gadget.h 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /*
  2. * <linux/usb/gadget.h>
  3. *
  4. * We call the USB code inside a Linux-based peripheral device a "gadget"
  5. * driver, except for the hardware-specific bus glue. One USB host can
  6. * master many USB gadgets, but the gadgets are only slaved to one host.
  7. *
  8. *
  9. * (C) Copyright 2002-2004 by David Brownell
  10. * All Rights Reserved.
  11. *
  12. * This software is licensed under the GNU GPL version 2.
  13. */
  14. #ifndef __LINUX_USB_GADGET_H
  15. #define __LINUX_USB_GADGET_H
  16. #include <linux/slab.h>
  17. #include <linux/usb/ch9.h>
  18. struct usb_ep;
  19. /**
  20. * struct usb_request - describes one i/o request
  21. * @buf: Buffer used for data. Always provide this; some controllers
  22. * only use PIO, or don't use DMA for some endpoints.
  23. * @dma: DMA address corresponding to 'buf'. If you don't set this
  24. * field, and the usb controller needs one, it is responsible
  25. * for mapping and unmapping the buffer.
  26. * @length: Length of that data
  27. * @stream_id: The stream id, when USB3.0 bulk streams are being used
  28. * @no_interrupt: If true, hints that no completion irq is needed.
  29. * Helpful sometimes with deep request queues that are handled
  30. * directly by DMA controllers.
  31. * @zero: If true, when writing data, makes the last packet be "short"
  32. * by adding a zero length packet as needed;
  33. * @short_not_ok: When reading data, makes short packets be
  34. * treated as errors (queue stops advancing till cleanup).
  35. * @complete: Function called when request completes, so this request and
  36. * its buffer may be re-used. The function will always be called with
  37. * interrupts disabled, and it must not sleep.
  38. * Reads terminate with a short packet, or when the buffer fills,
  39. * whichever comes first. When writes terminate, some data bytes
  40. * will usually still be in flight (often in a hardware fifo).
  41. * Errors (for reads or writes) stop the queue from advancing
  42. * until the completion function returns, so that any transfers
  43. * invalidated by the error may first be dequeued.
  44. * @context: For use by the completion callback
  45. * @list: For use by the gadget driver.
  46. * @status: Reports completion code, zero or a negative errno.
  47. * Normally, faults block the transfer queue from advancing until
  48. * the completion callback returns.
  49. * Code "-ESHUTDOWN" indicates completion caused by device disconnect,
  50. * or when the driver disabled the endpoint.
  51. * @actual: Reports bytes transferred to/from the buffer. For reads (OUT
  52. * transfers) this may be less than the requested length. If the
  53. * short_not_ok flag is set, short reads are treated as errors
  54. * even when status otherwise indicates successful completion.
  55. * Note that for writes (IN transfers) some data bytes may still
  56. * reside in a device-side FIFO when the request is reported as
  57. * complete.
  58. *
  59. * These are allocated/freed through the endpoint they're used with. The
  60. * hardware's driver can add extra per-request data to the memory it returns,
  61. * which often avoids separate memory allocations (potential failures),
  62. * later when the request is queued.
  63. *
  64. * Request flags affect request handling, such as whether a zero length
  65. * packet is written (the "zero" flag), whether a short read should be
  66. * treated as an error (blocking request queue advance, the "short_not_ok"
  67. * flag), or hinting that an interrupt is not required (the "no_interrupt"
  68. * flag, for use with deep request queues).
  69. *
  70. * Bulk endpoints can use any size buffers, and can also be used for interrupt
  71. * transfers. interrupt-only endpoints can be much less functional.
  72. *
  73. * NOTE: this is analogous to 'struct urb' on the host side, except that
  74. * it's thinner and promotes more pre-allocation.
  75. */
  76. struct usb_request {
  77. void *buf;
  78. unsigned length;
  79. dma_addr_t dma;
  80. unsigned stream_id:16;
  81. unsigned no_interrupt:1;
  82. unsigned zero:1;
  83. unsigned short_not_ok:1;
  84. void (*complete)(struct usb_ep *ep,
  85. struct usb_request *req);
  86. void *context;
  87. struct list_head list;
  88. int status;
  89. unsigned actual;
  90. };
  91. /*-------------------------------------------------------------------------*/
  92. /* endpoint-specific parts of the api to the usb controller hardware.
  93. * unlike the urb model, (de)multiplexing layers are not required.
  94. * (so this api could slash overhead if used on the host side...)
  95. *
  96. * note that device side usb controllers commonly differ in how many
  97. * endpoints they support, as well as their capabilities.
