x86.c 117 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #define CREATE_TRACE_POINTS
  39. #include "trace.h"
  40. #include <asm/uaccess.h>
  41. #include <asm/msr.h>
  42. #include <asm/desc.h>
  43. #include <asm/mtrr.h>
  44. #include <asm/mce.h>
  45. #define MAX_IO_MSRS 256
  46. #define CR0_RESERVED_BITS \
  47. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  48. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  49. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  50. #define CR4_RESERVED_BITS \
  51. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  52. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  53. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  54. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  55. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  56. #define KVM_MAX_MCE_BANKS 32
  57. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  58. /* EFER defaults:
  59. * - enable syscall per default because its emulated by KVM
  60. * - enable LME and LMA per default on 64 bit KVM
  61. */
  62. #ifdef CONFIG_X86_64
  63. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  64. #else
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  66. #endif
  67. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  68. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  69. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  70. struct kvm_cpuid_entry2 __user *entries);
  71. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  72. u32 function, u32 index);
  73. struct kvm_x86_ops *kvm_x86_ops;
  74. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  75. int ignore_msrs = 0;
  76. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  77. struct kvm_stats_debugfs_item debugfs_entries[] = {
  78. { "pf_fixed", VCPU_STAT(pf_fixed) },
  79. { "pf_guest", VCPU_STAT(pf_guest) },
  80. { "tlb_flush", VCPU_STAT(tlb_flush) },
  81. { "invlpg", VCPU_STAT(invlpg) },
  82. { "exits", VCPU_STAT(exits) },
  83. { "io_exits", VCPU_STAT(io_exits) },
  84. { "mmio_exits", VCPU_STAT(mmio_exits) },
  85. { "signal_exits", VCPU_STAT(signal_exits) },
  86. { "irq_window", VCPU_STAT(irq_window_exits) },
  87. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  88. { "halt_exits", VCPU_STAT(halt_exits) },
  89. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  90. { "hypercalls", VCPU_STAT(hypercalls) },
  91. { "request_irq", VCPU_STAT(request_irq_exits) },
  92. { "irq_exits", VCPU_STAT(irq_exits) },
  93. { "host_state_reload", VCPU_STAT(host_state_reload) },
  94. { "efer_reload", VCPU_STAT(efer_reload) },
  95. { "fpu_reload", VCPU_STAT(fpu_reload) },
  96. { "insn_emulation", VCPU_STAT(insn_emulation) },
  97. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  98. { "irq_injections", VCPU_STAT(irq_injections) },
  99. { "nmi_injections", VCPU_STAT(nmi_injections) },
  100. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  101. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  102. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  103. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  104. { "mmu_flooded", VM_STAT(mmu_flooded) },
  105. { "mmu_recycled", VM_STAT(mmu_recycled) },
  106. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  107. { "mmu_unsync", VM_STAT(mmu_unsync) },
  108. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  109. { "largepages", VM_STAT(lpages) },
  110. { NULL }
  111. };
  112. unsigned long segment_base(u16 selector)
  113. {
  114. struct descriptor_table gdt;
  115. struct desc_struct *d;
  116. unsigned long table_base;
  117. unsigned long v;
  118. if (selector == 0)
  119. return 0;
  120. asm("sgdt %0" : "=m"(gdt));
  121. table_base = gdt.base;
  122. if (selector & 4) { /* from ldt */
  123. u16 ldt_selector;
  124. asm("sldt %0" : "=g"(ldt_selector));
  125. table_base = segment_base(ldt_selector);
  126. }
  127. d = (struct desc_struct *)(table_base + (selector & ~7));
  128. v = d->base0 | ((unsigned long)d->base1 << 16) |
  129. ((unsigned long)d->base2 << 24);
  130. #ifdef CONFIG_X86_64
  131. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  132. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  133. #endif
  134. return v;
  135. }
  136. EXPORT_SYMBOL_GPL(segment_base);
  137. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  138. {
  139. if (irqchip_in_kernel(vcpu->kvm))
  140. return vcpu->arch.apic_base;
  141. else
  142. return vcpu->arch.apic_base;
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  145. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  146. {
  147. /* TODO: reserve bits check */
  148. if (irqchip_in_kernel(vcpu->kvm))
  149. kvm_lapic_set_base(vcpu, data);
  150. else
  151. vcpu->arch.apic_base = data;
  152. }
  153. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  154. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  155. {
  156. WARN_ON(vcpu->arch.exception.pending);
  157. vcpu->arch.exception.pending = true;
  158. vcpu->arch.exception.has_error_code = false;
  159. vcpu->arch.exception.nr = nr;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  162. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  163. u32 error_code)
  164. {
  165. ++vcpu->stat.pf_guest;
  166. if (vcpu->arch.exception.pending) {
  167. switch(vcpu->arch.exception.nr) {
  168. case DF_VECTOR:
  169. /* triple fault -> shutdown */
  170. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  171. return;
  172. case PF_VECTOR:
  173. vcpu->arch.exception.nr = DF_VECTOR;
  174. vcpu->arch.exception.error_code = 0;
  175. return;
  176. default:
  177. /* replace previous exception with a new one in a hope
  178. that instruction re-execution will regenerate lost
  179. exception */
  180. vcpu->arch.exception.pending = false;
  181. break;
  182. }
  183. }
  184. vcpu->arch.cr2 = addr;
  185. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  186. }
  187. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  188. {
  189. vcpu->arch.nmi_pending = 1;
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  192. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  193. {
  194. WARN_ON(vcpu->arch.exception.pending);
  195. vcpu->arch.exception.pending = true;
  196. vcpu->arch.exception.has_error_code = true;
  197. vcpu->arch.exception.nr = nr;
  198. vcpu->arch.exception.error_code = error_code;
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  201. static void __queue_exception(struct kvm_vcpu *vcpu)
  202. {
  203. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  204. vcpu->arch.exception.has_error_code,
  205. vcpu->arch.exception.error_code);
  206. }
  207. /*
  208. * Load the pae pdptrs. Return true is they are all valid.
  209. */
  210. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  211. {
  212. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  213. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  214. int i;
  215. int ret;
  216. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  217. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  218. offset * sizeof(u64), sizeof(pdpte));
  219. if (ret < 0) {
  220. ret = 0;
  221. goto out;
  222. }
  223. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  224. if (is_present_gpte(pdpte[i]) &&
  225. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  226. ret = 0;
  227. goto out;
  228. }
  229. }
  230. ret = 1;
  231. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  232. __set_bit(VCPU_EXREG_PDPTR,
  233. (unsigned long *)&vcpu->arch.regs_avail);
  234. __set_bit(VCPU_EXREG_PDPTR,
  235. (unsigned long *)&vcpu->arch.regs_dirty);
  236. out:
  237. return ret;
  238. }
  239. EXPORT_SYMBOL_GPL(load_pdptrs);
  240. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  241. {
  242. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  243. bool changed = true;
  244. int r;
  245. if (is_long_mode(vcpu) || !is_pae(vcpu))
  246. return false;
  247. if (!test_bit(VCPU_EXREG_PDPTR,
  248. (unsigned long *)&vcpu->arch.regs_avail))
  249. return true;
  250. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  251. if (r < 0)
  252. goto out;
  253. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  254. out:
  255. return changed;
  256. }
  257. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  258. {
  259. if (cr0 & CR0_RESERVED_BITS) {
  260. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  261. cr0, vcpu->arch.cr0);
  262. kvm_inject_gp(vcpu, 0);
  263. return;
  264. }
  265. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  266. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  267. kvm_inject_gp(vcpu, 0);
  268. return;
  269. }
  270. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  271. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  272. "and a clear PE flag\n");
  273. kvm_inject_gp(vcpu, 0);
  274. return;
  275. }
  276. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  277. #ifdef CONFIG_X86_64
  278. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  279. int cs_db, cs_l;
  280. if (!is_pae(vcpu)) {
  281. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  282. "in long mode while PAE is disabled\n");
  283. kvm_inject_gp(vcpu, 0);
  284. return;
  285. }
  286. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  287. if (cs_l) {
  288. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  289. "in long mode while CS.L == 1\n");
  290. kvm_inject_gp(vcpu, 0);
  291. return;
  292. }
  293. } else
  294. #endif
  295. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  296. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  297. "reserved bits\n");
  298. kvm_inject_gp(vcpu, 0);
  299. return;
  300. }
  301. }
  302. kvm_x86_ops->set_cr0(vcpu, cr0);
  303. vcpu->arch.cr0 = cr0;
  304. kvm_mmu_reset_context(vcpu);
  305. return;
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  308. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  309. {
  310. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_lmsw);
  313. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  314. {
  315. unsigned long old_cr4 = vcpu->arch.cr4;
  316. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  317. if (cr4 & CR4_RESERVED_BITS) {
  318. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. if (is_long_mode(vcpu)) {
  323. if (!(cr4 & X86_CR4_PAE)) {
  324. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  325. "in long mode\n");
  326. kvm_inject_gp(vcpu, 0);
  327. return;
  328. }
  329. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  330. && ((cr4 ^ old_cr4) & pdptr_bits)
  331. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  332. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  333. kvm_inject_gp(vcpu, 0);
  334. return;
  335. }
  336. if (cr4 & X86_CR4_VMXE) {
  337. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  338. kvm_inject_gp(vcpu, 0);
  339. return;
  340. }
  341. kvm_x86_ops->set_cr4(vcpu, cr4);
  342. vcpu->arch.cr4 = cr4;
  343. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  344. kvm_mmu_reset_context(vcpu);
  345. }
  346. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  347. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  348. {
  349. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  350. kvm_mmu_sync_roots(vcpu);
  351. kvm_mmu_flush_tlb(vcpu);
  352. return;
  353. }
  354. if (is_long_mode(vcpu)) {
  355. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  356. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  357. kvm_inject_gp(vcpu, 0);
  358. return;
  359. }
  360. } else {
  361. if (is_pae(vcpu)) {
  362. if (cr3 & CR3_PAE_RESERVED_BITS) {
  363. printk(KERN_DEBUG
  364. "set_cr3: #GP, reserved bits\n");
  365. kvm_inject_gp(vcpu, 0);
  366. return;
  367. }
  368. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  369. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  370. "reserved bits\n");
  371. kvm_inject_gp(vcpu, 0);
  372. return;
  373. }
  374. }
  375. /*
  376. * We don't check reserved bits in nonpae mode, because
  377. * this isn't enforced, and VMware depends on this.
  378. */
  379. }
  380. /*
  381. * Does the new cr3 value map to physical memory? (Note, we
  382. * catch an invalid cr3 even in real-mode, because it would
  383. * cause trouble later on when we turn on paging anyway.)
  384. *
  385. * A real CPU would silently accept an invalid cr3 and would
  386. * attempt to use it - with largely undefined (and often hard
  387. * to debug) behavior on the guest side.
  388. */
  389. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  390. kvm_inject_gp(vcpu, 0);
  391. else {
  392. vcpu->arch.cr3 = cr3;
  393. vcpu->arch.mmu.new_cr3(vcpu);
  394. }
  395. }
  396. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  397. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  398. {
  399. if (cr8 & CR8_RESERVED_BITS) {
  400. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  401. kvm_inject_gp(vcpu, 0);
  402. return;
  403. }
  404. if (irqchip_in_kernel(vcpu->kvm))
  405. kvm_lapic_set_tpr(vcpu, cr8);
  406. else
  407. vcpu->arch.cr8 = cr8;
  408. }
  409. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  410. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  411. {
  412. if (irqchip_in_kernel(vcpu->kvm))
  413. return kvm_lapic_get_cr8(vcpu);
  414. else
  415. return vcpu->arch.cr8;
  416. }
  417. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  418. static inline u32 bit(int bitno)
  419. {
  420. return 1 << (bitno & 31);
  421. }
  422. /*
  423. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  424. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  425. *
  426. * This list is modified at module load time to reflect the
  427. * capabilities of the host cpu.
  428. */
  429. static u32 msrs_to_save[] = {
  430. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  431. MSR_K6_STAR,
  432. #ifdef CONFIG_X86_64
  433. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  434. #endif
  435. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  436. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  437. };
  438. static unsigned num_msrs_to_save;
  439. static u32 emulated_msrs[] = {
  440. MSR_IA32_MISC_ENABLE,
  441. };
  442. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  443. {
  444. if (efer & efer_reserved_bits) {
  445. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  446. efer);
  447. kvm_inject_gp(vcpu, 0);
  448. return;
  449. }
  450. if (is_paging(vcpu)
  451. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  452. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  453. kvm_inject_gp(vcpu, 0);
  454. return;
  455. }
  456. if (efer & EFER_FFXSR) {
  457. struct kvm_cpuid_entry2 *feat;
  458. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  459. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  460. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  461. kvm_inject_gp(vcpu, 0);
  462. return;
  463. }
  464. }
  465. if (efer & EFER_SVME) {
  466. struct kvm_cpuid_entry2 *feat;
  467. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  468. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  469. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  470. kvm_inject_gp(vcpu, 0);
  471. return;
  472. }
  473. }
  474. kvm_x86_ops->set_efer(vcpu, efer);
  475. efer &= ~EFER_LMA;
  476. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  477. vcpu->arch.shadow_efer = efer;
  478. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  479. kvm_mmu_reset_context(vcpu);
  480. }
  481. void kvm_enable_efer_bits(u64 mask)
  482. {
  483. efer_reserved_bits &= ~mask;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  486. /*
  487. * Writes msr value into into the appropriate "register".
  488. * Returns 0 on success, non-0 otherwise.
  489. * Assumes vcpu_load() was already called.
  490. */
  491. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  492. {
  493. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  494. }
  495. /*
  496. * Adapt set_msr() to msr_io()'s calling convention
  497. */
  498. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  499. {
  500. return kvm_set_msr(vcpu, index, *data);
  501. }
  502. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  503. {
  504. static int version;
  505. struct pvclock_wall_clock wc;
  506. struct timespec now, sys, boot;
  507. if (!wall_clock)
  508. return;
  509. version++;
  510. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  511. /*
  512. * The guest calculates current wall clock time by adding
  513. * system time (updated by kvm_write_guest_time below) to the
  514. * wall clock specified here. guest system time equals host
  515. * system time for us, thus we must fill in host boot time here.
  516. */
  517. now = current_kernel_time();
  518. ktime_get_ts(&sys);
  519. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  520. wc.sec = boot.tv_sec;
  521. wc.nsec = boot.tv_nsec;
  522. wc.version = version;
  523. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  524. version++;
  525. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  526. }
  527. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  528. {
  529. uint32_t quotient, remainder;
  530. /* Don't try to replace with do_div(), this one calculates
  531. * "(dividend << 32) / divisor" */
  532. __asm__ ( "divl %4"
  533. : "=a" (quotient), "=d" (remainder)
  534. : "0" (0), "1" (dividend), "r" (divisor) );
  535. return quotient;
  536. }
  537. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  538. {
  539. uint64_t nsecs = 1000000000LL;
  540. int32_t shift = 0;
  541. uint64_t tps64;
  542. uint32_t tps32;
  543. tps64 = tsc_khz * 1000LL;
  544. while (tps64 > nsecs*2) {
  545. tps64 >>= 1;
  546. shift--;
  547. }
  548. tps32 = (uint32_t)tps64;
  549. while (tps32 <= (uint32_t)nsecs) {
  550. tps32 <<= 1;
  551. shift++;
  552. }
  553. hv_clock->tsc_shift = shift;
  554. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  555. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  556. __func__, tsc_khz, hv_clock->tsc_shift,
  557. hv_clock->tsc_to_system_mul);
  558. }
  559. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  560. static void kvm_write_guest_time(struct kvm_vcpu *v)
  561. {
  562. struct timespec ts;
  563. unsigned long flags;
  564. struct kvm_vcpu_arch *vcpu = &v->arch;
  565. void *shared_kaddr;
  566. unsigned long this_tsc_khz;
  567. if ((!vcpu->time_page))
  568. return;
  569. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  570. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  571. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  572. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  573. }
  574. put_cpu_var(cpu_tsc_khz);
  575. /* Keep irq disabled to prevent changes to the clock */
  576. local_irq_save(flags);
  577. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  578. ktime_get_ts(&ts);
  579. local_irq_restore(flags);
  580. /* With all the info we got, fill in the values */
  581. vcpu->hv_clock.system_time = ts.tv_nsec +
  582. (NSEC_PER_SEC * (u64)ts.tv_sec);
  583. /*
  584. * The interface expects us to write an even number signaling that the
  585. * update is finished. Since the guest won't see the intermediate
  586. * state, we just increase by 2 at the end.
