
  2303. if (*balance == 0)
  2304. goto out_balanced;
  2305. if (!group) {
  2306. schedstat_inc(sd, lb_nobusyg[idle]);
  2307. goto out_balanced;
  2308. }
  2309. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2310. if (!busiest) {
  2311. schedstat_inc(sd, lb_nobusyq[idle]);
  2312. goto out_balanced;
  2313. }
  2314. BUG_ON(busiest == this_rq);
  2315. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2316. nr_moved = 0;
  2317. if (busiest->nr_running > 1) {
  2318. /*
  2319. * Attempt to move tasks. If find_busiest_group has found
  2320. * an imbalance but busiest->nr_running <= 1, the group is
  2321. * still unbalanced. nr_moved simply stays zero, so it is
  2322. * correctly treated as an imbalance.
  2323. */
  2324. local_irq_save(flags);
  2325. double_rq_lock(this_rq, busiest);
  2326. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2327. minus_1_or_zero(busiest->nr_running),
  2328. imbalance, sd, idle, &all_pinned);
  2329. double_rq_unlock(this_rq, busiest);
  2330. local_irq_restore(flags);
  2331. /* All tasks on this runqueue were pinned by CPU affinity */
  2332. if (unlikely(all_pinned)) {
  2333. cpu_clear(cpu_of(busiest), cpus);
  2334. if (!cpus_empty(cpus))
  2335. goto redo;
  2336. goto out_balanced;
  2337. }
  2338. }
  2339. if (!nr_moved) {
  2340. schedstat_inc(sd, lb_failed[idle]);
  2341. sd->nr_balance_failed++;
  2342. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2343. spin_lock_irqsave(&busiest->lock, flags);
  2344. /* don't kick the migration_thread, if the curr
  2345. * task on busiest cpu can't be moved to this_cpu
  2346. */
  2347. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2348. spin_unlock_irqrestore(&busiest->lock, flags);
  2349. all_pinned = 1;
  2350. goto out_one_pinned;
  2351. }
  2352. if (!busiest->active_balance) {
  2353. busiest->active_balance = 1;
  2354. busiest->push_cpu = this_cpu;
  2355. active_balance = 1;
  2356. }
  2357. spin_unlock_irqrestore(&busiest->lock, flags);
  2358. if (active_balance)
  2359. wake_up_process(busiest->migration_thread);
  2360. /*
  2361. * We've kicked active balancing, reset the failure
  2362. * counter.
  2363. */
  2364. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2365. }
  2366. } else
  2367. sd->nr_balance_failed = 0;
  2368. if (likely(!active_balance)) {
  2369. /* We were unbalanced, so reset the balancing interval */
  2370. sd->balance_interval = sd->min_interval;
  2371. } else {
  2372. /*
  2373. * If we've begun active balancing, start to back off. This
  2374. * case may not be covered by the all_pinned logic if there
  2375. * is only 1 task on the busy runqueue (because we don't call
  2376. * move_tasks).
  2377. */
  2378. if (sd->balance_interval < sd->max_interval)
  2379. sd->balance_interval *= 2;
  2380. }
  2381. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2382. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2383. return -1;
  2384. return nr_moved;
  2385. out_balanced:
  2386. schedstat_inc(sd, lb_balanced[idle]);
  2387. sd->nr_balance_failed = 0;
  2388. out_one_pinned:
  2389. /* tune up the balancing interval */
  2390. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2391. (sd->balance_interval < sd->max_interval))
  2392. sd->balance_interval *= 2;
  2393. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2394. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2395. return -1;
  2396. return 0;
  2397. }
  2398. /*
  2399. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2400. * tasks if there is an imbalance.
  2401. *
  2402. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  2403. * this_rq is locked.
  2404. */
  2405. static int
  2406. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2407. {
  2408. struct sched_group *group;
  2409. struct rq *busiest = NULL;
  2410. unsigned long imbalance;
  2411. int nr_moved = 0;
  2412. int sd_idle = 0;
  2413. cpumask_t cpus = CPU_MASK_ALL;
  2414. /*
  2415. * When power savings policy is enabled for the parent domain, idle
  2416. * sibling can pick up load irrespective of busy siblings. In this case,
  2417. * let the state of idle sibling percolate up as IDLE, instead of
  2418. * portraying it as NOT_IDLE.
  2419. */
  2420. if (sd->flags & SD_SHARE_CPUPOWER &&
  2421. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2422. sd_idle = 1;
  2423. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  2424. redo:
  2425. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
  2426. &sd_idle, &cpus, NULL);
  2427. if (!group) {
  2428. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  2429. goto out_balanced;
  2430. }
  2431. busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
  2432. &cpus);
  2433. if (!busiest) {
  2434. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  2435. goto out_balanced;
  2436. }
  2437. BUG_ON(busiest == this_rq);
  2438. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  2439. nr_moved = 0;
  2440. if (busiest->nr_running > 1) {
  2441. /* Attempt to move tasks */
  2442. double_lock_balance(this_rq, busiest);
  2443. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2444. minus_1_or_zero(busiest->nr_running),
  2445. imbalance, sd, NEWLY_IDLE, NULL);
  2446. spin_unlock(&busiest->lock);
  2447. if (!nr_moved) {
  2448. cpu_clear(cpu_of(busiest), cpus);
  2449. if (!cpus_empty(cpus))
  2450. goto redo;
  2451. }
  2452. }
  2453. if (!nr_moved) {
  2454. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  2455. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2456. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2457. return -1;
  2458. } else
  2459. sd->nr_balance_failed = 0;
  2460. return nr_moved;
  2461. out_balanced:
  2462. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  2463. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2464. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2465. return -1;
  2466. sd->nr_balance_failed = 0;
  2467. return 0;
  2468. }
  2469. /*
  2470. * idle_balance is called by schedule() if this_cpu is about to become
  2471. * idle. Attempts to pull tasks from other CPUs.
  2472. */
  2473. static void idle_balance(int this_cpu, struct rq *this_rq)
  2474. {
  2475. struct sched_domain *sd;
  2476. int pulled_task = 0;
  2477. unsigned long next_balance = jiffies + 60 * HZ;
  2478. for_each_domain(this_cpu, sd) {
  2479. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2480. /* If we've pulled tasks over stop searching: */
  2481. pulled_task = load_balance_newidle(this_cpu,
  2482. this_rq, sd);
  2483. if (time_after(next_balance,
  2484. sd->last_balance + sd->balance_interval))
  2485. next_balance = sd->last_balance
  2486. + sd->balance_interval;
  2487. if (pulled_task)
  2488. break;
  2489. }
  2490. }
  2491. if (!pulled_task)
  2492. /*
  2493. * We are going idle. next_balance may be set based on
  2494. * a busy processor. So reset next_balance.
  2495. */
  2496. this_rq->next_balance = next_balance;
  2497. }
  2498. /*
  2499. * active_load_balance is run by migration threads. It pushes running tasks
  2500. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2501. * running on each physical CPU where possible, and avoids physical /
  2502. * logical imbalances.
  2503. *
  2504. * Called with busiest_rq locked.
  2505. */
  2506. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2507. {
  2508. int target_cpu = busiest_rq->push_cpu;
  2509. struct sched_domain *sd;
  2510. struct rq *target_rq;
  2511. /* Is there any task to move? */
  2512. if (busiest_rq->nr_running <= 1)
  2513. return;
  2514. target_rq = cpu_rq(target_cpu);
  2515. /*
  2516. * This condition is "impossible", if it occurs
  2517. * we need to fix it. Originally reported by
  2518. * Bjorn Helgaas on a 128-cpu setup.
  2519. */
  2520. BUG_ON(busiest_rq == target_rq);
  2521. /* move a task from busiest_rq to target_rq */
  2522. double_lock_balance(busiest_rq, target_rq);
  2523. /* Search for an sd spanning us and the target CPU. */
  2524. for_each_domain(target_cpu, sd) {
  2525. if ((sd->flags & SD_LOAD_BALANCE) &&
  2526. cpu_isset(busiest_cpu, sd->span))
  2527. break;
  2528. }
  2529. if (likely(sd)) {
  2530. schedstat_inc(sd, alb_cnt);
  2531. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2532. RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
  2533. NULL))
  2534. schedstat_inc(sd, alb_pushed);
  2535. else
  2536. schedstat_inc(sd, alb_failed);
  2537. }
  2538. spin_unlock(&target_rq->lock);
  2539. }
  2540. static void update_load(struct rq *this_rq)
  2541. {
  2542. unsigned long this_load;
  2543. unsigned int i, scale;
  2544. this_load = this_rq->raw_weighted_load;
  2545. /* Update our load: */
  2546. for (i = 0, scale = 1; i < 3; i++, scale += scale) {
  2547. unsigned long old_load, new_load;
  2548. /* scale is effectively 1 << i now, and >> i divides by scale */
  2549. old_load = this_rq->cpu_load[i];
  2550. new_load = this_load;
  2551. /*
  2552. * Round up the averaging division if load is increasing. This
  2553. * prevents us from getting stuck on 9 if the load is 10, for
  2554. * example.
  2555. */
  2556. if (new_load > old_load)
  2557. new_load += scale-1;
  2558. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2559. }
  2560. }
  2561. /*
  2562. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2563. *
  2564. * It checks each scheduling domain to see if it is due to be balanced,
  2565. * and initiates a balancing operation if so.
  2566. *
  2567. * Balancing parameters are set up in arch_init_sched_domains.
  2568. */
  2569. static DEFINE_SPINLOCK(balancing);
  2570. static void run_rebalance_domains(struct softirq_action *h)
  2571. {
  2572. int this_cpu = smp_processor_id(), balance = 1;
  2573. struct rq *this_rq = cpu_rq(this_cpu);
  2574. unsigned long interval;
  2575. struct sched_domain *sd;
  2576. enum idle_type idle = this_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
  2577. /* Earliest time when we have to call run_rebalance_domains again */
  2578. unsigned long next_balance = jiffies + 60*HZ;
  2579. for_each_domain(this_cpu, sd) {
  2580. if (!(sd->flags & SD_LOAD_BALANCE))
  2581. continue;
  2582. interval = sd->balance_interval;
  2583. if (idle != SCHED_IDLE)
  2584. interval *= sd->busy_factor;
  2585. /* scale ms to jiffies */
  2586. interval = msecs_to_jiffies(interval);
  2587. if (unlikely(!interval))
  2588. interval = 1;
  2589. if (sd->flags & SD_SERIALIZE) {
  2590. if (!spin_trylock(&balancing))
  2591. goto out;
  2592. }
  2593. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2594. if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
  2595. /*
  2596. * We've pulled tasks over so either we're no
  2597. * longer idle, or one of our SMT siblings is
  2598. * not idle.
  2599. */
  2600. idle = NOT_IDLE;
  2601. }
  2602. sd->last_balance = jiffies;
  2603. }
  2604. if (sd->flags & SD_SERIALIZE)
  2605. spin_unlock(&balancing);
  2606. out:
  2607. if (time_after(next_balance, sd->last_balance + interval))
  2608. next_balance = sd->last_balance + interval;
  2609. /*
  2610. * Stop the load balance at this level. There is another
  2611. * CPU in our sched group which is doing load balancing more
  2612. * actively.
  2613. */
  2614. if (!balance)
  2615. break;
  2616. }
  2617. this_rq->next_balance = next_balance;
  2618. }
  2619. #else
  2620. /*
  2621. * on UP we do not need to balance between CPUs:
  2622. */
  2623. static inline void idle_balance(int cpu, struct rq *rq)
  2624. {
  2625. }
  2626. #endif
  2627. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2628. EXPORT_PER_CPU_SYMBOL(kstat);
  2629. /*
  2630. * This is called on clock ticks and on context switches.
  2631. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2632. */
  2633. static inline void
  2634. update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
  2635. {
  2636. p->sched_time += now - p->last_ran;
  2637. p->last_ran = rq->most_recent_timestamp = now;
  2638. }
  2639. /*
  2640. * Return current->sched_time plus any more ns on the sched_clock
  2641. * that have not yet been banked.
  2642. */
  2643. unsigned long long current_sched_time(const struct task_struct *p)
  2644. {
  2645. unsigned long long ns;
  2646. unsigned long flags;
  2647. local_irq_save(flags);
  2648. ns = p->sched_time + sched_clock() - p->last_ran;
  2649. local_irq_restore(flags);
  2650. return ns;
  2651. }
  2652. /*
  2653. * We place interactive tasks back into the active array, if possible.
  2654. *
  2655. * To guarantee that this does not starve expired tasks we ignore the
  2656. * interactivity of a task if the first expired task had to wait more
  2657. * than a 'reasonable' amount of time. This deadline timeout is
  2658. * load-dependent, as the frequency of array switched decreases with
  2659. * increasing number of running tasks. We also ignore the interactivity
  2660. * if a better static_prio task has expired:
  2661. */
  2662. static inline int expired_starving(struct rq *rq)
  2663. {
  2664. if (rq->curr->static_prio > rq->best_expired_prio)
  2665. return 1;
  2666. if (!STARVATION_LIMIT || !rq->expired_timestamp)
  2667. return 0;
  2668. if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
  2669. return 1;
  2670. return 0;
  2671. }
  2672. /*
  2673. * Account user cpu time to a process.
  2674. * @p: the process that the cpu time gets accounted to
  2675. * @hardirq_offset: the offset to subtract from hardirq_count()
  2676. * @cputime: the cpu time spent in user space since the last update
  2677. */
  2678. void account_user_time(struct task_struct *p, cputime_t cputime)
  2679. {
  2680. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2681. cputime64_t tmp;
  2682. p->utime = cputime_add(p->utime, cputime);
  2683. /* Add user time to cpustat. */
  2684. tmp = cputime_to_cputime64(cputime);
  2685. if (TASK_NICE(p) > 0)
  2686. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2687. else
  2688. cpustat->user = cputime64_add(cpustat->user, tmp);
  2689. }
  2690. /*
  2691. * Account system cpu time to a process.
  2692. * @p: the process that the cpu time gets accounted to
  2693. * @hardirq_offset: the offset to subtract from hardirq_count()
  2694. * @cputime: the cpu time spent in kernel space since the last update
  2695. */
  2696. void account_system_time(struct task_struct *p, int hardirq_offset,
  2697. cputime_t cputime)
  2698. {
  2699. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2700. struct rq *rq = this_rq();
  2701. cputime64_t tmp;
  2702. p->stime = cputime_add(p->stime, cputime);
  2703. /* Add system time to cpustat. */
  2704. tmp = cputime_to_cputime64(cputime);
  2705. if (hardirq_count() - hardirq_offset)
  2706. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2707. else if (softirq_count())
  2708. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2709. else if (p != rq->idle)
  2710. cpustat->system = cputime64_add(cpustat->system, tmp);
  2711. else if (atomic_read(&rq->nr_iowait) > 0)
  2712. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2713. else
  2714. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2715. /* Account for system time used */
  2716. acct_update_integrals(p);
  2717. }
  2718. /*
  2719. * Account for involuntary wait time.
  2720. * @p: the process from which the cpu time has been stolen
  2721. * @steal: the cpu time spent in involuntary wait
  2722. */
  2723. void account_steal_time(struct task_struct *p, cputime_t steal)
  2724. {
  2725. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2726. cputime64_t tmp = cputime_to_cputime64(steal);
  2727. struct rq *rq = this_rq();
  2728. if (p == rq->idle) {
  2729. p->stime = cputime_add(p->stime, steal);
  2730. if (atomic_read(&rq->nr_iowait) > 0)
  2731. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2732. else
  2733. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2734. } else
  2735. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2736. }
  2737. static void task_running_tick(struct rq *rq, struct task_struct *p)
  2738. {
  2739. if (p->array != rq->active) {
  2740. /* Task has expired but was not scheduled yet */
  2741. set_tsk_need_resched(p);
  2742. return;
  2743. }
  2744. spin_lock(&rq->lock);
  2745. /*
  2746. * The task was running during this tick - update the
  2747. * time slice counter. Note: we do not update a thread's
  2748. * priority until it either goes to sleep or uses up its
  2749. * timeslice. This makes it possible for interactive tasks
  2750. * to use up their timeslices at their highest priority levels.
  2751. */
  2752. if (rt_task(p)) {
  2753. /*
  2754. * RR tasks need a special form of timeslice management.
  2755. * FIFO tasks have no timeslices.