  98. */
  99. struct usb_ep_ops {
  100. int (*enable) (struct usb_ep *ep,
  101. const struct usb_endpoint_descriptor *desc);
  102. int (*disable) (struct usb_ep *ep);
  103. struct usb_request *(*alloc_request) (struct usb_ep *ep,
  104. gfp_t gfp_flags);
  105. void (*free_request) (struct usb_ep *ep, struct usb_request *req);
  106. int (*queue) (struct usb_ep *ep, struct usb_request *req,
  107. gfp_t gfp_flags);
  108. int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
  109. int (*set_halt) (struct usb_ep *ep, int value);
  110. int (*set_wedge) (struct usb_ep *ep);
  111. int (*fifo_status) (struct usb_ep *ep);
  112. void (*fifo_flush) (struct usb_ep *ep);
  113. };
  114. /**
  115. * struct usb_ep - device side representation of USB endpoint
  116. * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
  117. * @ops: Function pointers used to access hardware-specific operations.
  118. * @ep_list:the gadget's ep_list holds all of its endpoints
  119. * @maxpacket:The maximum packet size used on this endpoint. The initial
  120. * value can sometimes be reduced (hardware allowing), according to
  121. * the endpoint descriptor used to configure the endpoint.
  122. * @max_streams: The maximum number of streams supported
  123. * by this EP (0 - 16, actual number is 2^n)
  124. * @mult: multiplier, 'mult' value for SS Isoc EPs
  125. * @maxburst: the maximum number of bursts supported by this EP (for usb3)
  126. * @driver_data:for use by the gadget driver.
  127. * @address: used to identify the endpoint when finding descriptor that
  128. * matches connection speed
  129. * @desc: endpoint descriptor. This pointer is set before the endpoint is
  130. * enabled and remains valid until the endpoint is disabled.
  131. * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
  132. * descriptor that is used to configure the endpoint
  133. *
  134. * the bus controller driver lists all the general purpose endpoints in
  135. * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list,
  136. * and is accessed only in response to a driver setup() callback.
  137. */
  138. struct usb_ep {
  139. void *driver_data;
  140. const char *name;
  141. const struct usb_ep_ops *ops;
  142. struct list_head ep_list;
  143. unsigned maxpacket:16;
  144. unsigned max_streams:16;
  145. unsigned mult:2;
  146. unsigned maxburst:4;
  147. u8 address;
  148. const struct usb_endpoint_descriptor *desc;
  149. const struct usb_ss_ep_comp_descriptor *comp_desc;
  150. };
  151. /*-------------------------------------------------------------------------*/
  152. /**
  153. * usb_ep_enable - configure endpoint, making it usable
  154. * @ep:the endpoint being configured. may not be the endpoint named "ep0".
  155. * drivers discover endpoints through the ep_list of a usb_gadget.
  156. *
  157. * When configurations are set, or when interface settings change, the driver
  158. * will enable or disable the relevant endpoints. while it is enabled, an
  159. * endpoint may be used for i/o until the driver receives a disconnect() from
  160. * the host or until the endpoint is disabled.
  161. *
  162. * the ep0 implementation (which calls this routine) must ensure that the
  163. * hardware capabilities of each endpoint match the descriptor provided
  164. * for it. for example, an endpoint named "ep2in-bulk" would be usable
  165. * for interrupt transfers as well as bulk, but it likely couldn't be used
  166. * for iso transfers or for endpoint 14. some endpoints are fully
  167. * configurable, with more generic names like "ep-a". (remember that for
  168. * USB, "in" means "towards the USB master".)
  169. *
  170. * returns zero, or a negative error code.
  171. */
  172. static inline int usb_ep_enable(struct usb_ep *ep)
  173. {
  174. return ep->ops->enable(ep, ep->desc);
  175. }
  176. /**
  177. * usb_ep_disable - endpoint is no longer usable
  178. * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
  179. *
  180. * no other task may be using this endpoint when this is called.
  181. * any pending and uncompleted requests will complete with status
  182. * indicating disconnect (-ESHUTDOWN) before this call returns.
  183. * gadget drivers must call usb_ep_enable() again before queueing
  184. * requests to the endpoint.
  185. *
  186. * returns zero, or a negative error code.
  187. */
  188. static inline int usb_ep_disable(struct usb_ep *ep)
  189. {
  190. return ep->ops->disable(ep);
  191. }
  192. /**
  193. * usb_ep_alloc_request - allocate a request object to use with this endpoint
  194. * @ep:the endpoint to be used with with the request
  195. * @gfp_flags:GFP_* flags to use
  196. *
  197. * Request objects must be allocated with this call, since they normally
  198. * need controller-specific setup and may even need endpoint-specific
  199. * resources such as allocation of DMA descriptors.
  200. * Requests may be submitted with usb_ep_queue(), and receive a single
  201. * completion callback. Free requests with usb_ep_free_request(), when
  202. * they are no longer needed.
  203. *
  204. * Returns the request, or null if one could not be allocated.
