genx2apic_uv_x.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV APIC functions (note: not an Intel compatible APIC)
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/threads.h>
  12. #include <linux/cpu.h>
  13. #include <linux/cpumask.h>
  14. #include <linux/string.h>
  15. #include <linux/ctype.h>
  16. #include <linux/init.h>
  17. #include <linux/sched.h>
  18. #include <linux/module.h>
  19. #include <linux/hardirq.h>
  20. #include <linux/timer.h>
  21. #include <linux/proc_fs.h>
  22. #include <asm/current.h>
  23. #include <asm/smp.h>
  24. #include <asm/ipi.h>
  25. #include <asm/genapic.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/uv/uv.h>
  28. #include <asm/uv/uv_mmrs.h>
  29. #include <asm/uv/uv_hub.h>
  30. #include <asm/uv/bios.h>
  31. DEFINE_PER_CPU(int, x2apic_extra_bits);
  32. static enum uv_system_type uv_system_type;
  33. static int uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
  34. {
  35. if (!strcmp(oem_id, "SGI")) {
  36. if (!strcmp(oem_table_id, "UVL"))
  37. uv_system_type = UV_LEGACY_APIC;
  38. else if (!strcmp(oem_table_id, "UVX"))
  39. uv_system_type = UV_X2APIC;
  40. else if (!strcmp(oem_table_id, "UVH")) {
  41. uv_system_type = UV_NON_UNIQUE_APIC;
  42. return 1;
  43. }
  44. }
  45. return 0;
  46. }
  47. enum uv_system_type get_uv_system_type(void)
  48. {
  49. return uv_system_type;
  50. }
  51. int is_uv_system(void)
  52. {
  53. return uv_system_type != UV_NONE;
  54. }
  55. EXPORT_SYMBOL_GPL(is_uv_system);
  56. DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  57. EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
  58. struct uv_blade_info *uv_blade_info;
  59. EXPORT_SYMBOL_GPL(uv_blade_info);
  60. short *uv_node_to_blade;
  61. EXPORT_SYMBOL_GPL(uv_node_to_blade);
  62. short *uv_cpu_to_blade;
  63. EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
  64. short uv_possible_blades;
  65. EXPORT_SYMBOL_GPL(uv_possible_blades);
  66. unsigned long sn_rtc_cycles_per_second;
  67. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  68. /* Start with all IRQs pointing to boot CPU. IRQ balancing will shift them. */
  69. static const struct cpumask *uv_target_cpus(void)
  70. {
  71. return cpumask_of(0);
  72. }
  73. static void uv_vector_allocation_domain(int cpu, struct cpumask *retmask)
  74. {
  75. cpumask_clear(retmask);
  76. cpumask_set_cpu(cpu, retmask);
  77. }
  78. int uv_wakeup_secondary(int phys_apicid, unsigned int start_rip)
  79. {
  80. unsigned long val;
  81. int pnode;
  82. pnode = uv_apicid_to_pnode(phys_apicid);
  83. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  84. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  85. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  86. APIC_DM_INIT;
  87. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  88. mdelay(10);
  89. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  90. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  91. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  92. APIC_DM_STARTUP;
  93. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  94. return 0;
  95. }
  96. static void uv_send_IPI_one(int cpu, int vector)
  97. {
  98. unsigned long val, apicid, lapicid;
  99. int pnode;
  100. apicid = per_cpu(x86_cpu_to_apicid, cpu);
  101. lapicid = apicid & 0x3f; /* ZZZ macro needed */
  102. pnode = uv_apicid_to_pnode(apicid);
  103. val =
  104. (1UL << UVH_IPI_INT_SEND_SHFT) | (lapicid <<
  105. UVH_IPI_INT_APIC_ID_SHFT) |
  106. (vector << UVH_IPI_INT_VECTOR_SHFT);
  107. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  108. }
  109. static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
  110. {
  111. unsigned int cpu;
  112. for_each_cpu(cpu, mask)
  113. uv_send_IPI_one(cpu, vector);
  114. }
  115. static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
  116. {
  117. unsigned int cpu;
  118. unsigned int this_cpu = smp_processor_id();
  119. for_each_cpu(cpu, mask)
  120. if (cpu != this_cpu)
  121. uv_send_IPI_one(cpu, vector);
  122. }
  123. static void uv_send_IPI_allbutself(int vector)
  124. {
  125. unsigned int cpu;
  126. unsigned int this_cpu = smp_processor_id();
  127. for_each_online_cpu(cpu)
  128. if (cpu != this_cpu)
  129. uv_send_IPI_one(cpu, vector);
  130. }
  131. static void uv_send_IPI_all(int vector)
  132. {
  133. uv_send_IPI_mask(cpu_online_mask, vector);
  134. }
  135. static int uv_apic_id_registered(void)
  136. {
  137. return 1;
  138. }
  139. static void uv_init_apic_ldr(void)
  140. {
  141. }
  142. static unsigned int uv_cpu_mask_to_apicid(const struct cpumask *cpumask)
  143. {
  144. int cpu;
  145. /*
  146. * We're using fixed IRQ delivery, can only return one phys APIC ID.