  587. */
  588. vcpu->hv_clock.version += 2;
  589. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  590. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  591. sizeof(vcpu->hv_clock));
  592. kunmap_atomic(shared_kaddr, KM_USER0);
  593. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  594. }
  595. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  596. {
  597. struct kvm_vcpu_arch *vcpu = &v->arch;
  598. if (!vcpu->time_page)
  599. return 0;
  600. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  601. return 1;
  602. }
  603. static bool msr_mtrr_valid(unsigned msr)
  604. {
  605. switch (msr) {
  606. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  607. case MSR_MTRRfix64K_00000:
  608. case MSR_MTRRfix16K_80000:
  609. case MSR_MTRRfix16K_A0000:
  610. case MSR_MTRRfix4K_C0000:
  611. case MSR_MTRRfix4K_C8000:
  612. case MSR_MTRRfix4K_D0000:
  613. case MSR_MTRRfix4K_D8000:
  614. case MSR_MTRRfix4K_E0000:
  615. case MSR_MTRRfix4K_E8000:
  616. case MSR_MTRRfix4K_F0000:
  617. case MSR_MTRRfix4K_F8000:
  618. case MSR_MTRRdefType:
  619. case MSR_IA32_CR_PAT:
  620. return true;
  621. case 0x2f8:
  622. return true;
  623. }
  624. return false;
  625. }
  626. static bool valid_pat_type(unsigned t)
  627. {
  628. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  629. }
  630. static bool valid_mtrr_type(unsigned t)
  631. {
  632. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  633. }
  634. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  635. {
  636. int i;
  637. if (!msr_mtrr_valid(msr))
  638. return false;
  639. if (msr == MSR_IA32_CR_PAT) {
  640. for (i = 0; i < 8; i++)
  641. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  642. return false;
  643. return true;
  644. } else if (msr == MSR_MTRRdefType) {
  645. if (data & ~0xcff)
  646. return false;
  647. return valid_mtrr_type(data & 0xff);
  648. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  649. for (i = 0; i < 8 ; i++)
  650. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  651. return false;
  652. return true;
  653. }
  654. /* variable MTRRs */
  655. return valid_mtrr_type(data & 0xff);
  656. }
  657. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  658. {
  659. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  660. if (!mtrr_valid(vcpu, msr, data))
  661. return 1;
  662. if (msr == MSR_MTRRdefType) {
  663. vcpu->arch.mtrr_state.def_type = data;
  664. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  665. } else if (msr == MSR_MTRRfix64K_00000)
  666. p[0] = data;
  667. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  668. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  669. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  670. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  671. else if (msr == MSR_IA32_CR_PAT)
  672. vcpu->arch.pat = data;
  673. else { /* Variable MTRRs */
  674. int idx, is_mtrr_mask;
  675. u64 *pt;
  676. idx = (msr - 0x200) / 2;
  677. is_mtrr_mask = msr - 0x200 - 2 * idx;
  678. if (!is_mtrr_mask)
  679. pt =
  680. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  681. else
  682. pt =
  683. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  684. *pt = data;
  685. }
  686. kvm_mmu_reset_context(vcpu);
  687. return 0;
  688. }
  689. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  690. {
  691. u64 mcg_cap = vcpu->arch.mcg_cap;
  692. unsigned bank_num = mcg_cap & 0xff;
  693. switch (msr) {
  694. case MSR_IA32_MCG_STATUS:
  695. vcpu->arch.mcg_status = data;
  696. break;
  697. case MSR_IA32_MCG_CTL:
  698. if (!(mcg_cap & MCG_CTL_P))
  699. return 1;
  700. if (data != 0 && data != ~(u64)0)
  701. return -1;
  702. vcpu->arch.mcg_ctl = data;
  703. break;
  704. default:
  705. if (msr >= MSR_IA32_MC0_CTL &&
  706. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  707. u32 offset = msr - MSR_IA32_MC0_CTL;
  708. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  709. if ((offset & 0x3) == 0 &&
  710. data != 0 && data != ~(u64)0)
  711. return -1;
  712. vcpu->arch.mce_banks[offset] = data;
  713. break;
  714. }
  715. return 1;
  716. }
  717. return 0;
  718. }
  719. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  720. {
  721. switch (msr) {
  722. case MSR_EFER:
  723. set_efer(vcpu, data);
  724. break;
  725. case MSR_K7_HWCR:
  726. data &= ~(u64)0x40; /* ignore flush filter disable */
  727. if (data != 0) {
  728. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  729. data);
  730. return 1;
  731. }
  732. break;
  733. case MSR_IA32_DEBUGCTLMSR:
  734. if (!data) {
  735. /* We support the non-activated case already */
  736. break;
  737. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  738. /* Values other than LBR and BTF are vendor-specific,
  739. thus reserved and should throw a #GP */
  740. return 1;
  741. }
  742. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  743. __func__, data);
  744. break;
  745. case MSR_IA32_UCODE_REV:
  746. case MSR_IA32_UCODE_WRITE:
  747. case MSR_VM_HSAVE_PA:
  748. break;
  749. case 0x200 ... 0x2ff:
  750. return set_msr_mtrr(vcpu, msr, data);
  751. case MSR_IA32_APICBASE:
  752. kvm_set_apic_base(vcpu, data);
  753. break;
  754. case MSR_IA32_MISC_ENABLE:
  755. vcpu->arch.ia32_misc_enable_msr = data;
  756. break;
  757. case MSR_KVM_WALL_CLOCK:
  758. vcpu->kvm->arch.wall_clock = data;
  759. kvm_write_wall_clock(vcpu->kvm, data);
  760. break;
  761. case MSR_KVM_SYSTEM_TIME: {
  762. if (vcpu->arch.time_page) {
  763. kvm_release_page_dirty(vcpu->arch.time_page);
  764. vcpu->arch.time_page = NULL;
  765. }
  766. vcpu->arch.time = data;
  767. /* we verify if the enable bit is set... */
  768. if (!(data & 1))
  769. break;
  770. /* ...but clean it before doing the actual write */
  771. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  772. vcpu->arch.time_page =
  773. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  774. if (is_error_page(vcpu->arch.time_page)) {
  775. kvm_release_page_clean(vcpu->arch.time_page);
  776. vcpu->arch.time_page = NULL;
  777. }
  778. kvm_request_guest_time_update(vcpu);
  779. break;
  780. }
  781. case MSR_IA32_MCG_CTL:
  782. case MSR_IA32_MCG_STATUS:
  783. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  784. return set_msr_mce(vcpu, msr, data);
  785. /* Performance counters are not protected by a CPUID bit,
  786. * so we should check all of them in the generic path for the sake of
  787. * cross vendor migration.
  788. * Writing a zero into the event select MSRs disables them,
  789. * which we perfectly emulate ;-). Any other value should be at least
  790. * reported, some guests depend on them.
  791. */
  792. case MSR_P6_EVNTSEL0:
  793. case MSR_P6_EVNTSEL1:
  794. case MSR_K7_EVNTSEL0:
  795. case MSR_K7_EVNTSEL1:
  796. case MSR_K7_EVNTSEL2:
  797. case MSR_K7_EVNTSEL3:
  798. if (data != 0)
  799. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  800. "0x%x data 0x%llx\n", msr, data);
  801. break;
  802. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  803. * so we ignore writes to make it happy.
  804. */
  805. case MSR_P6_PERFCTR0:
  806. case MSR_P6_PERFCTR1:
  807. case MSR_K7_PERFCTR0:
  808. case MSR_K7_PERFCTR1:
  809. case MSR_K7_PERFCTR2:
  810. case MSR_K7_PERFCTR3:
  811. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  812. "0x%x data 0x%llx\n", msr, data);
  813. break;
  814. default:
  815. if (!ignore_msrs) {
  816. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  817. msr, data);
  818. return 1;
  819. } else {
  820. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  821. msr, data);
  822. break;
  823. }
  824. }
  825. return 0;
  826. }
  827. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  828. /*
  829. * Reads an msr value (of 'msr_index') into 'pdata'.
  830. * Returns 0 on success, non-0 otherwise.
  831. * Assumes vcpu_load() was already called.
  832. */
  833. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  834. {
  835. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  836. }
  837. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  838. {
  839. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  840. if (!msr_mtrr_valid(msr))
  841. return 1;
  842. if (msr == MSR_MTRRdefType)
  843. *pdata = vcpu->arch.mtrr_state.def_type +
  844. (vcpu->arch.mtrr_state.enabled << 10);
  845. else if (msr == MSR_MTRRfix64K_00000)
  846. *pdata = p[0];
  847. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  848. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  849. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  850. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  851. else if (msr == MSR_IA32_CR_PAT)
  852. *pdata = vcpu->arch.pat;
  853. else { /* Variable MTRRs */
  854. int idx, is_mtrr_mask;
  855. u64 *pt;
  856. idx = (msr - 0x200) / 2;
  857. is_mtrr_mask = msr - 0x200 - 2 * idx;
  858. if (!is_mtrr_mask)
  859. pt =
  860. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  861. else
  862. pt =
  863. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  864. *pdata = *pt;
  865. }
  866. return 0;
  867. }
  868. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  869. {
  870. u64 data;
  871. u64 mcg_cap = vcpu->arch.mcg_cap;
  872. unsigned bank_num = mcg_cap & 0xff;
  873. switch (msr) {
  874. case MSR_IA32_P5_MC_ADDR:
  875. case MSR_IA32_P5_MC_TYPE:
  876. data = 0;
  877. break;
  878. case MSR_IA32_MCG_CAP:
  879. data = vcpu->arch.mcg_cap;
  880. break;
  881. case MSR_IA32_MCG_CTL:
  882. if (!(mcg_cap & MCG_CTL_P))
  883. return 1;
  884. data = vcpu->arch.mcg_ctl;
  885. break;
  886. case MSR_IA32_MCG_STATUS:
  887. data = vcpu->arch.mcg_status;
  888. break;
  889. default:
  890. if (msr >= MSR_IA32_MC0_CTL &&
  891. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  892. u32 offset = msr - MSR_IA32_MC0_CTL;
  893. data = vcpu->arch.mce_banks[offset];
  894. break;
  895. }
  896. return 1;
  897. }
  898. *pdata = data;
  899. return 0;
  900. }
  901. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  902. {
  903. u64 data;
  904. switch (msr) {
  905. case MSR_IA32_PLATFORM_ID:
  906. case MSR_IA32_UCODE_REV:
  907. case MSR_IA32_EBL_CR_POWERON:
  908. case MSR_IA32_DEBUGCTLMSR:
  909. case MSR_IA32_LASTBRANCHFROMIP:
  910. case MSR_IA32_LASTBRANCHTOIP:
  911. case MSR_IA32_LASTINTFROMIP:
  912. case MSR_IA32_LASTINTTOIP:
  913. case MSR_K8_SYSCFG:
  914. case MSR_K7_HWCR:
  915. case MSR_VM_HSAVE_PA:
  916. case MSR_P6_EVNTSEL0:
  917. case MSR_P6_EVNTSEL1:
  918. case MSR_K7_EVNTSEL0:
  919. case MSR_K8_INT_PENDING_MSG:
  920. data = 0;
  921. break;
  922. case MSR_MTRRcap:
  923. data = 0x500 | KVM_NR_VAR_MTRR;
  924. break;
  925. case 0x200 ... 0x2ff:
  926. return get_msr_mtrr(vcpu, msr, pdata);
  927. case 0xcd: /* fsb frequency */
  928. data = 3;
  929. break;
  930. case MSR_IA32_APICBASE:
  931. data = kvm_get_apic_base(vcpu);
  932. break;
  933. case MSR_IA32_MISC_ENABLE:
  934. data = vcpu->arch.ia32_misc_enable_msr;
  935. break;
  936. case MSR_IA32_PERF_STATUS:
  937. /* TSC increment by tick */
  938. data = 1000ULL;
  939. /* CPU multiplier */
  940. data |= (((uint64_t)4ULL) << 40);
  941. break;
  942. case MSR_EFER:
  943. data = vcpu->arch.shadow_efer;
  944. break;
  945. case MSR_KVM_WALL_CLOCK:
  946. data = vcpu->kvm->arch.wall_clock;
  947. break;
  948. case MSR_KVM_SYSTEM_TIME:
  949. data = vcpu->arch.time;
  950. break;
  951. case MSR_IA32_P5_MC_ADDR:
  952. case MSR_IA32_P5_MC_TYPE:
  953. case MSR_IA32_MCG_CAP:
  954. case MSR_IA32_MCG_CTL:
  955. case MSR_IA32_MCG_STATUS:
  956. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  957. return get_msr_mce(vcpu, msr, pdata);
  958. default:
  959. if (!ignore_msrs) {
  960. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  961. return 1;
  962. } else {
  963. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  964. data = 0;
  965. }
  966. break;
  967. }
  968. *pdata = data;
  969. return 0;
  970. }
  971. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  972. /*
  973. * Read or write a bunch of msrs. All parameters are kernel addresses.
  974. *
  975. * @return number of msrs set successfully.
  976. */
  977. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  978. struct kvm_msr_entry *entries,
  979. int (*do_msr)(struct kvm_vcpu *vcpu,
  980. unsigned index, u64 *data))
  981. {
  982. int i;
  983. vcpu_load(vcpu);
  984. down_read(&vcpu->kvm->slots_lock);
  985. for (i = 0; i < msrs->nmsrs; ++i)
  986. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  987. break;
  988. up_read(&vcpu->kvm->slots_lock);
  989. vcpu_put(vcpu);
  990. return i;
  991. }
  992. /*
  993. * Read or write a bunch of msrs. Parameters are user addresses.
  994. *
  995. * @return number of msrs set successfully.
