sky2.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. /*
  26. * TODO
  27. * - coalescing setting?
  28. *
  29. * TOTEST
  30. * - speed setting
  31. * - suspend/resume
  32. */
  33. #include <linux/config.h>
  34. #include <linux/crc32.h>
  35. #include <linux/kernel.h>
  36. #include <linux/version.h>
  37. #include <linux/module.h>
  38. #include <linux/netdevice.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/etherdevice.h>
  41. #include <linux/ethtool.h>
  42. #include <linux/pci.h>
  43. #include <linux/ip.h>
  44. #include <linux/tcp.h>
  45. #include <linux/in.h>
  46. #include <linux/delay.h>
  47. #include <linux/if_vlan.h>
  48. #include <linux/mii.h>
  49. #include <asm/irq.h>
  50. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  51. #define SKY2_VLAN_TAG_USED 1
  52. #endif
  53. #include "sky2.h"
  54. #define DRV_NAME "sky2"
  55. #define DRV_VERSION "0.9"
  56. #define PFX DRV_NAME " "
  57. /*
  58. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  59. * that are organized into three (receive, transmit, status) different rings
  60. * similar to Tigon3. A transmit can require several elements;
  61. * a receive requires one (or two if using 64 bit dma).
  62. */
  63. #define is_ec_a1(hw) \
  64. unlikely((hw)->chip_id == CHIP_ID_YUKON_EC && \
  65. (hw)->chip_rev == CHIP_REV_YU_EC_A1)
  66. #define RX_LE_SIZE 512
  67. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  68. #define RX_MAX_PENDING (RX_LE_SIZE/2 - 2)
  69. #define RX_DEF_PENDING RX_MAX_PENDING
  70. #define TX_RING_SIZE 512
  71. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  72. #define TX_MIN_PENDING 64
  73. #define MAX_SKB_TX_LE (4 + 2*MAX_SKB_FRAGS)
  74. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  75. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  76. #define ETH_JUMBO_MTU 9000
  77. #define TX_WATCHDOG (5 * HZ)
  78. #define NAPI_WEIGHT 64
  79. #define PHY_RETRIES 1000
  80. static const u32 default_msg =
  81. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  82. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  83. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_INTR;
  84. static int debug = -1; /* defaults above */
  85. module_param(debug, int, 0);
  86. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  87. static int copybreak __read_mostly = 256;
  88. module_param(copybreak, int, 0);
  89. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  90. static const struct pci_device_id sky2_id_table[] = {
  91. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
  92. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
  93. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) },
  94. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
  103. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
  104. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
  105. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
  106. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
  107. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
  108. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
  109. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
  110. { 0 }
  111. };
  112. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  113. /* Avoid conditionals by using array */
  114. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  115. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  116. /* This driver supports yukon2 chipset only */
  117. static const char *yukon2_name[] = {
  118. "XL", /* 0xb3 */
  119. "EC Ultra", /* 0xb4 */
  120. "UNKNOWN", /* 0xb5 */
  121. "EC", /* 0xb6 */
  122. "FE", /* 0xb7 */
  123. };
  124. /* Access to external PHY */
  125. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  126. {
  127. int i;
  128. gma_write16(hw, port, GM_SMI_DATA, val);
  129. gma_write16(hw, port, GM_SMI_CTRL,
  130. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  131. for (i = 0; i < PHY_RETRIES; i++) {
  132. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  133. return 0;
  134. udelay(1);
  135. }
  136. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  137. return -ETIMEDOUT;
  138. }
  139. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  140. {
  141. int i;
  142. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  143. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  144. for (i = 0; i < PHY_RETRIES; i++) {
  145. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  146. *val = gma_read16(hw, port, GM_SMI_DATA);
  147. return 0;
  148. }
  149. udelay(1);
  150. }
  151. return -ETIMEDOUT;
  152. }
  153. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  154. {
  155. u16 v;
  156. if (__gm_phy_read(hw, port, reg, &v) != 0)
  157. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  158. return v;
  159. }
  160. static int sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
  161. {
  162. u16 power_control;
  163. u32 reg1;
  164. int vaux;
  165. int ret = 0;
  166. pr_debug("sky2_set_power_state %d\n", state);
  167. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  168. pci_read_config_word(hw->pdev, hw->pm_cap + PCI_PM_PMC, &power_control);
  169. vaux = (sky2_read8(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
  170. (power_control & PCI_PM_CAP_PME_D3cold);
  171. pci_read_config_word(hw->pdev, hw->pm_cap + PCI_PM_CTRL, &power_control);
  172. power_control |= PCI_PM_CTRL_PME_STATUS;
  173. power_control &= ~(PCI_PM_CTRL_STATE_MASK);
  174. switch (state) {
  175. case PCI_D0:
  176. /* switch power to VCC (WA for VAUX problem) */
  177. sky2_write8(hw, B0_POWER_CTRL,
  178. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  179. /* disable Core Clock Division, */
  180. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  181. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  182. /* enable bits are inverted */
  183. sky2_write8(hw, B2_Y2_CLK_GATE,
  184. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  185. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  186. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  187. else
  188. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  189. /* Turn off phy power saving */
  190. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg1);
  191. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  192. /* looks like this XL is back asswards .. */
  193. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) {
  194. reg1 |= PCI_Y2_PHY1_COMA;
  195. if (hw->ports > 1)
  196. reg1 |= PCI_Y2_PHY2_COMA;
  197. }
  198. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg1);
  199. break;
  200. case PCI_D3hot:
  201. case PCI_D3cold:
  202. /* Turn on phy power saving */
  203. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg1);
  204. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  205. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  206. else
  207. reg1 |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  208. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg1);
  209. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  210. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  211. else
  212. /* enable bits are inverted */
  213. sky2_write8(hw, B2_Y2_CLK_GATE,
  214. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  215. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  216. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  217. /* switch power to VAUX */
  218. if (vaux && state != PCI_D3cold)
  219. sky2_write8(hw, B0_POWER_CTRL,
  220. (PC_VAUX_ENA | PC_VCC_ENA |
  221. PC_VAUX_ON | PC_VCC_OFF));
  222. break;
  223. default:
  224. printk(KERN_ERR PFX "Unknown power state %d\n", state);
  225. ret = -1;
  226. }
  227. pci_write_config_byte(hw->pdev, hw->pm_cap + PCI_PM_CTRL, power_control);
  228. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  229. return ret;
  230. }
  231. static void sky2_phy_reset(struct sky2_hw *hw, unsigned port)
  232. {
  233. u16 reg;
  234. /* disable all GMAC IRQ's */
  235. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  236. /* disable PHY IRQs */
  237. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  238. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  239. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  240. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  241. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  242. reg = gma_read16(hw, port, GM_RX_CTRL);
  243. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  244. gma_write16(hw, port, GM_RX_CTRL, reg);
  245. }
  246. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  247. {
  248. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  249. u16 ctrl, ct1000, adv, pg, ledctrl, ledover;
  250. if (sky2->autoneg == AUTONEG_ENABLE && hw->chip_id != CHIP_ID_YUKON_XL) {
  251. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  252. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  253. PHY_M_EC_MAC_S_MSK);
  254. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  255. if (hw->chip_id == CHIP_ID_YUKON_EC)
  256. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  257. else
  258. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  259. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  260. }
  261. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  262. if (hw->copper) {
  263. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  264. /* enable automatic crossover */
  265. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  266. } else {
  267. /* disable energy detect */
  268. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  269. /* enable automatic crossover */
  270. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  271. if (sky2->autoneg == AUTONEG_ENABLE &&
  272. hw->chip_id == CHIP_ID_YUKON_XL) {
  273. ctrl &= ~PHY_M_PC_DSC_MSK;
  274. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  275. }
  276. }
  277. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  278. } else {
  279. /* workaround for deviation #4.88 (CRC errors) */
  280. /* disable Automatic Crossover */
  281. ctrl &= ~PHY_M_PC_MDIX_MSK;
  282. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  283. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  284. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  285. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  286. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  287. ctrl &= ~PHY_M_MAC_MD_MSK;
  288. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  289. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  290. /* select page 1 to access Fiber registers */
  291. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  292. }
  293. }
  294. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  295. if (sky2->autoneg == AUTONEG_DISABLE)
  296. ctrl &= ~PHY_CT_ANE;
  297. else
  298. ctrl |= PHY_CT_ANE;
  299. ctrl |= PHY_CT_RESET;
  300. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  301. ctrl = 0;
  302. ct1000 = 0;
  303. adv = PHY_AN_CSMA;
  304. if (sky2->autoneg == AUTONEG_ENABLE) {
  305. if (hw->copper) {
  306. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  307. ct1000 |= PHY_M_1000C_AFD;
  308. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  309. ct1000 |= PHY_M_1000C_AHD;
  310. if (sky2->advertising & ADVERTISED_100baseT_Full)
  311. adv |= PHY_M_AN_100_FD;
  312. if (sky2->advertising & ADVERTISED_100baseT_Half)
  313. adv |= PHY_M_AN_100_HD;
  314. if (sky2->advertising & ADVERTISED_10baseT_Full)
  315. adv |= PHY_M_AN_10_FD;
  316. if (sky2->advertising & ADVERTISED_10baseT_Half)
  317. adv |= PHY_M_AN_10_HD;
  318. } else /* special defines for FIBER (88E1011S only) */
  319. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  320. /* Set Flow-control capabilities */
  321. if (sky2->tx_pause && sky2->rx_pause)
  322. adv |= PHY_AN_PAUSE_CAP; /* symmetric */
  323. else if (sky2->rx_pause && !sky2->tx_pause)
  324. adv |= PHY_AN_PAUSE_ASYM | PHY_AN_PAUSE_CAP;
  325. else if (!sky2->rx_pause && sky2->tx_pause)
  326. adv |= PHY_AN_PAUSE_ASYM; /* local */
  327. /* Restart Auto-negotiation */
  328. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  329. } else {
  330. /* forced speed/duplex settings */
  331. ct1000 = PHY_M_1000C_MSE;
  332. if (sky2->duplex == DUPLEX_FULL)
  333. ctrl |= PHY_CT_DUP_MD;
  334. switch (sky2->speed) {
  335. case SPEED_1000:
  336. ctrl |= PHY_CT_SP1000;
  337. break;
  338. case SPEED_100:
  339. ctrl |= PHY_CT_SP100;
  340. break;
  341. }
  342. ctrl |= PHY_CT_RESET;
  343. }
  344. if (hw->chip_id != CHIP_ID_YUKON_FE)
  345. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  346. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  347. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  348. /* Setup Phy LED's */
  349. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  350. ledover = 0;
  351. switch (hw->chip_id) {
  352. case CHIP_ID_YUKON_FE:
  353. /* on 88E3082 these bits are at 11..9 (shifted left) */
  354. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  355. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  356. /* delete ACT LED control bits */
  357. ctrl &= ~PHY_M_FELP_LED1_MSK;
  358. /* change ACT LED control to blink mode */
  359. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  360. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  361. break;
  362. case CHIP_ID_YUKON_XL:
  363. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  364. /* select page 3 to access LED control register */
  365. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  366. /* set LED Function Control register */
  367. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  368. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  369. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  370. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  371. /* set Polarity Control register */
  372. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  373. (PHY_M_POLC_LS1_P_MIX(4) |
  374. PHY_M_POLC_IS0_P_MIX(4) |
  375. PHY_M_POLC_LOS_CTRL(2) |
  376. PHY_M_POLC_INIT_CTRL(2) |
  377. PHY_M_POLC_STA1_CTRL(2) |
  378. PHY_M_POLC_STA0_CTRL(2)));
  379. /* restore page register */
  380. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  381. break;
  382. default:
  383. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  384. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  385. /* turn off the Rx LED (LED_RX) */
  386. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  387. }
