sched.c 195 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <asm/tlb.h>
  69. #include <asm/irq_regs.h>
  70. /*
  71. * Scheduler clock - returns current time in nanosec units.
  72. * This is default implementation.
  73. * Architectures and sub-architectures can override this.
  74. */
  75. unsigned long long __attribute__((weak)) sched_clock(void)
  76. {
  77. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  78. }
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. #ifdef CONFIG_GROUP_SCHED
  145. #include <linux/cgroup.h>
  146. struct cfs_rq;
  147. static LIST_HEAD(task_groups);
  148. /* task group related information */
  149. struct task_group {
  150. #ifdef CONFIG_CGROUP_SCHED
  151. struct cgroup_subsys_state css;
  152. #endif
  153. #ifdef CONFIG_FAIR_GROUP_SCHED
  154. /* schedulable entities of this group on each cpu */
  155. struct sched_entity **se;
  156. /* runqueue "owned" by this group on each cpu */
  157. struct cfs_rq **cfs_rq;
  158. unsigned long shares;
  159. #endif
  160. #ifdef CONFIG_RT_GROUP_SCHED
  161. struct sched_rt_entity **rt_se;
  162. struct rt_rq **rt_rq;
  163. u64 rt_runtime;
  164. #endif
  165. struct rcu_head rcu;
  166. struct list_head list;
  167. };
  168. #ifdef CONFIG_FAIR_GROUP_SCHED
  169. /* Default task group's sched entity on each cpu */
  170. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  171. /* Default task group's cfs_rq on each cpu */
  172. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  173. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  174. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  175. #endif
  176. #ifdef CONFIG_RT_GROUP_SCHED
  177. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  178. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  179. static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
  180. static struct rt_rq *init_rt_rq_p[NR_CPUS];
  181. #endif
  182. /* task_group_lock serializes add/remove of task groups and also changes to
  183. * a task group's cpu shares.
  184. */
  185. static DEFINE_SPINLOCK(task_group_lock);
  186. /* doms_cur_mutex serializes access to doms_cur[] array */
  187. static DEFINE_MUTEX(doms_cur_mutex);
  188. #ifdef CONFIG_FAIR_GROUP_SCHED
  189. #ifdef CONFIG_USER_SCHED
  190. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  191. #else
  192. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  193. #endif
  194. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  195. #endif
  196. /* Default task group.
  197. * Every task in system belong to this group at bootup.
  198. */
  199. struct task_group init_task_group = {
  200. #ifdef CONFIG_FAIR_GROUP_SCHED
  201. .se = init_sched_entity_p,
  202. .cfs_rq = init_cfs_rq_p,
  203. #endif
  204. #ifdef CONFIG_RT_GROUP_SCHED
  205. .rt_se = init_sched_rt_entity_p,
  206. .rt_rq = init_rt_rq_p,
  207. #endif
  208. };
  209. /* return group to which a task belongs */
  210. static inline struct task_group *task_group(struct task_struct *p)
  211. {
  212. struct task_group *tg;
  213. #ifdef CONFIG_USER_SCHED
  214. tg = p->user->tg;
  215. #elif defined(CONFIG_CGROUP_SCHED)
  216. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  217. struct task_group, css);
  218. #else
  219. tg = &init_task_group;
  220. #endif
  221. return tg;
  222. }
  223. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  224. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  225. {
  226. #ifdef CONFIG_FAIR_GROUP_SCHED
  227. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  228. p->se.parent = task_group(p)->se[cpu];
  229. #endif
  230. #ifdef CONFIG_RT_GROUP_SCHED
  231. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  232. p->rt.parent = task_group(p)->rt_se[cpu];
  233. #endif
  234. }
  235. static inline void lock_doms_cur(void)
  236. {
  237. mutex_lock(&doms_cur_mutex);
  238. }
  239. static inline void unlock_doms_cur(void)
  240. {
  241. mutex_unlock(&doms_cur_mutex);
  242. }
  243. #else
  244. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  245. static inline void lock_doms_cur(void) { }
  246. static inline void unlock_doms_cur(void) { }
  247. #endif /* CONFIG_GROUP_SCHED */
  248. /* CFS-related fields in a runqueue */
  249. struct cfs_rq {
  250. struct load_weight load;
  251. unsigned long nr_running;
  252. u64 exec_clock;
  253. u64 min_vruntime;
  254. struct rb_root tasks_timeline;
  255. struct rb_node *rb_leftmost;
  256. struct rb_node *rb_load_balance_curr;
  257. /* 'curr' points to currently running entity on this cfs_rq.
  258. * It is set to NULL otherwise (i.e when none are currently running).
  259. */
  260. struct sched_entity *curr, *next;
  261. unsigned long nr_spread_over;
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  264. /*
  265. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  266. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  267. * (like users, containers etc.)
  268. *
  269. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  270. * list is used during load balance.
  271. */
  272. struct list_head leaf_cfs_rq_list;
  273. struct task_group *tg; /* group that "owns" this runqueue */
  274. #endif
  275. };
  276. /* Real-Time classes' related field in a runqueue: */
  277. struct rt_rq {
  278. struct rt_prio_array active;
  279. unsigned long rt_nr_running;
  280. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  281. int highest_prio; /* highest queued rt task prio */
  282. #endif
  283. #ifdef CONFIG_SMP
  284. unsigned long rt_nr_migratory;
  285. int overloaded;
  286. #endif
  287. int rt_throttled;
  288. u64 rt_time;
  289. #ifdef CONFIG_RT_GROUP_SCHED
  290. unsigned long rt_nr_boosted;
  291. struct rq *rq;
  292. struct list_head leaf_rt_rq_list;
  293. struct task_group *tg;
  294. struct sched_rt_entity *rt_se;
  295. #endif
  296. };
  297. #ifdef CONFIG_SMP
  298. /*
  299. * We add the notion of a root-domain which will be used to define per-domain
  300. * variables. Each exclusive cpuset essentially defines an island domain by
  301. * fully partitioning the member cpus from any other cpuset. Whenever a new
  302. * exclusive cpuset is created, we also create and attach a new root-domain
  303. * object.
  304. *
  305. */
  306. struct root_domain {
  307. atomic_t refcount;
  308. cpumask_t span;
  309. cpumask_t online;
  310. /*
  311. * The "RT overload" flag: it gets set if a CPU has more than
  312. * one runnable RT task.
  313. */
  314. cpumask_t rto_mask;
  315. atomic_t rto_count;
  316. };
  317. /*
  318. * By default the system creates a single root-domain with all cpus as
  319. * members (mimicking the global state we have today).
  320. */
  321. static struct root_domain def_root_domain;
  322. #endif
  323. /*
  324. * This is the main, per-CPU runqueue data structure.
  325. *
  326. * Locking rule: those places that want to lock multiple runqueues
  327. * (such as the load balancing or the thread migration code), lock
  328. * acquire operations must be ordered by ascending &runqueue.
  329. */
  330. struct rq {
  331. /* runqueue lock: */
  332. spinlock_t lock;
  333. /*
  334. * nr_running and cpu_load should be in the same cacheline because
  335. * remote CPUs use both these fields when doing load calculation.
  336. */
  337. unsigned long nr_running;
  338. #define CPU_LOAD_IDX_MAX 5
  339. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  340. unsigned char idle_at_tick;
  341. #ifdef CONFIG_NO_HZ
  342. unsigned char in_nohz_recently;
  343. #endif
  344. /* capture load from *all* tasks on this cpu: */
  345. struct load_weight load;
  346. unsigned long nr_load_updates;
  347. u64 nr_switches;
  348. struct cfs_rq cfs;
  349. struct rt_rq rt;
  350. u64 rt_period_expire;
  351. int rt_throttled;
  352. #ifdef CONFIG_FAIR_GROUP_SCHED
  353. /* list of leaf cfs_rq on this cpu: */
  354. struct list_head leaf_cfs_rq_list;
  355. #endif
  356. #ifdef CONFIG_RT_GROUP_SCHED
  357. struct list_head leaf_rt_rq_list;
  358. #endif
  359. /*
  360. * This is part of a global counter where only the total sum
  361. * over all CPUs matters. A task can increase this counter on
  362. * one CPU and if it got migrated afterwards it may decrease
  363. * it on another CPU. Always updated under the runqueue lock:
  364. */
  365. unsigned long nr_uninterruptible;
  366. struct task_struct *curr, *idle;
  367. unsigned long next_balance;
  368. struct mm_struct *prev_mm;
  369. u64 clock, prev_clock_raw;
  370. s64 clock_max_delta;
  371. unsigned int clock_warps, clock_overflows, clock_underflows;
  372. u64 idle_clock;
  373. unsigned int clock_deep_idle_events;
  374. u64 tick_timestamp;
  375. atomic_t nr_iowait;
  376. #ifdef CONFIG_SMP
  377. struct root_domain *rd;
  378. struct sched_domain *sd;
  379. /* For active balancing */
  380. int active_balance;
  381. int push_cpu;
  382. /* cpu of this runqueue: */
  383. int cpu;
  384. struct task_struct *migration_thread;
  385. struct list_head migration_queue;
  386. #endif
  387. #ifdef CONFIG_SCHED_HRTICK
  388. unsigned long hrtick_flags;
  389. ktime_t hrtick_expire;
  390. struct hrtimer hrtick_timer;
  391. #endif
  392. #ifdef CONFIG_SCHEDSTATS
  393. /* latency stats */
  394. struct sched_info rq_sched_info;
  395. /* sys_sched_yield() stats */
  396. unsigned int yld_exp_empty;
  397. unsigned int yld_act_empty;
  398. unsigned int yld_both_empty;
  399. unsigned int yld_count;
  400. /* schedule() stats */
  401. unsigned int sched_switch;
  402. unsigned int sched_count;
  403. unsigned int sched_goidle;
  404. /* try_to_wake_up() stats */
  405. unsigned int ttwu_count;
  406. unsigned int ttwu_local;
  407. /* BKL stats */
  408. unsigned int bkl_count;
  409. #endif
  410. struct lock_class_key rq_lock_key;
  411. };
  412. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  413. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  414. {
  415. rq->curr->sched_class->check_preempt_curr(rq, p);
  416. }
  417. static inline int cpu_of(struct rq *rq)
  418. {
  419. #ifdef CONFIG_SMP
  420. return rq->cpu;
  421. #else
  422. return 0;
  423. #endif
  424. }
  425. /*
  426. * Update the per-runqueue clock, as finegrained as the platform can give
  427. * us, but without assuming monotonicity, etc.:
  428. */
  429. static void __update_rq_clock(struct rq *rq)
  430. {
  431. u64 prev_raw = rq->prev_clock_raw;
  432. u64 now = sched_clock();
  433. s64 delta = now - prev_raw;
  434. u64 clock = rq->clock;
  435. #ifdef CONFIG_SCHED_DEBUG
  436. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  437. #endif
  438. /*
  439. * Protect against sched_clock() occasionally going backwards:
  440. */
  441. if (unlikely(delta < 0)) {
  442. clock++;
  443. rq->clock_warps++;
  444. } else {
  445. /*
  446. * Catch too large forward jumps too:
  447. */
  448. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  449. if (clock < rq->tick_timestamp + TICK_NSEC)
  450. clock = rq->tick_timestamp + TICK_NSEC;
  451. else
  452. clock++;
  453. rq->clock_overflows++;
  454. } else {
  455. if (unlikely(delta > rq->clock_max_delta))
  456. rq->clock_max_delta = delta;
  457. clock += delta;
  458. }
  459. }
  460. rq->prev_clock_raw = now;
  461. rq->clock = clock;
  462. }
  463. static void update_rq_clock(struct rq *rq)
  464. {
  465. if (likely(smp_processor_id() == cpu_of(rq)))
  466. __update_rq_clock(rq);
  467. }
  468. /*
  469. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  470. * See detach_destroy_domains: synchronize_sched for details.
  471. *
  472. * The domain tree of any CPU may only be accessed from within
  473. * preempt-disabled sections.
  474. */
  475. #define for_each_domain(cpu, __sd) \
  476. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  477. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  478. #define this_rq() (&__get_cpu_var(runqueues))
  479. #define task_rq(p) cpu_rq(task_cpu(p))
  480. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  481. unsigned long rt_needs_cpu(int cpu)
  482. {
  483. struct rq *rq = cpu_rq(cpu);
  484. u64 delta;
  485. if (!rq->rt_throttled)
  486. return 0;
  487. if (rq->clock > rq->rt_period_expire)
  488. return 1;
  489. delta = rq->rt_period_expire - rq->clock;
  490. do_div(delta, NSEC_PER_SEC / HZ);
  491. return (unsigned long)delta;
  492. }
  493. /*
  494. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  495. */
  496. #ifdef CONFIG_SCHED_DEBUG
  497. # define const_debug __read_mostly
  498. #else
  499. # define const_debug static const
  500. #endif
  501. /*
  502. * Debugging: various feature bits
  503. */
  504. enum {
  505. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  506. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  507. SCHED_FEAT_START_DEBIT = 4,
  508. SCHED_FEAT_HRTICK = 8,
  509. SCHED_FEAT_DOUBLE_TICK = 16,
  510. };
  511. const_debug unsigned int sysctl_sched_features =
  512. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  513. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  514. SCHED_FEAT_START_DEBIT * 1 |
  515. SCHED_FEAT_HRTICK * 1 |
  516. SCHED_FEAT_DOUBLE_TICK * 0;
  517. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  518. /*
  519. * Number of tasks to iterate in a single balance run.
  520. * Limited because this is done with IRQs disabled.
  521. */
  522. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  523. /*
  524. * period over which we measure -rt task cpu usage in us.
  525. * default: 1s
  526. */
  527. unsigned int sysctl_sched_rt_period = 1000000;
  528. static __read_mostly int scheduler_running;
  529. /*
  530. * part of the period that we allow rt tasks to run in us.
  531. * default: 0.95s
  532. */
  533. int sysctl_sched_rt_runtime = 950000;
  534. /*
  535. * single value that denotes runtime == period, ie unlimited time.
  536. */
  537. #define RUNTIME_INF ((u64)~0ULL)
  538. /*
  539. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  540. * clock constructed from sched_clock():
  541. */
  542. unsigned long long cpu_clock(int cpu)
  543. {
  544. unsigned long long now;
  545. unsigned long flags;
  546. struct rq *rq;
  547. /*
  548. * Only call sched_clock() if the scheduler has already been
  549. * initialized (some code might call cpu_clock() very early):
  550. */
  551. if (unlikely(!scheduler_running))
  552. return 0;
  553. local_irq_save(flags);
  554. rq = cpu_rq(cpu);
  555. update_rq_clock(rq);
  556. now = rq->clock;
  557. local_irq_restore(flags);
  558. return now;
  559. }
  560. EXPORT_SYMBOL_GPL(cpu_clock);
  561. #ifndef prepare_arch_switch
  562. # define prepare_arch_switch(next) do { } while (0)
  563. #endif
  564. #ifndef finish_arch_switch
  565. # define finish_arch_switch(prev) do { } while (0)
  566. #endif
  567. static inline int task_current(struct rq *rq, struct task_struct *p)
  568. {
  569. return rq->curr == p;
  570. }
  571. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  572. static inline int task_running(struct rq *rq, struct task_struct *p)
  573. {
  574. return task_current(rq, p);
  575. }
  576. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  577. {
  578. }
  579. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  580. {
  581. #ifdef CONFIG_DEBUG_SPINLOCK
  582. /* this is a valid case when another task releases the spinlock */
  583. rq->lock.owner = current;
  584. #endif
  585. /*
  586. * If we are tracking spinlock dependencies then we have to
  587. * fix up the runqueue lock - which gets 'carried over' from
  588. * prev into current:
  589. */
  590. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  591. spin_unlock_irq(&rq->lock);
  592. }
  593. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  594. static inline int task_running(struct rq *rq, struct task_struct *p)
  595. {
  596. #ifdef CONFIG_SMP
  597. return p->oncpu;
  598. #else
  599. return task_current(rq, p);
  600. #endif
  601. }
  602. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  603. {
  604. #ifdef CONFIG_SMP
  605. /*
  606. * We can optimise this out completely for !SMP, because the
  607. * SMP rebalancing from interrupt is the only thing that cares
  608. * here.
  609. */
  610. next->oncpu = 1;
  611. #endif
  612. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  613. spin_unlock_irq(&rq->lock);
  614. #else
  615. spin_unlock(&rq->lock);
  616. #endif
  617. }
  618. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  619. {
  620. #ifdef CONFIG_SMP
  621. /*
  622. * After ->oncpu is cleared, the task can be moved to a different CPU.
  623. * We must ensure this doesn't happen until the switch is completely
  624. * finished.
  625. */
  626. smp_wmb();
  627. prev->oncpu = 0;
  628. #endif
  629. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  630. local_irq_enable();
  631. #endif
  632. }
  633. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  634. /*
  635. * __task_rq_lock - lock the runqueue a given task resides on.
  636. * Must be called interrupts disabled.
  637. */
  638. static inline struct rq *__task_rq_lock(struct task_struct *p)
  639. __acquires(rq->lock)
  640. {
  641. for (;;) {
  642. struct rq *rq = task_rq(p);
  643. spin_lock(&rq->lock);
  644. if (likely(rq == task_rq(p)))
  645. return rq;
  646. spin_unlock(&rq->lock);
  647. }
  648. }
  649. /*
  650. * task_rq_lock - lock the runqueue a given task resides on and disable
  651. * interrupts. Note the ordering: we can safely lookup the task_rq without
  652. * explicitly disabling preemption.
  653. */
  654. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  655. __acquires(rq->lock)
  656. {
  657. struct rq *rq;
  658. for (;;) {
  659. local_irq_save(*flags);
  660. rq = task_rq(p);
  661. spin_lock(&rq->lock);
  662. if (likely(rq == task_rq(p)))
  663. return rq;
  664. spin_unlock_irqrestore(&rq->lock, *flags);
  665. }
  666. }
  667. static void __task_rq_unlock(struct rq *rq)
  668. __releases(rq->lock)
  669. {
  670. spin_unlock(&rq->lock);
  671. }
  672. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  673. __releases(rq->lock)
  674. {
  675. spin_unlock_irqrestore(&rq->lock, *flags);
  676. }
  677. /*
  678. * this_rq_lock - lock this runqueue and disable interrupts.
  679. */
  680. static struct rq *this_rq_lock(void)
  681. __acquires(rq->lock)
  682. {
  683. struct rq *rq;
  684. local_irq_disable();
  685. rq = this_rq();
  686. spin_lock(&rq->lock);
  687. return rq;
  688. }
  689. /*
  690. * We are going deep-idle (irqs are disabled):
  691. */
  692. void sched_clock_idle_sleep_event(void)
  693. {
  694. struct rq *rq = cpu_rq(smp_processor_id());
  695. spin_lock(&rq->lock);
  696. __update_rq_clock(rq);
  697. spin_unlock(&rq->lock);
  698. rq->clock_deep_idle_events++;
  699. }
  700. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  701. /*
  702. * We just idled delta nanoseconds (called with irqs disabled):
  703. */
  704. void sched_clock_idle_wakeup_event(u64 delta_ns)
  705. {
  706. struct rq *rq = cpu_rq(smp_processor_id());
  707. u64 now = sched_clock();
  708. rq->idle_clock += delta_ns;
  709. /*
  710. * Override the previous timestamp and ignore all
  711. * sched_clock() deltas that occured while we idled,
  712. * and use the PM-provided delta_ns to advance the
  713. * rq clock:
  714. */
  715. spin_lock(&rq->lock);
  716. rq->prev_clock_raw = now;
  717. rq->clock += delta_ns;
  718. spin_unlock(&rq->lock);
  719. touch_softlockup_watchdog();
  720. }
  721. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  722. static void __resched_task(struct task_struct *p, int tif_bit);
  723. static inline void resched_task(struct task_struct *p)
  724. {
  725. __resched_task(p, TIF_NEED_RESCHED);
  726. }
  727. #ifdef CONFIG_SCHED_HRTICK
  728. /*
  729. * Use HR-timers to deliver accurate preemption points.
  730. *
  731. * Its all a bit involved since we cannot program an hrt while holding the
  732. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  733. * reschedule event.
  734. *
  735. * When we get rescheduled we reprogram the hrtick_timer outside of the
  736. * rq->lock.
  737. */
  738. static inline void resched_hrt(struct task_struct *p)
  739. {
  740. __resched_task(p, TIF_HRTICK_RESCHED);
  741. }
  742. static inline void resched_rq(struct rq *rq)
  743. {
  744. unsigned long flags;
  745. spin_lock_irqsave(&rq->lock, flags);
  746. resched_task(rq->curr);
  747. spin_unlock_irqrestore(&rq->lock, flags);
  748. }
  749. enum {
  750. HRTICK_SET, /* re-programm hrtick_timer */
  751. HRTICK_RESET, /* not a new slice */
  752. };
  753. /*
  754. * Use hrtick when:
  755. * - enabled by features
  756. * - hrtimer is actually high res
  757. */
  758. static inline int hrtick_enabled(struct rq *rq)
  759. {
  760. if (!sched_feat(HRTICK))
  761. return 0;
  762. return hrtimer_is_hres_active(&rq->hrtick_timer);
  763. }
  764. /*
  765. * Called to set the hrtick timer state.
  766. *
  767. * called with rq->lock held and irqs disabled
  768. */
  769. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  770. {
  771. assert_spin_locked(&rq->lock);
  772. /*
  773. * preempt at: now + delay
  774. */
  775. rq->hrtick_expire =
  776. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  777. /*
  778. * indicate we need to program the timer
  779. */
  780. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  781. if (reset)
  782. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  783. /*
  784. * New slices are called from the schedule path and don't need a
  785. * forced reschedule.
  786. */
  787. if (reset)
  788. resched_hrt(rq->curr);
  789. }
  790. static void hrtick_clear(struct rq *rq)
  791. {
  792. if (hrtimer_active(&rq->hrtick_timer))
  793. hrtimer_cancel(&rq->hrtick_timer);
  794. }
  795. /*
  796. * Update the timer from the possible pending state.
  797. */
  798. static void hrtick_set(struct rq *rq)
  799. {
  800. ktime_t time;
  801. int set, reset;
  802. unsigned long flags;
  803. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  804. spin_lock_irqsave(&rq->lock, flags);
  805. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  806. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  807. time = rq->hrtick_expire;
  808. clear_thread_flag(TIF_HRTICK_RESCHED);
  809. spin_unlock_irqrestore(&rq->lock, flags);
  810. if (set) {
  811. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  812. if (reset && !hrtimer_active(&rq->hrtick_timer))
  813. resched_rq(rq);
  814. } else
  815. hrtick_clear(rq);
  816. }
  817. /*
  818. * High-resolution timer tick.
  819. * Runs from hardirq context with interrupts disabled.
  820. */
  821. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  822. {
  823. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  824. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  825. spin_lock(&rq->lock);
  826. __update_rq_clock(rq);
  827. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  828. spin_unlock(&rq->lock);
  829. return HRTIMER_NORESTART;
  830. }
  831. static inline void init_rq_hrtick(struct rq *rq)
  832. {
  833. rq->hrtick_flags = 0;
  834. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  835. rq->hrtick_timer.function = hrtick;
  836. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  837. }
  838. void hrtick_resched(void)
  839. {
  840. struct rq *rq;
  841. unsigned long flags;
  842. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  843. return;
  844. local_irq_save(flags);
  845. rq = cpu_rq(smp_processor_id());
  846. hrtick_set(rq);
  847. local_irq_restore(flags);
  848. }
  849. #else
  850. static inline void hrtick_clear(struct rq *rq)
  851. {
  852. }
  853. static inline void hrtick_set(struct rq *rq)
  854. {
  855. }
  856. static inline void init_rq_hrtick(struct rq *rq)
  857. {
  858. }
  859. void hrtick_resched(void)
  860. {
  861. }
  862. #endif
  863. /*
  864. * resched_task - mark a task 'to be rescheduled now'.
  865. *
  866. * On UP this means the setting of the need_resched flag, on SMP it
  867. * might also involve a cross-CPU call to trigger the scheduler on
  868. * the target CPU.
  869. */
  870. #ifdef CONFIG_SMP
  871. #ifndef tsk_is_polling
  872. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  873. #endif
  874. static void __resched_task(struct task_struct *p, int tif_bit)
  875. {
  876. int cpu;
  877. assert_spin_locked(&task_rq(p)->lock);
  878. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  879. return;
  880. set_tsk_thread_flag(p, tif_bit);
  881. cpu = task_cpu(p);
  882. if (cpu == smp_processor_id())
  883. return;
  884. /* NEED_RESCHED must be visible before we test polling */
  885. smp_mb();
  886. if (!tsk_is_polling(p))
  887. smp_send_reschedule(cpu);
  888. }
  889. static void resched_cpu(int cpu)
  890. {
  891. struct rq *rq = cpu_rq(cpu);
  892. unsigned long flags;
  893. if (!spin_trylock_irqsave(&rq->lock, flags))
  894. return;
  895. resched_task(cpu_curr(cpu));
  896. spin_unlock_irqrestore(&rq->lock, flags);
  897. }
  898. #else
  899. static void __resched_task(struct task_struct *p, int tif_bit)
  900. {
  901. assert_spin_locked(&task_rq(p)->lock);
  902. set_tsk_thread_flag(p, tif_bit);
  903. }
  904. #endif
  905. #if BITS_PER_LONG == 32
  906. # define WMULT_CONST (~0UL)
  907. #else
  908. # define WMULT_CONST (1UL << 32)
  909. #endif
  910. #define WMULT_SHIFT 32
  911. /*
  912. * Shift right and round:
  913. */
  914. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  915. static unsigned long
  916. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  917. struct load_weight *lw)
  918. {
  919. u64 tmp;
  920. if (unlikely(!lw->inv_weight))
  921. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  922. tmp = (u64)delta_exec * weight;
  923. /*
  924. * Check whether we'd overflow the 64-bit multiplication:
  925. */
  926. if (unlikely(tmp > WMULT_CONST))
  927. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  928. WMULT_SHIFT/2);
  929. else
  930. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  931. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  932. }
  933. static inline unsigned long
  934. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  935. {
  936. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  937. }
  938. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  939. {
  940. lw->weight += inc;
  941. lw->inv_weight = 0;
  942. }
  943. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  944. {
  945. lw->weight -= dec;
  946. lw->inv_weight = 0;
  947. }
  948. /*
  949. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  950. * of tasks with abnormal "nice" values across CPUs the contribution that
  951. * each task makes to its run queue's load is weighted according to its
  952. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  953. * scaled version of the new time slice allocation that they receive on time
  954. * slice expiry etc.
  955. */
  956. #define WEIGHT_IDLEPRIO 2
  957. #define WMULT_IDLEPRIO (1 << 31)
  958. /*
  959. * Nice levels are multiplicative, with a gentle 10% change for every
  960. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  961. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  962. * that remained on nice 0.
  963. *
  964. * The "10% effect" is relative and cumulative: from _any_ nice level,
  965. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  966. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  967. * If a task goes up by ~10% and another task goes down by ~10% then
  968. * the relative distance between them is ~25%.)
  969. */
  970. static const int prio_to_weight[40] = {
  971. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  972. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  973. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  974. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  975. /* 0 */ 1024, 820, 655, 526, 423,
  976. /* 5 */ 335, 272, 215, 172, 137,
  977. /* 10 */ 110, 87, 70, 56, 45,
  978. /* 15 */ 36, 29, 23, 18, 15,
  979. };
  980. /*
  981. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  982. *
  983. * In cases where the weight does not change often, we can use the
  984. * precalculated inverse to speed up arithmetics by turning divisions
  985. * into multiplications:
  986. */
  987. static const u32 prio_to_wmult[40] = {
  988. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  989. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  990. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  991. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  992. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  993. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  994. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  995. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  996. };
  997. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  998. /*
  999. * runqueue iterator, to support SMP load-balancing between different
  1000. * scheduling classes, without having to expose their internal data
  1001. * structures to the load-balancing proper:
  1002. */
  1003. struct rq_iterator {
  1004. void *arg;
  1005. struct task_struct *(*start)(void *);
  1006. struct task_struct *(*next)(void *);
  1007. };
  1008. #ifdef CONFIG_SMP
  1009. static unsigned long
  1010. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1011. unsigned long max_load_move, struct sched_domain *sd,
  1012. enum cpu_idle_type idle, int *all_pinned,
  1013. int *this_best_prio, struct rq_iterator *iterator);
  1014. static int
  1015. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1016. struct sched_domain *sd, enum cpu_idle_type idle,
  1017. struct rq_iterator *iterator);
  1018. #endif
  1019. #ifdef CONFIG_CGROUP_CPUACCT
  1020. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1021. #else
  1022. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1023. #endif
  1024. #ifdef CONFIG_SMP
  1025. static unsigned long source_load(int cpu, int type);
  1026. static unsigned long target_load(int cpu, int type);
  1027. static unsigned long cpu_avg_load_per_task(int cpu);
  1028. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1029. #endif /* CONFIG_SMP */
  1030. #include "sched_stats.h"
  1031. #include "sched_idletask.c"
  1032. #include "sched_fair.c"
  1033. #include "sched_rt.c"
  1034. #ifdef CONFIG_SCHED_DEBUG
  1035. # include "sched_debug.c"
  1036. #endif
  1037. #define sched_class_highest (&rt_sched_class)
  1038. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1039. {
  1040. update_load_add(&rq->load, p->se.load.weight);
  1041. }
  1042. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1043. {
  1044. update_load_sub(&rq->load, p->se.load.weight);
  1045. }
  1046. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1047. {
  1048. rq->nr_running++;
  1049. inc_load(rq, p);
  1050. }
  1051. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1052. {
  1053. rq->nr_running--;
  1054. dec_load(rq, p);
  1055. }
  1056. static void set_load_weight(struct task_struct *p)
  1057. {
  1058. if (task_has_rt_policy(p)) {
  1059. p->se.load.weight = prio_to_weight[0] * 2;
  1060. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1061. return;
  1062. }
  1063. /*
  1064. * SCHED_IDLE tasks get minimal weight:
  1065. */
  1066. if (p->policy == SCHED_IDLE) {
  1067. p->se.load.weight = WEIGHT_IDLEPRIO;
  1068. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1069. return;
  1070. }
  1071. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1072. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1073. }
  1074. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1075. {
  1076. sched_info_queued(p);
  1077. p->sched_class->enqueue_task(rq, p, wakeup);
  1078. p->se.on_rq = 1;
  1079. }
  1080. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1081. {
  1082. p->sched_class->dequeue_task(rq, p, sleep);
  1083. p->se.on_rq = 0;
  1084. }
  1085. /*
  1086. * __normal_prio - return the priority that is based on the static prio
  1087. */
  1088. static inline int __normal_prio(struct task_struct *p)
  1089. {
  1090. return p->static_prio;
  1091. }
  1092. /*
  1093. * Calculate the expected normal priority: i.e. priority
  1094. * without taking RT-inheritance into account. Might be
  1095. * boosted by interactivity modifiers. Changes upon fork,
  1096. * setprio syscalls, and whenever the interactivity
  1097. * estimator recalculates.