  996. */
  997. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  998. int (*do_msr)(struct kvm_vcpu *vcpu,
  999. unsigned index, u64 *data),
  1000. int writeback)
  1001. {
  1002. struct kvm_msrs msrs;
  1003. struct kvm_msr_entry *entries;
  1004. int r, n;
  1005. unsigned size;
  1006. r = -EFAULT;
  1007. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1008. goto out;
  1009. r = -E2BIG;
  1010. if (msrs.nmsrs >= MAX_IO_MSRS)
  1011. goto out;
  1012. r = -ENOMEM;
  1013. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1014. entries = vmalloc(size);
  1015. if (!entries)
  1016. goto out;
  1017. r = -EFAULT;
  1018. if (copy_from_user(entries, user_msrs->entries, size))
  1019. goto out_free;
  1020. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1021. if (r < 0)
  1022. goto out_free;
  1023. r = -EFAULT;
  1024. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1025. goto out_free;
  1026. r = n;
  1027. out_free:
  1028. vfree(entries);
  1029. out:
  1030. return r;
  1031. }
  1032. int kvm_dev_ioctl_check_extension(long ext)
  1033. {
  1034. int r;
  1035. switch (ext) {
  1036. case KVM_CAP_IRQCHIP:
  1037. case KVM_CAP_HLT:
  1038. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1039. case KVM_CAP_SET_TSS_ADDR:
  1040. case KVM_CAP_EXT_CPUID:
  1041. case KVM_CAP_CLOCKSOURCE:
  1042. case KVM_CAP_PIT:
  1043. case KVM_CAP_NOP_IO_DELAY:
  1044. case KVM_CAP_MP_STATE:
  1045. case KVM_CAP_SYNC_MMU:
  1046. case KVM_CAP_REINJECT_CONTROL:
  1047. case KVM_CAP_IRQ_INJECT_STATUS:
  1048. case KVM_CAP_ASSIGN_DEV_IRQ:
  1049. case KVM_CAP_IRQFD:
  1050. case KVM_CAP_PIT2:
  1051. r = 1;
  1052. break;
  1053. case KVM_CAP_COALESCED_MMIO:
  1054. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1055. break;
  1056. case KVM_CAP_VAPIC:
  1057. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1058. break;
  1059. case KVM_CAP_NR_VCPUS:
  1060. r = KVM_MAX_VCPUS;
  1061. break;
  1062. case KVM_CAP_NR_MEMSLOTS:
  1063. r = KVM_MEMORY_SLOTS;
  1064. break;
  1065. case KVM_CAP_PV_MMU:
  1066. r = !tdp_enabled;
  1067. break;
  1068. case KVM_CAP_IOMMU:
  1069. r = iommu_found();
  1070. break;
  1071. case KVM_CAP_MCE:
  1072. r = KVM_MAX_MCE_BANKS;
  1073. break;
  1074. default:
  1075. r = 0;
  1076. break;
  1077. }
  1078. return r;
  1079. }
  1080. long kvm_arch_dev_ioctl(struct file *filp,
  1081. unsigned int ioctl, unsigned long arg)
  1082. {
  1083. void __user *argp = (void __user *)arg;
  1084. long r;
  1085. switch (ioctl) {
  1086. case KVM_GET_MSR_INDEX_LIST: {
  1087. struct kvm_msr_list __user *user_msr_list = argp;
  1088. struct kvm_msr_list msr_list;
  1089. unsigned n;
  1090. r = -EFAULT;
  1091. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1092. goto out;
  1093. n = msr_list.nmsrs;
  1094. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1095. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1096. goto out;
  1097. r = -E2BIG;
  1098. if (n < msr_list.nmsrs)
  1099. goto out;
  1100. r = -EFAULT;
  1101. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1102. num_msrs_to_save * sizeof(u32)))
  1103. goto out;
  1104. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1105. &emulated_msrs,
  1106. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1107. goto out;
  1108. r = 0;
  1109. break;
  1110. }
  1111. case KVM_GET_SUPPORTED_CPUID: {
  1112. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1113. struct kvm_cpuid2 cpuid;
  1114. r = -EFAULT;
  1115. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1116. goto out;
  1117. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1118. cpuid_arg->entries);
  1119. if (r)
  1120. goto out;
  1121. r = -EFAULT;
  1122. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1123. goto out;
  1124. r = 0;
  1125. break;
  1126. }
  1127. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1128. u64 mce_cap;
  1129. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1130. r = -EFAULT;
  1131. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1132. goto out;
  1133. r = 0;
  1134. break;
  1135. }
  1136. default:
  1137. r = -EINVAL;
  1138. }
  1139. out:
  1140. return r;
  1141. }
  1142. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1143. {
  1144. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1145. kvm_request_guest_time_update(vcpu);
  1146. }
  1147. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1148. {
  1149. kvm_x86_ops->vcpu_put(vcpu);
  1150. kvm_put_guest_fpu(vcpu);
  1151. }
  1152. static int is_efer_nx(void)
  1153. {
  1154. unsigned long long efer = 0;
  1155. rdmsrl_safe(MSR_EFER, &efer);
  1156. return efer & EFER_NX;
  1157. }
  1158. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1159. {
  1160. int i;
  1161. struct kvm_cpuid_entry2 *e, *entry;
  1162. entry = NULL;
  1163. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1164. e = &vcpu->arch.cpuid_entries[i];
  1165. if (e->function == 0x80000001) {
  1166. entry = e;
  1167. break;
  1168. }
  1169. }
  1170. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1171. entry->edx &= ~(1 << 20);
  1172. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1173. }
  1174. }
  1175. /* when an old userspace process fills a new kernel module */
  1176. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1177. struct kvm_cpuid *cpuid,
  1178. struct kvm_cpuid_entry __user *entries)
  1179. {
  1180. int r, i;
  1181. struct kvm_cpuid_entry *cpuid_entries;
  1182. r = -E2BIG;
  1183. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1184. goto out;
  1185. r = -ENOMEM;
  1186. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1187. if (!cpuid_entries)
  1188. goto out;
  1189. r = -EFAULT;
  1190. if (copy_from_user(cpuid_entries, entries,
  1191. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1192. goto out_free;
  1193. for (i = 0; i < cpuid->nent; i++) {
  1194. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1195. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1196. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1197. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1198. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1199. vcpu->arch.cpuid_entries[i].index = 0;
  1200. vcpu->arch.cpuid_entries[i].flags = 0;
  1201. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1202. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1203. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1204. }
  1205. vcpu->arch.cpuid_nent = cpuid->nent;
  1206. cpuid_fix_nx_cap(vcpu);
  1207. r = 0;
  1208. out_free:
  1209. vfree(cpuid_entries);
  1210. out:
  1211. return r;
  1212. }
  1213. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1214. struct kvm_cpuid2 *cpuid,
  1215. struct kvm_cpuid_entry2 __user *entries)
  1216. {
  1217. int r;
  1218. r = -E2BIG;
  1219. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1220. goto out;
  1221. r = -EFAULT;
  1222. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1223. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1224. goto out;
  1225. vcpu->arch.cpuid_nent = cpuid->nent;
  1226. return 0;
  1227. out:
  1228. return r;
  1229. }
  1230. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1231. struct kvm_cpuid2 *cpuid,
  1232. struct kvm_cpuid_entry2 __user *entries)
  1233. {
  1234. int r;
  1235. r = -E2BIG;
  1236. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1237. goto out;
  1238. r = -EFAULT;
  1239. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1240. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1241. goto out;
  1242. return 0;
  1243. out:
  1244. cpuid->nent = vcpu->arch.cpuid_nent;
  1245. return r;
  1246. }
  1247. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1248. u32 index)
  1249. {
  1250. entry->function = function;
  1251. entry->index = index;
  1252. cpuid_count(entry->function, entry->index,
  1253. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1254. entry->flags = 0;
  1255. }
  1256. #define F(x) bit(X86_FEATURE_##x)
  1257. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1258. u32 index, int *nent, int maxnent)
  1259. {
  1260. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1261. #ifdef CONFIG_X86_64
  1262. unsigned f_lm = F(LM);
  1263. #else
  1264. unsigned f_lm = 0;
  1265. #endif
  1266. /* cpuid 1.edx */
  1267. const u32 kvm_supported_word0_x86_features =
  1268. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1269. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1270. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1271. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1272. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1273. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1274. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1275. 0 /* HTT, TM, Reserved, PBE */;
  1276. /* cpuid 0x80000001.edx */
  1277. const u32 kvm_supported_word1_x86_features =
  1278. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1279. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1280. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1281. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1282. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1283. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1284. F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
  1285. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1286. /* cpuid 1.ecx */
  1287. const u32 kvm_supported_word4_x86_features =
  1288. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1289. 0 /* DS-CPL, VMX, SMX, EST */ |
  1290. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1291. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1292. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1293. F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
  1294. 0 /* Reserved, XSAVE, OSXSAVE */;
  1295. /* cpuid 0x80000001.ecx */
  1296. const u32 kvm_supported_word6_x86_features =
  1297. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1298. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1299. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1300. 0 /* SKINIT */ | 0 /* WDT */;
  1301. /* all calls to cpuid_count() should be made on the same cpu */
  1302. get_cpu();
  1303. do_cpuid_1_ent(entry, function, index);
  1304. ++*nent;
  1305. switch (function) {
  1306. case 0:
  1307. entry->eax = min(entry->eax, (u32)0xb);
  1308. break;
  1309. case 1:
  1310. entry->edx &= kvm_supported_word0_x86_features;
  1311. entry->ecx &= kvm_supported_word4_x86_features;
  1312. break;
  1313. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1314. * may return different values. This forces us to get_cpu() before
  1315. * issuing the first command, and also to emulate this annoying behavior
  1316. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1317. case 2: {
  1318. int t, times = entry->eax & 0xff;
  1319. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1320. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1321. for (t = 1; t < times && *nent < maxnent; ++t) {
  1322. do_cpuid_1_ent(&entry[t], function, 0);
  1323. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1324. ++*nent;
  1325. }
  1326. break;
  1327. }
  1328. /* function 4 and 0xb have additional index. */
  1329. case 4: {
  1330. int i, cache_type;
  1331. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1332. /* read more entries until cache_type is zero */
  1333. for (i = 1; *nent < maxnent; ++i) {
  1334. cache_type = entry[i - 1].eax & 0x1f;
  1335. if (!cache_type)
  1336. break;
  1337. do_cpuid_1_ent(&entry[i], function, i);
  1338. entry[i].flags |=
  1339. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1340. ++*nent;
  1341. }
  1342. break;
  1343. }
  1344. case 0xb: {
  1345. int i, level_type;
  1346. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1347. /* read more entries until level_type is zero */
  1348. for (i = 1; *nent < maxnent; ++i) {
  1349. level_type = entry[i - 1].ecx & 0xff00;
  1350. if (!level_type)
  1351. break;
  1352. do_cpuid_1_ent(&entry[i], function, i);
  1353. entry[i].flags |=
  1354. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1355. ++*nent;
  1356. }
  1357. break;
  1358. }
  1359. case 0x80000000:
  1360. entry->eax = min(entry->eax, 0x8000001a);
  1361. break;
  1362. case 0x80000001:
  1363. entry->edx &= kvm_supported_word1_x86_features;
  1364. entry->ecx &= kvm_supported_word6_x86_features;
  1365. break;
  1366. }
  1367. put_cpu();
  1368. }
  1369. #undef F
  1370. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1371. struct kvm_cpuid_entry2 __user *entries)
  1372. {
  1373. struct kvm_cpuid_entry2 *cpuid_entries;
  1374. int limit, nent = 0, r = -E2BIG;
  1375. u32 func;
  1376. if (cpuid->nent < 1)
  1377. goto out;
  1378. r = -ENOMEM;
  1379. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1380. if (!cpuid_entries)
  1381. goto out;
  1382. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1383. limit = cpuid_entries[0].eax;
  1384. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1385. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1386. &nent, cpuid->nent);
  1387. r = -E2BIG;
  1388. if (nent >= cpuid->nent)
  1389. goto out_free;
  1390. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1391. limit = cpuid_entries[nent - 1].eax;
  1392. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1393. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1394. &nent, cpuid->nent);
  1395. r = -E2BIG;
  1396. if (nent >= cpuid->nent)
  1397. goto out_free;
  1398. r = -EFAULT;
  1399. if (copy_to_user(entries, cpuid_entries,
  1400. nent * sizeof(struct kvm_cpuid_entry2)))
  1401. goto out_free;
  1402. cpuid->nent = nent;
  1403. r = 0;
  1404. out_free:
  1405. vfree(cpuid_entries);
  1406. out:
  1407. return r;
  1408. }
  1409. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1410. struct kvm_lapic_state *s)
  1411. {
  1412. vcpu_load(vcpu);
  1413. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1414. vcpu_put(vcpu);
  1415. return 0;
  1416. }
  1417. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1418. struct kvm_lapic_state *s)
  1419. {
  1420. vcpu_load(vcpu);
  1421. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1422. kvm_apic_post_state_restore(vcpu);
  1423. vcpu_put(vcpu);
  1424. return 0;
  1425. }
  1426. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1427. struct kvm_interrupt *irq)
  1428. {
  1429. if (irq->irq < 0 || irq->irq >= 256)
  1430. return -EINVAL;
  1431. if (irqchip_in_kernel(vcpu->kvm))
  1432. return -ENXIO;
  1433. vcpu_load(vcpu);
  1434. kvm_queue_interrupt(vcpu, irq->irq, false);
  1435. vcpu_put(vcpu);
  1436. return 0;
  1437. }
  1438. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1439. {
  1440. vcpu_load(vcpu);
  1441. kvm_inject_nmi(vcpu);
  1442. vcpu_put(vcpu);
  1443. return 0;
  1444. }
  1445. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1446. struct kvm_tpr_access_ctl *tac)
  1447. {
  1448. if (tac->flags)
  1449. return -EINVAL;
  1450. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1451. return 0;
  1452. }
  1453. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1454. u64 mcg_cap)
  1455. {
  1456. int r;
  1457. unsigned bank_num = mcg_cap & 0xff, bank;
  1458. r = -EINVAL;
  1459. if (!bank_num)
  1460. goto out;
  1461. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1462. goto out;
  1463. r = 0;
  1464. vcpu->arch.mcg_cap = mcg_cap;
  1465. /* Init IA32_MCG_CTL to all 1s */
  1466. if (mcg_cap & MCG_CTL_P)
  1467. vcpu->arch.mcg_ctl = ~(u64)0;
  1468. /* Init IA32_MCi_CTL to all 1s */
  1469. for (bank = 0; bank < bank_num; bank++)
  1470. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1471. out:
  1472. return r;
  1473. }
  1474. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1475. struct kvm_x86_mce *mce)
  1476. {
  1477. u64 mcg_cap = vcpu->arch.mcg_cap;
  1478. unsigned bank_num = mcg_cap & 0xff;
  1479. u64 *banks = vcpu->arch.mce_banks;
  1480. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1481. return -EINVAL;
  1482. /*
  1483. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1484. * reporting is disabled
  1485. */
  1486. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1487. vcpu->arch.mcg_ctl != ~(u64)0)
  1488. return 0;
  1489. banks += 4 * mce->bank;
  1490. /*
  1491. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1492. * reporting is disabled for the bank
  1493. */
  1494. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1495. return 0;
  1496. if (mce->status & MCI_STATUS_UC) {
  1497. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1498. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1499. printk(KERN_DEBUG "kvm: set_mce: "
  1500. "injects mce exception while "
  1501. "previous one is in progress!\n");
  1502. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1503. return 0;
  1504. }
  1505. if (banks[1] & MCI_STATUS_VAL)
  1506. mce->status |= MCI_STATUS_OVER;
  1507. banks[2] = mce->addr;
  1508. banks[3] = mce->misc;
  1509. vcpu->arch.mcg_status = mce->mcg_status;
  1510. banks[1] = mce->status;
  1511. kvm_queue_exception(vcpu, MC_VECTOR);
  1512. } else if (!(banks[1] & MCI_STATUS_VAL)
  1513. || !(banks[1] & MCI_STATUS_UC)) {
  1514. if (banks[1] & MCI_STATUS_VAL)
  1515. mce->status |= MCI_STATUS_OVER;
  1516. banks[2] = mce->addr;
  1517. banks[3] = mce->misc;
  1518. banks[1] = mce->status;
  1519. } else
  1520. banks[1] |= MCI_STATUS_OVER;
  1521. return 0;
  1522. }
  1523. long kvm_arch_vcpu_ioctl(struct file *filp,
  1524. unsigned int ioctl, unsigned long arg)
  1525. {
  1526. struct kvm_vcpu *vcpu = filp->private_data;
  1527. void __user *argp = (void __user *)arg;
  1528. int r;
  1529. struct kvm_lapic_state *lapic = NULL;
  1530. switch (ioctl) {
  1531. case KVM_GET_LAPIC: {
  1532. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1533. r = -ENOMEM;
  1534. if (!lapic)
  1535. goto out;
  1536. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1537. if (r)
  1538. goto out;
  1539. r = -EFAULT;
  1540. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1541. goto out;
  1542. r = 0;
  1543. break;
  1544. }
  1545. case KVM_SET_LAPIC: {
  1546. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1547. r = -ENOMEM;
  1548. if (!lapic)
  1549. goto out;
  1550. r = -EFAULT;
  1551. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1552. goto out;
  1553. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1554. if (r)
  1555. goto out;
  1556. r = 0;
  1557. break;
  1558. }
  1559. case KVM_INTERRUPT: {
  1560. struct kvm_interrupt irq;
  1561. r = -EFAULT;
  1562. if (copy_from_user(&irq, argp, sizeof irq))
  1563. goto out;
  1564. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1565. if (r)
  1566. goto out;
  1567. r = 0;
  1568. break;
  1569. }
  1570. case KVM_NMI: {
  1571. r = kvm_vcpu_ioctl_nmi(vcpu);
  1572. if (r)
  1573. goto out;
  1574. r = 0;
  1575. break;
  1576. }
  1577. case KVM_SET_CPUID: {
  1578. struct kvm_cpuid __user *cpuid_arg = argp;
  1579. struct kvm_cpuid cpuid;
  1580. r = -EFAULT;
  1581. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1582. goto out;
  1583. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1584. if (r)
  1585. goto out;
  1586. break;
  1587. }
  1588. case KVM_SET_CPUID2: {
  1589. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1590. struct kvm_cpuid2 cpuid;
  1591. r = -EFAULT;
  1592. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1593. goto out;
  1594. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1595. cpuid_arg->entries);
  1596. if (r)
  1597. goto out;
  1598. break;
  1599. }
  1600. case KVM_GET_CPUID2: {
  1601. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1602. struct kvm_cpuid2 cpuid;
  1603. r = -EFAULT;
  1604. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1605. goto out;
  1606. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1607. cpuid_arg->entries);
  1608. if (r)
  1609. goto out;
  1610. r = -EFAULT;
  1611. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1612. goto out;
  1613. r = 0;
  1614. break;
  1615. }
  1616. case KVM_GET_MSRS:
  1617. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1618. break;
  1619. case KVM_SET_MSRS:
  1620. r = msr_io(vcpu, argp, do_set_msr, 0);
  1621. break;
  1622. case KVM_TPR_ACCESS_REPORTING: {
  1623. struct kvm_tpr_access_ctl tac;
  1624. r = -EFAULT;
  1625. if (copy_from_user(&tac, argp, sizeof tac))
  1626. goto out;
  1627. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1628. if (r)
  1629. goto out;
  1630. r = -EFAULT;
  1631. if (copy_to_user(argp, &tac, sizeof tac))
  1632. goto out;
  1633. r = 0;
  1634. break;
  1635. };
  1636. case KVM_SET_VAPIC_ADDR: {
  1637. struct kvm_vapic_addr va;
  1638. r = -EINVAL;
  1639. if (!irqchip_in_kernel(vcpu->kvm))
  1640. goto out;
  1641. r = -EFAULT;
  1642. if (copy_from_user(&va, argp, sizeof va))
  1643. goto out;
  1644. r = 0;
  1645. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1646. break;
  1647. }
  1648. case KVM_X86_SETUP_MCE: {
  1649. u64 mcg_cap;
  1650. r = -EFAULT;
  1651. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1652. goto out;
  1653. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1654. break;
  1655. }
  1656. case KVM_X86_SET_MCE: {
  1657. struct kvm_x86_mce mce;
  1658. r = -EFAULT;
  1659. if (copy_from_user(&mce, argp, sizeof mce))
  1660. goto out;
  1661. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1662. break;
  1663. }
  1664. default:
  1665. r = -EINVAL;
  1666. }
  1667. out:
  1668. kfree(lapic);
  1669. return r;
  1670. }
  1671. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1672. {
  1673. int ret;
  1674. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1675. return -1;
  1676. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1677. return ret;
  1678. }
  1679. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1680. u32 kvm_nr_mmu_pages)
  1681. {
  1682. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1683. return -EINVAL;
  1684. down_write(&kvm->slots_lock);
  1685. spin_lock(&kvm->mmu_lock);
  1686. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1687. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1688. spin_unlock(&kvm->mmu_lock);
  1689. up_write(&kvm->slots_lock);
  1690. return 0;
  1691. }
  1692. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1693. {
  1694. return kvm->arch.n_alloc_mmu_pages;
  1695. }
  1696. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1697. {
  1698. int i;
  1699. struct kvm_mem_alias *alias;
  1700. for (i = 0; i < kvm->arch.naliases; ++i) {
  1701. alias = &kvm->arch.aliases[i];
  1702. if (gfn >= alias->base_gfn
  1703. && gfn < alias->base_gfn + alias->npages)
  1704. return alias->target_gfn + gfn - alias->base_gfn;
  1705. }
  1706. return gfn;
  1707. }
  1708. /*
  1709. * Set a new alias region. Aliases map a portion of physical memory into
  1710. * another portion. This is useful for memory windows, for example the PC
  1711. * VGA region.