  205. */
  206. static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
  207. gfp_t gfp_flags)
  208. {
  209. return ep->ops->alloc_request(ep, gfp_flags);
  210. }
  211. /**
  212. * usb_ep_free_request - frees a request object
  213. * @ep:the endpoint associated with the request
  214. * @req:the request being freed
  215. *
  216. * Reverses the effect of usb_ep_alloc_request().
  217. * Caller guarantees the request is not queued, and that it will
  218. * no longer be requeued (or otherwise used).
  219. */
  220. static inline void usb_ep_free_request(struct usb_ep *ep,
  221. struct usb_request *req)
  222. {
  223. ep->ops->free_request(ep, req);
  224. }
  225. /**
  226. * usb_ep_queue - queues (submits) an I/O request to an endpoint.
  227. * @ep:the endpoint associated with the request
  228. * @req:the request being submitted
  229. * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
  230. * pre-allocate all necessary memory with the request.
  231. *
  232. * This tells the device controller to perform the specified request through
  233. * that endpoint (reading or writing a buffer). When the request completes,
  234. * including being canceled by usb_ep_dequeue(), the request's completion
  235. * routine is called to return the request to the driver. Any endpoint
  236. * (except control endpoints like ep0) may have more than one transfer
  237. * request queued; they complete in FIFO order. Once a gadget driver
  238. * submits a request, that request may not be examined or modified until it
  239. * is given back to that driver through the completion callback.
  240. *
  241. * Each request is turned into one or more packets. The controller driver
  242. * never merges adjacent requests into the same packet. OUT transfers
  243. * will sometimes use data that's already buffered in the hardware.
  244. * Drivers can rely on the fact that the first byte of the request's buffer
  245. * always corresponds to the first byte of some USB packet, for both
  246. * IN and OUT transfers.
  247. *
  248. * Bulk endpoints can queue any amount of data; the transfer is packetized
  249. * automatically. The last packet will be short if the request doesn't fill it
  250. * out completely. Zero length packets (ZLPs) should be avoided in portable
  251. * protocols since not all usb hardware can successfully handle zero length
  252. * packets. (ZLPs may be explicitly written, and may be implicitly written if
  253. * the request 'zero' flag is set.) Bulk endpoints may also be used
  254. * for interrupt transfers; but the reverse is not true, and some endpoints
  255. * won't support every interrupt transfer. (Such as 768 byte packets.)
  256. *
  257. * Interrupt-only endpoints are less functional than bulk endpoints, for
  258. * example by not supporting queueing or not handling buffers that are
  259. * larger than the endpoint's maxpacket size. They may also treat data
  260. * toggle differently.
  261. *
  262. * Control endpoints ... after getting a setup() callback, the driver queues
  263. * one response (even if it would be zero length). That enables the
  264. * status ack, after transferring data as specified in the response. Setup
  265. * functions may return negative error codes to generate protocol stalls.
  266. * (Note that some USB device controllers disallow protocol stall responses
  267. * in some cases.) When control responses are deferred (the response is
  268. * written after the setup callback returns), then usb_ep_set_halt() may be
  269. * used on ep0 to trigger protocol stalls. Depending on the controller,
  270. * it may not be possible to trigger a status-stage protocol stall when the
  271. * data stage is over, that is, from within the response's completion
  272. * routine.
  273. *
  274. * For periodic endpoints, like interrupt or isochronous ones, the usb host
  275. * arranges to poll once per interval, and the gadget driver usually will
  276. * have queued some data to transfer at that time.
  277. *
  278. * Returns zero, or a negative error code. Endpoints that are not enabled
  279. * report errors; errors will also be
  280. * reported when the usb peripheral is disconnected.
  281. */
  282. static inline int usb_ep_queue(struct usb_ep *ep,
  283. struct usb_request *req, gfp_t gfp_flags)
  284. {
  285. return ep->ops->queue(ep, req, gfp_flags);
  286. }
  287. /**
  288. * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
  289. * @ep:the endpoint associated with the request
  290. * @req:the request being canceled
  291. *
  292. * if the request is still active on the endpoint, it is dequeued and its
  293. * completion routine is called (with status -ECONNRESET); else a negative
  294. * error code is returned.
  295. *
  296. * note that some hardware can't clear out write fifos (to unlink the request
  297. * at the head of the queue) except as part of disconnecting from usb. such
  298. * restrictions prevent drivers from supporting configuration changes,
  299. * even to configuration zero (a "chapter 9" requirement).
  300. */
  301. static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  302. {
  303. return ep->ops->dequeue(ep, req);
  304. }
  305. /**
  306. * usb_ep_set_halt - sets the endpoint halt feature.
  307. * @ep: the non-isochronous endpoint being stalled
  308. *
  309. * Use this to stall an endpoint, perhaps as an error report.