  1098. */
  1099. static inline int normal_prio(struct task_struct *p)
  1100. {
  1101. int prio;
  1102. if (task_has_rt_policy(p))
  1103. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1104. else
  1105. prio = __normal_prio(p);
  1106. return prio;
  1107. }
  1108. /*
  1109. * Calculate the current priority, i.e. the priority
  1110. * taken into account by the scheduler. This value might
  1111. * be boosted by RT tasks, or might be boosted by
  1112. * interactivity modifiers. Will be RT if the task got
  1113. * RT-boosted. If not then it returns p->normal_prio.
  1114. */
  1115. static int effective_prio(struct task_struct *p)
  1116. {
  1117. p->normal_prio = normal_prio(p);
  1118. /*
  1119. * If we are RT tasks or we were boosted to RT priority,
  1120. * keep the priority unchanged. Otherwise, update priority
  1121. * to the normal priority:
  1122. */
  1123. if (!rt_prio(p->prio))
  1124. return p->normal_prio;
  1125. return p->prio;
  1126. }
  1127. /*
  1128. * activate_task - move a task to the runqueue.
  1129. */
  1130. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1131. {
  1132. if (task_contributes_to_load(p))
  1133. rq->nr_uninterruptible--;
  1134. enqueue_task(rq, p, wakeup);
  1135. inc_nr_running(p, rq);
  1136. }
  1137. /*
  1138. * deactivate_task - remove a task from the runqueue.
  1139. */
  1140. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1141. {
  1142. if (task_contributes_to_load(p))
  1143. rq->nr_uninterruptible++;
  1144. dequeue_task(rq, p, sleep);
  1145. dec_nr_running(p, rq);
  1146. }
  1147. /**
  1148. * task_curr - is this task currently executing on a CPU?
  1149. * @p: the task in question.
  1150. */
  1151. inline int task_curr(const struct task_struct *p)
  1152. {
  1153. return cpu_curr(task_cpu(p)) == p;
  1154. }
  1155. /* Used instead of source_load when we know the type == 0 */
  1156. unsigned long weighted_cpuload(const int cpu)
  1157. {
  1158. return cpu_rq(cpu)->load.weight;
  1159. }
  1160. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1161. {
  1162. set_task_rq(p, cpu);
  1163. #ifdef CONFIG_SMP
  1164. /*
  1165. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1166. * successfuly executed on another CPU. We must ensure that updates of
  1167. * per-task data have been completed by this moment.
  1168. */
  1169. smp_wmb();
  1170. task_thread_info(p)->cpu = cpu;
  1171. #endif
  1172. }
  1173. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1174. const struct sched_class *prev_class,
  1175. int oldprio, int running)
  1176. {
  1177. if (prev_class != p->sched_class) {
  1178. if (prev_class->switched_from)
  1179. prev_class->switched_from(rq, p, running);
  1180. p->sched_class->switched_to(rq, p, running);
  1181. } else
  1182. p->sched_class->prio_changed(rq, p, oldprio, running);
  1183. }
  1184. #ifdef CONFIG_SMP
  1185. /*
  1186. * Is this task likely cache-hot:
  1187. */
  1188. static int
  1189. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1190. {
  1191. s64 delta;
  1192. /*
  1193. * Buddy candidates are cache hot:
  1194. */
  1195. if (&p->se == cfs_rq_of(&p->se)->next)
  1196. return 1;
  1197. if (p->sched_class != &fair_sched_class)
  1198. return 0;
  1199. if (sysctl_sched_migration_cost == -1)
  1200. return 1;
  1201. if (sysctl_sched_migration_cost == 0)
  1202. return 0;
  1203. delta = now - p->se.exec_start;
  1204. return delta < (s64)sysctl_sched_migration_cost;
  1205. }
  1206. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1207. {
  1208. int old_cpu = task_cpu(p);
  1209. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1210. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1211. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1212. u64 clock_offset;
  1213. clock_offset = old_rq->clock - new_rq->clock;
  1214. #ifdef CONFIG_SCHEDSTATS
  1215. if (p->se.wait_start)
  1216. p->se.wait_start -= clock_offset;
  1217. if (p->se.sleep_start)
  1218. p->se.sleep_start -= clock_offset;
  1219. if (p->se.block_start)
  1220. p->se.block_start -= clock_offset;
  1221. if (old_cpu != new_cpu) {
  1222. schedstat_inc(p, se.nr_migrations);
  1223. if (task_hot(p, old_rq->clock, NULL))
  1224. schedstat_inc(p, se.nr_forced2_migrations);
  1225. }
  1226. #endif
  1227. p->se.vruntime -= old_cfsrq->min_vruntime -
  1228. new_cfsrq->min_vruntime;
  1229. __set_task_cpu(p, new_cpu);
  1230. }
  1231. struct migration_req {
  1232. struct list_head list;
  1233. struct task_struct *task;
  1234. int dest_cpu;
  1235. struct completion done;
  1236. };
  1237. /*
  1238. * The task's runqueue lock must be held.
  1239. * Returns true if you have to wait for migration thread.
  1240. */
  1241. static int
  1242. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1243. {
  1244. struct rq *rq = task_rq(p);
  1245. /*
  1246. * If the task is not on a runqueue (and not running), then
  1247. * it is sufficient to simply update the task's cpu field.
  1248. */
  1249. if (!p->se.on_rq && !task_running(rq, p)) {
  1250. set_task_cpu(p, dest_cpu);
  1251. return 0;
  1252. }
  1253. init_completion(&req->done);
  1254. req->task = p;
  1255. req->dest_cpu = dest_cpu;
  1256. list_add(&req->list, &rq->migration_queue);
  1257. return 1;
  1258. }
  1259. /*
  1260. * wait_task_inactive - wait for a thread to unschedule.
  1261. *
  1262. * The caller must ensure that the task *will* unschedule sometime soon,
  1263. * else this function might spin for a *long* time. This function can't
  1264. * be called with interrupts off, or it may introduce deadlock with
  1265. * smp_call_function() if an IPI is sent by the same process we are
  1266. * waiting to become inactive.
  1267. */
  1268. void wait_task_inactive(struct task_struct *p)
  1269. {
  1270. unsigned long flags;
  1271. int running, on_rq;
  1272. struct rq *rq;
  1273. for (;;) {
  1274. /*
  1275. * We do the initial early heuristics without holding
  1276. * any task-queue locks at all. We'll only try to get
  1277. * the runqueue lock when things look like they will
  1278. * work out!
  1279. */
  1280. rq = task_rq(p);
  1281. /*
  1282. * If the task is actively running on another CPU
  1283. * still, just relax and busy-wait without holding
  1284. * any locks.
  1285. *
  1286. * NOTE! Since we don't hold any locks, it's not
  1287. * even sure that "rq" stays as the right runqueue!
  1288. * But we don't care, since "task_running()" will
  1289. * return false if the runqueue has changed and p
  1290. * is actually now running somewhere else!
  1291. */
  1292. while (task_running(rq, p))
  1293. cpu_relax();
  1294. /*
  1295. * Ok, time to look more closely! We need the rq
  1296. * lock now, to be *sure*. If we're wrong, we'll
  1297. * just go back and repeat.
  1298. */
  1299. rq = task_rq_lock(p, &flags);
  1300. running = task_running(rq, p);
  1301. on_rq = p->se.on_rq;
  1302. task_rq_unlock(rq, &flags);
  1303. /*
  1304. * Was it really running after all now that we
  1305. * checked with the proper locks actually held?
  1306. *
  1307. * Oops. Go back and try again..
  1308. */
  1309. if (unlikely(running)) {
  1310. cpu_relax();
  1311. continue;
  1312. }
  1313. /*
  1314. * It's not enough that it's not actively running,
  1315. * it must be off the runqueue _entirely_, and not
  1316. * preempted!
  1317. *
  1318. * So if it wa still runnable (but just not actively
  1319. * running right now), it's preempted, and we should
  1320. * yield - it could be a while.
  1321. */
  1322. if (unlikely(on_rq)) {
  1323. schedule_timeout_uninterruptible(1);
  1324. continue;
  1325. }
  1326. /*
  1327. * Ahh, all good. It wasn't running, and it wasn't
  1328. * runnable, which means that it will never become
  1329. * running in the future either. We're all done!
  1330. */
  1331. break;
  1332. }
  1333. }
  1334. /***
  1335. * kick_process - kick a running thread to enter/exit the kernel
  1336. * @p: the to-be-kicked thread
  1337. *
  1338. * Cause a process which is running on another CPU to enter
  1339. * kernel-mode, without any delay. (to get signals handled.)
  1340. *
  1341. * NOTE: this function doesnt have to take the runqueue lock,
  1342. * because all it wants to ensure is that the remote task enters
  1343. * the kernel. If the IPI races and the task has been migrated
  1344. * to another CPU then no harm is done and the purpose has been
  1345. * achieved as well.
  1346. */
  1347. void kick_process(struct task_struct *p)
  1348. {
  1349. int cpu;
  1350. preempt_disable();
  1351. cpu = task_cpu(p);
  1352. if ((cpu != smp_processor_id()) && task_curr(p))
  1353. smp_send_reschedule(cpu);
  1354. preempt_enable();
  1355. }
  1356. /*
  1357. * Return a low guess at the load of a migration-source cpu weighted
  1358. * according to the scheduling class and "nice" value.
  1359. *
  1360. * We want to under-estimate the load of migration sources, to
  1361. * balance conservatively.
  1362. */
  1363. static unsigned long source_load(int cpu, int type)
  1364. {
  1365. struct rq *rq = cpu_rq(cpu);
  1366. unsigned long total = weighted_cpuload(cpu);
  1367. if (type == 0)
  1368. return total;
  1369. return min(rq->cpu_load[type-1], total);
  1370. }
  1371. /*
  1372. * Return a high guess at the load of a migration-target cpu weighted
  1373. * according to the scheduling class and "nice" value.
  1374. */
  1375. static unsigned long target_load(int cpu, int type)
  1376. {
  1377. struct rq *rq = cpu_rq(cpu);
  1378. unsigned long total = weighted_cpuload(cpu);
  1379. if (type == 0)
  1380. return total;
  1381. return max(rq->cpu_load[type-1], total);
  1382. }
  1383. /*
  1384. * Return the average load per task on the cpu's run queue
  1385. */
  1386. static unsigned long cpu_avg_load_per_task(int cpu)
  1387. {
  1388. struct rq *rq = cpu_rq(cpu);
  1389. unsigned long total = weighted_cpuload(cpu);
  1390. unsigned long n = rq->nr_running;
  1391. return n ? total / n : SCHED_LOAD_SCALE;
  1392. }
  1393. /*
  1394. * find_idlest_group finds and returns the least busy CPU group within the
  1395. * domain.
  1396. */
  1397. static struct sched_group *
  1398. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1399. {
  1400. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1401. unsigned long min_load = ULONG_MAX, this_load = 0;
  1402. int load_idx = sd->forkexec_idx;
  1403. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1404. do {
  1405. unsigned long load, avg_load;
  1406. int local_group;
  1407. int i;
  1408. /* Skip over this group if it has no CPUs allowed */
  1409. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1410. continue;
  1411. local_group = cpu_isset(this_cpu, group->cpumask);
  1412. /* Tally up the load of all CPUs in the group */
  1413. avg_load = 0;
  1414. for_each_cpu_mask(i, group->cpumask) {
  1415. /* Bias balancing toward cpus of our domain */
  1416. if (local_group)
  1417. load = source_load(i, load_idx);
  1418. else
  1419. load = target_load(i, load_idx);
  1420. avg_load += load;
  1421. }
  1422. /* Adjust by relative CPU power of the group */
  1423. avg_load = sg_div_cpu_power(group,
  1424. avg_load * SCHED_LOAD_SCALE);
  1425. if (local_group) {
  1426. this_load = avg_load;
  1427. this = group;
  1428. } else if (avg_load < min_load) {
  1429. min_load = avg_load;
  1430. idlest = group;
  1431. }
  1432. } while (group = group->next, group != sd->groups);
  1433. if (!idlest || 100*this_load < imbalance*min_load)
  1434. return NULL;
  1435. return idlest;
  1436. }
  1437. /*
  1438. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1439. */
  1440. static int
  1441. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1442. {
  1443. cpumask_t tmp;
  1444. unsigned long load, min_load = ULONG_MAX;
  1445. int idlest = -1;
  1446. int i;
  1447. /* Traverse only the allowed CPUs */
  1448. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1449. for_each_cpu_mask(i, tmp) {
  1450. load = weighted_cpuload(i);
  1451. if (load < min_load || (load == min_load && i == this_cpu)) {
  1452. min_load = load;
  1453. idlest = i;
  1454. }
  1455. }
  1456. return idlest;
  1457. }
  1458. /*
  1459. * sched_balance_self: balance the current task (running on cpu) in domains
  1460. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1461. * SD_BALANCE_EXEC.
  1462. *
  1463. * Balance, ie. select the least loaded group.
  1464. *
  1465. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1466. *
  1467. * preempt must be disabled.
  1468. */
  1469. static int sched_balance_self(int cpu, int flag)
  1470. {
  1471. struct task_struct *t = current;
  1472. struct sched_domain *tmp, *sd = NULL;
  1473. for_each_domain(cpu, tmp) {
  1474. /*
  1475. * If power savings logic is enabled for a domain, stop there.
  1476. */
  1477. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1478. break;
  1479. if (tmp->flags & flag)
  1480. sd = tmp;
  1481. }
  1482. while (sd) {
  1483. cpumask_t span;
  1484. struct sched_group *group;
  1485. int new_cpu, weight;
  1486. if (!(sd->flags & flag)) {
  1487. sd = sd->child;
  1488. continue;
  1489. }
  1490. span = sd->span;
  1491. group = find_idlest_group(sd, t, cpu);
  1492. if (!group) {
  1493. sd = sd->child;
  1494. continue;
  1495. }
  1496. new_cpu = find_idlest_cpu(group, t, cpu);
  1497. if (new_cpu == -1 || new_cpu == cpu) {
  1498. /* Now try balancing at a lower domain level of cpu */
  1499. sd = sd->child;
  1500. continue;
  1501. }
  1502. /* Now try balancing at a lower domain level of new_cpu */
  1503. cpu = new_cpu;
  1504. sd = NULL;
  1505. weight = cpus_weight(span);
  1506. for_each_domain(cpu, tmp) {
  1507. if (weight <= cpus_weight(tmp->span))
  1508. break;
  1509. if (tmp->flags & flag)
  1510. sd = tmp;
  1511. }
  1512. /* while loop will break here if sd == NULL */
  1513. }
  1514. return cpu;
  1515. }
  1516. #endif /* CONFIG_SMP */
  1517. /***
  1518. * try_to_wake_up - wake up a thread
  1519. * @p: the to-be-woken-up thread
  1520. * @state: the mask of task states that can be woken
  1521. * @sync: do a synchronous wakeup?
  1522. *
  1523. * Put it on the run-queue if it's not already there. The "current"
  1524. * thread is always on the run-queue (except when the actual
  1525. * re-schedule is in progress), and as such you're allowed to do
  1526. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1527. * runnable without the overhead of this.
  1528. *
  1529. * returns failure only if the task is already active.
  1530. */
  1531. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1532. {
  1533. int cpu, orig_cpu, this_cpu, success = 0;
  1534. unsigned long flags;
  1535. long old_state;
  1536. struct rq *rq;
  1537. smp_wmb();
  1538. rq = task_rq_lock(p, &flags);
  1539. old_state = p->state;
  1540. if (!(old_state & state))
  1541. goto out;
  1542. if (p->se.on_rq)
  1543. goto out_running;
  1544. cpu = task_cpu(p);
  1545. orig_cpu = cpu;
  1546. this_cpu = smp_processor_id();
  1547. #ifdef CONFIG_SMP
  1548. if (unlikely(task_running(rq, p)))
  1549. goto out_activate;
  1550. cpu = p->sched_class->select_task_rq(p, sync);
  1551. if (cpu != orig_cpu) {
  1552. set_task_cpu(p, cpu);
  1553. task_rq_unlock(rq, &flags);
  1554. /* might preempt at this point */
  1555. rq = task_rq_lock(p, &flags);
  1556. old_state = p->state;
  1557. if (!(old_state & state))
  1558. goto out;
  1559. if (p->se.on_rq)
  1560. goto out_running;
  1561. this_cpu = smp_processor_id();
  1562. cpu = task_cpu(p);
  1563. }
  1564. #ifdef CONFIG_SCHEDSTATS
  1565. schedstat_inc(rq, ttwu_count);
  1566. if (cpu == this_cpu)
  1567. schedstat_inc(rq, ttwu_local);
  1568. else {
  1569. struct sched_domain *sd;
  1570. for_each_domain(this_cpu, sd) {
  1571. if (cpu_isset(cpu, sd->span)) {
  1572. schedstat_inc(sd, ttwu_wake_remote);
  1573. break;
  1574. }
  1575. }
  1576. }
  1577. #endif
  1578. out_activate:
  1579. #endif /* CONFIG_SMP */
  1580. schedstat_inc(p, se.nr_wakeups);
  1581. if (sync)
  1582. schedstat_inc(p, se.nr_wakeups_sync);
  1583. if (orig_cpu != cpu)
  1584. schedstat_inc(p, se.nr_wakeups_migrate);
  1585. if (cpu == this_cpu)
  1586. schedstat_inc(p, se.nr_wakeups_local);
  1587. else
  1588. schedstat_inc(p, se.nr_wakeups_remote);
  1589. update_rq_clock(rq);
  1590. activate_task(rq, p, 1);
  1591. success = 1;
  1592. out_running:
  1593. check_preempt_curr(rq, p);
  1594. p->state = TASK_RUNNING;
  1595. #ifdef CONFIG_SMP
  1596. if (p->sched_class->task_wake_up)
  1597. p->sched_class->task_wake_up(rq, p);
  1598. #endif
  1599. out:
  1600. task_rq_unlock(rq, &flags);
  1601. return success;
  1602. }
  1603. int wake_up_process(struct task_struct *p)
  1604. {
  1605. return try_to_wake_up(p, TASK_ALL, 0);
  1606. }
  1607. EXPORT_SYMBOL(wake_up_process);
  1608. int wake_up_state(struct task_struct *p, unsigned int state)
  1609. {
  1610. return try_to_wake_up(p, state, 0);
  1611. }
  1612. /*
  1613. * Perform scheduler related setup for a newly forked process p.
  1614. * p is forked by current.
  1615. *
  1616. * __sched_fork() is basic setup used by init_idle() too:
  1617. */
  1618. static void __sched_fork(struct task_struct *p)
  1619. {
  1620. p->se.exec_start = 0;
  1621. p->se.sum_exec_runtime = 0;
  1622. p->se.prev_sum_exec_runtime = 0;
  1623. p->se.last_wakeup = 0;
  1624. p->se.avg_overlap = 0;
  1625. #ifdef CONFIG_SCHEDSTATS
  1626. p->se.wait_start = 0;
  1627. p->se.sum_sleep_runtime = 0;
  1628. p->se.sleep_start = 0;
  1629. p->se.block_start = 0;
  1630. p->se.sleep_max = 0;
  1631. p->se.block_max = 0;
  1632. p->se.exec_max = 0;
  1633. p->se.slice_max = 0;
  1634. p->se.wait_max = 0;
  1635. #endif
  1636. INIT_LIST_HEAD(&p->rt.run_list);
  1637. p->se.on_rq = 0;
  1638. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1639. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1640. #endif
  1641. /*
  1642. * We mark the process as running here, but have not actually
  1643. * inserted it onto the runqueue yet. This guarantees that
  1644. * nobody will actually run it, and a signal or other external
  1645. * event cannot wake it up and insert it on the runqueue either.
  1646. */
  1647. p->state = TASK_RUNNING;
  1648. }
  1649. /*
  1650. * fork()/clone()-time setup:
  1651. */
  1652. void sched_fork(struct task_struct *p, int clone_flags)
  1653. {
  1654. int cpu = get_cpu();
  1655. __sched_fork(p);
  1656. #ifdef CONFIG_SMP
  1657. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1658. #endif
  1659. set_task_cpu(p, cpu);
  1660. /*
  1661. * Make sure we do not leak PI boosting priority to the child:
  1662. */
  1663. p->prio = current->normal_prio;
  1664. if (!rt_prio(p->prio))
  1665. p->sched_class = &fair_sched_class;
  1666. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1667. if (likely(sched_info_on()))
  1668. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1669. #endif
  1670. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1671. p->oncpu = 0;
  1672. #endif
  1673. #ifdef CONFIG_PREEMPT
  1674. /* Want to start with kernel preemption disabled. */
  1675. task_thread_info(p)->preempt_count = 1;
  1676. #endif
  1677. put_cpu();
  1678. }
  1679. /*
  1680. * wake_up_new_task - wake up a newly created task for the first time.
  1681. *
  1682. * This function will do some initial scheduler statistics housekeeping
  1683. * that must be done for every newly created context, then puts the task
  1684. * on the runqueue and wakes it.
  1685. */
  1686. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1687. {
  1688. unsigned long flags;
  1689. struct rq *rq;
  1690. rq = task_rq_lock(p, &flags);
  1691. BUG_ON(p->state != TASK_RUNNING);
  1692. update_rq_clock(rq);
  1693. p->prio = effective_prio(p);
  1694. if (!p->sched_class->task_new || !current->se.on_rq) {
  1695. activate_task(rq, p, 0);
  1696. } else {
  1697. /*
  1698. * Let the scheduling class do new task startup
  1699. * management (if any):
  1700. */
  1701. p->sched_class->task_new(rq, p);
  1702. inc_nr_running(p, rq);
  1703. }
  1704. check_preempt_curr(rq, p);
  1705. #ifdef CONFIG_SMP
  1706. if (p->sched_class->task_wake_up)
  1707. p->sched_class->task_wake_up(rq, p);
  1708. #endif
  1709. task_rq_unlock(rq, &flags);
  1710. }
  1711. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1712. /**
  1713. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1714. * @notifier: notifier struct to register
  1715. */
  1716. void preempt_notifier_register(struct preempt_notifier *notifier)
  1717. {
  1718. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1719. }
  1720. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1721. /**
  1722. * preempt_notifier_unregister - no longer interested in preemption notifications
  1723. * @notifier: notifier struct to unregister
  1724. *
  1725. * This is safe to call from within a preemption notifier.
  1726. */
  1727. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1728. {
  1729. hlist_del(&notifier->link);
  1730. }
  1731. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1732. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1733. {
  1734. struct preempt_notifier *notifier;
  1735. struct hlist_node *node;
  1736. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1737. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1738. }
  1739. static void
  1740. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1741. struct task_struct *next)
  1742. {
  1743. struct preempt_notifier *notifier;
  1744. struct hlist_node *node;
  1745. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1746. notifier->ops->sched_out(notifier, next);
  1747. }
  1748. #else
  1749. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1750. {
  1751. }
  1752. static void
  1753. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1754. struct task_struct *next)
  1755. {
  1756. }
  1757. #endif
  1758. /**
  1759. * prepare_task_switch - prepare to switch tasks
  1760. * @rq: the runqueue preparing to switch
  1761. * @prev: the current task that is being switched out
  1762. * @next: the task we are going to switch to.
  1763. *
  1764. * This is called with the rq lock held and interrupts off. It must
  1765. * be paired with a subsequent finish_task_switch after the context
  1766. * switch.
  1767. *
  1768. * prepare_task_switch sets up locking and calls architecture specific
  1769. * hooks.
  1770. */
  1771. static inline void
  1772. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1773. struct task_struct *next)
  1774. {
  1775. fire_sched_out_preempt_notifiers(prev, next);
  1776. prepare_lock_switch(rq, next);
  1777. prepare_arch_switch(next);
  1778. }
  1779. /**
  1780. * finish_task_switch - clean up after a task-switch
  1781. * @rq: runqueue associated with task-switch
  1782. * @prev: the thread we just switched away from.
  1783. *
  1784. * finish_task_switch must be called after the context switch, paired
  1785. * with a prepare_task_switch call before the context switch.
  1786. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1787. * and do any other architecture-specific cleanup actions.
  1788. *
  1789. * Note that we may have delayed dropping an mm in context_switch(). If
  1790. * so, we finish that here outside of the runqueue lock. (Doing it
  1791. * with the lock held can cause deadlocks; see schedule() for
  1792. * details.)
  1793. */
  1794. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1795. __releases(rq->lock)
  1796. {
  1797. struct mm_struct *mm = rq->prev_mm;
  1798. long prev_state;
  1799. rq->prev_mm = NULL;
  1800. /*
  1801. * A task struct has one reference for the use as "current".
  1802. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1803. * schedule one last time. The schedule call will never return, and
  1804. * the scheduled task must drop that reference.
  1805. * The test for TASK_DEAD must occur while the runqueue locks are
  1806. * still held, otherwise prev could be scheduled on another cpu, die
  1807. * there before we look at prev->state, and then the reference would
  1808. * be dropped twice.
  1809. * Manfred Spraul <manfred@colorfullife.com>
  1810. */
  1811. prev_state = prev->state;
  1812. finish_arch_switch(prev);
  1813. finish_lock_switch(rq, prev);
  1814. #ifdef CONFIG_SMP
  1815. if (current->sched_class->post_schedule)
  1816. current->sched_class->post_schedule(rq);
  1817. #endif
  1818. fire_sched_in_preempt_notifiers(current);
  1819. if (mm)
  1820. mmdrop(mm);
  1821. if (unlikely(prev_state == TASK_DEAD)) {
  1822. /*
  1823. * Remove function-return probe instances associated with this
  1824. * task and put them back on the free list.
  1825. */
  1826. kprobe_flush_task(prev);
  1827. put_task_struct(prev);
  1828. }
  1829. }
  1830. /**
  1831. * schedule_tail - first thing a freshly forked thread must call.
  1832. * @prev: the thread we just switched away from.
  1833. */
  1834. asmlinkage void schedule_tail(struct task_struct *prev)
  1835. __releases(rq->lock)
  1836. {
  1837. struct rq *rq = this_rq();
  1838. finish_task_switch(rq, prev);
  1839. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1840. /* In this case, finish_task_switch does not reenable preemption */
  1841. preempt_enable();
  1842. #endif
  1843. if (current->set_child_tid)
  1844. put_user(task_pid_vnr(current), current->set_child_tid);
  1845. }
  1846. /*
  1847. * context_switch - switch to the new MM and the new
  1848. * thread's register state.
  1849. */
  1850. static inline void
  1851. context_switch(struct rq *rq, struct task_struct *prev,
  1852. struct task_struct *next)
  1853. {
  1854. struct mm_struct *mm, *oldmm;
  1855. prepare_task_switch(rq, prev, next);
  1856. mm = next->mm;
  1857. oldmm = prev->active_mm;
  1858. /*
  1859. * For paravirt, this is coupled with an exit in switch_to to
  1860. * combine the page table reload and the switch backend into
  1861. * one hypercall.
  1862. */
  1863. arch_enter_lazy_cpu_mode();
  1864. if (unlikely(!mm)) {
  1865. next->active_mm = oldmm;
  1866. atomic_inc(&oldmm->mm_count);
  1867. enter_lazy_tlb(oldmm, next);
  1868. } else
  1869. switch_mm(oldmm, mm, next);
  1870. if (unlikely(!prev->mm)) {
  1871. prev->active_mm = NULL;
  1872. rq->prev_mm = oldmm;
  1873. }
  1874. /*
  1875. * Since the runqueue lock will be released by the next
  1876. * task (which is an invalid locking op but in the case
  1877. * of the scheduler it's an obvious special-case), so we
  1878. * do an early lockdep release here:
  1879. */
  1880. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1881. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1882. #endif
  1883. /* Here we just switch the register state and the stack. */
  1884. switch_to(prev, next, prev);
  1885. barrier();
  1886. /*
  1887. * this_rq must be evaluated again because prev may have moved
  1888. * CPUs since it called schedule(), thus the 'rq' on its stack
  1889. * frame will be invalid.
  1890. */
  1891. finish_task_switch(this_rq(), prev);
  1892. }
  1893. /*
  1894. * nr_running, nr_uninterruptible and nr_context_switches:
  1895. *
  1896. * externally visible scheduler statistics: current number of runnable
  1897. * threads, current number of uninterruptible-sleeping threads, total
  1898. * number of context switches performed since bootup.
