sched.c 229 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. unsigned int nr_spread_over;
  273. #ifdef CONFIG_FAIR_GROUP_SCHED
  274. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  275. /*
  276. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  277. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  278. * (like users, containers etc.)
  279. *
  280. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  281. * list is used during load balance.
  282. */
  283. int on_list;
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * Maintaining per-cpu shares distribution for group scheduling
  300. *
  301. * load_stamp is the last time we updated the load average
  302. * load_last is the last time we updated the load average and saw load
  303. * load_unacc_exec_time is currently unaccounted execution time
  304. */
  305. u64 load_avg;
  306. u64 load_period;
  307. u64 load_stamp, load_last, load_unacc_exec_time;
  308. unsigned long load_contribution;
  309. #endif
  310. #endif
  311. };
  312. /* Real-Time classes' related field in a runqueue: */
  313. struct rt_rq {
  314. struct rt_prio_array active;
  315. unsigned long rt_nr_running;
  316. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  317. struct {
  318. int curr; /* highest queued rt task prio */
  319. #ifdef CONFIG_SMP
  320. int next; /* next highest */
  321. #endif
  322. } highest_prio;
  323. #endif
  324. #ifdef CONFIG_SMP
  325. unsigned long rt_nr_migratory;
  326. unsigned long rt_nr_total;
  327. int overloaded;
  328. struct plist_head pushable_tasks;
  329. #endif
  330. int rt_throttled;
  331. u64 rt_time;
  332. u64 rt_runtime;
  333. /* Nests inside the rq lock: */
  334. raw_spinlock_t rt_runtime_lock;
  335. #ifdef CONFIG_RT_GROUP_SCHED
  336. unsigned long rt_nr_boosted;
  337. struct rq *rq;
  338. struct list_head leaf_rt_rq_list;
  339. struct task_group *tg;
  340. #endif
  341. };
  342. #ifdef CONFIG_SMP
  343. /*
  344. * We add the notion of a root-domain which will be used to define per-domain
  345. * variables. Each exclusive cpuset essentially defines an island domain by
  346. * fully partitioning the member cpus from any other cpuset. Whenever a new
  347. * exclusive cpuset is created, we also create and attach a new root-domain
  348. * object.
  349. *
  350. */
  351. struct root_domain {
  352. atomic_t refcount;
  353. cpumask_var_t span;
  354. cpumask_var_t online;
  355. /*
  356. * The "RT overload" flag: it gets set if a CPU has more than
  357. * one runnable RT task.
  358. */
  359. cpumask_var_t rto_mask;
  360. atomic_t rto_count;
  361. struct cpupri cpupri;
  362. };
  363. /*
  364. * By default the system creates a single root-domain with all cpus as
  365. * members (mimicking the global state we have today).
  366. */
  367. static struct root_domain def_root_domain;
  368. #endif /* CONFIG_SMP */
  369. /*
  370. * This is the main, per-CPU runqueue data structure.
  371. *
  372. * Locking rule: those places that want to lock multiple runqueues
  373. * (such as the load balancing or the thread migration code), lock
  374. * acquire operations must be ordered by ascending &runqueue.
  375. */
  376. struct rq {
  377. /* runqueue lock: */
  378. raw_spinlock_t lock;
  379. /*
  380. * nr_running and cpu_load should be in the same cacheline because
  381. * remote CPUs use both these fields when doing load calculation.
  382. */
  383. unsigned long nr_running;
  384. #define CPU_LOAD_IDX_MAX 5
  385. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  386. unsigned long last_load_update_tick;
  387. #ifdef CONFIG_NO_HZ
  388. u64 nohz_stamp;
  389. unsigned char nohz_balance_kick;
  390. #endif
  391. unsigned int skip_clock_update;
  392. /* capture load from *all* tasks on this cpu: */
  393. struct load_weight load;
  394. unsigned long nr_load_updates;
  395. u64 nr_switches;
  396. struct cfs_rq cfs;
  397. struct rt_rq rt;
  398. #ifdef CONFIG_FAIR_GROUP_SCHED
  399. /* list of leaf cfs_rq on this cpu: */
  400. struct list_head leaf_cfs_rq_list;
  401. #endif
  402. #ifdef CONFIG_RT_GROUP_SCHED
  403. struct list_head leaf_rt_rq_list;
  404. #endif
  405. /*
  406. * This is part of a global counter where only the total sum
  407. * over all CPUs matters. A task can increase this counter on
  408. * one CPU and if it got migrated afterwards it may decrease
  409. * it on another CPU. Always updated under the runqueue lock:
  410. */
  411. unsigned long nr_uninterruptible;
  412. struct task_struct *curr, *idle, *stop;
  413. unsigned long next_balance;
  414. struct mm_struct *prev_mm;
  415. u64 clock;
  416. u64 clock_task;
  417. atomic_t nr_iowait;
  418. #ifdef CONFIG_SMP
  419. struct root_domain *rd;
  420. struct sched_domain *sd;
  421. unsigned long cpu_power;
  422. unsigned char idle_at_tick;
  423. /* For active balancing */
  424. int post_schedule;
  425. int active_balance;
  426. int push_cpu;
  427. struct cpu_stop_work active_balance_work;
  428. /* cpu of this runqueue: */
  429. int cpu;
  430. int online;
  431. unsigned long avg_load_per_task;
  432. u64 rt_avg;
  433. u64 age_stamp;
  434. u64 idle_stamp;
  435. u64 avg_idle;
  436. #endif
  437. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  438. u64 prev_irq_time;
  439. #endif
  440. /* calc_load related fields */
  441. unsigned long calc_load_update;
  442. long calc_load_active;
  443. #ifdef CONFIG_SCHED_HRTICK
  444. #ifdef CONFIG_SMP
  445. int hrtick_csd_pending;
  446. struct call_single_data hrtick_csd;
  447. #endif
  448. struct hrtimer hrtick_timer;
  449. #endif
  450. #ifdef CONFIG_SCHEDSTATS
  451. /* latency stats */
  452. struct sched_info rq_sched_info;
  453. unsigned long long rq_cpu_time;
  454. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  455. /* sys_sched_yield() stats */
  456. unsigned int yld_count;
  457. /* schedule() stats */
  458. unsigned int sched_switch;
  459. unsigned int sched_count;
  460. unsigned int sched_goidle;
  461. /* try_to_wake_up() stats */
  462. unsigned int ttwu_count;
  463. unsigned int ttwu_local;
  464. #endif
  465. #ifdef CONFIG_SMP
  466. struct task_struct *wake_list;
  467. #endif
  468. };
  469. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  470. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  471. static inline int cpu_of(struct rq *rq)
  472. {
  473. #ifdef CONFIG_SMP
  474. return rq->cpu;
  475. #else
  476. return 0;
  477. #endif
  478. }
  479. #define rcu_dereference_check_sched_domain(p) \
  480. rcu_dereference_check((p), \
  481. rcu_read_lock_sched_held() || \
  482. lockdep_is_held(&sched_domains_mutex))
  483. /*
  484. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  485. * See detach_destroy_domains: synchronize_sched for details.
  486. *
  487. * The domain tree of any CPU may only be accessed from within
  488. * preempt-disabled sections.
  489. */
  490. #define for_each_domain(cpu, __sd) \
  491. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  492. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  493. #define this_rq() (&__get_cpu_var(runqueues))
  494. #define task_rq(p) cpu_rq(task_cpu(p))
  495. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  496. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  497. #ifdef CONFIG_CGROUP_SCHED
  498. /*
  499. * Return the group to which this tasks belongs.
  500. *
  501. * We use task_subsys_state_check() and extend the RCU verification
  502. * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
  503. * holds that lock for each task it moves into the cgroup. Therefore
  504. * by holding that lock, we pin the task to the current cgroup.
  505. */
  506. static inline struct task_group *task_group(struct task_struct *p)
  507. {
  508. struct task_group *tg;
  509. struct cgroup_subsys_state *css;
  510. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  511. lockdep_is_held(&p->pi_lock));
  512. tg = container_of(css, struct task_group, css);
  513. return autogroup_task_group(p, tg);
  514. }
  515. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  516. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  517. {
  518. #ifdef CONFIG_FAIR_GROUP_SCHED
  519. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  520. p->se.parent = task_group(p)->se[cpu];
  521. #endif
  522. #ifdef CONFIG_RT_GROUP_SCHED
  523. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  524. p->rt.parent = task_group(p)->rt_se[cpu];
  525. #endif
  526. }
  527. #else /* CONFIG_CGROUP_SCHED */
  528. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  529. static inline struct task_group *task_group(struct task_struct *p)
  530. {
  531. return NULL;
  532. }
  533. #endif /* CONFIG_CGROUP_SCHED */
  534. static void update_rq_clock_task(struct rq *rq, s64 delta);
  535. static void update_rq_clock(struct rq *rq)
  536. {
  537. s64 delta;
  538. if (rq->skip_clock_update)
  539. return;
  540. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  541. rq->clock += delta;
  542. update_rq_clock_task(rq, delta);
  543. }
  544. /*
  545. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  546. */
  547. #ifdef CONFIG_SCHED_DEBUG
  548. # define const_debug __read_mostly
  549. #else
  550. # define const_debug static const
  551. #endif
  552. /**
  553. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  554. * @cpu: the processor in question.
  555. *
  556. * This interface allows printk to be called with the runqueue lock
  557. * held and know whether or not it is OK to wake up the klogd.
  558. */
  559. int runqueue_is_locked(int cpu)
  560. {
  561. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  562. }
  563. /*
  564. * Debugging: various feature bits
  565. */
  566. #define SCHED_FEAT(name, enabled) \
  567. __SCHED_FEAT_##name ,
  568. enum {
  569. #include "sched_features.h"
  570. };
  571. #undef SCHED_FEAT
  572. #define SCHED_FEAT(name, enabled) \
  573. (1UL << __SCHED_FEAT_##name) * enabled |
  574. const_debug unsigned int sysctl_sched_features =
  575. #include "sched_features.h"
  576. 0;
  577. #undef SCHED_FEAT
  578. #ifdef CONFIG_SCHED_DEBUG
  579. #define SCHED_FEAT(name, enabled) \
  580. #name ,
  581. static __read_mostly char *sched_feat_names[] = {
  582. #include "sched_features.h"
  583. NULL
  584. };
  585. #undef SCHED_FEAT
  586. static int sched_feat_show(struct seq_file *m, void *v)
  587. {
  588. int i;
  589. for (i = 0; sched_feat_names[i]; i++) {
  590. if (!(sysctl_sched_features & (1UL << i)))
  591. seq_puts(m, "NO_");
  592. seq_printf(m, "%s ", sched_feat_names[i]);
  593. }
  594. seq_puts(m, "\n");
  595. return 0;
  596. }
  597. static ssize_t
  598. sched_feat_write(struct file *filp, const char __user *ubuf,
  599. size_t cnt, loff_t *ppos)
  600. {
  601. char buf[64];
  602. char *cmp;
  603. int neg = 0;
  604. int i;
  605. if (cnt > 63)
  606. cnt = 63;
  607. if (copy_from_user(&buf, ubuf, cnt))
  608. return -EFAULT;
  609. buf[cnt] = 0;
  610. cmp = strstrip(buf);
  611. if (strncmp(cmp, "NO_", 3) == 0) {
  612. neg = 1;
  613. cmp += 3;
  614. }
  615. for (i = 0; sched_feat_names[i]; i++) {
  616. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  617. if (neg)
  618. sysctl_sched_features &= ~(1UL << i);
  619. else
  620. sysctl_sched_features |= (1UL << i);
  621. break;
  622. }
  623. }
  624. if (!sched_feat_names[i])
  625. return -EINVAL;
  626. *ppos += cnt;
  627. return cnt;
  628. }
  629. static int sched_feat_open(struct inode *inode, struct file *filp)
  630. {
  631. return single_open(filp, sched_feat_show, NULL);
  632. }
  633. static const struct file_operations sched_feat_fops = {
  634. .open = sched_feat_open,
  635. .write = sched_feat_write,
  636. .read = seq_read,
  637. .llseek = seq_lseek,
  638. .release = single_release,
  639. };
  640. static __init int sched_init_debug(void)
  641. {
  642. debugfs_create_file("sched_features", 0644, NULL, NULL,
  643. &sched_feat_fops);
  644. return 0;
  645. }
  646. late_initcall(sched_init_debug);
  647. #endif
  648. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  649. /*
  650. * Number of tasks to iterate in a single balance run.
  651. * Limited because this is done with IRQs disabled.
  652. */
  653. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  654. /*
  655. * period over which we average the RT time consumption, measured
  656. * in ms.
  657. *
  658. * default: 1s
  659. */
  660. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  661. /*
  662. * period over which we measure -rt task cpu usage in us.
  663. * default: 1s
  664. */
  665. unsigned int sysctl_sched_rt_period = 1000000;
  666. static __read_mostly int scheduler_running;
  667. /*
  668. * part of the period that we allow rt tasks to run in us.
  669. * default: 0.95s
  670. */
  671. int sysctl_sched_rt_runtime = 950000;
  672. static inline u64 global_rt_period(void)
  673. {
  674. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  675. }
  676. static inline u64 global_rt_runtime(void)
  677. {
  678. if (sysctl_sched_rt_runtime < 0)
  679. return RUNTIME_INF;
  680. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  681. }
  682. #ifndef prepare_arch_switch
  683. # define prepare_arch_switch(next) do { } while (0)
  684. #endif
  685. #ifndef finish_arch_switch
  686. # define finish_arch_switch(prev) do { } while (0)
  687. #endif
  688. static inline int task_current(struct rq *rq, struct task_struct *p)
  689. {
  690. return rq->curr == p;
  691. }
  692. static inline int task_running(struct rq *rq, struct task_struct *p)
  693. {
  694. #ifdef CONFIG_SMP
  695. return p->on_cpu;
  696. #else
  697. return task_current(rq, p);
  698. #endif
  699. }
  700. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  701. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  702. {
  703. #ifdef CONFIG_SMP
  704. /*
  705. * We can optimise this out completely for !SMP, because the
  706. * SMP rebalancing from interrupt is the only thing that cares
  707. * here.
  708. */
  709. next->on_cpu = 1;
  710. #endif
  711. }
  712. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  713. {
  714. #ifdef CONFIG_SMP
  715. /*
  716. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  717. * We must ensure this doesn't happen until the switch is completely
  718. * finished.
  719. */
  720. smp_wmb();
  721. prev->on_cpu = 0;
  722. #endif
  723. #ifdef CONFIG_DEBUG_SPINLOCK
  724. /* this is a valid case when another task releases the spinlock */
  725. rq->lock.owner = current;
  726. #endif
  727. /*
  728. * If we are tracking spinlock dependencies then we have to
  729. * fix up the runqueue lock - which gets 'carried over' from
  730. * prev into current:
  731. */
  732. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  733. raw_spin_unlock_irq(&rq->lock);
  734. }
  735. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  736. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  737. {
  738. #ifdef CONFIG_SMP
  739. /*
  740. * We can optimise this out completely for !SMP, because the
  741. * SMP rebalancing from interrupt is the only thing that cares
  742. * here.
  743. */
  744. next->on_cpu = 1;
  745. #endif
  746. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  747. raw_spin_unlock_irq(&rq->lock);
  748. #else
  749. raw_spin_unlock(&rq->lock);
  750. #endif
  751. }
  752. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  753. {
  754. #ifdef CONFIG_SMP
  755. /*
  756. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  757. * We must ensure this doesn't happen until the switch is completely
  758. * finished.
  759. */
  760. smp_wmb();
  761. prev->on_cpu = 0;
  762. #endif
  763. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  764. local_irq_enable();
  765. #endif
  766. }
  767. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  768. /*
  769. * __task_rq_lock - lock the rq @p resides on.
  770. */
  771. static inline struct rq *__task_rq_lock(struct task_struct *p)
  772. __acquires(rq->lock)
  773. {
  774. struct rq *rq;
  775. lockdep_assert_held(&p->pi_lock);
  776. for (;;) {
  777. rq = task_rq(p);
  778. raw_spin_lock(&rq->lock);
  779. if (likely(rq == task_rq(p)))
  780. return rq;
  781. raw_spin_unlock(&rq->lock);
  782. }
  783. }
  784. /*
  785. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  786. */
  787. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  788. __acquires(p->pi_lock)
  789. __acquires(rq->lock)
  790. {
  791. struct rq *rq;
  792. for (;;) {
  793. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  794. rq = task_rq(p);
  795. raw_spin_lock(&rq->lock);
  796. if (likely(rq == task_rq(p)))
  797. return rq;
  798. raw_spin_unlock(&rq->lock);
  799. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  800. }
  801. }
  802. static void __task_rq_unlock(struct rq *rq)
  803. __releases(rq->lock)
  804. {
  805. raw_spin_unlock(&rq->lock);
  806. }
  807. static inline void
  808. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  809. __releases(rq->lock)
  810. __releases(p->pi_lock)
  811. {
  812. raw_spin_unlock(&rq->lock);
  813. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  814. }
  815. /*
  816. * this_rq_lock - lock this runqueue and disable interrupts.
  817. */
  818. static struct rq *this_rq_lock(void)
  819. __acquires(rq->lock)
  820. {
  821. struct rq *rq;
  822. local_irq_disable();
  823. rq = this_rq();
  824. raw_spin_lock(&rq->lock);
  825. return rq;
  826. }
  827. #ifdef CONFIG_SCHED_HRTICK
  828. /*
  829. * Use HR-timers to deliver accurate preemption points.
  830. *
  831. * Its all a bit involved since we cannot program an hrt while holding the
  832. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  833. * reschedule event.
  834. *
  835. * When we get rescheduled we reprogram the hrtick_timer outside of the
  836. * rq->lock.