  2756. */
  2757. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2758. p->time_slice = task_timeslice(p);
  2759. p->first_time_slice = 0;
  2760. set_tsk_need_resched(p);
  2761. /* put it at the end of the queue: */
  2762. requeue_task(p, rq->active);
  2763. }
  2764. goto out_unlock;
  2765. }
  2766. if (!--p->time_slice) {
  2767. dequeue_task(p, rq->active);
  2768. set_tsk_need_resched(p);
  2769. p->prio = effective_prio(p);
  2770. p->time_slice = task_timeslice(p);
  2771. p->first_time_slice = 0;
  2772. if (!rq->expired_timestamp)
  2773. rq->expired_timestamp = jiffies;
  2774. if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
  2775. enqueue_task(p, rq->expired);
  2776. if (p->static_prio < rq->best_expired_prio)
  2777. rq->best_expired_prio = p->static_prio;
  2778. } else
  2779. enqueue_task(p, rq->active);
  2780. } else {
  2781. /*
  2782. * Prevent a too long timeslice allowing a task to monopolize
  2783. * the CPU. We do this by splitting up the timeslice into
  2784. * smaller pieces.
  2785. *
  2786. * Note: this does not mean the task's timeslices expire or
  2787. * get lost in any way, they just might be preempted by
  2788. * another task of equal priority. (one with higher
  2789. * priority would have preempted this task already.) We
  2790. * requeue this task to the end of the list on this priority
  2791. * level, which is in essence a round-robin of tasks with
  2792. * equal priority.
  2793. *
  2794. * This only applies to tasks in the interactive
  2795. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2796. */
  2797. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2798. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2799. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2800. (p->array == rq->active)) {
  2801. requeue_task(p, rq->active);
  2802. set_tsk_need_resched(p);
  2803. }
  2804. }
  2805. out_unlock:
  2806. spin_unlock(&rq->lock);
  2807. }
  2808. /*
  2809. * This function gets called by the timer code, with HZ frequency.
  2810. * We call it with interrupts disabled.
  2811. *
  2812. * It also gets called by the fork code, when changing the parent's
  2813. * timeslices.
  2814. */
  2815. void scheduler_tick(void)
  2816. {
  2817. unsigned long long now = sched_clock();
  2818. struct task_struct *p = current;
  2819. int cpu = smp_processor_id();
  2820. int idle_at_tick = idle_cpu(cpu);
  2821. struct rq *rq = cpu_rq(cpu);
  2822. update_cpu_clock(p, rq, now);
  2823. if (!idle_at_tick)
  2824. task_running_tick(rq, p);
  2825. #ifdef CONFIG_SMP
  2826. update_load(rq);
  2827. rq->idle_at_tick = idle_at_tick;
  2828. if (time_after_eq(jiffies, rq->next_balance))
  2829. raise_softirq(SCHED_SOFTIRQ);
  2830. #endif
  2831. }
  2832. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2833. void fastcall add_preempt_count(int val)
  2834. {
  2835. /*
  2836. * Underflow?
  2837. */
  2838. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2839. return;
  2840. preempt_count() += val;
  2841. /*
  2842. * Spinlock count overflowing soon?
  2843. */
  2844. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2845. PREEMPT_MASK - 10);
  2846. }
  2847. EXPORT_SYMBOL(add_preempt_count);
  2848. void fastcall sub_preempt_count(int val)
  2849. {
  2850. /*
  2851. * Underflow?
  2852. */
  2853. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2854. return;
  2855. /*
  2856. * Is the spinlock portion underflowing?
  2857. */
  2858. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2859. !(preempt_count() & PREEMPT_MASK)))
  2860. return;
  2861. preempt_count() -= val;
  2862. }
  2863. EXPORT_SYMBOL(sub_preempt_count);
  2864. #endif
  2865. static inline int interactive_sleep(enum sleep_type sleep_type)
  2866. {
  2867. return (sleep_type == SLEEP_INTERACTIVE ||
  2868. sleep_type == SLEEP_INTERRUPTED);
  2869. }
  2870. /*
  2871. * schedule() is the main scheduler function.
  2872. */
  2873. asmlinkage void __sched schedule(void)
  2874. {
  2875. struct task_struct *prev, *next;
  2876. struct prio_array *array;
  2877. struct list_head *queue;
  2878. unsigned long long now;
  2879. unsigned long run_time;
  2880. int cpu, idx, new_prio;
  2881. long *switch_count;
  2882. struct rq *rq;
  2883. /*
  2884. * Test if we are atomic. Since do_exit() needs to call into
  2885. * schedule() atomically, we ignore that path for now.
  2886. * Otherwise, whine if we are scheduling when we should not be.
  2887. */
  2888. if (unlikely(in_atomic() && !current->exit_state)) {
  2889. printk(KERN_ERR "BUG: scheduling while atomic: "
  2890. "%s/0x%08x/%d\n",
  2891. current->comm, preempt_count(), current->pid);
  2892. debug_show_held_locks(current);
  2893. if (irqs_disabled())
  2894. print_irqtrace_events(current);
  2895. dump_stack();
  2896. }
  2897. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2898. need_resched:
  2899. preempt_disable();
  2900. prev = current;
  2901. release_kernel_lock(prev);
  2902. need_resched_nonpreemptible:
  2903. rq = this_rq();
  2904. /*
  2905. * The idle thread is not allowed to schedule!
  2906. * Remove this check after it has been exercised a bit.
  2907. */
  2908. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2909. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2910. dump_stack();
  2911. }
  2912. schedstat_inc(rq, sched_cnt);
  2913. now = sched_clock();
  2914. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2915. run_time = now - prev->timestamp;
  2916. if (unlikely((long long)(now - prev->timestamp) < 0))
  2917. run_time = 0;
  2918. } else
  2919. run_time = NS_MAX_SLEEP_AVG;
  2920. /*
  2921. * Tasks charged proportionately less run_time at high sleep_avg to
  2922. * delay them losing their interactive status
  2923. */
  2924. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2925. spin_lock_irq(&rq->lock);
  2926. switch_count = &prev->nivcsw;
  2927. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2928. switch_count = &prev->nvcsw;
  2929. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2930. unlikely(signal_pending(prev))))
  2931. prev->state = TASK_RUNNING;
  2932. else {
  2933. if (prev->state == TASK_UNINTERRUPTIBLE)
  2934. rq->nr_uninterruptible++;
  2935. deactivate_task(prev, rq);
  2936. }
  2937. }
  2938. cpu = smp_processor_id();
  2939. if (unlikely(!rq->nr_running)) {
  2940. idle_balance(cpu, rq);
  2941. if (!rq->nr_running) {
  2942. next = rq->idle;
  2943. rq->expired_timestamp = 0;
  2944. goto switch_tasks;
  2945. }
  2946. }
  2947. array = rq->active;
  2948. if (unlikely(!array->nr_active)) {
  2949. /*
  2950. * Switch the active and expired arrays.
  2951. */
  2952. schedstat_inc(rq, sched_switch);
  2953. rq->active = rq->expired;
  2954. rq->expired = array;
  2955. array = rq->active;
  2956. rq->expired_timestamp = 0;
  2957. rq->best_expired_prio = MAX_PRIO;
  2958. }
  2959. idx = sched_find_first_bit(array->bitmap);
  2960. queue = array->queue + idx;
  2961. next = list_entry(queue->next, struct task_struct, run_list);
  2962. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  2963. unsigned long long delta = now - next->timestamp;
  2964. if (unlikely((long long)(now - next->timestamp) < 0))
  2965. delta = 0;
  2966. if (next->sleep_type == SLEEP_INTERACTIVE)
  2967. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  2968. array = next->array;
  2969. new_prio = recalc_task_prio(next, next->timestamp + delta);
  2970. if (unlikely(next->prio != new_prio)) {
  2971. dequeue_task(next, array);
  2972. next->prio = new_prio;
  2973. enqueue_task(next, array);
  2974. }
  2975. }
  2976. next->sleep_type = SLEEP_NORMAL;
  2977. switch_tasks:
  2978. if (next == rq->idle)
  2979. schedstat_inc(rq, sched_goidle);
  2980. prefetch(next);
  2981. prefetch_stack(next);
  2982. clear_tsk_need_resched(prev);
  2983. rcu_qsctr_inc(task_cpu(prev));
  2984. update_cpu_clock(prev, rq, now);
  2985. prev->sleep_avg -= run_time;
  2986. if ((long)prev->sleep_avg <= 0)
  2987. prev->sleep_avg = 0;
  2988. prev->timestamp = prev->last_ran = now;
  2989. sched_info_switch(prev, next);
  2990. if (likely(prev != next)) {
  2991. next->timestamp = next->last_ran = now;
  2992. rq->nr_switches++;
  2993. rq->curr = next;
  2994. ++*switch_count;
  2995. prepare_task_switch(rq, next);
  2996. prev = context_switch(rq, prev, next);
  2997. barrier();
  2998. /*
  2999. * this_rq must be evaluated again because prev may have moved
  3000. * CPUs since it called schedule(), thus the 'rq' on its stack
  3001. * frame will be invalid.
  3002. */
  3003. finish_task_switch(this_rq(), prev);
  3004. } else
  3005. spin_unlock_irq(&rq->lock);
  3006. prev = current;
  3007. if (unlikely(reacquire_kernel_lock(prev) < 0))
  3008. goto need_resched_nonpreemptible;
  3009. preempt_enable_no_resched();
  3010. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3011. goto need_resched;
  3012. }
  3013. EXPORT_SYMBOL(schedule);
  3014. #ifdef CONFIG_PREEMPT
  3015. /*
  3016. * this is the entry point to schedule() from in-kernel preemption
  3017. * off of preempt_enable. Kernel preemptions off return from interrupt
  3018. * occur there and call schedule directly.
  3019. */
  3020. asmlinkage void __sched preempt_schedule(void)
  3021. {
  3022. struct thread_info *ti = current_thread_info();
  3023. #ifdef CONFIG_PREEMPT_BKL
  3024. struct task_struct *task = current;
  3025. int saved_lock_depth;
  3026. #endif
  3027. /*
  3028. * If there is a non-zero preempt_count or interrupts are disabled,
  3029. * we do not want to preempt the current task. Just return..
  3030. */
  3031. if (likely(ti->preempt_count || irqs_disabled()))
  3032. return;
  3033. need_resched:
  3034. add_preempt_count(PREEMPT_ACTIVE);
  3035. /*
  3036. * We keep the big kernel semaphore locked, but we
  3037. * clear ->lock_depth so that schedule() doesnt
  3038. * auto-release the semaphore:
  3039. */
  3040. #ifdef CONFIG_PREEMPT_BKL
  3041. saved_lock_depth = task->lock_depth;
  3042. task->lock_depth = -1;
  3043. #endif
  3044. schedule();
  3045. #ifdef CONFIG_PREEMPT_BKL
  3046. task->lock_depth = saved_lock_depth;
  3047. #endif
  3048. sub_preempt_count(PREEMPT_ACTIVE);
  3049. /* we could miss a preemption opportunity between schedule and now */
  3050. barrier();
  3051. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3052. goto need_resched;
  3053. }
  3054. EXPORT_SYMBOL(preempt_schedule);
  3055. /*
  3056. * this is the entry point to schedule() from kernel preemption
  3057. * off of irq context.
  3058. * Note, that this is called and return with irqs disabled. This will
  3059. * protect us against recursive calling from irq.
  3060. */
  3061. asmlinkage void __sched preempt_schedule_irq(void)
  3062. {
  3063. struct thread_info *ti = current_thread_info();
  3064. #ifdef CONFIG_PREEMPT_BKL
  3065. struct task_struct *task = current;
  3066. int saved_lock_depth;
  3067. #endif
  3068. /* Catch callers which need to be fixed */
  3069. BUG_ON(ti->preempt_count || !irqs_disabled());
  3070. need_resched:
  3071. add_preempt_count(PREEMPT_ACTIVE);
  3072. /*
  3073. * We keep the big kernel semaphore locked, but we
  3074. * clear ->lock_depth so that schedule() doesnt
  3075. * auto-release the semaphore:
  3076. */
  3077. #ifdef CONFIG_PREEMPT_BKL
  3078. saved_lock_depth = task->lock_depth;
  3079. task->lock_depth = -1;
  3080. #endif
  3081. local_irq_enable();
  3082. schedule();
  3083. local_irq_disable();
  3084. #ifdef CONFIG_PREEMPT_BKL
  3085. task->lock_depth = saved_lock_depth;
  3086. #endif
  3087. sub_preempt_count(PREEMPT_ACTIVE);
  3088. /* we could miss a preemption opportunity between schedule and now */
  3089. barrier();
  3090. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3091. goto need_resched;
  3092. }
  3093. #endif /* CONFIG_PREEMPT */
  3094. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3095. void *key)
  3096. {
  3097. return try_to_wake_up(curr->private, mode, sync);
  3098. }
  3099. EXPORT_SYMBOL(default_wake_function);
  3100. /*
  3101. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3102. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3103. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3104. *
  3105. * There are circumstances in which we can try to wake a task which has already
  3106. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3107. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3108. */
  3109. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3110. int nr_exclusive, int sync, void *key)
  3111. {
  3112. struct list_head *tmp, *next;
  3113. list_for_each_safe(tmp, next, &q->task_list) {
  3114. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3115. unsigned flags = curr->flags;
  3116. if (curr->func(curr, mode, sync, key) &&
  3117. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3118. break;
  3119. }
  3120. }
  3121. /**
  3122. * __wake_up - wake up threads blocked on a waitqueue.
  3123. * @q: the waitqueue
  3124. * @mode: which threads
  3125. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3126. * @key: is directly passed to the wakeup function
  3127. */
  3128. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3129. int nr_exclusive, void *key)
  3130. {
  3131. unsigned long flags;
  3132. spin_lock_irqsave(&q->lock, flags);
  3133. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3134. spin_unlock_irqrestore(&q->lock, flags);
  3135. }
  3136. EXPORT_SYMBOL(__wake_up);
  3137. /*
  3138. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3139. */
  3140. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3141. {
  3142. __wake_up_common(q, mode, 1, 0, NULL);
  3143. }
  3144. /**
  3145. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3146. * @q: the waitqueue
  3147. * @mode: which threads
  3148. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3149. *
  3150. * The sync wakeup differs that the waker knows that it will schedule
  3151. * away soon, so while the target thread will be woken up, it will not
  3152. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3153. * with each other. This can prevent needless bouncing between CPUs.
  3154. *
  3155. * On UP it can prevent extra preemption.