  1712. */
  1713. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1714. struct kvm_memory_alias *alias)
  1715. {
  1716. int r, n;
  1717. struct kvm_mem_alias *p;
  1718. r = -EINVAL;
  1719. /* General sanity checks */
  1720. if (alias->memory_size & (PAGE_SIZE - 1))
  1721. goto out;
  1722. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1723. goto out;
  1724. if (alias->slot >= KVM_ALIAS_SLOTS)
  1725. goto out;
  1726. if (alias->guest_phys_addr + alias->memory_size
  1727. < alias->guest_phys_addr)
  1728. goto out;
  1729. if (alias->target_phys_addr + alias->memory_size
  1730. < alias->target_phys_addr)
  1731. goto out;
  1732. down_write(&kvm->slots_lock);
  1733. spin_lock(&kvm->mmu_lock);
  1734. p = &kvm->arch.aliases[alias->slot];
  1735. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1736. p->npages = alias->memory_size >> PAGE_SHIFT;
  1737. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1738. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1739. if (kvm->arch.aliases[n - 1].npages)
  1740. break;
  1741. kvm->arch.naliases = n;
  1742. spin_unlock(&kvm->mmu_lock);
  1743. kvm_mmu_zap_all(kvm);
  1744. up_write(&kvm->slots_lock);
  1745. return 0;
  1746. out:
  1747. return r;
  1748. }
  1749. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1750. {
  1751. int r;
  1752. r = 0;
  1753. switch (chip->chip_id) {
  1754. case KVM_IRQCHIP_PIC_MASTER:
  1755. memcpy(&chip->chip.pic,
  1756. &pic_irqchip(kvm)->pics[0],
  1757. sizeof(struct kvm_pic_state));
  1758. break;
  1759. case KVM_IRQCHIP_PIC_SLAVE:
  1760. memcpy(&chip->chip.pic,
  1761. &pic_irqchip(kvm)->pics[1],
  1762. sizeof(struct kvm_pic_state));
  1763. break;
  1764. case KVM_IRQCHIP_IOAPIC:
  1765. memcpy(&chip->chip.ioapic,
  1766. ioapic_irqchip(kvm),
  1767. sizeof(struct kvm_ioapic_state));
  1768. break;
  1769. default:
  1770. r = -EINVAL;
  1771. break;
  1772. }
  1773. return r;
  1774. }
  1775. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1776. {
  1777. int r;
  1778. r = 0;
  1779. switch (chip->chip_id) {
  1780. case KVM_IRQCHIP_PIC_MASTER:
  1781. spin_lock(&pic_irqchip(kvm)->lock);
  1782. memcpy(&pic_irqchip(kvm)->pics[0],
  1783. &chip->chip.pic,
  1784. sizeof(struct kvm_pic_state));
  1785. spin_unlock(&pic_irqchip(kvm)->lock);
  1786. break;
  1787. case KVM_IRQCHIP_PIC_SLAVE:
  1788. spin_lock(&pic_irqchip(kvm)->lock);
  1789. memcpy(&pic_irqchip(kvm)->pics[1],
  1790. &chip->chip.pic,
  1791. sizeof(struct kvm_pic_state));
  1792. spin_unlock(&pic_irqchip(kvm)->lock);
  1793. break;
  1794. case KVM_IRQCHIP_IOAPIC:
  1795. mutex_lock(&kvm->irq_lock);
  1796. memcpy(ioapic_irqchip(kvm),
  1797. &chip->chip.ioapic,
  1798. sizeof(struct kvm_ioapic_state));
  1799. mutex_unlock(&kvm->irq_lock);
  1800. break;
  1801. default:
  1802. r = -EINVAL;
  1803. break;
  1804. }
  1805. kvm_pic_update_irq(pic_irqchip(kvm));
  1806. return r;
  1807. }
  1808. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1809. {
  1810. int r = 0;
  1811. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1812. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1813. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1814. return r;
  1815. }
  1816. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1817. {
  1818. int r = 0;
  1819. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1820. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1821. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1822. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1823. return r;
  1824. }
  1825. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1826. struct kvm_reinject_control *control)
  1827. {
  1828. if (!kvm->arch.vpit)
  1829. return -ENXIO;
  1830. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1831. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1832. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1833. return 0;
  1834. }
  1835. /*
  1836. * Get (and clear) the dirty memory log for a memory slot.
  1837. */
  1838. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1839. struct kvm_dirty_log *log)
  1840. {
  1841. int r;
  1842. int n;
  1843. struct kvm_memory_slot *memslot;
  1844. int is_dirty = 0;
  1845. down_write(&kvm->slots_lock);
  1846. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1847. if (r)
  1848. goto out;
  1849. /* If nothing is dirty, don't bother messing with page tables. */
  1850. if (is_dirty) {
  1851. spin_lock(&kvm->mmu_lock);
  1852. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1853. spin_unlock(&kvm->mmu_lock);
  1854. kvm_flush_remote_tlbs(kvm);
  1855. memslot = &kvm->memslots[log->slot];
  1856. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1857. memset(memslot->dirty_bitmap, 0, n);
  1858. }
  1859. r = 0;
  1860. out:
  1861. up_write(&kvm->slots_lock);
  1862. return r;
  1863. }
  1864. long kvm_arch_vm_ioctl(struct file *filp,
  1865. unsigned int ioctl, unsigned long arg)
  1866. {
  1867. struct kvm *kvm = filp->private_data;
  1868. void __user *argp = (void __user *)arg;
  1869. int r = -EINVAL;
  1870. /*
  1871. * This union makes it completely explicit to gcc-3.x
  1872. * that these two variables' stack usage should be
  1873. * combined, not added together.
  1874. */
  1875. union {
  1876. struct kvm_pit_state ps;
  1877. struct kvm_memory_alias alias;
  1878. struct kvm_pit_config pit_config;
  1879. } u;
  1880. switch (ioctl) {
  1881. case KVM_SET_TSS_ADDR:
  1882. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1883. if (r < 0)
  1884. goto out;
  1885. break;
  1886. case KVM_SET_MEMORY_REGION: {
  1887. struct kvm_memory_region kvm_mem;
  1888. struct kvm_userspace_memory_region kvm_userspace_mem;
  1889. r = -EFAULT;
  1890. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1891. goto out;
  1892. kvm_userspace_mem.slot = kvm_mem.slot;
  1893. kvm_userspace_mem.flags = kvm_mem.flags;
  1894. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1895. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1896. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1897. if (r)
  1898. goto out;
  1899. break;
  1900. }
  1901. case KVM_SET_NR_MMU_PAGES:
  1902. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1903. if (r)
  1904. goto out;
  1905. break;
  1906. case KVM_GET_NR_MMU_PAGES:
  1907. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1908. break;
  1909. case KVM_SET_MEMORY_ALIAS:
  1910. r = -EFAULT;
  1911. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1912. goto out;
  1913. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1914. if (r)
  1915. goto out;
  1916. break;
  1917. case KVM_CREATE_IRQCHIP:
  1918. r = -ENOMEM;
  1919. kvm->arch.vpic = kvm_create_pic(kvm);
  1920. if (kvm->arch.vpic) {
  1921. r = kvm_ioapic_init(kvm);
  1922. if (r) {
  1923. kfree(kvm->arch.vpic);
  1924. kvm->arch.vpic = NULL;
  1925. goto out;
  1926. }
  1927. } else
  1928. goto out;
  1929. r = kvm_setup_default_irq_routing(kvm);
  1930. if (r) {
  1931. kfree(kvm->arch.vpic);
  1932. kfree(kvm->arch.vioapic);
  1933. goto out;
  1934. }
  1935. break;
  1936. case KVM_CREATE_PIT:
  1937. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  1938. goto create_pit;
  1939. case KVM_CREATE_PIT2:
  1940. r = -EFAULT;
  1941. if (copy_from_user(&u.pit_config, argp,
  1942. sizeof(struct kvm_pit_config)))
  1943. goto out;
  1944. create_pit:
  1945. down_write(&kvm->slots_lock);
  1946. r = -EEXIST;
  1947. if (kvm->arch.vpit)
  1948. goto create_pit_unlock;
  1949. r = -ENOMEM;
  1950. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  1951. if (kvm->arch.vpit)
  1952. r = 0;
  1953. create_pit_unlock:
  1954. up_write(&kvm->slots_lock);
  1955. break;
  1956. case KVM_IRQ_LINE_STATUS:
  1957. case KVM_IRQ_LINE: {
  1958. struct kvm_irq_level irq_event;
  1959. r = -EFAULT;
  1960. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1961. goto out;
  1962. if (irqchip_in_kernel(kvm)) {
  1963. __s32 status;
  1964. mutex_lock(&kvm->irq_lock);
  1965. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1966. irq_event.irq, irq_event.level);
  1967. mutex_unlock(&kvm->irq_lock);
  1968. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1969. irq_event.status = status;
  1970. if (copy_to_user(argp, &irq_event,
  1971. sizeof irq_event))
  1972. goto out;
  1973. }
  1974. r = 0;
  1975. }
  1976. break;
  1977. }
  1978. case KVM_GET_IRQCHIP: {
  1979. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1980. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1981. r = -ENOMEM;
  1982. if (!chip)
  1983. goto out;
  1984. r = -EFAULT;
  1985. if (copy_from_user(chip, argp, sizeof *chip))
  1986. goto get_irqchip_out;
  1987. r = -ENXIO;
  1988. if (!irqchip_in_kernel(kvm))
  1989. goto get_irqchip_out;
  1990. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1991. if (r)
  1992. goto get_irqchip_out;
  1993. r = -EFAULT;
  1994. if (copy_to_user(argp, chip, sizeof *chip))
  1995. goto get_irqchip_out;
  1996. r = 0;
  1997. get_irqchip_out:
  1998. kfree(chip);
  1999. if (r)
  2000. goto out;
  2001. break;
  2002. }
  2003. case KVM_SET_IRQCHIP: {
  2004. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2005. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2006. r = -ENOMEM;
  2007. if (!chip)
  2008. goto out;
  2009. r = -EFAULT;
  2010. if (copy_from_user(chip, argp, sizeof *chip))
  2011. goto set_irqchip_out;
  2012. r = -ENXIO;
  2013. if (!irqchip_in_kernel(kvm))
  2014. goto set_irqchip_out;
  2015. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2016. if (r)
  2017. goto set_irqchip_out;
  2018. r = 0;
  2019. set_irqchip_out:
  2020. kfree(chip);
  2021. if (r)
  2022. goto out;
  2023. break;
  2024. }
  2025. case KVM_GET_PIT: {
  2026. r = -EFAULT;
  2027. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2028. goto out;
  2029. r = -ENXIO;
  2030. if (!kvm->arch.vpit)
  2031. goto out;
  2032. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2033. if (r)
  2034. goto out;
  2035. r = -EFAULT;
  2036. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2037. goto out;
  2038. r = 0;
  2039. break;
  2040. }
  2041. case KVM_SET_PIT: {
  2042. r = -EFAULT;
  2043. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2044. goto out;
  2045. r = -ENXIO;
  2046. if (!kvm->arch.vpit)
  2047. goto out;
  2048. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2049. if (r)
  2050. goto out;
  2051. r = 0;
  2052. break;
  2053. }
  2054. case KVM_REINJECT_CONTROL: {
  2055. struct kvm_reinject_control control;
  2056. r = -EFAULT;
  2057. if (copy_from_user(&control, argp, sizeof(control)))
  2058. goto out;
  2059. r = kvm_vm_ioctl_reinject(kvm, &control);
  2060. if (r)
  2061. goto out;
  2062. r = 0;
  2063. break;
  2064. }
  2065. default:
  2066. ;
  2067. }
  2068. out:
  2069. return r;
  2070. }
  2071. static void kvm_init_msr_list(void)
  2072. {
  2073. u32 dummy[2];
  2074. unsigned i, j;
  2075. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2076. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2077. continue;
  2078. if (j < i)
  2079. msrs_to_save[j] = msrs_to_save[i];
  2080. j++;
  2081. }
  2082. num_msrs_to_save = j;
  2083. }
  2084. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2085. const void *v)
  2086. {
  2087. if (vcpu->arch.apic &&
  2088. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2089. return 0;
  2090. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2091. }
  2092. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2093. {
  2094. if (vcpu->arch.apic &&
  2095. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2096. return 0;
  2097. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2098. }
  2099. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2100. struct kvm_vcpu *vcpu)
  2101. {
  2102. void *data = val;
  2103. int r = X86EMUL_CONTINUE;
  2104. while (bytes) {
  2105. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2106. unsigned offset = addr & (PAGE_SIZE-1);
  2107. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2108. int ret;
  2109. if (gpa == UNMAPPED_GVA) {
  2110. r = X86EMUL_PROPAGATE_FAULT;
  2111. goto out;
  2112. }
  2113. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2114. if (ret < 0) {
  2115. r = X86EMUL_UNHANDLEABLE;
  2116. goto out;
  2117. }
  2118. bytes -= toread;
  2119. data += toread;
  2120. addr += toread;
  2121. }
  2122. out:
  2123. return r;
  2124. }
  2125. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2126. struct kvm_vcpu *vcpu)
  2127. {
  2128. void *data = val;
  2129. int r = X86EMUL_CONTINUE;
  2130. while (bytes) {
  2131. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2132. unsigned offset = addr & (PAGE_SIZE-1);
  2133. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2134. int ret;
  2135. if (gpa == UNMAPPED_GVA) {
  2136. r = X86EMUL_PROPAGATE_FAULT;
  2137. goto out;
  2138. }
  2139. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2140. if (ret < 0) {
  2141. r = X86EMUL_UNHANDLEABLE;
  2142. goto out;
  2143. }
  2144. bytes -= towrite;
  2145. data += towrite;
  2146. addr += towrite;
  2147. }
  2148. out:
  2149. return r;
  2150. }
  2151. static int emulator_read_emulated(unsigned long addr,
  2152. void *val,
  2153. unsigned int bytes,
  2154. struct kvm_vcpu *vcpu)
  2155. {
  2156. gpa_t gpa;
  2157. if (vcpu->mmio_read_completed) {
  2158. memcpy(val, vcpu->mmio_data, bytes);
  2159. vcpu->mmio_read_completed = 0;
  2160. return X86EMUL_CONTINUE;
  2161. }
  2162. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2163. /* For APIC access vmexit */
  2164. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2165. goto mmio;
  2166. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2167. == X86EMUL_CONTINUE)
  2168. return X86EMUL_CONTINUE;
  2169. if (gpa == UNMAPPED_GVA)
  2170. return X86EMUL_PROPAGATE_FAULT;
  2171. mmio:
  2172. /*
  2173. * Is this MMIO handled locally?