  310. * Except for control endpoints,
  311. * the endpoint stays halted (will not stream any data) until the host
  312. * clears this feature; drivers may need to empty the endpoint's request
  313. * queue first, to make sure no inappropriate transfers happen.
  314. *
  315. * Note that while an endpoint CLEAR_FEATURE will be invisible to the
  316. * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
  317. * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
  318. * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
  319. *
  320. * Returns zero, or a negative error code. On success, this call sets
  321. * underlying hardware state that blocks data transfers.
  322. * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
  323. * transfer requests are still queued, or if the controller hardware
  324. * (usually a FIFO) still holds bytes that the host hasn't collected.
  325. */
  326. static inline int usb_ep_set_halt(struct usb_ep *ep)
  327. {
  328. return ep->ops->set_halt(ep, 1);
  329. }
  330. /**
  331. * usb_ep_clear_halt - clears endpoint halt, and resets toggle
  332. * @ep:the bulk or interrupt endpoint being reset
  333. *
  334. * Use this when responding to the standard usb "set interface" request,
  335. * for endpoints that aren't reconfigured, after clearing any other state
  336. * in the endpoint's i/o queue.
  337. *
  338. * Returns zero, or a negative error code. On success, this call clears
  339. * the underlying hardware state reflecting endpoint halt and data toggle.
  340. * Note that some hardware can't support this request (like pxa2xx_udc),
  341. * and accordingly can't correctly implement interface altsettings.
  342. */
  343. static inline int usb_ep_clear_halt(struct usb_ep *ep)
  344. {
  345. return ep->ops->set_halt(ep, 0);
  346. }
  347. /**
  348. * usb_ep_set_wedge - sets the halt feature and ignores clear requests
  349. * @ep: the endpoint being wedged
  350. *
  351. * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
  352. * requests. If the gadget driver clears the halt status, it will
  353. * automatically unwedge the endpoint.
  354. *
  355. * Returns zero on success, else negative errno.
  356. */
  357. static inline int
  358. usb_ep_set_wedge(struct usb_ep *ep)
  359. {
  360. if (ep->ops->set_wedge)
  361. return ep->ops->set_wedge(ep);
  362. else
  363. return ep->ops->set_halt(ep, 1);
  364. }
  365. /**
  366. * usb_ep_fifo_status - returns number of bytes in fifo, or error
  367. * @ep: the endpoint whose fifo status is being checked.
  368. *
  369. * FIFO endpoints may have "unclaimed data" in them in certain cases,
  370. * such as after aborted transfers. Hosts may not have collected all
  371. * the IN data written by the gadget driver (and reported by a request
  372. * completion). The gadget driver may not have collected all the data
  373. * written OUT to it by the host. Drivers that need precise handling for
  374. * fault reporting or recovery may need to use this call.
  375. *
  376. * This returns the number of such bytes in the fifo, or a negative
  377. * errno if the endpoint doesn't use a FIFO or doesn't support such
  378. * precise handling.
  379. */
  380. static inline int usb_ep_fifo_status(struct usb_ep *ep)
  381. {
  382. if (ep->ops->fifo_status)
  383. return ep->ops->fifo_status(ep);
  384. else
  385. return -EOPNOTSUPP;
  386. }
  387. /**
  388. * usb_ep_fifo_flush - flushes contents of a fifo
  389. * @ep: the endpoint whose fifo is being flushed.
  390. *
  391. * This call may be used to flush the "unclaimed data" that may exist in
  392. * an endpoint fifo after abnormal transaction terminations. The call
  393. * must never be used except when endpoint is not being used for any
  394. * protocol translation.
  395. */
  396. static inline void usb_ep_fifo_flush(struct usb_ep *ep)
  397. {
  398. if (ep->ops->fifo_flush)
  399. ep->ops->fifo_flush(ep);
  400. }
  401. /*-------------------------------------------------------------------------*/
  402. struct usb_dcd_config_params {
  403. __u8 bU1devExitLat; /* U1 Device exit Latency */
  404. #define USB_DEFULT_U1_DEV_EXIT_LAT 0x01 /* Less then 1 microsec */
  405. __le16 bU2DevExitLat; /* U2 Device exit Latency */
  406. #define USB_DEFULT_U2_DEV_EXIT_LAT 0x1F4 /* Less then 500 microsec */
  407. };
  408. struct usb_gadget;
  409. struct usb_gadget_driver;
  410. /* the rest of the api to the controller hardware: device operations,
  411. * which don't involve endpoints (or i/o).