  837. */
  838. /*
  839. * Use hrtick when:
  840. * - enabled by features
  841. * - hrtimer is actually high res
  842. */
  843. static inline int hrtick_enabled(struct rq *rq)
  844. {
  845. if (!sched_feat(HRTICK))
  846. return 0;
  847. if (!cpu_active(cpu_of(rq)))
  848. return 0;
  849. return hrtimer_is_hres_active(&rq->hrtick_timer);
  850. }
  851. static void hrtick_clear(struct rq *rq)
  852. {
  853. if (hrtimer_active(&rq->hrtick_timer))
  854. hrtimer_cancel(&rq->hrtick_timer);
  855. }
  856. /*
  857. * High-resolution timer tick.
  858. * Runs from hardirq context with interrupts disabled.
  859. */
  860. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  861. {
  862. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  863. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  864. raw_spin_lock(&rq->lock);
  865. update_rq_clock(rq);
  866. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  867. raw_spin_unlock(&rq->lock);
  868. return HRTIMER_NORESTART;
  869. }
  870. #ifdef CONFIG_SMP
  871. /*
  872. * called from hardirq (IPI) context
  873. */
  874. static void __hrtick_start(void *arg)
  875. {
  876. struct rq *rq = arg;
  877. raw_spin_lock(&rq->lock);
  878. hrtimer_restart(&rq->hrtick_timer);
  879. rq->hrtick_csd_pending = 0;
  880. raw_spin_unlock(&rq->lock);
  881. }
  882. /*
  883. * Called to set the hrtick timer state.
  884. *
  885. * called with rq->lock held and irqs disabled
  886. */
  887. static void hrtick_start(struct rq *rq, u64 delay)
  888. {
  889. struct hrtimer *timer = &rq->hrtick_timer;
  890. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  891. hrtimer_set_expires(timer, time);
  892. if (rq == this_rq()) {
  893. hrtimer_restart(timer);
  894. } else if (!rq->hrtick_csd_pending) {
  895. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  896. rq->hrtick_csd_pending = 1;
  897. }
  898. }
  899. static int
  900. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  901. {
  902. int cpu = (int)(long)hcpu;
  903. switch (action) {
  904. case CPU_UP_CANCELED:
  905. case CPU_UP_CANCELED_FROZEN:
  906. case CPU_DOWN_PREPARE:
  907. case CPU_DOWN_PREPARE_FROZEN:
  908. case CPU_DEAD:
  909. case CPU_DEAD_FROZEN:
  910. hrtick_clear(cpu_rq(cpu));
  911. return NOTIFY_OK;
  912. }
  913. return NOTIFY_DONE;
  914. }
  915. static __init void init_hrtick(void)
  916. {
  917. hotcpu_notifier(hotplug_hrtick, 0);
  918. }
  919. #else
  920. /*
  921. * Called to set the hrtick timer state.
  922. *
  923. * called with rq->lock held and irqs disabled
  924. */
  925. static void hrtick_start(struct rq *rq, u64 delay)
  926. {
  927. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  928. HRTIMER_MODE_REL_PINNED, 0);
  929. }
  930. static inline void init_hrtick(void)
  931. {
  932. }
  933. #endif /* CONFIG_SMP */
  934. static void init_rq_hrtick(struct rq *rq)
  935. {
  936. #ifdef CONFIG_SMP
  937. rq->hrtick_csd_pending = 0;
  938. rq->hrtick_csd.flags = 0;
  939. rq->hrtick_csd.func = __hrtick_start;
  940. rq->hrtick_csd.info = rq;
  941. #endif
  942. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  943. rq->hrtick_timer.function = hrtick;
  944. }
  945. #else /* CONFIG_SCHED_HRTICK */
  946. static inline void hrtick_clear(struct rq *rq)
  947. {
  948. }
  949. static inline void init_rq_hrtick(struct rq *rq)
  950. {
  951. }
  952. static inline void init_hrtick(void)
  953. {
  954. }
  955. #endif /* CONFIG_SCHED_HRTICK */
  956. /*
  957. * resched_task - mark a task 'to be rescheduled now'.
  958. *
  959. * On UP this means the setting of the need_resched flag, on SMP it
  960. * might also involve a cross-CPU call to trigger the scheduler on
  961. * the target CPU.
  962. */
  963. #ifdef CONFIG_SMP
  964. #ifndef tsk_is_polling
  965. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  966. #endif
  967. static void resched_task(struct task_struct *p)
  968. {
  969. int cpu;
  970. assert_raw_spin_locked(&task_rq(p)->lock);
  971. if (test_tsk_need_resched(p))
  972. return;
  973. set_tsk_need_resched(p);
  974. cpu = task_cpu(p);
  975. if (cpu == smp_processor_id())
  976. return;
  977. /* NEED_RESCHED must be visible before we test polling */
  978. smp_mb();
  979. if (!tsk_is_polling(p))
  980. smp_send_reschedule(cpu);
  981. }
  982. static void resched_cpu(int cpu)
  983. {
  984. struct rq *rq = cpu_rq(cpu);
  985. unsigned long flags;
  986. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  987. return;
  988. resched_task(cpu_curr(cpu));
  989. raw_spin_unlock_irqrestore(&rq->lock, flags);
  990. }
  991. #ifdef CONFIG_NO_HZ
  992. /*
  993. * In the semi idle case, use the nearest busy cpu for migrating timers
  994. * from an idle cpu. This is good for power-savings.
  995. *
  996. * We don't do similar optimization for completely idle system, as
  997. * selecting an idle cpu will add more delays to the timers than intended
  998. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  999. */
  1000. int get_nohz_timer_target(void)
  1001. {
  1002. int cpu = smp_processor_id();
  1003. int i;
  1004. struct sched_domain *sd;
  1005. for_each_domain(cpu, sd) {
  1006. for_each_cpu(i, sched_domain_span(sd))
  1007. if (!idle_cpu(i))
  1008. return i;
  1009. }
  1010. return cpu;
  1011. }
  1012. /*
  1013. * When add_timer_on() enqueues a timer into the timer wheel of an
  1014. * idle CPU then this timer might expire before the next timer event
  1015. * which is scheduled to wake up that CPU. In case of a completely
  1016. * idle system the next event might even be infinite time into the
  1017. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1018. * leaves the inner idle loop so the newly added timer is taken into
  1019. * account when the CPU goes back to idle and evaluates the timer
  1020. * wheel for the next timer event.
  1021. */
  1022. void wake_up_idle_cpu(int cpu)
  1023. {
  1024. struct rq *rq = cpu_rq(cpu);
  1025. if (cpu == smp_processor_id())
  1026. return;
  1027. /*
  1028. * This is safe, as this function is called with the timer
  1029. * wheel base lock of (cpu) held. When the CPU is on the way
  1030. * to idle and has not yet set rq->curr to idle then it will
  1031. * be serialized on the timer wheel base lock and take the new
  1032. * timer into account automatically.
  1033. */
  1034. if (rq->curr != rq->idle)
  1035. return;
  1036. /*
  1037. * We can set TIF_RESCHED on the idle task of the other CPU
  1038. * lockless. The worst case is that the other CPU runs the
  1039. * idle task through an additional NOOP schedule()
  1040. */
  1041. set_tsk_need_resched(rq->idle);
  1042. /* NEED_RESCHED must be visible before we test polling */
  1043. smp_mb();
  1044. if (!tsk_is_polling(rq->idle))
  1045. smp_send_reschedule(cpu);
  1046. }
  1047. #endif /* CONFIG_NO_HZ */
  1048. static u64 sched_avg_period(void)
  1049. {
  1050. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1051. }
  1052. static void sched_avg_update(struct rq *rq)
  1053. {
  1054. s64 period = sched_avg_period();
  1055. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1056. /*
  1057. * Inline assembly required to prevent the compiler
  1058. * optimising this loop into a divmod call.
  1059. * See __iter_div_u64_rem() for another example of this.
  1060. */
  1061. asm("" : "+rm" (rq->age_stamp));
  1062. rq->age_stamp += period;
  1063. rq->rt_avg /= 2;
  1064. }
  1065. }
  1066. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1067. {
  1068. rq->rt_avg += rt_delta;
  1069. sched_avg_update(rq);
  1070. }
  1071. #else /* !CONFIG_SMP */
  1072. static void resched_task(struct task_struct *p)
  1073. {
  1074. assert_raw_spin_locked(&task_rq(p)->lock);
  1075. set_tsk_need_resched(p);
  1076. }
  1077. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1078. {
  1079. }
  1080. static void sched_avg_update(struct rq *rq)
  1081. {
  1082. }
  1083. #endif /* CONFIG_SMP */
  1084. #if BITS_PER_LONG == 32
  1085. # define WMULT_CONST (~0UL)
  1086. #else
  1087. # define WMULT_CONST (1UL << 32)
  1088. #endif
  1089. #define WMULT_SHIFT 32
  1090. /*
  1091. * Shift right and round:
  1092. */
  1093. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1094. /*
  1095. * delta *= weight / lw
  1096. */
  1097. static unsigned long
  1098. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1099. struct load_weight *lw)
  1100. {
  1101. u64 tmp;
  1102. if (!lw->inv_weight) {
  1103. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1104. lw->inv_weight = 1;
  1105. else
  1106. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1107. / (lw->weight+1);
  1108. }
  1109. tmp = (u64)delta_exec * weight;
  1110. /*
  1111. * Check whether we'd overflow the 64-bit multiplication:
  1112. */
  1113. if (unlikely(tmp > WMULT_CONST))
  1114. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1115. WMULT_SHIFT/2);
  1116. else
  1117. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1118. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1119. }
  1120. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1121. {
  1122. lw->weight += inc;
  1123. lw->inv_weight = 0;
  1124. }
  1125. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1126. {
  1127. lw->weight -= dec;
  1128. lw->inv_weight = 0;
  1129. }
  1130. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1131. {
  1132. lw->weight = w;
  1133. lw->inv_weight = 0;
  1134. }
  1135. /*
  1136. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1137. * of tasks with abnormal "nice" values across CPUs the contribution that
  1138. * each task makes to its run queue's load is weighted according to its
  1139. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1140. * scaled version of the new time slice allocation that they receive on time
  1141. * slice expiry etc.
  1142. */
  1143. #define WEIGHT_IDLEPRIO 3
  1144. #define WMULT_IDLEPRIO 1431655765
  1145. /*
  1146. * Nice levels are multiplicative, with a gentle 10% change for every
  1147. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1148. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1149. * that remained on nice 0.
  1150. *
  1151. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1152. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1153. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1154. * If a task goes up by ~10% and another task goes down by ~10% then
  1155. * the relative distance between them is ~25%.)
  1156. */
  1157. static const int prio_to_weight[40] = {
  1158. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1159. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1160. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1161. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1162. /* 0 */ 1024, 820, 655, 526, 423,
  1163. /* 5 */ 335, 272, 215, 172, 137,
  1164. /* 10 */ 110, 87, 70, 56, 45,
  1165. /* 15 */ 36, 29, 23, 18, 15,
  1166. };
  1167. /*
  1168. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1169. *
  1170. * In cases where the weight does not change often, we can use the
  1171. * precalculated inverse to speed up arithmetics by turning divisions
  1172. * into multiplications:
  1173. */
  1174. static const u32 prio_to_wmult[40] = {
  1175. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1176. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1177. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1178. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1179. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1180. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1181. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1182. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1183. };
  1184. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1185. enum cpuacct_stat_index {
  1186. CPUACCT_STAT_USER, /* ... user mode */
  1187. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1188. CPUACCT_STAT_NSTATS,
  1189. };
  1190. #ifdef CONFIG_CGROUP_CPUACCT
  1191. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1192. static void cpuacct_update_stats(struct task_struct *tsk,
  1193. enum cpuacct_stat_index idx, cputime_t val);
  1194. #else
  1195. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1196. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1197. enum cpuacct_stat_index idx, cputime_t val) {}
  1198. #endif
  1199. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1200. {
  1201. update_load_add(&rq->load, load);
  1202. }
  1203. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1204. {
  1205. update_load_sub(&rq->load, load);
  1206. }
  1207. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1208. typedef int (*tg_visitor)(struct task_group *, void *);
  1209. /*
  1210. * Iterate the full tree, calling @down when first entering a node and @up when
  1211. * leaving it for the final time.
  1212. */
  1213. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1214. {
  1215. struct task_group *parent, *child;
  1216. int ret;
  1217. rcu_read_lock();
  1218. parent = &root_task_group;
  1219. down:
  1220. ret = (*down)(parent, data);
  1221. if (ret)
  1222. goto out_unlock;
  1223. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1224. parent = child;
  1225. goto down;
  1226. up:
  1227. continue;
  1228. }
  1229. ret = (*up)(parent, data);
  1230. if (ret)
  1231. goto out_unlock;
  1232. child = parent;
  1233. parent = parent->parent;
  1234. if (parent)
  1235. goto up;
  1236. out_unlock:
  1237. rcu_read_unlock();
  1238. return ret;
  1239. }
  1240. static int tg_nop(struct task_group *tg, void *data)
  1241. {
  1242. return 0;
  1243. }
  1244. #endif
  1245. #ifdef CONFIG_SMP
  1246. /* Used instead of source_load when we know the type == 0 */
  1247. static unsigned long weighted_cpuload(const int cpu)
  1248. {
  1249. return cpu_rq(cpu)->load.weight;
  1250. }
  1251. /*
  1252. * Return a low guess at the load of a migration-source cpu weighted
  1253. * according to the scheduling class and "nice" value.
  1254. *
  1255. * We want to under-estimate the load of migration sources, to
  1256. * balance conservatively.
  1257. */
  1258. static unsigned long source_load(int cpu, int type)
  1259. {
  1260. struct rq *rq = cpu_rq(cpu);
  1261. unsigned long total = weighted_cpuload(cpu);
  1262. if (type == 0 || !sched_feat(LB_BIAS))
  1263. return total;
  1264. return min(rq->cpu_load[type-1], total);
  1265. }
  1266. /*
  1267. * Return a high guess at the load of a migration-target cpu weighted
  1268. * according to the scheduling class and "nice" value.
  1269. */
  1270. static unsigned long target_load(int cpu, int type)
  1271. {
  1272. struct rq *rq = cpu_rq(cpu);
  1273. unsigned long total = weighted_cpuload(cpu);
  1274. if (type == 0 || !sched_feat(LB_BIAS))
  1275. return total;
  1276. return max(rq->cpu_load[type-1], total);
  1277. }
  1278. static unsigned long power_of(int cpu)
  1279. {
  1280. return cpu_rq(cpu)->cpu_power;
  1281. }
  1282. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1283. static unsigned long cpu_avg_load_per_task(int cpu)
  1284. {
  1285. struct rq *rq = cpu_rq(cpu);
  1286. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1287. if (nr_running)
  1288. rq->avg_load_per_task = rq->load.weight / nr_running;
  1289. else
  1290. rq->avg_load_per_task = 0;
  1291. return rq->avg_load_per_task;
  1292. }
  1293. #ifdef CONFIG_FAIR_GROUP_SCHED
  1294. /*
  1295. * Compute the cpu's hierarchical load factor for each task group.
  1296. * This needs to be done in a top-down fashion because the load of a child
  1297. * group is a fraction of its parents load.
  1298. */
  1299. static int tg_load_down(struct task_group *tg, void *data)
  1300. {
  1301. unsigned long load;
  1302. long cpu = (long)data;
  1303. if (!tg->parent) {
  1304. load = cpu_rq(cpu)->load.weight;
  1305. } else {
  1306. load = tg->parent->cfs_rq[cpu]->h_load;
  1307. load *= tg->se[cpu]->load.weight;
  1308. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1309. }
  1310. tg->cfs_rq[cpu]->h_load = load;
  1311. return 0;
  1312. }
  1313. static void update_h_load(long cpu)
  1314. {
  1315. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1316. }
  1317. #endif
  1318. #ifdef CONFIG_PREEMPT
  1319. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1320. /*
  1321. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1322. * way at the expense of forcing extra atomic operations in all
  1323. * invocations. This assures that the double_lock is acquired using the
  1324. * same underlying policy as the spinlock_t on this architecture, which
  1325. * reduces latency compared to the unfair variant below. However, it
  1326. * also adds more overhead and therefore may reduce throughput.
  1327. */
  1328. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1329. __releases(this_rq->lock)
  1330. __acquires(busiest->lock)
  1331. __acquires(this_rq->lock)
  1332. {
  1333. raw_spin_unlock(&this_rq->lock);
  1334. double_rq_lock(this_rq, busiest);
  1335. return 1;
  1336. }
  1337. #else
  1338. /*
  1339. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1340. * latency by eliminating extra atomic operations when the locks are
  1341. * already in proper order on entry. This favors lower cpu-ids and will
  1342. * grant the double lock to lower cpus over higher ids under contention,
  1343. * regardless of entry order into the function.
  1344. */
  1345. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1346. __releases(this_rq->lock)
  1347. __acquires(busiest->lock)
  1348. __acquires(this_rq->lock)
  1349. {
  1350. int ret = 0;
  1351. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1352. if (busiest < this_rq) {
  1353. raw_spin_unlock(&this_rq->lock);
  1354. raw_spin_lock(&busiest->lock);
  1355. raw_spin_lock_nested(&this_rq->lock,
  1356. SINGLE_DEPTH_NESTING);
  1357. ret = 1;
  1358. } else
  1359. raw_spin_lock_nested(&busiest->lock,
  1360. SINGLE_DEPTH_NESTING);
  1361. }
  1362. return ret;
  1363. }
  1364. #endif /* CONFIG_PREEMPT */
  1365. /*
  1366. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1367. */
  1368. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1369. {
  1370. if (unlikely(!irqs_disabled())) {
  1371. /* printk() doesn't work good under rq->lock */
  1372. raw_spin_unlock(&this_rq->lock);
  1373. BUG_ON(1);
  1374. }
  1375. return _double_lock_balance(this_rq, busiest);
  1376. }
  1377. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1378. __releases(busiest->lock)
  1379. {
  1380. raw_spin_unlock(&busiest->lock);
  1381. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1382. }
  1383. /*
  1384. * double_rq_lock - safely lock two runqueues
  1385. *
  1386. * Note this does not disable interrupts like task_rq_lock,
  1387. * you need to do so manually before calling.