  3156. */
  3157. void fastcall
  3158. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3159. {
  3160. unsigned long flags;
  3161. int sync = 1;
  3162. if (unlikely(!q))
  3163. return;
  3164. if (unlikely(!nr_exclusive))
  3165. sync = 0;
  3166. spin_lock_irqsave(&q->lock, flags);
  3167. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3168. spin_unlock_irqrestore(&q->lock, flags);
  3169. }
  3170. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3171. void fastcall complete(struct completion *x)
  3172. {
  3173. unsigned long flags;
  3174. spin_lock_irqsave(&x->wait.lock, flags);
  3175. x->done++;
  3176. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3177. 1, 0, NULL);
  3178. spin_unlock_irqrestore(&x->wait.lock, flags);
  3179. }
  3180. EXPORT_SYMBOL(complete);
  3181. void fastcall complete_all(struct completion *x)
  3182. {
  3183. unsigned long flags;
  3184. spin_lock_irqsave(&x->wait.lock, flags);
  3185. x->done += UINT_MAX/2;
  3186. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3187. 0, 0, NULL);
  3188. spin_unlock_irqrestore(&x->wait.lock, flags);
  3189. }
  3190. EXPORT_SYMBOL(complete_all);
  3191. void fastcall __sched wait_for_completion(struct completion *x)
  3192. {
  3193. might_sleep();
  3194. spin_lock_irq(&x->wait.lock);
  3195. if (!x->done) {
  3196. DECLARE_WAITQUEUE(wait, current);
  3197. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3198. __add_wait_queue_tail(&x->wait, &wait);
  3199. do {
  3200. __set_current_state(TASK_UNINTERRUPTIBLE);
  3201. spin_unlock_irq(&x->wait.lock);
  3202. schedule();
  3203. spin_lock_irq(&x->wait.lock);
  3204. } while (!x->done);
  3205. __remove_wait_queue(&x->wait, &wait);
  3206. }
  3207. x->done--;
  3208. spin_unlock_irq(&x->wait.lock);
  3209. }
  3210. EXPORT_SYMBOL(wait_for_completion);
  3211. unsigned long fastcall __sched
  3212. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3213. {
  3214. might_sleep();
  3215. spin_lock_irq(&x->wait.lock);
  3216. if (!x->done) {
  3217. DECLARE_WAITQUEUE(wait, current);
  3218. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3219. __add_wait_queue_tail(&x->wait, &wait);
  3220. do {
  3221. __set_current_state(TASK_UNINTERRUPTIBLE);
  3222. spin_unlock_irq(&x->wait.lock);
  3223. timeout = schedule_timeout(timeout);
  3224. spin_lock_irq(&x->wait.lock);
  3225. if (!timeout) {
  3226. __remove_wait_queue(&x->wait, &wait);
  3227. goto out;
  3228. }
  3229. } while (!x->done);
  3230. __remove_wait_queue(&x->wait, &wait);
  3231. }
  3232. x->done--;
  3233. out:
  3234. spin_unlock_irq(&x->wait.lock);
  3235. return timeout;
  3236. }
  3237. EXPORT_SYMBOL(wait_for_completion_timeout);
  3238. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3239. {
  3240. int ret = 0;
  3241. might_sleep();
  3242. spin_lock_irq(&x->wait.lock);
  3243. if (!x->done) {
  3244. DECLARE_WAITQUEUE(wait, current);
  3245. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3246. __add_wait_queue_tail(&x->wait, &wait);
  3247. do {
  3248. if (signal_pending(current)) {
  3249. ret = -ERESTARTSYS;
  3250. __remove_wait_queue(&x->wait, &wait);
  3251. goto out;
  3252. }
  3253. __set_current_state(TASK_INTERRUPTIBLE);
  3254. spin_unlock_irq(&x->wait.lock);
  3255. schedule();
  3256. spin_lock_irq(&x->wait.lock);
  3257. } while (!x->done);
  3258. __remove_wait_queue(&x->wait, &wait);
  3259. }
  3260. x->done--;
  3261. out:
  3262. spin_unlock_irq(&x->wait.lock);
  3263. return ret;
  3264. }
  3265. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3266. unsigned long fastcall __sched
  3267. wait_for_completion_interruptible_timeout(struct completion *x,
  3268. unsigned long timeout)
  3269. {
  3270. might_sleep();
  3271. spin_lock_irq(&x->wait.lock);
  3272. if (!x->done) {
  3273. DECLARE_WAITQUEUE(wait, current);
  3274. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3275. __add_wait_queue_tail(&x->wait, &wait);
  3276. do {
  3277. if (signal_pending(current)) {
  3278. timeout = -ERESTARTSYS;
  3279. __remove_wait_queue(&x->wait, &wait);
  3280. goto out;
  3281. }
  3282. __set_current_state(TASK_INTERRUPTIBLE);
  3283. spin_unlock_irq(&x->wait.lock);
  3284. timeout = schedule_timeout(timeout);
  3285. spin_lock_irq(&x->wait.lock);
  3286. if (!timeout) {
  3287. __remove_wait_queue(&x->wait, &wait);
  3288. goto out;
  3289. }
  3290. } while (!x->done);
  3291. __remove_wait_queue(&x->wait, &wait);
  3292. }
  3293. x->done--;
  3294. out:
  3295. spin_unlock_irq(&x->wait.lock);
  3296. return timeout;
  3297. }
  3298. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3299. #define SLEEP_ON_VAR \
  3300. unsigned long flags; \
  3301. wait_queue_t wait; \
  3302. init_waitqueue_entry(&wait, current);
  3303. #define SLEEP_ON_HEAD \
  3304. spin_lock_irqsave(&q->lock,flags); \
  3305. __add_wait_queue(q, &wait); \
  3306. spin_unlock(&q->lock);
  3307. #define SLEEP_ON_TAIL \
  3308. spin_lock_irq(&q->lock); \
  3309. __remove_wait_queue(q, &wait); \
  3310. spin_unlock_irqrestore(&q->lock, flags);
  3311. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3312. {
  3313. SLEEP_ON_VAR
  3314. current->state = TASK_INTERRUPTIBLE;
  3315. SLEEP_ON_HEAD
  3316. schedule();
  3317. SLEEP_ON_TAIL
  3318. }
  3319. EXPORT_SYMBOL(interruptible_sleep_on);
  3320. long fastcall __sched
  3321. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3322. {
  3323. SLEEP_ON_VAR
  3324. current->state = TASK_INTERRUPTIBLE;
  3325. SLEEP_ON_HEAD
  3326. timeout = schedule_timeout(timeout);
  3327. SLEEP_ON_TAIL
  3328. return timeout;
  3329. }
  3330. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3331. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3332. {
  3333. SLEEP_ON_VAR
  3334. current->state = TASK_UNINTERRUPTIBLE;
  3335. SLEEP_ON_HEAD
  3336. schedule();
  3337. SLEEP_ON_TAIL
  3338. }
  3339. EXPORT_SYMBOL(sleep_on);
  3340. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3341. {
  3342. SLEEP_ON_VAR
  3343. current->state = TASK_UNINTERRUPTIBLE;
  3344. SLEEP_ON_HEAD
  3345. timeout = schedule_timeout(timeout);
  3346. SLEEP_ON_TAIL
  3347. return timeout;
  3348. }
  3349. EXPORT_SYMBOL(sleep_on_timeout);
  3350. #ifdef CONFIG_RT_MUTEXES
  3351. /*
  3352. * rt_mutex_setprio - set the current priority of a task
  3353. * @p: task
  3354. * @prio: prio value (kernel-internal form)
  3355. *
  3356. * This function changes the 'effective' priority of a task. It does
  3357. * not touch ->normal_prio like __setscheduler().
  3358. *
  3359. * Used by the rt_mutex code to implement priority inheritance logic.
  3360. */
  3361. void rt_mutex_setprio(struct task_struct *p, int prio)
  3362. {
  3363. struct prio_array *array;
  3364. unsigned long flags;
  3365. struct rq *rq;
  3366. int oldprio;
  3367. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3368. rq = task_rq_lock(p, &flags);
  3369. oldprio = p->prio;
  3370. array = p->array;
  3371. if (array)
  3372. dequeue_task(p, array);
  3373. p->prio = prio;
  3374. if (array) {
  3375. /*
  3376. * If changing to an RT priority then queue it
  3377. * in the active array!
  3378. */
  3379. if (rt_task(p))
  3380. array = rq->active;
  3381. enqueue_task(p, array);
  3382. /*
  3383. * Reschedule if we are currently running on this runqueue and
  3384. * our priority decreased, or if we are not currently running on
  3385. * this runqueue and our priority is higher than the current's
  3386. */
  3387. if (task_running(rq, p)) {
  3388. if (p->prio > oldprio)
  3389. resched_task(rq->curr);
  3390. } else if (TASK_PREEMPTS_CURR(p, rq))
  3391. resched_task(rq->curr);
  3392. }
  3393. task_rq_unlock(rq, &flags);
  3394. }
  3395. #endif
  3396. void set_user_nice(struct task_struct *p, long nice)
  3397. {
  3398. struct prio_array *array;
  3399. int old_prio, delta;
  3400. unsigned long flags;
  3401. struct rq *rq;
  3402. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3403. return;
  3404. /*
  3405. * We have to be careful, if called from sys_setpriority(),
  3406. * the task might be in the middle of scheduling on another CPU.
  3407. */
  3408. rq = task_rq_lock(p, &flags);
  3409. /*
  3410. * The RT priorities are set via sched_setscheduler(), but we still
  3411. * allow the 'normal' nice value to be set - but as expected
  3412. * it wont have any effect on scheduling until the task is
  3413. * not SCHED_NORMAL/SCHED_BATCH:
  3414. */
  3415. if (has_rt_policy(p)) {
  3416. p->static_prio = NICE_TO_PRIO(nice);
  3417. goto out_unlock;
  3418. }
  3419. array = p->array;
  3420. if (array) {
  3421. dequeue_task(p, array);
  3422. dec_raw_weighted_load(rq, p);
  3423. }
  3424. p->static_prio = NICE_TO_PRIO(nice);
  3425. set_load_weight(p);
  3426. old_prio = p->prio;
  3427. p->prio = effective_prio(p);
  3428. delta = p->prio - old_prio;
  3429. if (array) {
  3430. enqueue_task(p, array);
  3431. inc_raw_weighted_load(rq, p);
  3432. /*
  3433. * If the task increased its priority or is running and
  3434. * lowered its priority, then reschedule its CPU:
  3435. */
  3436. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3437. resched_task(rq->curr);
  3438. }
  3439. out_unlock:
  3440. task_rq_unlock(rq, &flags);
  3441. }
  3442. EXPORT_SYMBOL(set_user_nice);
  3443. /*
  3444. * can_nice - check if a task can reduce its nice value
  3445. * @p: task
  3446. * @nice: nice value
  3447. */
  3448. int can_nice(const struct task_struct *p, const int nice)
  3449. {
  3450. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3451. int nice_rlim = 20 - nice;
  3452. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3453. capable(CAP_SYS_NICE));
  3454. }
  3455. #ifdef __ARCH_WANT_SYS_NICE
  3456. /*
  3457. * sys_nice - change the priority of the current process.
  3458. * @increment: priority increment
  3459. *
  3460. * sys_setpriority is a more generic, but much slower function that
  3461. * does similar things.
  3462. */
  3463. asmlinkage long sys_nice(int increment)
  3464. {
  3465. long nice, retval;
  3466. /*
  3467. * Setpriority might change our priority at the same moment.
  3468. * We don't have to worry. Conceptually one call occurs first
  3469. * and we have a single winner.
  3470. */
  3471. if (increment < -40)
  3472. increment = -40;
  3473. if (increment > 40)
  3474. increment = 40;
  3475. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3476. if (nice < -20)
  3477. nice = -20;
  3478. if (nice > 19)
  3479. nice = 19;
  3480. if (increment < 0 && !can_nice(current, nice))
  3481. return -EPERM;
  3482. retval = security_task_setnice(current, nice);
  3483. if (retval)
  3484. return retval;
  3485. set_user_nice(current, nice);
  3486. return 0;
  3487. }
  3488. #endif
  3489. /**
  3490. * task_prio - return the priority value of a given task.
  3491. * @p: the task in question.
  3492. *
  3493. * This is the priority value as seen by users in /proc.
  3494. * RT tasks are offset by -200. Normal tasks are centered
  3495. * around 0, value goes from -16 to +15.
  3496. */
  3497. int task_prio(const struct task_struct *p)
  3498. {
  3499. return p->prio - MAX_RT_PRIO;
  3500. }
  3501. /**
  3502. * task_nice - return the nice value of a given task.
  3503. * @p: the task in question.
  3504. */
  3505. int task_nice(const struct task_struct *p)
  3506. {
  3507. return TASK_NICE(p);
  3508. }
  3509. EXPORT_SYMBOL_GPL(task_nice);
  3510. /**
  3511. * idle_cpu - is a given cpu idle currently?
  3512. * @cpu: the processor in question.
  3513. */
  3514. int idle_cpu(int cpu)
  3515. {
  3516. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3517. }
  3518. /**
  3519. * idle_task - return the idle task for a given cpu.
  3520. * @cpu: the processor in question.
  3521. */
  3522. struct task_struct *idle_task(int cpu)
  3523. {
  3524. return cpu_rq(cpu)->idle;
  3525. }
  3526. /**
  3527. * find_process_by_pid - find a process with a matching PID value.
  3528. * @pid: the pid in question.
  3529. */
  3530. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3531. {
  3532. return pid ? find_task_by_pid(pid) : current;
  3533. }
  3534. /* Actually do priority change: must hold rq lock. */
  3535. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3536. {
  3537. BUG_ON(p->array);
  3538. p->policy = policy;
  3539. p->rt_priority = prio;
  3540. p->normal_prio = normal_prio(p);
  3541. /* we are holding p->pi_lock already */
  3542. p->prio = rt_mutex_getprio(p);
  3543. /*
  3544. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3545. */
  3546. if (policy == SCHED_BATCH)
  3547. p->sleep_avg = 0;
  3548. set_load_weight(p);
  3549. }
  3550. /**
  3551. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3552. * @p: the task in question.
  3553. * @policy: new policy.
  3554. * @param: structure containing the new RT priority.
  3555. *
  3556. * NOTE that the task may be already dead.
  3557. */
  3558. int sched_setscheduler(struct task_struct *p, int policy,
  3559. struct sched_param *param)
  3560. {
  3561. int retval, oldprio, oldpolicy = -1;
  3562. struct prio_array *array;
  3563. unsigned long flags;
  3564. struct rq *rq;
  3565. /* may grab non-irq protected spin_locks */
  3566. BUG_ON(in_interrupt());
  3567. recheck:
  3568. /* double check policy once rq lock held */
  3569. if (policy < 0)
  3570. policy = oldpolicy = p->policy;
  3571. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3572. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3573. return -EINVAL;
  3574. /*
  3575. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3576. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3577. * SCHED_BATCH is 0.
  3578. */
  3579. if (param->sched_priority < 0 ||
  3580. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3581. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3582. return -EINVAL;
  3583. if (is_rt_policy(policy) != (param->sched_priority != 0))
  3584. return -EINVAL;
  3585. /*
  3586. * Allow unprivileged RT tasks to decrease priority:
  3587. */
  3588. if (!capable(CAP_SYS_NICE)) {
  3589. if (is_rt_policy(policy)) {
  3590. unsigned long rlim_rtprio;
  3591. unsigned long flags;
  3592. if (!lock_task_sighand(p, &flags))
  3593. return -ESRCH;
  3594. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3595. unlock_task_sighand(p, &flags);
  3596. /* can't set/change the rt policy */
  3597. if (policy != p->policy && !rlim_rtprio)
  3598. return -EPERM;
  3599. /* can't increase priority */
  3600. if (param->sched_priority > p->rt_priority &&
  3601. param->sched_priority > rlim_rtprio)
  3602. return -EPERM;
  3603. }
  3604. /* can't change other user's priorities */
  3605. if ((current->euid != p->euid) &&
  3606. (current->euid != p->uid))
  3607. return -EPERM;
  3608. }
  3609. retval = security_task_setscheduler(p, policy, param);
  3610. if (retval)
  3611. return retval;
  3612. /*
  3613. * make sure no PI-waiters arrive (or leave) while we are
  3614. * changing the priority of the task:
  3615. */
  3616. spin_lock_irqsave(&p->pi_lock, flags);
  3617. /*
  3618. * To be able to change p->policy safely, the apropriate
  3619. * runqueue lock must be held.
  3620. */
  3621. rq = __task_rq_lock(p);
  3622. /* recheck policy now with rq lock held */
  3623. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3624. policy = oldpolicy = -1;
  3625. __task_rq_unlock(rq);
  3626. spin_unlock_irqrestore(&p->pi_lock, flags);
  3627. goto recheck;
  3628. }
  3629. array = p->array;
  3630. if (array)
  3631. deactivate_task(p, rq);
  3632. oldprio = p->prio;
  3633. __setscheduler(p, policy, param->sched_priority);
  3634. if (array) {
  3635. __activate_task(p, rq);
  3636. /*
  3637. * Reschedule if we are currently running on this runqueue and
  3638. * our priority decreased, or if we are not currently running on
  3639. * this runqueue and our priority is higher than the current's
  3640. */
  3641. if (task_running(rq, p)) {
  3642. if (p->prio > oldprio)
  3643. resched_task(rq->curr);
  3644. } else if (TASK_PREEMPTS_CURR(p, rq))
  3645. resched_task(rq->curr);
  3646. }
  3647. __task_rq_unlock(rq);
  3648. spin_unlock_irqrestore(&p->pi_lock, flags);
  3649. rt_mutex_adjust_pi(p);
  3650. return 0;
  3651. }
  3652. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3653. static int
  3654. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3655. {
  3656. struct sched_param lparam;
  3657. struct task_struct *p;
  3658. int retval;
  3659. if (!param || pid < 0)
  3660. return -EINVAL;
  3661. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3662. return -EFAULT;
  3663. rcu_read_lock();
  3664. retval = -ESRCH;
  3665. p = find_process_by_pid(pid);
  3666. if (p != NULL)
  3667. retval = sched_setscheduler(p, policy, &lparam);
  3668. rcu_read_unlock();
  3669. return retval;
  3670. }
  3671. /**
  3672. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3673. * @pid: the pid in question.
  3674. * @policy: new policy.
  3675. * @param: structure containing the new RT priority.
  3676. */
  3677. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3678. struct sched_param __user *param)
  3679. {
  3680. /* negative values for policy are not valid */
  3681. if (policy < 0)
  3682. return -EINVAL;
  3683. return do_sched_setscheduler(pid, policy, param);
  3684. }
  3685. /**
  3686. * sys_sched_setparam - set/change the RT priority of a thread
  3687. * @pid: the pid in question.
  3688. * @param: structure containing the new RT priority.
  3689. */
  3690. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3691. {
  3692. return do_sched_setscheduler(pid, -1, param);
  3693. }
  3694. /**
  3695. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3696. * @pid: the pid in question.