  147. * May as well be the first.
  148. */
  149. cpu = cpumask_first(cpumask);
  150. if ((unsigned)cpu < nr_cpu_ids)
  151. return per_cpu(x86_cpu_to_apicid, cpu);
  152. else
  153. return BAD_APICID;
  154. }
  155. static unsigned int uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask,
  156. const struct cpumask *andmask)
  157. {
  158. int cpu;
  159. /*
  160. * We're using fixed IRQ delivery, can only return one phys APIC ID.
  161. * May as well be the first.
  162. */
  163. for_each_cpu_and(cpu, cpumask, andmask)
  164. if (cpumask_test_cpu(cpu, cpu_online_mask))
  165. break;
  166. if (cpu < nr_cpu_ids)
  167. return per_cpu(x86_cpu_to_apicid, cpu);
  168. return BAD_APICID;
  169. }
  170. static unsigned int get_apic_id(unsigned long x)
  171. {
  172. unsigned int id;
  173. WARN_ON(preemptible() && num_online_cpus() > 1);
  174. id = x | __get_cpu_var(x2apic_extra_bits);
  175. return id;
  176. }
  177. static unsigned long set_apic_id(unsigned int id)
  178. {
  179. unsigned long x;
  180. /* maskout x2apic_extra_bits ? */
  181. x = id;
  182. return x;
  183. }
  184. static unsigned int uv_read_apic_id(void)
  185. {
  186. return get_apic_id(apic_read(APIC_ID));
  187. }
  188. static unsigned int phys_pkg_id(int index_msb)
  189. {
  190. return uv_read_apic_id() >> index_msb;
  191. }
  192. static void uv_send_IPI_self(int vector)
  193. {
  194. apic_write(APIC_SELF_IPI, vector);
  195. }
  196. struct genapic apic_x2apic_uv_x = {
  197. .name = "UV large system",
  198. .acpi_madt_oem_check = uv_acpi_madt_oem_check,
  199. .int_delivery_mode = dest_Fixed,
  200. .int_dest_mode = (APIC_DEST_PHYSICAL != 0),
  201. .target_cpus = uv_target_cpus,
  202. .vector_allocation_domain = uv_vector_allocation_domain,
  203. .apic_id_registered = uv_apic_id_registered,
  204. .init_apic_ldr = uv_init_apic_ldr,
  205. .send_IPI_all = uv_send_IPI_all,
  206. .send_IPI_allbutself = uv_send_IPI_allbutself,
  207. .send_IPI_mask = uv_send_IPI_mask,
  208. .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself,
  209. .send_IPI_self = uv_send_IPI_self,
  210. .cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
  211. .cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and,
  212. .phys_pkg_id = phys_pkg_id,
  213. .get_apic_id = get_apic_id,
  214. .set_apic_id = set_apic_id,
  215. .apic_id_mask = (0xFFFFFFFFu),
  216. };
  217. static __cpuinit void set_x2apic_extra_bits(int pnode)
  218. {
  219. __get_cpu_var(x2apic_extra_bits) = (pnode << 6);
  220. }
  221. /*
  222. * Called on boot cpu.