  1388. */
  1389. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1390. __acquires(rq1->lock)
  1391. __acquires(rq2->lock)
  1392. {
  1393. BUG_ON(!irqs_disabled());
  1394. if (rq1 == rq2) {
  1395. raw_spin_lock(&rq1->lock);
  1396. __acquire(rq2->lock); /* Fake it out ;) */
  1397. } else {
  1398. if (rq1 < rq2) {
  1399. raw_spin_lock(&rq1->lock);
  1400. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1401. } else {
  1402. raw_spin_lock(&rq2->lock);
  1403. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1404. }
  1405. }
  1406. }
  1407. /*
  1408. * double_rq_unlock - safely unlock two runqueues
  1409. *
  1410. * Note this does not restore interrupts like task_rq_unlock,
  1411. * you need to do so manually after calling.
  1412. */
  1413. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1414. __releases(rq1->lock)
  1415. __releases(rq2->lock)
  1416. {
  1417. raw_spin_unlock(&rq1->lock);
  1418. if (rq1 != rq2)
  1419. raw_spin_unlock(&rq2->lock);
  1420. else
  1421. __release(rq2->lock);
  1422. }
  1423. #else /* CONFIG_SMP */
  1424. /*
  1425. * double_rq_lock - safely lock two runqueues
  1426. *
  1427. * Note this does not disable interrupts like task_rq_lock,
  1428. * you need to do so manually before calling.
  1429. */
  1430. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1431. __acquires(rq1->lock)
  1432. __acquires(rq2->lock)
  1433. {
  1434. BUG_ON(!irqs_disabled());
  1435. BUG_ON(rq1 != rq2);
  1436. raw_spin_lock(&rq1->lock);
  1437. __acquire(rq2->lock); /* Fake it out ;) */
  1438. }
  1439. /*
  1440. * double_rq_unlock - safely unlock two runqueues
  1441. *
  1442. * Note this does not restore interrupts like task_rq_unlock,
  1443. * you need to do so manually after calling.
  1444. */
  1445. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1446. __releases(rq1->lock)
  1447. __releases(rq2->lock)
  1448. {
  1449. BUG_ON(rq1 != rq2);
  1450. raw_spin_unlock(&rq1->lock);
  1451. __release(rq2->lock);
  1452. }
  1453. #endif
  1454. static void calc_load_account_idle(struct rq *this_rq);
  1455. static void update_sysctl(void);
  1456. static int get_update_sysctl_factor(void);
  1457. static void update_cpu_load(struct rq *this_rq);
  1458. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1459. {
  1460. set_task_rq(p, cpu);
  1461. #ifdef CONFIG_SMP
  1462. /*
  1463. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1464. * successfuly executed on another CPU. We must ensure that updates of
  1465. * per-task data have been completed by this moment.
  1466. */
  1467. smp_wmb();
  1468. task_thread_info(p)->cpu = cpu;
  1469. #endif
  1470. }
  1471. static const struct sched_class rt_sched_class;
  1472. #define sched_class_highest (&stop_sched_class)
  1473. #define for_each_class(class) \
  1474. for (class = sched_class_highest; class; class = class->next)
  1475. #include "sched_stats.h"
  1476. static void inc_nr_running(struct rq *rq)
  1477. {
  1478. rq->nr_running++;
  1479. }
  1480. static void dec_nr_running(struct rq *rq)
  1481. {
  1482. rq->nr_running--;
  1483. }
  1484. static void set_load_weight(struct task_struct *p)
  1485. {
  1486. /*
  1487. * SCHED_IDLE tasks get minimal weight:
  1488. */
  1489. if (p->policy == SCHED_IDLE) {
  1490. p->se.load.weight = WEIGHT_IDLEPRIO;
  1491. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1492. return;
  1493. }
  1494. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1495. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1496. }
  1497. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1498. {
  1499. update_rq_clock(rq);
  1500. sched_info_queued(p);
  1501. p->sched_class->enqueue_task(rq, p, flags);
  1502. }
  1503. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1504. {
  1505. update_rq_clock(rq);
  1506. sched_info_dequeued(p);
  1507. p->sched_class->dequeue_task(rq, p, flags);
  1508. }
  1509. /*
  1510. * activate_task - move a task to the runqueue.
  1511. */
  1512. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1513. {
  1514. if (task_contributes_to_load(p))
  1515. rq->nr_uninterruptible--;
  1516. enqueue_task(rq, p, flags);
  1517. inc_nr_running(rq);
  1518. }
  1519. /*
  1520. * deactivate_task - remove a task from the runqueue.
  1521. */
  1522. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1523. {
  1524. if (task_contributes_to_load(p))
  1525. rq->nr_uninterruptible++;
  1526. dequeue_task(rq, p, flags);
  1527. dec_nr_running(rq);
  1528. }
  1529. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1530. /*
  1531. * There are no locks covering percpu hardirq/softirq time.
  1532. * They are only modified in account_system_vtime, on corresponding CPU
  1533. * with interrupts disabled. So, writes are safe.
  1534. * They are read and saved off onto struct rq in update_rq_clock().
  1535. * This may result in other CPU reading this CPU's irq time and can
  1536. * race with irq/account_system_vtime on this CPU. We would either get old
  1537. * or new value with a side effect of accounting a slice of irq time to wrong
  1538. * task when irq is in progress while we read rq->clock. That is a worthy
  1539. * compromise in place of having locks on each irq in account_system_time.
  1540. */
  1541. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1542. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1543. static DEFINE_PER_CPU(u64, irq_start_time);
  1544. static int sched_clock_irqtime;
  1545. void enable_sched_clock_irqtime(void)
  1546. {
  1547. sched_clock_irqtime = 1;
  1548. }
  1549. void disable_sched_clock_irqtime(void)
  1550. {
  1551. sched_clock_irqtime = 0;
  1552. }
  1553. #ifndef CONFIG_64BIT
  1554. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1555. static inline void irq_time_write_begin(void)
  1556. {
  1557. __this_cpu_inc(irq_time_seq.sequence);
  1558. smp_wmb();
  1559. }
  1560. static inline void irq_time_write_end(void)
  1561. {
  1562. smp_wmb();
  1563. __this_cpu_inc(irq_time_seq.sequence);
  1564. }
  1565. static inline u64 irq_time_read(int cpu)
  1566. {
  1567. u64 irq_time;
  1568. unsigned seq;
  1569. do {
  1570. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1571. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1572. per_cpu(cpu_hardirq_time, cpu);
  1573. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1574. return irq_time;
  1575. }
  1576. #else /* CONFIG_64BIT */
  1577. static inline void irq_time_write_begin(void)
  1578. {
  1579. }
  1580. static inline void irq_time_write_end(void)
  1581. {
  1582. }
  1583. static inline u64 irq_time_read(int cpu)
  1584. {
  1585. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1586. }
  1587. #endif /* CONFIG_64BIT */
  1588. /*
  1589. * Called before incrementing preempt_count on {soft,}irq_enter
  1590. * and before decrementing preempt_count on {soft,}irq_exit.
  1591. */
  1592. void account_system_vtime(struct task_struct *curr)
  1593. {
  1594. unsigned long flags;
  1595. s64 delta;
  1596. int cpu;
  1597. if (!sched_clock_irqtime)
  1598. return;
  1599. local_irq_save(flags);
  1600. cpu = smp_processor_id();
  1601. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1602. __this_cpu_add(irq_start_time, delta);
  1603. irq_time_write_begin();
  1604. /*
  1605. * We do not account for softirq time from ksoftirqd here.
  1606. * We want to continue accounting softirq time to ksoftirqd thread
  1607. * in that case, so as not to confuse scheduler with a special task
  1608. * that do not consume any time, but still wants to run.
  1609. */
  1610. if (hardirq_count())
  1611. __this_cpu_add(cpu_hardirq_time, delta);
  1612. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1613. __this_cpu_add(cpu_softirq_time, delta);
  1614. irq_time_write_end();
  1615. local_irq_restore(flags);
  1616. }
  1617. EXPORT_SYMBOL_GPL(account_system_vtime);
  1618. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1619. {
  1620. s64 irq_delta;
  1621. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1622. /*
  1623. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1624. * this case when a previous update_rq_clock() happened inside a
  1625. * {soft,}irq region.
  1626. *
  1627. * When this happens, we stop ->clock_task and only update the
  1628. * prev_irq_time stamp to account for the part that fit, so that a next
  1629. * update will consume the rest. This ensures ->clock_task is
  1630. * monotonic.
  1631. *
  1632. * It does however cause some slight miss-attribution of {soft,}irq
  1633. * time, a more accurate solution would be to update the irq_time using
  1634. * the current rq->clock timestamp, except that would require using
  1635. * atomic ops.
  1636. */
  1637. if (irq_delta > delta)
  1638. irq_delta = delta;
  1639. rq->prev_irq_time += irq_delta;
  1640. delta -= irq_delta;
  1641. rq->clock_task += delta;
  1642. if (irq_delta && sched_feat(NONIRQ_POWER))
  1643. sched_rt_avg_update(rq, irq_delta);
  1644. }
  1645. static int irqtime_account_hi_update(void)
  1646. {
  1647. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1648. unsigned long flags;
  1649. u64 latest_ns;
  1650. int ret = 0;
  1651. local_irq_save(flags);
  1652. latest_ns = this_cpu_read(cpu_hardirq_time);
  1653. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1654. ret = 1;
  1655. local_irq_restore(flags);
  1656. return ret;
  1657. }
  1658. static int irqtime_account_si_update(void)
  1659. {
  1660. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1661. unsigned long flags;
  1662. u64 latest_ns;
  1663. int ret = 0;
  1664. local_irq_save(flags);
  1665. latest_ns = this_cpu_read(cpu_softirq_time);
  1666. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1667. ret = 1;
  1668. local_irq_restore(flags);
  1669. return ret;
  1670. }
  1671. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1672. #define sched_clock_irqtime (0)
  1673. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1674. {
  1675. rq->clock_task += delta;
  1676. }
  1677. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1678. #include "sched_idletask.c"
  1679. #include "sched_fair.c"
  1680. #include "sched_rt.c"
  1681. #include "sched_autogroup.c"
  1682. #include "sched_stoptask.c"
  1683. #ifdef CONFIG_SCHED_DEBUG
  1684. # include "sched_debug.c"
  1685. #endif
  1686. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1687. {
  1688. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1689. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1690. if (stop) {
  1691. /*
  1692. * Make it appear like a SCHED_FIFO task, its something
  1693. * userspace knows about and won't get confused about.
  1694. *
  1695. * Also, it will make PI more or less work without too
  1696. * much confusion -- but then, stop work should not
  1697. * rely on PI working anyway.
  1698. */
  1699. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1700. stop->sched_class = &stop_sched_class;
  1701. }
  1702. cpu_rq(cpu)->stop = stop;
  1703. if (old_stop) {
  1704. /*
  1705. * Reset it back to a normal scheduling class so that
  1706. * it can die in pieces.
  1707. */
  1708. old_stop->sched_class = &rt_sched_class;
  1709. }
  1710. }
  1711. /*
  1712. * __normal_prio - return the priority that is based on the static prio
  1713. */
  1714. static inline int __normal_prio(struct task_struct *p)
  1715. {
  1716. return p->static_prio;
  1717. }
  1718. /*
  1719. * Calculate the expected normal priority: i.e. priority
  1720. * without taking RT-inheritance into account. Might be
  1721. * boosted by interactivity modifiers. Changes upon fork,
  1722. * setprio syscalls, and whenever the interactivity
  1723. * estimator recalculates.
  1724. */
  1725. static inline int normal_prio(struct task_struct *p)
  1726. {
  1727. int prio;
  1728. if (task_has_rt_policy(p))
  1729. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1730. else
  1731. prio = __normal_prio(p);
  1732. return prio;
  1733. }
  1734. /*
  1735. * Calculate the current priority, i.e. the priority
  1736. * taken into account by the scheduler. This value might
  1737. * be boosted by RT tasks, or might be boosted by
  1738. * interactivity modifiers. Will be RT if the task got
  1739. * RT-boosted. If not then it returns p->normal_prio.
  1740. */
  1741. static int effective_prio(struct task_struct *p)
  1742. {
  1743. p->normal_prio = normal_prio(p);
  1744. /*
  1745. * If we are RT tasks or we were boosted to RT priority,
  1746. * keep the priority unchanged. Otherwise, update priority
  1747. * to the normal priority:
  1748. */
  1749. if (!rt_prio(p->prio))
  1750. return p->normal_prio;
  1751. return p->prio;
  1752. }
  1753. /**
  1754. * task_curr - is this task currently executing on a CPU?
  1755. * @p: the task in question.
  1756. */
  1757. inline int task_curr(const struct task_struct *p)
  1758. {
  1759. return cpu_curr(task_cpu(p)) == p;
  1760. }
  1761. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1762. const struct sched_class *prev_class,
  1763. int oldprio)
  1764. {
  1765. if (prev_class != p->sched_class) {
  1766. if (prev_class->switched_from)
  1767. prev_class->switched_from(rq, p);
  1768. p->sched_class->switched_to(rq, p);
  1769. } else if (oldprio != p->prio)
  1770. p->sched_class->prio_changed(rq, p, oldprio);
  1771. }
  1772. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1773. {
  1774. const struct sched_class *class;
  1775. if (p->sched_class == rq->curr->sched_class) {
  1776. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1777. } else {
  1778. for_each_class(class) {
  1779. if (class == rq->curr->sched_class)
  1780. break;
  1781. if (class == p->sched_class) {
  1782. resched_task(rq->curr);
  1783. break;
  1784. }
  1785. }
  1786. }
  1787. /*
  1788. * A queue event has occurred, and we're going to schedule. In
  1789. * this case, we can save a useless back to back clock update.
  1790. */
  1791. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1792. rq->skip_clock_update = 1;
  1793. }
  1794. #ifdef CONFIG_SMP
  1795. /*
  1796. * Is this task likely cache-hot:
  1797. */
  1798. static int
  1799. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1800. {
  1801. s64 delta;
  1802. if (p->sched_class != &fair_sched_class)
  1803. return 0;
  1804. if (unlikely(p->policy == SCHED_IDLE))
  1805. return 0;
  1806. /*
  1807. * Buddy candidates are cache hot:
  1808. */
  1809. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1810. (&p->se == cfs_rq_of(&p->se)->next ||
  1811. &p->se == cfs_rq_of(&p->se)->last))
  1812. return 1;
  1813. if (sysctl_sched_migration_cost == -1)
  1814. return 1;
  1815. if (sysctl_sched_migration_cost == 0)
  1816. return 0;
  1817. delta = now - p->se.exec_start;
  1818. return delta < (s64)sysctl_sched_migration_cost;
  1819. }
  1820. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1821. {
  1822. #ifdef CONFIG_SCHED_DEBUG
  1823. /*
  1824. * We should never call set_task_cpu() on a blocked task,
  1825. * ttwu() will sort out the placement.
  1826. */
  1827. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1828. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1829. #ifdef CONFIG_LOCKDEP
  1830. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1831. lockdep_is_held(&task_rq(p)->lock)));
  1832. #endif
  1833. #endif
  1834. trace_sched_migrate_task(p, new_cpu);
  1835. if (task_cpu(p) != new_cpu) {
  1836. p->se.nr_migrations++;
  1837. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1838. }
  1839. __set_task_cpu(p, new_cpu);
  1840. }
  1841. struct migration_arg {
  1842. struct task_struct *task;
  1843. int dest_cpu;
  1844. };
  1845. static int migration_cpu_stop(void *data);
  1846. /*
  1847. * wait_task_inactive - wait for a thread to unschedule.
  1848. *
  1849. * If @match_state is nonzero, it's the @p->state value just checked and
  1850. * not expected to change. If it changes, i.e. @p might have woken up,
  1851. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1852. * we return a positive number (its total switch count). If a second call
  1853. * a short while later returns the same number, the caller can be sure that
  1854. * @p has remained unscheduled the whole time.
  1855. *
  1856. * The caller must ensure that the task *will* unschedule sometime soon,
  1857. * else this function might spin for a *long* time. This function can't
  1858. * be called with interrupts off, or it may introduce deadlock with
  1859. * smp_call_function() if an IPI is sent by the same process we are
  1860. * waiting to become inactive.
  1861. */
  1862. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1863. {
  1864. unsigned long flags;
  1865. int running, on_rq;
  1866. unsigned long ncsw;
  1867. struct rq *rq;
  1868. for (;;) {
  1869. /*
  1870. * We do the initial early heuristics without holding
  1871. * any task-queue locks at all. We'll only try to get
  1872. * the runqueue lock when things look like they will
  1873. * work out!
  1874. */
  1875. rq = task_rq(p);
  1876. /*
  1877. * If the task is actively running on another CPU
  1878. * still, just relax and busy-wait without holding
  1879. * any locks.
  1880. *
  1881. * NOTE! Since we don't hold any locks, it's not
  1882. * even sure that "rq" stays as the right runqueue!
  1883. * But we don't care, since "task_running()" will
  1884. * return false if the runqueue has changed and p
  1885. * is actually now running somewhere else!
  1886. */
  1887. while (task_running(rq, p)) {
  1888. if (match_state && unlikely(p->state != match_state))
  1889. return 0;
  1890. cpu_relax();
  1891. }
  1892. /*
  1893. * Ok, time to look more closely! We need the rq
  1894. * lock now, to be *sure*. If we're wrong, we'll
  1895. * just go back and repeat.
  1896. */
  1897. rq = task_rq_lock(p, &flags);
  1898. trace_sched_wait_task(p);
  1899. running = task_running(rq, p);
  1900. on_rq = p->on_rq;
  1901. ncsw = 0;
  1902. if (!match_state || p->state == match_state)
  1903. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1904. task_rq_unlock(rq, p, &flags);
  1905. /*
  1906. * If it changed from the expected state, bail out now.
  1907. */
  1908. if (unlikely(!ncsw))
  1909. break;
  1910. /*
  1911. * Was it really running after all now that we
  1912. * checked with the proper locks actually held?
  1913. *
  1914. * Oops. Go back and try again..