  388. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  389. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  390. /* turn on 100 Mbps LED (LED_LINK100) */
  391. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  392. }
  393. if (ledover)
  394. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  395. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  396. if (sky2->autoneg == AUTONEG_ENABLE)
  397. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  398. else
  399. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  400. }
  401. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  402. {
  403. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  404. u16 reg;
  405. int i;
  406. const u8 *addr = hw->dev[port]->dev_addr;
  407. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  408. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  409. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  410. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  411. /* WA DEV_472 -- looks like crossed wires on port 2 */
  412. /* clear GMAC 1 Control reset */
  413. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  414. do {
  415. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  416. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  417. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  418. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  419. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  420. }
  421. if (sky2->autoneg == AUTONEG_DISABLE) {
  422. reg = gma_read16(hw, port, GM_GP_CTRL);
  423. reg |= GM_GPCR_AU_ALL_DIS;
  424. gma_write16(hw, port, GM_GP_CTRL, reg);
  425. gma_read16(hw, port, GM_GP_CTRL);
  426. switch (sky2->speed) {
  427. case SPEED_1000:
  428. reg |= GM_GPCR_SPEED_1000;
  429. /* fallthru */
  430. case SPEED_100:
  431. reg |= GM_GPCR_SPEED_100;
  432. }
  433. if (sky2->duplex == DUPLEX_FULL)
  434. reg |= GM_GPCR_DUP_FULL;
  435. } else
  436. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  437. if (!sky2->tx_pause && !sky2->rx_pause) {
  438. sky2_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  439. reg |=
  440. GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  441. } else if (sky2->tx_pause && !sky2->rx_pause) {
  442. /* disable Rx flow-control */
  443. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  444. }
  445. gma_write16(hw, port, GM_GP_CTRL, reg);
  446. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  447. spin_lock_bh(&hw->phy_lock);
  448. sky2_phy_init(hw, port);
  449. spin_unlock_bh(&hw->phy_lock);
  450. /* MIB clear */
  451. reg = gma_read16(hw, port, GM_PHY_ADDR);
  452. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  453. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  454. gma_read16(hw, port, GM_MIB_CNT_BASE + 8 * i);
  455. gma_write16(hw, port, GM_PHY_ADDR, reg);
  456. /* transmit control */
  457. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  458. /* receive control reg: unicast + multicast + no FCS */
  459. gma_write16(hw, port, GM_RX_CTRL,
  460. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  461. /* transmit flow control */
  462. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  463. /* transmit parameter */
  464. gma_write16(hw, port, GM_TX_PARAM,
  465. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  466. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  467. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  468. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  469. /* serial mode register */
  470. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  471. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  472. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  473. reg |= GM_SMOD_JUMBO_ENA;
  474. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  475. /* virtual address for data */
  476. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  477. /* physical address: used for pause frames */
  478. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  479. /* ignore counter overflows */
  480. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  481. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  482. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  483. /* Configure Rx MAC FIFO */
  484. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  485. sky2_write16(hw, SK_REG(port, RX_GMF_CTRL_T),
  486. GMF_RX_CTRL_DEF);
  487. /* Flush Rx MAC FIFO on any flow control or error */
  488. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  489. /* Set threshold to 0xa (64 bytes)
  490. * ASF disabled so no need to do WA dev #4.30
  491. */
  492. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  493. /* Configure Tx MAC FIFO */
  494. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  495. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  496. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  497. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
  498. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  499. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  500. /* set Tx GMAC FIFO Almost Empty Threshold */
  501. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  502. /* Disable Store & Forward mode for TX */
  503. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  504. }
  505. }
  506. }
  507. static void sky2_ramset(struct sky2_hw *hw, u16 q, u32 start, size_t len)
  508. {
  509. u32 end;
  510. start /= 8;
  511. len /= 8;
  512. end = start + len - 1;
  513. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  514. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  515. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  516. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  517. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  518. if (q == Q_R1 || q == Q_R2) {
  519. u32 rxup, rxlo;
  520. rxlo = len/2;
  521. rxup = rxlo + len/4;
  522. /* Set thresholds on receive queue's */
  523. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), rxup);
  524. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), rxlo);
  525. } else {
  526. /* Enable store & forward on Tx queue's because
  527. * Tx FIFO is only 1K on Yukon
  528. */
  529. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  530. }
  531. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  532. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  533. }
  534. /* Setup Bus Memory Interface */
  535. static void sky2_qset(struct sky2_hw *hw, u16 q)
  536. {
  537. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  538. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  539. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  540. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  541. }
  542. /* Setup prefetch unit registers. This is the interface between
  543. * hardware and driver list elements
  544. */
  545. static inline void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  546. u64 addr, u32 last)
  547. {
  548. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  549. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  550. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  551. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  552. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  553. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  554. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  555. }
  556. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  557. {
  558. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  559. sky2->tx_prod = (sky2->tx_prod + 1) % TX_RING_SIZE;
  560. return le;
  561. }
  562. /*
  563. * This is a workaround code taken from SysKonnect sk98lin driver
  564. * to deal with chip bug on Yukon EC rev 0 in the wraparound case.
  565. */
  566. static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q,
  567. u16 idx, u16 *last, u16 size)
  568. {
  569. if (is_ec_a1(hw) && idx < *last) {
  570. u16 hwget = sky2_read16(hw, Y2_QADDR(q, PREF_UNIT_GET_IDX));
  571. if (hwget == 0) {
  572. /* Start prefetching again */
  573. sky2_write8(hw, Y2_QADDR(q, PREF_UNIT_FIFO_WM), 0xe0);
  574. goto setnew;
  575. }
  576. if (hwget == size - 1) {
  577. /* set watermark to one list element */
  578. sky2_write8(hw, Y2_QADDR(q, PREF_UNIT_FIFO_WM), 8);
  579. /* set put index to first list element */
  580. sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), 0);
  581. } else /* have hardware go to end of list */
  582. sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX),
  583. size - 1);
  584. } else {
  585. setnew:
  586. sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx);
  587. }
  588. *last = idx;
  589. }
  590. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  591. {
  592. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  593. sky2->rx_put = (sky2->rx_put + 1) % RX_LE_SIZE;
  594. return le;
  595. }
  596. /* Return high part of DMA address (could be 32 or 64 bit) */
  597. static inline u32 high32(dma_addr_t a)
  598. {
  599. return (a >> 16) >> 16;
  600. }
  601. /* Build description to hardware about buffer */
  602. static inline void sky2_rx_add(struct sky2_port *sky2, struct ring_info *re)
  603. {
  604. struct sky2_rx_le *le;
  605. u32 hi = high32(re->mapaddr);
  606. re->idx = sky2->rx_put;
  607. if (sky2->rx_addr64 != hi) {
  608. le = sky2_next_rx(sky2);
  609. le->addr = cpu_to_le32(hi);
  610. le->ctrl = 0;
  611. le->opcode = OP_ADDR64 | HW_OWNER;
  612. sky2->rx_addr64 = high32(re->mapaddr + re->maplen);
  613. }
  614. le = sky2_next_rx(sky2);
  615. le->addr = cpu_to_le32((u32) re->mapaddr);
  616. le->length = cpu_to_le16(re->maplen);
  617. le->ctrl = 0;
  618. le->opcode = OP_PACKET | HW_OWNER;
  619. }
  620. /* Tell chip where to start receive checksum.
  621. * Actually has two checksums, but set both same to avoid possible byte
  622. * order problems.
  623. */
  624. static void rx_set_checksum(struct sky2_port *sky2)
  625. {
  626. struct sky2_rx_le *le;
  627. le = sky2_next_rx(sky2);
  628. le->addr = (ETH_HLEN << 16) | ETH_HLEN;
  629. le->ctrl = 0;
  630. le->opcode = OP_TCPSTART | HW_OWNER;
  631. sky2_write32(sky2->hw,
  632. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  633. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  634. }
  635. /*
  636. * The RX Stop command will not work for Yukon-2 if the BMU does not
  637. * reach the end of packet and since we can't make sure that we have
  638. * incoming data, we must reset the BMU while it is not doing a DMA
  639. * transfer. Since it is possible that the RX path is still active,
  640. * the RX RAM buffer will be stopped first, so any possible incoming
  641. * data will not trigger a DMA. After the RAM buffer is stopped, the
  642. * BMU is polled until any DMA in progress is ended and only then it
  643. * will be reset.
  644. */
  645. static void sky2_rx_stop(struct sky2_port *sky2)
  646. {
  647. struct sky2_hw *hw = sky2->hw;
  648. unsigned rxq = rxqaddr[sky2->port];
  649. int i;
  650. /* disable the RAM Buffer receive queue */
  651. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  652. for (i = 0; i < 0xffff; i++)
  653. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  654. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  655. goto stopped;
  656. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  657. sky2->netdev->name);
  658. stopped:
  659. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  660. /* reset the Rx prefetch unit */
  661. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  662. }
  663. /* Clean out receive buffer area, assumes receiver hardware stopped */
  664. static void sky2_rx_clean(struct sky2_port *sky2)
  665. {
  666. unsigned i;
  667. memset(sky2->rx_le, 0, RX_LE_BYTES);
  668. for (i = 0; i < sky2->rx_pending; i++) {
  669. struct ring_info *re = sky2->rx_ring + i;
  670. if (re->skb) {
  671. pci_unmap_single(sky2->hw->pdev,
  672. re->mapaddr, re->maplen,
  673. PCI_DMA_FROMDEVICE);
  674. kfree_skb(re->skb);
  675. re->skb = NULL;
  676. }
  677. }
  678. }
  679. /* Basic MII support */
  680. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  681. {
  682. struct mii_ioctl_data *data = if_mii(ifr);
  683. struct sky2_port *sky2 = netdev_priv(dev);
  684. struct sky2_hw *hw = sky2->hw;
  685. int err = -EOPNOTSUPP;
  686. if (!netif_running(dev))
  687. return -ENODEV; /* Phy still in reset */
  688. switch(cmd) {
  689. case SIOCGMIIPHY:
  690. data->phy_id = PHY_ADDR_MARV;
  691. /* fallthru */
  692. case SIOCGMIIREG: {
  693. u16 val = 0;
  694. spin_lock_bh(&hw->phy_lock);
  695. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  696. spin_unlock_bh(&hw->phy_lock);
  697. data->val_out = val;
  698. break;
  699. }
  700. case SIOCSMIIREG:
  701. if (!capable(CAP_NET_ADMIN))
  702. return -EPERM;
  703. spin_lock_bh(&hw->phy_lock);
  704. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  705. data->val_in);
  706. spin_unlock_bh(&hw->phy_lock);
  707. break;
  708. }
  709. return err;
  710. }
  711. #ifdef SKY2_VLAN_TAG_USED
  712. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  713. {
  714. struct sky2_port *sky2 = netdev_priv(dev);
  715. struct sky2_hw *hw = sky2->hw;
  716. u16 port = sky2->port;
  717. unsigned long flags;
  718. spin_lock_irqsave(&sky2->tx_lock, flags);
  719. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  720. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  721. sky2->vlgrp = grp;
  722. spin_unlock_irqrestore(&sky2->tx_lock, flags);
  723. }
  724. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  725. {
  726. struct sky2_port *sky2 = netdev_priv(dev);
  727. struct sky2_hw *hw = sky2->hw;
  728. u16 port = sky2->port;
  729. unsigned long flags;
  730. spin_lock_irqsave(&sky2->tx_lock, flags);
  731. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  732. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  733. if (sky2->vlgrp)
  734. sky2->vlgrp->vlan_devices[vid] = NULL;
  735. spin_unlock_irqrestore(&sky2->tx_lock, flags);
  736. }
  737. #endif
  738. #define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
  739. static inline unsigned rx_size(const struct sky2_port *sky2)
  740. {
  741. return roundup(sky2->netdev->mtu + ETH_HLEN + 4, 8);
  742. }
  743. /*
  744. * Allocate and setup receiver buffer pool.
  745. * In case of 64 bit dma, there are 2X as many list elements
  746. * available as ring entries
  747. * and need to reserve one list element so we don't wrap around.