  3697. */
  3698. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3699. {
  3700. struct task_struct *p;
  3701. int retval = -EINVAL;
  3702. if (pid < 0)
  3703. goto out_nounlock;
  3704. retval = -ESRCH;
  3705. read_lock(&tasklist_lock);
  3706. p = find_process_by_pid(pid);
  3707. if (p) {
  3708. retval = security_task_getscheduler(p);
  3709. if (!retval)
  3710. retval = p->policy;
  3711. }
  3712. read_unlock(&tasklist_lock);
  3713. out_nounlock:
  3714. return retval;
  3715. }
  3716. /**
  3717. * sys_sched_getscheduler - get the RT priority of a thread
  3718. * @pid: the pid in question.
  3719. * @param: structure containing the RT priority.
  3720. */
  3721. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3722. {
  3723. struct sched_param lp;
  3724. struct task_struct *p;
  3725. int retval = -EINVAL;
  3726. if (!param || pid < 0)
  3727. goto out_nounlock;
  3728. read_lock(&tasklist_lock);
  3729. p = find_process_by_pid(pid);
  3730. retval = -ESRCH;
  3731. if (!p)
  3732. goto out_unlock;
  3733. retval = security_task_getscheduler(p);
  3734. if (retval)
  3735. goto out_unlock;
  3736. lp.sched_priority = p->rt_priority;
  3737. read_unlock(&tasklist_lock);
  3738. /*
  3739. * This one might sleep, we cannot do it with a spinlock held ...
  3740. */
  3741. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3742. out_nounlock:
  3743. return retval;
  3744. out_unlock:
  3745. read_unlock(&tasklist_lock);
  3746. return retval;
  3747. }
  3748. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3749. {
  3750. cpumask_t cpus_allowed;
  3751. struct task_struct *p;
  3752. int retval;
  3753. lock_cpu_hotplug();
  3754. read_lock(&tasklist_lock);
  3755. p = find_process_by_pid(pid);
  3756. if (!p) {
  3757. read_unlock(&tasklist_lock);
  3758. unlock_cpu_hotplug();
  3759. return -ESRCH;
  3760. }
  3761. /*
  3762. * It is not safe to call set_cpus_allowed with the
  3763. * tasklist_lock held. We will bump the task_struct's
  3764. * usage count and then drop tasklist_lock.
  3765. */
  3766. get_task_struct(p);
  3767. read_unlock(&tasklist_lock);
  3768. retval = -EPERM;
  3769. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3770. !capable(CAP_SYS_NICE))
  3771. goto out_unlock;
  3772. retval = security_task_setscheduler(p, 0, NULL);
  3773. if (retval)
  3774. goto out_unlock;
  3775. cpus_allowed = cpuset_cpus_allowed(p);
  3776. cpus_and(new_mask, new_mask, cpus_allowed);
  3777. retval = set_cpus_allowed(p, new_mask);
  3778. out_unlock:
  3779. put_task_struct(p);
  3780. unlock_cpu_hotplug();
  3781. return retval;
  3782. }
  3783. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3784. cpumask_t *new_mask)
  3785. {
  3786. if (len < sizeof(cpumask_t)) {
  3787. memset(new_mask, 0, sizeof(cpumask_t));
  3788. } else if (len > sizeof(cpumask_t)) {
  3789. len = sizeof(cpumask_t);
  3790. }
  3791. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3792. }
  3793. /**
  3794. * sys_sched_setaffinity - set the cpu affinity of a process
  3795. * @pid: pid of the process
  3796. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3797. * @user_mask_ptr: user-space pointer to the new cpu mask
  3798. */
  3799. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3800. unsigned long __user *user_mask_ptr)
  3801. {
  3802. cpumask_t new_mask;
  3803. int retval;
  3804. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3805. if (retval)
  3806. return retval;
  3807. return sched_setaffinity(pid, new_mask);
  3808. }
  3809. /*
  3810. * Represents all cpu's present in the system
  3811. * In systems capable of hotplug, this map could dynamically grow
  3812. * as new cpu's are detected in the system via any platform specific
  3813. * method, such as ACPI for e.g.
  3814. */
  3815. cpumask_t cpu_present_map __read_mostly;
  3816. EXPORT_SYMBOL(cpu_present_map);
  3817. #ifndef CONFIG_SMP
  3818. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3819. EXPORT_SYMBOL(cpu_online_map);
  3820. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3821. EXPORT_SYMBOL(cpu_possible_map);
  3822. #endif
  3823. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3824. {
  3825. struct task_struct *p;
  3826. int retval;
  3827. lock_cpu_hotplug();
  3828. read_lock(&tasklist_lock);
  3829. retval = -ESRCH;
  3830. p = find_process_by_pid(pid);
  3831. if (!p)
  3832. goto out_unlock;
  3833. retval = security_task_getscheduler(p);
  3834. if (retval)
  3835. goto out_unlock;
  3836. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3837. out_unlock:
  3838. read_unlock(&tasklist_lock);
  3839. unlock_cpu_hotplug();
  3840. if (retval)
  3841. return retval;
  3842. return 0;
  3843. }
  3844. /**
  3845. * sys_sched_getaffinity - get the cpu affinity of a process
  3846. * @pid: pid of the process
  3847. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3848. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3849. */
  3850. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3851. unsigned long __user *user_mask_ptr)
  3852. {
  3853. int ret;
  3854. cpumask_t mask;
  3855. if (len < sizeof(cpumask_t))
  3856. return -EINVAL;
  3857. ret = sched_getaffinity(pid, &mask);
  3858. if (ret < 0)
  3859. return ret;
  3860. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3861. return -EFAULT;
  3862. return sizeof(cpumask_t);
  3863. }
  3864. /**
  3865. * sys_sched_yield - yield the current processor to other threads.
  3866. *
  3867. * This function yields the current CPU by moving the calling thread
  3868. * to the expired array. If there are no other threads running on this
  3869. * CPU then this function will return.
  3870. */
  3871. asmlinkage long sys_sched_yield(void)
  3872. {
  3873. struct rq *rq = this_rq_lock();
  3874. struct prio_array *array = current->array, *target = rq->expired;
  3875. schedstat_inc(rq, yld_cnt);
  3876. /*
  3877. * We implement yielding by moving the task into the expired
  3878. * queue.
  3879. *
  3880. * (special rule: RT tasks will just roundrobin in the active
  3881. * array.)
  3882. */
  3883. if (rt_task(current))
  3884. target = rq->active;
  3885. if (array->nr_active == 1) {
  3886. schedstat_inc(rq, yld_act_empty);
  3887. if (!rq->expired->nr_active)
  3888. schedstat_inc(rq, yld_both_empty);
  3889. } else if (!rq->expired->nr_active)
  3890. schedstat_inc(rq, yld_exp_empty);
  3891. if (array != target) {
  3892. dequeue_task(current, array);
  3893. enqueue_task(current, target);
  3894. } else
  3895. /*
  3896. * requeue_task is cheaper so perform that if possible.
  3897. */
  3898. requeue_task(current, array);
  3899. /*
  3900. * Since we are going to call schedule() anyway, there's
  3901. * no need to preempt or enable interrupts:
  3902. */
  3903. __release(rq->lock);
  3904. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3905. _raw_spin_unlock(&rq->lock);
  3906. preempt_enable_no_resched();
  3907. schedule();
  3908. return 0;
  3909. }
  3910. static void __cond_resched(void)
  3911. {
  3912. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3913. __might_sleep(__FILE__, __LINE__);
  3914. #endif
  3915. /*
  3916. * The BKS might be reacquired before we have dropped
  3917. * PREEMPT_ACTIVE, which could trigger a second
  3918. * cond_resched() call.
  3919. */
  3920. do {
  3921. add_preempt_count(PREEMPT_ACTIVE);
  3922. schedule();
  3923. sub_preempt_count(PREEMPT_ACTIVE);
  3924. } while (need_resched());
  3925. }
  3926. int __sched cond_resched(void)
  3927. {
  3928. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3929. system_state == SYSTEM_RUNNING) {
  3930. __cond_resched();
  3931. return 1;
  3932. }
  3933. return 0;
  3934. }
  3935. EXPORT_SYMBOL(cond_resched);
  3936. /*
  3937. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3938. * call schedule, and on return reacquire the lock.
  3939. *
  3940. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3941. * operations here to prevent schedule() from being called twice (once via
  3942. * spin_unlock(), once by hand).
  3943. */
  3944. int cond_resched_lock(spinlock_t *lock)
  3945. {
  3946. int ret = 0;
  3947. if (need_lockbreak(lock)) {
  3948. spin_unlock(lock);
  3949. cpu_relax();
  3950. ret = 1;
  3951. spin_lock(lock);
  3952. }
  3953. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3954. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3955. _raw_spin_unlock(lock);
  3956. preempt_enable_no_resched();
  3957. __cond_resched();
  3958. ret = 1;
  3959. spin_lock(lock);
  3960. }
  3961. return ret;
  3962. }
  3963. EXPORT_SYMBOL(cond_resched_lock);
  3964. int __sched cond_resched_softirq(void)
  3965. {
  3966. BUG_ON(!in_softirq());
  3967. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3968. raw_local_irq_disable();
  3969. _local_bh_enable();
  3970. raw_local_irq_enable();
  3971. __cond_resched();
  3972. local_bh_disable();
  3973. return 1;
  3974. }
  3975. return 0;
  3976. }
  3977. EXPORT_SYMBOL(cond_resched_softirq);
  3978. /**
  3979. * yield - yield the current processor to other threads.
  3980. *
  3981. * This is a shortcut for kernel-space yielding - it marks the
  3982. * thread runnable and calls sys_sched_yield().
  3983. */
  3984. void __sched yield(void)
  3985. {
  3986. set_current_state(TASK_RUNNING);
  3987. sys_sched_yield();
  3988. }
  3989. EXPORT_SYMBOL(yield);
  3990. /*
  3991. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3992. * that process accounting knows that this is a task in IO wait state.
  3993. *
  3994. * But don't do that if it is a deliberate, throttling IO wait (this task
  3995. * has set its backing_dev_info: the queue against which it should throttle)
  3996. */
  3997. void __sched io_schedule(void)
  3998. {
  3999. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4000. delayacct_blkio_start();
  4001. atomic_inc(&rq->nr_iowait);
  4002. schedule();
  4003. atomic_dec(&rq->nr_iowait);
  4004. delayacct_blkio_end();
  4005. }
  4006. EXPORT_SYMBOL(io_schedule);
  4007. long __sched io_schedule_timeout(long timeout)
  4008. {
  4009. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4010. long ret;
  4011. delayacct_blkio_start();
  4012. atomic_inc(&rq->nr_iowait);
  4013. ret = schedule_timeout(timeout);
  4014. atomic_dec(&rq->nr_iowait);
  4015. delayacct_blkio_end();
  4016. return ret;
  4017. }
  4018. /**
  4019. * sys_sched_get_priority_max - return maximum RT priority.
  4020. * @policy: scheduling class.
  4021. *
  4022. * this syscall returns the maximum rt_priority that can be used
  4023. * by a given scheduling class.
  4024. */
  4025. asmlinkage long sys_sched_get_priority_max(int policy)
  4026. {
  4027. int ret = -EINVAL;
  4028. switch (policy) {
  4029. case SCHED_FIFO:
  4030. case SCHED_RR:
  4031. ret = MAX_USER_RT_PRIO-1;
  4032. break;
  4033. case SCHED_NORMAL:
  4034. case SCHED_BATCH:
  4035. ret = 0;
  4036. break;
  4037. }
  4038. return ret;
  4039. }
  4040. /**
  4041. * sys_sched_get_priority_min - return minimum RT priority.
  4042. * @policy: scheduling class.
  4043. *
  4044. * this syscall returns the minimum rt_priority that can be used
  4045. * by a given scheduling class.
  4046. */
  4047. asmlinkage long sys_sched_get_priority_min(int policy)
  4048. {
  4049. int ret = -EINVAL;
  4050. switch (policy) {
  4051. case SCHED_FIFO:
  4052. case SCHED_RR:
  4053. ret = 1;
  4054. break;
  4055. case SCHED_NORMAL:
  4056. case SCHED_BATCH:
  4057. ret = 0;
  4058. }
  4059. return ret;
  4060. }
  4061. /**
  4062. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4063. * @pid: pid of the process.
  4064. * @interval: userspace pointer to the timeslice value.
  4065. *
  4066. * this syscall writes the default timeslice value of a given process
  4067. * into the user-space timespec buffer. A value of '0' means infinity.
  4068. */
  4069. asmlinkage
  4070. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4071. {
  4072. struct task_struct *p;
  4073. int retval = -EINVAL;
  4074. struct timespec t;
  4075. if (pid < 0)
  4076. goto out_nounlock;
  4077. retval = -ESRCH;
  4078. read_lock(&tasklist_lock);
  4079. p = find_process_by_pid(pid);
  4080. if (!p)
  4081. goto out_unlock;
  4082. retval = security_task_getscheduler(p);
  4083. if (retval)
  4084. goto out_unlock;
  4085. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4086. 0 : task_timeslice(p), &t);
  4087. read_unlock(&tasklist_lock);
  4088. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4089. out_nounlock:
  4090. return retval;
  4091. out_unlock:
  4092. read_unlock(&tasklist_lock);
  4093. return retval;
  4094. }
  4095. static const char stat_nam[] = "RSDTtZX";
  4096. static void show_task(struct task_struct *p)
  4097. {
  4098. unsigned long free = 0;
  4099. unsigned state;
  4100. state = p->state ? __ffs(p->state) + 1 : 0;
  4101. printk("%-13.13s %c", p->comm,
  4102. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4103. #if (BITS_PER_LONG == 32)
  4104. if (state == TASK_RUNNING)
  4105. printk(" running ");
  4106. else
  4107. printk(" %08lX ", thread_saved_pc(p));
  4108. #else
  4109. if (state == TASK_RUNNING)
  4110. printk(" running task ");
  4111. else
  4112. printk(" %016lx ", thread_saved_pc(p));
  4113. #endif
  4114. #ifdef CONFIG_DEBUG_STACK_USAGE
  4115. {
  4116. unsigned long *n = end_of_stack(p);
  4117. while (!*n)
  4118. n++;
  4119. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4120. }
  4121. #endif
  4122. printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
  4123. if (!p->mm)
  4124. printk(" (L-TLB)\n");
  4125. else
  4126. printk(" (NOTLB)\n");
  4127. if (state != TASK_RUNNING)
  4128. show_stack(p, NULL);
  4129. }
  4130. void show_state_filter(unsigned long state_filter)
  4131. {
  4132. struct task_struct *g, *p;
  4133. #if (BITS_PER_LONG == 32)
  4134. printk("\n"
  4135. " free sibling\n");
  4136. printk(" task PC stack pid father child younger older\n");
  4137. #else
  4138. printk("\n"
  4139. " free sibling\n");
  4140. printk(" task PC stack pid father child younger older\n");
  4141. #endif
  4142. read_lock(&tasklist_lock);
  4143. do_each_thread(g, p) {
  4144. /*
  4145. * reset the NMI-timeout, listing all files on a slow
  4146. * console might take alot of time:
  4147. */
  4148. touch_nmi_watchdog();
  4149. if (!state_filter || (p->state & state_filter))
  4150. show_task(p);
  4151. } while_each_thread(g, p);
  4152. touch_all_softlockup_watchdogs();
  4153. read_unlock(&tasklist_lock);
  4154. /*
  4155. * Only show locks if all tasks are dumped:
  4156. */
  4157. if (state_filter == -1)
  4158. debug_show_all_locks();
  4159. }
  4160. /**
  4161. * init_idle - set up an idle thread for a given CPU
  4162. * @idle: task in question
  4163. * @cpu: cpu the idle task belongs to
  4164. *
  4165. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4166. * flag, to make booting more robust.
  4167. */
  4168. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4169. {
  4170. struct rq *rq = cpu_rq(cpu);
  4171. unsigned long flags;
  4172. idle->timestamp = sched_clock();
  4173. idle->sleep_avg = 0;
  4174. idle->array = NULL;
  4175. idle->prio = idle->normal_prio = MAX_PRIO;
  4176. idle->state = TASK_RUNNING;
  4177. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4178. set_task_cpu(idle, cpu);
  4179. spin_lock_irqsave(&rq->lock, flags);
  4180. rq->curr = rq->idle = idle;
  4181. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4182. idle->oncpu = 1;
  4183. #endif
  4184. spin_unlock_irqrestore(&rq->lock, flags);
  4185. /* Set the preempt count _outside_ the spinlocks! */
  4186. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4187. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4188. #else
  4189. task_thread_info(idle)->preempt_count = 0;
  4190. #endif
  4191. }
  4192. /*
  4193. * In a system that switches off the HZ timer nohz_cpu_mask
  4194. * indicates which cpus entered this state. This is used
  4195. * in the rcu update to wait only for active cpus. For system
  4196. * which do not switch off the HZ timer nohz_cpu_mask should
  4197. * always be CPU_MASK_NONE.