  2174. */
  2175. if (!vcpu_mmio_read(vcpu, gpa, bytes, val))
  2176. return X86EMUL_CONTINUE;
  2177. vcpu->mmio_needed = 1;
  2178. vcpu->mmio_phys_addr = gpa;
  2179. vcpu->mmio_size = bytes;
  2180. vcpu->mmio_is_write = 0;
  2181. return X86EMUL_UNHANDLEABLE;
  2182. }
  2183. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2184. const void *val, int bytes)
  2185. {
  2186. int ret;
  2187. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2188. if (ret < 0)
  2189. return 0;
  2190. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2191. return 1;
  2192. }
  2193. static int emulator_write_emulated_onepage(unsigned long addr,
  2194. const void *val,
  2195. unsigned int bytes,
  2196. struct kvm_vcpu *vcpu)
  2197. {
  2198. gpa_t gpa;
  2199. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2200. if (gpa == UNMAPPED_GVA) {
  2201. kvm_inject_page_fault(vcpu, addr, 2);
  2202. return X86EMUL_PROPAGATE_FAULT;
  2203. }
  2204. /* For APIC access vmexit */
  2205. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2206. goto mmio;
  2207. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2208. return X86EMUL_CONTINUE;
  2209. mmio:
  2210. /*
  2211. * Is this MMIO handled locally?
  2212. */
  2213. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2214. return X86EMUL_CONTINUE;
  2215. vcpu->mmio_needed = 1;
  2216. vcpu->mmio_phys_addr = gpa;
  2217. vcpu->mmio_size = bytes;
  2218. vcpu->mmio_is_write = 1;
  2219. memcpy(vcpu->mmio_data, val, bytes);
  2220. return X86EMUL_CONTINUE;
  2221. }
  2222. int emulator_write_emulated(unsigned long addr,
  2223. const void *val,
  2224. unsigned int bytes,
  2225. struct kvm_vcpu *vcpu)
  2226. {
  2227. /* Crossing a page boundary? */
  2228. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2229. int rc, now;
  2230. now = -addr & ~PAGE_MASK;
  2231. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2232. if (rc != X86EMUL_CONTINUE)
  2233. return rc;
  2234. addr += now;
  2235. val += now;
  2236. bytes -= now;
  2237. }
  2238. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2239. }
  2240. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2241. static int emulator_cmpxchg_emulated(unsigned long addr,
  2242. const void *old,
  2243. const void *new,
  2244. unsigned int bytes,
  2245. struct kvm_vcpu *vcpu)
  2246. {
  2247. static int reported;
  2248. if (!reported) {
  2249. reported = 1;
  2250. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  2251. }
  2252. #ifndef CONFIG_X86_64
  2253. /* guests cmpxchg8b have to be emulated atomically */
  2254. if (bytes == 8) {
  2255. gpa_t gpa;
  2256. struct page *page;
  2257. char *kaddr;
  2258. u64 val;
  2259. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2260. if (gpa == UNMAPPED_GVA ||
  2261. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2262. goto emul_write;
  2263. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2264. goto emul_write;
  2265. val = *(u64 *)new;
  2266. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2267. kaddr = kmap_atomic(page, KM_USER0);
  2268. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2269. kunmap_atomic(kaddr, KM_USER0);
  2270. kvm_release_page_dirty(page);
  2271. }
  2272. emul_write:
  2273. #endif
  2274. return emulator_write_emulated(addr, new, bytes, vcpu);
  2275. }
  2276. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2277. {
  2278. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2279. }
  2280. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2281. {
  2282. kvm_mmu_invlpg(vcpu, address);
  2283. return X86EMUL_CONTINUE;
  2284. }
  2285. int emulate_clts(struct kvm_vcpu *vcpu)
  2286. {
  2287. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2288. return X86EMUL_CONTINUE;
  2289. }
  2290. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2291. {
  2292. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2293. switch (dr) {
  2294. case 0 ... 3:
  2295. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2296. return X86EMUL_CONTINUE;
  2297. default:
  2298. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2299. return X86EMUL_UNHANDLEABLE;
  2300. }
  2301. }
  2302. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2303. {
  2304. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2305. int exception;
  2306. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2307. if (exception) {
  2308. /* FIXME: better handling */
  2309. return X86EMUL_UNHANDLEABLE;
  2310. }
  2311. return X86EMUL_CONTINUE;
  2312. }
  2313. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2314. {
  2315. u8 opcodes[4];
  2316. unsigned long rip = kvm_rip_read(vcpu);
  2317. unsigned long rip_linear;
  2318. if (!printk_ratelimit())
  2319. return;
  2320. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2321. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2322. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2323. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2324. }
  2325. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2326. static struct x86_emulate_ops emulate_ops = {
  2327. .read_std = kvm_read_guest_virt,
  2328. .read_emulated = emulator_read_emulated,
  2329. .write_emulated = emulator_write_emulated,
  2330. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2331. };
  2332. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2333. {
  2334. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2335. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2336. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2337. vcpu->arch.regs_dirty = ~0;
  2338. }
  2339. int emulate_instruction(struct kvm_vcpu *vcpu,
  2340. struct kvm_run *run,
  2341. unsigned long cr2,
  2342. u16 error_code,
  2343. int emulation_type)
  2344. {
  2345. int r, shadow_mask;
  2346. struct decode_cache *c;
  2347. kvm_clear_exception_queue(vcpu);
  2348. vcpu->arch.mmio_fault_cr2 = cr2;
  2349. /*
  2350. * TODO: fix x86_emulate.c to use guest_read/write_register
  2351. * instead of direct ->regs accesses, can save hundred cycles
  2352. * on Intel for instructions that don't read/change RSP, for
  2353. * for example.
  2354. */
  2355. cache_all_regs(vcpu);
  2356. vcpu->mmio_is_write = 0;
  2357. vcpu->arch.pio.string = 0;
  2358. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2359. int cs_db, cs_l;
  2360. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2361. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2362. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2363. vcpu->arch.emulate_ctxt.mode =
  2364. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2365. ? X86EMUL_MODE_REAL : cs_l
  2366. ? X86EMUL_MODE_PROT64 : cs_db
  2367. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2368. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2369. /* Only allow emulation of specific instructions on #UD
  2370. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2371. c = &vcpu->arch.emulate_ctxt.decode;
  2372. if (emulation_type & EMULTYPE_TRAP_UD) {
  2373. if (!c->twobyte)
  2374. return EMULATE_FAIL;
  2375. switch (c->b) {
  2376. case 0x01: /* VMMCALL */
  2377. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2378. return EMULATE_FAIL;
  2379. break;
  2380. case 0x34: /* sysenter */
  2381. case 0x35: /* sysexit */
  2382. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2383. return EMULATE_FAIL;
  2384. break;
  2385. case 0x05: /* syscall */
  2386. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2387. return EMULATE_FAIL;
  2388. break;
  2389. default:
  2390. return EMULATE_FAIL;
  2391. }
  2392. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2393. return EMULATE_FAIL;
  2394. }
  2395. ++vcpu->stat.insn_emulation;
  2396. if (r) {
  2397. ++vcpu->stat.insn_emulation_fail;
  2398. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2399. return EMULATE_DONE;
  2400. return EMULATE_FAIL;
  2401. }
  2402. }
  2403. if (emulation_type & EMULTYPE_SKIP) {
  2404. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2405. return EMULATE_DONE;
  2406. }
  2407. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2408. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2409. if (r == 0)
  2410. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2411. if (vcpu->arch.pio.string)
  2412. return EMULATE_DO_MMIO;
  2413. if ((r || vcpu->mmio_is_write) && run) {
  2414. run->exit_reason = KVM_EXIT_MMIO;
  2415. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2416. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2417. run->mmio.len = vcpu->mmio_size;
  2418. run->mmio.is_write = vcpu->mmio_is_write;
  2419. }
  2420. if (r) {
  2421. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2422. return EMULATE_DONE;
  2423. if (!vcpu->mmio_needed) {
  2424. kvm_report_emulation_failure(vcpu, "mmio");
  2425. return EMULATE_FAIL;
  2426. }
  2427. return EMULATE_DO_MMIO;
  2428. }
  2429. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2430. if (vcpu->mmio_is_write) {
  2431. vcpu->mmio_needed = 0;
  2432. return EMULATE_DO_MMIO;
  2433. }
  2434. return EMULATE_DONE;
  2435. }
  2436. EXPORT_SYMBOL_GPL(emulate_instruction);
  2437. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2438. {
  2439. void *p = vcpu->arch.pio_data;
  2440. gva_t q = vcpu->arch.pio.guest_gva;
  2441. unsigned bytes;
  2442. int ret;
  2443. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2444. if (vcpu->arch.pio.in)
  2445. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2446. else
  2447. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2448. return ret;
  2449. }
  2450. int complete_pio(struct kvm_vcpu *vcpu)
  2451. {
  2452. struct kvm_pio_request *io = &vcpu->arch.pio;
  2453. long delta;
  2454. int r;
  2455. unsigned long val;
  2456. if (!io->string) {
  2457. if (io->in) {
  2458. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2459. memcpy(&val, vcpu->arch.pio_data, io->size);
  2460. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2461. }
  2462. } else {
  2463. if (io->in) {
  2464. r = pio_copy_data(vcpu);
  2465. if (r)
  2466. return r;
  2467. }
  2468. delta = 1;
  2469. if (io->rep) {
  2470. delta *= io->cur_count;
  2471. /*
  2472. * The size of the register should really depend on
  2473. * current address size.
  2474. */
  2475. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2476. val -= delta;
  2477. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2478. }
  2479. if (io->down)
  2480. delta = -delta;
  2481. delta *= io->size;
  2482. if (io->in) {
  2483. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2484. val += delta;
  2485. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2486. } else {
  2487. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2488. val += delta;
  2489. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2490. }
  2491. }
  2492. io->count -= io->cur_count;
  2493. io->cur_count = 0;
  2494. return 0;
  2495. }
  2496. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2497. {
  2498. /* TODO: String I/O for in kernel device */
  2499. int r;
  2500. if (vcpu->arch.pio.in)
  2501. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2502. vcpu->arch.pio.size, pd);
  2503. else
  2504. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2505. vcpu->arch.pio.size, pd);
  2506. return r;
  2507. }
  2508. static int pio_string_write(struct kvm_vcpu *vcpu)
  2509. {
  2510. struct kvm_pio_request *io = &vcpu->arch.pio;
  2511. void *pd = vcpu->arch.pio_data;
  2512. int i, r = 0;
  2513. for (i = 0; i < io->cur_count; i++) {
  2514. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2515. io->port, io->size, pd)) {
  2516. r = -EOPNOTSUPP;
  2517. break;
  2518. }
  2519. pd += io->size;
  2520. }
  2521. return r;
  2522. }
  2523. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2524. int size, unsigned port)
  2525. {
  2526. unsigned long val;
  2527. vcpu->run->exit_reason = KVM_EXIT_IO;
  2528. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2529. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2530. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2531. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2532. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2533. vcpu->arch.pio.in = in;
  2534. vcpu->arch.pio.string = 0;
  2535. vcpu->arch.pio.down = 0;
  2536. vcpu->arch.pio.rep = 0;
  2537. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2538. size, 1);
  2539. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2540. memcpy(vcpu->arch.pio_data, &val, 4);
  2541. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2542. complete_pio(vcpu);
  2543. return 1;
  2544. }
  2545. return 0;
  2546. }
  2547. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2548. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2549. int size, unsigned long count, int down,
  2550. gva_t address, int rep, unsigned port)
  2551. {
  2552. unsigned now, in_page;
  2553. int ret = 0;
  2554. vcpu->run->exit_reason = KVM_EXIT_IO;
  2555. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2556. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2557. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2558. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2559. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2560. vcpu->arch.pio.in = in;
  2561. vcpu->arch.pio.string = 1;
  2562. vcpu->arch.pio.down = down;
  2563. vcpu->arch.pio.rep = rep;
  2564. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2565. size, count);
  2566. if (!count) {
  2567. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2568. return 1;
  2569. }
  2570. if (!down)
  2571. in_page = PAGE_SIZE - offset_in_page(address);
  2572. else
  2573. in_page = offset_in_page(address) + size;
  2574. now = min(count, (unsigned long)in_page / size);
  2575. if (!now)
  2576. now = 1;
  2577. if (down) {
  2578. /*
  2579. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2580. */
  2581. pr_unimpl(vcpu, "guest string pio down\n");
  2582. kvm_inject_gp(vcpu, 0);
  2583. return 1;
  2584. }
  2585. vcpu->run->io.count = now;
  2586. vcpu->arch.pio.cur_count = now;
  2587. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2588. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2589. vcpu->arch.pio.guest_gva = address;
  2590. if (!vcpu->arch.pio.in) {
  2591. /* string PIO write */
  2592. ret = pio_copy_data(vcpu);
  2593. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2594. kvm_inject_gp(vcpu, 0);
  2595. return 1;
  2596. }
  2597. if (ret == 0 && !pio_string_write(vcpu)) {
  2598. complete_pio(vcpu);
  2599. if (vcpu->arch.pio.count == 0)
  2600. ret = 1;
  2601. }
  2602. }
  2603. /* no string PIO read support yet */
  2604. return ret;
  2605. }
  2606. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2607. static void bounce_off(void *info)
  2608. {
  2609. /* nothing */
  2610. }
  2611. static unsigned int ref_freq;
  2612. static unsigned long tsc_khz_ref;
  2613. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2614. void *data)
  2615. {
  2616. struct cpufreq_freqs *freq = data;
  2617. struct kvm *kvm;
  2618. struct kvm_vcpu *vcpu;
  2619. int i, send_ipi = 0;
  2620. if (!ref_freq)
  2621. ref_freq = freq->old;
  2622. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2623. return 0;
  2624. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2625. return 0;
  2626. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2627. spin_lock(&kvm_lock);
  2628. list_for_each_entry(kvm, &vm_list, vm_list) {
  2629. kvm_for_each_vcpu(i, vcpu, kvm) {
  2630. if (vcpu->cpu != freq->cpu)
  2631. continue;
  2632. if (!kvm_request_guest_time_update(vcpu))
  2633. continue;
  2634. if (vcpu->cpu != smp_processor_id())
  2635. send_ipi++;
  2636. }
  2637. }
  2638. spin_unlock(&kvm_lock);
  2639. if (freq->old < freq->new && send_ipi) {
  2640. /*
  2641. * We upscale the frequency. Must make the guest
  2642. * doesn't see old kvmclock values while running with
  2643. * the new frequency, otherwise we risk the guest sees
  2644. * time go backwards.