  412. */
  413. struct usb_gadget_ops {
  414. int (*get_frame)(struct usb_gadget *);
  415. int (*wakeup)(struct usb_gadget *);
  416. int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
  417. int (*vbus_session) (struct usb_gadget *, int is_active);
  418. int (*vbus_draw) (struct usb_gadget *, unsigned mA);
  419. int (*pullup) (struct usb_gadget *, int is_on);
  420. int (*ioctl)(struct usb_gadget *,
  421. unsigned code, unsigned long param);
  422. void (*get_config_params)(struct usb_dcd_config_params *);
  423. int (*start)(struct usb_gadget_driver *,
  424. int (*bind)(struct usb_gadget *));
  425. int (*stop)(struct usb_gadget_driver *);
  426. };
  427. /**
  428. * struct usb_gadget - represents a usb slave device
  429. * @ops: Function pointers used to access hardware-specific operations.
  430. * @ep0: Endpoint zero, used when reading or writing responses to
  431. * driver setup() requests
  432. * @ep_list: List of other endpoints supported by the device.
  433. * @speed: Speed of current connection to USB host.
  434. * @is_dualspeed: True if the controller supports both high and full speed
  435. * operation. If it does, the gadget driver must also support both.
  436. * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
  437. * gadget driver must provide a USB OTG descriptor.
  438. * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
  439. * is in the Mini-AB jack, and HNP has been used to switch roles
  440. * so that the "A" device currently acts as A-Peripheral, not A-Host.
  441. * @a_hnp_support: OTG device feature flag, indicating that the A-Host
  442. * supports HNP at this port.
  443. * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
  444. * only supports HNP on a different root port.
  445. * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
  446. * enabled HNP support.
  447. * @name: Identifies the controller hardware type. Used in diagnostics
  448. * and sometimes configuration.
  449. * @dev: Driver model state for this abstract device.
  450. *
  451. * Gadgets have a mostly-portable "gadget driver" implementing device
  452. * functions, handling all usb configurations and interfaces. Gadget
  453. * drivers talk to hardware-specific code indirectly, through ops vectors.
  454. * That insulates the gadget driver from hardware details, and packages
  455. * the hardware endpoints through generic i/o queues. The "usb_gadget"
  456. * and "usb_ep" interfaces provide that insulation from the hardware.
  457. *
  458. * Except for the driver data, all fields in this structure are
  459. * read-only to the gadget driver. That driver data is part of the
  460. * "driver model" infrastructure in 2.6 (and later) kernels, and for
  461. * earlier systems is grouped in a similar structure that's not known
  462. * to the rest of the kernel.
  463. *
  464. * Values of the three OTG device feature flags are updated before the
  465. * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
  466. * driver suspend() calls. They are valid only when is_otg, and when the
  467. * device is acting as a B-Peripheral (so is_a_peripheral is false).
  468. */
  469. struct usb_gadget {
  470. /* readonly to gadget driver */
  471. const struct usb_gadget_ops *ops;
  472. struct usb_ep *ep0;
  473. struct list_head ep_list; /* of usb_ep */
  474. enum usb_device_speed speed;
  475. unsigned is_dualspeed:1;
  476. unsigned is_otg:1;
  477. unsigned is_a_peripheral:1;
  478. unsigned b_hnp_enable:1;
  479. unsigned a_hnp_support:1;
  480. unsigned a_alt_hnp_support:1;
  481. const char *name;
  482. struct device dev;
  483. };
  484. static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
  485. { dev_set_drvdata(&gadget->dev, data); }
  486. static inline void *get_gadget_data(struct usb_gadget *gadget)
  487. { return dev_get_drvdata(&gadget->dev); }
  488. static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
  489. {
  490. return container_of(dev, struct usb_gadget, dev);
  491. }
  492. /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
  493. #define gadget_for_each_ep(tmp, gadget) \
  494. list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
  495. /**
  496. * gadget_is_dualspeed - return true iff the hardware handles high speed
  497. * @g: controller that might support both high and full speeds
  498. */
  499. static inline int gadget_is_dualspeed(struct usb_gadget *g)
  500. {
  501. #ifdef CONFIG_USB_GADGET_DUALSPEED
  502. /* runtime test would check "g->is_dualspeed" ... that might be
  503. * useful to work around hardware bugs, but is mostly pointless
  504. */
  505. return 1;
  506. #else
  507. return 0;
  508. #endif
  509. }
  510. /**
  511. * gadget_is_superspeed() - return true if the hardware handles
  512. * supperspeed
  513. * @g: controller that might support supper speed
  514. */
  515. static inline int gadget_is_superspeed(struct usb_gadget *g)
  516. {
  517. #ifdef CONFIG_USB_GADGET_SUPERSPEED
  518. /*
  519. * runtime test would check "g->is_superspeed" ... that might be
  520. * useful to work around hardware bugs, but is mostly pointless
  521. */
  522. return 1;
  523. #else
  524. return 0;
  525. #endif
  526. }
  527. /**
  528. * gadget_is_otg - return true iff the hardware is OTG-ready
  529. * @g: controller that might have a Mini-AB connector
  530. *
  531. * This is a runtime test, since kernels with a USB-OTG stack sometimes
  532. * run on boards which only have a Mini-B (or Mini-A) connector.