  223. */
  224. static __init int boot_pnode_to_blade(int pnode)
  225. {
  226. int blade;
  227. for (blade = 0; blade < uv_num_possible_blades(); blade++)
  228. if (pnode == uv_blade_info[blade].pnode)
  229. return blade;
  230. BUG();
  231. }
  232. struct redir_addr {
  233. unsigned long redirect;
  234. unsigned long alias;
  235. };
  236. #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
  237. static __initdata struct redir_addr redir_addrs[] = {
  238. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
  239. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
  240. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
  241. };
  242. static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
  243. {
  244. union uvh_si_alias0_overlay_config_u alias;
  245. union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
  246. int i;
  247. for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
  248. alias.v = uv_read_local_mmr(redir_addrs[i].alias);
  249. if (alias.s.base == 0) {
  250. *size = (1UL << alias.s.m_alias);
  251. redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
  252. *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
  253. return;
  254. }
  255. }
  256. BUG();
  257. }
  258. static __init void map_low_mmrs(void)
  259. {
  260. init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
  261. init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
  262. }
  263. enum map_type {map_wb, map_uc};
  264. static __init void map_high(char *id, unsigned long base, int shift,
  265. int max_pnode, enum map_type map_type)
  266. {
  267. unsigned long bytes, paddr;
  268. paddr = base << shift;
  269. bytes = (1UL << shift) * (max_pnode + 1);
  270. printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
  271. paddr + bytes);
  272. if (map_type == map_uc)
  273. init_extra_mapping_uc(paddr, bytes);
  274. else
  275. init_extra_mapping_wb(paddr, bytes);
  276. }
  277. static __init void map_gru_high(int max_pnode)
  278. {
  279. union uvh_rh_gam_gru_overlay_config_mmr_u gru;
  280. int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
  281. gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
  282. if (gru.s.enable)
  283. map_high("GRU", gru.s.base, shift, max_pnode, map_wb);
  284. }
  285. static __init void map_config_high(int max_pnode)
  286. {
  287. union uvh_rh_gam_cfg_overlay_config_mmr_u cfg;
  288. int shift = UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR_BASE_SHFT;
  289. cfg.v = uv_read_local_mmr(UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR);
  290. if (cfg.s.enable)
  291. map_high("CONFIG", cfg.s.base, shift, max_pnode, map_uc);
  292. }
  293. static __init void map_mmr_high(int max_pnode)
  294. {
  295. union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
  296. int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;
  297. mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
  298. if (mmr.s.enable)
  299. map_high("MMR", mmr.s.base, shift, max_pnode, map_uc);
  300. }
  301. static __init void map_mmioh_high(int max_pnode)
  302. {
  303. union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
  304. int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
  305. mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
  306. if (mmioh.s.enable)
  307. map_high("MMIOH", mmioh.s.base, shift, max_pnode, map_uc);
  308. }
  309. static __init void uv_rtc_init(void)
  310. {
  311. long status;
  312. u64 ticks_per_sec;
  313. status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK,
  314. &ticks_per_sec);
  315. if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
  316. printk(KERN_WARNING
  317. "unable to determine platform RTC clock frequency, "
  318. "guessing.\n");
  319. /* BIOS gives wrong value for clock freq. so guess */
  320. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  321. } else
  322. sn_rtc_cycles_per_second = ticks_per_sec;
  323. }
  324. /*
  325. * percpu heartbeat timer
  326. */
  327. static void uv_heartbeat(unsigned long ignored)
  328. {
  329. struct timer_list *timer = &uv_hub_info->scir.timer;
  330. unsigned char bits = uv_hub_info->scir.state;
  331. /* flip heartbeat bit */
  332. bits ^= SCIR_CPU_HEARTBEAT;
  333. /* is this cpu idle? */
  334. if (idle_cpu(raw_smp_processor_id()))
  335. bits &= ~SCIR_CPU_ACTIVITY;
  336. else
  337. bits |= SCIR_CPU_ACTIVITY;
  338. /* update system controller interface reg */
  339. uv_set_scir_bits(bits);
  340. /* enable next timer period */
  341. mod_timer(timer, jiffies + SCIR_CPU_HB_INTERVAL);
  342. }
  343. static void __cpuinit uv_heartbeat_enable(int cpu)
  344. {
  345. if (!uv_cpu_hub_info(cpu)->scir.enabled) {
  346. struct timer_list *timer = &uv_cpu_hub_info(cpu)->scir.timer;
  347. uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY);
  348. setup_timer(timer, uv_heartbeat, cpu);
  349. timer->expires = jiffies + SCIR_CPU_HB_INTERVAL;
  350. add_timer_on(timer, cpu);
  351. uv_cpu_hub_info(cpu)->scir.enabled = 1;
  352. }
  353. /* check boot cpu */
  354. if (!uv_cpu_hub_info(0)->scir.enabled)
  355. uv_heartbeat_enable(0);
  356. }
  357. #ifdef CONFIG_HOTPLUG_CPU
  358. static void __cpuinit uv_heartbeat_disable(int cpu)
  359. {
  360. if (uv_cpu_hub_info(cpu)->scir.enabled) {
  361. uv_cpu_hub_info(cpu)->scir.enabled = 0;
  362. del_timer(&uv_cpu_hub_info(cpu)->scir.timer);
  363. }
  364. uv_set_cpu_scir_bits(cpu, 0xff);
  365. }
  366. /*
  367. * cpu hotplug notifier
  368. */
  369. static __cpuinit int uv_scir_cpu_notify(struct notifier_block *self,
  370. unsigned long action, void *hcpu)
  371. {
  372. long cpu = (long)hcpu;
  373. switch (action) {
  374. case CPU_ONLINE:
  375. uv_heartbeat_enable(cpu);
  376. break;
  377. case CPU_DOWN_PREPARE:
  378. uv_heartbeat_disable(cpu);
  379. break;
  380. default:
  381. break;
  382. }
  383. return NOTIFY_OK;
  384. }
  385. static __init void uv_scir_register_cpu_notifier(void)
  386. {
  387. hotcpu_notifier(uv_scir_cpu_notify, 0);
  388. }
  389. #else /* !CONFIG_HOTPLUG_CPU */
  390. static __init void uv_scir_register_cpu_notifier(void)
  391. {
  392. }
  393. static __init int uv_init_heartbeat(void)
  394. {
  395. int cpu;
  396. if (is_uv_system())
  397. for_each_online_cpu(cpu)
  398. uv_heartbeat_enable(cpu);
  399. return 0;
  400. }
  401. late_initcall(uv_init_heartbeat);
  402. #endif /* !CONFIG_HOTPLUG_CPU */
  403. /*
  404. * Called on each cpu to initialize the per_cpu UV data area.