  2645. *
  2646. * In case we update the frequency for another cpu
  2647. * (which might be in guest context) send an interrupt
  2648. * to kick the cpu out of guest context. Next time
  2649. * guest context is entered kvmclock will be updated,
  2650. * so the guest will not see stale values.
  2651. */
  2652. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2653. }
  2654. return 0;
  2655. }
  2656. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2657. .notifier_call = kvmclock_cpufreq_notifier
  2658. };
  2659. int kvm_arch_init(void *opaque)
  2660. {
  2661. int r, cpu;
  2662. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2663. if (kvm_x86_ops) {
  2664. printk(KERN_ERR "kvm: already loaded the other module\n");
  2665. r = -EEXIST;
  2666. goto out;
  2667. }
  2668. if (!ops->cpu_has_kvm_support()) {
  2669. printk(KERN_ERR "kvm: no hardware support\n");
  2670. r = -EOPNOTSUPP;
  2671. goto out;
  2672. }
  2673. if (ops->disabled_by_bios()) {
  2674. printk(KERN_ERR "kvm: disabled by bios\n");
  2675. r = -EOPNOTSUPP;
  2676. goto out;
  2677. }
  2678. r = kvm_mmu_module_init();
  2679. if (r)
  2680. goto out;
  2681. kvm_init_msr_list();
  2682. kvm_x86_ops = ops;
  2683. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2684. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2685. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2686. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2687. for_each_possible_cpu(cpu)
  2688. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2689. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2690. tsc_khz_ref = tsc_khz;
  2691. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2692. CPUFREQ_TRANSITION_NOTIFIER);
  2693. }
  2694. return 0;
  2695. out:
  2696. return r;
  2697. }
  2698. void kvm_arch_exit(void)
  2699. {
  2700. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2701. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2702. CPUFREQ_TRANSITION_NOTIFIER);
  2703. kvm_x86_ops = NULL;
  2704. kvm_mmu_module_exit();
  2705. }
  2706. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2707. {
  2708. ++vcpu->stat.halt_exits;
  2709. if (irqchip_in_kernel(vcpu->kvm)) {
  2710. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2711. return 1;
  2712. } else {
  2713. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2714. return 0;
  2715. }
  2716. }
  2717. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2718. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2719. unsigned long a1)
  2720. {
  2721. if (is_long_mode(vcpu))
  2722. return a0;
  2723. else
  2724. return a0 | ((gpa_t)a1 << 32);
  2725. }
  2726. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2727. {
  2728. unsigned long nr, a0, a1, a2, a3, ret;
  2729. int r = 1;
  2730. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2731. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2732. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2733. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2734. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2735. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2736. if (!is_long_mode(vcpu)) {
  2737. nr &= 0xFFFFFFFF;
  2738. a0 &= 0xFFFFFFFF;
  2739. a1 &= 0xFFFFFFFF;
  2740. a2 &= 0xFFFFFFFF;
  2741. a3 &= 0xFFFFFFFF;
  2742. }
  2743. switch (nr) {
  2744. case KVM_HC_VAPIC_POLL_IRQ:
  2745. ret = 0;
  2746. break;
  2747. case KVM_HC_MMU_OP:
  2748. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2749. break;
  2750. default:
  2751. ret = -KVM_ENOSYS;
  2752. break;
  2753. }
  2754. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2755. ++vcpu->stat.hypercalls;
  2756. return r;
  2757. }
  2758. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2759. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2760. {
  2761. char instruction[3];
  2762. int ret = 0;
  2763. unsigned long rip = kvm_rip_read(vcpu);
  2764. /*
  2765. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2766. * to ensure that the updated hypercall appears atomically across all
  2767. * VCPUs.
  2768. */
  2769. kvm_mmu_zap_all(vcpu->kvm);
  2770. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2771. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2772. != X86EMUL_CONTINUE)
  2773. ret = -EFAULT;
  2774. return ret;
  2775. }
  2776. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2777. {
  2778. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2779. }
  2780. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2781. {
  2782. struct descriptor_table dt = { limit, base };
  2783. kvm_x86_ops->set_gdt(vcpu, &dt);
  2784. }
  2785. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2786. {
  2787. struct descriptor_table dt = { limit, base };
  2788. kvm_x86_ops->set_idt(vcpu, &dt);
  2789. }
  2790. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2791. unsigned long *rflags)
  2792. {
  2793. kvm_lmsw(vcpu, msw);
  2794. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2795. }
  2796. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2797. {
  2798. unsigned long value;
  2799. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2800. switch (cr) {
  2801. case 0:
  2802. value = vcpu->arch.cr0;
  2803. break;
  2804. case 2:
  2805. value = vcpu->arch.cr2;
  2806. break;
  2807. case 3:
  2808. value = vcpu->arch.cr3;
  2809. break;
  2810. case 4:
  2811. value = vcpu->arch.cr4;
  2812. break;
  2813. case 8:
  2814. value = kvm_get_cr8(vcpu);
  2815. break;
  2816. default:
  2817. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2818. return 0;
  2819. }
  2820. return value;
  2821. }
  2822. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2823. unsigned long *rflags)
  2824. {
  2825. switch (cr) {
  2826. case 0:
  2827. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2828. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2829. break;
  2830. case 2:
  2831. vcpu->arch.cr2 = val;
  2832. break;
  2833. case 3:
  2834. kvm_set_cr3(vcpu, val);
  2835. break;
  2836. case 4:
  2837. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2838. break;
  2839. case 8:
  2840. kvm_set_cr8(vcpu, val & 0xfUL);
  2841. break;
  2842. default:
  2843. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2844. }
  2845. }
  2846. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2847. {
  2848. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2849. int j, nent = vcpu->arch.cpuid_nent;
  2850. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2851. /* when no next entry is found, the current entry[i] is reselected */
  2852. for (j = i + 1; ; j = (j + 1) % nent) {
  2853. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2854. if (ej->function == e->function) {
  2855. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2856. return j;
  2857. }
  2858. }
  2859. return 0; /* silence gcc, even though control never reaches here */
  2860. }
  2861. /* find an entry with matching function, matching index (if needed), and that
  2862. * should be read next (if it's stateful) */
  2863. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2864. u32 function, u32 index)
  2865. {
  2866. if (e->function != function)
  2867. return 0;
  2868. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2869. return 0;
  2870. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2871. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2872. return 0;
  2873. return 1;
  2874. }
  2875. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2876. u32 function, u32 index)
  2877. {
  2878. int i;
  2879. struct kvm_cpuid_entry2 *best = NULL;
  2880. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2881. struct kvm_cpuid_entry2 *e;
  2882. e = &vcpu->arch.cpuid_entries[i];
  2883. if (is_matching_cpuid_entry(e, function, index)) {
  2884. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2885. move_to_next_stateful_cpuid_entry(vcpu, i);
  2886. best = e;
  2887. break;
  2888. }
  2889. /*
  2890. * Both basic or both extended?
  2891. */
  2892. if (((e->function ^ function) & 0x80000000) == 0)
  2893. if (!best || e->function > best->function)
  2894. best = e;
  2895. }
  2896. return best;
  2897. }
  2898. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2899. {
  2900. struct kvm_cpuid_entry2 *best;
  2901. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2902. if (best)
  2903. return best->eax & 0xff;
  2904. return 36;
  2905. }
  2906. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2907. {
  2908. u32 function, index;
  2909. struct kvm_cpuid_entry2 *best;
  2910. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2911. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2912. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2913. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2914. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2915. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2916. best = kvm_find_cpuid_entry(vcpu, function, index);
  2917. if (best) {
  2918. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2919. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2920. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2921. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2922. }
  2923. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2924. trace_kvm_cpuid(function,
  2925. kvm_register_read(vcpu, VCPU_REGS_RAX),
  2926. kvm_register_read(vcpu, VCPU_REGS_RBX),
  2927. kvm_register_read(vcpu, VCPU_REGS_RCX),
  2928. kvm_register_read(vcpu, VCPU_REGS_RDX));
  2929. }
  2930. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2931. /*
  2932. * Check if userspace requested an interrupt window, and that the
  2933. * interrupt window is open.
  2934. *
  2935. * No need to exit to userspace if we already have an interrupt queued.
  2936. */
  2937. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2938. struct kvm_run *kvm_run)
  2939. {
  2940. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  2941. kvm_run->request_interrupt_window &&
  2942. kvm_arch_interrupt_allowed(vcpu));
  2943. }
  2944. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2945. struct kvm_run *kvm_run)
  2946. {
  2947. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2948. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2949. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2950. if (irqchip_in_kernel(vcpu->kvm))
  2951. kvm_run->ready_for_interrupt_injection = 1;
  2952. else
  2953. kvm_run->ready_for_interrupt_injection =
  2954. kvm_arch_interrupt_allowed(vcpu) &&
  2955. !kvm_cpu_has_interrupt(vcpu) &&
  2956. !kvm_event_needs_reinjection(vcpu);
  2957. }
  2958. static void vapic_enter(struct kvm_vcpu *vcpu)
  2959. {
  2960. struct kvm_lapic *apic = vcpu->arch.apic;
  2961. struct page *page;
  2962. if (!apic || !apic->vapic_addr)
  2963. return;
  2964. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2965. vcpu->arch.apic->vapic_page = page;
  2966. }
  2967. static void vapic_exit(struct kvm_vcpu *vcpu)
  2968. {
  2969. struct kvm_lapic *apic = vcpu->arch.apic;
  2970. if (!apic || !apic->vapic_addr)
  2971. return;
  2972. down_read(&vcpu->kvm->slots_lock);
  2973. kvm_release_page_dirty(apic->vapic_page);
  2974. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2975. up_read(&vcpu->kvm->slots_lock);
  2976. }
  2977. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  2978. {
  2979. int max_irr, tpr;
  2980. if (!kvm_x86_ops->update_cr8_intercept)
  2981. return;
  2982. if (!vcpu->arch.apic->vapic_addr)
  2983. max_irr = kvm_lapic_find_highest_irr(vcpu);
  2984. else
  2985. max_irr = -1;
  2986. if (max_irr != -1)
  2987. max_irr >>= 4;
  2988. tpr = kvm_lapic_get_cr8(vcpu);
  2989. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  2990. }
  2991. static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2992. {
  2993. /* try to reinject previous events if any */
  2994. if (vcpu->arch.nmi_injected) {
  2995. kvm_x86_ops->set_nmi(vcpu);
  2996. return;
  2997. }
  2998. if (vcpu->arch.interrupt.pending) {
  2999. kvm_x86_ops->set_irq(vcpu);
  3000. return;
  3001. }
  3002. /* try to inject new event if pending */
  3003. if (vcpu->arch.nmi_pending) {
  3004. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3005. vcpu->arch.nmi_pending = false;
  3006. vcpu->arch.nmi_injected = true;
  3007. kvm_x86_ops->set_nmi(vcpu);
  3008. }
  3009. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3010. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3011. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3012. false);
  3013. kvm_x86_ops->set_irq(vcpu);
  3014. }
  3015. }
  3016. }
  3017. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3018. {
  3019. int r;
  3020. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3021. kvm_run->request_interrupt_window;
  3022. if (vcpu->requests)
  3023. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3024. kvm_mmu_unload(vcpu);
  3025. r = kvm_mmu_reload(vcpu);
  3026. if (unlikely(r))
  3027. goto out;
  3028. if (vcpu->requests) {
  3029. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3030. __kvm_migrate_timers(vcpu);
  3031. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3032. kvm_write_guest_time(vcpu);
  3033. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3034. kvm_mmu_sync_roots(vcpu);
  3035. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3036. kvm_x86_ops->tlb_flush(vcpu);
  3037. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3038. &vcpu->requests)) {
  3039. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3040. r = 0;
  3041. goto out;
  3042. }
  3043. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3044. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  3045. r = 0;
  3046. goto out;
  3047. }
  3048. }
  3049. preempt_disable();
  3050. kvm_x86_ops->prepare_guest_switch(vcpu);
  3051. kvm_load_guest_fpu(vcpu);
  3052. local_irq_disable();
  3053. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3054. smp_mb__after_clear_bit();
  3055. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3056. local_irq_enable();
  3057. preempt_enable();
  3058. r = 1;
  3059. goto out;
  3060. }
  3061. if (vcpu->arch.exception.pending)
  3062. __queue_exception(vcpu);
  3063. else
  3064. inject_pending_irq(vcpu, kvm_run);
  3065. /* enable NMI/IRQ window open exits if needed */
  3066. if (vcpu->arch.nmi_pending)
  3067. kvm_x86_ops->enable_nmi_window(vcpu);
  3068. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3069. kvm_x86_ops->enable_irq_window(vcpu);
  3070. if (kvm_lapic_enabled(vcpu)) {
  3071. update_cr8_intercept(vcpu);
  3072. kvm_lapic_sync_to_vapic(vcpu);
  3073. }
  3074. up_read(&vcpu->kvm->slots_lock);
  3075. kvm_guest_enter();
  3076. get_debugreg(vcpu->arch.host_dr6, 6);
  3077. get_debugreg(vcpu->arch.host_dr7, 7);
  3078. if (unlikely(vcpu->arch.switch_db_regs)) {
  3079. get_debugreg(vcpu->arch.host_db[0], 0);
  3080. get_debugreg(vcpu->arch.host_db[1], 1);
  3081. get_debugreg(vcpu->arch.host_db[2], 2);
  3082. get_debugreg(vcpu->arch.host_db[3], 3);
  3083. set_debugreg(0, 7);
  3084. set_debugreg(vcpu->arch.eff_db[0], 0);
  3085. set_debugreg(vcpu->arch.eff_db[1], 1);
  3086. set_debugreg(vcpu->arch.eff_db[2], 2);
  3087. set_debugreg(vcpu->arch.eff_db[3], 3);
  3088. }
  3089. trace_kvm_entry(vcpu->vcpu_id);
  3090. kvm_x86_ops->run(vcpu, kvm_run);
  3091. if (unlikely(vcpu->arch.switch_db_regs)) {
  3092. set_debugreg(0, 7);
  3093. set_debugreg(vcpu->arch.host_db[0], 0);
  3094. set_debugreg(vcpu->arch.host_db[1], 1);
  3095. set_debugreg(vcpu->arch.host_db[2], 2);
  3096. set_debugreg(vcpu->arch.host_db[3], 3);
  3097. }
  3098. set_debugreg(vcpu->arch.host_dr6, 6);
  3099. set_debugreg(vcpu->arch.host_dr7, 7);
  3100. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3101. local_irq_enable();
  3102. ++vcpu->stat.exits;
  3103. /*
  3104. * We must have an instruction between local_irq_enable() and
  3105. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3106. * the interrupt shadow. The stat.exits increment will do nicely.