  533. */
  534. static inline int gadget_is_otg(struct usb_gadget *g)
  535. {
  536. #ifdef CONFIG_USB_OTG
  537. return g->is_otg;
  538. #else
  539. return 0;
  540. #endif
  541. }
  542. /**
  543. * usb_gadget_frame_number - returns the current frame number
  544. * @gadget: controller that reports the frame number
  545. *
  546. * Returns the usb frame number, normally eleven bits from a SOF packet,
  547. * or negative errno if this device doesn't support this capability.
  548. */
  549. static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
  550. {
  551. return gadget->ops->get_frame(gadget);
  552. }
  553. /**
  554. * usb_gadget_wakeup - tries to wake up the host connected to this gadget
  555. * @gadget: controller used to wake up the host
  556. *
  557. * Returns zero on success, else negative error code if the hardware
  558. * doesn't support such attempts, or its support has not been enabled
  559. * by the usb host. Drivers must return device descriptors that report
  560. * their ability to support this, or hosts won't enable it.
  561. *
  562. * This may also try to use SRP to wake the host and start enumeration,
  563. * even if OTG isn't otherwise in use. OTG devices may also start
  564. * remote wakeup even when hosts don't explicitly enable it.
  565. */
  566. static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
  567. {
  568. if (!gadget->ops->wakeup)
  569. return -EOPNOTSUPP;
  570. return gadget->ops->wakeup(gadget);
  571. }
  572. /**
  573. * usb_gadget_set_selfpowered - sets the device selfpowered feature.
  574. * @gadget:the device being declared as self-powered
  575. *
  576. * this affects the device status reported by the hardware driver
  577. * to reflect that it now has a local power supply.
  578. *
  579. * returns zero on success, else negative errno.
  580. */
  581. static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
  582. {
  583. if (!gadget->ops->set_selfpowered)
  584. return -EOPNOTSUPP;
  585. return gadget->ops->set_selfpowered(gadget, 1);
  586. }
  587. /**
  588. * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
  589. * @gadget:the device being declared as bus-powered
  590. *
  591. * this affects the device status reported by the hardware driver.
  592. * some hardware may not support bus-powered operation, in which
  593. * case this feature's value can never change.
  594. *
  595. * returns zero on success, else negative errno.
  596. */
  597. static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
  598. {
  599. if (!gadget->ops->set_selfpowered)
  600. return -EOPNOTSUPP;
  601. return gadget->ops->set_selfpowered(gadget, 0);
  602. }
  603. /**
  604. * usb_gadget_vbus_connect - Notify controller that VBUS is powered
  605. * @gadget:The device which now has VBUS power.
  606. * Context: can sleep
  607. *
  608. * This call is used by a driver for an external transceiver (or GPIO)
  609. * that detects a VBUS power session starting. Common responses include
  610. * resuming the controller, activating the D+ (or D-) pullup to let the
  611. * host detect that a USB device is attached, and starting to draw power
  612. * (8mA or possibly more, especially after SET_CONFIGURATION).
  613. *
  614. * Returns zero on success, else negative errno.
  615. */
  616. static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
  617. {
  618. if (!gadget->ops->vbus_session)
  619. return -EOPNOTSUPP;
  620. return gadget->ops->vbus_session(gadget, 1);
  621. }
  622. /**
  623. * usb_gadget_vbus_draw - constrain controller's VBUS power usage
  624. * @gadget:The device whose VBUS usage is being described
  625. * @mA:How much current to draw, in milliAmperes. This should be twice
  626. * the value listed in the configuration descriptor bMaxPower field.
  627. *
  628. * This call is used by gadget drivers during SET_CONFIGURATION calls,
  629. * reporting how much power the device may consume. For example, this
  630. * could affect how quickly batteries are recharged.
  631. *
  632. * Returns zero on success, else negative errno.
  633. */
  634. static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
  635. {
  636. if (!gadget->ops->vbus_draw)
  637. return -EOPNOTSUPP;
  638. return gadget->ops->vbus_draw(gadget, mA);
  639. }
  640. /**
  641. * usb_gadget_vbus_disconnect - notify controller about VBUS session end
  642. * @gadget:the device whose VBUS supply is being described
  643. * Context: can sleep
  644. *
  645. * This call is used by a driver for an external transceiver (or GPIO)
  646. * that detects a VBUS power session ending. Common responses include
  647. * reversing everything done in usb_gadget_vbus_connect().
  648. *
  649. * Returns zero on success, else negative errno.