  4198. */
  4199. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4200. #ifdef CONFIG_SMP
  4201. /*
  4202. * This is how migration works:
  4203. *
  4204. * 1) we queue a struct migration_req structure in the source CPU's
  4205. * runqueue and wake up that CPU's migration thread.
  4206. * 2) we down() the locked semaphore => thread blocks.
  4207. * 3) migration thread wakes up (implicitly it forces the migrated
  4208. * thread off the CPU)
  4209. * 4) it gets the migration request and checks whether the migrated
  4210. * task is still in the wrong runqueue.
  4211. * 5) if it's in the wrong runqueue then the migration thread removes
  4212. * it and puts it into the right queue.
  4213. * 6) migration thread up()s the semaphore.
  4214. * 7) we wake up and the migration is done.
  4215. */
  4216. /*
  4217. * Change a given task's CPU affinity. Migrate the thread to a
  4218. * proper CPU and schedule it away if the CPU it's executing on
  4219. * is removed from the allowed bitmask.
  4220. *
  4221. * NOTE: the caller must have a valid reference to the task, the
  4222. * task must not exit() & deallocate itself prematurely. The
  4223. * call is not atomic; no spinlocks may be held.
  4224. */
  4225. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4226. {
  4227. struct migration_req req;
  4228. unsigned long flags;
  4229. struct rq *rq;
  4230. int ret = 0;
  4231. rq = task_rq_lock(p, &flags);
  4232. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4233. ret = -EINVAL;
  4234. goto out;
  4235. }
  4236. p->cpus_allowed = new_mask;
  4237. /* Can the task run on the task's current CPU? If so, we're done */
  4238. if (cpu_isset(task_cpu(p), new_mask))
  4239. goto out;
  4240. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4241. /* Need help from migration thread: drop lock and wait. */
  4242. task_rq_unlock(rq, &flags);
  4243. wake_up_process(rq->migration_thread);
  4244. wait_for_completion(&req.done);
  4245. tlb_migrate_finish(p->mm);
  4246. return 0;
  4247. }
  4248. out:
  4249. task_rq_unlock(rq, &flags);
  4250. return ret;
  4251. }
  4252. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4253. /*
  4254. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4255. * this because either it can't run here any more (set_cpus_allowed()
  4256. * away from this CPU, or CPU going down), or because we're
  4257. * attempting to rebalance this task on exec (sched_exec).
  4258. *
  4259. * So we race with normal scheduler movements, but that's OK, as long
  4260. * as the task is no longer on this CPU.
  4261. *
  4262. * Returns non-zero if task was successfully migrated.
  4263. */
  4264. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4265. {
  4266. struct rq *rq_dest, *rq_src;
  4267. int ret = 0;
  4268. if (unlikely(cpu_is_offline(dest_cpu)))
  4269. return ret;
  4270. rq_src = cpu_rq(src_cpu);
  4271. rq_dest = cpu_rq(dest_cpu);
  4272. double_rq_lock(rq_src, rq_dest);
  4273. /* Already moved. */
  4274. if (task_cpu(p) != src_cpu)
  4275. goto out;
  4276. /* Affinity changed (again). */
  4277. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4278. goto out;
  4279. set_task_cpu(p, dest_cpu);
  4280. if (p->array) {
  4281. /*
  4282. * Sync timestamp with rq_dest's before activating.
  4283. * The same thing could be achieved by doing this step
  4284. * afterwards, and pretending it was a local activate.
  4285. * This way is cleaner and logically correct.
  4286. */
  4287. p->timestamp = p->timestamp - rq_src->most_recent_timestamp
  4288. + rq_dest->most_recent_timestamp;
  4289. deactivate_task(p, rq_src);
  4290. __activate_task(p, rq_dest);
  4291. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4292. resched_task(rq_dest->curr);
  4293. }
  4294. ret = 1;
  4295. out:
  4296. double_rq_unlock(rq_src, rq_dest);
  4297. return ret;
  4298. }
  4299. /*
  4300. * migration_thread - this is a highprio system thread that performs
  4301. * thread migration by bumping thread off CPU then 'pushing' onto
  4302. * another runqueue.
  4303. */
  4304. static int migration_thread(void *data)
  4305. {
  4306. int cpu = (long)data;
  4307. struct rq *rq;
  4308. rq = cpu_rq(cpu);
  4309. BUG_ON(rq->migration_thread != current);
  4310. set_current_state(TASK_INTERRUPTIBLE);
  4311. while (!kthread_should_stop()) {
  4312. struct migration_req *req;
  4313. struct list_head *head;
  4314. try_to_freeze();
  4315. spin_lock_irq(&rq->lock);
  4316. if (cpu_is_offline(cpu)) {
  4317. spin_unlock_irq(&rq->lock);
  4318. goto wait_to_die;
  4319. }
  4320. if (rq->active_balance) {
  4321. active_load_balance(rq, cpu);
  4322. rq->active_balance = 0;
  4323. }
  4324. head = &rq->migration_queue;
  4325. if (list_empty(head)) {
  4326. spin_unlock_irq(&rq->lock);
  4327. schedule();
  4328. set_current_state(TASK_INTERRUPTIBLE);
  4329. continue;
  4330. }
  4331. req = list_entry(head->next, struct migration_req, list);
  4332. list_del_init(head->next);
  4333. spin_unlock(&rq->lock);
  4334. __migrate_task(req->task, cpu, req->dest_cpu);
  4335. local_irq_enable();
  4336. complete(&req->done);
  4337. }
  4338. __set_current_state(TASK_RUNNING);
  4339. return 0;
  4340. wait_to_die:
  4341. /* Wait for kthread_stop */
  4342. set_current_state(TASK_INTERRUPTIBLE);
  4343. while (!kthread_should_stop()) {
  4344. schedule();
  4345. set_current_state(TASK_INTERRUPTIBLE);
  4346. }
  4347. __set_current_state(TASK_RUNNING);
  4348. return 0;
  4349. }
  4350. #ifdef CONFIG_HOTPLUG_CPU
  4351. /*
  4352. * Figure out where task on dead CPU should go, use force if neccessary.
  4353. * NOTE: interrupts should be disabled by the caller
  4354. */
  4355. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4356. {
  4357. unsigned long flags;
  4358. cpumask_t mask;
  4359. struct rq *rq;
  4360. int dest_cpu;
  4361. restart:
  4362. /* On same node? */
  4363. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4364. cpus_and(mask, mask, p->cpus_allowed);
  4365. dest_cpu = any_online_cpu(mask);
  4366. /* On any allowed CPU? */
  4367. if (dest_cpu == NR_CPUS)
  4368. dest_cpu = any_online_cpu(p->cpus_allowed);
  4369. /* No more Mr. Nice Guy. */
  4370. if (dest_cpu == NR_CPUS) {
  4371. rq = task_rq_lock(p, &flags);
  4372. cpus_setall(p->cpus_allowed);
  4373. dest_cpu = any_online_cpu(p->cpus_allowed);
  4374. task_rq_unlock(rq, &flags);
  4375. /*
  4376. * Don't tell them about moving exiting tasks or
  4377. * kernel threads (both mm NULL), since they never
  4378. * leave kernel.
  4379. */
  4380. if (p->mm && printk_ratelimit())
  4381. printk(KERN_INFO "process %d (%s) no "
  4382. "longer affine to cpu%d\n",
  4383. p->pid, p->comm, dead_cpu);
  4384. }
  4385. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4386. goto restart;
  4387. }
  4388. /*
  4389. * While a dead CPU has no uninterruptible tasks queued at this point,
  4390. * it might still have a nonzero ->nr_uninterruptible counter, because
  4391. * for performance reasons the counter is not stricly tracking tasks to
  4392. * their home CPUs. So we just add the counter to another CPU's counter,
  4393. * to keep the global sum constant after CPU-down:
  4394. */
  4395. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4396. {
  4397. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4398. unsigned long flags;
  4399. local_irq_save(flags);
  4400. double_rq_lock(rq_src, rq_dest);
  4401. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4402. rq_src->nr_uninterruptible = 0;
  4403. double_rq_unlock(rq_src, rq_dest);
  4404. local_irq_restore(flags);
  4405. }
  4406. /* Run through task list and migrate tasks from the dead cpu. */
  4407. static void migrate_live_tasks(int src_cpu)
  4408. {
  4409. struct task_struct *p, *t;
  4410. write_lock_irq(&tasklist_lock);
  4411. do_each_thread(t, p) {
  4412. if (p == current)
  4413. continue;
  4414. if (task_cpu(p) == src_cpu)
  4415. move_task_off_dead_cpu(src_cpu, p);
  4416. } while_each_thread(t, p);
  4417. write_unlock_irq(&tasklist_lock);
  4418. }
  4419. /* Schedules idle task to be the next runnable task on current CPU.
  4420. * It does so by boosting its priority to highest possible and adding it to
  4421. * the _front_ of the runqueue. Used by CPU offline code.
  4422. */
  4423. void sched_idle_next(void)
  4424. {
  4425. int this_cpu = smp_processor_id();
  4426. struct rq *rq = cpu_rq(this_cpu);
  4427. struct task_struct *p = rq->idle;
  4428. unsigned long flags;
  4429. /* cpu has to be offline */
  4430. BUG_ON(cpu_online(this_cpu));
  4431. /*
  4432. * Strictly not necessary since rest of the CPUs are stopped by now
  4433. * and interrupts disabled on the current cpu.
  4434. */
  4435. spin_lock_irqsave(&rq->lock, flags);
  4436. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4437. /* Add idle task to the _front_ of its priority queue: */
  4438. __activate_idle_task(p, rq);
  4439. spin_unlock_irqrestore(&rq->lock, flags);
  4440. }
  4441. /*
  4442. * Ensures that the idle task is using init_mm right before its cpu goes
  4443. * offline.
  4444. */
  4445. void idle_task_exit(void)
  4446. {
  4447. struct mm_struct *mm = current->active_mm;
  4448. BUG_ON(cpu_online(smp_processor_id()));
  4449. if (mm != &init_mm)
  4450. switch_mm(mm, &init_mm, current);
  4451. mmdrop(mm);
  4452. }
  4453. /* called under rq->lock with disabled interrupts */
  4454. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4455. {
  4456. struct rq *rq = cpu_rq(dead_cpu);
  4457. /* Must be exiting, otherwise would be on tasklist. */
  4458. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4459. /* Cannot have done final schedule yet: would have vanished. */
  4460. BUG_ON(p->state == TASK_DEAD);
  4461. get_task_struct(p);
  4462. /*
  4463. * Drop lock around migration; if someone else moves it,
  4464. * that's OK. No task can be added to this CPU, so iteration is
  4465. * fine.
  4466. * NOTE: interrupts should be left disabled --dev@
  4467. */
  4468. spin_unlock(&rq->lock);
  4469. move_task_off_dead_cpu(dead_cpu, p);
  4470. spin_lock(&rq->lock);
  4471. put_task_struct(p);
  4472. }
  4473. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4474. static void migrate_dead_tasks(unsigned int dead_cpu)
  4475. {
  4476. struct rq *rq = cpu_rq(dead_cpu);
  4477. unsigned int arr, i;
  4478. for (arr = 0; arr < 2; arr++) {
  4479. for (i = 0; i < MAX_PRIO; i++) {
  4480. struct list_head *list = &rq->arrays[arr].queue[i];
  4481. while (!list_empty(list))
  4482. migrate_dead(dead_cpu, list_entry(list->next,
  4483. struct task_struct, run_list));
  4484. }
  4485. }
  4486. }
  4487. #endif /* CONFIG_HOTPLUG_CPU */
  4488. /*
  4489. * migration_call - callback that gets triggered when a CPU is added.
  4490. * Here we can start up the necessary migration thread for the new CPU.
  4491. */
  4492. static int __cpuinit
  4493. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4494. {
  4495. struct task_struct *p;
  4496. int cpu = (long)hcpu;
  4497. unsigned long flags;
  4498. struct rq *rq;
  4499. switch (action) {
  4500. case CPU_UP_PREPARE:
  4501. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4502. if (IS_ERR(p))
  4503. return NOTIFY_BAD;
  4504. p->flags |= PF_NOFREEZE;
  4505. kthread_bind(p, cpu);
  4506. /* Must be high prio: stop_machine expects to yield to it. */
  4507. rq = task_rq_lock(p, &flags);
  4508. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4509. task_rq_unlock(rq, &flags);
  4510. cpu_rq(cpu)->migration_thread = p;
  4511. break;
  4512. case CPU_ONLINE:
  4513. /* Strictly unneccessary, as first user will wake it. */
  4514. wake_up_process(cpu_rq(cpu)->migration_thread);
  4515. break;
  4516. #ifdef CONFIG_HOTPLUG_CPU
  4517. case CPU_UP_CANCELED:
  4518. if (!cpu_rq(cpu)->migration_thread)
  4519. break;
  4520. /* Unbind it from offline cpu so it can run. Fall thru. */
  4521. kthread_bind(cpu_rq(cpu)->migration_thread,
  4522. any_online_cpu(cpu_online_map));
  4523. kthread_stop(cpu_rq(cpu)->migration_thread);
  4524. cpu_rq(cpu)->migration_thread = NULL;
  4525. break;
  4526. case CPU_DEAD:
  4527. migrate_live_tasks(cpu);
  4528. rq = cpu_rq(cpu);
  4529. kthread_stop(rq->migration_thread);
  4530. rq->migration_thread = NULL;
  4531. /* Idle task back to normal (off runqueue, low prio) */
  4532. rq = task_rq_lock(rq->idle, &flags);
  4533. deactivate_task(rq->idle, rq);
  4534. rq->idle->static_prio = MAX_PRIO;
  4535. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4536. migrate_dead_tasks(cpu);
  4537. task_rq_unlock(rq, &flags);
  4538. migrate_nr_uninterruptible(rq);
  4539. BUG_ON(rq->nr_running != 0);
  4540. /* No need to migrate the tasks: it was best-effort if
  4541. * they didn't do lock_cpu_hotplug(). Just wake up
  4542. * the requestors. */
  4543. spin_lock_irq(&rq->lock);
  4544. while (!list_empty(&rq->migration_queue)) {
  4545. struct migration_req *req;
  4546. req = list_entry(rq->migration_queue.next,
  4547. struct migration_req, list);
  4548. list_del_init(&req->list);
  4549. complete(&req->done);
  4550. }
  4551. spin_unlock_irq(&rq->lock);
  4552. break;
  4553. #endif
  4554. }
  4555. return NOTIFY_OK;
  4556. }
  4557. /* Register at highest priority so that task migration (migrate_all_tasks)
  4558. * happens before everything else.