  405. * ZZZ hotplug not supported yet
  406. */
  407. void __cpuinit uv_cpu_init(void)
  408. {
  409. /* CPU 0 initilization will be done via uv_system_init. */
  410. if (!uv_blade_info)
  411. return;
  412. uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
  413. if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
  414. set_x2apic_extra_bits(uv_hub_info->pnode);
  415. }
  416. void __init uv_system_init(void)
  417. {
  418. union uvh_si_addr_map_config_u m_n_config;
  419. union uvh_node_id_u node_id;
  420. unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
  421. int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
  422. int max_pnode = 0;
  423. unsigned long mmr_base, present;
  424. map_low_mmrs();
  425. m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
  426. m_val = m_n_config.s.m_skt;
  427. n_val = m_n_config.s.n_skt;
  428. mmr_base =
  429. uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
  430. ~UV_MMR_ENABLE;
  431. printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
  432. for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
  433. uv_possible_blades +=
  434. hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
  435. printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());
  436. bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
  437. uv_blade_info = kmalloc(bytes, GFP_KERNEL);
  438. get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
  439. bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
  440. uv_node_to_blade = kmalloc(bytes, GFP_KERNEL);
  441. memset(uv_node_to_blade, 255, bytes);
  442. bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
  443. uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL);
  444. memset(uv_cpu_to_blade, 255, bytes);
  445. blade = 0;
  446. for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
  447. present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
  448. for (j = 0; j < 64; j++) {
  449. if (!test_bit(j, &present))
  450. continue;
  451. uv_blade_info[blade].pnode = (i * 64 + j);
  452. uv_blade_info[blade].nr_possible_cpus = 0;
  453. uv_blade_info[blade].nr_online_cpus = 0;
  454. blade++;
  455. }
  456. }
  457. node_id.v = uv_read_local_mmr(UVH_NODE_ID);
  458. gnode_upper = (((unsigned long)node_id.s.node_id) &
  459. ~((1 << n_val) - 1)) << m_val;
  460. uv_bios_init();
  461. uv_bios_get_sn_info(0, &uv_type, &sn_partition_id,
  462. &sn_coherency_id, &sn_region_size);
  463. uv_rtc_init();
  464. for_each_present_cpu(cpu) {
  465. nid = cpu_to_node(cpu);
  466. pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
  467. blade = boot_pnode_to_blade(pnode);
  468. lcpu = uv_blade_info[blade].nr_possible_cpus;
  469. uv_blade_info[blade].nr_possible_cpus++;
  470. uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
  471. uv_cpu_hub_info(cpu)->lowmem_remap_top = lowmem_redir_size;
  472. uv_cpu_hub_info(cpu)->m_val = m_val;
  473. uv_cpu_hub_info(cpu)->n_val = m_val;
  474. uv_cpu_hub_info(cpu)->numa_blade_id = blade;
  475. uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
  476. uv_cpu_hub_info(cpu)->pnode = pnode;
  477. uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
  478. uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
  479. uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
  480. uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
  481. uv_cpu_hub_info(cpu)->coherency_domain_number = sn_coherency_id;
  482. uv_cpu_hub_info(cpu)->scir.offset = SCIR_LOCAL_MMR_BASE + lcpu;
  483. uv_node_to_blade[nid] = blade;
  484. uv_cpu_to_blade[cpu] = blade;
  485. max_pnode = max(pnode, max_pnode);
  486. printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
  487. "lcpu %d, blade %d\n",
  488. cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
  489. lcpu, blade);
  490. }
  491. map_gru_high(max_pnode);
  492. map_mmr_high(max_pnode);
  493. map_config_high(max_pnode);
  494. map_mmioh_high(max_pnode);
  495. uv_cpu_init();
  496. uv_scir_register_cpu_notifier();
  497. proc_mkdir("sgi_uv", NULL);
  498. }