  650. */
  651. static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
  652. {
  653. if (!gadget->ops->vbus_session)
  654. return -EOPNOTSUPP;
  655. return gadget->ops->vbus_session(gadget, 0);
  656. }
  657. /**
  658. * usb_gadget_connect - software-controlled connect to USB host
  659. * @gadget:the peripheral being connected
  660. *
  661. * Enables the D+ (or potentially D-) pullup. The host will start
  662. * enumerating this gadget when the pullup is active and a VBUS session
  663. * is active (the link is powered). This pullup is always enabled unless
  664. * usb_gadget_disconnect() has been used to disable it.
  665. *
  666. * Returns zero on success, else negative errno.
  667. */
  668. static inline int usb_gadget_connect(struct usb_gadget *gadget)
  669. {
  670. if (!gadget->ops->pullup)
  671. return -EOPNOTSUPP;
  672. return gadget->ops->pullup(gadget, 1);
  673. }
  674. /**
  675. * usb_gadget_disconnect - software-controlled disconnect from USB host
  676. * @gadget:the peripheral being disconnected
  677. *
  678. * Disables the D+ (or potentially D-) pullup, which the host may see
  679. * as a disconnect (when a VBUS session is active). Not all systems
  680. * support software pullup controls.
  681. *
  682. * This routine may be used during the gadget driver bind() call to prevent
  683. * the peripheral from ever being visible to the USB host, unless later
  684. * usb_gadget_connect() is called. For example, user mode components may
  685. * need to be activated before the system can talk to hosts.
  686. *
  687. * Returns zero on success, else negative errno.
  688. */
  689. static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
  690. {
  691. if (!gadget->ops->pullup)
  692. return -EOPNOTSUPP;
  693. return gadget->ops->pullup(gadget, 0);
  694. }
  695. /*-------------------------------------------------------------------------*/
  696. /**
  697. * struct usb_gadget_driver - driver for usb 'slave' devices
  698. * @function: String describing the gadget's function
  699. * @speed: Highest speed the driver handles.
  700. * @setup: Invoked for ep0 control requests that aren't handled by
  701. * the hardware level driver. Most calls must be handled by
  702. * the gadget driver, including descriptor and configuration
  703. * management. The 16 bit members of the setup data are in
  704. * USB byte order. Called in_interrupt; this may not sleep. Driver
  705. * queues a response to ep0, or returns negative to stall.
  706. * @disconnect: Invoked after all transfers have been stopped,
  707. * when the host is disconnected. May be called in_interrupt; this
  708. * may not sleep. Some devices can't detect disconnect, so this might
  709. * not be called except as part of controller shutdown.
  710. * @unbind: Invoked when the driver is unbound from a gadget,
  711. * usually from rmmod (after a disconnect is reported).
  712. * Called in a context that permits sleeping.
  713. * @suspend: Invoked on USB suspend. May be called in_interrupt.
  714. * @resume: Invoked on USB resume. May be called in_interrupt.
  715. * @driver: Driver model state for this driver.
  716. *
  717. * Devices are disabled till a gadget driver successfully bind()s, which
  718. * means the driver will handle setup() requests needed to enumerate (and
  719. * meet "chapter 9" requirements) then do some useful work.
  720. *
  721. * If gadget->is_otg is true, the gadget driver must provide an OTG
  722. * descriptor during enumeration, or else fail the bind() call. In such
  723. * cases, no USB traffic may flow until both bind() returns without
  724. * having called usb_gadget_disconnect(), and the USB host stack has
  725. * initialized.
  726. *
  727. * Drivers use hardware-specific knowledge to configure the usb hardware.
  728. * endpoint addressing is only one of several hardware characteristics that
  729. * are in descriptors the ep0 implementation returns from setup() calls.
  730. *
  731. * Except for ep0 implementation, most driver code shouldn't need change to
  732. * run on top of different usb controllers. It'll use endpoints set up by
  733. * that ep0 implementation.
  734. *
  735. * The usb controller driver handles a few standard usb requests. Those
  736. * include set_address, and feature flags for devices, interfaces, and
  737. * endpoints (the get_status, set_feature, and clear_feature requests).
  738. *
  739. * Accordingly, the driver's setup() callback must always implement all
  740. * get_descriptor requests, returning at least a device descriptor and
  741. * a configuration descriptor. Drivers must make sure the endpoint
  742. * descriptors match any hardware constraints. Some hardware also constrains
  743. * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
  744. *
  745. * The driver's setup() callback must also implement set_configuration,
  746. * and should also implement set_interface, get_configuration, and
  747. * get_interface. Setting a configuration (or interface) is where
  748. * endpoints should be activated or (config 0) shut down.
  749. *
  750. * (Note that only the default control endpoint is supported. Neither
  751. * hosts nor devices generally support control traffic except to ep0.)