  1899. */
  1900. unsigned long nr_running(void)
  1901. {
  1902. unsigned long i, sum = 0;
  1903. for_each_online_cpu(i)
  1904. sum += cpu_rq(i)->nr_running;
  1905. return sum;
  1906. }
  1907. unsigned long nr_uninterruptible(void)
  1908. {
  1909. unsigned long i, sum = 0;
  1910. for_each_possible_cpu(i)
  1911. sum += cpu_rq(i)->nr_uninterruptible;
  1912. /*
  1913. * Since we read the counters lockless, it might be slightly
  1914. * inaccurate. Do not allow it to go below zero though:
  1915. */
  1916. if (unlikely((long)sum < 0))
  1917. sum = 0;
  1918. return sum;
  1919. }
  1920. unsigned long long nr_context_switches(void)
  1921. {
  1922. int i;
  1923. unsigned long long sum = 0;
  1924. for_each_possible_cpu(i)
  1925. sum += cpu_rq(i)->nr_switches;
  1926. return sum;
  1927. }
  1928. unsigned long nr_iowait(void)
  1929. {
  1930. unsigned long i, sum = 0;
  1931. for_each_possible_cpu(i)
  1932. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1933. return sum;
  1934. }
  1935. unsigned long nr_active(void)
  1936. {
  1937. unsigned long i, running = 0, uninterruptible = 0;
  1938. for_each_online_cpu(i) {
  1939. running += cpu_rq(i)->nr_running;
  1940. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1941. }
  1942. if (unlikely((long)uninterruptible < 0))
  1943. uninterruptible = 0;
  1944. return running + uninterruptible;
  1945. }
  1946. /*
  1947. * Update rq->cpu_load[] statistics. This function is usually called every
  1948. * scheduler tick (TICK_NSEC).
  1949. */
  1950. static void update_cpu_load(struct rq *this_rq)
  1951. {
  1952. unsigned long this_load = this_rq->load.weight;
  1953. int i, scale;
  1954. this_rq->nr_load_updates++;
  1955. /* Update our load: */
  1956. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1957. unsigned long old_load, new_load;
  1958. /* scale is effectively 1 << i now, and >> i divides by scale */
  1959. old_load = this_rq->cpu_load[i];
  1960. new_load = this_load;
  1961. /*
  1962. * Round up the averaging division if load is increasing. This
  1963. * prevents us from getting stuck on 9 if the load is 10, for
  1964. * example.
  1965. */
  1966. if (new_load > old_load)
  1967. new_load += scale-1;
  1968. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1969. }
  1970. }
  1971. #ifdef CONFIG_SMP
  1972. /*
  1973. * double_rq_lock - safely lock two runqueues
  1974. *
  1975. * Note this does not disable interrupts like task_rq_lock,
  1976. * you need to do so manually before calling.
  1977. */
  1978. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1979. __acquires(rq1->lock)
  1980. __acquires(rq2->lock)
  1981. {
  1982. BUG_ON(!irqs_disabled());
  1983. if (rq1 == rq2) {
  1984. spin_lock(&rq1->lock);
  1985. __acquire(rq2->lock); /* Fake it out ;) */
  1986. } else {
  1987. if (rq1 < rq2) {
  1988. spin_lock(&rq1->lock);
  1989. spin_lock(&rq2->lock);
  1990. } else {
  1991. spin_lock(&rq2->lock);
  1992. spin_lock(&rq1->lock);
  1993. }
  1994. }
  1995. update_rq_clock(rq1);
  1996. update_rq_clock(rq2);
  1997. }
  1998. /*
  1999. * double_rq_unlock - safely unlock two runqueues
  2000. *
  2001. * Note this does not restore interrupts like task_rq_unlock,
  2002. * you need to do so manually after calling.
  2003. */
  2004. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2005. __releases(rq1->lock)
  2006. __releases(rq2->lock)
  2007. {
  2008. spin_unlock(&rq1->lock);
  2009. if (rq1 != rq2)
  2010. spin_unlock(&rq2->lock);
  2011. else
  2012. __release(rq2->lock);
  2013. }
  2014. /*
  2015. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2016. */
  2017. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2018. __releases(this_rq->lock)
  2019. __acquires(busiest->lock)
  2020. __acquires(this_rq->lock)
  2021. {
  2022. int ret = 0;
  2023. if (unlikely(!irqs_disabled())) {
  2024. /* printk() doesn't work good under rq->lock */
  2025. spin_unlock(&this_rq->lock);
  2026. BUG_ON(1);
  2027. }
  2028. if (unlikely(!spin_trylock(&busiest->lock))) {
  2029. if (busiest < this_rq) {
  2030. spin_unlock(&this_rq->lock);
  2031. spin_lock(&busiest->lock);
  2032. spin_lock(&this_rq->lock);
  2033. ret = 1;
  2034. } else
  2035. spin_lock(&busiest->lock);
  2036. }
  2037. return ret;
  2038. }
  2039. /*
  2040. * If dest_cpu is allowed for this process, migrate the task to it.
  2041. * This is accomplished by forcing the cpu_allowed mask to only
  2042. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2043. * the cpu_allowed mask is restored.
  2044. */
  2045. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2046. {
  2047. struct migration_req req;
  2048. unsigned long flags;
  2049. struct rq *rq;
  2050. rq = task_rq_lock(p, &flags);
  2051. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2052. || unlikely(cpu_is_offline(dest_cpu)))
  2053. goto out;
  2054. /* force the process onto the specified CPU */
  2055. if (migrate_task(p, dest_cpu, &req)) {
  2056. /* Need to wait for migration thread (might exit: take ref). */
  2057. struct task_struct *mt = rq->migration_thread;
  2058. get_task_struct(mt);
  2059. task_rq_unlock(rq, &flags);
  2060. wake_up_process(mt);
  2061. put_task_struct(mt);
  2062. wait_for_completion(&req.done);
  2063. return;
  2064. }
  2065. out:
  2066. task_rq_unlock(rq, &flags);
  2067. }
  2068. /*
  2069. * sched_exec - execve() is a valuable balancing opportunity, because at
  2070. * this point the task has the smallest effective memory and cache footprint.
  2071. */
  2072. void sched_exec(void)
  2073. {
  2074. int new_cpu, this_cpu = get_cpu();
  2075. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2076. put_cpu();
  2077. if (new_cpu != this_cpu)
  2078. sched_migrate_task(current, new_cpu);
  2079. }
  2080. /*
  2081. * pull_task - move a task from a remote runqueue to the local runqueue.
  2082. * Both runqueues must be locked.
  2083. */
  2084. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2085. struct rq *this_rq, int this_cpu)
  2086. {
  2087. deactivate_task(src_rq, p, 0);
  2088. set_task_cpu(p, this_cpu);
  2089. activate_task(this_rq, p, 0);
  2090. /*
  2091. * Note that idle threads have a prio of MAX_PRIO, for this test
  2092. * to be always true for them.
  2093. */
  2094. check_preempt_curr(this_rq, p);
  2095. }
  2096. /*
  2097. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2098. */
  2099. static
  2100. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2101. struct sched_domain *sd, enum cpu_idle_type idle,
  2102. int *all_pinned)
  2103. {
  2104. /*
  2105. * We do not migrate tasks that are:
  2106. * 1) running (obviously), or
  2107. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2108. * 3) are cache-hot on their current CPU.
  2109. */
  2110. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2111. schedstat_inc(p, se.nr_failed_migrations_affine);
  2112. return 0;
  2113. }
  2114. *all_pinned = 0;
  2115. if (task_running(rq, p)) {
  2116. schedstat_inc(p, se.nr_failed_migrations_running);
  2117. return 0;
  2118. }
  2119. /*
  2120. * Aggressive migration if:
  2121. * 1) task is cache cold, or
  2122. * 2) too many balance attempts have failed.
  2123. */
  2124. if (!task_hot(p, rq->clock, sd) ||
  2125. sd->nr_balance_failed > sd->cache_nice_tries) {
  2126. #ifdef CONFIG_SCHEDSTATS
  2127. if (task_hot(p, rq->clock, sd)) {
  2128. schedstat_inc(sd, lb_hot_gained[idle]);
  2129. schedstat_inc(p, se.nr_forced_migrations);
  2130. }
  2131. #endif
  2132. return 1;
  2133. }
  2134. if (task_hot(p, rq->clock, sd)) {
  2135. schedstat_inc(p, se.nr_failed_migrations_hot);
  2136. return 0;
  2137. }
  2138. return 1;
  2139. }
  2140. static unsigned long
  2141. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2142. unsigned long max_load_move, struct sched_domain *sd,
  2143. enum cpu_idle_type idle, int *all_pinned,
  2144. int *this_best_prio, struct rq_iterator *iterator)
  2145. {
  2146. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2147. struct task_struct *p;
  2148. long rem_load_move = max_load_move;
  2149. if (max_load_move == 0)
  2150. goto out;
  2151. pinned = 1;
  2152. /*
  2153. * Start the load-balancing iterator:
  2154. */
  2155. p = iterator->start(iterator->arg);
  2156. next:
  2157. if (!p || loops++ > sysctl_sched_nr_migrate)
  2158. goto out;
  2159. /*
  2160. * To help distribute high priority tasks across CPUs we don't
  2161. * skip a task if it will be the highest priority task (i.e. smallest
  2162. * prio value) on its new queue regardless of its load weight
  2163. */
  2164. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2165. SCHED_LOAD_SCALE_FUZZ;
  2166. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2167. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2168. p = iterator->next(iterator->arg);
  2169. goto next;
  2170. }
  2171. pull_task(busiest, p, this_rq, this_cpu);
  2172. pulled++;
  2173. rem_load_move -= p->se.load.weight;
  2174. /*
  2175. * We only want to steal up to the prescribed amount of weighted load.
  2176. */
  2177. if (rem_load_move > 0) {
  2178. if (p->prio < *this_best_prio)
  2179. *this_best_prio = p->prio;
  2180. p = iterator->next(iterator->arg);
  2181. goto next;
  2182. }
  2183. out:
  2184. /*
  2185. * Right now, this is one of only two places pull_task() is called,
  2186. * so we can safely collect pull_task() stats here rather than
  2187. * inside pull_task().
  2188. */
  2189. schedstat_add(sd, lb_gained[idle], pulled);
  2190. if (all_pinned)
  2191. *all_pinned = pinned;
  2192. return max_load_move - rem_load_move;
  2193. }
  2194. /*
  2195. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2196. * this_rq, as part of a balancing operation within domain "sd".
  2197. * Returns 1 if successful and 0 otherwise.
  2198. *
  2199. * Called with both runqueues locked.
  2200. */
  2201. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2202. unsigned long max_load_move,
  2203. struct sched_domain *sd, enum cpu_idle_type idle,
  2204. int *all_pinned)
  2205. {
  2206. const struct sched_class *class = sched_class_highest;
  2207. unsigned long total_load_moved = 0;
  2208. int this_best_prio = this_rq->curr->prio;
  2209. do {
  2210. total_load_moved +=
  2211. class->load_balance(this_rq, this_cpu, busiest,
  2212. max_load_move - total_load_moved,
  2213. sd, idle, all_pinned, &this_best_prio);
  2214. class = class->next;
  2215. } while (class && max_load_move > total_load_moved);
  2216. return total_load_moved > 0;
  2217. }
  2218. static int
  2219. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2220. struct sched_domain *sd, enum cpu_idle_type idle,
  2221. struct rq_iterator *iterator)
  2222. {
  2223. struct task_struct *p = iterator->start(iterator->arg);
  2224. int pinned = 0;
  2225. while (p) {
  2226. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2227. pull_task(busiest, p, this_rq, this_cpu);
  2228. /*
  2229. * Right now, this is only the second place pull_task()
  2230. * is called, so we can safely collect pull_task()
  2231. * stats here rather than inside pull_task().
  2232. */
  2233. schedstat_inc(sd, lb_gained[idle]);
  2234. return 1;
  2235. }
  2236. p = iterator->next(iterator->arg);
  2237. }
  2238. return 0;
  2239. }
  2240. /*
  2241. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2242. * part of active balancing operations within "domain".
  2243. * Returns 1 if successful and 0 otherwise.
  2244. *
  2245. * Called with both runqueues locked.
  2246. */
  2247. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2248. struct sched_domain *sd, enum cpu_idle_type idle)
  2249. {
  2250. const struct sched_class *class;
  2251. for (class = sched_class_highest; class; class = class->next)
  2252. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2253. return 1;
  2254. return 0;
  2255. }
  2256. /*
  2257. * find_busiest_group finds and returns the busiest CPU group within the
  2258. * domain. It calculates and returns the amount of weighted load which
  2259. * should be moved to restore balance via the imbalance parameter.
  2260. */
  2261. static struct sched_group *
  2262. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2263. unsigned long *imbalance, enum cpu_idle_type idle,
  2264. int *sd_idle, cpumask_t *cpus, int *balance)
  2265. {
  2266. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2267. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2268. unsigned long max_pull;
  2269. unsigned long busiest_load_per_task, busiest_nr_running;
  2270. unsigned long this_load_per_task, this_nr_running;
  2271. int load_idx, group_imb = 0;
  2272. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2273. int power_savings_balance = 1;
  2274. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2275. unsigned long min_nr_running = ULONG_MAX;
  2276. struct sched_group *group_min = NULL, *group_leader = NULL;
  2277. #endif
  2278. max_load = this_load = total_load = total_pwr = 0;
  2279. busiest_load_per_task = busiest_nr_running = 0;
  2280. this_load_per_task = this_nr_running = 0;
  2281. if (idle == CPU_NOT_IDLE)
  2282. load_idx = sd->busy_idx;
  2283. else if (idle == CPU_NEWLY_IDLE)
  2284. load_idx = sd->newidle_idx;
  2285. else
  2286. load_idx = sd->idle_idx;
  2287. do {
  2288. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2289. int local_group;
  2290. int i;
  2291. int __group_imb = 0;
  2292. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2293. unsigned long sum_nr_running, sum_weighted_load;
  2294. local_group = cpu_isset(this_cpu, group->cpumask);
  2295. if (local_group)
  2296. balance_cpu = first_cpu(group->cpumask);
  2297. /* Tally up the load of all CPUs in the group */
  2298. sum_weighted_load = sum_nr_running = avg_load = 0;
  2299. max_cpu_load = 0;
  2300. min_cpu_load = ~0UL;
  2301. for_each_cpu_mask(i, group->cpumask) {
  2302. struct rq *rq;
  2303. if (!cpu_isset(i, *cpus))
  2304. continue;
  2305. rq = cpu_rq(i);
  2306. if (*sd_idle && rq->nr_running)
  2307. *sd_idle = 0;
  2308. /* Bias balancing toward cpus of our domain */
  2309. if (local_group) {
  2310. if (idle_cpu(i) && !first_idle_cpu) {
  2311. first_idle_cpu = 1;
  2312. balance_cpu = i;
  2313. }
  2314. load = target_load(i, load_idx);
  2315. } else {
  2316. load = source_load(i, load_idx);
  2317. if (load > max_cpu_load)
  2318. max_cpu_load = load;
  2319. if (min_cpu_load > load)
  2320. min_cpu_load = load;
  2321. }
  2322. avg_load += load;
  2323. sum_nr_running += rq->nr_running;
  2324. sum_weighted_load += weighted_cpuload(i);
  2325. }
  2326. /*
  2327. * First idle cpu or the first cpu(busiest) in this sched group
  2328. * is eligible for doing load balancing at this and above
  2329. * domains. In the newly idle case, we will allow all the cpu's
  2330. * to do the newly idle load balance.
  2331. */
  2332. if (idle != CPU_NEWLY_IDLE && local_group &&
  2333. balance_cpu != this_cpu && balance) {
  2334. *balance = 0;
  2335. goto ret;
  2336. }
  2337. total_load += avg_load;
  2338. total_pwr += group->__cpu_power;
  2339. /* Adjust by relative CPU power of the group */
  2340. avg_load = sg_div_cpu_power(group,
  2341. avg_load * SCHED_LOAD_SCALE);
  2342. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2343. __group_imb = 1;
  2344. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2345. if (local_group) {
  2346. this_load = avg_load;
  2347. this = group;
  2348. this_nr_running = sum_nr_running;
  2349. this_load_per_task = sum_weighted_load;
  2350. } else if (avg_load > max_load &&
  2351. (sum_nr_running > group_capacity || __group_imb)) {
  2352. max_load = avg_load;
  2353. busiest = group;
  2354. busiest_nr_running = sum_nr_running;
  2355. busiest_load_per_task = sum_weighted_load;
  2356. group_imb = __group_imb;
  2357. }
  2358. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2359. /*
  2360. * Busy processors will not participate in power savings
  2361. * balance.
  2362. */
  2363. if (idle == CPU_NOT_IDLE ||
  2364. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2365. goto group_next;
  2366. /*
  2367. * If the local group is idle or completely loaded
  2368. * no need to do power savings balance at this domain
  2369. */
  2370. if (local_group && (this_nr_running >= group_capacity ||
  2371. !this_nr_running))
  2372. power_savings_balance = 0;
  2373. /*
  2374. * If a group is already running at full capacity or idle,
  2375. * don't include that group in power savings calculations
  2376. */
  2377. if (!power_savings_balance || sum_nr_running >= group_capacity
  2378. || !sum_nr_running)
  2379. goto group_next;
  2380. /*
  2381. * Calculate the group which has the least non-idle load.
  2382. * This is the group from where we need to pick up the load
  2383. * for saving power
  2384. */
  2385. if ((sum_nr_running < min_nr_running) ||
  2386. (sum_nr_running == min_nr_running &&
  2387. first_cpu(group->cpumask) <
  2388. first_cpu(group_min->cpumask))) {
  2389. group_min = group;
  2390. min_nr_running = sum_nr_running;
  2391. min_load_per_task = sum_weighted_load /
  2392. sum_nr_running;
  2393. }
  2394. /*
  2395. * Calculate the group which is almost near its
  2396. * capacity but still has some space to pick up some load
  2397. * from other group and save more power
  2398. */
  2399. if (sum_nr_running <= group_capacity - 1) {
  2400. if (sum_nr_running > leader_nr_running ||
  2401. (sum_nr_running == leader_nr_running &&
  2402. first_cpu(group->cpumask) >
  2403. first_cpu(group_leader->cpumask))) {
  2404. group_leader = group;
  2405. leader_nr_running = sum_nr_running;
  2406. }
  2407. }
  2408. group_next:
  2409. #endif
  2410. group = group->next;
  2411. } while (group != sd->groups);
  2412. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2413. goto out_balanced;
  2414. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2415. if (this_load >= avg_load ||
  2416. 100*max_load <= sd->imbalance_pct*this_load)
  2417. goto out_balanced;
  2418. busiest_load_per_task /= busiest_nr_running;
  2419. if (group_imb)
  2420. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2421. /*
  2422. * We're trying to get all the cpus to the average_load, so we don't
  2423. * want to push ourselves above the average load, nor do we wish to
  2424. * reduce the max loaded cpu below the average load, as either of these
  2425. * actions would just result in more rebalancing later, and ping-pong
  2426. * tasks around. Thus we look for the minimum possible imbalance.
  2427. * Negative imbalances (*we* are more loaded than anyone else) will
  2428. * be counted as no imbalance for these purposes -- we can't fix that
  2429. * by pulling tasks to us. Be careful of negative numbers as they'll
  2430. * appear as very large values with unsigned longs.
  2431. */
  2432. if (max_load <= busiest_load_per_task)
  2433. goto out_balanced;
  2434. /*
  2435. * In the presence of smp nice balancing, certain scenarios can have
  2436. * max load less than avg load(as we skip the groups at or below
  2437. * its cpu_power, while calculating max_load..)
  2438. */
  2439. if (max_load < avg_load) {
  2440. *imbalance = 0;
  2441. goto small_imbalance;
  2442. }
  2443. /* Don't want to pull so many tasks that a group would go idle */
  2444. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2445. /* How much load to actually move to equalise the imbalance */
  2446. *imbalance = min(max_pull * busiest->__cpu_power,
  2447. (avg_load - this_load) * this->__cpu_power)
  2448. / SCHED_LOAD_SCALE;
  2449. /*
  2450. * if *imbalance is less than the average load per runnable task
  2451. * there is no gaurantee that any tasks will be moved so we'll have
  2452. * a think about bumping its value to force at least one task to be
  2453. * moved
  2454. */
  2455. if (*imbalance < busiest_load_per_task) {
  2456. unsigned long tmp, pwr_now, pwr_move;
  2457. unsigned int imbn;
  2458. small_imbalance:
  2459. pwr_move = pwr_now = 0;
  2460. imbn = 2;
  2461. if (this_nr_running) {
  2462. this_load_per_task /= this_nr_running;
  2463. if (busiest_load_per_task > this_load_per_task)
  2464. imbn = 1;
  2465. } else
  2466. this_load_per_task = SCHED_LOAD_SCALE;
  2467. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2468. busiest_load_per_task * imbn) {
  2469. *imbalance = busiest_load_per_task;
  2470. return busiest;
  2471. }
  2472. /*
  2473. * OK, we don't have enough imbalance to justify moving tasks,
  2474. * however we may be able to increase total CPU power used by
  2475. * moving them.
  2476. */
  2477. pwr_now += busiest->__cpu_power *
  2478. min(busiest_load_per_task, max_load);
  2479. pwr_now += this->__cpu_power *
  2480. min(this_load_per_task, this_load);
  2481. pwr_now /= SCHED_LOAD_SCALE;
  2482. /* Amount of load we'd subtract */
  2483. tmp = sg_div_cpu_power(busiest,
  2484. busiest_load_per_task * SCHED_LOAD_SCALE);
  2485. if (max_load > tmp)
  2486. pwr_move += busiest->__cpu_power *
  2487. min(busiest_load_per_task, max_load - tmp);
  2488. /* Amount of load we'd add */
  2489. if (max_load * busiest->__cpu_power <
  2490. busiest_load_per_task * SCHED_LOAD_SCALE)
  2491. tmp = sg_div_cpu_power(this,
  2492. max_load * busiest->__cpu_power);
  2493. else
  2494. tmp = sg_div_cpu_power(this,
  2495. busiest_load_per_task * SCHED_LOAD_SCALE);
  2496. pwr_move += this->__cpu_power *
  2497. min(this_load_per_task, this_load + tmp);
  2498. pwr_move /= SCHED_LOAD_SCALE;
  2499. /* Move if we gain throughput */
  2500. if (pwr_move > pwr_now)
  2501. *imbalance = busiest_load_per_task;
  2502. }
  2503. return busiest;
  2504. out_balanced:
  2505. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2506. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2507. goto ret;
  2508. if (this == group_leader && group_leader != group_min) {
  2509. *imbalance = min_load_per_task;
  2510. return group_min;
  2511. }
  2512. #endif
  2513. ret:
  2514. *imbalance = 0;
  2515. return NULL;
  2516. }
  2517. /*
  2518. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2519. */
  2520. static struct rq *
  2521. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2522. unsigned long imbalance, cpumask_t *cpus)
  2523. {
  2524. struct rq *busiest = NULL, *rq;
  2525. unsigned long max_load = 0;
  2526. int i;
  2527. for_each_cpu_mask(i, group->cpumask) {
  2528. unsigned long wl;
  2529. if (!cpu_isset(i, *cpus))
  2530. continue;
  2531. rq = cpu_rq(i);
  2532. wl = weighted_cpuload(i);
  2533. if (rq->nr_running == 1 && wl > imbalance)
  2534. continue;
  2535. if (wl > max_load) {
  2536. max_load = wl;
  2537. busiest = rq;
  2538. }
  2539. }
  2540. return busiest;
  2541. }
  2542. /*
  2543. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2544. * so long as it is large enough.
  2545. */
  2546. #define MAX_PINNED_INTERVAL 512
  2547. /*
  2548. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2549. * tasks if there is an imbalance.
  2550. */
  2551. static int load_balance(int this_cpu, struct rq *this_rq,
  2552. struct sched_domain *sd, enum cpu_idle_type idle,
  2553. int *balance)
  2554. {
  2555. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2556. struct sched_group *group;
  2557. unsigned long imbalance;
  2558. struct rq *busiest;
  2559. cpumask_t cpus = CPU_MASK_ALL;
  2560. unsigned long flags;
  2561. /*
  2562. * When power savings policy is enabled for the parent domain, idle
  2563. * sibling can pick up load irrespective of busy siblings. In this case,
  2564. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2565. * portraying it as CPU_NOT_IDLE.
  2566. */
  2567. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2568. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2569. sd_idle = 1;
  2570. schedstat_inc(sd, lb_count[idle]);
  2571. redo:
  2572. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2573. &cpus, balance);
  2574. if (*balance == 0)
  2575. goto out_balanced;
  2576. if (!group) {
  2577. schedstat_inc(sd, lb_nobusyg[idle]);
  2578. goto out_balanced;
  2579. }
  2580. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2581. if (!busiest) {
  2582. schedstat_inc(sd, lb_nobusyq[idle]);
  2583. goto out_balanced;
  2584. }
  2585. BUG_ON(busiest == this_rq);
  2586. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2587. ld_moved = 0;
  2588. if (busiest->nr_running > 1) {
  2589. /*
  2590. * Attempt to move tasks. If find_busiest_group has found
  2591. * an imbalance but busiest->nr_running <= 1, the group is
  2592. * still unbalanced. ld_moved simply stays zero, so it is
  2593. * correctly treated as an imbalance.
  2594. */
  2595. local_irq_save(flags);
  2596. double_rq_lock(this_rq, busiest);
  2597. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2598. imbalance, sd, idle, &all_pinned);
  2599. double_rq_unlock(this_rq, busiest);
  2600. local_irq_restore(flags);
  2601. /*
  2602. * some other cpu did the load balance for us.
  2603. */
  2604. if (ld_moved && this_cpu != smp_processor_id())
  2605. resched_cpu(this_cpu);
  2606. /* All tasks on this runqueue were pinned by CPU affinity */
  2607. if (unlikely(all_pinned)) {
  2608. cpu_clear(cpu_of(busiest), cpus);
  2609. if (!cpus_empty(cpus))
  2610. goto redo;
  2611. goto out_balanced;
  2612. }
  2613. }
  2614. if (!ld_moved) {
  2615. schedstat_inc(sd, lb_failed[idle]);
  2616. sd->nr_balance_failed++;
  2617. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2618. spin_lock_irqsave(&busiest->lock, flags);
  2619. /* don't kick the migration_thread, if the curr
  2620. * task on busiest cpu can't be moved to this_cpu
  2621. */
  2622. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2623. spin_unlock_irqrestore(&busiest->lock, flags);
  2624. all_pinned = 1;
  2625. goto out_one_pinned;
  2626. }
  2627. if (!busiest->active_balance) {
  2628. busiest->active_balance = 1;
  2629. busiest->push_cpu = this_cpu;
  2630. active_balance = 1;
  2631. }
  2632. spin_unlock_irqrestore(&busiest->lock, flags);
  2633. if (active_balance)
  2634. wake_up_process(busiest->migration_thread);
  2635. /*
  2636. * We've kicked active balancing, reset the failure
  2637. * counter.
  2638. */
  2639. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2640. }
  2641. } else
  2642. sd->nr_balance_failed = 0;
  2643. if (likely(!active_balance)) {
  2644. /* We were unbalanced, so reset the balancing interval */
  2645. sd->balance_interval = sd->min_interval;
  2646. } else {
  2647. /*
  2648. * If we've begun active balancing, start to back off. This
  2649. * case may not be covered by the all_pinned logic if there
  2650. * is only 1 task on the busy runqueue (because we don't call
  2651. * move_tasks).
  2652. */
  2653. if (sd->balance_interval < sd->max_interval)
  2654. sd->balance_interval *= 2;
  2655. }
  2656. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2657. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2658. return -1;
  2659. return ld_moved;
  2660. out_balanced:
  2661. schedstat_inc(sd, lb_balanced[idle]);
  2662. sd->nr_balance_failed = 0;
  2663. out_one_pinned:
  2664. /* tune up the balancing interval */
  2665. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2666. (sd->balance_interval < sd->max_interval))
  2667. sd->balance_interval *= 2;
  2668. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2669. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2670. return -1;
  2671. return 0;
  2672. }
  2673. /*
  2674. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2675. * tasks if there is an imbalance.
  2676. *
  2677. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2678. * this_rq is locked.
  2679. */
  2680. static int
  2681. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2682. {
  2683. struct sched_group *group;
  2684. struct rq *busiest = NULL;
  2685. unsigned long imbalance;
  2686. int ld_moved = 0;
  2687. int sd_idle = 0;
  2688. int all_pinned = 0;
  2689. cpumask_t cpus = CPU_MASK_ALL;
  2690. /*
  2691. * When power savings policy is enabled for the parent domain, idle
  2692. * sibling can pick up load irrespective of busy siblings. In this case,
  2693. * let the state of idle sibling percolate up as IDLE, instead of
  2694. * portraying it as CPU_NOT_IDLE.