  1915. */
  1916. if (unlikely(running)) {
  1917. cpu_relax();
  1918. continue;
  1919. }
  1920. /*
  1921. * It's not enough that it's not actively running,
  1922. * it must be off the runqueue _entirely_, and not
  1923. * preempted!
  1924. *
  1925. * So if it was still runnable (but just not actively
  1926. * running right now), it's preempted, and we should
  1927. * yield - it could be a while.
  1928. */
  1929. if (unlikely(on_rq)) {
  1930. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1931. set_current_state(TASK_UNINTERRUPTIBLE);
  1932. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1933. continue;
  1934. }
  1935. /*
  1936. * Ahh, all good. It wasn't running, and it wasn't
  1937. * runnable, which means that it will never become
  1938. * running in the future either. We're all done!
  1939. */
  1940. break;
  1941. }
  1942. return ncsw;
  1943. }
  1944. /***
  1945. * kick_process - kick a running thread to enter/exit the kernel
  1946. * @p: the to-be-kicked thread
  1947. *
  1948. * Cause a process which is running on another CPU to enter
  1949. * kernel-mode, without any delay. (to get signals handled.)
  1950. *
  1951. * NOTE: this function doesn't have to take the runqueue lock,
  1952. * because all it wants to ensure is that the remote task enters
  1953. * the kernel. If the IPI races and the task has been migrated
  1954. * to another CPU then no harm is done and the purpose has been
  1955. * achieved as well.
  1956. */
  1957. void kick_process(struct task_struct *p)
  1958. {
  1959. int cpu;
  1960. preempt_disable();
  1961. cpu = task_cpu(p);
  1962. if ((cpu != smp_processor_id()) && task_curr(p))
  1963. smp_send_reschedule(cpu);
  1964. preempt_enable();
  1965. }
  1966. EXPORT_SYMBOL_GPL(kick_process);
  1967. #endif /* CONFIG_SMP */
  1968. #ifdef CONFIG_SMP
  1969. /*
  1970. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1971. */
  1972. static int select_fallback_rq(int cpu, struct task_struct *p)
  1973. {
  1974. int dest_cpu;
  1975. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1976. /* Look for allowed, online CPU in same node. */
  1977. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1978. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1979. return dest_cpu;
  1980. /* Any allowed, online CPU? */
  1981. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1982. if (dest_cpu < nr_cpu_ids)
  1983. return dest_cpu;
  1984. /* No more Mr. Nice Guy. */
  1985. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1986. /*
  1987. * Don't tell them about moving exiting tasks or
  1988. * kernel threads (both mm NULL), since they never
  1989. * leave kernel.
  1990. */
  1991. if (p->mm && printk_ratelimit()) {
  1992. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1993. task_pid_nr(p), p->comm, cpu);
  1994. }
  1995. return dest_cpu;
  1996. }
  1997. /*
  1998. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1999. */
  2000. static inline
  2001. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2002. {
  2003. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2004. /*
  2005. * In order not to call set_task_cpu() on a blocking task we need
  2006. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2007. * cpu.
  2008. *
  2009. * Since this is common to all placement strategies, this lives here.
  2010. *
  2011. * [ this allows ->select_task() to simply return task_cpu(p) and
  2012. * not worry about this generic constraint ]
  2013. */
  2014. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2015. !cpu_online(cpu)))
  2016. cpu = select_fallback_rq(task_cpu(p), p);
  2017. return cpu;
  2018. }
  2019. static void update_avg(u64 *avg, u64 sample)
  2020. {
  2021. s64 diff = sample - *avg;
  2022. *avg += diff >> 3;
  2023. }
  2024. #endif
  2025. static void
  2026. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2027. {
  2028. #ifdef CONFIG_SCHEDSTATS
  2029. struct rq *rq = this_rq();
  2030. #ifdef CONFIG_SMP
  2031. int this_cpu = smp_processor_id();
  2032. if (cpu == this_cpu) {
  2033. schedstat_inc(rq, ttwu_local);
  2034. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2035. } else {
  2036. struct sched_domain *sd;
  2037. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2038. for_each_domain(this_cpu, sd) {
  2039. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2040. schedstat_inc(sd, ttwu_wake_remote);
  2041. break;
  2042. }
  2043. }
  2044. }
  2045. #endif /* CONFIG_SMP */
  2046. schedstat_inc(rq, ttwu_count);
  2047. schedstat_inc(p, se.statistics.nr_wakeups);
  2048. if (wake_flags & WF_SYNC)
  2049. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2050. if (cpu != task_cpu(p))
  2051. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2052. #endif /* CONFIG_SCHEDSTATS */
  2053. }
  2054. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2055. {
  2056. activate_task(rq, p, en_flags);
  2057. p->on_rq = 1;
  2058. /* if a worker is waking up, notify workqueue */
  2059. if (p->flags & PF_WQ_WORKER)
  2060. wq_worker_waking_up(p, cpu_of(rq));
  2061. }
  2062. /*
  2063. * Mark the task runnable and perform wakeup-preemption.
  2064. */
  2065. static void
  2066. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2067. {
  2068. trace_sched_wakeup(p, true);
  2069. check_preempt_curr(rq, p, wake_flags);
  2070. p->state = TASK_RUNNING;
  2071. #ifdef CONFIG_SMP
  2072. if (p->sched_class->task_woken)
  2073. p->sched_class->task_woken(rq, p);
  2074. if (unlikely(rq->idle_stamp)) {
  2075. u64 delta = rq->clock - rq->idle_stamp;
  2076. u64 max = 2*sysctl_sched_migration_cost;
  2077. if (delta > max)
  2078. rq->avg_idle = max;
  2079. else
  2080. update_avg(&rq->avg_idle, delta);
  2081. rq->idle_stamp = 0;
  2082. }
  2083. #endif
  2084. }
  2085. static void
  2086. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2087. {
  2088. #ifdef CONFIG_SMP
  2089. if (p->sched_contributes_to_load)
  2090. rq->nr_uninterruptible--;
  2091. #endif
  2092. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2093. ttwu_do_wakeup(rq, p, wake_flags);
  2094. }
  2095. /*
  2096. * Called in case the task @p isn't fully descheduled from its runqueue,
  2097. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2098. * since all we need to do is flip p->state to TASK_RUNNING, since
  2099. * the task is still ->on_rq.
  2100. */
  2101. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2102. {
  2103. struct rq *rq;
  2104. int ret = 0;
  2105. rq = __task_rq_lock(p);
  2106. if (p->on_rq) {
  2107. ttwu_do_wakeup(rq, p, wake_flags);
  2108. ret = 1;
  2109. }
  2110. __task_rq_unlock(rq);
  2111. return ret;
  2112. }
  2113. #ifdef CONFIG_SMP
  2114. static void sched_ttwu_pending(void)
  2115. {
  2116. struct rq *rq = this_rq();
  2117. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2118. if (!list)
  2119. return;
  2120. raw_spin_lock(&rq->lock);
  2121. while (list) {
  2122. struct task_struct *p = list;
  2123. list = list->wake_entry;
  2124. ttwu_do_activate(rq, p, 0);
  2125. }
  2126. raw_spin_unlock(&rq->lock);
  2127. }
  2128. void scheduler_ipi(void)
  2129. {
  2130. sched_ttwu_pending();
  2131. }
  2132. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2133. {
  2134. struct rq *rq = cpu_rq(cpu);
  2135. struct task_struct *next = rq->wake_list;
  2136. for (;;) {
  2137. struct task_struct *old = next;
  2138. p->wake_entry = next;
  2139. next = cmpxchg(&rq->wake_list, old, p);
  2140. if (next == old)
  2141. break;
  2142. }
  2143. if (!next)
  2144. smp_send_reschedule(cpu);
  2145. }
  2146. #endif
  2147. static void ttwu_queue(struct task_struct *p, int cpu)
  2148. {
  2149. struct rq *rq = cpu_rq(cpu);
  2150. #if defined(CONFIG_SMP) && defined(CONFIG_SCHED_TTWU_QUEUE)
  2151. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2152. ttwu_queue_remote(p, cpu);
  2153. return;
  2154. }
  2155. #endif
  2156. raw_spin_lock(&rq->lock);
  2157. ttwu_do_activate(rq, p, 0);
  2158. raw_spin_unlock(&rq->lock);
  2159. }
  2160. /**
  2161. * try_to_wake_up - wake up a thread
  2162. * @p: the thread to be awakened
  2163. * @state: the mask of task states that can be woken
  2164. * @wake_flags: wake modifier flags (WF_*)
  2165. *
  2166. * Put it on the run-queue if it's not already there. The "current"
  2167. * thread is always on the run-queue (except when the actual
  2168. * re-schedule is in progress), and as such you're allowed to do
  2169. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2170. * runnable without the overhead of this.
  2171. *
  2172. * Returns %true if @p was woken up, %false if it was already running
  2173. * or @state didn't match @p's state.
  2174. */
  2175. static int
  2176. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2177. {
  2178. unsigned long flags;
  2179. int cpu, success = 0;
  2180. smp_wmb();
  2181. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2182. if (!(p->state & state))
  2183. goto out;
  2184. success = 1; /* we're going to change ->state */
  2185. cpu = task_cpu(p);
  2186. if (p->on_rq && ttwu_remote(p, wake_flags))
  2187. goto stat;
  2188. #ifdef CONFIG_SMP
  2189. /*
  2190. * If the owning (remote) cpu is still in the middle of schedule() with
  2191. * this task as prev, wait until its done referencing the task.
  2192. */
  2193. while (p->on_cpu) {
  2194. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2195. /*
  2196. * If called from interrupt context we could have landed in the
  2197. * middle of schedule(), in this case we should take care not
  2198. * to spin on ->on_cpu if p is current, since that would
  2199. * deadlock.
  2200. */
  2201. if (p == current) {
  2202. ttwu_queue(p, cpu);
  2203. goto stat;
  2204. }
  2205. #endif
  2206. cpu_relax();
  2207. }
  2208. /*
  2209. * Pairs with the smp_wmb() in finish_lock_switch().
  2210. */
  2211. smp_rmb();
  2212. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2213. p->state = TASK_WAKING;
  2214. if (p->sched_class->task_waking)
  2215. p->sched_class->task_waking(p);
  2216. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2217. if (task_cpu(p) != cpu)
  2218. set_task_cpu(p, cpu);
  2219. #endif /* CONFIG_SMP */
  2220. ttwu_queue(p, cpu);
  2221. stat:
  2222. ttwu_stat(p, cpu, wake_flags);
  2223. out:
  2224. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2225. return success;
  2226. }
  2227. /**
  2228. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2229. * @p: the thread to be awakened
  2230. *
  2231. * Put @p on the run-queue if it's not already there. The caller must
  2232. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2233. * the current task.
  2234. */
  2235. static void try_to_wake_up_local(struct task_struct *p)
  2236. {
  2237. struct rq *rq = task_rq(p);
  2238. BUG_ON(rq != this_rq());
  2239. BUG_ON(p == current);
  2240. lockdep_assert_held(&rq->lock);
  2241. if (!raw_spin_trylock(&p->pi_lock)) {
  2242. raw_spin_unlock(&rq->lock);
  2243. raw_spin_lock(&p->pi_lock);
  2244. raw_spin_lock(&rq->lock);
  2245. }
  2246. if (!(p->state & TASK_NORMAL))
  2247. goto out;
  2248. if (!p->on_rq)
  2249. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2250. ttwu_do_wakeup(rq, p, 0);
  2251. ttwu_stat(p, smp_processor_id(), 0);
  2252. out:
  2253. raw_spin_unlock(&p->pi_lock);
  2254. }
  2255. /**
  2256. * wake_up_process - Wake up a specific process
  2257. * @p: The process to be woken up.
  2258. *
  2259. * Attempt to wake up the nominated process and move it to the set of runnable
  2260. * processes. Returns 1 if the process was woken up, 0 if it was already
  2261. * running.
  2262. *
  2263. * It may be assumed that this function implies a write memory barrier before
  2264. * changing the task state if and only if any tasks are woken up.
  2265. */
  2266. int wake_up_process(struct task_struct *p)
  2267. {
  2268. return try_to_wake_up(p, TASK_ALL, 0);
  2269. }
  2270. EXPORT_SYMBOL(wake_up_process);
  2271. int wake_up_state(struct task_struct *p, unsigned int state)
  2272. {
  2273. return try_to_wake_up(p, state, 0);
  2274. }
  2275. /*
  2276. * Perform scheduler related setup for a newly forked process p.
  2277. * p is forked by current.
  2278. *
  2279. * __sched_fork() is basic setup used by init_idle() too:
  2280. */
  2281. static void __sched_fork(struct task_struct *p)
  2282. {
  2283. p->on_rq = 0;
  2284. p->se.on_rq = 0;
  2285. p->se.exec_start = 0;
  2286. p->se.sum_exec_runtime = 0;
  2287. p->se.prev_sum_exec_runtime = 0;
  2288. p->se.nr_migrations = 0;
  2289. p->se.vruntime = 0;
  2290. INIT_LIST_HEAD(&p->se.group_node);
  2291. #ifdef CONFIG_SCHEDSTATS
  2292. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2293. #endif
  2294. INIT_LIST_HEAD(&p->rt.run_list);
  2295. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2296. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2297. #endif
  2298. }
  2299. /*
  2300. * fork()/clone()-time setup:
  2301. */
  2302. void sched_fork(struct task_struct *p, int clone_flags)
  2303. {
  2304. unsigned long flags;
  2305. int cpu = get_cpu();
  2306. __sched_fork(p);
  2307. /*
  2308. * We mark the process as running here. This guarantees that
  2309. * nobody will actually run it, and a signal or other external
  2310. * event cannot wake it up and insert it on the runqueue either.
  2311. */
  2312. p->state = TASK_RUNNING;
  2313. /*
  2314. * Revert to default priority/policy on fork if requested.
  2315. */
  2316. if (unlikely(p->sched_reset_on_fork)) {
  2317. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2318. p->policy = SCHED_NORMAL;
  2319. p->normal_prio = p->static_prio;
  2320. }
  2321. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2322. p->static_prio = NICE_TO_PRIO(0);
  2323. p->normal_prio = p->static_prio;
  2324. set_load_weight(p);
  2325. }
  2326. /*
  2327. * We don't need the reset flag anymore after the fork. It has
  2328. * fulfilled its duty:
  2329. */
  2330. p->sched_reset_on_fork = 0;
  2331. }
  2332. /*
  2333. * Make sure we do not leak PI boosting priority to the child.
  2334. */
  2335. p->prio = current->normal_prio;
  2336. if (!rt_prio(p->prio))
  2337. p->sched_class = &fair_sched_class;
  2338. if (p->sched_class->task_fork)
  2339. p->sched_class->task_fork(p);
  2340. /*
  2341. * The child is not yet in the pid-hash so no cgroup attach races,
  2342. * and the cgroup is pinned to this child due to cgroup_fork()
  2343. * is ran before sched_fork().
  2344. *
  2345. * Silence PROVE_RCU.
  2346. */
  2347. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2348. set_task_cpu(p, cpu);
  2349. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2350. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2351. if (likely(sched_info_on()))
  2352. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2353. #endif
  2354. #if defined(CONFIG_SMP)
  2355. p->on_cpu = 0;
  2356. #endif
  2357. #ifdef CONFIG_PREEMPT
  2358. /* Want to start with kernel preemption disabled. */
  2359. task_thread_info(p)->preempt_count = 1;
  2360. #endif
  2361. #ifdef CONFIG_SMP
  2362. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2363. #endif
  2364. put_cpu();
  2365. }
  2366. /*
  2367. * wake_up_new_task - wake up a newly created task for the first time.
  2368. *
  2369. * This function will do some initial scheduler statistics housekeeping
  2370. * that must be done for every newly created context, then puts the task
  2371. * on the runqueue and wakes it.
  2372. */
  2373. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2374. {
  2375. unsigned long flags;
  2376. struct rq *rq;
  2377. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2378. #ifdef CONFIG_SMP
  2379. /*
  2380. * Fork balancing, do it here and not earlier because:
  2381. * - cpus_allowed can change in the fork path
  2382. * - any previously selected cpu might disappear through hotplug
  2383. */
  2384. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2385. #endif
  2386. rq = __task_rq_lock(p);
  2387. activate_task(rq, p, 0);
  2388. p->on_rq = 1;
  2389. trace_sched_wakeup_new(p, true);
  2390. check_preempt_curr(rq, p, WF_FORK);
  2391. #ifdef CONFIG_SMP
  2392. if (p->sched_class->task_woken)
  2393. p->sched_class->task_woken(rq, p);
  2394. #endif
  2395. task_rq_unlock(rq, p, &flags);
  2396. }
  2397. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2398. /**
  2399. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2400. * @notifier: notifier struct to register
  2401. */
  2402. void preempt_notifier_register(struct preempt_notifier *notifier)
  2403. {
  2404. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2405. }
  2406. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2407. /**
  2408. * preempt_notifier_unregister - no longer interested in preemption notifications
  2409. * @notifier: notifier struct to unregister
  2410. *
  2411. * This is safe to call from within a preemption notifier.
  2412. */
  2413. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2414. {
  2415. hlist_del(&notifier->link);
  2416. }
  2417. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2418. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2419. {
  2420. struct preempt_notifier *notifier;
  2421. struct hlist_node *node;
  2422. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2423. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2424. }
  2425. static void
  2426. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2427. struct task_struct *next)
  2428. {
  2429. struct preempt_notifier *notifier;
  2430. struct hlist_node *node;
  2431. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2432. notifier->ops->sched_out(notifier, next);
  2433. }
  2434. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2435. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2436. {
  2437. }
  2438. static void
  2439. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2440. struct task_struct *next)
  2441. {
  2442. }
  2443. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2444. /**
  2445. * prepare_task_switch - prepare to switch tasks
  2446. * @rq: the runqueue preparing to switch
  2447. * @prev: the current task that is being switched out
  2448. * @next: the task we are going to switch to.