  748. *
  749. * It appears the hardware has a bug in the FIFO logic that
  750. * cause it to hang if the FIFO gets overrun and the receive buffer
  751. * is not aligned. This means we can't use skb_reserve to align
  752. * the IP header.
  753. */
  754. static int sky2_rx_start(struct sky2_port *sky2)
  755. {
  756. struct sky2_hw *hw = sky2->hw;
  757. unsigned size = rx_size(sky2);
  758. unsigned rxq = rxqaddr[sky2->port];
  759. int i;
  760. sky2->rx_put = sky2->rx_next = 0;
  761. sky2_qset(hw, rxq);
  762. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  763. rx_set_checksum(sky2);
  764. for (i = 0; i < sky2->rx_pending; i++) {
  765. struct ring_info *re = sky2->rx_ring + i;
  766. re->skb = dev_alloc_skb(size);
  767. if (!re->skb)
  768. goto nomem;
  769. re->mapaddr = pci_map_single(hw->pdev, re->skb->data,
  770. size, PCI_DMA_FROMDEVICE);
  771. re->maplen = size;
  772. sky2_rx_add(sky2, re);
  773. }
  774. /* Tell chip about available buffers */
  775. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  776. sky2->rx_last_put = sky2_read16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX));
  777. return 0;
  778. nomem:
  779. sky2_rx_clean(sky2);
  780. return -ENOMEM;
  781. }
  782. /* Bring up network interface. */
  783. static int sky2_up(struct net_device *dev)
  784. {
  785. struct sky2_port *sky2 = netdev_priv(dev);
  786. struct sky2_hw *hw = sky2->hw;
  787. unsigned port = sky2->port;
  788. u32 ramsize, rxspace;
  789. int err = -ENOMEM;
  790. if (netif_msg_ifup(sky2))
  791. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  792. /* must be power of 2 */
  793. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  794. TX_RING_SIZE *
  795. sizeof(struct sky2_tx_le),
  796. &sky2->tx_le_map);
  797. if (!sky2->tx_le)
  798. goto err_out;
  799. sky2->tx_ring = kzalloc(TX_RING_SIZE * sizeof(struct ring_info),
  800. GFP_KERNEL);
  801. if (!sky2->tx_ring)
  802. goto err_out;
  803. sky2->tx_prod = sky2->tx_cons = 0;
  804. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  805. &sky2->rx_le_map);
  806. if (!sky2->rx_le)
  807. goto err_out;
  808. memset(sky2->rx_le, 0, RX_LE_BYTES);
  809. sky2->rx_ring = kzalloc(sky2->rx_pending * sizeof(struct ring_info),
  810. GFP_KERNEL);
  811. if (!sky2->rx_ring)
  812. goto err_out;
  813. sky2_mac_init(hw, port);
  814. /* Configure RAM buffers */
  815. if (hw->chip_id == CHIP_ID_YUKON_FE ||
  816. (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == 2))
  817. ramsize = 4096;
  818. else {
  819. u8 e0 = sky2_read8(hw, B2_E_0);
  820. ramsize = (e0 == 0) ? (128 * 1024) : (e0 * 4096);
  821. }
  822. /* 2/3 for Rx */
  823. rxspace = (2 * ramsize) / 3;
  824. sky2_ramset(hw, rxqaddr[port], 0, rxspace);
  825. sky2_ramset(hw, txqaddr[port], rxspace, ramsize - rxspace);
  826. /* Make sure SyncQ is disabled */
  827. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  828. RB_RST_SET);
  829. sky2_qset(hw, txqaddr[port]);
  830. if (hw->chip_id == CHIP_ID_YUKON_EC_U)
  831. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  832. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  833. TX_RING_SIZE - 1);
  834. err = sky2_rx_start(sky2);
  835. if (err)
  836. goto err_out;
  837. /* Enable interrupts from phy/mac for port */
  838. hw->intr_mask |= (port == 0) ? Y2_IS_PORT_1 : Y2_IS_PORT_2;
  839. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  840. return 0;
  841. err_out:
  842. if (sky2->rx_le)
  843. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  844. sky2->rx_le, sky2->rx_le_map);
  845. if (sky2->tx_le)
  846. pci_free_consistent(hw->pdev,
  847. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  848. sky2->tx_le, sky2->tx_le_map);
  849. if (sky2->tx_ring)
  850. kfree(sky2->tx_ring);
  851. if (sky2->rx_ring)
  852. kfree(sky2->rx_ring);
  853. return err;
  854. }
  855. /* Modular subtraction in ring */
  856. static inline int tx_dist(unsigned tail, unsigned head)
  857. {
  858. return (head >= tail ? head : head + TX_RING_SIZE) - tail;
  859. }
  860. /* Number of list elements available for next tx */
  861. static inline int tx_avail(const struct sky2_port *sky2)
  862. {
  863. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  864. }
  865. /* Estimate of number of transmit list elements required */
  866. static inline unsigned tx_le_req(const struct sk_buff *skb)
  867. {
  868. unsigned count;
  869. count = sizeof(dma_addr_t) / sizeof(u32);
  870. count += skb_shinfo(skb)->nr_frags * count;
  871. if (skb_shinfo(skb)->tso_size)
  872. ++count;
  873. if (skb->ip_summed)
  874. ++count;
  875. return count;
  876. }
  877. /*
  878. * Put one packet in ring for transmit.
  879. * A single packet can generate multiple list elements, and
  880. * the number of ring elements will probably be less than the number
  881. * of list elements used.
  882. */
  883. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  884. {
  885. struct sky2_port *sky2 = netdev_priv(dev);
  886. struct sky2_hw *hw = sky2->hw;
  887. struct sky2_tx_le *le = NULL;
  888. struct ring_info *re;
  889. unsigned long flags;
  890. unsigned i, len;
  891. dma_addr_t mapping;
  892. u32 addr64;
  893. u16 mss;
  894. u8 ctrl;
  895. local_irq_save(flags);
  896. if (!spin_trylock(&sky2->tx_lock)) {
  897. local_irq_restore(flags);
  898. return NETDEV_TX_LOCKED;
  899. }
  900. if (unlikely(tx_avail(sky2) < tx_le_req(skb))) {
  901. netif_stop_queue(dev);
  902. spin_unlock_irqrestore(&sky2->tx_lock, flags);
  903. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  904. dev->name);
  905. return NETDEV_TX_BUSY;
  906. }
  907. if (unlikely(netif_msg_tx_queued(sky2)))
  908. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  909. dev->name, sky2->tx_prod, skb->len);
  910. len = skb_headlen(skb);
  911. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  912. addr64 = high32(mapping);
  913. re = sky2->tx_ring + sky2->tx_prod;
  914. /* Send high bits if changed or crosses boundary */
  915. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  916. le = get_tx_le(sky2);
  917. le->tx.addr = cpu_to_le32(addr64);
  918. le->ctrl = 0;
  919. le->opcode = OP_ADDR64 | HW_OWNER;
  920. sky2->tx_addr64 = high32(mapping + len);
  921. }
  922. /* Check for TCP Segmentation Offload */
  923. mss = skb_shinfo(skb)->tso_size;
  924. if (mss != 0) {
  925. /* just drop the packet if non-linear expansion fails */
  926. if (skb_header_cloned(skb) &&
  927. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  928. dev_kfree_skb_any(skb);
  929. goto out_unlock;
  930. }
  931. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  932. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  933. mss += ETH_HLEN;
  934. }
  935. if (mss != sky2->tx_last_mss) {
  936. le = get_tx_le(sky2);
  937. le->tx.tso.size = cpu_to_le16(mss);
  938. le->tx.tso.rsvd = 0;
  939. le->opcode = OP_LRGLEN | HW_OWNER;
  940. le->ctrl = 0;
  941. sky2->tx_last_mss = mss;
  942. }
  943. ctrl = 0;
  944. #ifdef SKY2_VLAN_TAG_USED
  945. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  946. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  947. if (!le) {
  948. le = get_tx_le(sky2);
  949. le->tx.addr = 0;
  950. le->opcode = OP_VLAN|HW_OWNER;
  951. le->ctrl = 0;
  952. } else
  953. le->opcode |= OP_VLAN;
  954. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  955. ctrl |= INS_VLAN;
  956. }
  957. #endif
  958. /* Handle TCP checksum offload */
  959. if (skb->ip_summed == CHECKSUM_HW) {
  960. u16 hdr = skb->h.raw - skb->data;
  961. u16 offset = hdr + skb->csum;
  962. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  963. if (skb->nh.iph->protocol == IPPROTO_UDP)
  964. ctrl |= UDPTCP;
  965. le = get_tx_le(sky2);
  966. le->tx.csum.start = cpu_to_le16(hdr);
  967. le->tx.csum.offset = cpu_to_le16(offset);
  968. le->length = 0; /* initial checksum value */
  969. le->ctrl = 1; /* one packet */
  970. le->opcode = OP_TCPLISW | HW_OWNER;
  971. }
  972. le = get_tx_le(sky2);
  973. le->tx.addr = cpu_to_le32((u32) mapping);
  974. le->length = cpu_to_le16(len);
  975. le->ctrl = ctrl;
  976. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  977. /* Record the transmit mapping info */
  978. re->skb = skb;
  979. re->mapaddr = mapping;
  980. re->maplen = len;
  981. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  982. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  983. struct ring_info *fre;
  984. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  985. frag->size, PCI_DMA_TODEVICE);
  986. addr64 = (mapping >> 16) >> 16;
  987. if (addr64 != sky2->tx_addr64) {
  988. le = get_tx_le(sky2);
  989. le->tx.addr = cpu_to_le32(addr64);
  990. le->ctrl = 0;
  991. le->opcode = OP_ADDR64 | HW_OWNER;
  992. sky2->tx_addr64 = addr64;
  993. }
  994. le = get_tx_le(sky2);
  995. le->tx.addr = cpu_to_le32((u32) mapping);
  996. le->length = cpu_to_le16(frag->size);
  997. le->ctrl = ctrl;
  998. le->opcode = OP_BUFFER | HW_OWNER;
  999. fre = sky2->tx_ring
  1000. + ((re - sky2->tx_ring) + i + 1) % TX_RING_SIZE;
  1001. fre->skb = NULL;
  1002. fre->mapaddr = mapping;
  1003. fre->maplen = frag->size;
  1004. }
  1005. re->idx = sky2->tx_prod;
  1006. le->ctrl |= EOP;
  1007. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod,
  1008. &sky2->tx_last_put, TX_RING_SIZE);
  1009. if (tx_avail(sky2) < MAX_SKB_TX_LE + 1)
  1010. netif_stop_queue(dev);
  1011. out_unlock:
  1012. mmiowb();
  1013. spin_unlock_irqrestore(&sky2->tx_lock, flags);
  1014. dev->trans_start = jiffies;
  1015. return NETDEV_TX_OK;
  1016. }
  1017. /*
  1018. * Free ring elements from starting at tx_cons until "done"
  1019. *
  1020. * NB: the hardware will tell us about partial completion of multi-part
  1021. * buffers; these are deferred until completion.