  2695. */
  2696. if (sd->flags & SD_SHARE_CPUPOWER &&
  2697. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2698. sd_idle = 1;
  2699. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2700. redo:
  2701. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2702. &sd_idle, &cpus, NULL);
  2703. if (!group) {
  2704. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2705. goto out_balanced;
  2706. }
  2707. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2708. &cpus);
  2709. if (!busiest) {
  2710. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2711. goto out_balanced;
  2712. }
  2713. BUG_ON(busiest == this_rq);
  2714. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2715. ld_moved = 0;
  2716. if (busiest->nr_running > 1) {
  2717. /* Attempt to move tasks */
  2718. double_lock_balance(this_rq, busiest);
  2719. /* this_rq->clock is already updated */
  2720. update_rq_clock(busiest);
  2721. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2722. imbalance, sd, CPU_NEWLY_IDLE,
  2723. &all_pinned);
  2724. spin_unlock(&busiest->lock);
  2725. if (unlikely(all_pinned)) {
  2726. cpu_clear(cpu_of(busiest), cpus);
  2727. if (!cpus_empty(cpus))
  2728. goto redo;
  2729. }
  2730. }
  2731. if (!ld_moved) {
  2732. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2733. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2734. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2735. return -1;
  2736. } else
  2737. sd->nr_balance_failed = 0;
  2738. return ld_moved;
  2739. out_balanced:
  2740. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2741. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2742. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2743. return -1;
  2744. sd->nr_balance_failed = 0;
  2745. return 0;
  2746. }
  2747. /*
  2748. * idle_balance is called by schedule() if this_cpu is about to become
  2749. * idle. Attempts to pull tasks from other CPUs.
  2750. */
  2751. static void idle_balance(int this_cpu, struct rq *this_rq)
  2752. {
  2753. struct sched_domain *sd;
  2754. int pulled_task = -1;
  2755. unsigned long next_balance = jiffies + HZ;
  2756. for_each_domain(this_cpu, sd) {
  2757. unsigned long interval;
  2758. if (!(sd->flags & SD_LOAD_BALANCE))
  2759. continue;
  2760. if (sd->flags & SD_BALANCE_NEWIDLE)
  2761. /* If we've pulled tasks over stop searching: */
  2762. pulled_task = load_balance_newidle(this_cpu,
  2763. this_rq, sd);
  2764. interval = msecs_to_jiffies(sd->balance_interval);
  2765. if (time_after(next_balance, sd->last_balance + interval))
  2766. next_balance = sd->last_balance + interval;
  2767. if (pulled_task)
  2768. break;
  2769. }
  2770. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2771. /*
  2772. * We are going idle. next_balance may be set based on
  2773. * a busy processor. So reset next_balance.
  2774. */
  2775. this_rq->next_balance = next_balance;
  2776. }
  2777. }
  2778. /*
  2779. * active_load_balance is run by migration threads. It pushes running tasks
  2780. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2781. * running on each physical CPU where possible, and avoids physical /
  2782. * logical imbalances.
  2783. *
  2784. * Called with busiest_rq locked.
  2785. */
  2786. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2787. {
  2788. int target_cpu = busiest_rq->push_cpu;
  2789. struct sched_domain *sd;
  2790. struct rq *target_rq;
  2791. /* Is there any task to move? */
  2792. if (busiest_rq->nr_running <= 1)
  2793. return;
  2794. target_rq = cpu_rq(target_cpu);
  2795. /*
  2796. * This condition is "impossible", if it occurs
  2797. * we need to fix it. Originally reported by
  2798. * Bjorn Helgaas on a 128-cpu setup.
  2799. */
  2800. BUG_ON(busiest_rq == target_rq);
  2801. /* move a task from busiest_rq to target_rq */
  2802. double_lock_balance(busiest_rq, target_rq);
  2803. update_rq_clock(busiest_rq);
  2804. update_rq_clock(target_rq);
  2805. /* Search for an sd spanning us and the target CPU. */
  2806. for_each_domain(target_cpu, sd) {
  2807. if ((sd->flags & SD_LOAD_BALANCE) &&
  2808. cpu_isset(busiest_cpu, sd->span))
  2809. break;
  2810. }
  2811. if (likely(sd)) {
  2812. schedstat_inc(sd, alb_count);
  2813. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2814. sd, CPU_IDLE))
  2815. schedstat_inc(sd, alb_pushed);
  2816. else
  2817. schedstat_inc(sd, alb_failed);
  2818. }
  2819. spin_unlock(&target_rq->lock);
  2820. }
  2821. #ifdef CONFIG_NO_HZ
  2822. static struct {
  2823. atomic_t load_balancer;
  2824. cpumask_t cpu_mask;
  2825. } nohz ____cacheline_aligned = {
  2826. .load_balancer = ATOMIC_INIT(-1),
  2827. .cpu_mask = CPU_MASK_NONE,
  2828. };
  2829. /*
  2830. * This routine will try to nominate the ilb (idle load balancing)
  2831. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2832. * load balancing on behalf of all those cpus. If all the cpus in the system
  2833. * go into this tickless mode, then there will be no ilb owner (as there is
  2834. * no need for one) and all the cpus will sleep till the next wakeup event
  2835. * arrives...
  2836. *
  2837. * For the ilb owner, tick is not stopped. And this tick will be used
  2838. * for idle load balancing. ilb owner will still be part of
  2839. * nohz.cpu_mask..
  2840. *
  2841. * While stopping the tick, this cpu will become the ilb owner if there
  2842. * is no other owner. And will be the owner till that cpu becomes busy
  2843. * or if all cpus in the system stop their ticks at which point
  2844. * there is no need for ilb owner.
  2845. *
  2846. * When the ilb owner becomes busy, it nominates another owner, during the
  2847. * next busy scheduler_tick()
  2848. */
  2849. int select_nohz_load_balancer(int stop_tick)
  2850. {
  2851. int cpu = smp_processor_id();
  2852. if (stop_tick) {
  2853. cpu_set(cpu, nohz.cpu_mask);
  2854. cpu_rq(cpu)->in_nohz_recently = 1;
  2855. /*
  2856. * If we are going offline and still the leader, give up!
  2857. */
  2858. if (cpu_is_offline(cpu) &&
  2859. atomic_read(&nohz.load_balancer) == cpu) {
  2860. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2861. BUG();
  2862. return 0;
  2863. }
  2864. /* time for ilb owner also to sleep */
  2865. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2866. if (atomic_read(&nohz.load_balancer) == cpu)
  2867. atomic_set(&nohz.load_balancer, -1);
  2868. return 0;
  2869. }
  2870. if (atomic_read(&nohz.load_balancer) == -1) {
  2871. /* make me the ilb owner */
  2872. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2873. return 1;
  2874. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2875. return 1;
  2876. } else {
  2877. if (!cpu_isset(cpu, nohz.cpu_mask))
  2878. return 0;
  2879. cpu_clear(cpu, nohz.cpu_mask);
  2880. if (atomic_read(&nohz.load_balancer) == cpu)
  2881. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2882. BUG();
  2883. }
  2884. return 0;
  2885. }
  2886. #endif
  2887. static DEFINE_SPINLOCK(balancing);
  2888. /*
  2889. * It checks each scheduling domain to see if it is due to be balanced,
  2890. * and initiates a balancing operation if so.
  2891. *
  2892. * Balancing parameters are set up in arch_init_sched_domains.
  2893. */
  2894. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2895. {
  2896. int balance = 1;
  2897. struct rq *rq = cpu_rq(cpu);
  2898. unsigned long interval;
  2899. struct sched_domain *sd;
  2900. /* Earliest time when we have to do rebalance again */
  2901. unsigned long next_balance = jiffies + 60*HZ;
  2902. int update_next_balance = 0;
  2903. for_each_domain(cpu, sd) {
  2904. if (!(sd->flags & SD_LOAD_BALANCE))
  2905. continue;
  2906. interval = sd->balance_interval;
  2907. if (idle != CPU_IDLE)
  2908. interval *= sd->busy_factor;
  2909. /* scale ms to jiffies */
  2910. interval = msecs_to_jiffies(interval);
  2911. if (unlikely(!interval))
  2912. interval = 1;
  2913. if (interval > HZ*NR_CPUS/10)
  2914. interval = HZ*NR_CPUS/10;
  2915. if (sd->flags & SD_SERIALIZE) {
  2916. if (!spin_trylock(&balancing))
  2917. goto out;
  2918. }
  2919. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2920. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2921. /*
  2922. * We've pulled tasks over so either we're no
  2923. * longer idle, or one of our SMT siblings is
  2924. * not idle.
  2925. */
  2926. idle = CPU_NOT_IDLE;
  2927. }
  2928. sd->last_balance = jiffies;
  2929. }
  2930. if (sd->flags & SD_SERIALIZE)
  2931. spin_unlock(&balancing);
  2932. out:
  2933. if (time_after(next_balance, sd->last_balance + interval)) {
  2934. next_balance = sd->last_balance + interval;
  2935. update_next_balance = 1;
  2936. }
  2937. /*
  2938. * Stop the load balance at this level. There is another
  2939. * CPU in our sched group which is doing load balancing more
  2940. * actively.
  2941. */
  2942. if (!balance)
  2943. break;
  2944. }
  2945. /*
  2946. * next_balance will be updated only when there is a need.
  2947. * When the cpu is attached to null domain for ex, it will not be
  2948. * updated.
  2949. */
  2950. if (likely(update_next_balance))
  2951. rq->next_balance = next_balance;
  2952. }
  2953. /*
  2954. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2955. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2956. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2957. */
  2958. static void run_rebalance_domains(struct softirq_action *h)
  2959. {
  2960. int this_cpu = smp_processor_id();
  2961. struct rq *this_rq = cpu_rq(this_cpu);
  2962. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2963. CPU_IDLE : CPU_NOT_IDLE;
  2964. rebalance_domains(this_cpu, idle);
  2965. #ifdef CONFIG_NO_HZ
  2966. /*
  2967. * If this cpu is the owner for idle load balancing, then do the
  2968. * balancing on behalf of the other idle cpus whose ticks are
  2969. * stopped.
  2970. */
  2971. if (this_rq->idle_at_tick &&
  2972. atomic_read(&nohz.load_balancer) == this_cpu) {
  2973. cpumask_t cpus = nohz.cpu_mask;
  2974. struct rq *rq;
  2975. int balance_cpu;
  2976. cpu_clear(this_cpu, cpus);
  2977. for_each_cpu_mask(balance_cpu, cpus) {
  2978. /*
  2979. * If this cpu gets work to do, stop the load balancing
  2980. * work being done for other cpus. Next load
  2981. * balancing owner will pick it up.
  2982. */
  2983. if (need_resched())
  2984. break;
  2985. rebalance_domains(balance_cpu, CPU_IDLE);
  2986. rq = cpu_rq(balance_cpu);
  2987. if (time_after(this_rq->next_balance, rq->next_balance))
  2988. this_rq->next_balance = rq->next_balance;
  2989. }
  2990. }
  2991. #endif
  2992. }
  2993. /*
  2994. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2995. *
  2996. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2997. * idle load balancing owner or decide to stop the periodic load balancing,
  2998. * if the whole system is idle.
  2999. */
  3000. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3001. {
  3002. #ifdef CONFIG_NO_HZ
  3003. /*
  3004. * If we were in the nohz mode recently and busy at the current
  3005. * scheduler tick, then check if we need to nominate new idle
  3006. * load balancer.
  3007. */
  3008. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3009. rq->in_nohz_recently = 0;
  3010. if (atomic_read(&nohz.load_balancer) == cpu) {
  3011. cpu_clear(cpu, nohz.cpu_mask);
  3012. atomic_set(&nohz.load_balancer, -1);
  3013. }
  3014. if (atomic_read(&nohz.load_balancer) == -1) {
  3015. /*
  3016. * simple selection for now: Nominate the
  3017. * first cpu in the nohz list to be the next
  3018. * ilb owner.
  3019. *
  3020. * TBD: Traverse the sched domains and nominate
  3021. * the nearest cpu in the nohz.cpu_mask.
  3022. */
  3023. int ilb = first_cpu(nohz.cpu_mask);
  3024. if (ilb != NR_CPUS)
  3025. resched_cpu(ilb);
  3026. }
  3027. }
  3028. /*
  3029. * If this cpu is idle and doing idle load balancing for all the
  3030. * cpus with ticks stopped, is it time for that to stop?
  3031. */
  3032. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3033. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3034. resched_cpu(cpu);
  3035. return;
  3036. }
  3037. /*
  3038. * If this cpu is idle and the idle load balancing is done by
  3039. * someone else, then no need raise the SCHED_SOFTIRQ
  3040. */
  3041. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3042. cpu_isset(cpu, nohz.cpu_mask))
  3043. return;
  3044. #endif
  3045. if (time_after_eq(jiffies, rq->next_balance))
  3046. raise_softirq(SCHED_SOFTIRQ);
  3047. }
  3048. #else /* CONFIG_SMP */
  3049. /*
  3050. * on UP we do not need to balance between CPUs:
  3051. */
  3052. static inline void idle_balance(int cpu, struct rq *rq)
  3053. {
  3054. }
  3055. #endif
  3056. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3057. EXPORT_PER_CPU_SYMBOL(kstat);
  3058. /*
  3059. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3060. * that have not yet been banked in case the task is currently running.
  3061. */
  3062. unsigned long long task_sched_runtime(struct task_struct *p)
  3063. {
  3064. unsigned long flags;
  3065. u64 ns, delta_exec;
  3066. struct rq *rq;
  3067. rq = task_rq_lock(p, &flags);
  3068. ns = p->se.sum_exec_runtime;
  3069. if (task_current(rq, p)) {
  3070. update_rq_clock(rq);
  3071. delta_exec = rq->clock - p->se.exec_start;
  3072. if ((s64)delta_exec > 0)
  3073. ns += delta_exec;
  3074. }
  3075. task_rq_unlock(rq, &flags);
  3076. return ns;
  3077. }
  3078. /*
  3079. * Account user cpu time to a process.
  3080. * @p: the process that the cpu time gets accounted to
  3081. * @cputime: the cpu time spent in user space since the last update
  3082. */
  3083. void account_user_time(struct task_struct *p, cputime_t cputime)
  3084. {
  3085. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3086. cputime64_t tmp;
  3087. p->utime = cputime_add(p->utime, cputime);
  3088. /* Add user time to cpustat. */
  3089. tmp = cputime_to_cputime64(cputime);
  3090. if (TASK_NICE(p) > 0)
  3091. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3092. else
  3093. cpustat->user = cputime64_add(cpustat->user, tmp);
  3094. }
  3095. /*
  3096. * Account guest cpu time to a process.
  3097. * @p: the process that the cpu time gets accounted to
  3098. * @cputime: the cpu time spent in virtual machine since the last update
  3099. */
  3100. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3101. {
  3102. cputime64_t tmp;
  3103. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3104. tmp = cputime_to_cputime64(cputime);
  3105. p->utime = cputime_add(p->utime, cputime);
  3106. p->gtime = cputime_add(p->gtime, cputime);
  3107. cpustat->user = cputime64_add(cpustat->user, tmp);
  3108. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3109. }
  3110. /*
  3111. * Account scaled user cpu time to a process.
  3112. * @p: the process that the cpu time gets accounted to
  3113. * @cputime: the cpu time spent in user space since the last update
  3114. */
  3115. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3116. {
  3117. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3118. }
  3119. /*
  3120. * Account system cpu time to a process.
  3121. * @p: the process that the cpu time gets accounted to
  3122. * @hardirq_offset: the offset to subtract from hardirq_count()
  3123. * @cputime: the cpu time spent in kernel space since the last update
  3124. */
  3125. void account_system_time(struct task_struct *p, int hardirq_offset,
  3126. cputime_t cputime)
  3127. {
  3128. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3129. struct rq *rq = this_rq();
  3130. cputime64_t tmp;
  3131. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3132. return account_guest_time(p, cputime);
  3133. p->stime = cputime_add(p->stime, cputime);
  3134. /* Add system time to cpustat. */
  3135. tmp = cputime_to_cputime64(cputime);
  3136. if (hardirq_count() - hardirq_offset)
  3137. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3138. else if (softirq_count())
  3139. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3140. else if (p != rq->idle)
  3141. cpustat->system = cputime64_add(cpustat->system, tmp);
  3142. else if (atomic_read(&rq->nr_iowait) > 0)
  3143. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3144. else
  3145. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3146. /* Account for system time used */
  3147. acct_update_integrals(p);
  3148. }
  3149. /*
  3150. * Account scaled system cpu time to a process.
  3151. * @p: the process that the cpu time gets accounted to
  3152. * @hardirq_offset: the offset to subtract from hardirq_count()
  3153. * @cputime: the cpu time spent in kernel space since the last update
  3154. */
  3155. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3156. {
  3157. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3158. }
  3159. /*
  3160. * Account for involuntary wait time.
  3161. * @p: the process from which the cpu time has been stolen
  3162. * @steal: the cpu time spent in involuntary wait
  3163. */
  3164. void account_steal_time(struct task_struct *p, cputime_t steal)
  3165. {
  3166. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3167. cputime64_t tmp = cputime_to_cputime64(steal);
  3168. struct rq *rq = this_rq();
  3169. if (p == rq->idle) {
  3170. p->stime = cputime_add(p->stime, steal);
  3171. if (atomic_read(&rq->nr_iowait) > 0)
  3172. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3173. else
  3174. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3175. } else
  3176. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3177. }
  3178. /*
  3179. * This function gets called by the timer code, with HZ frequency.
  3180. * We call it with interrupts disabled.
  3181. *
  3182. * It also gets called by the fork code, when changing the parent's
  3183. * timeslices.
  3184. */
  3185. void scheduler_tick(void)
  3186. {
  3187. int cpu = smp_processor_id();
  3188. struct rq *rq = cpu_rq(cpu);
  3189. struct task_struct *curr = rq->curr;
  3190. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3191. spin_lock(&rq->lock);
  3192. __update_rq_clock(rq);
  3193. /*
  3194. * Let rq->clock advance by at least TICK_NSEC:
  3195. */
  3196. if (unlikely(rq->clock < next_tick)) {
  3197. rq->clock = next_tick;
  3198. rq->clock_underflows++;
  3199. }
  3200. rq->tick_timestamp = rq->clock;
  3201. update_cpu_load(rq);
  3202. curr->sched_class->task_tick(rq, curr, 0);
  3203. update_sched_rt_period(rq);
  3204. spin_unlock(&rq->lock);
  3205. #ifdef CONFIG_SMP
  3206. rq->idle_at_tick = idle_cpu(cpu);
  3207. trigger_load_balance(rq, cpu);
  3208. #endif
  3209. }
  3210. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3211. void __kprobes add_preempt_count(int val)
  3212. {
  3213. /*
  3214. * Underflow?
  3215. */
  3216. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3217. return;
  3218. preempt_count() += val;
  3219. /*
  3220. * Spinlock count overflowing soon?
  3221. */
  3222. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3223. PREEMPT_MASK - 10);
  3224. }
  3225. EXPORT_SYMBOL(add_preempt_count);
  3226. void __kprobes sub_preempt_count(int val)
  3227. {
  3228. /*
  3229. * Underflow?
  3230. */
  3231. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3232. return;
  3233. /*
  3234. * Is the spinlock portion underflowing?
  3235. */
  3236. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3237. !(preempt_count() & PREEMPT_MASK)))
  3238. return;
  3239. preempt_count() -= val;
  3240. }
  3241. EXPORT_SYMBOL(sub_preempt_count);
  3242. #endif
  3243. /*
  3244. * Print scheduling while atomic bug:
  3245. */
  3246. static noinline void __schedule_bug(struct task_struct *prev)
  3247. {
  3248. struct pt_regs *regs = get_irq_regs();
  3249. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3250. prev->comm, prev->pid, preempt_count());
  3251. debug_show_held_locks(prev);
  3252. if (irqs_disabled())
  3253. print_irqtrace_events(prev);
  3254. if (regs)
  3255. show_regs(regs);
  3256. else
  3257. dump_stack();
  3258. }
  3259. /*
  3260. * Various schedule()-time debugging checks and statistics:
  3261. */
  3262. static inline void schedule_debug(struct task_struct *prev)
  3263. {
  3264. /*
  3265. * Test if we are atomic. Since do_exit() needs to call into
  3266. * schedule() atomically, we ignore that path for now.
  3267. * Otherwise, whine if we are scheduling when we should not be.
  3268. */
  3269. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3270. __schedule_bug(prev);
  3271. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3272. schedstat_inc(this_rq(), sched_count);
  3273. #ifdef CONFIG_SCHEDSTATS
  3274. if (unlikely(prev->lock_depth >= 0)) {
  3275. schedstat_inc(this_rq(), bkl_count);
  3276. schedstat_inc(prev, sched_info.bkl_count);
  3277. }
  3278. #endif
  3279. }
  3280. /*
  3281. * Pick up the highest-prio task:
  3282. */
  3283. static inline struct task_struct *
  3284. pick_next_task(struct rq *rq, struct task_struct *prev)
  3285. {
  3286. const struct sched_class *class;
  3287. struct task_struct *p;
  3288. /*
  3289. * Optimization: we know that if all tasks are in
  3290. * the fair class we can call that function directly:
  3291. */
  3292. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3293. p = fair_sched_class.pick_next_task(rq);
  3294. if (likely(p))
  3295. return p;
  3296. }
  3297. class = sched_class_highest;
  3298. for ( ; ; ) {
  3299. p = class->pick_next_task(rq);
  3300. if (p)
  3301. return p;
  3302. /*
  3303. * Will never be NULL as the idle class always
  3304. * returns a non-NULL p:
  3305. */
  3306. class = class->next;
  3307. }
  3308. }
  3309. /*
  3310. * schedule() is the main scheduler function.
  3311. */
  3312. asmlinkage void __sched schedule(void)
  3313. {
  3314. struct task_struct *prev, *next;
  3315. unsigned long *switch_count;
  3316. struct rq *rq;
  3317. int cpu;
  3318. need_resched:
  3319. preempt_disable();
  3320. cpu = smp_processor_id();
  3321. rq = cpu_rq(cpu);
  3322. rcu_qsctr_inc(cpu);
  3323. prev = rq->curr;
  3324. switch_count = &prev->nivcsw;
  3325. release_kernel_lock(prev);
  3326. need_resched_nonpreemptible:
  3327. schedule_debug(prev);
  3328. hrtick_clear(rq);
  3329. /*
  3330. * Do the rq-clock update outside the rq lock:
  3331. */
  3332. local_irq_disable();
  3333. __update_rq_clock(rq);
  3334. spin_lock(&rq->lock);
  3335. clear_tsk_need_resched(prev);
  3336. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3337. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3338. signal_pending(prev))) {
  3339. prev->state = TASK_RUNNING;
  3340. } else {
  3341. deactivate_task(rq, prev, 1);
  3342. }
  3343. switch_count = &prev->nvcsw;
  3344. }
  3345. #ifdef CONFIG_SMP
  3346. if (prev->sched_class->pre_schedule)
  3347. prev->sched_class->pre_schedule(rq, prev);
  3348. #endif
  3349. if (unlikely(!rq->nr_running))
  3350. idle_balance(cpu, rq);
  3351. prev->sched_class->put_prev_task(rq, prev);
  3352. next = pick_next_task(rq, prev);
  3353. sched_info_switch(prev, next);
  3354. if (likely(prev != next)) {
  3355. rq->nr_switches++;
  3356. rq->curr = next;
  3357. ++*switch_count;
  3358. context_switch(rq, prev, next); /* unlocks the rq */
  3359. /*
  3360. * the context switch might have flipped the stack from under
  3361. * us, hence refresh the local variables.
  3362. */
  3363. cpu = smp_processor_id();
  3364. rq = cpu_rq(cpu);
  3365. } else
  3366. spin_unlock_irq(&rq->lock);
  3367. hrtick_set(rq);
  3368. if (unlikely(reacquire_kernel_lock(current) < 0))
  3369. goto need_resched_nonpreemptible;
  3370. preempt_enable_no_resched();
  3371. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3372. goto need_resched;
  3373. }
  3374. EXPORT_SYMBOL(schedule);
  3375. #ifdef CONFIG_PREEMPT
  3376. /*
  3377. * this is the entry point to schedule() from in-kernel preemption
  3378. * off of preempt_enable. Kernel preemptions off return from interrupt
  3379. * occur there and call schedule directly.
  3380. */
  3381. asmlinkage void __sched preempt_schedule(void)
  3382. {
  3383. struct thread_info *ti = current_thread_info();
  3384. struct task_struct *task = current;
  3385. int saved_lock_depth;
  3386. /*
  3387. * If there is a non-zero preempt_count or interrupts are disabled,
  3388. * we do not want to preempt the current task. Just return..
  3389. */
  3390. if (likely(ti->preempt_count || irqs_disabled()))
  3391. return;
  3392. do {
  3393. add_preempt_count(PREEMPT_ACTIVE);
  3394. /*
  3395. * We keep the big kernel semaphore locked, but we
  3396. * clear ->lock_depth so that schedule() doesnt
  3397. * auto-release the semaphore:
  3398. */
  3399. saved_lock_depth = task->lock_depth;
  3400. task->lock_depth = -1;
  3401. schedule();
  3402. task->lock_depth = saved_lock_depth;
  3403. sub_preempt_count(PREEMPT_ACTIVE);
  3404. /*
  3405. * Check again in case we missed a preemption opportunity
  3406. * between schedule and now.
  3407. */
  3408. barrier();
  3409. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3410. }
  3411. EXPORT_SYMBOL(preempt_schedule);
  3412. /*
  3413. * this is the entry point to schedule() from kernel preemption
  3414. * off of irq context.
  3415. * Note, that this is called and return with irqs disabled. This will
  3416. * protect us against recursive calling from irq.
  3417. */
  3418. asmlinkage void __sched preempt_schedule_irq(void)
  3419. {
  3420. struct thread_info *ti = current_thread_info();
  3421. struct task_struct *task = current;
  3422. int saved_lock_depth;
  3423. /* Catch callers which need to be fixed */
  3424. BUG_ON(ti->preempt_count || !irqs_disabled());
  3425. do {
  3426. add_preempt_count(PREEMPT_ACTIVE);
  3427. /*
  3428. * We keep the big kernel semaphore locked, but we
  3429. * clear ->lock_depth so that schedule() doesnt
  3430. * auto-release the semaphore:
  3431. */
  3432. saved_lock_depth = task->lock_depth;
  3433. task->lock_depth = -1;
  3434. local_irq_enable();
  3435. schedule();
  3436. local_irq_disable();
  3437. task->lock_depth = saved_lock_depth;
  3438. sub_preempt_count(PREEMPT_ACTIVE);
  3439. /*
  3440. * Check again in case we missed a preemption opportunity
  3441. * between schedule and now.
  3442. */
  3443. barrier();
  3444. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3445. }
  3446. #endif /* CONFIG_PREEMPT */
  3447. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3448. void *key)
  3449. {
  3450. return try_to_wake_up(curr->private, mode, sync);
  3451. }
  3452. EXPORT_SYMBOL(default_wake_function);
  3453. /*
  3454. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3455. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3456. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3457. *
  3458. * There are circumstances in which we can try to wake a task which has already
  3459. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3460. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3461. */
  3462. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3463. int nr_exclusive, int sync, void *key)
  3464. {
  3465. wait_queue_t *curr, *next;
  3466. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3467. unsigned flags = curr->flags;
  3468. if (curr->func(curr, mode, sync, key) &&
  3469. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3470. break;
  3471. }
  3472. }
  3473. /**
  3474. * __wake_up - wake up threads blocked on a waitqueue.
  3475. * @q: the waitqueue
  3476. * @mode: which threads
  3477. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3478. * @key: is directly passed to the wakeup function
  3479. */
  3480. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3481. int nr_exclusive, void *key)
  3482. {
  3483. unsigned long flags;
  3484. spin_lock_irqsave(&q->lock, flags);
  3485. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3486. spin_unlock_irqrestore(&q->lock, flags);
  3487. }
  3488. EXPORT_SYMBOL(__wake_up);
  3489. /*
  3490. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3491. */
  3492. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3493. {
  3494. __wake_up_common(q, mode, 1, 0, NULL);
  3495. }
  3496. /**
  3497. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3498. * @q: the waitqueue
  3499. * @mode: which threads
  3500. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3501. *
  3502. * The sync wakeup differs that the waker knows that it will schedule
  3503. * away soon, so while the target thread will be woken up, it will not
  3504. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3505. * with each other. This can prevent needless bouncing between CPUs.
  3506. *
  3507. * On UP it can prevent extra preemption.