  2449. *
  2450. * This is called with the rq lock held and interrupts off. It must
  2451. * be paired with a subsequent finish_task_switch after the context
  2452. * switch.
  2453. *
  2454. * prepare_task_switch sets up locking and calls architecture specific
  2455. * hooks.
  2456. */
  2457. static inline void
  2458. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2459. struct task_struct *next)
  2460. {
  2461. sched_info_switch(prev, next);
  2462. perf_event_task_sched_out(prev, next);
  2463. fire_sched_out_preempt_notifiers(prev, next);
  2464. prepare_lock_switch(rq, next);
  2465. prepare_arch_switch(next);
  2466. trace_sched_switch(prev, next);
  2467. }
  2468. /**
  2469. * finish_task_switch - clean up after a task-switch
  2470. * @rq: runqueue associated with task-switch
  2471. * @prev: the thread we just switched away from.
  2472. *
  2473. * finish_task_switch must be called after the context switch, paired
  2474. * with a prepare_task_switch call before the context switch.
  2475. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2476. * and do any other architecture-specific cleanup actions.
  2477. *
  2478. * Note that we may have delayed dropping an mm in context_switch(). If
  2479. * so, we finish that here outside of the runqueue lock. (Doing it
  2480. * with the lock held can cause deadlocks; see schedule() for
  2481. * details.)
  2482. */
  2483. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2484. __releases(rq->lock)
  2485. {
  2486. struct mm_struct *mm = rq->prev_mm;
  2487. long prev_state;
  2488. rq->prev_mm = NULL;
  2489. /*
  2490. * A task struct has one reference for the use as "current".
  2491. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2492. * schedule one last time. The schedule call will never return, and
  2493. * the scheduled task must drop that reference.
  2494. * The test for TASK_DEAD must occur while the runqueue locks are
  2495. * still held, otherwise prev could be scheduled on another cpu, die
  2496. * there before we look at prev->state, and then the reference would
  2497. * be dropped twice.
  2498. * Manfred Spraul <manfred@colorfullife.com>
  2499. */
  2500. prev_state = prev->state;
  2501. finish_arch_switch(prev);
  2502. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2503. local_irq_disable();
  2504. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2505. perf_event_task_sched_in(current);
  2506. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2507. local_irq_enable();
  2508. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2509. finish_lock_switch(rq, prev);
  2510. fire_sched_in_preempt_notifiers(current);
  2511. if (mm)
  2512. mmdrop(mm);
  2513. if (unlikely(prev_state == TASK_DEAD)) {
  2514. /*
  2515. * Remove function-return probe instances associated with this
  2516. * task and put them back on the free list.
  2517. */
  2518. kprobe_flush_task(prev);
  2519. put_task_struct(prev);
  2520. }
  2521. }
  2522. #ifdef CONFIG_SMP
  2523. /* assumes rq->lock is held */
  2524. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2525. {
  2526. if (prev->sched_class->pre_schedule)
  2527. prev->sched_class->pre_schedule(rq, prev);
  2528. }
  2529. /* rq->lock is NOT held, but preemption is disabled */
  2530. static inline void post_schedule(struct rq *rq)
  2531. {
  2532. if (rq->post_schedule) {
  2533. unsigned long flags;
  2534. raw_spin_lock_irqsave(&rq->lock, flags);
  2535. if (rq->curr->sched_class->post_schedule)
  2536. rq->curr->sched_class->post_schedule(rq);
  2537. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2538. rq->post_schedule = 0;
  2539. }
  2540. }
  2541. #else
  2542. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2543. {
  2544. }
  2545. static inline void post_schedule(struct rq *rq)
  2546. {
  2547. }
  2548. #endif
  2549. /**
  2550. * schedule_tail - first thing a freshly forked thread must call.
  2551. * @prev: the thread we just switched away from.
  2552. */
  2553. asmlinkage void schedule_tail(struct task_struct *prev)
  2554. __releases(rq->lock)
  2555. {
  2556. struct rq *rq = this_rq();
  2557. finish_task_switch(rq, prev);
  2558. /*
  2559. * FIXME: do we need to worry about rq being invalidated by the
  2560. * task_switch?
  2561. */
  2562. post_schedule(rq);
  2563. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2564. /* In this case, finish_task_switch does not reenable preemption */
  2565. preempt_enable();
  2566. #endif
  2567. if (current->set_child_tid)
  2568. put_user(task_pid_vnr(current), current->set_child_tid);
  2569. }
  2570. /*
  2571. * context_switch - switch to the new MM and the new
  2572. * thread's register state.
  2573. */
  2574. static inline void
  2575. context_switch(struct rq *rq, struct task_struct *prev,
  2576. struct task_struct *next)
  2577. {
  2578. struct mm_struct *mm, *oldmm;
  2579. prepare_task_switch(rq, prev, next);
  2580. mm = next->mm;
  2581. oldmm = prev->active_mm;
  2582. /*
  2583. * For paravirt, this is coupled with an exit in switch_to to
  2584. * combine the page table reload and the switch backend into
  2585. * one hypercall.
  2586. */
  2587. arch_start_context_switch(prev);
  2588. if (!mm) {
  2589. next->active_mm = oldmm;
  2590. atomic_inc(&oldmm->mm_count);
  2591. enter_lazy_tlb(oldmm, next);
  2592. } else
  2593. switch_mm(oldmm, mm, next);
  2594. if (!prev->mm) {
  2595. prev->active_mm = NULL;
  2596. rq->prev_mm = oldmm;
  2597. }
  2598. /*
  2599. * Since the runqueue lock will be released by the next
  2600. * task (which is an invalid locking op but in the case
  2601. * of the scheduler it's an obvious special-case), so we
  2602. * do an early lockdep release here:
  2603. */
  2604. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2605. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2606. #endif
  2607. /* Here we just switch the register state and the stack. */
  2608. switch_to(prev, next, prev);
  2609. barrier();
  2610. /*
  2611. * this_rq must be evaluated again because prev may have moved
  2612. * CPUs since it called schedule(), thus the 'rq' on its stack
  2613. * frame will be invalid.
  2614. */
  2615. finish_task_switch(this_rq(), prev);
  2616. }
  2617. /*
  2618. * nr_running, nr_uninterruptible and nr_context_switches:
  2619. *
  2620. * externally visible scheduler statistics: current number of runnable
  2621. * threads, current number of uninterruptible-sleeping threads, total
  2622. * number of context switches performed since bootup.
  2623. */
  2624. unsigned long nr_running(void)
  2625. {
  2626. unsigned long i, sum = 0;
  2627. for_each_online_cpu(i)
  2628. sum += cpu_rq(i)->nr_running;
  2629. return sum;
  2630. }
  2631. unsigned long nr_uninterruptible(void)
  2632. {
  2633. unsigned long i, sum = 0;
  2634. for_each_possible_cpu(i)
  2635. sum += cpu_rq(i)->nr_uninterruptible;
  2636. /*
  2637. * Since we read the counters lockless, it might be slightly
  2638. * inaccurate. Do not allow it to go below zero though:
  2639. */
  2640. if (unlikely((long)sum < 0))
  2641. sum = 0;
  2642. return sum;
  2643. }
  2644. unsigned long long nr_context_switches(void)
  2645. {
  2646. int i;
  2647. unsigned long long sum = 0;
  2648. for_each_possible_cpu(i)
  2649. sum += cpu_rq(i)->nr_switches;
  2650. return sum;
  2651. }
  2652. unsigned long nr_iowait(void)
  2653. {
  2654. unsigned long i, sum = 0;
  2655. for_each_possible_cpu(i)
  2656. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2657. return sum;
  2658. }
  2659. unsigned long nr_iowait_cpu(int cpu)
  2660. {
  2661. struct rq *this = cpu_rq(cpu);
  2662. return atomic_read(&this->nr_iowait);
  2663. }
  2664. unsigned long this_cpu_load(void)
  2665. {
  2666. struct rq *this = this_rq();
  2667. return this->cpu_load[0];
  2668. }
  2669. /* Variables and functions for calc_load */
  2670. static atomic_long_t calc_load_tasks;
  2671. static unsigned long calc_load_update;
  2672. unsigned long avenrun[3];
  2673. EXPORT_SYMBOL(avenrun);
  2674. static long calc_load_fold_active(struct rq *this_rq)
  2675. {
  2676. long nr_active, delta = 0;
  2677. nr_active = this_rq->nr_running;
  2678. nr_active += (long) this_rq->nr_uninterruptible;
  2679. if (nr_active != this_rq->calc_load_active) {
  2680. delta = nr_active - this_rq->calc_load_active;
  2681. this_rq->calc_load_active = nr_active;
  2682. }
  2683. return delta;
  2684. }
  2685. static unsigned long
  2686. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2687. {
  2688. load *= exp;
  2689. load += active * (FIXED_1 - exp);
  2690. load += 1UL << (FSHIFT - 1);
  2691. return load >> FSHIFT;
  2692. }
  2693. #ifdef CONFIG_NO_HZ
  2694. /*
  2695. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2696. *
  2697. * When making the ILB scale, we should try to pull this in as well.
  2698. */
  2699. static atomic_long_t calc_load_tasks_idle;
  2700. static void calc_load_account_idle(struct rq *this_rq)
  2701. {
  2702. long delta;
  2703. delta = calc_load_fold_active(this_rq);
  2704. if (delta)
  2705. atomic_long_add(delta, &calc_load_tasks_idle);
  2706. }
  2707. static long calc_load_fold_idle(void)
  2708. {
  2709. long delta = 0;
  2710. /*
  2711. * Its got a race, we don't care...
  2712. */
  2713. if (atomic_long_read(&calc_load_tasks_idle))
  2714. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2715. return delta;
  2716. }
  2717. /**
  2718. * fixed_power_int - compute: x^n, in O(log n) time
  2719. *
  2720. * @x: base of the power
  2721. * @frac_bits: fractional bits of @x
  2722. * @n: power to raise @x to.
  2723. *
  2724. * By exploiting the relation between the definition of the natural power
  2725. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2726. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2727. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2728. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2729. * of course trivially computable in O(log_2 n), the length of our binary
  2730. * vector.
  2731. */
  2732. static unsigned long
  2733. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2734. {
  2735. unsigned long result = 1UL << frac_bits;
  2736. if (n) for (;;) {
  2737. if (n & 1) {
  2738. result *= x;
  2739. result += 1UL << (frac_bits - 1);
  2740. result >>= frac_bits;
  2741. }
  2742. n >>= 1;
  2743. if (!n)
  2744. break;
  2745. x *= x;
  2746. x += 1UL << (frac_bits - 1);
  2747. x >>= frac_bits;
  2748. }
  2749. return result;
  2750. }
  2751. /*
  2752. * a1 = a0 * e + a * (1 - e)
  2753. *
  2754. * a2 = a1 * e + a * (1 - e)
  2755. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2756. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2757. *
  2758. * a3 = a2 * e + a * (1 - e)
  2759. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2760. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2761. *
  2762. * ...
  2763. *
  2764. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2765. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2766. * = a0 * e^n + a * (1 - e^n)
  2767. *
  2768. * [1] application of the geometric series:
  2769. *
  2770. * n 1 - x^(n+1)
  2771. * S_n := \Sum x^i = -------------
  2772. * i=0 1 - x
  2773. */
  2774. static unsigned long
  2775. calc_load_n(unsigned long load, unsigned long exp,
  2776. unsigned long active, unsigned int n)
  2777. {
  2778. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2779. }
  2780. /*
  2781. * NO_HZ can leave us missing all per-cpu ticks calling
  2782. * calc_load_account_active(), but since an idle CPU folds its delta into
  2783. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2784. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2785. *
  2786. * Once we've updated the global active value, we need to apply the exponential
  2787. * weights adjusted to the number of cycles missed.
  2788. */
  2789. static void calc_global_nohz(unsigned long ticks)
  2790. {
  2791. long delta, active, n;
  2792. if (time_before(jiffies, calc_load_update))
  2793. return;
  2794. /*
  2795. * If we crossed a calc_load_update boundary, make sure to fold
  2796. * any pending idle changes, the respective CPUs might have
  2797. * missed the tick driven calc_load_account_active() update
  2798. * due to NO_HZ.
  2799. */
  2800. delta = calc_load_fold_idle();
  2801. if (delta)
  2802. atomic_long_add(delta, &calc_load_tasks);
  2803. /*
  2804. * If we were idle for multiple load cycles, apply them.
  2805. */
  2806. if (ticks >= LOAD_FREQ) {
  2807. n = ticks / LOAD_FREQ;
  2808. active = atomic_long_read(&calc_load_tasks);
  2809. active = active > 0 ? active * FIXED_1 : 0;
  2810. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2811. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2812. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2813. calc_load_update += n * LOAD_FREQ;
  2814. }
  2815. /*
  2816. * Its possible the remainder of the above division also crosses
  2817. * a LOAD_FREQ period, the regular check in calc_global_load()
  2818. * which comes after this will take care of that.
  2819. *
  2820. * Consider us being 11 ticks before a cycle completion, and us
  2821. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2822. * age us 4 cycles, and the test in calc_global_load() will
  2823. * pick up the final one.
  2824. */
  2825. }
  2826. #else
  2827. static void calc_load_account_idle(struct rq *this_rq)
  2828. {
  2829. }
  2830. static inline long calc_load_fold_idle(void)
  2831. {
  2832. return 0;
  2833. }
  2834. static void calc_global_nohz(unsigned long ticks)
  2835. {
  2836. }
  2837. #endif
  2838. /**
  2839. * get_avenrun - get the load average array
  2840. * @loads: pointer to dest load array
  2841. * @offset: offset to add
  2842. * @shift: shift count to shift the result left
  2843. *
  2844. * These values are estimates at best, so no need for locking.
  2845. */
  2846. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2847. {
  2848. loads[0] = (avenrun[0] + offset) << shift;
  2849. loads[1] = (avenrun[1] + offset) << shift;
  2850. loads[2] = (avenrun[2] + offset) << shift;
  2851. }
  2852. /*
  2853. * calc_load - update the avenrun load estimates 10 ticks after the
  2854. * CPUs have updated calc_load_tasks.
  2855. */
  2856. void calc_global_load(unsigned long ticks)
  2857. {
  2858. long active;
  2859. calc_global_nohz(ticks);
  2860. if (time_before(jiffies, calc_load_update + 10))
  2861. return;
  2862. active = atomic_long_read(&calc_load_tasks);
  2863. active = active > 0 ? active * FIXED_1 : 0;
  2864. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2865. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2866. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2867. calc_load_update += LOAD_FREQ;
  2868. }
  2869. /*
  2870. * Called from update_cpu_load() to periodically update this CPU's
  2871. * active count.
  2872. */
  2873. static void calc_load_account_active(struct rq *this_rq)
  2874. {
  2875. long delta;
  2876. if (time_before(jiffies, this_rq->calc_load_update))
  2877. return;
  2878. delta = calc_load_fold_active(this_rq);
  2879. delta += calc_load_fold_idle();
  2880. if (delta)
  2881. atomic_long_add(delta, &calc_load_tasks);
  2882. this_rq->calc_load_update += LOAD_FREQ;
  2883. }
  2884. /*
  2885. * The exact cpuload at various idx values, calculated at every tick would be
  2886. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2887. *
  2888. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2889. * on nth tick when cpu may be busy, then we have:
  2890. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2891. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2892. *
  2893. * decay_load_missed() below does efficient calculation of
  2894. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2895. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2896. *
  2897. * The calculation is approximated on a 128 point scale.
  2898. * degrade_zero_ticks is the number of ticks after which load at any
  2899. * particular idx is approximated to be zero.
  2900. * degrade_factor is a precomputed table, a row for each load idx.
  2901. * Each column corresponds to degradation factor for a power of two ticks,
  2902. * based on 128 point scale.
  2903. * Example:
  2904. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2905. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2906. *
  2907. * With this power of 2 load factors, we can degrade the load n times
  2908. * by looking at 1 bits in n and doing as many mult/shift instead of
  2909. * n mult/shifts needed by the exact degradation.
  2910. */
  2911. #define DEGRADE_SHIFT 7
  2912. static const unsigned char
  2913. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2914. static const unsigned char
  2915. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2916. {0, 0, 0, 0, 0, 0, 0, 0},
  2917. {64, 32, 8, 0, 0, 0, 0, 0},
  2918. {96, 72, 40, 12, 1, 0, 0},
  2919. {112, 98, 75, 43, 15, 1, 0},
  2920. {120, 112, 98, 76, 45, 16, 2} };
  2921. /*
  2922. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2923. * would be when CPU is idle and so we just decay the old load without
  2924. * adding any new load.
  2925. */
  2926. static unsigned long
  2927. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2928. {
  2929. int j = 0;
  2930. if (!missed_updates)
  2931. return load;
  2932. if (missed_updates >= degrade_zero_ticks[idx])
  2933. return 0;
  2934. if (idx == 1)
  2935. return load >> missed_updates;
  2936. while (missed_updates) {
  2937. if (missed_updates % 2)
  2938. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2939. missed_updates >>= 1;
  2940. j++;
  2941. }
  2942. return load;
  2943. }
  2944. /*
  2945. * Update rq->cpu_load[] statistics. This function is usually called every
  2946. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2947. * every tick. We fix it up based on jiffies.
  2948. */
  2949. static void update_cpu_load(struct rq *this_rq)
  2950. {
  2951. unsigned long this_load = this_rq->load.weight;
  2952. unsigned long curr_jiffies = jiffies;
  2953. unsigned long pending_updates;
  2954. int i, scale;
  2955. this_rq->nr_load_updates++;
  2956. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2957. if (curr_jiffies == this_rq->last_load_update_tick)
  2958. return;
  2959. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2960. this_rq->last_load_update_tick = curr_jiffies;
  2961. /* Update our load: */
  2962. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2963. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2964. unsigned long old_load, new_load;
  2965. /* scale is effectively 1 << i now, and >> i divides by scale */
  2966. old_load = this_rq->cpu_load[i];
  2967. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2968. new_load = this_load;
  2969. /*
  2970. * Round up the averaging division if load is increasing. This
  2971. * prevents us from getting stuck on 9 if the load is 10, for
  2972. * example.