  3107. * But we need to prevent reordering, hence this barrier():
  3108. */
  3109. barrier();
  3110. kvm_guest_exit();
  3111. preempt_enable();
  3112. down_read(&vcpu->kvm->slots_lock);
  3113. /*
  3114. * Profile KVM exit RIPs:
  3115. */
  3116. if (unlikely(prof_on == KVM_PROFILING)) {
  3117. unsigned long rip = kvm_rip_read(vcpu);
  3118. profile_hit(KVM_PROFILING, (void *)rip);
  3119. }
  3120. kvm_lapic_sync_from_vapic(vcpu);
  3121. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  3122. out:
  3123. return r;
  3124. }
  3125. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3126. {
  3127. int r;
  3128. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3129. pr_debug("vcpu %d received sipi with vector # %x\n",
  3130. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3131. kvm_lapic_reset(vcpu);
  3132. r = kvm_arch_vcpu_reset(vcpu);
  3133. if (r)
  3134. return r;
  3135. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3136. }
  3137. down_read(&vcpu->kvm->slots_lock);
  3138. vapic_enter(vcpu);
  3139. r = 1;
  3140. while (r > 0) {
  3141. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3142. r = vcpu_enter_guest(vcpu, kvm_run);
  3143. else {
  3144. up_read(&vcpu->kvm->slots_lock);
  3145. kvm_vcpu_block(vcpu);
  3146. down_read(&vcpu->kvm->slots_lock);
  3147. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3148. {
  3149. switch(vcpu->arch.mp_state) {
  3150. case KVM_MP_STATE_HALTED:
  3151. vcpu->arch.mp_state =
  3152. KVM_MP_STATE_RUNNABLE;
  3153. case KVM_MP_STATE_RUNNABLE:
  3154. break;
  3155. case KVM_MP_STATE_SIPI_RECEIVED:
  3156. default:
  3157. r = -EINTR;
  3158. break;
  3159. }
  3160. }
  3161. }
  3162. if (r <= 0)
  3163. break;
  3164. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3165. if (kvm_cpu_has_pending_timer(vcpu))
  3166. kvm_inject_pending_timer_irqs(vcpu);
  3167. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  3168. r = -EINTR;
  3169. kvm_run->exit_reason = KVM_EXIT_INTR;
  3170. ++vcpu->stat.request_irq_exits;
  3171. }
  3172. if (signal_pending(current)) {
  3173. r = -EINTR;
  3174. kvm_run->exit_reason = KVM_EXIT_INTR;
  3175. ++vcpu->stat.signal_exits;
  3176. }
  3177. if (need_resched()) {
  3178. up_read(&vcpu->kvm->slots_lock);
  3179. kvm_resched(vcpu);
  3180. down_read(&vcpu->kvm->slots_lock);
  3181. }
  3182. }
  3183. up_read(&vcpu->kvm->slots_lock);
  3184. post_kvm_run_save(vcpu, kvm_run);
  3185. vapic_exit(vcpu);
  3186. return r;
  3187. }
  3188. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3189. {
  3190. int r;
  3191. sigset_t sigsaved;
  3192. vcpu_load(vcpu);
  3193. if (vcpu->sigset_active)
  3194. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3195. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3196. kvm_vcpu_block(vcpu);
  3197. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3198. r = -EAGAIN;
  3199. goto out;
  3200. }
  3201. /* re-sync apic's tpr */
  3202. if (!irqchip_in_kernel(vcpu->kvm))
  3203. kvm_set_cr8(vcpu, kvm_run->cr8);
  3204. if (vcpu->arch.pio.cur_count) {
  3205. r = complete_pio(vcpu);
  3206. if (r)
  3207. goto out;
  3208. }
  3209. #if CONFIG_HAS_IOMEM
  3210. if (vcpu->mmio_needed) {
  3211. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3212. vcpu->mmio_read_completed = 1;
  3213. vcpu->mmio_needed = 0;
  3214. down_read(&vcpu->kvm->slots_lock);
  3215. r = emulate_instruction(vcpu, kvm_run,
  3216. vcpu->arch.mmio_fault_cr2, 0,
  3217. EMULTYPE_NO_DECODE);
  3218. up_read(&vcpu->kvm->slots_lock);
  3219. if (r == EMULATE_DO_MMIO) {
  3220. /*
  3221. * Read-modify-write. Back to userspace.
  3222. */
  3223. r = 0;
  3224. goto out;
  3225. }
  3226. }
  3227. #endif
  3228. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3229. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3230. kvm_run->hypercall.ret);
  3231. r = __vcpu_run(vcpu, kvm_run);
  3232. out:
  3233. if (vcpu->sigset_active)
  3234. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3235. vcpu_put(vcpu);
  3236. return r;
  3237. }
  3238. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3239. {
  3240. vcpu_load(vcpu);
  3241. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3242. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3243. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3244. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3245. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3246. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3247. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3248. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3249. #ifdef CONFIG_X86_64
  3250. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3251. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3252. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3253. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3254. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3255. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3256. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3257. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3258. #endif
  3259. regs->rip = kvm_rip_read(vcpu);
  3260. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3261. /*
  3262. * Don't leak debug flags in case they were set for guest debugging
  3263. */
  3264. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3265. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3266. vcpu_put(vcpu);
  3267. return 0;
  3268. }
  3269. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3270. {
  3271. vcpu_load(vcpu);
  3272. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3273. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3274. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3275. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3276. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3277. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3278. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3279. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3280. #ifdef CONFIG_X86_64
  3281. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3282. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3283. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3284. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3285. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3286. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3287. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3288. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3289. #endif
  3290. kvm_rip_write(vcpu, regs->rip);
  3291. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3292. vcpu->arch.exception.pending = false;
  3293. vcpu_put(vcpu);
  3294. return 0;
  3295. }
  3296. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3297. struct kvm_segment *var, int seg)
  3298. {
  3299. kvm_x86_ops->get_segment(vcpu, var, seg);
  3300. }
  3301. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3302. {
  3303. struct kvm_segment cs;
  3304. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3305. *db = cs.db;
  3306. *l = cs.l;
  3307. }
  3308. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3309. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3310. struct kvm_sregs *sregs)
  3311. {
  3312. struct descriptor_table dt;
  3313. vcpu_load(vcpu);
  3314. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3315. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3316. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3317. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3318. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3319. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3320. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3321. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3322. kvm_x86_ops->get_idt(vcpu, &dt);
  3323. sregs->idt.limit = dt.limit;
  3324. sregs->idt.base = dt.base;
  3325. kvm_x86_ops->get_gdt(vcpu, &dt);
  3326. sregs->gdt.limit = dt.limit;
  3327. sregs->gdt.base = dt.base;
  3328. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3329. sregs->cr0 = vcpu->arch.cr0;
  3330. sregs->cr2 = vcpu->arch.cr2;
  3331. sregs->cr3 = vcpu->arch.cr3;
  3332. sregs->cr4 = vcpu->arch.cr4;
  3333. sregs->cr8 = kvm_get_cr8(vcpu);
  3334. sregs->efer = vcpu->arch.shadow_efer;
  3335. sregs->apic_base = kvm_get_apic_base(vcpu);
  3336. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3337. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3338. set_bit(vcpu->arch.interrupt.nr,
  3339. (unsigned long *)sregs->interrupt_bitmap);
  3340. vcpu_put(vcpu);
  3341. return 0;
  3342. }
  3343. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3344. struct kvm_mp_state *mp_state)
  3345. {
  3346. vcpu_load(vcpu);
  3347. mp_state->mp_state = vcpu->arch.mp_state;
  3348. vcpu_put(vcpu);
  3349. return 0;
  3350. }
  3351. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3352. struct kvm_mp_state *mp_state)
  3353. {
  3354. vcpu_load(vcpu);
  3355. vcpu->arch.mp_state = mp_state->mp_state;
  3356. vcpu_put(vcpu);
  3357. return 0;
  3358. }
  3359. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3360. struct kvm_segment *var, int seg)
  3361. {
  3362. kvm_x86_ops->set_segment(vcpu, var, seg);
  3363. }
  3364. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3365. struct kvm_segment *kvm_desct)
  3366. {
  3367. kvm_desct->base = seg_desc->base0;
  3368. kvm_desct->base |= seg_desc->base1 << 16;
  3369. kvm_desct->base |= seg_desc->base2 << 24;
  3370. kvm_desct->limit = seg_desc->limit0;
  3371. kvm_desct->limit |= seg_desc->limit << 16;
  3372. if (seg_desc->g) {
  3373. kvm_desct->limit <<= 12;
  3374. kvm_desct->limit |= 0xfff;
  3375. }
  3376. kvm_desct->selector = selector;
  3377. kvm_desct->type = seg_desc->type;
  3378. kvm_desct->present = seg_desc->p;
  3379. kvm_desct->dpl = seg_desc->dpl;
  3380. kvm_desct->db = seg_desc->d;
  3381. kvm_desct->s = seg_desc->s;
  3382. kvm_desct->l = seg_desc->l;
  3383. kvm_desct->g = seg_desc->g;
  3384. kvm_desct->avl = seg_desc->avl;
  3385. if (!selector)
  3386. kvm_desct->unusable = 1;
  3387. else
  3388. kvm_desct->unusable = 0;
  3389. kvm_desct->padding = 0;
  3390. }
  3391. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3392. u16 selector,
  3393. struct descriptor_table *dtable)
  3394. {
  3395. if (selector & 1 << 2) {
  3396. struct kvm_segment kvm_seg;
  3397. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3398. if (kvm_seg.unusable)
  3399. dtable->limit = 0;
  3400. else
  3401. dtable->limit = kvm_seg.limit;
  3402. dtable->base = kvm_seg.base;
  3403. }
  3404. else
  3405. kvm_x86_ops->get_gdt(vcpu, dtable);
  3406. }
  3407. /* allowed just for 8 bytes segments */
  3408. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3409. struct desc_struct *seg_desc)
  3410. {
  3411. gpa_t gpa;
  3412. struct descriptor_table dtable;
  3413. u16 index = selector >> 3;
  3414. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3415. if (dtable.limit < index * 8 + 7) {
  3416. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3417. return 1;
  3418. }
  3419. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3420. gpa += index * 8;
  3421. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3422. }
  3423. /* allowed just for 8 bytes segments */
  3424. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3425. struct desc_struct *seg_desc)
  3426. {
  3427. gpa_t gpa;
  3428. struct descriptor_table dtable;
  3429. u16 index = selector >> 3;
  3430. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3431. if (dtable.limit < index * 8 + 7)
  3432. return 1;
  3433. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3434. gpa += index * 8;
  3435. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3436. }
  3437. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3438. struct desc_struct *seg_desc)
  3439. {
  3440. u32 base_addr;
  3441. base_addr = seg_desc->base0;
  3442. base_addr |= (seg_desc->base1 << 16);
  3443. base_addr |= (seg_desc->base2 << 24);
  3444. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3445. }
  3446. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3447. {
  3448. struct kvm_segment kvm_seg;
  3449. kvm_get_segment(vcpu, &kvm_seg, seg);
  3450. return kvm_seg.selector;
  3451. }
  3452. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3453. u16 selector,
  3454. struct kvm_segment *kvm_seg)
  3455. {
  3456. struct desc_struct seg_desc;
  3457. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3458. return 1;
  3459. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3460. return 0;
  3461. }
  3462. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3463. {
  3464. struct kvm_segment segvar = {
  3465. .base = selector << 4,
  3466. .limit = 0xffff,
  3467. .selector = selector,
  3468. .type = 3,
  3469. .present = 1,
  3470. .dpl = 3,
  3471. .db = 0,
  3472. .s = 1,
  3473. .l = 0,
  3474. .g = 0,
  3475. .avl = 0,
  3476. .unusable = 0,
  3477. };
  3478. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3479. return 0;
  3480. }
  3481. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3482. int type_bits, int seg)
  3483. {
  3484. struct kvm_segment kvm_seg;
  3485. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3486. return kvm_load_realmode_segment(vcpu, selector, seg);
  3487. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3488. return 1;
  3489. kvm_seg.type |= type_bits;
  3490. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3491. seg != VCPU_SREG_LDTR)
  3492. if (!kvm_seg.s)
  3493. kvm_seg.unusable = 1;
  3494. kvm_set_segment(vcpu, &kvm_seg, seg);
  3495. return 0;
  3496. }
  3497. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3498. struct tss_segment_32 *tss)
  3499. {
  3500. tss->cr3 = vcpu->arch.cr3;
  3501. tss->eip = kvm_rip_read(vcpu);
  3502. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3503. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3504. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3505. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3506. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3507. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3508. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3509. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3510. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3511. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3512. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3513. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3514. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3515. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3516. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3517. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3518. }
  3519. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3520. struct tss_segment_32 *tss)
  3521. {
  3522. kvm_set_cr3(vcpu, tss->cr3);
  3523. kvm_rip_write(vcpu, tss->eip);
  3524. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3525. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3526. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3527. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3528. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3529. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3530. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3531. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3532. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3533. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3534. return 1;
  3535. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3536. return 1;
  3537. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3538. return 1;
  3539. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3540. return 1;
  3541. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3542. return 1;
  3543. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3544. return 1;
  3545. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3546. return 1;
  3547. return 0;
  3548. }
  3549. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3550. struct tss_segment_16 *tss)
  3551. {
  3552. tss->ip = kvm_rip_read(vcpu);
  3553. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3554. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3555. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3556. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3557. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3558. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3559. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3560. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3561. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3562. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3563. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3564. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3565. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3566. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3567. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3568. }
  3569. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3570. struct tss_segment_16 *tss)
  3571. {
  3572. kvm_rip_write(vcpu, tss->ip);
  3573. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3574. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3575. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3576. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3577. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3578. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3579. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3580. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3581. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3582. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3583. return 1;
  3584. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3585. return 1;
  3586. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3587. return 1;
  3588. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3589. return 1;
  3590. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3591. return 1;
  3592. return 0;
  3593. }
  3594. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3595. u16 old_tss_sel, u32 old_tss_base,
  3596. struct desc_struct *nseg_desc)
  3597. {
  3598. struct tss_segment_16 tss_segment_16;
  3599. int ret = 0;
  3600. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3601. sizeof tss_segment_16))
  3602. goto out;
  3603. save_state_to_tss16(vcpu, &tss_segment_16);
  3604. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3605. sizeof tss_segment_16))
  3606. goto out;
  3607. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3608. &tss_segment_16, sizeof tss_segment_16))
  3609. goto out;
  3610. if (old_tss_sel != 0xffff) {
  3611. tss_segment_16.prev_task_link = old_tss_sel;
  3612. if (kvm_write_guest(vcpu->kvm,
  3613. get_tss_base_addr(vcpu, nseg_desc),
  3614. &tss_segment_16.prev_task_link,
  3615. sizeof tss_segment_16.prev_task_link))
  3616. goto out;
  3617. }
  3618. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3619. goto out;
  3620. ret = 1;
  3621. out:
  3622. return ret;
  3623. }
  3624. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3625. u16 old_tss_sel, u32 old_tss_base,
  3626. struct desc_struct *nseg_desc)
  3627. {
  3628. struct tss_segment_32 tss_segment_32;
  3629. int ret = 0;
  3630. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3631. sizeof tss_segment_32))
  3632. goto out;
  3633. save_state_to_tss32(vcpu, &tss_segment_32);
  3634. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3635. sizeof tss_segment_32))
  3636. goto out;
  3637. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3638. &tss_segment_32, sizeof tss_segment_32))
  3639. goto out;
  3640. if (old_tss_sel != 0xffff) {
  3641. tss_segment_32.prev_task_link = old_tss_sel;
  3642. if (kvm_write_guest(vcpu->kvm,
  3643. get_tss_base_addr(vcpu, nseg_desc),
  3644. &tss_segment_32.prev_task_link,
  3645. sizeof tss_segment_32.prev_task_link))
  3646. goto out;
  3647. }
  3648. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3649. goto out;
  3650. ret = 1;
  3651. out:
  3652. return ret;
  3653. }
  3654. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3655. {
  3656. struct kvm_segment tr_seg;
  3657. struct desc_struct cseg_desc;
  3658. struct desc_struct nseg_desc;
  3659. int ret = 0;
  3660. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3661. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3662. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3663. /* FIXME: Handle errors. Failure to read either TSS or their
  3664. * descriptors should generate a pagefault.