  3508. */
  3509. void
  3510. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3511. {
  3512. unsigned long flags;
  3513. int sync = 1;
  3514. if (unlikely(!q))
  3515. return;
  3516. if (unlikely(!nr_exclusive))
  3517. sync = 0;
  3518. spin_lock_irqsave(&q->lock, flags);
  3519. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3520. spin_unlock_irqrestore(&q->lock, flags);
  3521. }
  3522. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3523. void complete(struct completion *x)
  3524. {
  3525. unsigned long flags;
  3526. spin_lock_irqsave(&x->wait.lock, flags);
  3527. x->done++;
  3528. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3529. spin_unlock_irqrestore(&x->wait.lock, flags);
  3530. }
  3531. EXPORT_SYMBOL(complete);
  3532. void complete_all(struct completion *x)
  3533. {
  3534. unsigned long flags;
  3535. spin_lock_irqsave(&x->wait.lock, flags);
  3536. x->done += UINT_MAX/2;
  3537. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3538. spin_unlock_irqrestore(&x->wait.lock, flags);
  3539. }
  3540. EXPORT_SYMBOL(complete_all);
  3541. static inline long __sched
  3542. do_wait_for_common(struct completion *x, long timeout, int state)
  3543. {
  3544. if (!x->done) {
  3545. DECLARE_WAITQUEUE(wait, current);
  3546. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3547. __add_wait_queue_tail(&x->wait, &wait);
  3548. do {
  3549. if ((state == TASK_INTERRUPTIBLE &&
  3550. signal_pending(current)) ||
  3551. (state == TASK_KILLABLE &&
  3552. fatal_signal_pending(current))) {
  3553. __remove_wait_queue(&x->wait, &wait);
  3554. return -ERESTARTSYS;
  3555. }
  3556. __set_current_state(state);
  3557. spin_unlock_irq(&x->wait.lock);
  3558. timeout = schedule_timeout(timeout);
  3559. spin_lock_irq(&x->wait.lock);
  3560. if (!timeout) {
  3561. __remove_wait_queue(&x->wait, &wait);
  3562. return timeout;
  3563. }
  3564. } while (!x->done);
  3565. __remove_wait_queue(&x->wait, &wait);
  3566. }
  3567. x->done--;
  3568. return timeout;
  3569. }
  3570. static long __sched
  3571. wait_for_common(struct completion *x, long timeout, int state)
  3572. {
  3573. might_sleep();
  3574. spin_lock_irq(&x->wait.lock);
  3575. timeout = do_wait_for_common(x, timeout, state);
  3576. spin_unlock_irq(&x->wait.lock);
  3577. return timeout;
  3578. }
  3579. void __sched wait_for_completion(struct completion *x)
  3580. {
  3581. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3582. }
  3583. EXPORT_SYMBOL(wait_for_completion);
  3584. unsigned long __sched
  3585. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3586. {
  3587. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3588. }
  3589. EXPORT_SYMBOL(wait_for_completion_timeout);
  3590. int __sched wait_for_completion_interruptible(struct completion *x)
  3591. {
  3592. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3593. if (t == -ERESTARTSYS)
  3594. return t;
  3595. return 0;
  3596. }
  3597. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3598. unsigned long __sched
  3599. wait_for_completion_interruptible_timeout(struct completion *x,
  3600. unsigned long timeout)
  3601. {
  3602. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3603. }
  3604. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3605. int __sched wait_for_completion_killable(struct completion *x)
  3606. {
  3607. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3608. if (t == -ERESTARTSYS)
  3609. return t;
  3610. return 0;
  3611. }
  3612. EXPORT_SYMBOL(wait_for_completion_killable);
  3613. static long __sched
  3614. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3615. {
  3616. unsigned long flags;
  3617. wait_queue_t wait;
  3618. init_waitqueue_entry(&wait, current);
  3619. __set_current_state(state);
  3620. spin_lock_irqsave(&q->lock, flags);
  3621. __add_wait_queue(q, &wait);
  3622. spin_unlock(&q->lock);
  3623. timeout = schedule_timeout(timeout);
  3624. spin_lock_irq(&q->lock);
  3625. __remove_wait_queue(q, &wait);
  3626. spin_unlock_irqrestore(&q->lock, flags);
  3627. return timeout;
  3628. }
  3629. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3630. {
  3631. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3632. }
  3633. EXPORT_SYMBOL(interruptible_sleep_on);
  3634. long __sched
  3635. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3636. {
  3637. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3638. }
  3639. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3640. void __sched sleep_on(wait_queue_head_t *q)
  3641. {
  3642. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3643. }
  3644. EXPORT_SYMBOL(sleep_on);
  3645. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3646. {
  3647. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3648. }
  3649. EXPORT_SYMBOL(sleep_on_timeout);
  3650. #ifdef CONFIG_RT_MUTEXES
  3651. /*
  3652. * rt_mutex_setprio - set the current priority of a task
  3653. * @p: task
  3654. * @prio: prio value (kernel-internal form)
  3655. *
  3656. * This function changes the 'effective' priority of a task. It does
  3657. * not touch ->normal_prio like __setscheduler().
  3658. *
  3659. * Used by the rt_mutex code to implement priority inheritance logic.
  3660. */
  3661. void rt_mutex_setprio(struct task_struct *p, int prio)
  3662. {
  3663. unsigned long flags;
  3664. int oldprio, on_rq, running;
  3665. struct rq *rq;
  3666. const struct sched_class *prev_class = p->sched_class;
  3667. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3668. rq = task_rq_lock(p, &flags);
  3669. update_rq_clock(rq);
  3670. oldprio = p->prio;
  3671. on_rq = p->se.on_rq;
  3672. running = task_current(rq, p);
  3673. if (on_rq)
  3674. dequeue_task(rq, p, 0);
  3675. if (running)
  3676. p->sched_class->put_prev_task(rq, p);
  3677. if (rt_prio(prio))
  3678. p->sched_class = &rt_sched_class;
  3679. else
  3680. p->sched_class = &fair_sched_class;
  3681. p->prio = prio;
  3682. if (running)
  3683. p->sched_class->set_curr_task(rq);
  3684. if (on_rq) {
  3685. enqueue_task(rq, p, 0);
  3686. check_class_changed(rq, p, prev_class, oldprio, running);
  3687. }
  3688. task_rq_unlock(rq, &flags);
  3689. }
  3690. #endif
  3691. void set_user_nice(struct task_struct *p, long nice)
  3692. {
  3693. int old_prio, delta, on_rq;
  3694. unsigned long flags;
  3695. struct rq *rq;
  3696. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3697. return;
  3698. /*
  3699. * We have to be careful, if called from sys_setpriority(),
  3700. * the task might be in the middle of scheduling on another CPU.
  3701. */
  3702. rq = task_rq_lock(p, &flags);
  3703. update_rq_clock(rq);
  3704. /*
  3705. * The RT priorities are set via sched_setscheduler(), but we still
  3706. * allow the 'normal' nice value to be set - but as expected
  3707. * it wont have any effect on scheduling until the task is
  3708. * SCHED_FIFO/SCHED_RR:
  3709. */
  3710. if (task_has_rt_policy(p)) {
  3711. p->static_prio = NICE_TO_PRIO(nice);
  3712. goto out_unlock;
  3713. }
  3714. on_rq = p->se.on_rq;
  3715. if (on_rq) {
  3716. dequeue_task(rq, p, 0);
  3717. dec_load(rq, p);
  3718. }
  3719. p->static_prio = NICE_TO_PRIO(nice);
  3720. set_load_weight(p);
  3721. old_prio = p->prio;
  3722. p->prio = effective_prio(p);
  3723. delta = p->prio - old_prio;
  3724. if (on_rq) {
  3725. enqueue_task(rq, p, 0);
  3726. inc_load(rq, p);
  3727. /*
  3728. * If the task increased its priority or is running and
  3729. * lowered its priority, then reschedule its CPU:
  3730. */
  3731. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3732. resched_task(rq->curr);
  3733. }
  3734. out_unlock:
  3735. task_rq_unlock(rq, &flags);
  3736. }
  3737. EXPORT_SYMBOL(set_user_nice);
  3738. /*
  3739. * can_nice - check if a task can reduce its nice value
  3740. * @p: task
  3741. * @nice: nice value
  3742. */
  3743. int can_nice(const struct task_struct *p, const int nice)
  3744. {
  3745. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3746. int nice_rlim = 20 - nice;
  3747. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3748. capable(CAP_SYS_NICE));
  3749. }
  3750. #ifdef __ARCH_WANT_SYS_NICE
  3751. /*
  3752. * sys_nice - change the priority of the current process.
  3753. * @increment: priority increment
  3754. *
  3755. * sys_setpriority is a more generic, but much slower function that
  3756. * does similar things.
  3757. */
  3758. asmlinkage long sys_nice(int increment)
  3759. {
  3760. long nice, retval;
  3761. /*
  3762. * Setpriority might change our priority at the same moment.
  3763. * We don't have to worry. Conceptually one call occurs first
  3764. * and we have a single winner.
  3765. */
  3766. if (increment < -40)
  3767. increment = -40;
  3768. if (increment > 40)
  3769. increment = 40;
  3770. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3771. if (nice < -20)
  3772. nice = -20;
  3773. if (nice > 19)
  3774. nice = 19;
  3775. if (increment < 0 && !can_nice(current, nice))
  3776. return -EPERM;
  3777. retval = security_task_setnice(current, nice);
  3778. if (retval)
  3779. return retval;
  3780. set_user_nice(current, nice);
  3781. return 0;
  3782. }
  3783. #endif
  3784. /**
  3785. * task_prio - return the priority value of a given task.
  3786. * @p: the task in question.
  3787. *
  3788. * This is the priority value as seen by users in /proc.
  3789. * RT tasks are offset by -200. Normal tasks are centered
  3790. * around 0, value goes from -16 to +15.
  3791. */
  3792. int task_prio(const struct task_struct *p)
  3793. {
  3794. return p->prio - MAX_RT_PRIO;
  3795. }
  3796. /**
  3797. * task_nice - return the nice value of a given task.
  3798. * @p: the task in question.
  3799. */
  3800. int task_nice(const struct task_struct *p)
  3801. {
  3802. return TASK_NICE(p);
  3803. }
  3804. EXPORT_SYMBOL(task_nice);
  3805. /**
  3806. * idle_cpu - is a given cpu idle currently?
  3807. * @cpu: the processor in question.
  3808. */
  3809. int idle_cpu(int cpu)
  3810. {
  3811. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3812. }
  3813. /**
  3814. * idle_task - return the idle task for a given cpu.
  3815. * @cpu: the processor in question.
  3816. */
  3817. struct task_struct *idle_task(int cpu)
  3818. {
  3819. return cpu_rq(cpu)->idle;
  3820. }
  3821. /**
  3822. * find_process_by_pid - find a process with a matching PID value.
  3823. * @pid: the pid in question.
  3824. */
  3825. static struct task_struct *find_process_by_pid(pid_t pid)
  3826. {
  3827. return pid ? find_task_by_vpid(pid) : current;
  3828. }
  3829. /* Actually do priority change: must hold rq lock. */
  3830. static void
  3831. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3832. {
  3833. BUG_ON(p->se.on_rq);
  3834. p->policy = policy;
  3835. switch (p->policy) {
  3836. case SCHED_NORMAL:
  3837. case SCHED_BATCH:
  3838. case SCHED_IDLE:
  3839. p->sched_class = &fair_sched_class;
  3840. break;
  3841. case SCHED_FIFO:
  3842. case SCHED_RR:
  3843. p->sched_class = &rt_sched_class;
  3844. break;
  3845. }
  3846. p->rt_priority = prio;
  3847. p->normal_prio = normal_prio(p);
  3848. /* we are holding p->pi_lock already */
  3849. p->prio = rt_mutex_getprio(p);
  3850. set_load_weight(p);
  3851. }
  3852. /**
  3853. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3854. * @p: the task in question.
  3855. * @policy: new policy.
  3856. * @param: structure containing the new RT priority.
  3857. *
  3858. * NOTE that the task may be already dead.
  3859. */
  3860. int sched_setscheduler(struct task_struct *p, int policy,
  3861. struct sched_param *param)
  3862. {
  3863. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3864. unsigned long flags;
  3865. const struct sched_class *prev_class = p->sched_class;
  3866. struct rq *rq;
  3867. /* may grab non-irq protected spin_locks */
  3868. BUG_ON(in_interrupt());
  3869. recheck:
  3870. /* double check policy once rq lock held */
  3871. if (policy < 0)
  3872. policy = oldpolicy = p->policy;
  3873. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3874. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3875. policy != SCHED_IDLE)
  3876. return -EINVAL;
  3877. /*
  3878. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3879. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3880. * SCHED_BATCH and SCHED_IDLE is 0.
  3881. */
  3882. if (param->sched_priority < 0 ||
  3883. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3884. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3885. return -EINVAL;
  3886. if (rt_policy(policy) != (param->sched_priority != 0))
  3887. return -EINVAL;
  3888. /*
  3889. * Allow unprivileged RT tasks to decrease priority:
  3890. */
  3891. if (!capable(CAP_SYS_NICE)) {
  3892. if (rt_policy(policy)) {
  3893. unsigned long rlim_rtprio;
  3894. if (!lock_task_sighand(p, &flags))
  3895. return -ESRCH;
  3896. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3897. unlock_task_sighand(p, &flags);
  3898. /* can't set/change the rt policy */
  3899. if (policy != p->policy && !rlim_rtprio)
  3900. return -EPERM;
  3901. /* can't increase priority */
  3902. if (param->sched_priority > p->rt_priority &&
  3903. param->sched_priority > rlim_rtprio)
  3904. return -EPERM;
  3905. }
  3906. /*
  3907. * Like positive nice levels, dont allow tasks to
  3908. * move out of SCHED_IDLE either:
  3909. */
  3910. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3911. return -EPERM;
  3912. /* can't change other user's priorities */
  3913. if ((current->euid != p->euid) &&
  3914. (current->euid != p->uid))
  3915. return -EPERM;
  3916. }
  3917. #ifdef CONFIG_RT_GROUP_SCHED
  3918. /*
  3919. * Do not allow realtime tasks into groups that have no runtime
  3920. * assigned.
  3921. */
  3922. if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
  3923. return -EPERM;
  3924. #endif
  3925. retval = security_task_setscheduler(p, policy, param);
  3926. if (retval)
  3927. return retval;
  3928. /*
  3929. * make sure no PI-waiters arrive (or leave) while we are
  3930. * changing the priority of the task:
  3931. */
  3932. spin_lock_irqsave(&p->pi_lock, flags);
  3933. /*
  3934. * To be able to change p->policy safely, the apropriate
  3935. * runqueue lock must be held.
  3936. */
  3937. rq = __task_rq_lock(p);
  3938. /* recheck policy now with rq lock held */
  3939. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3940. policy = oldpolicy = -1;
  3941. __task_rq_unlock(rq);
  3942. spin_unlock_irqrestore(&p->pi_lock, flags);
  3943. goto recheck;
  3944. }
  3945. update_rq_clock(rq);
  3946. on_rq = p->se.on_rq;
  3947. running = task_current(rq, p);
  3948. if (on_rq)
  3949. deactivate_task(rq, p, 0);
  3950. if (running)
  3951. p->sched_class->put_prev_task(rq, p);
  3952. oldprio = p->prio;
  3953. __setscheduler(rq, p, policy, param->sched_priority);
  3954. if (running)
  3955. p->sched_class->set_curr_task(rq);
  3956. if (on_rq) {
  3957. activate_task(rq, p, 0);
  3958. check_class_changed(rq, p, prev_class, oldprio, running);
  3959. }
  3960. __task_rq_unlock(rq);
  3961. spin_unlock_irqrestore(&p->pi_lock, flags);
  3962. rt_mutex_adjust_pi(p);
  3963. return 0;
  3964. }
  3965. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3966. static int
  3967. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3968. {
  3969. struct sched_param lparam;
  3970. struct task_struct *p;
  3971. int retval;
  3972. if (!param || pid < 0)
  3973. return -EINVAL;
  3974. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3975. return -EFAULT;
  3976. rcu_read_lock();
  3977. retval = -ESRCH;
  3978. p = find_process_by_pid(pid);
  3979. if (p != NULL)
  3980. retval = sched_setscheduler(p, policy, &lparam);
  3981. rcu_read_unlock();
  3982. return retval;
  3983. }
  3984. /**
  3985. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3986. * @pid: the pid in question.
  3987. * @policy: new policy.
  3988. * @param: structure containing the new RT priority.
  3989. */
  3990. asmlinkage long
  3991. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3992. {
  3993. /* negative values for policy are not valid */
  3994. if (policy < 0)
  3995. return -EINVAL;
  3996. return do_sched_setscheduler(pid, policy, param);
  3997. }
  3998. /**
  3999. * sys_sched_setparam - set/change the RT priority of a thread
  4000. * @pid: the pid in question.
  4001. * @param: structure containing the new RT priority.
  4002. */
  4003. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4004. {
  4005. return do_sched_setscheduler(pid, -1, param);
  4006. }
  4007. /**
  4008. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4009. * @pid: the pid in question.
  4010. */
  4011. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4012. {
  4013. struct task_struct *p;
  4014. int retval;
  4015. if (pid < 0)
  4016. return -EINVAL;
  4017. retval = -ESRCH;
  4018. read_lock(&tasklist_lock);
  4019. p = find_process_by_pid(pid);
  4020. if (p) {
  4021. retval = security_task_getscheduler(p);
  4022. if (!retval)
  4023. retval = p->policy;
  4024. }
  4025. read_unlock(&tasklist_lock);
  4026. return retval;
  4027. }
  4028. /**
  4029. * sys_sched_getscheduler - get the RT priority of a thread
  4030. * @pid: the pid in question.
  4031. * @param: structure containing the RT priority.
  4032. */
  4033. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4034. {
  4035. struct sched_param lp;
  4036. struct task_struct *p;
  4037. int retval;
  4038. if (!param || pid < 0)
  4039. return -EINVAL;
  4040. read_lock(&tasklist_lock);
  4041. p = find_process_by_pid(pid);
  4042. retval = -ESRCH;
  4043. if (!p)
  4044. goto out_unlock;
  4045. retval = security_task_getscheduler(p);
  4046. if (retval)
  4047. goto out_unlock;
  4048. lp.sched_priority = p->rt_priority;
  4049. read_unlock(&tasklist_lock);
  4050. /*
  4051. * This one might sleep, we cannot do it with a spinlock held ...
  4052. */
  4053. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4054. return retval;
  4055. out_unlock:
  4056. read_unlock(&tasklist_lock);
  4057. return retval;
  4058. }
  4059. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  4060. {
  4061. cpumask_t cpus_allowed;
  4062. struct task_struct *p;
  4063. int retval;
  4064. get_online_cpus();
  4065. read_lock(&tasklist_lock);
  4066. p = find_process_by_pid(pid);
  4067. if (!p) {
  4068. read_unlock(&tasklist_lock);
  4069. put_online_cpus();
  4070. return -ESRCH;
  4071. }
  4072. /*
  4073. * It is not safe to call set_cpus_allowed with the
  4074. * tasklist_lock held. We will bump the task_struct's
  4075. * usage count and then drop tasklist_lock.
  4076. */
  4077. get_task_struct(p);
  4078. read_unlock(&tasklist_lock);
  4079. retval = -EPERM;
  4080. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4081. !capable(CAP_SYS_NICE))
  4082. goto out_unlock;
  4083. retval = security_task_setscheduler(p, 0, NULL);
  4084. if (retval)
  4085. goto out_unlock;
  4086. cpus_allowed = cpuset_cpus_allowed(p);
  4087. cpus_and(new_mask, new_mask, cpus_allowed);
  4088. again:
  4089. retval = set_cpus_allowed(p, new_mask);
  4090. if (!retval) {
  4091. cpus_allowed = cpuset_cpus_allowed(p);
  4092. if (!cpus_subset(new_mask, cpus_allowed)) {
  4093. /*
  4094. * We must have raced with a concurrent cpuset
  4095. * update. Just reset the cpus_allowed to the
  4096. * cpuset's cpus_allowed
  4097. */
  4098. new_mask = cpus_allowed;
  4099. goto again;
  4100. }
  4101. }
  4102. out_unlock:
  4103. put_task_struct(p);
  4104. put_online_cpus();
  4105. return retval;
  4106. }
  4107. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4108. cpumask_t *new_mask)
  4109. {
  4110. if (len < sizeof(cpumask_t)) {
  4111. memset(new_mask, 0, sizeof(cpumask_t));
  4112. } else if (len > sizeof(cpumask_t)) {
  4113. len = sizeof(cpumask_t);
  4114. }
  4115. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4116. }
  4117. /**
  4118. * sys_sched_setaffinity - set the cpu affinity of a process
  4119. * @pid: pid of the process
  4120. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4121. * @user_mask_ptr: user-space pointer to the new cpu mask
  4122. */
  4123. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4124. unsigned long __user *user_mask_ptr)
  4125. {
  4126. cpumask_t new_mask;
  4127. int retval;
  4128. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4129. if (retval)
  4130. return retval;
  4131. return sched_setaffinity(pid, new_mask);
  4132. }
  4133. /*
  4134. * Represents all cpu's present in the system
  4135. * In systems capable of hotplug, this map could dynamically grow
  4136. * as new cpu's are detected in the system via any platform specific
  4137. * method, such as ACPI for e.g.
  4138. */
  4139. cpumask_t cpu_present_map __read_mostly;
  4140. EXPORT_SYMBOL(cpu_present_map);
  4141. #ifndef CONFIG_SMP
  4142. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4143. EXPORT_SYMBOL(cpu_online_map);
  4144. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4145. EXPORT_SYMBOL(cpu_possible_map);
  4146. #endif
  4147. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4148. {
  4149. struct task_struct *p;
  4150. int retval;
  4151. get_online_cpus();
  4152. read_lock(&tasklist_lock);
  4153. retval = -ESRCH;
  4154. p = find_process_by_pid(pid);
  4155. if (!p)
  4156. goto out_unlock;
  4157. retval = security_task_getscheduler(p);
  4158. if (retval)
  4159. goto out_unlock;
  4160. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4161. out_unlock:
  4162. read_unlock(&tasklist_lock);
  4163. put_online_cpus();
  4164. return retval;
  4165. }
  4166. /**
  4167. * sys_sched_getaffinity - get the cpu affinity of a process
  4168. * @pid: pid of the process
  4169. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4170. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4171. */
  4172. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4173. unsigned long __user *user_mask_ptr)
  4174. {
  4175. int ret;
  4176. cpumask_t mask;
  4177. if (len < sizeof(cpumask_t))
  4178. return -EINVAL;
  4179. ret = sched_getaffinity(pid, &mask);
  4180. if (ret < 0)
  4181. return ret;
  4182. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4183. return -EFAULT;
  4184. return sizeof(cpumask_t);
  4185. }
  4186. /**
  4187. * sys_sched_yield - yield the current processor to other threads.
  4188. *
  4189. * This function yields the current CPU to other tasks. If there are no
  4190. * other threads running on this CPU then this function will return.
  4191. */
  4192. asmlinkage long sys_sched_yield(void)
  4193. {
  4194. struct rq *rq = this_rq_lock();
  4195. schedstat_inc(rq, yld_count);
  4196. current->sched_class->yield_task(rq);
  4197. /*
  4198. * Since we are going to call schedule() anyway, there's
  4199. * no need to preempt or enable interrupts:
  4200. */
  4201. __release(rq->lock);
  4202. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4203. _raw_spin_unlock(&rq->lock);
  4204. preempt_enable_no_resched();
  4205. schedule();
  4206. return 0;
  4207. }
  4208. static void __cond_resched(void)
  4209. {
  4210. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4211. __might_sleep(__FILE__, __LINE__);
  4212. #endif
  4213. /*
  4214. * The BKS might be reacquired before we have dropped
  4215. * PREEMPT_ACTIVE, which could trigger a second
  4216. * cond_resched() call.
  4217. */
  4218. do {
  4219. add_preempt_count(PREEMPT_ACTIVE);
  4220. schedule();
  4221. sub_preempt_count(PREEMPT_ACTIVE);
  4222. } while (need_resched());
  4223. }
  4224. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4225. int __sched _cond_resched(void)
  4226. {
  4227. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4228. system_state == SYSTEM_RUNNING) {
  4229. __cond_resched();
  4230. return 1;
  4231. }
  4232. return 0;
  4233. }
  4234. EXPORT_SYMBOL(_cond_resched);
  4235. #endif
  4236. /*
  4237. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4238. * call schedule, and on return reacquire the lock.
  4239. *
  4240. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4241. * operations here to prevent schedule() from being called twice (once via
  4242. * spin_unlock(), once by hand).
  4243. */
  4244. int cond_resched_lock(spinlock_t *lock)
  4245. {
  4246. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4247. int ret = 0;
  4248. if (spin_needbreak(lock) || resched) {
  4249. spin_unlock(lock);
  4250. if (resched && need_resched())
  4251. __cond_resched();
  4252. else
  4253. cpu_relax();
  4254. ret = 1;
  4255. spin_lock(lock);
  4256. }
  4257. return ret;
  4258. }
  4259. EXPORT_SYMBOL(cond_resched_lock);
  4260. int __sched cond_resched_softirq(void)
  4261. {
  4262. BUG_ON(!in_softirq());
  4263. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4264. local_bh_enable();
  4265. __cond_resched();
  4266. local_bh_disable();
  4267. return 1;
  4268. }
  4269. return 0;
  4270. }
  4271. EXPORT_SYMBOL(cond_resched_softirq);
  4272. /**
  4273. * yield - yield the current processor to other threads.
  4274. *
  4275. * This is a shortcut for kernel-space yielding - it marks the
  4276. * thread runnable and calls sys_sched_yield().
  4277. */
  4278. void __sched yield(void)
  4279. {
  4280. set_current_state(TASK_RUNNING);
  4281. sys_sched_yield();
  4282. }
  4283. EXPORT_SYMBOL(yield);
  4284. /*
  4285. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4286. * that process accounting knows that this is a task in IO wait state.
  4287. *
  4288. * But don't do that if it is a deliberate, throttling IO wait (this task
  4289. * has set its backing_dev_info: the queue against which it should throttle)
  4290. */
  4291. void __sched io_schedule(void)
  4292. {
  4293. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4294. delayacct_blkio_start();
  4295. atomic_inc(&rq->nr_iowait);
  4296. schedule();
  4297. atomic_dec(&rq->nr_iowait);
  4298. delayacct_blkio_end();
  4299. }
  4300. EXPORT_SYMBOL(io_schedule);
  4301. long __sched io_schedule_timeout(long timeout)
  4302. {
  4303. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4304. long ret;
  4305. delayacct_blkio_start();
  4306. atomic_inc(&rq->nr_iowait);
  4307. ret = schedule_timeout(timeout);
  4308. atomic_dec(&rq->nr_iowait);
  4309. delayacct_blkio_end();
  4310. return ret;
  4311. }
  4312. /**
  4313. * sys_sched_get_priority_max - return maximum RT priority.
  4314. * @policy: scheduling class.
  4315. *
  4316. * this syscall returns the maximum rt_priority that can be used
  4317. * by a given scheduling class.
  4318. */
  4319. asmlinkage long sys_sched_get_priority_max(int policy)
  4320. {
  4321. int ret = -EINVAL;
  4322. switch (policy) {
  4323. case SCHED_FIFO:
  4324. case SCHED_RR:
  4325. ret = MAX_USER_RT_PRIO-1;
  4326. break;
  4327. case SCHED_NORMAL:
  4328. case SCHED_BATCH:
  4329. case SCHED_IDLE:
  4330. ret = 0;
  4331. break;
  4332. }
  4333. return ret;
  4334. }
  4335. /**
  4336. * sys_sched_get_priority_min - return minimum RT priority.
  4337. * @policy: scheduling class.
  4338. *
  4339. * this syscall returns the minimum rt_priority that can be used
  4340. * by a given scheduling class.
  4341. */
  4342. asmlinkage long sys_sched_get_priority_min(int policy)
  4343. {
  4344. int ret = -EINVAL;
  4345. switch (policy) {
  4346. case SCHED_FIFO:
  4347. case SCHED_RR:
  4348. ret = 1;
  4349. break;
  4350. case SCHED_NORMAL:
  4351. case SCHED_BATCH:
  4352. case SCHED_IDLE:
  4353. ret = 0;
  4354. }
  4355. return ret;
  4356. }
  4357. /**
  4358. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4359. * @pid: pid of the process.
  4360. * @interval: userspace pointer to the timeslice value.
  4361. *
  4362. * this syscall writes the default timeslice value of a given process
  4363. * into the user-space timespec buffer. A value of '0' means infinity.
  4364. */
  4365. asmlinkage
  4366. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4367. {
  4368. struct task_struct *p;
  4369. unsigned int time_slice;
  4370. int retval;
  4371. struct timespec t;
  4372. if (pid < 0)
  4373. return -EINVAL;
  4374. retval = -ESRCH;
  4375. read_lock(&tasklist_lock);
  4376. p = find_process_by_pid(pid);
  4377. if (!p)
  4378. goto out_unlock;
  4379. retval = security_task_getscheduler(p);
  4380. if (retval)
  4381. goto out_unlock;
  4382. /*
  4383. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4384. * tasks that are on an otherwise idle runqueue:
  4385. */
  4386. time_slice = 0;
  4387. if (p->policy == SCHED_RR) {
  4388. time_slice = DEF_TIMESLICE;
  4389. } else if (p->policy != SCHED_FIFO) {
  4390. struct sched_entity *se = &p->se;
  4391. unsigned long flags;
  4392. struct rq *rq;
  4393. rq = task_rq_lock(p, &flags);
  4394. if (rq->cfs.load.weight)
  4395. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4396. task_rq_unlock(rq, &flags);
  4397. }
  4398. read_unlock(&tasklist_lock);
  4399. jiffies_to_timespec(time_slice, &t);
  4400. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4401. return retval;
  4402. out_unlock:
  4403. read_unlock(&tasklist_lock);
  4404. return retval;
  4405. }
  4406. static const char stat_nam[] = "RSDTtZX";
  4407. void sched_show_task(struct task_struct *p)
  4408. {
  4409. unsigned long free = 0;
  4410. unsigned state;
  4411. state = p->state ? __ffs(p->state) + 1 : 0;
  4412. printk(KERN_INFO "%-13.13s %c", p->comm,
  4413. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4414. #if BITS_PER_LONG == 32
  4415. if (state == TASK_RUNNING)
  4416. printk(KERN_CONT " running ");
  4417. else
  4418. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4419. #else
  4420. if (state == TASK_RUNNING)
  4421. printk(KERN_CONT " running task ");
  4422. else
  4423. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4424. #endif
  4425. #ifdef CONFIG_DEBUG_STACK_USAGE
  4426. {
  4427. unsigned long *n = end_of_stack(p);
  4428. while (!*n)
  4429. n++;
  4430. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4431. }
  4432. #endif
  4433. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4434. task_pid_nr(p), task_pid_nr(p->real_parent));
  4435. show_stack(p, NULL);
  4436. }
  4437. void show_state_filter(unsigned long state_filter)
  4438. {
  4439. struct task_struct *g, *p;
  4440. #if BITS_PER_LONG == 32
  4441. printk(KERN_INFO
  4442. " task PC stack pid father\n");
  4443. #else
  4444. printk(KERN_INFO
  4445. " task PC stack pid father\n");
  4446. #endif
  4447. read_lock(&tasklist_lock);
  4448. do_each_thread(g, p) {
  4449. /*
  4450. * reset the NMI-timeout, listing all files on a slow
  4451. * console might take alot of time:
  4452. */
  4453. touch_nmi_watchdog();
  4454. if (!state_filter || (p->state & state_filter))
  4455. sched_show_task(p);
  4456. } while_each_thread(g, p);
  4457. touch_all_softlockup_watchdogs();
  4458. #ifdef CONFIG_SCHED_DEBUG
  4459. sysrq_sched_debug_show();
  4460. #endif
  4461. read_unlock(&tasklist_lock);
  4462. /*
  4463. * Only show locks if all tasks are dumped:
  4464. */
  4465. if (state_filter == -1)
  4466. debug_show_all_locks();
  4467. }
  4468. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4469. {
  4470. idle->sched_class = &idle_sched_class;
  4471. }
  4472. /**
  4473. * init_idle - set up an idle thread for a given CPU
  4474. * @idle: task in question
  4475. * @cpu: cpu the idle task belongs to
  4476. *
  4477. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4478. * flag, to make booting more robust.