  4559. */
  4560. static struct notifier_block __cpuinitdata migration_notifier = {
  4561. .notifier_call = migration_call,
  4562. .priority = 10
  4563. };
  4564. int __init migration_init(void)
  4565. {
  4566. void *cpu = (void *)(long)smp_processor_id();
  4567. int err;
  4568. /* Start one for the boot CPU: */
  4569. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4570. BUG_ON(err == NOTIFY_BAD);
  4571. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4572. register_cpu_notifier(&migration_notifier);
  4573. return 0;
  4574. }
  4575. #endif
  4576. #ifdef CONFIG_SMP
  4577. /* Number of possible processor ids */
  4578. int nr_cpu_ids __read_mostly = NR_CPUS;
  4579. EXPORT_SYMBOL(nr_cpu_ids);
  4580. #undef SCHED_DOMAIN_DEBUG
  4581. #ifdef SCHED_DOMAIN_DEBUG
  4582. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4583. {
  4584. int level = 0;
  4585. if (!sd) {
  4586. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4587. return;
  4588. }
  4589. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4590. do {
  4591. int i;
  4592. char str[NR_CPUS];
  4593. struct sched_group *group = sd->groups;
  4594. cpumask_t groupmask;
  4595. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4596. cpus_clear(groupmask);
  4597. printk(KERN_DEBUG);
  4598. for (i = 0; i < level + 1; i++)
  4599. printk(" ");
  4600. printk("domain %d: ", level);
  4601. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4602. printk("does not load-balance\n");
  4603. if (sd->parent)
  4604. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4605. " has parent");
  4606. break;
  4607. }
  4608. printk("span %s\n", str);
  4609. if (!cpu_isset(cpu, sd->span))
  4610. printk(KERN_ERR "ERROR: domain->span does not contain "
  4611. "CPU%d\n", cpu);
  4612. if (!cpu_isset(cpu, group->cpumask))
  4613. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4614. " CPU%d\n", cpu);
  4615. printk(KERN_DEBUG);
  4616. for (i = 0; i < level + 2; i++)
  4617. printk(" ");
  4618. printk("groups:");
  4619. do {
  4620. if (!group) {
  4621. printk("\n");
  4622. printk(KERN_ERR "ERROR: group is NULL\n");
  4623. break;
  4624. }
  4625. if (!group->cpu_power) {
  4626. printk("\n");
  4627. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4628. "set\n");
  4629. }
  4630. if (!cpus_weight(group->cpumask)) {
  4631. printk("\n");
  4632. printk(KERN_ERR "ERROR: empty group\n");
  4633. }
  4634. if (cpus_intersects(groupmask, group->cpumask)) {
  4635. printk("\n");
  4636. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4637. }
  4638. cpus_or(groupmask, groupmask, group->cpumask);
  4639. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4640. printk(" %s", str);
  4641. group = group->next;
  4642. } while (group != sd->groups);
  4643. printk("\n");
  4644. if (!cpus_equal(sd->span, groupmask))
  4645. printk(KERN_ERR "ERROR: groups don't span "
  4646. "domain->span\n");
  4647. level++;
  4648. sd = sd->parent;
  4649. if (!sd)
  4650. continue;
  4651. if (!cpus_subset(groupmask, sd->span))
  4652. printk(KERN_ERR "ERROR: parent span is not a superset "
  4653. "of domain->span\n");
  4654. } while (sd);
  4655. }
  4656. #else
  4657. # define sched_domain_debug(sd, cpu) do { } while (0)
  4658. #endif
  4659. static int sd_degenerate(struct sched_domain *sd)
  4660. {
  4661. if (cpus_weight(sd->span) == 1)
  4662. return 1;
  4663. /* Following flags need at least 2 groups */
  4664. if (sd->flags & (SD_LOAD_BALANCE |
  4665. SD_BALANCE_NEWIDLE |
  4666. SD_BALANCE_FORK |
  4667. SD_BALANCE_EXEC |
  4668. SD_SHARE_CPUPOWER |
  4669. SD_SHARE_PKG_RESOURCES)) {
  4670. if (sd->groups != sd->groups->next)
  4671. return 0;
  4672. }
  4673. /* Following flags don't use groups */
  4674. if (sd->flags & (SD_WAKE_IDLE |
  4675. SD_WAKE_AFFINE |
  4676. SD_WAKE_BALANCE))
  4677. return 0;
  4678. return 1;
  4679. }
  4680. static int
  4681. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4682. {
  4683. unsigned long cflags = sd->flags, pflags = parent->flags;
  4684. if (sd_degenerate(parent))
  4685. return 1;
  4686. if (!cpus_equal(sd->span, parent->span))
  4687. return 0;
  4688. /* Does parent contain flags not in child? */
  4689. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4690. if (cflags & SD_WAKE_AFFINE)
  4691. pflags &= ~SD_WAKE_BALANCE;
  4692. /* Flags needing groups don't count if only 1 group in parent */
  4693. if (parent->groups == parent->groups->next) {
  4694. pflags &= ~(SD_LOAD_BALANCE |
  4695. SD_BALANCE_NEWIDLE |
  4696. SD_BALANCE_FORK |
  4697. SD_BALANCE_EXEC |
  4698. SD_SHARE_CPUPOWER |
  4699. SD_SHARE_PKG_RESOURCES);
  4700. }
  4701. if (~cflags & pflags)
  4702. return 0;
  4703. return 1;
  4704. }
  4705. /*
  4706. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4707. * hold the hotplug lock.
  4708. */
  4709. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4710. {
  4711. struct rq *rq = cpu_rq(cpu);
  4712. struct sched_domain *tmp;
  4713. /* Remove the sched domains which do not contribute to scheduling. */
  4714. for (tmp = sd; tmp; tmp = tmp->parent) {
  4715. struct sched_domain *parent = tmp->parent;
  4716. if (!parent)
  4717. break;
  4718. if (sd_parent_degenerate(tmp, parent)) {
  4719. tmp->parent = parent->parent;
  4720. if (parent->parent)
  4721. parent->parent->child = tmp;
  4722. }
  4723. }
  4724. if (sd && sd_degenerate(sd)) {
  4725. sd = sd->parent;
  4726. if (sd)
  4727. sd->child = NULL;
  4728. }
  4729. sched_domain_debug(sd, cpu);
  4730. rcu_assign_pointer(rq->sd, sd);
  4731. }
  4732. /* cpus with isolated domains */
  4733. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4734. /* Setup the mask of cpus configured for isolated domains */
  4735. static int __init isolated_cpu_setup(char *str)
  4736. {
  4737. int ints[NR_CPUS], i;
  4738. str = get_options(str, ARRAY_SIZE(ints), ints);
  4739. cpus_clear(cpu_isolated_map);
  4740. for (i = 1; i <= ints[0]; i++)
  4741. if (ints[i] < NR_CPUS)
  4742. cpu_set(ints[i], cpu_isolated_map);
  4743. return 1;
  4744. }
  4745. __setup ("isolcpus=", isolated_cpu_setup);
  4746. /*
  4747. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4748. * to a function which identifies what group(along with sched group) a CPU
  4749. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4750. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4751. *
  4752. * init_sched_build_groups will build a circular linked list of the groups
  4753. * covered by the given span, and will set each group's ->cpumask correctly,
  4754. * and ->cpu_power to 0.
  4755. */
  4756. static void
  4757. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4758. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4759. struct sched_group **sg))
  4760. {
  4761. struct sched_group *first = NULL, *last = NULL;
  4762. cpumask_t covered = CPU_MASK_NONE;
  4763. int i;
  4764. for_each_cpu_mask(i, span) {
  4765. struct sched_group *sg;
  4766. int group = group_fn(i, cpu_map, &sg);
  4767. int j;
  4768. if (cpu_isset(i, covered))
  4769. continue;
  4770. sg->cpumask = CPU_MASK_NONE;
  4771. sg->cpu_power = 0;
  4772. for_each_cpu_mask(j, span) {
  4773. if (group_fn(j, cpu_map, NULL) != group)
  4774. continue;
  4775. cpu_set(j, covered);
  4776. cpu_set(j, sg->cpumask);
  4777. }
  4778. if (!first)
  4779. first = sg;
  4780. if (last)
  4781. last->next = sg;
  4782. last = sg;
  4783. }
  4784. last->next = first;
  4785. }
  4786. #define SD_NODES_PER_DOMAIN 16
  4787. /*
  4788. * Self-tuning task migration cost measurement between source and target CPUs.
  4789. *
  4790. * This is done by measuring the cost of manipulating buffers of varying
  4791. * sizes. For a given buffer-size here are the steps that are taken:
  4792. *
  4793. * 1) the source CPU reads+dirties a shared buffer
  4794. * 2) the target CPU reads+dirties the same shared buffer
  4795. *
  4796. * We measure how long they take, in the following 4 scenarios:
  4797. *
  4798. * - source: CPU1, target: CPU2 | cost1
  4799. * - source: CPU2, target: CPU1 | cost2
  4800. * - source: CPU1, target: CPU1 | cost3
  4801. * - source: CPU2, target: CPU2 | cost4
  4802. *
  4803. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  4804. * the cost of migration.
  4805. *
  4806. * We then start off from a small buffer-size and iterate up to larger
  4807. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  4808. * doing a maximum search for the cost. (The maximum cost for a migration
  4809. * normally occurs when the working set size is around the effective cache
  4810. * size.)
  4811. */
  4812. #define SEARCH_SCOPE 2
  4813. #define MIN_CACHE_SIZE (64*1024U)
  4814. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  4815. #define ITERATIONS 1
  4816. #define SIZE_THRESH 130
  4817. #define COST_THRESH 130
  4818. /*
  4819. * The migration cost is a function of 'domain distance'. Domain
  4820. * distance is the number of steps a CPU has to iterate down its
  4821. * domain tree to share a domain with the other CPU. The farther
  4822. * two CPUs are from each other, the larger the distance gets.
  4823. *
  4824. * Note that we use the distance only to cache measurement results,
  4825. * the distance value is not used numerically otherwise. When two
  4826. * CPUs have the same distance it is assumed that the migration
  4827. * cost is the same. (this is a simplification but quite practical)
  4828. */
  4829. #define MAX_DOMAIN_DISTANCE 32
  4830. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  4831. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  4832. /*
  4833. * Architectures may override the migration cost and thus avoid
  4834. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  4835. * virtualized hardware:
  4836. */
  4837. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  4838. CONFIG_DEFAULT_MIGRATION_COST
  4839. #else
  4840. -1LL
  4841. #endif
  4842. };
  4843. /*
  4844. * Allow override of migration cost - in units of microseconds.
  4845. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  4846. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  4847. */
  4848. static int __init migration_cost_setup(char *str)
  4849. {
  4850. int ints[MAX_DOMAIN_DISTANCE+1], i;
  4851. str = get_options(str, ARRAY_SIZE(ints), ints);
  4852. printk("#ints: %d\n", ints[0]);
  4853. for (i = 1; i <= ints[0]; i++) {
  4854. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  4855. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  4856. }
  4857. return 1;
  4858. }
  4859. __setup ("migration_cost=", migration_cost_setup);
  4860. /*
  4861. * Global multiplier (divisor) for migration-cutoff values,
  4862. * in percentiles. E.g. use a value of 150 to get 1.5 times
  4863. * longer cache-hot cutoff times.
  4864. *
  4865. * (We scale it from 100 to 128 to long long handling easier.)
  4866. */
  4867. #define MIGRATION_FACTOR_SCALE 128
  4868. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  4869. static int __init setup_migration_factor(char *str)
  4870. {
  4871. get_option(&str, &migration_factor);
  4872. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  4873. return 1;
  4874. }
  4875. __setup("migration_factor=", setup_migration_factor);
  4876. /*
  4877. * Estimated distance of two CPUs, measured via the number of domains
  4878. * we have to pass for the two CPUs to be in the same span:
  4879. */
  4880. static unsigned long domain_distance(int cpu1, int cpu2)
  4881. {
  4882. unsigned long distance = 0;
  4883. struct sched_domain *sd;
  4884. for_each_domain(cpu1, sd) {
  4885. WARN_ON(!cpu_isset(cpu1, sd->span));
  4886. if (cpu_isset(cpu2, sd->span))
  4887. return distance;
  4888. distance++;
  4889. }
  4890. if (distance >= MAX_DOMAIN_DISTANCE) {
  4891. WARN_ON(1);
  4892. distance = MAX_DOMAIN_DISTANCE-1;
  4893. }
  4894. return distance;
  4895. }
  4896. static unsigned int migration_debug;
  4897. static int __init setup_migration_debug(char *str)
  4898. {
  4899. get_option(&str, &migration_debug);
  4900. return 1;
  4901. }
  4902. __setup("migration_debug=", setup_migration_debug);
  4903. /*
  4904. * Maximum cache-size that the scheduler should try to measure.
  4905. * Architectures with larger caches should tune this up during
  4906. * bootup. Gets used in the domain-setup code (i.e. during SMP
  4907. * bootup).
  4908. */
  4909. unsigned int max_cache_size;
  4910. static int __init setup_max_cache_size(char *str)
  4911. {
  4912. get_option(&str, &max_cache_size);
  4913. return 1;
  4914. }
  4915. __setup("max_cache_size=", setup_max_cache_size);
  4916. /*
  4917. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  4918. * is the operation that is timed, so we try to generate unpredictable
  4919. * cachemisses that still end up filling the L2 cache:
  4920. */
  4921. static void touch_cache(void *__cache, unsigned long __size)
  4922. {
  4923. unsigned long size = __size / sizeof(long);
  4924. unsigned long chunk1 = size / 3;
  4925. unsigned long chunk2 = 2 * size / 3;
  4926. unsigned long *cache = __cache;
  4927. int i;
  4928. for (i = 0; i < size/6; i += 8) {
  4929. switch (i % 6) {
  4930. case 0: cache[i]++;
  4931. case 1: cache[size-1-i]++;
  4932. case 2: cache[chunk1-i]++;
  4933. case 3: cache[chunk1+i]++;
  4934. case 4: cache[chunk2-i]++;
  4935. case 5: cache[chunk2+i]++;
  4936. }
  4937. }
  4938. }
  4939. /*
  4940. * Measure the cache-cost of one task migration. Returns in units of nsec.
  4941. */
  4942. static unsigned long long
  4943. measure_one(void *cache, unsigned long size, int source, int target)
  4944. {
  4945. cpumask_t mask, saved_mask;
  4946. unsigned long long t0, t1, t2, t3, cost;
  4947. saved_mask = current->cpus_allowed;
  4948. /*
  4949. * Flush source caches to RAM and invalidate them:
  4950. */
  4951. sched_cacheflush();
  4952. /*
  4953. * Migrate to the source CPU:
  4954. */
  4955. mask = cpumask_of_cpu(source);
  4956. set_cpus_allowed(current, mask);
  4957. WARN_ON(smp_processor_id() != source);
  4958. /*
  4959. * Dirty the working set:
  4960. */
  4961. t0 = sched_clock();
  4962. touch_cache(cache, size);
  4963. t1 = sched_clock();
  4964. /*
  4965. * Migrate to the target CPU, dirty the L2 cache and access
  4966. * the shared buffer. (which represents the working set
  4967. * of a migrated task.)
  4968. */
  4969. mask = cpumask_of_cpu(target);
  4970. set_cpus_allowed(current, mask);
  4971. WARN_ON(smp_processor_id() != target);
  4972. t2 = sched_clock();
  4973. touch_cache(cache, size);
  4974. t3 = sched_clock();
  4975. cost = t1-t0 + t3-t2;
  4976. if (migration_debug >= 2)
  4977. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  4978. source, target, t1-t0, t1-t0, t3-t2, cost);
  4979. /*
  4980. * Flush target caches to RAM and invalidate them:
  4981. */
  4982. sched_cacheflush();
  4983. set_cpus_allowed(current, saved_mask);
  4984. return cost;
  4985. }
  4986. /*
  4987. * Measure a series of task migrations and return the average
  4988. * result. Since this code runs early during bootup the system
  4989. * is 'undisturbed' and the average latency makes sense.
  4990. *
  4991. * The algorithm in essence auto-detects the relevant cache-size,
  4992. * so it will properly detect different cachesizes for different
  4993. * cache-hierarchies, depending on how the CPUs are connected.
  4994. *
  4995. * Architectures can prime the upper limit of the search range via
  4996. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  4997. */
  4998. static unsigned long long
  4999. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  5000. {
  5001. unsigned long long cost1, cost2;
  5002. int i;
  5003. /*
  5004. * Measure the migration cost of 'size' bytes, over an
  5005. * average of 10 runs:
  5006. *
  5007. * (We perturb the cache size by a small (0..4k)
  5008. * value to compensate size/alignment related artifacts.
  5009. * We also subtract the cost of the operation done on
  5010. * the same CPU.)
  5011. */
  5012. cost1 = 0;
  5013. /*
  5014. * dry run, to make sure we start off cache-cold on cpu1,
  5015. * and to get any vmalloc pagefaults in advance:
  5016. */
  5017. measure_one(cache, size, cpu1, cpu2);
  5018. for (i = 0; i < ITERATIONS; i++)
  5019. cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
  5020. measure_one(cache, size, cpu2, cpu1);
  5021. for (i = 0; i < ITERATIONS; i++)
  5022. cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
  5023. /*
  5024. * (We measure the non-migrating [cached] cost on both
  5025. * cpu1 and cpu2, to handle CPUs with different speeds)
  5026. */
  5027. cost2 = 0;
  5028. measure_one(cache, size, cpu1, cpu1);
  5029. for (i = 0; i < ITERATIONS; i++)
  5030. cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
  5031. measure_one(cache, size, cpu2, cpu2);
  5032. for (i = 0; i < ITERATIONS; i++)
  5033. cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
  5034. /*
  5035. * Get the per-iteration migration cost:
  5036. */
  5037. do_div(cost1, 2 * ITERATIONS);
  5038. do_div(cost2, 2 * ITERATIONS);
  5039. return cost1 - cost2;
  5040. }
  5041. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  5042. {
  5043. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  5044. unsigned int max_size, size, size_found = 0;
  5045. long long cost = 0, prev_cost;
  5046. void *cache;
  5047. /*
  5048. * Search from max_cache_size*5 down to 64K - the real relevant
  5049. * cachesize has to lie somewhere inbetween.