  1022. */
  1023. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1024. {
  1025. struct net_device *dev = sky2->netdev;
  1026. unsigned i;
  1027. if (done == sky2->tx_cons)
  1028. return;
  1029. if (unlikely(netif_msg_tx_done(sky2)))
  1030. printk(KERN_DEBUG "%s: tx done, up to %u\n",
  1031. dev->name, done);
  1032. spin_lock(&sky2->tx_lock);
  1033. while (sky2->tx_cons != done) {
  1034. struct ring_info *re = sky2->tx_ring + sky2->tx_cons;
  1035. struct sk_buff *skb;
  1036. /* Check for partial status */
  1037. if (tx_dist(sky2->tx_cons, done)
  1038. < tx_dist(sky2->tx_cons, re->idx))
  1039. goto out;
  1040. skb = re->skb;
  1041. pci_unmap_single(sky2->hw->pdev,
  1042. re->mapaddr, re->maplen, PCI_DMA_TODEVICE);
  1043. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1044. struct ring_info *fre;
  1045. fre =
  1046. sky2->tx_ring + (sky2->tx_cons + i +
  1047. 1) % TX_RING_SIZE;
  1048. pci_unmap_page(sky2->hw->pdev, fre->mapaddr,
  1049. fre->maplen, PCI_DMA_TODEVICE);
  1050. }
  1051. dev_kfree_skb_any(skb);
  1052. sky2->tx_cons = re->idx;
  1053. }
  1054. out:
  1055. if (netif_queue_stopped(dev) && tx_avail(sky2) > MAX_SKB_TX_LE)
  1056. netif_wake_queue(dev);
  1057. spin_unlock(&sky2->tx_lock);
  1058. }
  1059. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1060. static inline void sky2_tx_clean(struct sky2_port *sky2)
  1061. {
  1062. sky2_tx_complete(sky2, sky2->tx_prod);
  1063. }
  1064. /* Network shutdown */
  1065. static int sky2_down(struct net_device *dev)
  1066. {
  1067. struct sky2_port *sky2 = netdev_priv(dev);
  1068. struct sky2_hw *hw = sky2->hw;
  1069. unsigned port = sky2->port;
  1070. u16 ctrl;
  1071. if (netif_msg_ifdown(sky2))
  1072. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1073. /* Stop more packets from being queued */
  1074. netif_stop_queue(dev);
  1075. /* Disable port IRQ */
  1076. local_irq_disable();
  1077. hw->intr_mask &= ~((sky2->port == 0) ? Y2_IS_IRQ_PHY1 : Y2_IS_IRQ_PHY2);
  1078. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1079. local_irq_enable();
  1080. sky2_phy_reset(hw, port);
  1081. /* Stop transmitter */
  1082. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1083. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1084. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1085. RB_RST_SET | RB_DIS_OP_MD);
  1086. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1087. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1088. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1089. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1090. /* Workaround shared GMAC reset */
  1091. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1092. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1093. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1094. /* Disable Force Sync bit and Enable Alloc bit */
  1095. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1096. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1097. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1098. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1099. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1100. /* Reset the PCI FIFO of the async Tx queue */
  1101. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1102. BMU_RST_SET | BMU_FIFO_RST);
  1103. /* Reset the Tx prefetch units */
  1104. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1105. PREF_UNIT_RST_SET);
  1106. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1107. sky2_rx_stop(sky2);
  1108. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1109. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1110. /* turn off LED's */
  1111. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1112. synchronize_irq(hw->pdev->irq);
  1113. sky2_tx_clean(sky2);
  1114. sky2_rx_clean(sky2);
  1115. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1116. sky2->rx_le, sky2->rx_le_map);
  1117. kfree(sky2->rx_ring);
  1118. pci_free_consistent(hw->pdev,
  1119. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1120. sky2->tx_le, sky2->tx_le_map);
  1121. kfree(sky2->tx_ring);
  1122. return 0;
  1123. }
  1124. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1125. {
  1126. if (!hw->copper)
  1127. return SPEED_1000;
  1128. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1129. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1130. switch (aux & PHY_M_PS_SPEED_MSK) {
  1131. case PHY_M_PS_SPEED_1000:
  1132. return SPEED_1000;
  1133. case PHY_M_PS_SPEED_100:
  1134. return SPEED_100;
  1135. default:
  1136. return SPEED_10;
  1137. }
  1138. }
  1139. static void sky2_link_up(struct sky2_port *sky2)
  1140. {
  1141. struct sky2_hw *hw = sky2->hw;
  1142. unsigned port = sky2->port;
  1143. u16 reg;
  1144. /* Enable Transmit FIFO Underrun */
  1145. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1146. reg = gma_read16(hw, port, GM_GP_CTRL);
  1147. if (sky2->duplex == DUPLEX_FULL || sky2->autoneg == AUTONEG_ENABLE)
  1148. reg |= GM_GPCR_DUP_FULL;
  1149. /* enable Rx/Tx */
  1150. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1151. gma_write16(hw, port, GM_GP_CTRL, reg);
  1152. gma_read16(hw, port, GM_GP_CTRL);
  1153. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1154. netif_carrier_on(sky2->netdev);
  1155. netif_wake_queue(sky2->netdev);
  1156. /* Turn on link LED */
  1157. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1158. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1159. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  1160. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1161. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1162. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  1163. PHY_M_LEDC_INIT_CTRL(sky2->speed ==
  1164. SPEED_10 ? 7 : 0) |
  1165. PHY_M_LEDC_STA1_CTRL(sky2->speed ==
  1166. SPEED_100 ? 7 : 0) |
  1167. PHY_M_LEDC_STA0_CTRL(sky2->speed ==
  1168. SPEED_1000 ? 7 : 0));
  1169. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1170. }
  1171. if (netif_msg_link(sky2))
  1172. printk(KERN_INFO PFX
  1173. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1174. sky2->netdev->name, sky2->speed,
  1175. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1176. (sky2->tx_pause && sky2->rx_pause) ? "both" :
  1177. sky2->tx_pause ? "tx" : sky2->rx_pause ? "rx" : "none");
  1178. }
  1179. static void sky2_link_down(struct sky2_port *sky2)
  1180. {
  1181. struct sky2_hw *hw = sky2->hw;
  1182. unsigned port = sky2->port;
  1183. u16 reg;
  1184. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1185. reg = gma_read16(hw, port, GM_GP_CTRL);
  1186. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1187. gma_write16(hw, port, GM_GP_CTRL, reg);
  1188. gma_read16(hw, port, GM_GP_CTRL); /* PCI post */
  1189. if (sky2->rx_pause && !sky2->tx_pause) {
  1190. /* restore Asymmetric Pause bit */
  1191. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1192. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1193. | PHY_M_AN_ASP);
  1194. }
  1195. sky2_phy_reset(hw, port);
  1196. netif_carrier_off(sky2->netdev);
  1197. netif_stop_queue(sky2->netdev);
  1198. /* Turn on link LED */
  1199. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1200. if (netif_msg_link(sky2))
  1201. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1202. sky2_phy_init(hw, port);
  1203. }
  1204. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1205. {
  1206. struct sky2_hw *hw = sky2->hw;
  1207. unsigned port = sky2->port;
  1208. u16 lpa;
  1209. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1210. if (lpa & PHY_M_AN_RF) {
  1211. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1212. return -1;
  1213. }
  1214. if (hw->chip_id != CHIP_ID_YUKON_FE &&
  1215. gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1216. printk(KERN_ERR PFX "%s: master/slave fault",
  1217. sky2->netdev->name);
  1218. return -1;
  1219. }
  1220. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1221. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1222. sky2->netdev->name);
  1223. return -1;
  1224. }
  1225. sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1226. sky2->speed = sky2_phy_speed(hw, aux);
  1227. /* Pause bits are offset (9..8) */
  1228. if (hw->chip_id == CHIP_ID_YUKON_XL)
  1229. aux >>= 6;
  1230. sky2->rx_pause = (aux & PHY_M_PS_RX_P_EN) != 0;
  1231. sky2->tx_pause = (aux & PHY_M_PS_TX_P_EN) != 0;
  1232. if ((sky2->tx_pause || sky2->rx_pause)
  1233. && !(sky2->speed < SPEED_1000 && sky2->duplex == DUPLEX_HALF))
  1234. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1235. else
  1236. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1237. return 0;
  1238. }
  1239. /*
  1240. * Interrupt from PHY are handled in tasklet (soft irq)
  1241. * because accessing phy registers requires spin wait which might
  1242. * cause excess interrupt latency.
  1243. */
  1244. static void sky2_phy_task(unsigned long data)
  1245. {
  1246. struct sky2_port *sky2 = (struct sky2_port *)data;
  1247. struct sky2_hw *hw = sky2->hw;
  1248. u16 istatus, phystat;
  1249. spin_lock(&hw->phy_lock);
  1250. istatus = gm_phy_read(hw, sky2->port, PHY_MARV_INT_STAT);
  1251. phystat = gm_phy_read(hw, sky2->port, PHY_MARV_PHY_STAT);
  1252. if (netif_msg_intr(sky2))
  1253. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1254. sky2->netdev->name, istatus, phystat);
  1255. if (istatus & PHY_M_IS_AN_COMPL) {
  1256. if (sky2_autoneg_done(sky2, phystat) == 0)
  1257. sky2_link_up(sky2);
  1258. goto out;
  1259. }
  1260. if (istatus & PHY_M_IS_LSP_CHANGE)
  1261. sky2->speed = sky2_phy_speed(hw, phystat);
  1262. if (istatus & PHY_M_IS_DUP_CHANGE)
  1263. sky2->duplex =
  1264. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1265. if (istatus & PHY_M_IS_LST_CHANGE) {
  1266. if (phystat & PHY_M_PS_LINK_UP)
  1267. sky2_link_up(sky2);
  1268. else
  1269. sky2_link_down(sky2);
  1270. }
  1271. out:
  1272. spin_unlock(&hw->phy_lock);
  1273. local_irq_disable();
  1274. hw->intr_mask |= (sky2->port == 0) ? Y2_IS_IRQ_PHY1 : Y2_IS_IRQ_PHY2;
  1275. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1276. local_irq_enable();
  1277. }
  1278. static void sky2_tx_timeout(struct net_device *dev)
  1279. {
  1280. struct sky2_port *sky2 = netdev_priv(dev);
  1281. if (netif_msg_timer(sky2))
  1282. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1283. sky2_write32(sky2->hw, Q_ADDR(txqaddr[sky2->port], Q_CSR), BMU_STOP);
  1284. sky2_read32(sky2->hw, Q_ADDR(txqaddr[sky2->port], Q_CSR));
  1285. sky2_tx_clean(sky2);
  1286. }
  1287. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1288. {
  1289. struct sky2_port *sky2 = netdev_priv(dev);
  1290. struct sky2_hw *hw = sky2->hw;
  1291. int err;
  1292. u16 ctl, mode;
  1293. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1294. return -EINVAL;
  1295. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1296. return -EINVAL;
  1297. if (!netif_running(dev)) {
  1298. dev->mtu = new_mtu;
  1299. return 0;
  1300. }
  1301. sky2_write32(hw, B0_IMSK, 0);
  1302. dev->trans_start = jiffies; /* prevent tx timeout */
  1303. netif_stop_queue(dev);
  1304. netif_poll_disable(hw->dev[0]);
  1305. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1306. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1307. sky2_rx_stop(sky2);
  1308. sky2_rx_clean(sky2);
  1309. dev->mtu = new_mtu;
  1310. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1311. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1312. if (dev->mtu > ETH_DATA_LEN)
  1313. mode |= GM_SMOD_JUMBO_ENA;
  1314. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1315. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1316. err = sky2_rx_start(sky2);
  1317. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1318. netif_poll_disable(hw->dev[0]);
  1319. netif_wake_queue(dev);
  1320. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1321. return err;
  1322. }
  1323. /*
  1324. * Receive one packet.
  1325. * For small packets or errors, just reuse existing skb.
  1326. * For larger packets, get new buffer.