  4479. */
  4480. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4481. {
  4482. struct rq *rq = cpu_rq(cpu);
  4483. unsigned long flags;
  4484. __sched_fork(idle);
  4485. idle->se.exec_start = sched_clock();
  4486. idle->prio = idle->normal_prio = MAX_PRIO;
  4487. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4488. __set_task_cpu(idle, cpu);
  4489. spin_lock_irqsave(&rq->lock, flags);
  4490. rq->curr = rq->idle = idle;
  4491. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4492. idle->oncpu = 1;
  4493. #endif
  4494. spin_unlock_irqrestore(&rq->lock, flags);
  4495. /* Set the preempt count _outside_ the spinlocks! */
  4496. task_thread_info(idle)->preempt_count = 0;
  4497. /*
  4498. * The idle tasks have their own, simple scheduling class:
  4499. */
  4500. idle->sched_class = &idle_sched_class;
  4501. }
  4502. /*
  4503. * In a system that switches off the HZ timer nohz_cpu_mask
  4504. * indicates which cpus entered this state. This is used
  4505. * in the rcu update to wait only for active cpus. For system
  4506. * which do not switch off the HZ timer nohz_cpu_mask should
  4507. * always be CPU_MASK_NONE.
  4508. */
  4509. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4510. /*
  4511. * Increase the granularity value when there are more CPUs,
  4512. * because with more CPUs the 'effective latency' as visible
  4513. * to users decreases. But the relationship is not linear,
  4514. * so pick a second-best guess by going with the log2 of the
  4515. * number of CPUs.
  4516. *
  4517. * This idea comes from the SD scheduler of Con Kolivas:
  4518. */
  4519. static inline void sched_init_granularity(void)
  4520. {
  4521. unsigned int factor = 1 + ilog2(num_online_cpus());
  4522. const unsigned long limit = 200000000;
  4523. sysctl_sched_min_granularity *= factor;
  4524. if (sysctl_sched_min_granularity > limit)
  4525. sysctl_sched_min_granularity = limit;
  4526. sysctl_sched_latency *= factor;
  4527. if (sysctl_sched_latency > limit)
  4528. sysctl_sched_latency = limit;
  4529. sysctl_sched_wakeup_granularity *= factor;
  4530. sysctl_sched_batch_wakeup_granularity *= factor;
  4531. }
  4532. #ifdef CONFIG_SMP
  4533. /*
  4534. * This is how migration works:
  4535. *
  4536. * 1) we queue a struct migration_req structure in the source CPU's
  4537. * runqueue and wake up that CPU's migration thread.
  4538. * 2) we down() the locked semaphore => thread blocks.
  4539. * 3) migration thread wakes up (implicitly it forces the migrated
  4540. * thread off the CPU)
  4541. * 4) it gets the migration request and checks whether the migrated
  4542. * task is still in the wrong runqueue.
  4543. * 5) if it's in the wrong runqueue then the migration thread removes
  4544. * it and puts it into the right queue.
  4545. * 6) migration thread up()s the semaphore.
  4546. * 7) we wake up and the migration is done.
  4547. */
  4548. /*
  4549. * Change a given task's CPU affinity. Migrate the thread to a
  4550. * proper CPU and schedule it away if the CPU it's executing on
  4551. * is removed from the allowed bitmask.
  4552. *
  4553. * NOTE: the caller must have a valid reference to the task, the
  4554. * task must not exit() & deallocate itself prematurely. The
  4555. * call is not atomic; no spinlocks may be held.
  4556. */
  4557. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4558. {
  4559. struct migration_req req;
  4560. unsigned long flags;
  4561. struct rq *rq;
  4562. int ret = 0;
  4563. rq = task_rq_lock(p, &flags);
  4564. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4565. ret = -EINVAL;
  4566. goto out;
  4567. }
  4568. if (p->sched_class->set_cpus_allowed)
  4569. p->sched_class->set_cpus_allowed(p, &new_mask);
  4570. else {
  4571. p->cpus_allowed = new_mask;
  4572. p->rt.nr_cpus_allowed = cpus_weight(new_mask);
  4573. }
  4574. /* Can the task run on the task's current CPU? If so, we're done */
  4575. if (cpu_isset(task_cpu(p), new_mask))
  4576. goto out;
  4577. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4578. /* Need help from migration thread: drop lock and wait. */
  4579. task_rq_unlock(rq, &flags);
  4580. wake_up_process(rq->migration_thread);
  4581. wait_for_completion(&req.done);
  4582. tlb_migrate_finish(p->mm);
  4583. return 0;
  4584. }
  4585. out:
  4586. task_rq_unlock(rq, &flags);
  4587. return ret;
  4588. }
  4589. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4590. /*
  4591. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4592. * this because either it can't run here any more (set_cpus_allowed()
  4593. * away from this CPU, or CPU going down), or because we're
  4594. * attempting to rebalance this task on exec (sched_exec).
  4595. *
  4596. * So we race with normal scheduler movements, but that's OK, as long
  4597. * as the task is no longer on this CPU.
  4598. *
  4599. * Returns non-zero if task was successfully migrated.
  4600. */
  4601. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4602. {
  4603. struct rq *rq_dest, *rq_src;
  4604. int ret = 0, on_rq;
  4605. if (unlikely(cpu_is_offline(dest_cpu)))
  4606. return ret;
  4607. rq_src = cpu_rq(src_cpu);
  4608. rq_dest = cpu_rq(dest_cpu);
  4609. double_rq_lock(rq_src, rq_dest);
  4610. /* Already moved. */
  4611. if (task_cpu(p) != src_cpu)
  4612. goto out;
  4613. /* Affinity changed (again). */
  4614. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4615. goto out;
  4616. on_rq = p->se.on_rq;
  4617. if (on_rq)
  4618. deactivate_task(rq_src, p, 0);
  4619. set_task_cpu(p, dest_cpu);
  4620. if (on_rq) {
  4621. activate_task(rq_dest, p, 0);
  4622. check_preempt_curr(rq_dest, p);
  4623. }
  4624. ret = 1;
  4625. out:
  4626. double_rq_unlock(rq_src, rq_dest);
  4627. return ret;
  4628. }
  4629. /*
  4630. * migration_thread - this is a highprio system thread that performs
  4631. * thread migration by bumping thread off CPU then 'pushing' onto
  4632. * another runqueue.
  4633. */
  4634. static int migration_thread(void *data)
  4635. {
  4636. int cpu = (long)data;
  4637. struct rq *rq;
  4638. rq = cpu_rq(cpu);
  4639. BUG_ON(rq->migration_thread != current);
  4640. set_current_state(TASK_INTERRUPTIBLE);
  4641. while (!kthread_should_stop()) {
  4642. struct migration_req *req;
  4643. struct list_head *head;
  4644. spin_lock_irq(&rq->lock);
  4645. if (cpu_is_offline(cpu)) {
  4646. spin_unlock_irq(&rq->lock);
  4647. goto wait_to_die;
  4648. }
  4649. if (rq->active_balance) {
  4650. active_load_balance(rq, cpu);
  4651. rq->active_balance = 0;
  4652. }
  4653. head = &rq->migration_queue;
  4654. if (list_empty(head)) {
  4655. spin_unlock_irq(&rq->lock);
  4656. schedule();
  4657. set_current_state(TASK_INTERRUPTIBLE);
  4658. continue;
  4659. }
  4660. req = list_entry(head->next, struct migration_req, list);
  4661. list_del_init(head->next);
  4662. spin_unlock(&rq->lock);
  4663. __migrate_task(req->task, cpu, req->dest_cpu);
  4664. local_irq_enable();
  4665. complete(&req->done);
  4666. }
  4667. __set_current_state(TASK_RUNNING);
  4668. return 0;
  4669. wait_to_die:
  4670. /* Wait for kthread_stop */
  4671. set_current_state(TASK_INTERRUPTIBLE);
  4672. while (!kthread_should_stop()) {
  4673. schedule();
  4674. set_current_state(TASK_INTERRUPTIBLE);
  4675. }
  4676. __set_current_state(TASK_RUNNING);
  4677. return 0;
  4678. }
  4679. #ifdef CONFIG_HOTPLUG_CPU
  4680. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4681. {
  4682. int ret;
  4683. local_irq_disable();
  4684. ret = __migrate_task(p, src_cpu, dest_cpu);
  4685. local_irq_enable();
  4686. return ret;
  4687. }
  4688. /*
  4689. * Figure out where task on dead CPU should go, use force if necessary.
  4690. * NOTE: interrupts should be disabled by the caller
  4691. */
  4692. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4693. {
  4694. unsigned long flags;
  4695. cpumask_t mask;
  4696. struct rq *rq;
  4697. int dest_cpu;
  4698. do {
  4699. /* On same node? */
  4700. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4701. cpus_and(mask, mask, p->cpus_allowed);
  4702. dest_cpu = any_online_cpu(mask);
  4703. /* On any allowed CPU? */
  4704. if (dest_cpu == NR_CPUS)
  4705. dest_cpu = any_online_cpu(p->cpus_allowed);
  4706. /* No more Mr. Nice Guy. */
  4707. if (dest_cpu == NR_CPUS) {
  4708. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4709. /*
  4710. * Try to stay on the same cpuset, where the
  4711. * current cpuset may be a subset of all cpus.
  4712. * The cpuset_cpus_allowed_locked() variant of
  4713. * cpuset_cpus_allowed() will not block. It must be
  4714. * called within calls to cpuset_lock/cpuset_unlock.
  4715. */
  4716. rq = task_rq_lock(p, &flags);
  4717. p->cpus_allowed = cpus_allowed;
  4718. dest_cpu = any_online_cpu(p->cpus_allowed);
  4719. task_rq_unlock(rq, &flags);
  4720. /*
  4721. * Don't tell them about moving exiting tasks or
  4722. * kernel threads (both mm NULL), since they never
  4723. * leave kernel.
  4724. */
  4725. if (p->mm && printk_ratelimit()) {
  4726. printk(KERN_INFO "process %d (%s) no "
  4727. "longer affine to cpu%d\n",
  4728. task_pid_nr(p), p->comm, dead_cpu);
  4729. }
  4730. }
  4731. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4732. }
  4733. /*
  4734. * While a dead CPU has no uninterruptible tasks queued at this point,
  4735. * it might still have a nonzero ->nr_uninterruptible counter, because
  4736. * for performance reasons the counter is not stricly tracking tasks to
  4737. * their home CPUs. So we just add the counter to another CPU's counter,
  4738. * to keep the global sum constant after CPU-down:
  4739. */
  4740. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4741. {
  4742. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4743. unsigned long flags;
  4744. local_irq_save(flags);
  4745. double_rq_lock(rq_src, rq_dest);
  4746. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4747. rq_src->nr_uninterruptible = 0;
  4748. double_rq_unlock(rq_src, rq_dest);
  4749. local_irq_restore(flags);
  4750. }
  4751. /* Run through task list and migrate tasks from the dead cpu. */
  4752. static void migrate_live_tasks(int src_cpu)
  4753. {
  4754. struct task_struct *p, *t;
  4755. read_lock(&tasklist_lock);
  4756. do_each_thread(t, p) {
  4757. if (p == current)
  4758. continue;
  4759. if (task_cpu(p) == src_cpu)
  4760. move_task_off_dead_cpu(src_cpu, p);
  4761. } while_each_thread(t, p);
  4762. read_unlock(&tasklist_lock);
  4763. }
  4764. /*
  4765. * Schedules idle task to be the next runnable task on current CPU.
  4766. * It does so by boosting its priority to highest possible.
  4767. * Used by CPU offline code.
  4768. */
  4769. void sched_idle_next(void)
  4770. {
  4771. int this_cpu = smp_processor_id();
  4772. struct rq *rq = cpu_rq(this_cpu);
  4773. struct task_struct *p = rq->idle;
  4774. unsigned long flags;
  4775. /* cpu has to be offline */
  4776. BUG_ON(cpu_online(this_cpu));
  4777. /*
  4778. * Strictly not necessary since rest of the CPUs are stopped by now
  4779. * and interrupts disabled on the current cpu.
  4780. */
  4781. spin_lock_irqsave(&rq->lock, flags);
  4782. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4783. update_rq_clock(rq);
  4784. activate_task(rq, p, 0);
  4785. spin_unlock_irqrestore(&rq->lock, flags);
  4786. }
  4787. /*
  4788. * Ensures that the idle task is using init_mm right before its cpu goes
  4789. * offline.
  4790. */
  4791. void idle_task_exit(void)
  4792. {
  4793. struct mm_struct *mm = current->active_mm;
  4794. BUG_ON(cpu_online(smp_processor_id()));
  4795. if (mm != &init_mm)
  4796. switch_mm(mm, &init_mm, current);
  4797. mmdrop(mm);
  4798. }
  4799. /* called under rq->lock with disabled interrupts */
  4800. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4801. {
  4802. struct rq *rq = cpu_rq(dead_cpu);
  4803. /* Must be exiting, otherwise would be on tasklist. */
  4804. BUG_ON(!p->exit_state);
  4805. /* Cannot have done final schedule yet: would have vanished. */
  4806. BUG_ON(p->state == TASK_DEAD);
  4807. get_task_struct(p);
  4808. /*
  4809. * Drop lock around migration; if someone else moves it,
  4810. * that's OK. No task can be added to this CPU, so iteration is
  4811. * fine.
  4812. */
  4813. spin_unlock_irq(&rq->lock);
  4814. move_task_off_dead_cpu(dead_cpu, p);
  4815. spin_lock_irq(&rq->lock);
  4816. put_task_struct(p);
  4817. }
  4818. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4819. static void migrate_dead_tasks(unsigned int dead_cpu)
  4820. {
  4821. struct rq *rq = cpu_rq(dead_cpu);
  4822. struct task_struct *next;
  4823. for ( ; ; ) {
  4824. if (!rq->nr_running)
  4825. break;
  4826. update_rq_clock(rq);
  4827. next = pick_next_task(rq, rq->curr);
  4828. if (!next)
  4829. break;
  4830. migrate_dead(dead_cpu, next);
  4831. }
  4832. }
  4833. #endif /* CONFIG_HOTPLUG_CPU */
  4834. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4835. static struct ctl_table sd_ctl_dir[] = {
  4836. {
  4837. .procname = "sched_domain",
  4838. .mode = 0555,
  4839. },
  4840. {0, },
  4841. };
  4842. static struct ctl_table sd_ctl_root[] = {
  4843. {
  4844. .ctl_name = CTL_KERN,
  4845. .procname = "kernel",
  4846. .mode = 0555,
  4847. .child = sd_ctl_dir,
  4848. },
  4849. {0, },
  4850. };
  4851. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4852. {
  4853. struct ctl_table *entry =
  4854. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4855. return entry;
  4856. }
  4857. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4858. {
  4859. struct ctl_table *entry;
  4860. /*
  4861. * In the intermediate directories, both the child directory and
  4862. * procname are dynamically allocated and could fail but the mode
  4863. * will always be set. In the lowest directory the names are
  4864. * static strings and all have proc handlers.
  4865. */
  4866. for (entry = *tablep; entry->mode; entry++) {
  4867. if (entry->child)
  4868. sd_free_ctl_entry(&entry->child);
  4869. if (entry->proc_handler == NULL)
  4870. kfree(entry->procname);
  4871. }
  4872. kfree(*tablep);
  4873. *tablep = NULL;
  4874. }
  4875. static void
  4876. set_table_entry(struct ctl_table *entry,
  4877. const char *procname, void *data, int maxlen,
  4878. mode_t mode, proc_handler *proc_handler)
  4879. {
  4880. entry->procname = procname;
  4881. entry->data = data;
  4882. entry->maxlen = maxlen;
  4883. entry->mode = mode;
  4884. entry->proc_handler = proc_handler;
  4885. }
  4886. static struct ctl_table *
  4887. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4888. {
  4889. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4890. if (table == NULL)
  4891. return NULL;
  4892. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4893. sizeof(long), 0644, proc_doulongvec_minmax);
  4894. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4895. sizeof(long), 0644, proc_doulongvec_minmax);
  4896. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4897. sizeof(int), 0644, proc_dointvec_minmax);
  4898. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4899. sizeof(int), 0644, proc_dointvec_minmax);
  4900. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4901. sizeof(int), 0644, proc_dointvec_minmax);
  4902. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4903. sizeof(int), 0644, proc_dointvec_minmax);
  4904. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4905. sizeof(int), 0644, proc_dointvec_minmax);
  4906. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4907. sizeof(int), 0644, proc_dointvec_minmax);
  4908. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4909. sizeof(int), 0644, proc_dointvec_minmax);
  4910. set_table_entry(&table[9], "cache_nice_tries",
  4911. &sd->cache_nice_tries,
  4912. sizeof(int), 0644, proc_dointvec_minmax);
  4913. set_table_entry(&table[10], "flags", &sd->flags,
  4914. sizeof(int), 0644, proc_dointvec_minmax);
  4915. /* &table[11] is terminator */
  4916. return table;
  4917. }
  4918. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4919. {
  4920. struct ctl_table *entry, *table;
  4921. struct sched_domain *sd;
  4922. int domain_num = 0, i;
  4923. char buf[32];
  4924. for_each_domain(cpu, sd)
  4925. domain_num++;
  4926. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4927. if (table == NULL)
  4928. return NULL;
  4929. i = 0;
  4930. for_each_domain(cpu, sd) {
  4931. snprintf(buf, 32, "domain%d", i);
  4932. entry->procname = kstrdup(buf, GFP_KERNEL);
  4933. entry->mode = 0555;
  4934. entry->child = sd_alloc_ctl_domain_table(sd);
  4935. entry++;
  4936. i++;
  4937. }
  4938. return table;
  4939. }
  4940. static struct ctl_table_header *sd_sysctl_header;
  4941. static void register_sched_domain_sysctl(void)
  4942. {
  4943. int i, cpu_num = num_online_cpus();
  4944. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4945. char buf[32];
  4946. WARN_ON(sd_ctl_dir[0].child);
  4947. sd_ctl_dir[0].child = entry;
  4948. if (entry == NULL)
  4949. return;
  4950. for_each_online_cpu(i) {
  4951. snprintf(buf, 32, "cpu%d", i);
  4952. entry->procname = kstrdup(buf, GFP_KERNEL);
  4953. entry->mode = 0555;
  4954. entry->child = sd_alloc_ctl_cpu_table(i);
  4955. entry++;
  4956. }
  4957. WARN_ON(sd_sysctl_header);
  4958. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4959. }
  4960. /* may be called multiple times per register */
  4961. static void unregister_sched_domain_sysctl(void)
  4962. {
  4963. if (sd_sysctl_header)
  4964. unregister_sysctl_table(sd_sysctl_header);
  4965. sd_sysctl_header = NULL;
  4966. if (sd_ctl_dir[0].child)
  4967. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4968. }
  4969. #else
  4970. static void register_sched_domain_sysctl(void)
  4971. {
  4972. }
  4973. static void unregister_sched_domain_sysctl(void)
  4974. {
  4975. }
  4976. #endif
  4977. /*
  4978. * migration_call - callback that gets triggered when a CPU is added.
  4979. * Here we can start up the necessary migration thread for the new CPU.
  4980. */
  4981. static int __cpuinit
  4982. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4983. {
  4984. struct task_struct *p;
  4985. int cpu = (long)hcpu;
  4986. unsigned long flags;
  4987. struct rq *rq;
  4988. switch (action) {
  4989. case CPU_UP_PREPARE:
  4990. case CPU_UP_PREPARE_FROZEN:
  4991. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4992. if (IS_ERR(p))
  4993. return NOTIFY_BAD;
  4994. kthread_bind(p, cpu);
  4995. /* Must be high prio: stop_machine expects to yield to it. */
  4996. rq = task_rq_lock(p, &flags);
  4997. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4998. task_rq_unlock(rq, &flags);
  4999. cpu_rq(cpu)->migration_thread = p;
  5000. break;
  5001. case CPU_ONLINE:
  5002. case CPU_ONLINE_FROZEN:
  5003. /* Strictly unnecessary, as first user will wake it. */
  5004. wake_up_process(cpu_rq(cpu)->migration_thread);
  5005. /* Update our root-domain */
  5006. rq = cpu_rq(cpu);
  5007. spin_lock_irqsave(&rq->lock, flags);
  5008. if (rq->rd) {
  5009. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5010. cpu_set(cpu, rq->rd->online);
  5011. }
  5012. spin_unlock_irqrestore(&rq->lock, flags);
  5013. break;
  5014. #ifdef CONFIG_HOTPLUG_CPU
  5015. case CPU_UP_CANCELED:
  5016. case CPU_UP_CANCELED_FROZEN:
  5017. if (!cpu_rq(cpu)->migration_thread)
  5018. break;
  5019. /* Unbind it from offline cpu so it can run. Fall thru. */
  5020. kthread_bind(cpu_rq(cpu)->migration_thread,
  5021. any_online_cpu(cpu_online_map));
  5022. kthread_stop(cpu_rq(cpu)->migration_thread);
  5023. cpu_rq(cpu)->migration_thread = NULL;
  5024. break;
  5025. case CPU_DEAD:
  5026. case CPU_DEAD_FROZEN:
  5027. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5028. migrate_live_tasks(cpu);
  5029. rq = cpu_rq(cpu);
  5030. kthread_stop(rq->migration_thread);
  5031. rq->migration_thread = NULL;
  5032. /* Idle task back to normal (off runqueue, low prio) */
  5033. spin_lock_irq(&rq->lock);
  5034. update_rq_clock(rq);
  5035. deactivate_task(rq, rq->idle, 0);
  5036. rq->idle->static_prio = MAX_PRIO;
  5037. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5038. rq->idle->sched_class = &idle_sched_class;
  5039. migrate_dead_tasks(cpu);
  5040. spin_unlock_irq(&rq->lock);
  5041. cpuset_unlock();
  5042. migrate_nr_uninterruptible(rq);
  5043. BUG_ON(rq->nr_running != 0);
  5044. /*
  5045. * No need to migrate the tasks: it was best-effort if
  5046. * they didn't take sched_hotcpu_mutex. Just wake up
  5047. * the requestors.
  5048. */
  5049. spin_lock_irq(&rq->lock);
  5050. while (!list_empty(&rq->migration_queue)) {
  5051. struct migration_req *req;
  5052. req = list_entry(rq->migration_queue.next,
  5053. struct migration_req, list);
  5054. list_del_init(&req->list);
  5055. complete(&req->done);
  5056. }
  5057. spin_unlock_irq(&rq->lock);
  5058. break;
  5059. case CPU_DYING:
  5060. case CPU_DYING_FROZEN:
  5061. /* Update our root-domain */
  5062. rq = cpu_rq(cpu);
  5063. spin_lock_irqsave(&rq->lock, flags);
  5064. if (rq->rd) {
  5065. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5066. cpu_clear(cpu, rq->rd->online);
  5067. }
  5068. spin_unlock_irqrestore(&rq->lock, flags);
  5069. break;
  5070. #endif
  5071. }
  5072. return NOTIFY_OK;
  5073. }
  5074. /* Register at highest priority so that task migration (migrate_all_tasks)
  5075. * happens before everything else.
  5076. */
  5077. static struct notifier_block __cpuinitdata migration_notifier = {
  5078. .notifier_call = migration_call,
  5079. .priority = 10
  5080. };
  5081. void __init migration_init(void)
  5082. {
  5083. void *cpu = (void *)(long)smp_processor_id();
  5084. int err;
  5085. /* Start one for the boot CPU: */
  5086. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5087. BUG_ON(err == NOTIFY_BAD);
  5088. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5089. register_cpu_notifier(&migration_notifier);
  5090. }
  5091. #endif
  5092. #ifdef CONFIG_SMP
  5093. /* Number of possible processor ids */
  5094. int nr_cpu_ids __read_mostly = NR_CPUS;
  5095. EXPORT_SYMBOL(nr_cpu_ids);
  5096. #ifdef CONFIG_SCHED_DEBUG
  5097. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  5098. {
  5099. struct sched_group *group = sd->groups;
  5100. cpumask_t groupmask;
  5101. char str[NR_CPUS];
  5102. cpumask_scnprintf(str, NR_CPUS, sd->span);
  5103. cpus_clear(groupmask);
  5104. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5105. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5106. printk("does not load-balance\n");
  5107. if (sd->parent)
  5108. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5109. " has parent");
  5110. return -1;
  5111. }
  5112. printk(KERN_CONT "span %s\n", str);
  5113. if (!cpu_isset(cpu, sd->span)) {
  5114. printk(KERN_ERR "ERROR: domain->span does not contain "
  5115. "CPU%d\n", cpu);
  5116. }
  5117. if (!cpu_isset(cpu, group->cpumask)) {
  5118. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5119. " CPU%d\n", cpu);
  5120. }
  5121. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5122. do {
  5123. if (!group) {
  5124. printk("\n");
  5125. printk(KERN_ERR "ERROR: group is NULL\n");
  5126. break;
  5127. }
  5128. if (!group->__cpu_power) {
  5129. printk(KERN_CONT "\n");
  5130. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5131. "set\n");
  5132. break;
  5133. }
  5134. if (!cpus_weight(group->cpumask)) {
  5135. printk(KERN_CONT "\n");
  5136. printk(KERN_ERR "ERROR: empty group\n");
  5137. break;
  5138. }
  5139. if (cpus_intersects(groupmask, group->cpumask)) {
  5140. printk(KERN_CONT "\n");
  5141. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5142. break;
  5143. }
  5144. cpus_or(groupmask, groupmask, group->cpumask);
  5145. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  5146. printk(KERN_CONT " %s", str);
  5147. group = group->next;
  5148. } while (group != sd->groups);
  5149. printk(KERN_CONT "\n");
  5150. if (!cpus_equal(sd->span, groupmask))
  5151. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5152. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5153. printk(KERN_ERR "ERROR: parent span is not a superset "
  5154. "of domain->span\n");
  5155. return 0;
  5156. }
  5157. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5158. {
  5159. int level = 0;
  5160. if (!sd) {
  5161. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5162. return;
  5163. }
  5164. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5165. for (;;) {
  5166. if (sched_domain_debug_one(sd, cpu, level))
  5167. break;
  5168. level++;
  5169. sd = sd->parent;
  5170. if (!sd)
  5171. break;
  5172. }
  5173. }
  5174. #else
  5175. # define sched_domain_debug(sd, cpu) do { } while (0)
  5176. #endif
  5177. static int sd_degenerate(struct sched_domain *sd)
  5178. {
  5179. if (cpus_weight(sd->span) == 1)
  5180. return 1;
  5181. /* Following flags need at least 2 groups */
  5182. if (sd->flags & (SD_LOAD_BALANCE |
  5183. SD_BALANCE_NEWIDLE |
  5184. SD_BALANCE_FORK |
  5185. SD_BALANCE_EXEC |
  5186. SD_SHARE_CPUPOWER |
  5187. SD_SHARE_PKG_RESOURCES)) {
  5188. if (sd->groups != sd->groups->next)
  5189. return 0;
  5190. }
  5191. /* Following flags don't use groups */
  5192. if (sd->flags & (SD_WAKE_IDLE |
  5193. SD_WAKE_AFFINE |
  5194. SD_WAKE_BALANCE))
  5195. return 0;
  5196. return 1;
  5197. }
  5198. static int
  5199. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5200. {
  5201. unsigned long cflags = sd->flags, pflags = parent->flags;
  5202. if (sd_degenerate(parent))
  5203. return 1;
  5204. if (!cpus_equal(sd->span, parent->span))
  5205. return 0;
  5206. /* Does parent contain flags not in child? */
  5207. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5208. if (cflags & SD_WAKE_AFFINE)
  5209. pflags &= ~SD_WAKE_BALANCE;
  5210. /* Flags needing groups don't count if only 1 group in parent */
  5211. if (parent->groups == parent->groups->next) {
  5212. pflags &= ~(SD_LOAD_BALANCE |
  5213. SD_BALANCE_NEWIDLE |
  5214. SD_BALANCE_FORK |
  5215. SD_BALANCE_EXEC |
  5216. SD_SHARE_CPUPOWER |
  5217. SD_SHARE_PKG_RESOURCES);
  5218. }
  5219. if (~cflags & pflags)
  5220. return 0;
  5221. return 1;
  5222. }
  5223. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5224. {
  5225. unsigned long flags;
  5226. const struct sched_class *class;
  5227. spin_lock_irqsave(&rq->lock, flags);
  5228. if (rq->rd) {
  5229. struct root_domain *old_rd = rq->rd;
  5230. for (class = sched_class_highest; class; class = class->next) {
  5231. if (class->leave_domain)
  5232. class->leave_domain(rq);
  5233. }
  5234. cpu_clear(rq->cpu, old_rd->span);
  5235. cpu_clear(rq->cpu, old_rd->online);
  5236. if (atomic_dec_and_test(&old_rd->refcount))
  5237. kfree(old_rd);
  5238. }
  5239. atomic_inc(&rd->refcount);
  5240. rq->rd = rd;
  5241. cpu_set(rq->cpu, rd->span);
  5242. if (cpu_isset(rq->cpu, cpu_online_map))
  5243. cpu_set(rq->cpu, rd->online);
  5244. for (class = sched_class_highest; class; class = class->next) {
  5245. if (class->join_domain)
  5246. class->join_domain(rq);
  5247. }
  5248. spin_unlock_irqrestore(&rq->lock, flags);
  5249. }
  5250. static void init_rootdomain(struct root_domain *rd)
  5251. {
  5252. memset(rd, 0, sizeof(*rd));
  5253. cpus_clear(rd->span);
  5254. cpus_clear(rd->online);
  5255. }
  5256. static void init_defrootdomain(void)
  5257. {
  5258. init_rootdomain(&def_root_domain);
  5259. atomic_set(&def_root_domain.refcount, 1);
  5260. }
  5261. static struct root_domain *alloc_rootdomain(void)
  5262. {
  5263. struct root_domain *rd;
  5264. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5265. if (!rd)
  5266. return NULL;
  5267. init_rootdomain(rd);
  5268. return rd;
  5269. }
  5270. /*
  5271. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5272. * hold the hotplug lock.