  2973. */
  2974. if (new_load > old_load)
  2975. new_load += scale - 1;
  2976. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2977. }
  2978. sched_avg_update(this_rq);
  2979. }
  2980. static void update_cpu_load_active(struct rq *this_rq)
  2981. {
  2982. update_cpu_load(this_rq);
  2983. calc_load_account_active(this_rq);
  2984. }
  2985. #ifdef CONFIG_SMP
  2986. /*
  2987. * sched_exec - execve() is a valuable balancing opportunity, because at
  2988. * this point the task has the smallest effective memory and cache footprint.
  2989. */
  2990. void sched_exec(void)
  2991. {
  2992. struct task_struct *p = current;
  2993. unsigned long flags;
  2994. int dest_cpu;
  2995. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2996. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2997. if (dest_cpu == smp_processor_id())
  2998. goto unlock;
  2999. if (likely(cpu_active(dest_cpu))) {
  3000. struct migration_arg arg = { p, dest_cpu };
  3001. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3002. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3003. return;
  3004. }
  3005. unlock:
  3006. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3007. }
  3008. #endif
  3009. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3010. EXPORT_PER_CPU_SYMBOL(kstat);
  3011. /*
  3012. * Return any ns on the sched_clock that have not yet been accounted in
  3013. * @p in case that task is currently running.
  3014. *
  3015. * Called with task_rq_lock() held on @rq.
  3016. */
  3017. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3018. {
  3019. u64 ns = 0;
  3020. if (task_current(rq, p)) {
  3021. update_rq_clock(rq);
  3022. ns = rq->clock_task - p->se.exec_start;
  3023. if ((s64)ns < 0)
  3024. ns = 0;
  3025. }
  3026. return ns;
  3027. }
  3028. unsigned long long task_delta_exec(struct task_struct *p)
  3029. {
  3030. unsigned long flags;
  3031. struct rq *rq;
  3032. u64 ns = 0;
  3033. rq = task_rq_lock(p, &flags);
  3034. ns = do_task_delta_exec(p, rq);
  3035. task_rq_unlock(rq, p, &flags);
  3036. return ns;
  3037. }
  3038. /*
  3039. * Return accounted runtime for the task.
  3040. * In case the task is currently running, return the runtime plus current's
  3041. * pending runtime that have not been accounted yet.
  3042. */
  3043. unsigned long long task_sched_runtime(struct task_struct *p)
  3044. {
  3045. unsigned long flags;
  3046. struct rq *rq;
  3047. u64 ns = 0;
  3048. rq = task_rq_lock(p, &flags);
  3049. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3050. task_rq_unlock(rq, p, &flags);
  3051. return ns;
  3052. }
  3053. /*
  3054. * Return sum_exec_runtime for the thread group.
  3055. * In case the task is currently running, return the sum plus current's
  3056. * pending runtime that have not been accounted yet.
  3057. *
  3058. * Note that the thread group might have other running tasks as well,
  3059. * so the return value not includes other pending runtime that other
  3060. * running tasks might have.
  3061. */
  3062. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3063. {
  3064. struct task_cputime totals;
  3065. unsigned long flags;
  3066. struct rq *rq;
  3067. u64 ns;
  3068. rq = task_rq_lock(p, &flags);
  3069. thread_group_cputime(p, &totals);
  3070. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3071. task_rq_unlock(rq, p, &flags);
  3072. return ns;
  3073. }
  3074. /*
  3075. * Account user cpu time to a process.
  3076. * @p: the process that the cpu time gets accounted to
  3077. * @cputime: the cpu time spent in user space since the last update
  3078. * @cputime_scaled: cputime scaled by cpu frequency
  3079. */
  3080. void account_user_time(struct task_struct *p, cputime_t cputime,
  3081. cputime_t cputime_scaled)
  3082. {
  3083. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3084. cputime64_t tmp;
  3085. /* Add user time to process. */
  3086. p->utime = cputime_add(p->utime, cputime);
  3087. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3088. account_group_user_time(p, cputime);
  3089. /* Add user time to cpustat. */
  3090. tmp = cputime_to_cputime64(cputime);
  3091. if (TASK_NICE(p) > 0)
  3092. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3093. else
  3094. cpustat->user = cputime64_add(cpustat->user, tmp);
  3095. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3096. /* Account for user time used */
  3097. acct_update_integrals(p);
  3098. }
  3099. /*
  3100. * Account guest cpu time to a process.
  3101. * @p: the process that the cpu time gets accounted to
  3102. * @cputime: the cpu time spent in virtual machine since the last update
  3103. * @cputime_scaled: cputime scaled by cpu frequency
  3104. */
  3105. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3106. cputime_t cputime_scaled)
  3107. {
  3108. cputime64_t tmp;
  3109. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3110. tmp = cputime_to_cputime64(cputime);
  3111. /* Add guest time to process. */
  3112. p->utime = cputime_add(p->utime, cputime);
  3113. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3114. account_group_user_time(p, cputime);
  3115. p->gtime = cputime_add(p->gtime, cputime);
  3116. /* Add guest time to cpustat. */
  3117. if (TASK_NICE(p) > 0) {
  3118. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3119. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3120. } else {
  3121. cpustat->user = cputime64_add(cpustat->user, tmp);
  3122. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3123. }
  3124. }
  3125. /*
  3126. * Account system cpu time to a process and desired cpustat field
  3127. * @p: the process that the cpu time gets accounted to
  3128. * @cputime: the cpu time spent in kernel space since the last update
  3129. * @cputime_scaled: cputime scaled by cpu frequency
  3130. * @target_cputime64: pointer to cpustat field that has to be updated
  3131. */
  3132. static inline
  3133. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3134. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3135. {
  3136. cputime64_t tmp = cputime_to_cputime64(cputime);
  3137. /* Add system time to process. */
  3138. p->stime = cputime_add(p->stime, cputime);
  3139. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3140. account_group_system_time(p, cputime);
  3141. /* Add system time to cpustat. */
  3142. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3143. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3144. /* Account for system time used */
  3145. acct_update_integrals(p);
  3146. }
  3147. /*
  3148. * Account system cpu time to a process.
  3149. * @p: the process that the cpu time gets accounted to
  3150. * @hardirq_offset: the offset to subtract from hardirq_count()
  3151. * @cputime: the cpu time spent in kernel space since the last update
  3152. * @cputime_scaled: cputime scaled by cpu frequency
  3153. */
  3154. void account_system_time(struct task_struct *p, int hardirq_offset,
  3155. cputime_t cputime, cputime_t cputime_scaled)
  3156. {
  3157. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3158. cputime64_t *target_cputime64;
  3159. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3160. account_guest_time(p, cputime, cputime_scaled);
  3161. return;
  3162. }
  3163. if (hardirq_count() - hardirq_offset)
  3164. target_cputime64 = &cpustat->irq;
  3165. else if (in_serving_softirq())
  3166. target_cputime64 = &cpustat->softirq;
  3167. else
  3168. target_cputime64 = &cpustat->system;
  3169. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3170. }
  3171. /*
  3172. * Account for involuntary wait time.
  3173. * @cputime: the cpu time spent in involuntary wait
  3174. */
  3175. void account_steal_time(cputime_t cputime)
  3176. {
  3177. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3178. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3179. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3180. }
  3181. /*
  3182. * Account for idle time.
  3183. * @cputime: the cpu time spent in idle wait
  3184. */
  3185. void account_idle_time(cputime_t cputime)
  3186. {
  3187. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3188. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3189. struct rq *rq = this_rq();
  3190. if (atomic_read(&rq->nr_iowait) > 0)
  3191. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3192. else
  3193. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3194. }
  3195. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3196. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3197. /*
  3198. * Account a tick to a process and cpustat
  3199. * @p: the process that the cpu time gets accounted to
  3200. * @user_tick: is the tick from userspace
  3201. * @rq: the pointer to rq
  3202. *
  3203. * Tick demultiplexing follows the order
  3204. * - pending hardirq update
  3205. * - pending softirq update
  3206. * - user_time
  3207. * - idle_time
  3208. * - system time
  3209. * - check for guest_time
  3210. * - else account as system_time
  3211. *
  3212. * Check for hardirq is done both for system and user time as there is
  3213. * no timer going off while we are on hardirq and hence we may never get an
  3214. * opportunity to update it solely in system time.
  3215. * p->stime and friends are only updated on system time and not on irq
  3216. * softirq as those do not count in task exec_runtime any more.
  3217. */
  3218. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3219. struct rq *rq)
  3220. {
  3221. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3222. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3223. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3224. if (irqtime_account_hi_update()) {
  3225. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3226. } else if (irqtime_account_si_update()) {
  3227. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3228. } else if (this_cpu_ksoftirqd() == p) {
  3229. /*
  3230. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3231. * So, we have to handle it separately here.
  3232. * Also, p->stime needs to be updated for ksoftirqd.
  3233. */
  3234. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3235. &cpustat->softirq);
  3236. } else if (user_tick) {
  3237. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3238. } else if (p == rq->idle) {
  3239. account_idle_time(cputime_one_jiffy);
  3240. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3241. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3242. } else {
  3243. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3244. &cpustat->system);
  3245. }
  3246. }
  3247. static void irqtime_account_idle_ticks(int ticks)
  3248. {
  3249. int i;
  3250. struct rq *rq = this_rq();
  3251. for (i = 0; i < ticks; i++)
  3252. irqtime_account_process_tick(current, 0, rq);
  3253. }
  3254. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3255. static void irqtime_account_idle_ticks(int ticks) {}
  3256. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3257. struct rq *rq) {}
  3258. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3259. /*
  3260. * Account a single tick of cpu time.
  3261. * @p: the process that the cpu time gets accounted to
  3262. * @user_tick: indicates if the tick is a user or a system tick
  3263. */
  3264. void account_process_tick(struct task_struct *p, int user_tick)
  3265. {
  3266. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3267. struct rq *rq = this_rq();
  3268. if (sched_clock_irqtime) {
  3269. irqtime_account_process_tick(p, user_tick, rq);
  3270. return;
  3271. }
  3272. if (user_tick)
  3273. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3274. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3275. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3276. one_jiffy_scaled);
  3277. else
  3278. account_idle_time(cputime_one_jiffy);
  3279. }
  3280. /*
  3281. * Account multiple ticks of steal time.
  3282. * @p: the process from which the cpu time has been stolen
  3283. * @ticks: number of stolen ticks
  3284. */
  3285. void account_steal_ticks(unsigned long ticks)
  3286. {
  3287. account_steal_time(jiffies_to_cputime(ticks));
  3288. }
  3289. /*
  3290. * Account multiple ticks of idle time.
  3291. * @ticks: number of stolen ticks
  3292. */
  3293. void account_idle_ticks(unsigned long ticks)
  3294. {
  3295. if (sched_clock_irqtime) {
  3296. irqtime_account_idle_ticks(ticks);
  3297. return;
  3298. }
  3299. account_idle_time(jiffies_to_cputime(ticks));
  3300. }
  3301. #endif
  3302. /*
  3303. * Use precise platform statistics if available:
  3304. */
  3305. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3306. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3307. {
  3308. *ut = p->utime;
  3309. *st = p->stime;
  3310. }
  3311. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3312. {
  3313. struct task_cputime cputime;
  3314. thread_group_cputime(p, &cputime);
  3315. *ut = cputime.utime;
  3316. *st = cputime.stime;
  3317. }
  3318. #else
  3319. #ifndef nsecs_to_cputime
  3320. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3321. #endif
  3322. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3323. {
  3324. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3325. /*
  3326. * Use CFS's precise accounting:
  3327. */
  3328. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3329. if (total) {
  3330. u64 temp = rtime;
  3331. temp *= utime;
  3332. do_div(temp, total);
  3333. utime = (cputime_t)temp;
  3334. } else
  3335. utime = rtime;
  3336. /*
  3337. * Compare with previous values, to keep monotonicity:
  3338. */
  3339. p->prev_utime = max(p->prev_utime, utime);
  3340. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3341. *ut = p->prev_utime;
  3342. *st = p->prev_stime;
  3343. }
  3344. /*
  3345. * Must be called with siglock held.
  3346. */
  3347. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3348. {
  3349. struct signal_struct *sig = p->signal;
  3350. struct task_cputime cputime;
  3351. cputime_t rtime, utime, total;
  3352. thread_group_cputime(p, &cputime);
  3353. total = cputime_add(cputime.utime, cputime.stime);
  3354. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3355. if (total) {
  3356. u64 temp = rtime;
  3357. temp *= cputime.utime;
  3358. do_div(temp, total);
  3359. utime = (cputime_t)temp;
  3360. } else
  3361. utime = rtime;
  3362. sig->prev_utime = max(sig->prev_utime, utime);
  3363. sig->prev_stime = max(sig->prev_stime,
  3364. cputime_sub(rtime, sig->prev_utime));
  3365. *ut = sig->prev_utime;
  3366. *st = sig->prev_stime;
  3367. }
  3368. #endif
  3369. /*
  3370. * This function gets called by the timer code, with HZ frequency.
  3371. * We call it with interrupts disabled.
  3372. *
  3373. * It also gets called by the fork code, when changing the parent's
  3374. * timeslices.
  3375. */
  3376. void scheduler_tick(void)
  3377. {
  3378. int cpu = smp_processor_id();
  3379. struct rq *rq = cpu_rq(cpu);
  3380. struct task_struct *curr = rq->curr;
  3381. sched_clock_tick();
  3382. raw_spin_lock(&rq->lock);
  3383. update_rq_clock(rq);
  3384. update_cpu_load_active(rq);
  3385. curr->sched_class->task_tick(rq, curr, 0);
  3386. raw_spin_unlock(&rq->lock);
  3387. perf_event_task_tick();
  3388. #ifdef CONFIG_SMP
  3389. rq->idle_at_tick = idle_cpu(cpu);
  3390. trigger_load_balance(rq, cpu);
  3391. #endif
  3392. }
  3393. notrace unsigned long get_parent_ip(unsigned long addr)
  3394. {
  3395. if (in_lock_functions(addr)) {
  3396. addr = CALLER_ADDR2;
  3397. if (in_lock_functions(addr))
  3398. addr = CALLER_ADDR3;
  3399. }
  3400. return addr;
  3401. }
  3402. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3403. defined(CONFIG_PREEMPT_TRACER))
  3404. void __kprobes add_preempt_count(int val)
  3405. {
  3406. #ifdef CONFIG_DEBUG_PREEMPT
  3407. /*
  3408. * Underflow?
  3409. */
  3410. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3411. return;
  3412. #endif
  3413. preempt_count() += val;
  3414. #ifdef CONFIG_DEBUG_PREEMPT
  3415. /*
  3416. * Spinlock count overflowing soon?
  3417. */
  3418. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3419. PREEMPT_MASK - 10);
  3420. #endif
  3421. if (preempt_count() == val)
  3422. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3423. }
  3424. EXPORT_SYMBOL(add_preempt_count);
  3425. void __kprobes sub_preempt_count(int val)
  3426. {
  3427. #ifdef CONFIG_DEBUG_PREEMPT
  3428. /*
  3429. * Underflow?
  3430. */
  3431. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3432. return;
  3433. /*
  3434. * Is the spinlock portion underflowing?
  3435. */
  3436. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3437. !(preempt_count() & PREEMPT_MASK)))
  3438. return;
  3439. #endif
  3440. if (preempt_count() == val)
  3441. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3442. preempt_count() -= val;
  3443. }
  3444. EXPORT_SYMBOL(sub_preempt_count);
  3445. #endif
  3446. /*
  3447. * Print scheduling while atomic bug:
  3448. */
  3449. static noinline void __schedule_bug(struct task_struct *prev)
  3450. {
  3451. struct pt_regs *regs = get_irq_regs();
  3452. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3453. prev->comm, prev->pid, preempt_count());
  3454. debug_show_held_locks(prev);
  3455. print_modules();
  3456. if (irqs_disabled())
  3457. print_irqtrace_events(prev);
  3458. if (regs)
  3459. show_regs(regs);
  3460. else
  3461. dump_stack();
  3462. }
  3463. /*
  3464. * Various schedule()-time debugging checks and statistics:
  3465. */
  3466. static inline void schedule_debug(struct task_struct *prev)
  3467. {
  3468. /*
  3469. * Test if we are atomic. Since do_exit() needs to call into
  3470. * schedule() atomically, we ignore that path for now.
  3471. * Otherwise, whine if we are scheduling when we should not be.
  3472. */
  3473. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3474. __schedule_bug(prev);
  3475. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3476. schedstat_inc(this_rq(), sched_count);
  3477. #ifdef CONFIG_SCHEDSTATS
  3478. if (unlikely(prev->lock_depth >= 0)) {
  3479. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3480. schedstat_inc(prev, sched_info.bkl_count);
  3481. }
  3482. #endif
  3483. }
  3484. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3485. {
  3486. if (prev->on_rq)
  3487. update_rq_clock(rq);
  3488. prev->sched_class->put_prev_task(rq, prev);
  3489. }
  3490. /*
  3491. * Pick up the highest-prio task:
  3492. */
  3493. static inline struct task_struct *
  3494. pick_next_task(struct rq *rq)
  3495. {
  3496. const struct sched_class *class;
  3497. struct task_struct *p;
  3498. /*
  3499. * Optimization: we know that if all tasks are in
  3500. * the fair class we can call that function directly:
  3501. */
  3502. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3503. p = fair_sched_class.pick_next_task(rq);
  3504. if (likely(p))
  3505. return p;
  3506. }
  3507. for_each_class(class) {
  3508. p = class->pick_next_task(rq);
  3509. if (p)
  3510. return p;
  3511. }
  3512. BUG(); /* the idle class will always have a runnable task */
  3513. }
  3514. /*
  3515. * schedule() is the main scheduler function.