  1327. */
  1328. static struct sk_buff *sky2_receive(struct sky2_port *sky2,
  1329. u16 length, u32 status)
  1330. {
  1331. struct ring_info *re = sky2->rx_ring + sky2->rx_next;
  1332. struct sk_buff *skb = NULL;
  1333. const unsigned int bufsize = rx_size(sky2);
  1334. if (unlikely(netif_msg_rx_status(sky2)))
  1335. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1336. sky2->netdev->name, sky2->rx_next, status, length);
  1337. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1338. if (status & GMR_FS_ANY_ERR)
  1339. goto error;
  1340. if (!(status & GMR_FS_RX_OK))
  1341. goto resubmit;
  1342. if (length < copybreak) {
  1343. skb = alloc_skb(length + 2, GFP_ATOMIC);
  1344. if (!skb)
  1345. goto resubmit;
  1346. skb_reserve(skb, 2);
  1347. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->mapaddr,
  1348. length, PCI_DMA_FROMDEVICE);
  1349. memcpy(skb->data, re->skb->data, length);
  1350. skb->ip_summed = re->skb->ip_summed;
  1351. skb->csum = re->skb->csum;
  1352. pci_dma_sync_single_for_device(sky2->hw->pdev, re->mapaddr,
  1353. length, PCI_DMA_FROMDEVICE);
  1354. } else {
  1355. struct sk_buff *nskb;
  1356. nskb = dev_alloc_skb(bufsize);
  1357. if (!nskb)
  1358. goto resubmit;
  1359. skb = re->skb;
  1360. re->skb = nskb;
  1361. pci_unmap_single(sky2->hw->pdev, re->mapaddr,
  1362. re->maplen, PCI_DMA_FROMDEVICE);
  1363. prefetch(skb->data);
  1364. re->mapaddr = pci_map_single(sky2->hw->pdev, nskb->data,
  1365. bufsize, PCI_DMA_FROMDEVICE);
  1366. re->maplen = bufsize;
  1367. }
  1368. skb_put(skb, length);
  1369. resubmit:
  1370. re->skb->ip_summed = CHECKSUM_NONE;
  1371. sky2_rx_add(sky2, re);
  1372. /* Tell receiver about new buffers. */
  1373. sky2_put_idx(sky2->hw, rxqaddr[sky2->port], sky2->rx_put,
  1374. &sky2->rx_last_put, RX_LE_SIZE);
  1375. return skb;
  1376. error:
  1377. if (netif_msg_rx_err(sky2))
  1378. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1379. sky2->netdev->name, status, length);
  1380. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1381. sky2->net_stats.rx_length_errors++;
  1382. if (status & GMR_FS_FRAGMENT)
  1383. sky2->net_stats.rx_frame_errors++;
  1384. if (status & GMR_FS_CRC_ERR)
  1385. sky2->net_stats.rx_crc_errors++;
  1386. if (status & GMR_FS_RX_FF_OV)
  1387. sky2->net_stats.rx_fifo_errors++;
  1388. goto resubmit;
  1389. }
  1390. /*
  1391. * Check for transmit complete
  1392. */
  1393. static inline void sky2_tx_check(struct sky2_hw *hw, int port)
  1394. {
  1395. struct net_device *dev = hw->dev[port];
  1396. if (dev && netif_running(dev)) {
  1397. sky2_tx_complete(netdev_priv(dev),
  1398. sky2_read16(hw, port == 0
  1399. ? STAT_TXA1_RIDX : STAT_TXA2_RIDX));
  1400. }
  1401. }
  1402. /*
  1403. * Both ports share the same status interrupt, therefore there is only
  1404. * one poll routine.
  1405. */
  1406. static int sky2_poll(struct net_device *dev0, int *budget)
  1407. {
  1408. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1409. unsigned int to_do = min(dev0->quota, *budget);
  1410. unsigned int work_done = 0;
  1411. u16 hwidx;
  1412. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1413. hwidx = sky2_read16(hw, STAT_PUT_IDX);
  1414. BUG_ON(hwidx >= STATUS_RING_SIZE);
  1415. rmb();
  1416. while (hwidx != hw->st_idx) {
  1417. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1418. struct net_device *dev;
  1419. struct sky2_port *sky2;
  1420. struct sk_buff *skb;
  1421. u32 status;
  1422. u16 length;
  1423. u8 op;
  1424. le = hw->st_le + hw->st_idx;
  1425. hw->st_idx = (hw->st_idx + 1) % STATUS_RING_SIZE;
  1426. prefetch(hw->st_le + hw->st_idx);
  1427. BUG_ON(le->link >= hw->ports || !hw->dev[le->link]);
  1428. BUG_ON(le->link >= 2);
  1429. dev = hw->dev[le->link];
  1430. if (dev == NULL || !netif_running(dev))
  1431. continue;
  1432. sky2 = netdev_priv(dev);
  1433. status = le32_to_cpu(le->status);
  1434. length = le16_to_cpu(le->length);
  1435. op = le->opcode & ~HW_OWNER;
  1436. le->opcode = 0;
  1437. switch (op) {
  1438. case OP_RXSTAT:
  1439. skb = sky2_receive(sky2, length, status);
  1440. if (!skb)
  1441. break;
  1442. skb->dev = dev;
  1443. skb->protocol = eth_type_trans(skb, dev);
  1444. dev->last_rx = jiffies;
  1445. #ifdef SKY2_VLAN_TAG_USED
  1446. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1447. vlan_hwaccel_receive_skb(skb,
  1448. sky2->vlgrp,
  1449. be16_to_cpu(sky2->rx_tag));
  1450. } else
  1451. #endif
  1452. netif_receive_skb(skb);
  1453. if (++work_done >= to_do)
  1454. goto exit_loop;
  1455. break;
  1456. #ifdef SKY2_VLAN_TAG_USED
  1457. case OP_RXVLAN:
  1458. sky2->rx_tag = length;
  1459. break;
  1460. case OP_RXCHKSVLAN:
  1461. sky2->rx_tag = length;
  1462. /* fall through */
  1463. #endif
  1464. case OP_RXCHKS:
  1465. skb = sky2->rx_ring[sky2->rx_next].skb;
  1466. skb->ip_summed = CHECKSUM_HW;
  1467. skb->csum = le16_to_cpu(status);
  1468. break;
  1469. case OP_TXINDEXLE:
  1470. /* pick up transmit status later */
  1471. break;
  1472. default:
  1473. if (net_ratelimit())
  1474. printk(KERN_WARNING PFX
  1475. "unknown status opcode 0x%x\n", op);
  1476. break;
  1477. }
  1478. }
  1479. exit_loop:
  1480. sky2_tx_check(hw, 0);
  1481. sky2_tx_check(hw, 1);
  1482. mmiowb();
  1483. if (work_done < to_do) {
  1484. /*
  1485. * Another chip workaround, need to restart TX timer if status
  1486. * LE was handled. WA_DEV_43_418
  1487. */
  1488. if (is_ec_a1(hw)) {
  1489. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1490. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1491. }
  1492. netif_rx_complete(dev0);
  1493. hw->intr_mask |= Y2_IS_STAT_BMU;
  1494. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1495. mmiowb();
  1496. return 0;
  1497. } else {
  1498. *budget -= work_done;
  1499. dev0->quota -= work_done;
  1500. return 1;
  1501. }
  1502. }
  1503. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1504. {
  1505. struct net_device *dev = hw->dev[port];
  1506. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1507. dev->name, status);
  1508. if (status & Y2_IS_PAR_RD1) {
  1509. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1510. dev->name);
  1511. /* Clear IRQ */
  1512. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1513. }
  1514. if (status & Y2_IS_PAR_WR1) {
  1515. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1516. dev->name);
  1517. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1518. }
  1519. if (status & Y2_IS_PAR_MAC1) {
  1520. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1521. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1522. }
  1523. if (status & Y2_IS_PAR_RX1) {
  1524. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1525. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1526. }
  1527. if (status & Y2_IS_TCP_TXA1) {
  1528. printk(KERN_ERR PFX "%s: TCP segmentation error\n", dev->name);
  1529. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1530. }
  1531. }
  1532. static void sky2_hw_intr(struct sky2_hw *hw)
  1533. {
  1534. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1535. if (status & Y2_IS_TIST_OV)
  1536. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1537. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1538. u16 pci_err;
  1539. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_err);
  1540. printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
  1541. pci_name(hw->pdev), pci_err);
  1542. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1543. pci_write_config_word(hw->pdev, PCI_STATUS,
  1544. pci_err | PCI_STATUS_ERROR_BITS);
  1545. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1546. }
  1547. if (status & Y2_IS_PCI_EXP) {
  1548. /* PCI-Express uncorrectable Error occurred */
  1549. u32 pex_err;
  1550. pci_read_config_dword(hw->pdev, PEX_UNC_ERR_STAT, &pex_err);
  1551. printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
  1552. pci_name(hw->pdev), pex_err);
  1553. /* clear the interrupt */
  1554. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1555. pci_write_config_dword(hw->pdev, PEX_UNC_ERR_STAT,
  1556. 0xffffffffUL);
  1557. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1558. if (pex_err & PEX_FATAL_ERRORS) {
  1559. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1560. hwmsk &= ~Y2_IS_PCI_EXP;
  1561. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1562. }
  1563. }
  1564. if (status & Y2_HWE_L1_MASK)
  1565. sky2_hw_error(hw, 0, status);
  1566. status >>= 8;
  1567. if (status & Y2_HWE_L1_MASK)
  1568. sky2_hw_error(hw, 1, status);
  1569. }
  1570. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1571. {
  1572. struct net_device *dev = hw->dev[port];
  1573. struct sky2_port *sky2 = netdev_priv(dev);
  1574. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1575. if (netif_msg_intr(sky2))
  1576. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1577. dev->name, status);
  1578. if (status & GM_IS_RX_FF_OR) {
  1579. ++sky2->net_stats.rx_fifo_errors;
  1580. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1581. }
  1582. if (status & GM_IS_TX_FF_UR) {
  1583. ++sky2->net_stats.tx_fifo_errors;
  1584. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1585. }
  1586. }
  1587. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1588. {
  1589. struct net_device *dev = hw->dev[port];
  1590. struct sky2_port *sky2 = netdev_priv(dev);
  1591. hw->intr_mask &= ~(port == 0 ? Y2_IS_IRQ_PHY1 : Y2_IS_IRQ_PHY2);
  1592. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1593. tasklet_schedule(&sky2->phy_task);
  1594. }
  1595. static irqreturn_t sky2_intr(int irq, void *dev_id, struct pt_regs *regs)
  1596. {
  1597. struct sky2_hw *hw = dev_id;
  1598. struct net_device *dev0 = hw->dev[0];
  1599. u32 status;
  1600. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1601. if (status == 0 || status == ~0)
  1602. return IRQ_NONE;
  1603. if (status & Y2_IS_HW_ERR)
  1604. sky2_hw_intr(hw);
  1605. /* Do NAPI for Rx and Tx status */
  1606. if (status & Y2_IS_STAT_BMU) {
  1607. hw->intr_mask &= ~Y2_IS_STAT_BMU;
  1608. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1609. if (likely(__netif_rx_schedule_prep(dev0))) {
  1610. prefetch(&hw->st_le[hw->st_idx]);
  1611. __netif_rx_schedule(dev0);
  1612. }
  1613. }
  1614. if (status & Y2_IS_IRQ_PHY1)
  1615. sky2_phy_intr(hw, 0);
  1616. if (status & Y2_IS_IRQ_PHY2)
  1617. sky2_phy_intr(hw, 1);
  1618. if (status & Y2_IS_IRQ_MAC1)
  1619. sky2_mac_intr(hw, 0);
  1620. if (status & Y2_IS_IRQ_MAC2)
  1621. sky2_mac_intr(hw, 1);
  1622. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  1623. sky2_read32(hw, B0_IMSK);
  1624. return IRQ_HANDLED;
  1625. }
  1626. #ifdef CONFIG_NET_POLL_CONTROLLER
  1627. static void sky2_netpoll(struct net_device *dev)
  1628. {
  1629. struct sky2_port *sky2 = netdev_priv(dev);
  1630. sky2_intr(sky2->hw->pdev->irq, sky2->hw, NULL);
  1631. }
  1632. #endif
  1633. /* Chip internal frequency for clock calculations */
  1634. static inline u32 sky2_khz(const struct sky2_hw *hw)
  1635. {
  1636. switch (hw->chip_id) {
  1637. case CHIP_ID_YUKON_EC:
  1638. case CHIP_ID_YUKON_EC_U:
  1639. return 125000; /* 125 Mhz */
  1640. case CHIP_ID_YUKON_FE:
  1641. return 100000; /* 100 Mhz */
  1642. default: /* YUKON_XL */
  1643. return 156000; /* 156 Mhz */
  1644. }
  1645. }
  1646. static inline u32 sky2_ms2clk(const struct sky2_hw *hw, u32 ms)
  1647. {
  1648. return sky2_khz(hw) * ms;
  1649. }
  1650. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1651. {
  1652. return (sky2_khz(hw) * us) / 1000;
  1653. }
  1654. static int sky2_reset(struct sky2_hw *hw)
  1655. {
  1656. u32 ctst;
  1657. u16 status;
  1658. u8 t8, pmd_type;
  1659. int i;
  1660. ctst = sky2_read32(hw, B0_CTST);
  1661. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1662. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1663. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1664. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  1665. pci_name(hw->pdev), hw->chip_id);
  1666. return -EOPNOTSUPP;
  1667. }
  1668. /* ring for status responses */