  5273. */
  5274. static void
  5275. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5276. {
  5277. struct rq *rq = cpu_rq(cpu);
  5278. struct sched_domain *tmp;
  5279. /* Remove the sched domains which do not contribute to scheduling. */
  5280. for (tmp = sd; tmp; tmp = tmp->parent) {
  5281. struct sched_domain *parent = tmp->parent;
  5282. if (!parent)
  5283. break;
  5284. if (sd_parent_degenerate(tmp, parent)) {
  5285. tmp->parent = parent->parent;
  5286. if (parent->parent)
  5287. parent->parent->child = tmp;
  5288. }
  5289. }
  5290. if (sd && sd_degenerate(sd)) {
  5291. sd = sd->parent;
  5292. if (sd)
  5293. sd->child = NULL;
  5294. }
  5295. sched_domain_debug(sd, cpu);
  5296. rq_attach_root(rq, rd);
  5297. rcu_assign_pointer(rq->sd, sd);
  5298. }
  5299. /* cpus with isolated domains */
  5300. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5301. /* Setup the mask of cpus configured for isolated domains */
  5302. static int __init isolated_cpu_setup(char *str)
  5303. {
  5304. int ints[NR_CPUS], i;
  5305. str = get_options(str, ARRAY_SIZE(ints), ints);
  5306. cpus_clear(cpu_isolated_map);
  5307. for (i = 1; i <= ints[0]; i++)
  5308. if (ints[i] < NR_CPUS)
  5309. cpu_set(ints[i], cpu_isolated_map);
  5310. return 1;
  5311. }
  5312. __setup("isolcpus=", isolated_cpu_setup);
  5313. /*
  5314. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5315. * to a function which identifies what group(along with sched group) a CPU
  5316. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5317. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5318. *
  5319. * init_sched_build_groups will build a circular linked list of the groups
  5320. * covered by the given span, and will set each group's ->cpumask correctly,
  5321. * and ->cpu_power to 0.
  5322. */
  5323. static void
  5324. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5325. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5326. struct sched_group **sg))
  5327. {
  5328. struct sched_group *first = NULL, *last = NULL;
  5329. cpumask_t covered = CPU_MASK_NONE;
  5330. int i;
  5331. for_each_cpu_mask(i, span) {
  5332. struct sched_group *sg;
  5333. int group = group_fn(i, cpu_map, &sg);
  5334. int j;
  5335. if (cpu_isset(i, covered))
  5336. continue;
  5337. sg->cpumask = CPU_MASK_NONE;
  5338. sg->__cpu_power = 0;
  5339. for_each_cpu_mask(j, span) {
  5340. if (group_fn(j, cpu_map, NULL) != group)
  5341. continue;
  5342. cpu_set(j, covered);
  5343. cpu_set(j, sg->cpumask);
  5344. }
  5345. if (!first)
  5346. first = sg;
  5347. if (last)
  5348. last->next = sg;
  5349. last = sg;
  5350. }
  5351. last->next = first;
  5352. }
  5353. #define SD_NODES_PER_DOMAIN 16
  5354. #ifdef CONFIG_NUMA
  5355. /**
  5356. * find_next_best_node - find the next node to include in a sched_domain
  5357. * @node: node whose sched_domain we're building
  5358. * @used_nodes: nodes already in the sched_domain
  5359. *
  5360. * Find the next node to include in a given scheduling domain. Simply
  5361. * finds the closest node not already in the @used_nodes map.
  5362. *
  5363. * Should use nodemask_t.
  5364. */
  5365. static int find_next_best_node(int node, unsigned long *used_nodes)
  5366. {
  5367. int i, n, val, min_val, best_node = 0;
  5368. min_val = INT_MAX;
  5369. for (i = 0; i < MAX_NUMNODES; i++) {
  5370. /* Start at @node */
  5371. n = (node + i) % MAX_NUMNODES;
  5372. if (!nr_cpus_node(n))
  5373. continue;
  5374. /* Skip already used nodes */
  5375. if (test_bit(n, used_nodes))
  5376. continue;
  5377. /* Simple min distance search */
  5378. val = node_distance(node, n);
  5379. if (val < min_val) {
  5380. min_val = val;
  5381. best_node = n;
  5382. }
  5383. }
  5384. set_bit(best_node, used_nodes);
  5385. return best_node;
  5386. }
  5387. /**
  5388. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5389. * @node: node whose cpumask we're constructing
  5390. * @size: number of nodes to include in this span
  5391. *
  5392. * Given a node, construct a good cpumask for its sched_domain to span. It
  5393. * should be one that prevents unnecessary balancing, but also spreads tasks
  5394. * out optimally.
  5395. */
  5396. static cpumask_t sched_domain_node_span(int node)
  5397. {
  5398. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5399. cpumask_t span, nodemask;
  5400. int i;
  5401. cpus_clear(span);
  5402. bitmap_zero(used_nodes, MAX_NUMNODES);
  5403. nodemask = node_to_cpumask(node);
  5404. cpus_or(span, span, nodemask);
  5405. set_bit(node, used_nodes);
  5406. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5407. int next_node = find_next_best_node(node, used_nodes);
  5408. nodemask = node_to_cpumask(next_node);
  5409. cpus_or(span, span, nodemask);
  5410. }
  5411. return span;
  5412. }
  5413. #endif
  5414. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5415. /*
  5416. * SMT sched-domains:
  5417. */
  5418. #ifdef CONFIG_SCHED_SMT
  5419. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5420. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5421. static int
  5422. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5423. {
  5424. if (sg)
  5425. *sg = &per_cpu(sched_group_cpus, cpu);
  5426. return cpu;
  5427. }
  5428. #endif
  5429. /*
  5430. * multi-core sched-domains:
  5431. */
  5432. #ifdef CONFIG_SCHED_MC
  5433. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5434. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5435. #endif
  5436. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5437. static int
  5438. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5439. {
  5440. int group;
  5441. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5442. cpus_and(mask, mask, *cpu_map);
  5443. group = first_cpu(mask);
  5444. if (sg)
  5445. *sg = &per_cpu(sched_group_core, group);
  5446. return group;
  5447. }
  5448. #elif defined(CONFIG_SCHED_MC)
  5449. static int
  5450. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5451. {
  5452. if (sg)
  5453. *sg = &per_cpu(sched_group_core, cpu);
  5454. return cpu;
  5455. }
  5456. #endif
  5457. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5458. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5459. static int
  5460. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5461. {
  5462. int group;
  5463. #ifdef CONFIG_SCHED_MC
  5464. cpumask_t mask = cpu_coregroup_map(cpu);
  5465. cpus_and(mask, mask, *cpu_map);
  5466. group = first_cpu(mask);
  5467. #elif defined(CONFIG_SCHED_SMT)
  5468. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5469. cpus_and(mask, mask, *cpu_map);
  5470. group = first_cpu(mask);
  5471. #else
  5472. group = cpu;
  5473. #endif
  5474. if (sg)
  5475. *sg = &per_cpu(sched_group_phys, group);
  5476. return group;
  5477. }
  5478. #ifdef CONFIG_NUMA
  5479. /*
  5480. * The init_sched_build_groups can't handle what we want to do with node
  5481. * groups, so roll our own. Now each node has its own list of groups which
  5482. * gets dynamically allocated.
  5483. */
  5484. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5485. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5486. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5487. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5488. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5489. struct sched_group **sg)
  5490. {
  5491. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5492. int group;
  5493. cpus_and(nodemask, nodemask, *cpu_map);
  5494. group = first_cpu(nodemask);
  5495. if (sg)
  5496. *sg = &per_cpu(sched_group_allnodes, group);
  5497. return group;
  5498. }
  5499. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5500. {
  5501. struct sched_group *sg = group_head;
  5502. int j;
  5503. if (!sg)
  5504. return;
  5505. do {
  5506. for_each_cpu_mask(j, sg->cpumask) {
  5507. struct sched_domain *sd;
  5508. sd = &per_cpu(phys_domains, j);
  5509. if (j != first_cpu(sd->groups->cpumask)) {
  5510. /*
  5511. * Only add "power" once for each
  5512. * physical package.
  5513. */
  5514. continue;
  5515. }
  5516. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5517. }
  5518. sg = sg->next;
  5519. } while (sg != group_head);
  5520. }
  5521. #endif
  5522. #ifdef CONFIG_NUMA
  5523. /* Free memory allocated for various sched_group structures */
  5524. static void free_sched_groups(const cpumask_t *cpu_map)
  5525. {
  5526. int cpu, i;
  5527. for_each_cpu_mask(cpu, *cpu_map) {
  5528. struct sched_group **sched_group_nodes
  5529. = sched_group_nodes_bycpu[cpu];
  5530. if (!sched_group_nodes)
  5531. continue;
  5532. for (i = 0; i < MAX_NUMNODES; i++) {
  5533. cpumask_t nodemask = node_to_cpumask(i);
  5534. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5535. cpus_and(nodemask, nodemask, *cpu_map);
  5536. if (cpus_empty(nodemask))
  5537. continue;
  5538. if (sg == NULL)
  5539. continue;
  5540. sg = sg->next;
  5541. next_sg:
  5542. oldsg = sg;
  5543. sg = sg->next;
  5544. kfree(oldsg);
  5545. if (oldsg != sched_group_nodes[i])
  5546. goto next_sg;
  5547. }
  5548. kfree(sched_group_nodes);
  5549. sched_group_nodes_bycpu[cpu] = NULL;
  5550. }
  5551. }
  5552. #else
  5553. static void free_sched_groups(const cpumask_t *cpu_map)
  5554. {
  5555. }
  5556. #endif
  5557. /*
  5558. * Initialize sched groups cpu_power.
  5559. *
  5560. * cpu_power indicates the capacity of sched group, which is used while
  5561. * distributing the load between different sched groups in a sched domain.
  5562. * Typically cpu_power for all the groups in a sched domain will be same unless
  5563. * there are asymmetries in the topology. If there are asymmetries, group
  5564. * having more cpu_power will pickup more load compared to the group having
  5565. * less cpu_power.
  5566. *
  5567. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5568. * the maximum number of tasks a group can handle in the presence of other idle
  5569. * or lightly loaded groups in the same sched domain.
  5570. */
  5571. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5572. {
  5573. struct sched_domain *child;
  5574. struct sched_group *group;
  5575. WARN_ON(!sd || !sd->groups);
  5576. if (cpu != first_cpu(sd->groups->cpumask))
  5577. return;
  5578. child = sd->child;
  5579. sd->groups->__cpu_power = 0;
  5580. /*
  5581. * For perf policy, if the groups in child domain share resources
  5582. * (for example cores sharing some portions of the cache hierarchy
  5583. * or SMT), then set this domain groups cpu_power such that each group
  5584. * can handle only one task, when there are other idle groups in the
  5585. * same sched domain.
  5586. */
  5587. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5588. (child->flags &
  5589. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5590. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5591. return;
  5592. }
  5593. /*
  5594. * add cpu_power of each child group to this groups cpu_power
  5595. */
  5596. group = child->groups;
  5597. do {
  5598. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5599. group = group->next;
  5600. } while (group != child->groups);
  5601. }
  5602. /*
  5603. * Build sched domains for a given set of cpus and attach the sched domains
  5604. * to the individual cpus
  5605. */
  5606. static int build_sched_domains(const cpumask_t *cpu_map)
  5607. {
  5608. int i;
  5609. struct root_domain *rd;
  5610. #ifdef CONFIG_NUMA
  5611. struct sched_group **sched_group_nodes = NULL;
  5612. int sd_allnodes = 0;
  5613. /*
  5614. * Allocate the per-node list of sched groups
  5615. */
  5616. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5617. GFP_KERNEL);
  5618. if (!sched_group_nodes) {
  5619. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5620. return -ENOMEM;
  5621. }
  5622. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5623. #endif
  5624. rd = alloc_rootdomain();
  5625. if (!rd) {
  5626. printk(KERN_WARNING "Cannot alloc root domain\n");
  5627. return -ENOMEM;
  5628. }
  5629. /*
  5630. * Set up domains for cpus specified by the cpu_map.
  5631. */
  5632. for_each_cpu_mask(i, *cpu_map) {
  5633. struct sched_domain *sd = NULL, *p;
  5634. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5635. cpus_and(nodemask, nodemask, *cpu_map);
  5636. #ifdef CONFIG_NUMA
  5637. if (cpus_weight(*cpu_map) >
  5638. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5639. sd = &per_cpu(allnodes_domains, i);
  5640. *sd = SD_ALLNODES_INIT;
  5641. sd->span = *cpu_map;
  5642. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5643. p = sd;
  5644. sd_allnodes = 1;
  5645. } else
  5646. p = NULL;
  5647. sd = &per_cpu(node_domains, i);
  5648. *sd = SD_NODE_INIT;
  5649. sd->span = sched_domain_node_span(cpu_to_node(i));
  5650. sd->parent = p;
  5651. if (p)
  5652. p->child = sd;
  5653. cpus_and(sd->span, sd->span, *cpu_map);
  5654. #endif
  5655. p = sd;
  5656. sd = &per_cpu(phys_domains, i);
  5657. *sd = SD_CPU_INIT;
  5658. sd->span = nodemask;
  5659. sd->parent = p;
  5660. if (p)
  5661. p->child = sd;
  5662. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5663. #ifdef CONFIG_SCHED_MC
  5664. p = sd;
  5665. sd = &per_cpu(core_domains, i);
  5666. *sd = SD_MC_INIT;
  5667. sd->span = cpu_coregroup_map(i);
  5668. cpus_and(sd->span, sd->span, *cpu_map);
  5669. sd->parent = p;
  5670. p->child = sd;
  5671. cpu_to_core_group(i, cpu_map, &sd->groups);
  5672. #endif
  5673. #ifdef CONFIG_SCHED_SMT
  5674. p = sd;
  5675. sd = &per_cpu(cpu_domains, i);
  5676. *sd = SD_SIBLING_INIT;
  5677. sd->span = per_cpu(cpu_sibling_map, i);
  5678. cpus_and(sd->span, sd->span, *cpu_map);
  5679. sd->parent = p;
  5680. p->child = sd;
  5681. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5682. #endif
  5683. }
  5684. #ifdef CONFIG_SCHED_SMT
  5685. /* Set up CPU (sibling) groups */
  5686. for_each_cpu_mask(i, *cpu_map) {
  5687. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5688. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5689. if (i != first_cpu(this_sibling_map))
  5690. continue;
  5691. init_sched_build_groups(this_sibling_map, cpu_map,
  5692. &cpu_to_cpu_group);
  5693. }
  5694. #endif
  5695. #ifdef CONFIG_SCHED_MC
  5696. /* Set up multi-core groups */
  5697. for_each_cpu_mask(i, *cpu_map) {
  5698. cpumask_t this_core_map = cpu_coregroup_map(i);
  5699. cpus_and(this_core_map, this_core_map, *cpu_map);
  5700. if (i != first_cpu(this_core_map))
  5701. continue;
  5702. init_sched_build_groups(this_core_map, cpu_map,
  5703. &cpu_to_core_group);
  5704. }
  5705. #endif
  5706. /* Set up physical groups */
  5707. for (i = 0; i < MAX_NUMNODES; i++) {
  5708. cpumask_t nodemask = node_to_cpumask(i);
  5709. cpus_and(nodemask, nodemask, *cpu_map);
  5710. if (cpus_empty(nodemask))
  5711. continue;
  5712. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5713. }
  5714. #ifdef CONFIG_NUMA
  5715. /* Set up node groups */
  5716. if (sd_allnodes)
  5717. init_sched_build_groups(*cpu_map, cpu_map,
  5718. &cpu_to_allnodes_group);
  5719. for (i = 0; i < MAX_NUMNODES; i++) {
  5720. /* Set up node groups */
  5721. struct sched_group *sg, *prev;
  5722. cpumask_t nodemask = node_to_cpumask(i);
  5723. cpumask_t domainspan;
  5724. cpumask_t covered = CPU_MASK_NONE;
  5725. int j;
  5726. cpus_and(nodemask, nodemask, *cpu_map);
  5727. if (cpus_empty(nodemask)) {
  5728. sched_group_nodes[i] = NULL;
  5729. continue;
  5730. }
  5731. domainspan = sched_domain_node_span(i);
  5732. cpus_and(domainspan, domainspan, *cpu_map);
  5733. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5734. if (!sg) {
  5735. printk(KERN_WARNING "Can not alloc domain group for "
  5736. "node %d\n", i);
  5737. goto error;
  5738. }
  5739. sched_group_nodes[i] = sg;
  5740. for_each_cpu_mask(j, nodemask) {
  5741. struct sched_domain *sd;
  5742. sd = &per_cpu(node_domains, j);
  5743. sd->groups = sg;
  5744. }
  5745. sg->__cpu_power = 0;
  5746. sg->cpumask = nodemask;
  5747. sg->next = sg;
  5748. cpus_or(covered, covered, nodemask);
  5749. prev = sg;
  5750. for (j = 0; j < MAX_NUMNODES; j++) {
  5751. cpumask_t tmp, notcovered;
  5752. int n = (i + j) % MAX_NUMNODES;
  5753. cpus_complement(notcovered, covered);
  5754. cpus_and(tmp, notcovered, *cpu_map);
  5755. cpus_and(tmp, tmp, domainspan);
  5756. if (cpus_empty(tmp))
  5757. break;
  5758. nodemask = node_to_cpumask(n);
  5759. cpus_and(tmp, tmp, nodemask);
  5760. if (cpus_empty(tmp))
  5761. continue;
  5762. sg = kmalloc_node(sizeof(struct sched_group),
  5763. GFP_KERNEL, i);
  5764. if (!sg) {
  5765. printk(KERN_WARNING
  5766. "Can not alloc domain group for node %d\n", j);
  5767. goto error;
  5768. }
  5769. sg->__cpu_power = 0;
  5770. sg->cpumask = tmp;
  5771. sg->next = prev->next;
  5772. cpus_or(covered, covered, tmp);
  5773. prev->next = sg;
  5774. prev = sg;
  5775. }
  5776. }
  5777. #endif
  5778. /* Calculate CPU power for physical packages and nodes */
  5779. #ifdef CONFIG_SCHED_SMT
  5780. for_each_cpu_mask(i, *cpu_map) {
  5781. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5782. init_sched_groups_power(i, sd);
  5783. }
  5784. #endif
  5785. #ifdef CONFIG_SCHED_MC
  5786. for_each_cpu_mask(i, *cpu_map) {
  5787. struct sched_domain *sd = &per_cpu(core_domains, i);
  5788. init_sched_groups_power(i, sd);
  5789. }
  5790. #endif
  5791. for_each_cpu_mask(i, *cpu_map) {
  5792. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5793. init_sched_groups_power(i, sd);
  5794. }
  5795. #ifdef CONFIG_NUMA
  5796. for (i = 0; i < MAX_NUMNODES; i++)
  5797. init_numa_sched_groups_power(sched_group_nodes[i]);
  5798. if (sd_allnodes) {
  5799. struct sched_group *sg;
  5800. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5801. init_numa_sched_groups_power(sg);
  5802. }
  5803. #endif
  5804. /* Attach the domains */
  5805. for_each_cpu_mask(i, *cpu_map) {
  5806. struct sched_domain *sd;
  5807. #ifdef CONFIG_SCHED_SMT
  5808. sd = &per_cpu(cpu_domains, i);
  5809. #elif defined(CONFIG_SCHED_MC)
  5810. sd = &per_cpu(core_domains, i);
  5811. #else
  5812. sd = &per_cpu(phys_domains, i);
  5813. #endif
  5814. cpu_attach_domain(sd, rd, i);
  5815. }
  5816. return 0;
  5817. #ifdef CONFIG_NUMA
  5818. error:
  5819. free_sched_groups(cpu_map);
  5820. return -ENOMEM;
  5821. #endif
  5822. }
  5823. static cpumask_t *doms_cur; /* current sched domains */
  5824. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5825. /*
  5826. * Special case: If a kmalloc of a doms_cur partition (array of
  5827. * cpumask_t) fails, then fallback to a single sched domain,
  5828. * as determined by the single cpumask_t fallback_doms.
  5829. */
  5830. static cpumask_t fallback_doms;
  5831. void __attribute__((weak)) arch_update_cpu_topology(void)
  5832. {
  5833. }
  5834. /*
  5835. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5836. * For now this just excludes isolated cpus, but could be used to
  5837. * exclude other special cases in the future.
  5838. */
  5839. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5840. {
  5841. int err;
  5842. arch_update_cpu_topology();
  5843. ndoms_cur = 1;
  5844. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5845. if (!doms_cur)
  5846. doms_cur = &fallback_doms;
  5847. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5848. err = build_sched_domains(doms_cur);
  5849. register_sched_domain_sysctl();
  5850. return err;
  5851. }
  5852. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5853. {
  5854. free_sched_groups(cpu_map);
  5855. }
  5856. /*
  5857. * Detach sched domains from a group of cpus specified in cpu_map
  5858. * These cpus will now be attached to the NULL domain
  5859. */
  5860. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5861. {
  5862. int i;
  5863. unregister_sched_domain_sysctl();
  5864. for_each_cpu_mask(i, *cpu_map)
  5865. cpu_attach_domain(NULL, &def_root_domain, i);
  5866. synchronize_sched();
  5867. arch_destroy_sched_domains(cpu_map);
  5868. }
  5869. /*
  5870. * Partition sched domains as specified by the 'ndoms_new'
  5871. * cpumasks in the array doms_new[] of cpumasks. This compares
  5872. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5873. * It destroys each deleted domain and builds each new domain.
  5874. *
  5875. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5876. * The masks don't intersect (don't overlap.) We should setup one
  5877. * sched domain for each mask. CPUs not in any of the cpumasks will
  5878. * not be load balanced. If the same cpumask appears both in the
  5879. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5880. * it as it is.
  5881. *
  5882. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5883. * ownership of it and will kfree it when done with it. If the caller
  5884. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5885. * and partition_sched_domains() will fallback to the single partition
  5886. * 'fallback_doms'.
  5887. *
  5888. * Call with hotplug lock held
  5889. */
  5890. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5891. {
  5892. int i, j;
  5893. lock_doms_cur();
  5894. /* always unregister in case we don't destroy any domains */
  5895. unregister_sched_domain_sysctl();
  5896. if (doms_new == NULL) {
  5897. ndoms_new = 1;
  5898. doms_new = &fallback_doms;
  5899. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5900. }
  5901. /* Destroy deleted domains */
  5902. for (i = 0; i < ndoms_cur; i++) {
  5903. for (j = 0; j < ndoms_new; j++) {
  5904. if (cpus_equal(doms_cur[i], doms_new[j]))
  5905. goto match1;
  5906. }
  5907. /* no match - a current sched domain not in new doms_new[] */
  5908. detach_destroy_domains(doms_cur + i);
  5909. match1:
  5910. ;
  5911. }
  5912. /* Build new domains */
  5913. for (i = 0; i < ndoms_new; i++) {
  5914. for (j = 0; j < ndoms_cur; j++) {
  5915. if (cpus_equal(doms_new[i], doms_cur[j]))
  5916. goto match2;
  5917. }
  5918. /* no match - add a new doms_new */
  5919. build_sched_domains(doms_new + i);
  5920. match2:
  5921. ;
  5922. }
  5923. /* Remember the new sched domains */
  5924. if (doms_cur != &fallback_doms)
  5925. kfree(doms_cur);
  5926. doms_cur = doms_new;
  5927. ndoms_cur = ndoms_new;
  5928. register_sched_domain_sysctl();
  5929. unlock_doms_cur();
  5930. }
  5931. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5932. int arch_reinit_sched_domains(void)
  5933. {
  5934. int err;
  5935. get_online_cpus();
  5936. detach_destroy_domains(&cpu_online_map);
  5937. err = arch_init_sched_domains(&cpu_online_map);
  5938. put_online_cpus();
  5939. return err;
  5940. }
  5941. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5942. {
  5943. int ret;
  5944. if (buf[0] != '0' && buf[0] != '1')
  5945. return -EINVAL;
  5946. if (smt)
  5947. sched_smt_power_savings = (buf[0] == '1');
  5948. else
  5949. sched_mc_power_savings = (buf[0] == '1');
  5950. ret = arch_reinit_sched_domains();
  5951. return ret ? ret : count;
  5952. }
  5953. #ifdef CONFIG_SCHED_MC
  5954. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5955. {
  5956. return sprintf(page, "%u\n", sched_mc_power_savings);
  5957. }
  5958. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5959. const char *buf, size_t count)
  5960. {
  5961. return sched_power_savings_store(buf, count, 0);
  5962. }
  5963. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5964. sched_mc_power_savings_store);
  5965. #endif
  5966. #ifdef CONFIG_SCHED_SMT
  5967. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5968. {
  5969. return sprintf(page, "%u\n", sched_smt_power_savings);
  5970. }
  5971. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5972. const char *buf, size_t count)
  5973. {
  5974. return sched_power_savings_store(buf, count, 1);
  5975. }
  5976. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5977. sched_smt_power_savings_store);
  5978. #endif
  5979. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5980. {
  5981. int err = 0;
  5982. #ifdef CONFIG_SCHED_SMT
  5983. if (smt_capable())
  5984. err = sysfs_create_file(&cls->kset.kobj,
  5985. &attr_sched_smt_power_savings.attr);
  5986. #endif
  5987. #ifdef CONFIG_SCHED_MC
  5988. if (!err && mc_capable())
  5989. err = sysfs_create_file(&cls->kset.kobj,
  5990. &attr_sched_mc_power_savings.attr);
  5991. #endif
  5992. return err;
  5993. }
  5994. #endif
  5995. /*
  5996. * Force a reinitialization of the sched domains hierarchy. The domains
  5997. * and groups cannot be updated in place without racing with the balancing
  5998. * code, so we temporarily attach all running cpus to the NULL domain
  5999. * which will prevent rebalancing while the sched domains are recalculated.
  6000. */
  6001. static int update_sched_domains(struct notifier_block *nfb,
  6002. unsigned long action, void *hcpu)
  6003. {
  6004. switch (action) {
  6005. case CPU_UP_PREPARE:
  6006. case CPU_UP_PREPARE_FROZEN:
  6007. case CPU_DOWN_PREPARE:
  6008. case CPU_DOWN_PREPARE_FROZEN:
  6009. detach_destroy_domains(&cpu_online_map);
  6010. return NOTIFY_OK;
  6011. case CPU_UP_CANCELED:
  6012. case CPU_UP_CANCELED_FROZEN:
  6013. case CPU_DOWN_FAILED:
  6014. case CPU_DOWN_FAILED_FROZEN:
  6015. case CPU_ONLINE:
  6016. case CPU_ONLINE_FROZEN:
  6017. case CPU_DEAD:
  6018. case CPU_DEAD_FROZEN:
  6019. /*
  6020. * Fall through and re-initialise the domains.