  3516. */
  3517. asmlinkage void __sched schedule(void)
  3518. {
  3519. struct task_struct *prev, *next;
  3520. unsigned long *switch_count;
  3521. struct rq *rq;
  3522. int cpu;
  3523. need_resched:
  3524. preempt_disable();
  3525. cpu = smp_processor_id();
  3526. rq = cpu_rq(cpu);
  3527. rcu_note_context_switch(cpu);
  3528. prev = rq->curr;
  3529. schedule_debug(prev);
  3530. if (sched_feat(HRTICK))
  3531. hrtick_clear(rq);
  3532. raw_spin_lock_irq(&rq->lock);
  3533. switch_count = &prev->nivcsw;
  3534. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3535. if (unlikely(signal_pending_state(prev->state, prev))) {
  3536. prev->state = TASK_RUNNING;
  3537. } else {
  3538. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3539. prev->on_rq = 0;
  3540. /*
  3541. * If a worker went to sleep, notify and ask workqueue
  3542. * whether it wants to wake up a task to maintain
  3543. * concurrency.
  3544. */
  3545. if (prev->flags & PF_WQ_WORKER) {
  3546. struct task_struct *to_wakeup;
  3547. to_wakeup = wq_worker_sleeping(prev, cpu);
  3548. if (to_wakeup)
  3549. try_to_wake_up_local(to_wakeup);
  3550. }
  3551. /*
  3552. * If we are going to sleep and we have plugged IO
  3553. * queued, make sure to submit it to avoid deadlocks.
  3554. */
  3555. if (blk_needs_flush_plug(prev)) {
  3556. raw_spin_unlock(&rq->lock);
  3557. blk_flush_plug(prev);
  3558. raw_spin_lock(&rq->lock);
  3559. }
  3560. }
  3561. switch_count = &prev->nvcsw;
  3562. }
  3563. pre_schedule(rq, prev);
  3564. if (unlikely(!rq->nr_running))
  3565. idle_balance(cpu, rq);
  3566. put_prev_task(rq, prev);
  3567. next = pick_next_task(rq);
  3568. clear_tsk_need_resched(prev);
  3569. rq->skip_clock_update = 0;
  3570. if (likely(prev != next)) {
  3571. rq->nr_switches++;
  3572. rq->curr = next;
  3573. ++*switch_count;
  3574. context_switch(rq, prev, next); /* unlocks the rq */
  3575. /*
  3576. * The context switch have flipped the stack from under us
  3577. * and restored the local variables which were saved when
  3578. * this task called schedule() in the past. prev == current
  3579. * is still correct, but it can be moved to another cpu/rq.
  3580. */
  3581. cpu = smp_processor_id();
  3582. rq = cpu_rq(cpu);
  3583. } else
  3584. raw_spin_unlock_irq(&rq->lock);
  3585. post_schedule(rq);
  3586. preempt_enable_no_resched();
  3587. if (need_resched())
  3588. goto need_resched;
  3589. }
  3590. EXPORT_SYMBOL(schedule);
  3591. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3592. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3593. {
  3594. bool ret = false;
  3595. rcu_read_lock();
  3596. if (lock->owner != owner)
  3597. goto fail;
  3598. /*
  3599. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3600. * lock->owner still matches owner, if that fails, owner might
  3601. * point to free()d memory, if it still matches, the rcu_read_lock()
  3602. * ensures the memory stays valid.
  3603. */
  3604. barrier();
  3605. ret = owner->on_cpu;
  3606. fail:
  3607. rcu_read_unlock();
  3608. return ret;
  3609. }
  3610. /*
  3611. * Look out! "owner" is an entirely speculative pointer
  3612. * access and not reliable.
  3613. */
  3614. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3615. {
  3616. if (!sched_feat(OWNER_SPIN))
  3617. return 0;
  3618. while (owner_running(lock, owner)) {
  3619. if (need_resched())
  3620. return 0;
  3621. arch_mutex_cpu_relax();
  3622. }
  3623. /*
  3624. * If the owner changed to another task there is likely
  3625. * heavy contention, stop spinning.
  3626. */
  3627. if (lock->owner)
  3628. return 0;
  3629. return 1;
  3630. }
  3631. #endif
  3632. #ifdef CONFIG_PREEMPT
  3633. /*
  3634. * this is the entry point to schedule() from in-kernel preemption
  3635. * off of preempt_enable. Kernel preemptions off return from interrupt
  3636. * occur there and call schedule directly.
  3637. */
  3638. asmlinkage void __sched notrace preempt_schedule(void)
  3639. {
  3640. struct thread_info *ti = current_thread_info();
  3641. /*
  3642. * If there is a non-zero preempt_count or interrupts are disabled,
  3643. * we do not want to preempt the current task. Just return..
  3644. */
  3645. if (likely(ti->preempt_count || irqs_disabled()))
  3646. return;
  3647. do {
  3648. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3649. schedule();
  3650. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3651. /*
  3652. * Check again in case we missed a preemption opportunity
  3653. * between schedule and now.
  3654. */
  3655. barrier();
  3656. } while (need_resched());
  3657. }
  3658. EXPORT_SYMBOL(preempt_schedule);
  3659. /*
  3660. * this is the entry point to schedule() from kernel preemption
  3661. * off of irq context.
  3662. * Note, that this is called and return with irqs disabled. This will
  3663. * protect us against recursive calling from irq.
  3664. */
  3665. asmlinkage void __sched preempt_schedule_irq(void)
  3666. {
  3667. struct thread_info *ti = current_thread_info();
  3668. /* Catch callers which need to be fixed */
  3669. BUG_ON(ti->preempt_count || !irqs_disabled());
  3670. do {
  3671. add_preempt_count(PREEMPT_ACTIVE);
  3672. local_irq_enable();
  3673. schedule();
  3674. local_irq_disable();
  3675. sub_preempt_count(PREEMPT_ACTIVE);
  3676. /*
  3677. * Check again in case we missed a preemption opportunity
  3678. * between schedule and now.
  3679. */
  3680. barrier();
  3681. } while (need_resched());
  3682. }
  3683. #endif /* CONFIG_PREEMPT */
  3684. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3685. void *key)
  3686. {
  3687. return try_to_wake_up(curr->private, mode, wake_flags);
  3688. }
  3689. EXPORT_SYMBOL(default_wake_function);
  3690. /*
  3691. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3692. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3693. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3694. *
  3695. * There are circumstances in which we can try to wake a task which has already
  3696. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3697. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3698. */
  3699. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3700. int nr_exclusive, int wake_flags, void *key)
  3701. {
  3702. wait_queue_t *curr, *next;
  3703. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3704. unsigned flags = curr->flags;
  3705. if (curr->func(curr, mode, wake_flags, key) &&
  3706. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3707. break;
  3708. }
  3709. }
  3710. /**
  3711. * __wake_up - wake up threads blocked on a waitqueue.
  3712. * @q: the waitqueue
  3713. * @mode: which threads
  3714. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3715. * @key: is directly passed to the wakeup function
  3716. *
  3717. * It may be assumed that this function implies a write memory barrier before
  3718. * changing the task state if and only if any tasks are woken up.
  3719. */
  3720. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3721. int nr_exclusive, void *key)
  3722. {
  3723. unsigned long flags;
  3724. spin_lock_irqsave(&q->lock, flags);
  3725. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3726. spin_unlock_irqrestore(&q->lock, flags);
  3727. }
  3728. EXPORT_SYMBOL(__wake_up);
  3729. /*
  3730. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3731. */
  3732. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3733. {
  3734. __wake_up_common(q, mode, 1, 0, NULL);
  3735. }
  3736. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3737. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3738. {
  3739. __wake_up_common(q, mode, 1, 0, key);
  3740. }
  3741. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3742. /**
  3743. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3744. * @q: the waitqueue
  3745. * @mode: which threads
  3746. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3747. * @key: opaque value to be passed to wakeup targets
  3748. *
  3749. * The sync wakeup differs that the waker knows that it will schedule
  3750. * away soon, so while the target thread will be woken up, it will not
  3751. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3752. * with each other. This can prevent needless bouncing between CPUs.
  3753. *
  3754. * On UP it can prevent extra preemption.
  3755. *
  3756. * It may be assumed that this function implies a write memory barrier before
  3757. * changing the task state if and only if any tasks are woken up.
  3758. */
  3759. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3760. int nr_exclusive, void *key)
  3761. {
  3762. unsigned long flags;
  3763. int wake_flags = WF_SYNC;
  3764. if (unlikely(!q))
  3765. return;
  3766. if (unlikely(!nr_exclusive))
  3767. wake_flags = 0;
  3768. spin_lock_irqsave(&q->lock, flags);
  3769. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3770. spin_unlock_irqrestore(&q->lock, flags);
  3771. }
  3772. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3773. /*
  3774. * __wake_up_sync - see __wake_up_sync_key()
  3775. */
  3776. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3777. {
  3778. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3779. }
  3780. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3781. /**
  3782. * complete: - signals a single thread waiting on this completion
  3783. * @x: holds the state of this particular completion
  3784. *
  3785. * This will wake up a single thread waiting on this completion. Threads will be
  3786. * awakened in the same order in which they were queued.
  3787. *
  3788. * See also complete_all(), wait_for_completion() and related routines.
  3789. *
  3790. * It may be assumed that this function implies a write memory barrier before
  3791. * changing the task state if and only if any tasks are woken up.
  3792. */
  3793. void complete(struct completion *x)
  3794. {
  3795. unsigned long flags;
  3796. spin_lock_irqsave(&x->wait.lock, flags);
  3797. x->done++;
  3798. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3799. spin_unlock_irqrestore(&x->wait.lock, flags);
  3800. }
  3801. EXPORT_SYMBOL(complete);
  3802. /**
  3803. * complete_all: - signals all threads waiting on this completion
  3804. * @x: holds the state of this particular completion
  3805. *
  3806. * This will wake up all threads waiting on this particular completion event.
  3807. *
  3808. * It may be assumed that this function implies a write memory barrier before
  3809. * changing the task state if and only if any tasks are woken up.
  3810. */
  3811. void complete_all(struct completion *x)
  3812. {
  3813. unsigned long flags;
  3814. spin_lock_irqsave(&x->wait.lock, flags);
  3815. x->done += UINT_MAX/2;
  3816. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3817. spin_unlock_irqrestore(&x->wait.lock, flags);
  3818. }
  3819. EXPORT_SYMBOL(complete_all);
  3820. static inline long __sched
  3821. do_wait_for_common(struct completion *x, long timeout, int state)
  3822. {
  3823. if (!x->done) {
  3824. DECLARE_WAITQUEUE(wait, current);
  3825. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3826. do {
  3827. if (signal_pending_state(state, current)) {
  3828. timeout = -ERESTARTSYS;
  3829. break;
  3830. }
  3831. __set_current_state(state);
  3832. spin_unlock_irq(&x->wait.lock);
  3833. timeout = schedule_timeout(timeout);
  3834. spin_lock_irq(&x->wait.lock);
  3835. } while (!x->done && timeout);
  3836. __remove_wait_queue(&x->wait, &wait);
  3837. if (!x->done)
  3838. return timeout;
  3839. }
  3840. x->done--;
  3841. return timeout ?: 1;
  3842. }
  3843. static long __sched
  3844. wait_for_common(struct completion *x, long timeout, int state)
  3845. {
  3846. might_sleep();
  3847. spin_lock_irq(&x->wait.lock);
  3848. timeout = do_wait_for_common(x, timeout, state);
  3849. spin_unlock_irq(&x->wait.lock);
  3850. return timeout;
  3851. }
  3852. /**
  3853. * wait_for_completion: - waits for completion of a task
  3854. * @x: holds the state of this particular completion
  3855. *
  3856. * This waits to be signaled for completion of a specific task. It is NOT
  3857. * interruptible and there is no timeout.
  3858. *
  3859. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3860. * and interrupt capability. Also see complete().
  3861. */
  3862. void __sched wait_for_completion(struct completion *x)
  3863. {
  3864. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3865. }
  3866. EXPORT_SYMBOL(wait_for_completion);
  3867. /**
  3868. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3869. * @x: holds the state of this particular completion
  3870. * @timeout: timeout value in jiffies
  3871. *
  3872. * This waits for either a completion of a specific task to be signaled or for a
  3873. * specified timeout to expire. The timeout is in jiffies. It is not
  3874. * interruptible.
  3875. */
  3876. unsigned long __sched
  3877. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3878. {
  3879. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3880. }
  3881. EXPORT_SYMBOL(wait_for_completion_timeout);
  3882. /**
  3883. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3884. * @x: holds the state of this particular completion
  3885. *
  3886. * This waits for completion of a specific task to be signaled. It is
  3887. * interruptible.
  3888. */
  3889. int __sched wait_for_completion_interruptible(struct completion *x)
  3890. {
  3891. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3892. if (t == -ERESTARTSYS)
  3893. return t;
  3894. return 0;
  3895. }
  3896. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3897. /**
  3898. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3899. * @x: holds the state of this particular completion
  3900. * @timeout: timeout value in jiffies
  3901. *
  3902. * This waits for either a completion of a specific task to be signaled or for a
  3903. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3904. */
  3905. long __sched
  3906. wait_for_completion_interruptible_timeout(struct completion *x,
  3907. unsigned long timeout)
  3908. {
  3909. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3910. }
  3911. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3912. /**
  3913. * wait_for_completion_killable: - waits for completion of a task (killable)
  3914. * @x: holds the state of this particular completion
  3915. *
  3916. * This waits to be signaled for completion of a specific task. It can be
  3917. * interrupted by a kill signal.
  3918. */
  3919. int __sched wait_for_completion_killable(struct completion *x)
  3920. {
  3921. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3922. if (t == -ERESTARTSYS)
  3923. return t;
  3924. return 0;
  3925. }
  3926. EXPORT_SYMBOL(wait_for_completion_killable);
  3927. /**
  3928. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3929. * @x: holds the state of this particular completion
  3930. * @timeout: timeout value in jiffies
  3931. *
  3932. * This waits for either a completion of a specific task to be
  3933. * signaled or for a specified timeout to expire. It can be
  3934. * interrupted by a kill signal. The timeout is in jiffies.
  3935. */
  3936. long __sched
  3937. wait_for_completion_killable_timeout(struct completion *x,
  3938. unsigned long timeout)
  3939. {
  3940. return wait_for_common(x, timeout, TASK_KILLABLE);
  3941. }
  3942. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3943. /**
  3944. * try_wait_for_completion - try to decrement a completion without blocking
  3945. * @x: completion structure
  3946. *
  3947. * Returns: 0 if a decrement cannot be done without blocking
  3948. * 1 if a decrement succeeded.
  3949. *
  3950. * If a completion is being used as a counting completion,
  3951. * attempt to decrement the counter without blocking. This
  3952. * enables us to avoid waiting if the resource the completion
  3953. * is protecting is not available.
  3954. */
  3955. bool try_wait_for_completion(struct completion *x)
  3956. {
  3957. unsigned long flags;
  3958. int ret = 1;
  3959. spin_lock_irqsave(&x->wait.lock, flags);
  3960. if (!x->done)
  3961. ret = 0;
  3962. else
  3963. x->done--;
  3964. spin_unlock_irqrestore(&x->wait.lock, flags);
  3965. return ret;
  3966. }
  3967. EXPORT_SYMBOL(try_wait_for_completion);
  3968. /**
  3969. * completion_done - Test to see if a completion has any waiters
  3970. * @x: completion structure
  3971. *
  3972. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3973. * 1 if there are no waiters.
  3974. *
  3975. */
  3976. bool completion_done(struct completion *x)
  3977. {
  3978. unsigned long flags;
  3979. int ret = 1;
  3980. spin_lock_irqsave(&x->wait.lock, flags);
  3981. if (!x->done)
  3982. ret = 0;
  3983. spin_unlock_irqrestore(&x->wait.lock, flags);
  3984. return ret;
  3985. }
  3986. EXPORT_SYMBOL(completion_done);
  3987. static long __sched
  3988. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3989. {
  3990. unsigned long flags;
  3991. wait_queue_t wait;
  3992. init_waitqueue_entry(&wait, current);
  3993. __set_current_state(state);
  3994. spin_lock_irqsave(&q->lock, flags);
  3995. __add_wait_queue(q, &wait);
  3996. spin_unlock(&q->lock);
  3997. timeout = schedule_timeout(timeout);
  3998. spin_lock_irq(&q->lock);
  3999. __remove_wait_queue(q, &wait);
  4000. spin_unlock_irqrestore(&q->lock, flags);
  4001. return timeout;
  4002. }
  4003. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4004. {
  4005. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4006. }
  4007. EXPORT_SYMBOL(interruptible_sleep_on);
  4008. long __sched
  4009. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4010. {
  4011. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4012. }
  4013. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4014. void __sched sleep_on(wait_queue_head_t *q)
  4015. {
  4016. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4017. }
  4018. EXPORT_SYMBOL(sleep_on);
  4019. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4020. {
  4021. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4022. }
  4023. EXPORT_SYMBOL(sleep_on_timeout);
  4024. #ifdef CONFIG_RT_MUTEXES
  4025. /*
  4026. * rt_mutex_setprio - set the current priority of a task
  4027. * @p: task
  4028. * @prio: prio value (kernel-internal form)
  4029. *
  4030. * This function changes the 'effective' priority of a task. It does
  4031. * not touch ->normal_prio like __setscheduler().
  4032. *
  4033. * Used by the rt_mutex code to implement priority inheritance logic.
  4034. */
  4035. void rt_mutex_setprio(struct task_struct *p, int prio)
  4036. {
  4037. int oldprio, on_rq, running;
  4038. struct rq *rq;
  4039. const struct sched_class *prev_class;
  4040. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4041. rq = __task_rq_lock(p);
  4042. trace_sched_pi_setprio(p, prio);
  4043. oldprio = p->prio;
  4044. prev_class = p->sched_class;
  4045. on_rq = p->on_rq;
  4046. running = task_current(rq, p);
  4047. if (on_rq)
  4048. dequeue_task(rq, p, 0);
  4049. if (running)
  4050. p->sched_class->put_prev_task(rq, p);
  4051. if (rt_prio(prio))
  4052. p->sched_class = &rt_sched_class;
  4053. else
  4054. p->sched_class = &fair_sched_class;
  4055. p->prio = prio;
  4056. if (running)
  4057. p->sched_class->set_curr_task(rq);
  4058. if (on_rq)
  4059. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4060. check_class_changed(rq, p, prev_class, oldprio);
  4061. __task_rq_unlock(rq);
  4062. }
  4063. #endif
  4064. void set_user_nice(struct task_struct *p, long nice)
  4065. {
  4066. int old_prio, delta, on_rq;
  4067. unsigned long flags;
  4068. struct rq *rq;
  4069. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4070. return;
  4071. /*
  4072. * We have to be careful, if called from sys_setpriority(),
  4073. * the task might be in the middle of scheduling on another CPU.