  1669. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  1670. &hw->st_dma);
  1671. if (!hw->st_le)
  1672. return -ENOMEM;
  1673. /* disable ASF */
  1674. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  1675. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  1676. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  1677. }
  1678. /* do a SW reset */
  1679. sky2_write8(hw, B0_CTST, CS_RST_SET);
  1680. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1681. /* clear PCI errors, if any */
  1682. pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  1683. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1684. pci_write_config_word(hw->pdev, PCI_STATUS,
  1685. status | PCI_STATUS_ERROR_BITS);
  1686. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  1687. /* clear any PEX errors */
  1688. if (is_pciex(hw)) {
  1689. u16 lstat;
  1690. pci_write_config_dword(hw->pdev, PEX_UNC_ERR_STAT,
  1691. 0xffffffffUL);
  1692. pci_read_config_word(hw->pdev, PEX_LNK_STAT, &lstat);
  1693. }
  1694. pmd_type = sky2_read8(hw, B2_PMD_TYP);
  1695. hw->copper = !(pmd_type == 'L' || pmd_type == 'S');
  1696. hw->ports = 1;
  1697. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  1698. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  1699. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  1700. ++hw->ports;
  1701. }
  1702. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1703. sky2_set_power_state(hw, PCI_D0);
  1704. for (i = 0; i < hw->ports; i++) {
  1705. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1706. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1707. }
  1708. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1709. /* Clear I2C IRQ noise */
  1710. sky2_write32(hw, B2_I2C_IRQ, 1);
  1711. /* turn off hardware timer (unused) */
  1712. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  1713. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1714. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  1715. /* Turn on descriptor polling (every 75us) */
  1716. sky2_write32(hw, B28_DPT_INI, sky2_us2clk(hw, 75));
  1717. sky2_write8(hw, B28_DPT_CTRL, DPT_START);
  1718. /* Turn off receive timestamp */
  1719. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  1720. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1721. /* enable the Tx Arbiters */
  1722. for (i = 0; i < hw->ports; i++)
  1723. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  1724. /* Initialize ram interface */
  1725. for (i = 0; i < hw->ports; i++) {
  1726. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  1727. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  1728. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  1729. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  1730. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  1731. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  1732. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  1733. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  1734. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  1735. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  1736. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  1737. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  1738. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  1739. }
  1740. sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
  1741. spin_lock_bh(&hw->phy_lock);
  1742. for (i = 0; i < hw->ports; i++)
  1743. sky2_phy_reset(hw, i);
  1744. spin_unlock_bh(&hw->phy_lock);
  1745. memset(hw->st_le, 0, STATUS_LE_BYTES);
  1746. hw->st_idx = 0;
  1747. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  1748. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  1749. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  1750. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  1751. /* Set the list last index */
  1752. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  1753. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_ms2clk(hw, 10));
  1754. /* These status setup values are copied from SysKonnect's driver */
  1755. if (is_ec_a1(hw)) {
  1756. /* WA for dev. #4.3 */
  1757. sky2_write16(hw, STAT_TX_IDX_TH, 0xfff); /* Tx Threshold */
  1758. /* set Status-FIFO watermark */
  1759. sky2_write8(hw, STAT_FIFO_WM, 0x21); /* WA for dev. #4.18 */
  1760. /* set Status-FIFO ISR watermark */
  1761. sky2_write8(hw, STAT_FIFO_ISR_WM, 0x07); /* WA for dev. #4.18 */
  1762. } else {
  1763. sky2_write16(hw, STAT_TX_IDX_TH, 0x000a);
  1764. /* set Status-FIFO watermark */
  1765. sky2_write8(hw, STAT_FIFO_WM, 0x10);
  1766. /* set Status-FIFO ISR watermark */
  1767. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  1768. sky2_write8(hw, STAT_FIFO_ISR_WM, 0x10);
  1769. else /* WA dev 4.109 */
  1770. sky2_write8(hw, STAT_FIFO_ISR_WM, 0x04);
  1771. sky2_write32(hw, STAT_ISR_TIMER_INI, 0x0190);
  1772. }
  1773. /* enable status unit */
  1774. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  1775. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1776. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  1777. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  1778. return 0;
  1779. }
  1780. static inline u32 sky2_supported_modes(const struct sky2_hw *hw)
  1781. {
  1782. u32 modes;
  1783. if (hw->copper) {
  1784. modes = SUPPORTED_10baseT_Half
  1785. | SUPPORTED_10baseT_Full
  1786. | SUPPORTED_100baseT_Half
  1787. | SUPPORTED_100baseT_Full
  1788. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1789. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1790. modes |= SUPPORTED_1000baseT_Half
  1791. | SUPPORTED_1000baseT_Full;
  1792. } else
  1793. modes = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1794. | SUPPORTED_Autoneg;
  1795. return modes;
  1796. }
  1797. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1798. {
  1799. struct sky2_port *sky2 = netdev_priv(dev);
  1800. struct sky2_hw *hw = sky2->hw;
  1801. ecmd->transceiver = XCVR_INTERNAL;
  1802. ecmd->supported = sky2_supported_modes(hw);
  1803. ecmd->phy_address = PHY_ADDR_MARV;
  1804. if (hw->copper) {
  1805. ecmd->supported = SUPPORTED_10baseT_Half
  1806. | SUPPORTED_10baseT_Full
  1807. | SUPPORTED_100baseT_Half
  1808. | SUPPORTED_100baseT_Full
  1809. | SUPPORTED_1000baseT_Half
  1810. | SUPPORTED_1000baseT_Full
  1811. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1812. ecmd->port = PORT_TP;
  1813. } else
  1814. ecmd->port = PORT_FIBRE;
  1815. ecmd->advertising = sky2->advertising;
  1816. ecmd->autoneg = sky2->autoneg;
  1817. ecmd->speed = sky2->speed;
  1818. ecmd->duplex = sky2->duplex;
  1819. return 0;
  1820. }
  1821. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1822. {
  1823. struct sky2_port *sky2 = netdev_priv(dev);
  1824. const struct sky2_hw *hw = sky2->hw;
  1825. u32 supported = sky2_supported_modes(hw);
  1826. if (ecmd->autoneg == AUTONEG_ENABLE) {
  1827. ecmd->advertising = supported;
  1828. sky2->duplex = -1;
  1829. sky2->speed = -1;
  1830. } else {
  1831. u32 setting;
  1832. switch (ecmd->speed) {
  1833. case SPEED_1000:
  1834. if (ecmd->duplex == DUPLEX_FULL)
  1835. setting = SUPPORTED_1000baseT_Full;
  1836. else if (ecmd->duplex == DUPLEX_HALF)
  1837. setting = SUPPORTED_1000baseT_Half;
  1838. else
  1839. return -EINVAL;
  1840. break;
  1841. case SPEED_100:
  1842. if (ecmd->duplex == DUPLEX_FULL)
  1843. setting = SUPPORTED_100baseT_Full;
  1844. else if (ecmd->duplex == DUPLEX_HALF)
  1845. setting = SUPPORTED_100baseT_Half;
  1846. else
  1847. return -EINVAL;
  1848. break;
  1849. case SPEED_10:
  1850. if (ecmd->duplex == DUPLEX_FULL)
  1851. setting = SUPPORTED_10baseT_Full;
  1852. else if (ecmd->duplex == DUPLEX_HALF)
  1853. setting = SUPPORTED_10baseT_Half;
  1854. else
  1855. return -EINVAL;
  1856. break;
  1857. default:
  1858. return -EINVAL;
  1859. }
  1860. if ((setting & supported) == 0)
  1861. return -EINVAL;
  1862. sky2->speed = ecmd->speed;
  1863. sky2->duplex = ecmd->duplex;
  1864. }
  1865. sky2->autoneg = ecmd->autoneg;
  1866. sky2->advertising = ecmd->advertising;
  1867. if (netif_running(dev)) {
  1868. sky2_down(dev);
  1869. sky2_up(dev);
  1870. }
  1871. return 0;
  1872. }
  1873. static void sky2_get_drvinfo(struct net_device *dev,
  1874. struct ethtool_drvinfo *info)
  1875. {
  1876. struct sky2_port *sky2 = netdev_priv(dev);
  1877. strcpy(info->driver, DRV_NAME);
  1878. strcpy(info->version, DRV_VERSION);
  1879. strcpy(info->fw_version, "N/A");
  1880. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  1881. }
  1882. static const struct sky2_stat {
  1883. char name[ETH_GSTRING_LEN];
  1884. u16 offset;
  1885. } sky2_stats[] = {
  1886. { "tx_bytes", GM_TXO_OK_HI },
  1887. { "rx_bytes", GM_RXO_OK_HI },
  1888. { "tx_broadcast", GM_TXF_BC_OK },
  1889. { "rx_broadcast", GM_RXF_BC_OK },
  1890. { "tx_multicast", GM_TXF_MC_OK },
  1891. { "rx_multicast", GM_RXF_MC_OK },
  1892. { "tx_unicast", GM_TXF_UC_OK },
  1893. { "rx_unicast", GM_RXF_UC_OK },
  1894. { "tx_mac_pause", GM_TXF_MPAUSE },
  1895. { "rx_mac_pause", GM_RXF_MPAUSE },
  1896. { "collisions", GM_TXF_SNG_COL },
  1897. { "late_collision",GM_TXF_LAT_COL },
  1898. { "aborted", GM_TXF_ABO_COL },
  1899. { "multi_collisions", GM_TXF_MUL_COL },
  1900. { "fifo_underrun", GM_TXE_FIFO_UR },
  1901. { "fifo_overflow", GM_RXE_FIFO_OV },
  1902. { "rx_toolong", GM_RXF_LNG_ERR },
  1903. { "rx_jabber", GM_RXF_JAB_PKT },
  1904. { "rx_runt", GM_RXE_FRAG },
  1905. { "rx_too_long", GM_RXF_LNG_ERR },
  1906. { "rx_fcs_error", GM_RXF_FCS_ERR },
  1907. };
  1908. static u32 sky2_get_rx_csum(struct net_device *dev)
  1909. {
  1910. struct sky2_port *sky2 = netdev_priv(dev);
  1911. return sky2->rx_csum;
  1912. }
  1913. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  1914. {
  1915. struct sky2_port *sky2 = netdev_priv(dev);
  1916. sky2->rx_csum = data;
  1917. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  1918. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  1919. return 0;
  1920. }
  1921. static u32 sky2_get_msglevel(struct net_device *netdev)
  1922. {
  1923. struct sky2_port *sky2 = netdev_priv(netdev);
  1924. return sky2->msg_enable;
  1925. }
  1926. static int sky2_nway_reset(struct net_device *dev)
  1927. {
  1928. struct sky2_port *sky2 = netdev_priv(dev);
  1929. struct sky2_hw *hw = sky2->hw;
  1930. if (sky2->autoneg != AUTONEG_ENABLE)
  1931. return -EINVAL;
  1932. netif_stop_queue(dev);
  1933. spin_lock_irq(&hw->phy_lock);
  1934. sky2_phy_reset(hw, sky2->port);
  1935. sky2_phy_init(hw, sky2->port);
  1936. spin_unlock_irq(&hw->phy_lock);
  1937. return 0;
  1938. }
  1939. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  1940. {
  1941. struct sky2_hw *hw = sky2->hw;
  1942. unsigned port = sky2->port;
  1943. int i;
  1944. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1945. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  1946. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1947. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  1948. for (i = 2; i < count; i++)
  1949. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  1950. }
  1951. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  1952. {
  1953. struct sky2_port *sky2 = netdev_priv(netdev);
  1954. sky2->msg_enable = value;
  1955. }
  1956. static int sky2_get_stats_count(struct net_device *dev)
  1957. {
  1958. return ARRAY_SIZE(sky2_stats);
  1959. }
  1960. static void sky2_get_ethtool_stats(struct net_device *dev,
  1961. struct ethtool_stats *stats, u64 * data)
  1962. {
  1963. struct sky2_port *sky2 = netdev_priv(dev);
  1964. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  1965. }
  1966. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  1967. {
  1968. int i;
  1969. switch (stringset) {
  1970. case ETH_SS_STATS:
  1971. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  1972. memcpy(data + i * ETH_GSTRING_LEN,
  1973. sky2_stats[i].name, ETH_GSTRING_LEN);
  1974. break;
  1975. }
  1976. }
  1977. /* Use hardware MIB variables for critical path statistics and
  1978. * transmit feedback not reported at interrupt.