  3665. */
  3666. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3667. goto out;
  3668. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3669. goto out;
  3670. if (reason != TASK_SWITCH_IRET) {
  3671. int cpl;
  3672. cpl = kvm_x86_ops->get_cpl(vcpu);
  3673. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3674. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3675. return 1;
  3676. }
  3677. }
  3678. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3679. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3680. return 1;
  3681. }
  3682. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3683. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3684. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3685. }
  3686. if (reason == TASK_SWITCH_IRET) {
  3687. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3688. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3689. }
  3690. /* set back link to prev task only if NT bit is set in eflags
  3691. note that old_tss_sel is not used afetr this point */
  3692. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3693. old_tss_sel = 0xffff;
  3694. /* set back link to prev task only if NT bit is set in eflags
  3695. note that old_tss_sel is not used afetr this point */
  3696. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3697. old_tss_sel = 0xffff;
  3698. if (nseg_desc.type & 8)
  3699. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3700. old_tss_base, &nseg_desc);
  3701. else
  3702. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3703. old_tss_base, &nseg_desc);
  3704. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3705. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3706. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3707. }
  3708. if (reason != TASK_SWITCH_IRET) {
  3709. nseg_desc.type |= (1 << 1);
  3710. save_guest_segment_descriptor(vcpu, tss_selector,
  3711. &nseg_desc);
  3712. }
  3713. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3714. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3715. tr_seg.type = 11;
  3716. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3717. out:
  3718. return ret;
  3719. }
  3720. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3721. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3722. struct kvm_sregs *sregs)
  3723. {
  3724. int mmu_reset_needed = 0;
  3725. int pending_vec, max_bits;
  3726. struct descriptor_table dt;
  3727. vcpu_load(vcpu);
  3728. dt.limit = sregs->idt.limit;
  3729. dt.base = sregs->idt.base;
  3730. kvm_x86_ops->set_idt(vcpu, &dt);
  3731. dt.limit = sregs->gdt.limit;
  3732. dt.base = sregs->gdt.base;
  3733. kvm_x86_ops->set_gdt(vcpu, &dt);
  3734. vcpu->arch.cr2 = sregs->cr2;
  3735. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3736. down_read(&vcpu->kvm->slots_lock);
  3737. if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
  3738. vcpu->arch.cr3 = sregs->cr3;
  3739. else
  3740. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  3741. up_read(&vcpu->kvm->slots_lock);
  3742. kvm_set_cr8(vcpu, sregs->cr8);
  3743. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3744. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3745. kvm_set_apic_base(vcpu, sregs->apic_base);
  3746. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3747. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3748. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3749. vcpu->arch.cr0 = sregs->cr0;
  3750. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3751. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3752. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3753. load_pdptrs(vcpu, vcpu->arch.cr3);
  3754. if (mmu_reset_needed)
  3755. kvm_mmu_reset_context(vcpu);
  3756. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3757. pending_vec = find_first_bit(
  3758. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3759. if (pending_vec < max_bits) {
  3760. kvm_queue_interrupt(vcpu, pending_vec, false);
  3761. pr_debug("Set back pending irq %d\n", pending_vec);
  3762. if (irqchip_in_kernel(vcpu->kvm))
  3763. kvm_pic_clear_isr_ack(vcpu->kvm);
  3764. }
  3765. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3766. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3767. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3768. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3769. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3770. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3771. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3772. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3773. /* Older userspace won't unhalt the vcpu on reset. */
  3774. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3775. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3776. !(vcpu->arch.cr0 & X86_CR0_PE))
  3777. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3778. vcpu_put(vcpu);
  3779. return 0;
  3780. }
  3781. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3782. struct kvm_guest_debug *dbg)
  3783. {
  3784. int i, r;
  3785. vcpu_load(vcpu);
  3786. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3787. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3788. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3789. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3790. vcpu->arch.switch_db_regs =
  3791. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3792. } else {
  3793. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3794. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3795. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3796. }
  3797. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3798. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3799. kvm_queue_exception(vcpu, DB_VECTOR);
  3800. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3801. kvm_queue_exception(vcpu, BP_VECTOR);
  3802. vcpu_put(vcpu);
  3803. return r;
  3804. }
  3805. /*
  3806. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3807. * we have asm/x86/processor.h
  3808. */
  3809. struct fxsave {
  3810. u16 cwd;
  3811. u16 swd;
  3812. u16 twd;
  3813. u16 fop;
  3814. u64 rip;
  3815. u64 rdp;
  3816. u32 mxcsr;
  3817. u32 mxcsr_mask;
  3818. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3819. #ifdef CONFIG_X86_64
  3820. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3821. #else
  3822. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3823. #endif
  3824. };
  3825. /*
  3826. * Translate a guest virtual address to a guest physical address.
  3827. */
  3828. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3829. struct kvm_translation *tr)
  3830. {
  3831. unsigned long vaddr = tr->linear_address;
  3832. gpa_t gpa;
  3833. vcpu_load(vcpu);
  3834. down_read(&vcpu->kvm->slots_lock);
  3835. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3836. up_read(&vcpu->kvm->slots_lock);
  3837. tr->physical_address = gpa;
  3838. tr->valid = gpa != UNMAPPED_GVA;
  3839. tr->writeable = 1;
  3840. tr->usermode = 0;
  3841. vcpu_put(vcpu);
  3842. return 0;
  3843. }
  3844. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3845. {
  3846. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3847. vcpu_load(vcpu);
  3848. memcpy(fpu->fpr, fxsave->st_space, 128);
  3849. fpu->fcw = fxsave->cwd;
  3850. fpu->fsw = fxsave->swd;
  3851. fpu->ftwx = fxsave->twd;
  3852. fpu->last_opcode = fxsave->fop;
  3853. fpu->last_ip = fxsave->rip;
  3854. fpu->last_dp = fxsave->rdp;
  3855. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3856. vcpu_put(vcpu);
  3857. return 0;
  3858. }
  3859. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3860. {
  3861. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3862. vcpu_load(vcpu);
  3863. memcpy(fxsave->st_space, fpu->fpr, 128);
  3864. fxsave->cwd = fpu->fcw;
  3865. fxsave->swd = fpu->fsw;
  3866. fxsave->twd = fpu->ftwx;
  3867. fxsave->fop = fpu->last_opcode;
  3868. fxsave->rip = fpu->last_ip;
  3869. fxsave->rdp = fpu->last_dp;
  3870. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3871. vcpu_put(vcpu);
  3872. return 0;
  3873. }
  3874. void fx_init(struct kvm_vcpu *vcpu)
  3875. {
  3876. unsigned after_mxcsr_mask;
  3877. /*
  3878. * Touch the fpu the first time in non atomic context as if
  3879. * this is the first fpu instruction the exception handler
  3880. * will fire before the instruction returns and it'll have to
  3881. * allocate ram with GFP_KERNEL.
  3882. */
  3883. if (!used_math())
  3884. kvm_fx_save(&vcpu->arch.host_fx_image);
  3885. /* Initialize guest FPU by resetting ours and saving into guest's */
  3886. preempt_disable();
  3887. kvm_fx_save(&vcpu->arch.host_fx_image);
  3888. kvm_fx_finit();
  3889. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3890. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3891. preempt_enable();
  3892. vcpu->arch.cr0 |= X86_CR0_ET;
  3893. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3894. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3895. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3896. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3897. }
  3898. EXPORT_SYMBOL_GPL(fx_init);
  3899. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3900. {
  3901. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3902. return;
  3903. vcpu->guest_fpu_loaded = 1;
  3904. kvm_fx_save(&vcpu->arch.host_fx_image);
  3905. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3906. }
  3907. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3908. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3909. {
  3910. if (!vcpu->guest_fpu_loaded)
  3911. return;
  3912. vcpu->guest_fpu_loaded = 0;
  3913. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3914. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3915. ++vcpu->stat.fpu_reload;
  3916. }
  3917. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3918. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3919. {
  3920. if (vcpu->arch.time_page) {
  3921. kvm_release_page_dirty(vcpu->arch.time_page);
  3922. vcpu->arch.time_page = NULL;
  3923. }
  3924. kvm_x86_ops->vcpu_free(vcpu);
  3925. }
  3926. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3927. unsigned int id)
  3928. {
  3929. return kvm_x86_ops->vcpu_create(kvm, id);
  3930. }
  3931. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3932. {
  3933. int r;
  3934. /* We do fxsave: this must be aligned. */
  3935. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3936. vcpu->arch.mtrr_state.have_fixed = 1;
  3937. vcpu_load(vcpu);
  3938. r = kvm_arch_vcpu_reset(vcpu);
  3939. if (r == 0)
  3940. r = kvm_mmu_setup(vcpu);
  3941. vcpu_put(vcpu);
  3942. if (r < 0)
  3943. goto free_vcpu;
  3944. return 0;
  3945. free_vcpu:
  3946. kvm_x86_ops->vcpu_free(vcpu);
  3947. return r;
  3948. }
  3949. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3950. {
  3951. vcpu_load(vcpu);
  3952. kvm_mmu_unload(vcpu);
  3953. vcpu_put(vcpu);
  3954. kvm_x86_ops->vcpu_free(vcpu);
  3955. }
  3956. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3957. {
  3958. vcpu->arch.nmi_pending = false;
  3959. vcpu->arch.nmi_injected = false;
  3960. vcpu->arch.switch_db_regs = 0;
  3961. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3962. vcpu->arch.dr6 = DR6_FIXED_1;
  3963. vcpu->arch.dr7 = DR7_FIXED_1;
  3964. return kvm_x86_ops->vcpu_reset(vcpu);
  3965. }
  3966. void kvm_arch_hardware_enable(void *garbage)
  3967. {
  3968. kvm_x86_ops->hardware_enable(garbage);
  3969. }
  3970. void kvm_arch_hardware_disable(void *garbage)
  3971. {
  3972. kvm_x86_ops->hardware_disable(garbage);
  3973. }
  3974. int kvm_arch_hardware_setup(void)
  3975. {
  3976. return kvm_x86_ops->hardware_setup();
  3977. }
  3978. void kvm_arch_hardware_unsetup(void)
  3979. {
  3980. kvm_x86_ops->hardware_unsetup();
  3981. }
  3982. void kvm_arch_check_processor_compat(void *rtn)
  3983. {
  3984. kvm_x86_ops->check_processor_compatibility(rtn);
  3985. }
  3986. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3987. {
  3988. struct page *page;
  3989. struct kvm *kvm;
  3990. int r;
  3991. BUG_ON(vcpu->kvm == NULL);
  3992. kvm = vcpu->kvm;
  3993. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3994. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  3995. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3996. else
  3997. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3998. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3999. if (!page) {
  4000. r = -ENOMEM;
  4001. goto fail;
  4002. }
  4003. vcpu->arch.pio_data = page_address(page);
  4004. r = kvm_mmu_create(vcpu);
  4005. if (r < 0)
  4006. goto fail_free_pio_data;
  4007. if (irqchip_in_kernel(kvm)) {
  4008. r = kvm_create_lapic(vcpu);
  4009. if (r < 0)
  4010. goto fail_mmu_destroy;
  4011. }
  4012. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4013. GFP_KERNEL);
  4014. if (!vcpu->arch.mce_banks) {
  4015. r = -ENOMEM;
  4016. goto fail_mmu_destroy;
  4017. }
  4018. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4019. return 0;
  4020. fail_mmu_destroy:
  4021. kvm_mmu_destroy(vcpu);
  4022. fail_free_pio_data:
  4023. free_page((unsigned long)vcpu->arch.pio_data);
  4024. fail:
  4025. return r;
  4026. }
  4027. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4028. {
  4029. kvm_free_lapic(vcpu);
  4030. down_read(&vcpu->kvm->slots_lock);
  4031. kvm_mmu_destroy(vcpu);
  4032. up_read(&vcpu->kvm->slots_lock);
  4033. free_page((unsigned long)vcpu->arch.pio_data);
  4034. }
  4035. struct kvm *kvm_arch_create_vm(void)
  4036. {
  4037. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4038. if (!kvm)
  4039. return ERR_PTR(-ENOMEM);
  4040. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4041. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4042. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4043. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4044. rdtscll(kvm->arch.vm_init_tsc);
  4045. return kvm;
  4046. }
  4047. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4048. {
  4049. vcpu_load(vcpu);
  4050. kvm_mmu_unload(vcpu);
  4051. vcpu_put(vcpu);
  4052. }
  4053. static void kvm_free_vcpus(struct kvm *kvm)
  4054. {
  4055. unsigned int i;
  4056. struct kvm_vcpu *vcpu;
  4057. /*
  4058. * Unpin any mmu pages first.
  4059. */
  4060. kvm_for_each_vcpu(i, vcpu, kvm)
  4061. kvm_unload_vcpu_mmu(vcpu);
  4062. kvm_for_each_vcpu(i, vcpu, kvm)
  4063. kvm_arch_vcpu_free(vcpu);
  4064. mutex_lock(&kvm->lock);
  4065. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4066. kvm->vcpus[i] = NULL;
  4067. atomic_set(&kvm->online_vcpus, 0);
  4068. mutex_unlock(&kvm->lock);
  4069. }
  4070. void kvm_arch_sync_events(struct kvm *kvm)
  4071. {
  4072. kvm_free_all_assigned_devices(kvm);
  4073. }
  4074. void kvm_arch_destroy_vm(struct kvm *kvm)
  4075. {
  4076. kvm_iommu_unmap_guest(kvm);
  4077. kvm_free_pit(kvm);
  4078. kfree(kvm->arch.vpic);
  4079. kfree(kvm->arch.vioapic);
  4080. kvm_free_vcpus(kvm);
  4081. kvm_free_physmem(kvm);
  4082. if (kvm->arch.apic_access_page)
  4083. put_page(kvm->arch.apic_access_page);
  4084. if (kvm->arch.ept_identity_pagetable)
  4085. put_page(kvm->arch.ept_identity_pagetable);
  4086. kfree(kvm);
  4087. }
  4088. int kvm_arch_set_memory_region(struct kvm *kvm,
  4089. struct kvm_userspace_memory_region *mem,
  4090. struct kvm_memory_slot old,
  4091. int user_alloc)
  4092. {
  4093. int npages = mem->memory_size >> PAGE_SHIFT;
  4094. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4095. /*To keep backward compatibility with older userspace,
  4096. *x86 needs to hanlde !user_alloc case.
  4097. */
  4098. if (!user_alloc) {
  4099. if (npages && !old.rmap) {
  4100. unsigned long userspace_addr;
  4101. down_write(&current->mm->mmap_sem);
  4102. userspace_addr = do_mmap(NULL, 0,
  4103. npages * PAGE_SIZE,
  4104. PROT_READ | PROT_WRITE,
  4105. MAP_PRIVATE | MAP_ANONYMOUS,
  4106. 0);
  4107. up_write(&current->mm->mmap_sem);
  4108. if (IS_ERR((void *)userspace_addr))
  4109. return PTR_ERR((void *)userspace_addr);
  4110. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4111. spin_lock(&kvm->mmu_lock);
  4112. memslot->userspace_addr = userspace_addr;
  4113. spin_unlock(&kvm->mmu_lock);
  4114. } else {
  4115. if (!old.user_alloc && old.rmap) {
  4116. int ret;
  4117. down_write(&current->mm->mmap_sem);
  4118. ret = do_munmap(current->mm, old.userspace_addr,
  4119. old.npages * PAGE_SIZE);
  4120. up_write(&current->mm->mmap_sem);
  4121. if (ret < 0)
  4122. printk(KERN_WARNING
  4123. "kvm_vm_ioctl_set_memory_region: "
  4124. "failed to munmap memory\n");
  4125. }
  4126. }
  4127. }
  4128. spin_lock(&kvm->mmu_lock);
  4129. if (!kvm->arch.n_requested_mmu_pages) {
  4130. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4131. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4132. }
  4133. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4134. spin_unlock(&kvm->mmu_lock);
  4135. kvm_flush_remote_tlbs(kvm);
  4136. return 0;
  4137. }
  4138. void kvm_arch_flush_shadow(struct kvm *kvm)
  4139. {
  4140. kvm_mmu_zap_all(kvm);
  4141. kvm_reload_remote_mmus(kvm);
  4142. }
  4143. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4144. {
  4145. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4146. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4147. || vcpu->arch.nmi_pending;
  4148. }
  4149. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4150. {
  4151. int me;
  4152. int cpu = vcpu->cpu;
  4153. if (waitqueue_active(&vcpu->wq)) {
  4154. wake_up_interruptible(&vcpu->wq);
  4155. ++vcpu->stat.halt_wakeup;
  4156. }
  4157. me = get_cpu();
  4158. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4159. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4160. smp_send_reschedule(cpu);
  4161. put_cpu();
  4162. }
  4163. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4164. {
  4165. return kvm_x86_ops->interrupt_allowed(vcpu);
  4166. }
  4167. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4168. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4169. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4170. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4171. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);