  5050. */
  5051. if (max_cache_size) {
  5052. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  5053. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  5054. } else {
  5055. /*
  5056. * Since we have no estimation about the relevant
  5057. * search range
  5058. */
  5059. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  5060. size = MIN_CACHE_SIZE;
  5061. }
  5062. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  5063. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  5064. return 0;
  5065. }
  5066. /*
  5067. * Allocate the working set:
  5068. */
  5069. cache = vmalloc(max_size);
  5070. if (!cache) {
  5071. printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
  5072. return 1000000; /* return 1 msec on very small boxen */
  5073. }
  5074. while (size <= max_size) {
  5075. prev_cost = cost;
  5076. cost = measure_cost(cpu1, cpu2, cache, size);
  5077. /*
  5078. * Update the max:
  5079. */
  5080. if (cost > 0) {
  5081. if (max_cost < cost) {
  5082. max_cost = cost;
  5083. size_found = size;
  5084. }
  5085. }
  5086. /*
  5087. * Calculate average fluctuation, we use this to prevent
  5088. * noise from triggering an early break out of the loop:
  5089. */
  5090. fluct = abs(cost - prev_cost);
  5091. avg_fluct = (avg_fluct + fluct)/2;
  5092. if (migration_debug)
  5093. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
  5094. "(%8Ld %8Ld)\n",
  5095. cpu1, cpu2, size,
  5096. (long)cost / 1000000,
  5097. ((long)cost / 100000) % 10,
  5098. (long)max_cost / 1000000,
  5099. ((long)max_cost / 100000) % 10,
  5100. domain_distance(cpu1, cpu2),
  5101. cost, avg_fluct);
  5102. /*
  5103. * If we iterated at least 20% past the previous maximum,
  5104. * and the cost has dropped by more than 20% already,
  5105. * (taking fluctuations into account) then we assume to
  5106. * have found the maximum and break out of the loop early:
  5107. */
  5108. if (size_found && (size*100 > size_found*SIZE_THRESH))
  5109. if (cost+avg_fluct <= 0 ||
  5110. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  5111. if (migration_debug)
  5112. printk("-> found max.\n");
  5113. break;
  5114. }
  5115. /*
  5116. * Increase the cachesize in 10% steps:
  5117. */
  5118. size = size * 10 / 9;
  5119. }
  5120. if (migration_debug)
  5121. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  5122. cpu1, cpu2, size_found, max_cost);
  5123. vfree(cache);
  5124. /*
  5125. * A task is considered 'cache cold' if at least 2 times
  5126. * the worst-case cost of migration has passed.
  5127. *
  5128. * (this limit is only listened to if the load-balancing
  5129. * situation is 'nice' - if there is a large imbalance we
  5130. * ignore it for the sake of CPU utilization and
  5131. * processing fairness.)
  5132. */
  5133. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  5134. }
  5135. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  5136. {
  5137. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  5138. unsigned long j0, j1, distance, max_distance = 0;
  5139. struct sched_domain *sd;
  5140. j0 = jiffies;
  5141. /*
  5142. * First pass - calculate the cacheflush times:
  5143. */
  5144. for_each_cpu_mask(cpu1, *cpu_map) {
  5145. for_each_cpu_mask(cpu2, *cpu_map) {
  5146. if (cpu1 == cpu2)
  5147. continue;
  5148. distance = domain_distance(cpu1, cpu2);
  5149. max_distance = max(max_distance, distance);
  5150. /*
  5151. * No result cached yet?
  5152. */
  5153. if (migration_cost[distance] == -1LL)
  5154. migration_cost[distance] =
  5155. measure_migration_cost(cpu1, cpu2);
  5156. }
  5157. }
  5158. /*
  5159. * Second pass - update the sched domain hierarchy with
  5160. * the new cache-hot-time estimations:
  5161. */
  5162. for_each_cpu_mask(cpu, *cpu_map) {
  5163. distance = 0;
  5164. for_each_domain(cpu, sd) {
  5165. sd->cache_hot_time = migration_cost[distance];
  5166. distance++;
  5167. }
  5168. }
  5169. /*
  5170. * Print the matrix:
  5171. */
  5172. if (migration_debug)
  5173. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  5174. max_cache_size,
  5175. #ifdef CONFIG_X86
  5176. cpu_khz/1000
  5177. #else
  5178. -1
  5179. #endif
  5180. );
  5181. if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
  5182. printk("migration_cost=");
  5183. for (distance = 0; distance <= max_distance; distance++) {
  5184. if (distance)
  5185. printk(",");
  5186. printk("%ld", (long)migration_cost[distance] / 1000);
  5187. }
  5188. printk("\n");
  5189. }
  5190. j1 = jiffies;
  5191. if (migration_debug)
  5192. printk("migration: %ld seconds\n", (j1-j0) / HZ);
  5193. /*
  5194. * Move back to the original CPU. NUMA-Q gets confused
  5195. * if we migrate to another quad during bootup.
  5196. */
  5197. if (raw_smp_processor_id() != orig_cpu) {
  5198. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  5199. saved_mask = current->cpus_allowed;
  5200. set_cpus_allowed(current, mask);
  5201. set_cpus_allowed(current, saved_mask);
  5202. }
  5203. }
  5204. #ifdef CONFIG_NUMA
  5205. /**
  5206. * find_next_best_node - find the next node to include in a sched_domain
  5207. * @node: node whose sched_domain we're building
  5208. * @used_nodes: nodes already in the sched_domain
  5209. *
  5210. * Find the next node to include in a given scheduling domain. Simply
  5211. * finds the closest node not already in the @used_nodes map.
  5212. *
  5213. * Should use nodemask_t.
  5214. */
  5215. static int find_next_best_node(int node, unsigned long *used_nodes)
  5216. {
  5217. int i, n, val, min_val, best_node = 0;
  5218. min_val = INT_MAX;
  5219. for (i = 0; i < MAX_NUMNODES; i++) {
  5220. /* Start at @node */
  5221. n = (node + i) % MAX_NUMNODES;
  5222. if (!nr_cpus_node(n))
  5223. continue;
  5224. /* Skip already used nodes */
  5225. if (test_bit(n, used_nodes))
  5226. continue;
  5227. /* Simple min distance search */
  5228. val = node_distance(node, n);
  5229. if (val < min_val) {
  5230. min_val = val;
  5231. best_node = n;
  5232. }
  5233. }
  5234. set_bit(best_node, used_nodes);
  5235. return best_node;
  5236. }
  5237. /**
  5238. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5239. * @node: node whose cpumask we're constructing
  5240. * @size: number of nodes to include in this span
  5241. *
  5242. * Given a node, construct a good cpumask for its sched_domain to span. It
  5243. * should be one that prevents unnecessary balancing, but also spreads tasks
  5244. * out optimally.
  5245. */
  5246. static cpumask_t sched_domain_node_span(int node)
  5247. {
  5248. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5249. cpumask_t span, nodemask;
  5250. int i;
  5251. cpus_clear(span);
  5252. bitmap_zero(used_nodes, MAX_NUMNODES);
  5253. nodemask = node_to_cpumask(node);
  5254. cpus_or(span, span, nodemask);
  5255. set_bit(node, used_nodes);
  5256. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5257. int next_node = find_next_best_node(node, used_nodes);
  5258. nodemask = node_to_cpumask(next_node);
  5259. cpus_or(span, span, nodemask);
  5260. }
  5261. return span;
  5262. }
  5263. #endif
  5264. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5265. /*
  5266. * SMT sched-domains:
  5267. */
  5268. #ifdef CONFIG_SCHED_SMT
  5269. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5270. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5271. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5272. struct sched_group **sg)
  5273. {
  5274. if (sg)
  5275. *sg = &per_cpu(sched_group_cpus, cpu);
  5276. return cpu;
  5277. }
  5278. #endif
  5279. /*
  5280. * multi-core sched-domains:
  5281. */
  5282. #ifdef CONFIG_SCHED_MC
  5283. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5284. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5285. #endif
  5286. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5287. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5288. struct sched_group **sg)
  5289. {
  5290. int group;
  5291. cpumask_t mask = cpu_sibling_map[cpu];
  5292. cpus_and(mask, mask, *cpu_map);
  5293. group = first_cpu(mask);
  5294. if (sg)
  5295. *sg = &per_cpu(sched_group_core, group);
  5296. return group;
  5297. }
  5298. #elif defined(CONFIG_SCHED_MC)
  5299. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5300. struct sched_group **sg)
  5301. {
  5302. if (sg)
  5303. *sg = &per_cpu(sched_group_core, cpu);
  5304. return cpu;
  5305. }
  5306. #endif
  5307. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5308. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5309. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5310. struct sched_group **sg)
  5311. {
  5312. int group;
  5313. #ifdef CONFIG_SCHED_MC
  5314. cpumask_t mask = cpu_coregroup_map(cpu);
  5315. cpus_and(mask, mask, *cpu_map);
  5316. group = first_cpu(mask);
  5317. #elif defined(CONFIG_SCHED_SMT)
  5318. cpumask_t mask = cpu_sibling_map[cpu];
  5319. cpus_and(mask, mask, *cpu_map);
  5320. group = first_cpu(mask);
  5321. #else
  5322. group = cpu;
  5323. #endif
  5324. if (sg)
  5325. *sg = &per_cpu(sched_group_phys, group);
  5326. return group;
  5327. }
  5328. #ifdef CONFIG_NUMA
  5329. /*
  5330. * The init_sched_build_groups can't handle what we want to do with node
  5331. * groups, so roll our own. Now each node has its own list of groups which
  5332. * gets dynamically allocated.
  5333. */
  5334. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5335. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5336. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5337. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5338. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5339. struct sched_group **sg)
  5340. {
  5341. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5342. int group;
  5343. cpus_and(nodemask, nodemask, *cpu_map);
  5344. group = first_cpu(nodemask);
  5345. if (sg)
  5346. *sg = &per_cpu(sched_group_allnodes, group);
  5347. return group;
  5348. }
  5349. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5350. {
  5351. struct sched_group *sg = group_head;
  5352. int j;
  5353. if (!sg)
  5354. return;
  5355. next_sg:
  5356. for_each_cpu_mask(j, sg->cpumask) {
  5357. struct sched_domain *sd;
  5358. sd = &per_cpu(phys_domains, j);
  5359. if (j != first_cpu(sd->groups->cpumask)) {
  5360. /*
  5361. * Only add "power" once for each
  5362. * physical package.
  5363. */
  5364. continue;
  5365. }
  5366. sg->cpu_power += sd->groups->cpu_power;
  5367. }
  5368. sg = sg->next;
  5369. if (sg != group_head)
  5370. goto next_sg;
  5371. }
  5372. #endif
  5373. #ifdef CONFIG_NUMA
  5374. /* Free memory allocated for various sched_group structures */
  5375. static void free_sched_groups(const cpumask_t *cpu_map)
  5376. {
  5377. int cpu, i;
  5378. for_each_cpu_mask(cpu, *cpu_map) {
  5379. struct sched_group **sched_group_nodes
  5380. = sched_group_nodes_bycpu[cpu];
  5381. if (!sched_group_nodes)
  5382. continue;
  5383. for (i = 0; i < MAX_NUMNODES; i++) {
  5384. cpumask_t nodemask = node_to_cpumask(i);
  5385. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5386. cpus_and(nodemask, nodemask, *cpu_map);
  5387. if (cpus_empty(nodemask))
  5388. continue;
  5389. if (sg == NULL)
  5390. continue;
  5391. sg = sg->next;
  5392. next_sg:
  5393. oldsg = sg;
  5394. sg = sg->next;
  5395. kfree(oldsg);
  5396. if (oldsg != sched_group_nodes[i])
  5397. goto next_sg;
  5398. }
  5399. kfree(sched_group_nodes);
  5400. sched_group_nodes_bycpu[cpu] = NULL;
  5401. }
  5402. }
  5403. #else
  5404. static void free_sched_groups(const cpumask_t *cpu_map)
  5405. {
  5406. }
  5407. #endif
  5408. /*
  5409. * Initialize sched groups cpu_power.
  5410. *
  5411. * cpu_power indicates the capacity of sched group, which is used while
  5412. * distributing the load between different sched groups in a sched domain.
  5413. * Typically cpu_power for all the groups in a sched domain will be same unless
  5414. * there are asymmetries in the topology. If there are asymmetries, group
  5415. * having more cpu_power will pickup more load compared to the group having
  5416. * less cpu_power.
  5417. *
  5418. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5419. * the maximum number of tasks a group can handle in the presence of other idle
  5420. * or lightly loaded groups in the same sched domain.
  5421. */
  5422. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5423. {
  5424. struct sched_domain *child;
  5425. struct sched_group *group;
  5426. WARN_ON(!sd || !sd->groups);
  5427. if (cpu != first_cpu(sd->groups->cpumask))
  5428. return;
  5429. child = sd->child;
  5430. /*
  5431. * For perf policy, if the groups in child domain share resources
  5432. * (for example cores sharing some portions of the cache hierarchy
  5433. * or SMT), then set this domain groups cpu_power such that each group
  5434. * can handle only one task, when there are other idle groups in the
  5435. * same sched domain.
  5436. */
  5437. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5438. (child->flags &
  5439. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5440. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5441. return;
  5442. }
  5443. sd->groups->cpu_power = 0;
  5444. /*
  5445. * add cpu_power of each child group to this groups cpu_power
  5446. */
  5447. group = child->groups;
  5448. do {
  5449. sd->groups->cpu_power += group->cpu_power;
  5450. group = group->next;
  5451. } while (group != child->groups);
  5452. }
  5453. /*
  5454. * Build sched domains for a given set of cpus and attach the sched domains
  5455. * to the individual cpus
  5456. */
  5457. static int build_sched_domains(const cpumask_t *cpu_map)
  5458. {
  5459. int i;
  5460. struct sched_domain *sd;
  5461. #ifdef CONFIG_NUMA
  5462. struct sched_group **sched_group_nodes = NULL;
  5463. int sd_allnodes = 0;
  5464. /*
  5465. * Allocate the per-node list of sched groups
  5466. */
  5467. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5468. GFP_KERNEL);
  5469. if (!sched_group_nodes) {
  5470. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5471. return -ENOMEM;
  5472. }
  5473. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5474. #endif
  5475. /*
  5476. * Set up domains for cpus specified by the cpu_map.