  1979. * Other errors are accounted for in interrupt handler.
  1980. */
  1981. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  1982. {
  1983. struct sky2_port *sky2 = netdev_priv(dev);
  1984. u64 data[13];
  1985. sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
  1986. sky2->net_stats.tx_bytes = data[0];
  1987. sky2->net_stats.rx_bytes = data[1];
  1988. sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
  1989. sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
  1990. sky2->net_stats.multicast = data[5] + data[7];
  1991. sky2->net_stats.collisions = data[10];
  1992. sky2->net_stats.tx_aborted_errors = data[12];
  1993. return &sky2->net_stats;
  1994. }
  1995. static int sky2_set_mac_address(struct net_device *dev, void *p)
  1996. {
  1997. struct sky2_port *sky2 = netdev_priv(dev);
  1998. struct sockaddr *addr = p;
  1999. int err = 0;
  2000. if (!is_valid_ether_addr(addr->sa_data))
  2001. return -EADDRNOTAVAIL;
  2002. sky2_down(dev);
  2003. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2004. memcpy_toio(sky2->hw->regs + B2_MAC_1 + sky2->port * 8,
  2005. dev->dev_addr, ETH_ALEN);
  2006. memcpy_toio(sky2->hw->regs + B2_MAC_2 + sky2->port * 8,
  2007. dev->dev_addr, ETH_ALEN);
  2008. if (dev->flags & IFF_UP)
  2009. err = sky2_up(dev);
  2010. return err;
  2011. }
  2012. static void sky2_set_multicast(struct net_device *dev)
  2013. {
  2014. struct sky2_port *sky2 = netdev_priv(dev);
  2015. struct sky2_hw *hw = sky2->hw;
  2016. unsigned port = sky2->port;
  2017. struct dev_mc_list *list = dev->mc_list;
  2018. u16 reg;
  2019. u8 filter[8];
  2020. memset(filter, 0, sizeof(filter));
  2021. reg = gma_read16(hw, port, GM_RX_CTRL);
  2022. reg |= GM_RXCR_UCF_ENA;
  2023. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2024. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2025. else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */
  2026. memset(filter, 0xff, sizeof(filter));
  2027. else if (dev->mc_count == 0) /* no multicast */
  2028. reg &= ~GM_RXCR_MCF_ENA;
  2029. else {
  2030. int i;
  2031. reg |= GM_RXCR_MCF_ENA;
  2032. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2033. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2034. filter[bit / 8] |= 1 << (bit % 8);
  2035. }
  2036. }
  2037. gma_write16(hw, port, GM_MC_ADDR_H1,
  2038. (u16) filter[0] | ((u16) filter[1] << 8));
  2039. gma_write16(hw, port, GM_MC_ADDR_H2,
  2040. (u16) filter[2] | ((u16) filter[3] << 8));
  2041. gma_write16(hw, port, GM_MC_ADDR_H3,
  2042. (u16) filter[4] | ((u16) filter[5] << 8));
  2043. gma_write16(hw, port, GM_MC_ADDR_H4,
  2044. (u16) filter[6] | ((u16) filter[7] << 8));
  2045. gma_write16(hw, port, GM_RX_CTRL, reg);
  2046. }
  2047. /* Can have one global because blinking is controlled by
  2048. * ethtool and that is always under RTNL mutex
  2049. */
  2050. static inline void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2051. {
  2052. u16 pg;
  2053. spin_lock_bh(&hw->phy_lock);
  2054. switch (hw->chip_id) {
  2055. case CHIP_ID_YUKON_XL:
  2056. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2057. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2058. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2059. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2060. PHY_M_LEDC_INIT_CTRL(7) |
  2061. PHY_M_LEDC_STA1_CTRL(7) |
  2062. PHY_M_LEDC_STA0_CTRL(7))
  2063. : 0);
  2064. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2065. break;
  2066. default:
  2067. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2068. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2069. on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
  2070. PHY_M_LED_MO_10(MO_LED_ON) |
  2071. PHY_M_LED_MO_100(MO_LED_ON) |
  2072. PHY_M_LED_MO_1000(MO_LED_ON) |
  2073. PHY_M_LED_MO_RX(MO_LED_ON)
  2074. : PHY_M_LED_MO_DUP(MO_LED_OFF) |
  2075. PHY_M_LED_MO_10(MO_LED_OFF) |
  2076. PHY_M_LED_MO_100(MO_LED_OFF) |
  2077. PHY_M_LED_MO_1000(MO_LED_OFF) |
  2078. PHY_M_LED_MO_RX(MO_LED_OFF));
  2079. }
  2080. spin_unlock_bh(&hw->phy_lock);
  2081. }
  2082. /* blink LED's for finding board */
  2083. static int sky2_phys_id(struct net_device *dev, u32 data)
  2084. {
  2085. struct sky2_port *sky2 = netdev_priv(dev);
  2086. struct sky2_hw *hw = sky2->hw;
  2087. unsigned port = sky2->port;
  2088. u16 ledctrl, ledover = 0;
  2089. long ms;
  2090. int onoff = 1;
  2091. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2092. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2093. else
  2094. ms = data * 1000;
  2095. /* save initial values */
  2096. spin_lock_bh(&hw->phy_lock);
  2097. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2098. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2099. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2100. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2101. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2102. } else {
  2103. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2104. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2105. }
  2106. spin_unlock_bh(&hw->phy_lock);
  2107. while (ms > 0) {
  2108. sky2_led(hw, port, onoff);
  2109. onoff = !onoff;
  2110. if (msleep_interruptible(250))
  2111. break; /* interrupted */
  2112. ms -= 250;
  2113. }
  2114. /* resume regularly scheduled programming */
  2115. spin_lock_bh(&hw->phy_lock);
  2116. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2117. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2118. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2119. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2120. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2121. } else {
  2122. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2123. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2124. }
  2125. spin_unlock_bh(&hw->phy_lock);
  2126. return 0;
  2127. }
  2128. static void sky2_get_pauseparam(struct net_device *dev,
  2129. struct ethtool_pauseparam *ecmd)
  2130. {
  2131. struct sky2_port *sky2 = netdev_priv(dev);
  2132. ecmd->tx_pause = sky2->tx_pause;
  2133. ecmd->rx_pause = sky2->rx_pause;
  2134. ecmd->autoneg = sky2->autoneg;
  2135. }
  2136. static int sky2_set_pauseparam(struct net_device *dev,
  2137. struct ethtool_pauseparam *ecmd)
  2138. {
  2139. struct sky2_port *sky2 = netdev_priv(dev);
  2140. int err = 0;
  2141. sky2->autoneg = ecmd->autoneg;
  2142. sky2->tx_pause = ecmd->tx_pause != 0;
  2143. sky2->rx_pause = ecmd->rx_pause != 0;
  2144. if (netif_running(dev)) {
  2145. sky2_down(dev);
  2146. err = sky2_up(dev);
  2147. }
  2148. return err;
  2149. }
  2150. #ifdef CONFIG_PM
  2151. static void sky2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2152. {
  2153. struct sky2_port *sky2 = netdev_priv(dev);
  2154. wol->supported = WAKE_MAGIC;
  2155. wol->wolopts = sky2->wol ? WAKE_MAGIC : 0;
  2156. }
  2157. static int sky2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2158. {
  2159. struct sky2_port *sky2 = netdev_priv(dev);
  2160. struct sky2_hw *hw = sky2->hw;
  2161. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  2162. return -EOPNOTSUPP;
  2163. sky2->wol = wol->wolopts == WAKE_MAGIC;
  2164. if (sky2->wol) {
  2165. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  2166. sky2_write16(hw, WOL_CTRL_STAT,
  2167. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  2168. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  2169. } else
  2170. sky2_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  2171. return 0;
  2172. }
  2173. #endif
  2174. static void sky2_get_ringparam(struct net_device *dev,
  2175. struct ethtool_ringparam *ering)
  2176. {
  2177. struct sky2_port *sky2 = netdev_priv(dev);
  2178. ering->rx_max_pending = RX_MAX_PENDING;
  2179. ering->rx_mini_max_pending = 0;
  2180. ering->rx_jumbo_max_pending = 0;
  2181. ering->tx_max_pending = TX_RING_SIZE - 1;
  2182. ering->rx_pending = sky2->rx_pending;
  2183. ering->rx_mini_pending = 0;
  2184. ering->rx_jumbo_pending = 0;
  2185. ering->tx_pending = sky2->tx_pending;
  2186. }
  2187. static int sky2_set_ringparam(struct net_device *dev,
  2188. struct ethtool_ringparam *ering)
  2189. {
  2190. struct sky2_port *sky2 = netdev_priv(dev);
  2191. int err = 0;
  2192. if (ering->rx_pending > RX_MAX_PENDING ||
  2193. ering->rx_pending < 8 ||
  2194. ering->tx_pending < MAX_SKB_TX_LE ||
  2195. ering->tx_pending > TX_RING_SIZE - 1)
  2196. return -EINVAL;
  2197. if (netif_running(dev))
  2198. sky2_down(dev);
  2199. sky2->rx_pending = ering->rx_pending;
  2200. sky2->tx_pending = ering->tx_pending;
  2201. if (netif_running(dev))
  2202. err = sky2_up(dev);
  2203. return err;
  2204. }
  2205. static int sky2_get_regs_len(struct net_device *dev)
  2206. {
  2207. return 0x4000;
  2208. }
  2209. /*
  2210. * Returns copy of control register region
  2211. * Note: access to the RAM address register set will cause timeouts.