  752. *
  753. * Most devices will ignore USB suspend/resume operations, and so will
  754. * not provide those callbacks. However, some may need to change modes
  755. * when the host is not longer directing those activities. For example,
  756. * local controls (buttons, dials, etc) may need to be re-enabled since
  757. * the (remote) host can't do that any longer; or an error state might
  758. * be cleared, to make the device behave identically whether or not
  759. * power is maintained.
  760. */
  761. struct usb_gadget_driver {
  762. char *function;
  763. enum usb_device_speed speed;
  764. void (*unbind)(struct usb_gadget *);
  765. int (*setup)(struct usb_gadget *,
  766. const struct usb_ctrlrequest *);
  767. void (*disconnect)(struct usb_gadget *);
  768. void (*suspend)(struct usb_gadget *);
  769. void (*resume)(struct usb_gadget *);
  770. /* FIXME support safe rmmod */
  771. struct device_driver driver;
  772. };
  773. /*-------------------------------------------------------------------------*/
  774. /* driver modules register and unregister, as usual.
  775. * these calls must be made in a context that can sleep.
  776. *
  777. * these will usually be implemented directly by the hardware-dependent
  778. * usb bus interface driver, which will only support a single driver.
  779. */
  780. /**
  781. * usb_gadget_probe_driver - probe a gadget driver
  782. * @driver: the driver being registered
  783. * @bind: the driver's bind callback
  784. * Context: can sleep
  785. *
  786. * Call this in your gadget driver's module initialization function,
  787. * to tell the underlying usb controller driver about your driver.
  788. * The @bind() function will be called to bind it to a gadget before this
  789. * registration call returns. It's expected that the @bind() function will
  790. * be in init sections.
  791. */
  792. int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
  793. int (*bind)(struct usb_gadget *));
  794. /**
  795. * usb_gadget_unregister_driver - unregister a gadget driver
  796. * @driver:the driver being unregistered
  797. * Context: can sleep
  798. *
  799. * Call this in your gadget driver's module cleanup function,
  800. * to tell the underlying usb controller that your driver is
  801. * going away. If the controller is connected to a USB host,
  802. * it will first disconnect(). The driver is also requested
  803. * to unbind() and clean up any device state, before this procedure
  804. * finally returns. It's expected that the unbind() functions
  805. * will in in exit sections, so may not be linked in some kernels.
  806. */
  807. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
  808. extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
  809. extern void usb_del_gadget_udc(struct usb_gadget *gadget);
  810. /*-------------------------------------------------------------------------*/
  811. /* utility to simplify dealing with string descriptors */
  812. /**
  813. * struct usb_string - wraps a C string and its USB id
  814. * @id:the (nonzero) ID for this string
  815. * @s:the string, in UTF-8 encoding
  816. *
  817. * If you're using usb_gadget_get_string(), use this to wrap a string
  818. * together with its ID.
  819. */
  820. struct usb_string {
  821. u8 id;
  822. const char *s;
  823. };
  824. /**
  825. * struct usb_gadget_strings - a set of USB strings in a given language
  826. * @language:identifies the strings' language (0x0409 for en-us)
  827. * @strings:array of strings with their ids
  828. *
  829. * If you're using usb_gadget_get_string(), use this to wrap all the
  830. * strings for a given language.
  831. */
  832. struct usb_gadget_strings {
  833. u16 language; /* 0x0409 for en-us */
  834. struct usb_string *strings;
  835. };
  836. /* put descriptor for string with that id into buf (buflen >= 256) */
  837. int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
  838. /*-------------------------------------------------------------------------*/
  839. /* utility to simplify managing config descriptors */
  840. /* write vector of descriptors into buffer */
  841. int usb_descriptor_fillbuf(void *, unsigned,
  842. const struct usb_descriptor_header **);
  843. /* build config descriptor from single descriptor vector */
  844. int usb_gadget_config_buf(const struct usb_config_descriptor *config,
  845. void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
  846. /* copy a NULL-terminated vector of descriptors */
  847. struct usb_descriptor_header **usb_copy_descriptors(
  848. struct usb_descriptor_header **);
  849. /**
  850. * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
  851. * @v: vector of descriptors
  852. */
  853. static inline void usb_free_descriptors(struct usb_descriptor_header **v)
  854. {
  855. kfree(v);
  856. }
  857. /*-------------------------------------------------------------------------*/
  858. /* utility wrapping a simple endpoint selection policy */
  859. extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
  860. struct usb_endpoint_descriptor *);
  861. extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
  862. struct usb_endpoint_descriptor *,
  863. struct usb_ss_ep_comp_descriptor *);
  864. extern void usb_ep_autoconfig_reset(struct usb_gadget *);
  865. #endif /* __LINUX_USB_GADGET_H */