  6021. */
  6022. break;
  6023. default:
  6024. return NOTIFY_DONE;
  6025. }
  6026. /* The hotplug lock is already held by cpu_up/cpu_down */
  6027. arch_init_sched_domains(&cpu_online_map);
  6028. return NOTIFY_OK;
  6029. }
  6030. void __init sched_init_smp(void)
  6031. {
  6032. cpumask_t non_isolated_cpus;
  6033. get_online_cpus();
  6034. arch_init_sched_domains(&cpu_online_map);
  6035. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6036. if (cpus_empty(non_isolated_cpus))
  6037. cpu_set(smp_processor_id(), non_isolated_cpus);
  6038. put_online_cpus();
  6039. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6040. hotcpu_notifier(update_sched_domains, 0);
  6041. /* Move init over to a non-isolated CPU */
  6042. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6043. BUG();
  6044. sched_init_granularity();
  6045. }
  6046. #else
  6047. void __init sched_init_smp(void)
  6048. {
  6049. sched_init_granularity();
  6050. }
  6051. #endif /* CONFIG_SMP */
  6052. int in_sched_functions(unsigned long addr)
  6053. {
  6054. return in_lock_functions(addr) ||
  6055. (addr >= (unsigned long)__sched_text_start
  6056. && addr < (unsigned long)__sched_text_end);
  6057. }
  6058. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6059. {
  6060. cfs_rq->tasks_timeline = RB_ROOT;
  6061. #ifdef CONFIG_FAIR_GROUP_SCHED
  6062. cfs_rq->rq = rq;
  6063. #endif
  6064. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6065. }
  6066. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6067. {
  6068. struct rt_prio_array *array;
  6069. int i;
  6070. array = &rt_rq->active;
  6071. for (i = 0; i < MAX_RT_PRIO; i++) {
  6072. INIT_LIST_HEAD(array->queue + i);
  6073. __clear_bit(i, array->bitmap);
  6074. }
  6075. /* delimiter for bitsearch: */
  6076. __set_bit(MAX_RT_PRIO, array->bitmap);
  6077. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6078. rt_rq->highest_prio = MAX_RT_PRIO;
  6079. #endif
  6080. #ifdef CONFIG_SMP
  6081. rt_rq->rt_nr_migratory = 0;
  6082. rt_rq->overloaded = 0;
  6083. #endif
  6084. rt_rq->rt_time = 0;
  6085. rt_rq->rt_throttled = 0;
  6086. #ifdef CONFIG_RT_GROUP_SCHED
  6087. rt_rq->rt_nr_boosted = 0;
  6088. rt_rq->rq = rq;
  6089. #endif
  6090. }
  6091. #ifdef CONFIG_FAIR_GROUP_SCHED
  6092. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6093. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6094. int cpu, int add)
  6095. {
  6096. tg->cfs_rq[cpu] = cfs_rq;
  6097. init_cfs_rq(cfs_rq, rq);
  6098. cfs_rq->tg = tg;
  6099. if (add)
  6100. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6101. tg->se[cpu] = se;
  6102. se->cfs_rq = &rq->cfs;
  6103. se->my_q = cfs_rq;
  6104. se->load.weight = tg->shares;
  6105. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6106. se->parent = NULL;
  6107. }
  6108. #endif
  6109. #ifdef CONFIG_RT_GROUP_SCHED
  6110. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6111. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6112. int cpu, int add)
  6113. {
  6114. tg->rt_rq[cpu] = rt_rq;
  6115. init_rt_rq(rt_rq, rq);
  6116. rt_rq->tg = tg;
  6117. rt_rq->rt_se = rt_se;
  6118. if (add)
  6119. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6120. tg->rt_se[cpu] = rt_se;
  6121. rt_se->rt_rq = &rq->rt;
  6122. rt_se->my_q = rt_rq;
  6123. rt_se->parent = NULL;
  6124. INIT_LIST_HEAD(&rt_se->run_list);
  6125. }
  6126. #endif
  6127. void __init sched_init(void)
  6128. {
  6129. int highest_cpu = 0;
  6130. int i, j;
  6131. #ifdef CONFIG_SMP
  6132. init_defrootdomain();
  6133. #endif
  6134. #ifdef CONFIG_GROUP_SCHED
  6135. list_add(&init_task_group.list, &task_groups);
  6136. #endif
  6137. for_each_possible_cpu(i) {
  6138. struct rq *rq;
  6139. rq = cpu_rq(i);
  6140. spin_lock_init(&rq->lock);
  6141. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6142. rq->nr_running = 0;
  6143. rq->clock = 1;
  6144. init_cfs_rq(&rq->cfs, rq);
  6145. init_rt_rq(&rq->rt, rq);
  6146. #ifdef CONFIG_FAIR_GROUP_SCHED
  6147. init_task_group.shares = init_task_group_load;
  6148. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6149. init_tg_cfs_entry(rq, &init_task_group,
  6150. &per_cpu(init_cfs_rq, i),
  6151. &per_cpu(init_sched_entity, i), i, 1);
  6152. #endif
  6153. #ifdef CONFIG_RT_GROUP_SCHED
  6154. init_task_group.rt_runtime =
  6155. sysctl_sched_rt_runtime * NSEC_PER_USEC;
  6156. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6157. init_tg_rt_entry(rq, &init_task_group,
  6158. &per_cpu(init_rt_rq, i),
  6159. &per_cpu(init_sched_rt_entity, i), i, 1);
  6160. #endif
  6161. rq->rt_period_expire = 0;
  6162. rq->rt_throttled = 0;
  6163. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6164. rq->cpu_load[j] = 0;
  6165. #ifdef CONFIG_SMP
  6166. rq->sd = NULL;
  6167. rq->rd = NULL;
  6168. rq->active_balance = 0;
  6169. rq->next_balance = jiffies;
  6170. rq->push_cpu = 0;
  6171. rq->cpu = i;
  6172. rq->migration_thread = NULL;
  6173. INIT_LIST_HEAD(&rq->migration_queue);
  6174. rq_attach_root(rq, &def_root_domain);
  6175. #endif
  6176. init_rq_hrtick(rq);
  6177. atomic_set(&rq->nr_iowait, 0);
  6178. highest_cpu = i;
  6179. }
  6180. set_load_weight(&init_task);
  6181. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6182. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6183. #endif
  6184. #ifdef CONFIG_SMP
  6185. nr_cpu_ids = highest_cpu + 1;
  6186. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6187. #endif
  6188. #ifdef CONFIG_RT_MUTEXES
  6189. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6190. #endif
  6191. /*
  6192. * The boot idle thread does lazy MMU switching as well:
  6193. */
  6194. atomic_inc(&init_mm.mm_count);
  6195. enter_lazy_tlb(&init_mm, current);
  6196. /*
  6197. * Make us the idle thread. Technically, schedule() should not be
  6198. * called from this thread, however somewhere below it might be,
  6199. * but because we are the idle thread, we just pick up running again
  6200. * when this runqueue becomes "idle".
  6201. */
  6202. init_idle(current, smp_processor_id());
  6203. /*
  6204. * During early bootup we pretend to be a normal task:
  6205. */
  6206. current->sched_class = &fair_sched_class;
  6207. scheduler_running = 1;
  6208. }
  6209. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6210. void __might_sleep(char *file, int line)
  6211. {
  6212. #ifdef in_atomic
  6213. static unsigned long prev_jiffy; /* ratelimiting */
  6214. if ((in_atomic() || irqs_disabled()) &&
  6215. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6216. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6217. return;
  6218. prev_jiffy = jiffies;
  6219. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6220. " context at %s:%d\n", file, line);
  6221. printk("in_atomic():%d, irqs_disabled():%d\n",
  6222. in_atomic(), irqs_disabled());
  6223. debug_show_held_locks(current);
  6224. if (irqs_disabled())
  6225. print_irqtrace_events(current);
  6226. dump_stack();
  6227. }
  6228. #endif
  6229. }
  6230. EXPORT_SYMBOL(__might_sleep);
  6231. #endif
  6232. #ifdef CONFIG_MAGIC_SYSRQ
  6233. static void normalize_task(struct rq *rq, struct task_struct *p)
  6234. {
  6235. int on_rq;
  6236. update_rq_clock(rq);
  6237. on_rq = p->se.on_rq;
  6238. if (on_rq)
  6239. deactivate_task(rq, p, 0);
  6240. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6241. if (on_rq) {
  6242. activate_task(rq, p, 0);
  6243. resched_task(rq->curr);
  6244. }
  6245. }
  6246. void normalize_rt_tasks(void)
  6247. {
  6248. struct task_struct *g, *p;
  6249. unsigned long flags;
  6250. struct rq *rq;
  6251. read_lock_irqsave(&tasklist_lock, flags);
  6252. do_each_thread(g, p) {
  6253. /*
  6254. * Only normalize user tasks:
  6255. */
  6256. if (!p->mm)
  6257. continue;
  6258. p->se.exec_start = 0;
  6259. #ifdef CONFIG_SCHEDSTATS
  6260. p->se.wait_start = 0;
  6261. p->se.sleep_start = 0;
  6262. p->se.block_start = 0;
  6263. #endif
  6264. task_rq(p)->clock = 0;
  6265. if (!rt_task(p)) {
  6266. /*
  6267. * Renice negative nice level userspace
  6268. * tasks back to 0:
  6269. */
  6270. if (TASK_NICE(p) < 0 && p->mm)
  6271. set_user_nice(p, 0);
  6272. continue;
  6273. }
  6274. spin_lock(&p->pi_lock);
  6275. rq = __task_rq_lock(p);
  6276. normalize_task(rq, p);
  6277. __task_rq_unlock(rq);
  6278. spin_unlock(&p->pi_lock);
  6279. } while_each_thread(g, p);
  6280. read_unlock_irqrestore(&tasklist_lock, flags);
  6281. }
  6282. #endif /* CONFIG_MAGIC_SYSRQ */
  6283. #ifdef CONFIG_IA64
  6284. /*
  6285. * These functions are only useful for the IA64 MCA handling.
  6286. *
  6287. * They can only be called when the whole system has been
  6288. * stopped - every CPU needs to be quiescent, and no scheduling
  6289. * activity can take place. Using them for anything else would
  6290. * be a serious bug, and as a result, they aren't even visible
  6291. * under any other configuration.
  6292. */
  6293. /**
  6294. * curr_task - return the current task for a given cpu.
  6295. * @cpu: the processor in question.
  6296. *
  6297. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6298. */
  6299. struct task_struct *curr_task(int cpu)
  6300. {
  6301. return cpu_curr(cpu);
  6302. }
  6303. /**
  6304. * set_curr_task - set the current task for a given cpu.
  6305. * @cpu: the processor in question.
  6306. * @p: the task pointer to set.
  6307. *
  6308. * Description: This function must only be used when non-maskable interrupts
  6309. * are serviced on a separate stack. It allows the architecture to switch the
  6310. * notion of the current task on a cpu in a non-blocking manner. This function
  6311. * must be called with all CPU's synchronized, and interrupts disabled, the
  6312. * and caller must save the original value of the current task (see
  6313. * curr_task() above) and restore that value before reenabling interrupts and
  6314. * re-starting the system.
  6315. *
  6316. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6317. */
  6318. void set_curr_task(int cpu, struct task_struct *p)
  6319. {
  6320. cpu_curr(cpu) = p;
  6321. }
  6322. #endif
  6323. #ifdef CONFIG_GROUP_SCHED
  6324. #ifdef CONFIG_FAIR_GROUP_SCHED
  6325. static void free_fair_sched_group(struct task_group *tg)
  6326. {
  6327. int i;
  6328. for_each_possible_cpu(i) {
  6329. if (tg->cfs_rq)
  6330. kfree(tg->cfs_rq[i]);
  6331. if (tg->se)
  6332. kfree(tg->se[i]);
  6333. }
  6334. kfree(tg->cfs_rq);
  6335. kfree(tg->se);
  6336. }
  6337. static int alloc_fair_sched_group(struct task_group *tg)
  6338. {
  6339. struct cfs_rq *cfs_rq;
  6340. struct sched_entity *se;
  6341. struct rq *rq;
  6342. int i;
  6343. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6344. if (!tg->cfs_rq)
  6345. goto err;
  6346. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6347. if (!tg->se)
  6348. goto err;
  6349. tg->shares = NICE_0_LOAD;
  6350. for_each_possible_cpu(i) {
  6351. rq = cpu_rq(i);
  6352. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6353. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6354. if (!cfs_rq)
  6355. goto err;
  6356. se = kmalloc_node(sizeof(struct sched_entity),
  6357. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6358. if (!se)
  6359. goto err;
  6360. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6361. }
  6362. return 1;
  6363. err:
  6364. return 0;
  6365. }
  6366. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6367. {
  6368. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6369. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6370. }
  6371. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6372. {
  6373. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6374. }
  6375. #else
  6376. static inline void free_fair_sched_group(struct task_group *tg)
  6377. {
  6378. }
  6379. static inline int alloc_fair_sched_group(struct task_group *tg)
  6380. {
  6381. return 1;
  6382. }
  6383. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6384. {
  6385. }
  6386. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6387. {
  6388. }
  6389. #endif
  6390. #ifdef CONFIG_RT_GROUP_SCHED
  6391. static void free_rt_sched_group(struct task_group *tg)
  6392. {
  6393. int i;
  6394. for_each_possible_cpu(i) {
  6395. if (tg->rt_rq)
  6396. kfree(tg->rt_rq[i]);
  6397. if (tg->rt_se)
  6398. kfree(tg->rt_se[i]);
  6399. }
  6400. kfree(tg->rt_rq);
  6401. kfree(tg->rt_se);
  6402. }
  6403. static int alloc_rt_sched_group(struct task_group *tg)
  6404. {
  6405. struct rt_rq *rt_rq;
  6406. struct sched_rt_entity *rt_se;
  6407. struct rq *rq;
  6408. int i;
  6409. tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
  6410. if (!tg->rt_rq)
  6411. goto err;
  6412. tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
  6413. if (!tg->rt_se)
  6414. goto err;
  6415. tg->rt_runtime = 0;
  6416. for_each_possible_cpu(i) {
  6417. rq = cpu_rq(i);
  6418. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6419. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6420. if (!rt_rq)
  6421. goto err;
  6422. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6423. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6424. if (!rt_se)
  6425. goto err;
  6426. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6427. }
  6428. return 1;
  6429. err:
  6430. return 0;
  6431. }
  6432. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6433. {
  6434. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6435. &cpu_rq(cpu)->leaf_rt_rq_list);
  6436. }
  6437. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6438. {
  6439. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6440. }
  6441. #else
  6442. static inline void free_rt_sched_group(struct task_group *tg)
  6443. {
  6444. }
  6445. static inline int alloc_rt_sched_group(struct task_group *tg)
  6446. {
  6447. return 1;
  6448. }
  6449. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6450. {
  6451. }
  6452. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6453. {
  6454. }
  6455. #endif
  6456. static void free_sched_group(struct task_group *tg)
  6457. {
  6458. free_fair_sched_group(tg);
  6459. free_rt_sched_group(tg);
  6460. kfree(tg);
  6461. }
  6462. /* allocate runqueue etc for a new task group */
  6463. struct task_group *sched_create_group(void)
  6464. {
  6465. struct task_group *tg;
  6466. unsigned long flags;
  6467. int i;
  6468. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6469. if (!tg)
  6470. return ERR_PTR(-ENOMEM);
  6471. if (!alloc_fair_sched_group(tg))
  6472. goto err;
  6473. if (!alloc_rt_sched_group(tg))
  6474. goto err;
  6475. spin_lock_irqsave(&task_group_lock, flags);
  6476. for_each_possible_cpu(i) {
  6477. register_fair_sched_group(tg, i);
  6478. register_rt_sched_group(tg, i);
  6479. }
  6480. list_add_rcu(&tg->list, &task_groups);
  6481. spin_unlock_irqrestore(&task_group_lock, flags);
  6482. return tg;
  6483. err:
  6484. free_sched_group(tg);
  6485. return ERR_PTR(-ENOMEM);
  6486. }
  6487. /* rcu callback to free various structures associated with a task group */
  6488. static void free_sched_group_rcu(struct rcu_head *rhp)
  6489. {
  6490. /* now it should be safe to free those cfs_rqs */
  6491. free_sched_group(container_of(rhp, struct task_group, rcu));
  6492. }
  6493. /* Destroy runqueue etc associated with a task group */
  6494. void sched_destroy_group(struct task_group *tg)
  6495. {
  6496. unsigned long flags;
  6497. int i;
  6498. spin_lock_irqsave(&task_group_lock, flags);
  6499. for_each_possible_cpu(i) {
  6500. unregister_fair_sched_group(tg, i);
  6501. unregister_rt_sched_group(tg, i);
  6502. }
  6503. list_del_rcu(&tg->list);
  6504. spin_unlock_irqrestore(&task_group_lock, flags);
  6505. /* wait for possible concurrent references to cfs_rqs complete */
  6506. call_rcu(&tg->rcu, free_sched_group_rcu);
  6507. }
  6508. /* change task's runqueue when it moves between groups.
  6509. * The caller of this function should have put the task in its new group
  6510. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6511. * reflect its new group.
  6512. */
  6513. void sched_move_task(struct task_struct *tsk)
  6514. {
  6515. int on_rq, running;
  6516. unsigned long flags;
  6517. struct rq *rq;
  6518. rq = task_rq_lock(tsk, &flags);
  6519. update_rq_clock(rq);
  6520. running = task_current(rq, tsk);
  6521. on_rq = tsk->se.on_rq;
  6522. if (on_rq)
  6523. dequeue_task(rq, tsk, 0);
  6524. if (unlikely(running))
  6525. tsk->sched_class->put_prev_task(rq, tsk);
  6526. set_task_rq(tsk, task_cpu(tsk));
  6527. #ifdef CONFIG_FAIR_GROUP_SCHED
  6528. if (tsk->sched_class->moved_group)
  6529. tsk->sched_class->moved_group(tsk);
  6530. #endif
  6531. if (unlikely(running))
  6532. tsk->sched_class->set_curr_task(rq);
  6533. if (on_rq)
  6534. enqueue_task(rq, tsk, 0);
  6535. task_rq_unlock(rq, &flags);
  6536. }
  6537. #ifdef CONFIG_FAIR_GROUP_SCHED
  6538. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6539. {
  6540. struct cfs_rq *cfs_rq = se->cfs_rq;
  6541. struct rq *rq = cfs_rq->rq;
  6542. int on_rq;
  6543. spin_lock_irq(&rq->lock);
  6544. on_rq = se->on_rq;
  6545. if (on_rq)
  6546. dequeue_entity(cfs_rq, se, 0);
  6547. se->load.weight = shares;
  6548. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6549. if (on_rq)
  6550. enqueue_entity(cfs_rq, se, 0);
  6551. spin_unlock_irq(&rq->lock);
  6552. }
  6553. static DEFINE_MUTEX(shares_mutex);
  6554. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6555. {
  6556. int i;
  6557. unsigned long flags;
  6558. /*
  6559. * A weight of 0 or 1 can cause arithmetics problems.
  6560. * (The default weight is 1024 - so there's no practical
  6561. * limitation from this.)
  6562. */
  6563. if (shares < 2)
  6564. shares = 2;
  6565. mutex_lock(&shares_mutex);
  6566. if (tg->shares == shares)
  6567. goto done;
  6568. spin_lock_irqsave(&task_group_lock, flags);
  6569. for_each_possible_cpu(i)
  6570. unregister_fair_sched_group(tg, i);
  6571. spin_unlock_irqrestore(&task_group_lock, flags);
  6572. /* wait for any ongoing reference to this group to finish */
  6573. synchronize_sched();
  6574. /*
  6575. * Now we are free to modify the group's share on each cpu
  6576. * w/o tripping rebalance_share or load_balance_fair.
  6577. */
  6578. tg->shares = shares;
  6579. for_each_possible_cpu(i)
  6580. set_se_shares(tg->se[i], shares);
  6581. /*
  6582. * Enable load balance activity on this group, by inserting it back on
  6583. * each cpu's rq->leaf_cfs_rq_list.
  6584. */
  6585. spin_lock_irqsave(&task_group_lock, flags);
  6586. for_each_possible_cpu(i)
  6587. register_fair_sched_group(tg, i);
  6588. spin_unlock_irqrestore(&task_group_lock, flags);
  6589. done:
  6590. mutex_unlock(&shares_mutex);
  6591. return 0;
  6592. }
  6593. unsigned long sched_group_shares(struct task_group *tg)
  6594. {
  6595. return tg->shares;
  6596. }
  6597. #endif
  6598. #ifdef CONFIG_RT_GROUP_SCHED
  6599. /*
  6600. * Ensure that the real time constraints are schedulable.
  6601. */
  6602. static DEFINE_MUTEX(rt_constraints_mutex);
  6603. static unsigned long to_ratio(u64 period, u64 runtime)
  6604. {
  6605. if (runtime == RUNTIME_INF)
  6606. return 1ULL << 16;
  6607. return div64_64(runtime << 16, period);
  6608. }
  6609. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6610. {
  6611. struct task_group *tgi;
  6612. unsigned long total = 0;
  6613. unsigned long global_ratio =
  6614. to_ratio(sysctl_sched_rt_period,
  6615. sysctl_sched_rt_runtime < 0 ?
  6616. RUNTIME_INF : sysctl_sched_rt_runtime);
  6617. rcu_read_lock();
  6618. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6619. if (tgi == tg)
  6620. continue;
  6621. total += to_ratio(period, tgi->rt_runtime);
  6622. }
  6623. rcu_read_unlock();
  6624. return total + to_ratio(period, runtime) < global_ratio;
  6625. }
  6626. /* Must be called with tasklist_lock held */
  6627. static inline int tg_has_rt_tasks(struct task_group *tg)
  6628. {
  6629. struct task_struct *g, *p;
  6630. do_each_thread(g, p) {
  6631. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6632. return 1;
  6633. } while_each_thread(g, p);
  6634. return 0;
  6635. }
  6636. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6637. {
  6638. u64 rt_runtime, rt_period;
  6639. int err = 0;
  6640. rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  6641. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6642. if (rt_runtime_us == -1)
  6643. rt_runtime = RUNTIME_INF;
  6644. mutex_lock(&rt_constraints_mutex);
  6645. read_lock(&tasklist_lock);
  6646. if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
  6647. err = -EBUSY;
  6648. goto unlock;
  6649. }
  6650. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  6651. err = -EINVAL;
  6652. goto unlock;
  6653. }
  6654. tg->rt_runtime = rt_runtime;
  6655. unlock:
  6656. read_unlock(&tasklist_lock);
  6657. mutex_unlock(&rt_constraints_mutex);
  6658. return err;
  6659. }
  6660. long sched_group_rt_runtime(struct task_group *tg)
  6661. {
  6662. u64 rt_runtime_us;
  6663. if (tg->rt_runtime == RUNTIME_INF)
  6664. return -1;
  6665. rt_runtime_us = tg->rt_runtime;
  6666. do_div(rt_runtime_us, NSEC_PER_USEC);
  6667. return rt_runtime_us;
  6668. }
  6669. #endif
  6670. #endif /* CONFIG_GROUP_SCHED */
  6671. #ifdef CONFIG_CGROUP_SCHED
  6672. /* return corresponding task_group object of a cgroup */
  6673. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6674. {
  6675. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6676. struct task_group, css);
  6677. }
  6678. static struct cgroup_subsys_state *
  6679. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6680. {
  6681. struct task_group *tg;
  6682. if (!cgrp->parent) {
  6683. /* This is early initialization for the top cgroup */
  6684. init_task_group.css.cgroup = cgrp;
  6685. return &init_task_group.css;
  6686. }
  6687. /* we support only 1-level deep hierarchical scheduler atm */
  6688. if (cgrp->parent->parent)
  6689. return ERR_PTR(-EINVAL);
  6690. tg = sched_create_group();
  6691. if (IS_ERR(tg))
  6692. return ERR_PTR(-ENOMEM);
  6693. /* Bind the cgroup to task_group object we just created */
  6694. tg->css.cgroup = cgrp;
  6695. return &tg->css;
  6696. }
  6697. static void
  6698. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6699. {
  6700. struct task_group *tg = cgroup_tg(cgrp);
  6701. sched_destroy_group(tg);
  6702. }
  6703. static int
  6704. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6705. struct task_struct *tsk)
  6706. {
  6707. #ifdef CONFIG_RT_GROUP_SCHED
  6708. /* Don't accept realtime tasks when there is no way for them to run */
  6709. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
  6710. return -EINVAL;
  6711. #else
  6712. /* We don't support RT-tasks being in separate groups */
  6713. if (tsk->sched_class != &fair_sched_class)
  6714. return -EINVAL;
  6715. #endif
  6716. return 0;
  6717. }
  6718. static void
  6719. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6720. struct cgroup *old_cont, struct task_struct *tsk)
  6721. {
  6722. sched_move_task(tsk);
  6723. }
  6724. #ifdef CONFIG_FAIR_GROUP_SCHED
  6725. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6726. u64 shareval)
  6727. {
  6728. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6729. }
  6730. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6731. {
  6732. struct task_group *tg = cgroup_tg(cgrp);
  6733. return (u64) tg->shares;
  6734. }
  6735. #endif
  6736. #ifdef CONFIG_RT_GROUP_SCHED
  6737. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6738. struct file *file,
  6739. const char __user *userbuf,
  6740. size_t nbytes, loff_t *unused_ppos)
  6741. {
  6742. char buffer[64];
  6743. int retval = 0;
  6744. s64 val;
  6745. char *end;
  6746. if (!nbytes)
  6747. return -EINVAL;
  6748. if (nbytes >= sizeof(buffer))
  6749. return -E2BIG;
  6750. if (copy_from_user(buffer, userbuf, nbytes))
  6751. return -EFAULT;
  6752. buffer[nbytes] = 0; /* nul-terminate */
  6753. /* strip newline if necessary */
  6754. if (nbytes && (buffer[nbytes-1] == '\n'))
  6755. buffer[nbytes-1] = 0;
  6756. val = simple_strtoll(buffer, &end, 0);
  6757. if (*end)
  6758. return -EINVAL;
  6759. /* Pass to subsystem */
  6760. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6761. if (!retval)
  6762. retval = nbytes;
  6763. return retval;
  6764. }
  6765. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  6766. struct file *file,
  6767. char __user *buf, size_t nbytes,
  6768. loff_t *ppos)
  6769. {
  6770. char tmp[64];
  6771. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  6772. int len = sprintf(tmp, "%ld\n", val);
  6773. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  6774. }
  6775. #endif
  6776. static struct cftype cpu_files[] = {
  6777. #ifdef CONFIG_FAIR_GROUP_SCHED
  6778. {
  6779. .name = "shares",
  6780. .read_uint = cpu_shares_read_uint,
  6781. .write_uint = cpu_shares_write_uint,
  6782. },
  6783. #endif
  6784. #ifdef CONFIG_RT_GROUP_SCHED
  6785. {
  6786. .name = "rt_runtime_us",
  6787. .read = cpu_rt_runtime_read,
  6788. .write = cpu_rt_runtime_write,
  6789. },
  6790. #endif
  6791. };
  6792. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6793. {
  6794. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6795. }
  6796. struct cgroup_subsys cpu_cgroup_subsys = {
  6797. .name = "cpu",
  6798. .create = cpu_cgroup_create,
  6799. .destroy = cpu_cgroup_destroy,
  6800. .can_attach = cpu_cgroup_can_attach,
  6801. .attach = cpu_cgroup_attach,
  6802. .populate = cpu_cgroup_populate,
  6803. .subsys_id = cpu_cgroup_subsys_id,
  6804. .early_init = 1,
  6805. };
  6806. #endif /* CONFIG_CGROUP_SCHED */
  6807. #ifdef CONFIG_CGROUP_CPUACCT
  6808. /*
  6809. * CPU accounting code for task groups.
  6810. *
  6811. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6812. * (balbir@in.ibm.com).
  6813. */
  6814. /* track cpu usage of a group of tasks */
  6815. struct cpuacct {
  6816. struct cgroup_subsys_state css;
  6817. /* cpuusage holds pointer to a u64-type object on every cpu */
  6818. u64 *cpuusage;
  6819. };
  6820. struct cgroup_subsys cpuacct_subsys;
  6821. /* return cpu accounting group corresponding to this container */
  6822. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6823. {
  6824. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6825. struct cpuacct, css);
  6826. }
  6827. /* return cpu accounting group to which this task belongs */
  6828. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6829. {
  6830. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6831. struct cpuacct, css);
  6832. }
  6833. /* create a new cpu accounting group */
  6834. static struct cgroup_subsys_state *cpuacct_create(
  6835. struct cgroup_subsys *ss, struct cgroup *cont)
  6836. {
  6837. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6838. if (!ca)
  6839. return ERR_PTR(-ENOMEM);
  6840. ca->cpuusage = alloc_percpu(u64);
  6841. if (!ca->cpuusage) {
  6842. kfree(ca);
  6843. return ERR_PTR(-ENOMEM);
  6844. }
  6845. return &ca->css;
  6846. }
  6847. /* destroy an existing cpu accounting group */
  6848. static void
  6849. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6850. {
  6851. struct cpuacct *ca = cgroup_ca(cont);
  6852. free_percpu(ca->cpuusage);
  6853. kfree(ca);
  6854. }
  6855. /* return total cpu usage (in nanoseconds) of a group */
  6856. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6857. {
  6858. struct cpuacct *ca = cgroup_ca(cont);
  6859. u64 totalcpuusage = 0;
  6860. int i;
  6861. for_each_possible_cpu(i) {
  6862. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6863. /*
  6864. * Take rq->lock to make 64-bit addition safe on 32-bit
  6865. * platforms.
  6866. */
  6867. spin_lock_irq(&cpu_rq(i)->lock);
  6868. totalcpuusage += *cpuusage;
  6869. spin_unlock_irq(&cpu_rq(i)->lock);
  6870. }
  6871. return totalcpuusage;
  6872. }
  6873. static struct cftype files[] = {
  6874. {
  6875. .name = "usage",
  6876. .read_uint = cpuusage_read,
  6877. },
  6878. };
  6879. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6880. {
  6881. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6882. }
  6883. /*
  6884. * charge this task's execution time to its accounting group.
  6885. *
  6886. * called with rq->lock held.
  6887. */
  6888. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6889. {
  6890. struct cpuacct *ca;
  6891. if (!cpuacct_subsys.active)
  6892. return;
  6893. ca = task_ca(tsk);
  6894. if (ca) {
  6895. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6896. *cpuusage += cputime;
  6897. }
  6898. }
  6899. struct cgroup_subsys cpuacct_subsys = {
  6900. .name = "cpuacct",
  6901. .create = cpuacct_create,
  6902. .destroy = cpuacct_destroy,
  6903. .populate = cpuacct_populate,
  6904. .subsys_id = cpuacct_subsys_id,
  6905. };
  6906. #endif /* CONFIG_CGROUP_CPUACCT */