  2212. */
  2213. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2214. void *p)
  2215. {
  2216. const struct sky2_port *sky2 = netdev_priv(dev);
  2217. const void __iomem *io = sky2->hw->regs;
  2218. BUG_ON(regs->len < B3_RI_WTO_R1);
  2219. regs->version = 1;
  2220. memset(p, 0, regs->len);
  2221. memcpy_fromio(p, io, B3_RAM_ADDR);
  2222. memcpy_fromio(p + B3_RI_WTO_R1,
  2223. io + B3_RI_WTO_R1,
  2224. regs->len - B3_RI_WTO_R1);
  2225. }
  2226. static struct ethtool_ops sky2_ethtool_ops = {
  2227. .get_settings = sky2_get_settings,
  2228. .set_settings = sky2_set_settings,
  2229. .get_drvinfo = sky2_get_drvinfo,
  2230. .get_msglevel = sky2_get_msglevel,
  2231. .set_msglevel = sky2_set_msglevel,
  2232. .nway_reset = sky2_nway_reset,
  2233. .get_regs_len = sky2_get_regs_len,
  2234. .get_regs = sky2_get_regs,
  2235. .get_link = ethtool_op_get_link,
  2236. .get_sg = ethtool_op_get_sg,
  2237. .set_sg = ethtool_op_set_sg,
  2238. .get_tx_csum = ethtool_op_get_tx_csum,
  2239. .set_tx_csum = ethtool_op_set_tx_csum,
  2240. .get_tso = ethtool_op_get_tso,
  2241. .set_tso = ethtool_op_set_tso,
  2242. .get_rx_csum = sky2_get_rx_csum,
  2243. .set_rx_csum = sky2_set_rx_csum,
  2244. .get_strings = sky2_get_strings,
  2245. .get_ringparam = sky2_get_ringparam,
  2246. .set_ringparam = sky2_set_ringparam,
  2247. .get_pauseparam = sky2_get_pauseparam,
  2248. .set_pauseparam = sky2_set_pauseparam,
  2249. #ifdef CONFIG_PM
  2250. .get_wol = sky2_get_wol,
  2251. .set_wol = sky2_set_wol,
  2252. #endif
  2253. .phys_id = sky2_phys_id,
  2254. .get_stats_count = sky2_get_stats_count,
  2255. .get_ethtool_stats = sky2_get_ethtool_stats,
  2256. .get_perm_addr = ethtool_op_get_perm_addr,
  2257. };
  2258. /* Initialize network device */
  2259. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2260. unsigned port, int highmem)
  2261. {
  2262. struct sky2_port *sky2;
  2263. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2264. if (!dev) {
  2265. printk(KERN_ERR "sky2 etherdev alloc failed");
  2266. return NULL;
  2267. }
  2268. SET_MODULE_OWNER(dev);
  2269. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2270. dev->irq = hw->pdev->irq;
  2271. dev->open = sky2_up;
  2272. dev->stop = sky2_down;
  2273. dev->do_ioctl = sky2_ioctl;
  2274. dev->hard_start_xmit = sky2_xmit_frame;
  2275. dev->get_stats = sky2_get_stats;
  2276. dev->set_multicast_list = sky2_set_multicast;
  2277. dev->set_mac_address = sky2_set_mac_address;
  2278. dev->change_mtu = sky2_change_mtu;
  2279. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2280. dev->tx_timeout = sky2_tx_timeout;
  2281. dev->watchdog_timeo = TX_WATCHDOG;
  2282. if (port == 0)
  2283. dev->poll = sky2_poll;
  2284. dev->weight = NAPI_WEIGHT;
  2285. #ifdef CONFIG_NET_POLL_CONTROLLER
  2286. dev->poll_controller = sky2_netpoll;
  2287. #endif
  2288. sky2 = netdev_priv(dev);
  2289. sky2->netdev = dev;
  2290. sky2->hw = hw;
  2291. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2292. spin_lock_init(&sky2->tx_lock);
  2293. /* Auto speed and flow control */
  2294. sky2->autoneg = AUTONEG_ENABLE;
  2295. sky2->tx_pause = 0;
  2296. sky2->rx_pause = 1;
  2297. sky2->duplex = -1;
  2298. sky2->speed = -1;
  2299. sky2->advertising = sky2_supported_modes(hw);
  2300. sky2->rx_csum = 1;
  2301. tasklet_init(&sky2->phy_task, sky2_phy_task, (unsigned long)sky2);
  2302. sky2->tx_pending = TX_DEF_PENDING;
  2303. sky2->rx_pending = is_ec_a1(hw) ? 8 : RX_DEF_PENDING;
  2304. hw->dev[port] = dev;
  2305. sky2->port = port;
  2306. dev->features |= NETIF_F_LLTX;
  2307. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2308. dev->features |= NETIF_F_TSO;
  2309. if (highmem)
  2310. dev->features |= NETIF_F_HIGHDMA;
  2311. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2312. #ifdef SKY2_VLAN_TAG_USED
  2313. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2314. dev->vlan_rx_register = sky2_vlan_rx_register;
  2315. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2316. #endif
  2317. /* read the mac address */
  2318. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2319. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2320. /* device is off until link detection */
  2321. netif_carrier_off(dev);
  2322. netif_stop_queue(dev);
  2323. return dev;
  2324. }
  2325. static inline void sky2_show_addr(struct net_device *dev)
  2326. {
  2327. const struct sky2_port *sky2 = netdev_priv(dev);
  2328. if (netif_msg_probe(sky2))
  2329. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2330. dev->name,
  2331. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2332. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2333. }
  2334. static int __devinit sky2_probe(struct pci_dev *pdev,
  2335. const struct pci_device_id *ent)
  2336. {
  2337. struct net_device *dev, *dev1 = NULL;
  2338. struct sky2_hw *hw;
  2339. int err, pm_cap, using_dac = 0;
  2340. err = pci_enable_device(pdev);
  2341. if (err) {
  2342. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2343. pci_name(pdev));
  2344. goto err_out;
  2345. }
  2346. err = pci_request_regions(pdev, DRV_NAME);
  2347. if (err) {
  2348. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2349. pci_name(pdev));
  2350. goto err_out;
  2351. }
  2352. pci_set_master(pdev);
  2353. /* Find power-management capability. */
  2354. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2355. if (pm_cap == 0) {
  2356. printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
  2357. "aborting.\n");
  2358. err = -EIO;
  2359. goto err_out_free_regions;
  2360. }
  2361. if (sizeof(dma_addr_t) > sizeof(u32)) {
  2362. err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
  2363. if (!err)
  2364. using_dac = 1;
  2365. }
  2366. if (!using_dac) {
  2367. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2368. if (err) {
  2369. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2370. pci_name(pdev));
  2371. goto err_out_free_regions;
  2372. }
  2373. }
  2374. #ifdef __BIG_ENDIAN
  2375. /* byte swap descriptors in hardware */
  2376. {
  2377. u32 reg;
  2378. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2379. reg |= PCI_REV_DESC;
  2380. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2381. }
  2382. #endif
  2383. err = -ENOMEM;
  2384. hw = kmalloc(sizeof(*hw), GFP_KERNEL);
  2385. if (!hw) {
  2386. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2387. pci_name(pdev));
  2388. goto err_out_free_regions;
  2389. }
  2390. memset(hw, 0, sizeof(*hw));
  2391. hw->pdev = pdev;
  2392. spin_lock_init(&hw->phy_lock);
  2393. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2394. if (!hw->regs) {
  2395. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2396. pci_name(pdev));
  2397. goto err_out_free_hw;
  2398. }
  2399. hw->pm_cap = pm_cap;
  2400. err = sky2_reset(hw);
  2401. if (err)
  2402. goto err_out_iounmap;
  2403. printk(KERN_INFO PFX "v%s addr 0x%lx irq %d Yukon-%s (0x%x) rev %d\n",
  2404. DRV_VERSION, pci_resource_start(pdev, 0), pdev->irq,
  2405. yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2406. hw->chip_id, hw->chip_rev);
  2407. dev = sky2_init_netdev(hw, 0, using_dac);
  2408. if (!dev)
  2409. goto err_out_free_pci;
  2410. err = register_netdev(dev);
  2411. if (err) {
  2412. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2413. pci_name(pdev));
  2414. goto err_out_free_netdev;
  2415. }
  2416. sky2_show_addr(dev);
  2417. if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
  2418. if (register_netdev(dev1) == 0)
  2419. sky2_show_addr(dev1);
  2420. else {
  2421. /* Failure to register second port need not be fatal */
  2422. printk(KERN_WARNING PFX
  2423. "register of second port failed\n");
  2424. hw->dev[1] = NULL;
  2425. free_netdev(dev1);
  2426. }
  2427. }
  2428. err = request_irq(pdev->irq, sky2_intr, SA_SHIRQ, DRV_NAME, hw);
  2429. if (err) {
  2430. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2431. pci_name(pdev), pdev->irq);
  2432. goto err_out_unregister;
  2433. }
  2434. hw->intr_mask = Y2_IS_BASE;
  2435. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  2436. pci_set_drvdata(pdev, hw);
  2437. return 0;
  2438. err_out_unregister:
  2439. if (dev1) {
  2440. unregister_netdev(dev1);
  2441. free_netdev(dev1);
  2442. }
  2443. unregister_netdev(dev);
  2444. err_out_free_netdev:
  2445. free_netdev(dev);
  2446. err_out_free_pci:
  2447. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2448. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2449. err_out_iounmap:
  2450. iounmap(hw->regs);
  2451. err_out_free_hw:
  2452. kfree(hw);
  2453. err_out_free_regions:
  2454. pci_release_regions(pdev);
  2455. pci_disable_device(pdev);
  2456. err_out:
  2457. return err;
  2458. }
  2459. static void __devexit sky2_remove(struct pci_dev *pdev)
  2460. {
  2461. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2462. struct net_device *dev0, *dev1;
  2463. if (!hw)
  2464. return;
  2465. dev0 = hw->dev[0];
  2466. dev1 = hw->dev[1];
  2467. if (dev1)
  2468. unregister_netdev(dev1);
  2469. unregister_netdev(dev0);
  2470. sky2_write32(hw, B0_IMSK, 0);
  2471. sky2_set_power_state(hw, PCI_D3hot);
  2472. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2473. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2474. sky2_read8(hw, B0_CTST);
  2475. free_irq(pdev->irq, hw);
  2476. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2477. pci_release_regions(pdev);
  2478. pci_disable_device(pdev);
  2479. if (dev1)
  2480. free_netdev(dev1);
  2481. free_netdev(dev0);
  2482. iounmap(hw->regs);
  2483. kfree(hw);
  2484. pci_set_drvdata(pdev, NULL);
  2485. }
  2486. #ifdef CONFIG_PM
  2487. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2488. {
  2489. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2490. int i;
  2491. for (i = 0; i < 2; i++) {
  2492. struct net_device *dev = hw->dev[i];
  2493. if (dev) {
  2494. if (!netif_running(dev))
  2495. continue;
  2496. sky2_down(dev);
  2497. netif_device_detach(dev);
  2498. }
  2499. }
  2500. return sky2_set_power_state(hw, pci_choose_state(pdev, state));
  2501. }
  2502. static int sky2_resume(struct pci_dev *pdev)
  2503. {
  2504. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2505. int i;
  2506. pci_restore_state(pdev);
  2507. pci_enable_wake(pdev, PCI_D0, 0);
  2508. sky2_set_power_state(hw, PCI_D0);
  2509. sky2_reset(hw);
  2510. for (i = 0; i < 2; i++) {
  2511. struct net_device *dev = hw->dev[i];
  2512. if (dev) {
  2513. if (netif_running(dev)) {
  2514. netif_device_attach(dev);
  2515. sky2_up(dev);
  2516. }
  2517. }
  2518. }
  2519. return 0;
  2520. }
  2521. #endif
  2522. static struct pci_driver sky2_driver = {
  2523. .name = DRV_NAME,
  2524. .id_table = sky2_id_table,
  2525. .probe = sky2_probe,
  2526. .remove = __devexit_p(sky2_remove),
  2527. #ifdef CONFIG_PM
  2528. .suspend = sky2_suspend,
  2529. .resume = sky2_resume,
  2530. #endif
  2531. };
  2532. static int __init sky2_init_module(void)
  2533. {
  2534. return pci_register_driver(&sky2_driver);
  2535. }
  2536. static void __exit sky2_cleanup_module(void)
  2537. {
  2538. pci_unregister_driver(&sky2_driver);
  2539. }
  2540. module_init(sky2_init_module);
  2541. module_exit(sky2_cleanup_module);
  2542. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  2543. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  2544. MODULE_LICENSE("GPL");
  2545. MODULE_VERSION(DRV_VERSION);