  5477. */
  5478. for_each_cpu_mask(i, *cpu_map) {
  5479. struct sched_domain *sd = NULL, *p;
  5480. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5481. cpus_and(nodemask, nodemask, *cpu_map);
  5482. #ifdef CONFIG_NUMA
  5483. if (cpus_weight(*cpu_map)
  5484. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5485. sd = &per_cpu(allnodes_domains, i);
  5486. *sd = SD_ALLNODES_INIT;
  5487. sd->span = *cpu_map;
  5488. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5489. p = sd;
  5490. sd_allnodes = 1;
  5491. } else
  5492. p = NULL;
  5493. sd = &per_cpu(node_domains, i);
  5494. *sd = SD_NODE_INIT;
  5495. sd->span = sched_domain_node_span(cpu_to_node(i));
  5496. sd->parent = p;
  5497. if (p)
  5498. p->child = sd;
  5499. cpus_and(sd->span, sd->span, *cpu_map);
  5500. #endif
  5501. p = sd;
  5502. sd = &per_cpu(phys_domains, i);
  5503. *sd = SD_CPU_INIT;
  5504. sd->span = nodemask;
  5505. sd->parent = p;
  5506. if (p)
  5507. p->child = sd;
  5508. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5509. #ifdef CONFIG_SCHED_MC
  5510. p = sd;
  5511. sd = &per_cpu(core_domains, i);
  5512. *sd = SD_MC_INIT;
  5513. sd->span = cpu_coregroup_map(i);
  5514. cpus_and(sd->span, sd->span, *cpu_map);
  5515. sd->parent = p;
  5516. p->child = sd;
  5517. cpu_to_core_group(i, cpu_map, &sd->groups);
  5518. #endif
  5519. #ifdef CONFIG_SCHED_SMT
  5520. p = sd;
  5521. sd = &per_cpu(cpu_domains, i);
  5522. *sd = SD_SIBLING_INIT;
  5523. sd->span = cpu_sibling_map[i];
  5524. cpus_and(sd->span, sd->span, *cpu_map);
  5525. sd->parent = p;
  5526. p->child = sd;
  5527. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5528. #endif
  5529. }
  5530. #ifdef CONFIG_SCHED_SMT
  5531. /* Set up CPU (sibling) groups */
  5532. for_each_cpu_mask(i, *cpu_map) {
  5533. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5534. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5535. if (i != first_cpu(this_sibling_map))
  5536. continue;
  5537. init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
  5538. }
  5539. #endif
  5540. #ifdef CONFIG_SCHED_MC
  5541. /* Set up multi-core groups */
  5542. for_each_cpu_mask(i, *cpu_map) {
  5543. cpumask_t this_core_map = cpu_coregroup_map(i);
  5544. cpus_and(this_core_map, this_core_map, *cpu_map);
  5545. if (i != first_cpu(this_core_map))
  5546. continue;
  5547. init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
  5548. }
  5549. #endif
  5550. /* Set up physical groups */
  5551. for (i = 0; i < MAX_NUMNODES; i++) {
  5552. cpumask_t nodemask = node_to_cpumask(i);
  5553. cpus_and(nodemask, nodemask, *cpu_map);
  5554. if (cpus_empty(nodemask))
  5555. continue;
  5556. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5557. }
  5558. #ifdef CONFIG_NUMA
  5559. /* Set up node groups */
  5560. if (sd_allnodes)
  5561. init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
  5562. for (i = 0; i < MAX_NUMNODES; i++) {
  5563. /* Set up node groups */
  5564. struct sched_group *sg, *prev;
  5565. cpumask_t nodemask = node_to_cpumask(i);
  5566. cpumask_t domainspan;
  5567. cpumask_t covered = CPU_MASK_NONE;
  5568. int j;
  5569. cpus_and(nodemask, nodemask, *cpu_map);
  5570. if (cpus_empty(nodemask)) {
  5571. sched_group_nodes[i] = NULL;
  5572. continue;
  5573. }
  5574. domainspan = sched_domain_node_span(i);
  5575. cpus_and(domainspan, domainspan, *cpu_map);
  5576. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5577. if (!sg) {
  5578. printk(KERN_WARNING "Can not alloc domain group for "
  5579. "node %d\n", i);
  5580. goto error;
  5581. }
  5582. sched_group_nodes[i] = sg;
  5583. for_each_cpu_mask(j, nodemask) {
  5584. struct sched_domain *sd;
  5585. sd = &per_cpu(node_domains, j);
  5586. sd->groups = sg;
  5587. }
  5588. sg->cpu_power = 0;
  5589. sg->cpumask = nodemask;
  5590. sg->next = sg;
  5591. cpus_or(covered, covered, nodemask);
  5592. prev = sg;
  5593. for (j = 0; j < MAX_NUMNODES; j++) {
  5594. cpumask_t tmp, notcovered;
  5595. int n = (i + j) % MAX_NUMNODES;
  5596. cpus_complement(notcovered, covered);
  5597. cpus_and(tmp, notcovered, *cpu_map);
  5598. cpus_and(tmp, tmp, domainspan);
  5599. if (cpus_empty(tmp))
  5600. break;
  5601. nodemask = node_to_cpumask(n);
  5602. cpus_and(tmp, tmp, nodemask);
  5603. if (cpus_empty(tmp))
  5604. continue;
  5605. sg = kmalloc_node(sizeof(struct sched_group),
  5606. GFP_KERNEL, i);
  5607. if (!sg) {
  5608. printk(KERN_WARNING
  5609. "Can not alloc domain group for node %d\n", j);
  5610. goto error;
  5611. }
  5612. sg->cpu_power = 0;
  5613. sg->cpumask = tmp;
  5614. sg->next = prev->next;
  5615. cpus_or(covered, covered, tmp);
  5616. prev->next = sg;
  5617. prev = sg;
  5618. }
  5619. }
  5620. #endif
  5621. /* Calculate CPU power for physical packages and nodes */
  5622. #ifdef CONFIG_SCHED_SMT
  5623. for_each_cpu_mask(i, *cpu_map) {
  5624. sd = &per_cpu(cpu_domains, i);
  5625. init_sched_groups_power(i, sd);
  5626. }
  5627. #endif
  5628. #ifdef CONFIG_SCHED_MC
  5629. for_each_cpu_mask(i, *cpu_map) {
  5630. sd = &per_cpu(core_domains, i);
  5631. init_sched_groups_power(i, sd);
  5632. }
  5633. #endif
  5634. for_each_cpu_mask(i, *cpu_map) {
  5635. sd = &per_cpu(phys_domains, i);
  5636. init_sched_groups_power(i, sd);
  5637. }
  5638. #ifdef CONFIG_NUMA
  5639. for (i = 0; i < MAX_NUMNODES; i++)
  5640. init_numa_sched_groups_power(sched_group_nodes[i]);
  5641. if (sd_allnodes) {
  5642. struct sched_group *sg;
  5643. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5644. init_numa_sched_groups_power(sg);
  5645. }
  5646. #endif
  5647. /* Attach the domains */
  5648. for_each_cpu_mask(i, *cpu_map) {
  5649. struct sched_domain *sd;
  5650. #ifdef CONFIG_SCHED_SMT
  5651. sd = &per_cpu(cpu_domains, i);
  5652. #elif defined(CONFIG_SCHED_MC)
  5653. sd = &per_cpu(core_domains, i);
  5654. #else
  5655. sd = &per_cpu(phys_domains, i);
  5656. #endif
  5657. cpu_attach_domain(sd, i);
  5658. }
  5659. /*
  5660. * Tune cache-hot values:
  5661. */
  5662. calibrate_migration_costs(cpu_map);
  5663. return 0;
  5664. #ifdef CONFIG_NUMA
  5665. error:
  5666. free_sched_groups(cpu_map);
  5667. return -ENOMEM;
  5668. #endif
  5669. }
  5670. /*
  5671. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5672. */
  5673. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5674. {
  5675. cpumask_t cpu_default_map;
  5676. int err;
  5677. /*
  5678. * Setup mask for cpus without special case scheduling requirements.
  5679. * For now this just excludes isolated cpus, but could be used to
  5680. * exclude other special cases in the future.
  5681. */
  5682. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5683. err = build_sched_domains(&cpu_default_map);
  5684. return err;
  5685. }
  5686. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5687. {
  5688. free_sched_groups(cpu_map);
  5689. }
  5690. /*
  5691. * Detach sched domains from a group of cpus specified in cpu_map
  5692. * These cpus will now be attached to the NULL domain
  5693. */
  5694. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5695. {
  5696. int i;
  5697. for_each_cpu_mask(i, *cpu_map)
  5698. cpu_attach_domain(NULL, i);
  5699. synchronize_sched();
  5700. arch_destroy_sched_domains(cpu_map);
  5701. }
  5702. /*
  5703. * Partition sched domains as specified by the cpumasks below.
  5704. * This attaches all cpus from the cpumasks to the NULL domain,
  5705. * waits for a RCU quiescent period, recalculates sched
  5706. * domain information and then attaches them back to the
  5707. * correct sched domains
  5708. * Call with hotplug lock held
  5709. */
  5710. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5711. {
  5712. cpumask_t change_map;
  5713. int err = 0;
  5714. cpus_and(*partition1, *partition1, cpu_online_map);
  5715. cpus_and(*partition2, *partition2, cpu_online_map);
  5716. cpus_or(change_map, *partition1, *partition2);
  5717. /* Detach sched domains from all of the affected cpus */
  5718. detach_destroy_domains(&change_map);
  5719. if (!cpus_empty(*partition1))
  5720. err = build_sched_domains(partition1);
  5721. if (!err && !cpus_empty(*partition2))
  5722. err = build_sched_domains(partition2);
  5723. return err;
  5724. }
  5725. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5726. int arch_reinit_sched_domains(void)
  5727. {
  5728. int err;
  5729. lock_cpu_hotplug();
  5730. detach_destroy_domains(&cpu_online_map);
  5731. err = arch_init_sched_domains(&cpu_online_map);
  5732. unlock_cpu_hotplug();
  5733. return err;
  5734. }
  5735. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5736. {
  5737. int ret;
  5738. if (buf[0] != '0' && buf[0] != '1')
  5739. return -EINVAL;
  5740. if (smt)
  5741. sched_smt_power_savings = (buf[0] == '1');
  5742. else
  5743. sched_mc_power_savings = (buf[0] == '1');
  5744. ret = arch_reinit_sched_domains();
  5745. return ret ? ret : count;
  5746. }
  5747. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5748. {
  5749. int err = 0;
  5750. #ifdef CONFIG_SCHED_SMT
  5751. if (smt_capable())
  5752. err = sysfs_create_file(&cls->kset.kobj,
  5753. &attr_sched_smt_power_savings.attr);
  5754. #endif
  5755. #ifdef CONFIG_SCHED_MC
  5756. if (!err && mc_capable())
  5757. err = sysfs_create_file(&cls->kset.kobj,
  5758. &attr_sched_mc_power_savings.attr);
  5759. #endif
  5760. return err;
  5761. }
  5762. #endif
  5763. #ifdef CONFIG_SCHED_MC
  5764. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5765. {
  5766. return sprintf(page, "%u\n", sched_mc_power_savings);
  5767. }
  5768. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5769. const char *buf, size_t count)
  5770. {
  5771. return sched_power_savings_store(buf, count, 0);
  5772. }
  5773. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5774. sched_mc_power_savings_store);
  5775. #endif
  5776. #ifdef CONFIG_SCHED_SMT
  5777. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5778. {
  5779. return sprintf(page, "%u\n", sched_smt_power_savings);
  5780. }
  5781. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5782. const char *buf, size_t count)
  5783. {
  5784. return sched_power_savings_store(buf, count, 1);
  5785. }
  5786. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5787. sched_smt_power_savings_store);
  5788. #endif
  5789. /*
  5790. * Force a reinitialization of the sched domains hierarchy. The domains
  5791. * and groups cannot be updated in place without racing with the balancing
  5792. * code, so we temporarily attach all running cpus to the NULL domain
  5793. * which will prevent rebalancing while the sched domains are recalculated.
  5794. */
  5795. static int update_sched_domains(struct notifier_block *nfb,
  5796. unsigned long action, void *hcpu)
  5797. {
  5798. switch (action) {
  5799. case CPU_UP_PREPARE:
  5800. case CPU_DOWN_PREPARE:
  5801. detach_destroy_domains(&cpu_online_map);
  5802. return NOTIFY_OK;
  5803. case CPU_UP_CANCELED:
  5804. case CPU_DOWN_FAILED:
  5805. case CPU_ONLINE:
  5806. case CPU_DEAD:
  5807. /*
  5808. * Fall through and re-initialise the domains.
  5809. */
  5810. break;
  5811. default:
  5812. return NOTIFY_DONE;
  5813. }
  5814. /* The hotplug lock is already held by cpu_up/cpu_down */
  5815. arch_init_sched_domains(&cpu_online_map);
  5816. return NOTIFY_OK;
  5817. }
  5818. void __init sched_init_smp(void)
  5819. {
  5820. cpumask_t non_isolated_cpus;
  5821. lock_cpu_hotplug();
  5822. arch_init_sched_domains(&cpu_online_map);
  5823. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5824. if (cpus_empty(non_isolated_cpus))
  5825. cpu_set(smp_processor_id(), non_isolated_cpus);
  5826. unlock_cpu_hotplug();
  5827. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5828. hotcpu_notifier(update_sched_domains, 0);
  5829. /* Move init over to a non-isolated CPU */
  5830. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5831. BUG();
  5832. }
  5833. #else
  5834. void __init sched_init_smp(void)
  5835. {
  5836. }
  5837. #endif /* CONFIG_SMP */
  5838. int in_sched_functions(unsigned long addr)
  5839. {
  5840. /* Linker adds these: start and end of __sched functions */
  5841. extern char __sched_text_start[], __sched_text_end[];
  5842. return in_lock_functions(addr) ||
  5843. (addr >= (unsigned long)__sched_text_start
  5844. && addr < (unsigned long)__sched_text_end);
  5845. }
  5846. void __init sched_init(void)
  5847. {
  5848. int i, j, k;
  5849. int highest_cpu = 0;
  5850. for_each_possible_cpu(i) {
  5851. struct prio_array *array;
  5852. struct rq *rq;
  5853. rq = cpu_rq(i);
  5854. spin_lock_init(&rq->lock);
  5855. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5856. rq->nr_running = 0;
  5857. rq->active = rq->arrays;
  5858. rq->expired = rq->arrays + 1;
  5859. rq->best_expired_prio = MAX_PRIO;
  5860. #ifdef CONFIG_SMP
  5861. rq->sd = NULL;
  5862. for (j = 1; j < 3; j++)
  5863. rq->cpu_load[j] = 0;
  5864. rq->active_balance = 0;
  5865. rq->push_cpu = 0;
  5866. rq->cpu = i;
  5867. rq->migration_thread = NULL;
  5868. INIT_LIST_HEAD(&rq->migration_queue);
  5869. #endif
  5870. atomic_set(&rq->nr_iowait, 0);
  5871. for (j = 0; j < 2; j++) {
  5872. array = rq->arrays + j;
  5873. for (k = 0; k < MAX_PRIO; k++) {
  5874. INIT_LIST_HEAD(array->queue + k);
  5875. __clear_bit(k, array->bitmap);
  5876. }
  5877. // delimiter for bitsearch
  5878. __set_bit(MAX_PRIO, array->bitmap);
  5879. }
  5880. highest_cpu = i;
  5881. }
  5882. set_load_weight(&init_task);
  5883. #ifdef CONFIG_SMP
  5884. nr_cpu_ids = highest_cpu + 1;
  5885. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5886. #endif
  5887. #ifdef CONFIG_RT_MUTEXES
  5888. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5889. #endif
  5890. /*
  5891. * The boot idle thread does lazy MMU switching as well:
  5892. */
  5893. atomic_inc(&init_mm.mm_count);
  5894. enter_lazy_tlb(&init_mm, current);
  5895. /*
  5896. * Make us the idle thread. Technically, schedule() should not be
  5897. * called from this thread, however somewhere below it might be,
  5898. * but because we are the idle thread, we just pick up running again
  5899. * when this runqueue becomes "idle".
  5900. */
  5901. init_idle(current, smp_processor_id());
  5902. }
  5903. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5904. void __might_sleep(char *file, int line)
  5905. {
  5906. #ifdef in_atomic
  5907. static unsigned long prev_jiffy; /* ratelimiting */
  5908. if ((in_atomic() || irqs_disabled()) &&
  5909. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5910. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5911. return;
  5912. prev_jiffy = jiffies;
  5913. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5914. " context at %s:%d\n", file, line);
  5915. printk("in_atomic():%d, irqs_disabled():%d\n",
  5916. in_atomic(), irqs_disabled());
  5917. debug_show_held_locks(current);
  5918. if (irqs_disabled())
  5919. print_irqtrace_events(current);
  5920. dump_stack();
  5921. }
  5922. #endif
  5923. }
  5924. EXPORT_SYMBOL(__might_sleep);
  5925. #endif
  5926. #ifdef CONFIG_MAGIC_SYSRQ
  5927. void normalize_rt_tasks(void)
  5928. {
  5929. struct prio_array *array;
  5930. struct task_struct *p;
  5931. unsigned long flags;
  5932. struct rq *rq;
  5933. read_lock_irq(&tasklist_lock);
  5934. for_each_process(p) {
  5935. if (!rt_task(p))
  5936. continue;
  5937. spin_lock_irqsave(&p->pi_lock, flags);
  5938. rq = __task_rq_lock(p);
  5939. array = p->array;
  5940. if (array)
  5941. deactivate_task(p, task_rq(p));
  5942. __setscheduler(p, SCHED_NORMAL, 0);
  5943. if (array) {
  5944. __activate_task(p, task_rq(p));
  5945. resched_task(rq->curr);
  5946. }
  5947. __task_rq_unlock(rq);
  5948. spin_unlock_irqrestore(&p->pi_lock, flags);
  5949. }
  5950. read_unlock_irq(&tasklist_lock);
  5951. }
  5952. #endif /* CONFIG_MAGIC_SYSRQ */
  5953. #ifdef CONFIG_IA64
  5954. /*
  5955. * These functions are only useful for the IA64 MCA handling.
  5956. *
  5957. * They can only be called when the whole system has been
  5958. * stopped - every CPU needs to be quiescent, and no scheduling
  5959. * activity can take place. Using them for anything else would
  5960. * be a serious bug, and as a result, they aren't even visible
  5961. * under any other configuration.
  5962. */
  5963. /**
  5964. * curr_task - return the current task for a given cpu.
  5965. * @cpu: the processor in question.
  5966. *
  5967. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5968. */
  5969. struct task_struct *curr_task(int cpu)
  5970. {
  5971. return cpu_curr(cpu);
  5972. }
  5973. /**
  5974. * set_curr_task - set the current task for a given cpu.
  5975. * @cpu: the processor in question.
  5976. * @p: the task pointer to set.
  5977. *
  5978. * Description: This function must only be used when non-maskable interrupts
  5979. * are serviced on a separate stack. It allows the architecture to switch the
  5980. * notion of the current task on a cpu in a non-blocking manner. This function
  5981. * must be called with all CPU's synchronized, and interrupts disabled, the
  5982. * and caller must save the original value of the current task (see
  5983. * curr_task() above) and restore that value before reenabling interrupts and
  5984. * re-starting the system.
  5985. *
  5986. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5987. */
  5988. void set_curr_task(int cpu, struct task_struct *p)
  5989. {
  5990. cpu_curr(cpu) = p;
  5991. }
  5992. #endif