  4074. */
  4075. rq = task_rq_lock(p, &flags);
  4076. /*
  4077. * The RT priorities are set via sched_setscheduler(), but we still
  4078. * allow the 'normal' nice value to be set - but as expected
  4079. * it wont have any effect on scheduling until the task is
  4080. * SCHED_FIFO/SCHED_RR:
  4081. */
  4082. if (task_has_rt_policy(p)) {
  4083. p->static_prio = NICE_TO_PRIO(nice);
  4084. goto out_unlock;
  4085. }
  4086. on_rq = p->on_rq;
  4087. if (on_rq)
  4088. dequeue_task(rq, p, 0);
  4089. p->static_prio = NICE_TO_PRIO(nice);
  4090. set_load_weight(p);
  4091. old_prio = p->prio;
  4092. p->prio = effective_prio(p);
  4093. delta = p->prio - old_prio;
  4094. if (on_rq) {
  4095. enqueue_task(rq, p, 0);
  4096. /*
  4097. * If the task increased its priority or is running and
  4098. * lowered its priority, then reschedule its CPU:
  4099. */
  4100. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4101. resched_task(rq->curr);
  4102. }
  4103. out_unlock:
  4104. task_rq_unlock(rq, p, &flags);
  4105. }
  4106. EXPORT_SYMBOL(set_user_nice);
  4107. /*
  4108. * can_nice - check if a task can reduce its nice value
  4109. * @p: task
  4110. * @nice: nice value
  4111. */
  4112. int can_nice(const struct task_struct *p, const int nice)
  4113. {
  4114. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4115. int nice_rlim = 20 - nice;
  4116. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4117. capable(CAP_SYS_NICE));
  4118. }
  4119. #ifdef __ARCH_WANT_SYS_NICE
  4120. /*
  4121. * sys_nice - change the priority of the current process.
  4122. * @increment: priority increment
  4123. *
  4124. * sys_setpriority is a more generic, but much slower function that
  4125. * does similar things.
  4126. */
  4127. SYSCALL_DEFINE1(nice, int, increment)
  4128. {
  4129. long nice, retval;
  4130. /*
  4131. * Setpriority might change our priority at the same moment.
  4132. * We don't have to worry. Conceptually one call occurs first
  4133. * and we have a single winner.
  4134. */
  4135. if (increment < -40)
  4136. increment = -40;
  4137. if (increment > 40)
  4138. increment = 40;
  4139. nice = TASK_NICE(current) + increment;
  4140. if (nice < -20)
  4141. nice = -20;
  4142. if (nice > 19)
  4143. nice = 19;
  4144. if (increment < 0 && !can_nice(current, nice))
  4145. return -EPERM;
  4146. retval = security_task_setnice(current, nice);
  4147. if (retval)
  4148. return retval;
  4149. set_user_nice(current, nice);
  4150. return 0;
  4151. }
  4152. #endif
  4153. /**
  4154. * task_prio - return the priority value of a given task.
  4155. * @p: the task in question.
  4156. *
  4157. * This is the priority value as seen by users in /proc.
  4158. * RT tasks are offset by -200. Normal tasks are centered
  4159. * around 0, value goes from -16 to +15.
  4160. */
  4161. int task_prio(const struct task_struct *p)
  4162. {
  4163. return p->prio - MAX_RT_PRIO;
  4164. }
  4165. /**
  4166. * task_nice - return the nice value of a given task.
  4167. * @p: the task in question.
  4168. */
  4169. int task_nice(const struct task_struct *p)
  4170. {
  4171. return TASK_NICE(p);
  4172. }
  4173. EXPORT_SYMBOL(task_nice);
  4174. /**
  4175. * idle_cpu - is a given cpu idle currently?
  4176. * @cpu: the processor in question.
  4177. */
  4178. int idle_cpu(int cpu)
  4179. {
  4180. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4181. }
  4182. /**
  4183. * idle_task - return the idle task for a given cpu.
  4184. * @cpu: the processor in question.
  4185. */
  4186. struct task_struct *idle_task(int cpu)
  4187. {
  4188. return cpu_rq(cpu)->idle;
  4189. }
  4190. /**
  4191. * find_process_by_pid - find a process with a matching PID value.
  4192. * @pid: the pid in question.
  4193. */
  4194. static struct task_struct *find_process_by_pid(pid_t pid)
  4195. {
  4196. return pid ? find_task_by_vpid(pid) : current;
  4197. }
  4198. /* Actually do priority change: must hold rq lock. */
  4199. static void
  4200. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4201. {
  4202. p->policy = policy;
  4203. p->rt_priority = prio;
  4204. p->normal_prio = normal_prio(p);
  4205. /* we are holding p->pi_lock already */
  4206. p->prio = rt_mutex_getprio(p);
  4207. if (rt_prio(p->prio))
  4208. p->sched_class = &rt_sched_class;
  4209. else
  4210. p->sched_class = &fair_sched_class;
  4211. set_load_weight(p);
  4212. }
  4213. /*
  4214. * check the target process has a UID that matches the current process's
  4215. */
  4216. static bool check_same_owner(struct task_struct *p)
  4217. {
  4218. const struct cred *cred = current_cred(), *pcred;
  4219. bool match;
  4220. rcu_read_lock();
  4221. pcred = __task_cred(p);
  4222. if (cred->user->user_ns == pcred->user->user_ns)
  4223. match = (cred->euid == pcred->euid ||
  4224. cred->euid == pcred->uid);
  4225. else
  4226. match = false;
  4227. rcu_read_unlock();
  4228. return match;
  4229. }
  4230. static int __sched_setscheduler(struct task_struct *p, int policy,
  4231. const struct sched_param *param, bool user)
  4232. {
  4233. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4234. unsigned long flags;
  4235. const struct sched_class *prev_class;
  4236. struct rq *rq;
  4237. int reset_on_fork;
  4238. /* may grab non-irq protected spin_locks */
  4239. BUG_ON(in_interrupt());
  4240. recheck:
  4241. /* double check policy once rq lock held */
  4242. if (policy < 0) {
  4243. reset_on_fork = p->sched_reset_on_fork;
  4244. policy = oldpolicy = p->policy;
  4245. } else {
  4246. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4247. policy &= ~SCHED_RESET_ON_FORK;
  4248. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4249. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4250. policy != SCHED_IDLE)
  4251. return -EINVAL;
  4252. }
  4253. /*
  4254. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4255. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4256. * SCHED_BATCH and SCHED_IDLE is 0.
  4257. */
  4258. if (param->sched_priority < 0 ||
  4259. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4260. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4261. return -EINVAL;
  4262. if (rt_policy(policy) != (param->sched_priority != 0))
  4263. return -EINVAL;
  4264. /*
  4265. * Allow unprivileged RT tasks to decrease priority:
  4266. */
  4267. if (user && !capable(CAP_SYS_NICE)) {
  4268. if (rt_policy(policy)) {
  4269. unsigned long rlim_rtprio =
  4270. task_rlimit(p, RLIMIT_RTPRIO);
  4271. /* can't set/change the rt policy */
  4272. if (policy != p->policy && !rlim_rtprio)
  4273. return -EPERM;
  4274. /* can't increase priority */
  4275. if (param->sched_priority > p->rt_priority &&
  4276. param->sched_priority > rlim_rtprio)
  4277. return -EPERM;
  4278. }
  4279. /*
  4280. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4281. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4282. */
  4283. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4284. if (!can_nice(p, TASK_NICE(p)))
  4285. return -EPERM;
  4286. }
  4287. /* can't change other user's priorities */
  4288. if (!check_same_owner(p))
  4289. return -EPERM;
  4290. /* Normal users shall not reset the sched_reset_on_fork flag */
  4291. if (p->sched_reset_on_fork && !reset_on_fork)
  4292. return -EPERM;
  4293. }
  4294. if (user) {
  4295. retval = security_task_setscheduler(p);
  4296. if (retval)
  4297. return retval;
  4298. }
  4299. /*
  4300. * make sure no PI-waiters arrive (or leave) while we are
  4301. * changing the priority of the task:
  4302. *
  4303. * To be able to change p->policy safely, the appropriate
  4304. * runqueue lock must be held.
  4305. */
  4306. rq = task_rq_lock(p, &flags);
  4307. /*
  4308. * Changing the policy of the stop threads its a very bad idea
  4309. */
  4310. if (p == rq->stop) {
  4311. task_rq_unlock(rq, p, &flags);
  4312. return -EINVAL;
  4313. }
  4314. /*
  4315. * If not changing anything there's no need to proceed further:
  4316. */
  4317. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4318. param->sched_priority == p->rt_priority))) {
  4319. __task_rq_unlock(rq);
  4320. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4321. return 0;
  4322. }
  4323. #ifdef CONFIG_RT_GROUP_SCHED
  4324. if (user) {
  4325. /*
  4326. * Do not allow realtime tasks into groups that have no runtime
  4327. * assigned.
  4328. */
  4329. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4330. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4331. !task_group_is_autogroup(task_group(p))) {
  4332. task_rq_unlock(rq, p, &flags);
  4333. return -EPERM;
  4334. }
  4335. }
  4336. #endif
  4337. /* recheck policy now with rq lock held */
  4338. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4339. policy = oldpolicy = -1;
  4340. task_rq_unlock(rq, p, &flags);
  4341. goto recheck;
  4342. }
  4343. on_rq = p->on_rq;
  4344. running = task_current(rq, p);
  4345. if (on_rq)
  4346. deactivate_task(rq, p, 0);
  4347. if (running)
  4348. p->sched_class->put_prev_task(rq, p);
  4349. p->sched_reset_on_fork = reset_on_fork;
  4350. oldprio = p->prio;
  4351. prev_class = p->sched_class;
  4352. __setscheduler(rq, p, policy, param->sched_priority);
  4353. if (running)
  4354. p->sched_class->set_curr_task(rq);
  4355. if (on_rq)
  4356. activate_task(rq, p, 0);
  4357. check_class_changed(rq, p, prev_class, oldprio);
  4358. task_rq_unlock(rq, p, &flags);
  4359. rt_mutex_adjust_pi(p);
  4360. return 0;
  4361. }
  4362. /**
  4363. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4364. * @p: the task in question.
  4365. * @policy: new policy.
  4366. * @param: structure containing the new RT priority.
  4367. *
  4368. * NOTE that the task may be already dead.
  4369. */
  4370. int sched_setscheduler(struct task_struct *p, int policy,
  4371. const struct sched_param *param)
  4372. {
  4373. return __sched_setscheduler(p, policy, param, true);
  4374. }
  4375. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4376. /**
  4377. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4378. * @p: the task in question.
  4379. * @policy: new policy.
  4380. * @param: structure containing the new RT priority.
  4381. *
  4382. * Just like sched_setscheduler, only don't bother checking if the
  4383. * current context has permission. For example, this is needed in
  4384. * stop_machine(): we create temporary high priority worker threads,
  4385. * but our caller might not have that capability.
  4386. */
  4387. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4388. const struct sched_param *param)
  4389. {
  4390. return __sched_setscheduler(p, policy, param, false);
  4391. }
  4392. static int
  4393. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4394. {
  4395. struct sched_param lparam;
  4396. struct task_struct *p;
  4397. int retval;
  4398. if (!param || pid < 0)
  4399. return -EINVAL;
  4400. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4401. return -EFAULT;
  4402. rcu_read_lock();
  4403. retval = -ESRCH;
  4404. p = find_process_by_pid(pid);
  4405. if (p != NULL)
  4406. retval = sched_setscheduler(p, policy, &lparam);
  4407. rcu_read_unlock();
  4408. return retval;
  4409. }
  4410. /**
  4411. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4412. * @pid: the pid in question.
  4413. * @policy: new policy.
  4414. * @param: structure containing the new RT priority.
  4415. */
  4416. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4417. struct sched_param __user *, param)
  4418. {
  4419. /* negative values for policy are not valid */
  4420. if (policy < 0)
  4421. return -EINVAL;
  4422. return do_sched_setscheduler(pid, policy, param);
  4423. }
  4424. /**
  4425. * sys_sched_setparam - set/change the RT priority of a thread
  4426. * @pid: the pid in question.
  4427. * @param: structure containing the new RT priority.
  4428. */
  4429. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4430. {
  4431. return do_sched_setscheduler(pid, -1, param);
  4432. }
  4433. /**
  4434. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4435. * @pid: the pid in question.
  4436. */
  4437. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4438. {
  4439. struct task_struct *p;
  4440. int retval;
  4441. if (pid < 0)
  4442. return -EINVAL;
  4443. retval = -ESRCH;
  4444. rcu_read_lock();
  4445. p = find_process_by_pid(pid);
  4446. if (p) {
  4447. retval = security_task_getscheduler(p);
  4448. if (!retval)
  4449. retval = p->policy
  4450. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4451. }
  4452. rcu_read_unlock();
  4453. return retval;
  4454. }
  4455. /**
  4456. * sys_sched_getparam - get the RT priority of a thread
  4457. * @pid: the pid in question.
  4458. * @param: structure containing the RT priority.
  4459. */
  4460. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4461. {
  4462. struct sched_param lp;
  4463. struct task_struct *p;
  4464. int retval;
  4465. if (!param || pid < 0)
  4466. return -EINVAL;
  4467. rcu_read_lock();
  4468. p = find_process_by_pid(pid);
  4469. retval = -ESRCH;
  4470. if (!p)
  4471. goto out_unlock;
  4472. retval = security_task_getscheduler(p);
  4473. if (retval)
  4474. goto out_unlock;
  4475. lp.sched_priority = p->rt_priority;
  4476. rcu_read_unlock();
  4477. /*
  4478. * This one might sleep, we cannot do it with a spinlock held ...
  4479. */
  4480. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4481. return retval;
  4482. out_unlock:
  4483. rcu_read_unlock();
  4484. return retval;
  4485. }
  4486. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4487. {
  4488. cpumask_var_t cpus_allowed, new_mask;
  4489. struct task_struct *p;
  4490. int retval;
  4491. get_online_cpus();
  4492. rcu_read_lock();
  4493. p = find_process_by_pid(pid);
  4494. if (!p) {
  4495. rcu_read_unlock();
  4496. put_online_cpus();
  4497. return -ESRCH;
  4498. }
  4499. /* Prevent p going away */
  4500. get_task_struct(p);
  4501. rcu_read_unlock();
  4502. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4503. retval = -ENOMEM;
  4504. goto out_put_task;
  4505. }
  4506. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4507. retval = -ENOMEM;
  4508. goto out_free_cpus_allowed;
  4509. }
  4510. retval = -EPERM;
  4511. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4512. goto out_unlock;
  4513. retval = security_task_setscheduler(p);
  4514. if (retval)
  4515. goto out_unlock;
  4516. cpuset_cpus_allowed(p, cpus_allowed);
  4517. cpumask_and(new_mask, in_mask, cpus_allowed);
  4518. again:
  4519. retval = set_cpus_allowed_ptr(p, new_mask);
  4520. if (!retval) {
  4521. cpuset_cpus_allowed(p, cpus_allowed);
  4522. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4523. /*
  4524. * We must have raced with a concurrent cpuset
  4525. * update. Just reset the cpus_allowed to the
  4526. * cpuset's cpus_allowed
  4527. */
  4528. cpumask_copy(new_mask, cpus_allowed);
  4529. goto again;
  4530. }
  4531. }
  4532. out_unlock:
  4533. free_cpumask_var(new_mask);
  4534. out_free_cpus_allowed:
  4535. free_cpumask_var(cpus_allowed);
  4536. out_put_task:
  4537. put_task_struct(p);
  4538. put_online_cpus();
  4539. return retval;
  4540. }
  4541. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4542. struct cpumask *new_mask)
  4543. {
  4544. if (len < cpumask_size())
  4545. cpumask_clear(new_mask);
  4546. else if (len > cpumask_size())
  4547. len = cpumask_size();
  4548. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4549. }
  4550. /**
  4551. * sys_sched_setaffinity - set the cpu affinity of a process
  4552. * @pid: pid of the process
  4553. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4554. * @user_mask_ptr: user-space pointer to the new cpu mask
  4555. */
  4556. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4557. unsigned long __user *, user_mask_ptr)
  4558. {
  4559. cpumask_var_t new_mask;
  4560. int retval;
  4561. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4562. return -ENOMEM;
  4563. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4564. if (retval == 0)
  4565. retval = sched_setaffinity(pid, new_mask);
  4566. free_cpumask_var(new_mask);
  4567. return retval;
  4568. }
  4569. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4570. {
  4571. struct task_struct *p;
  4572. unsigned long flags;
  4573. int retval;
  4574. get_online_cpus();
  4575. rcu_read_lock();
  4576. retval = -ESRCH;
  4577. p = find_process_by_pid(pid);
  4578. if (!p)
  4579. goto out_unlock;
  4580. retval = security_task_getscheduler(p);
  4581. if (retval)
  4582. goto out_unlock;
  4583. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4584. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4585. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4586. out_unlock:
  4587. rcu_read_unlock();
  4588. put_online_cpus();
  4589. return retval;
  4590. }
  4591. /**
  4592. * sys_sched_getaffinity - get the cpu affinity of a process
  4593. * @pid: pid of the process
  4594. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4595. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4596. */
  4597. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4598. unsigned long __user *, user_mask_ptr)
  4599. {
  4600. int ret;
  4601. cpumask_var_t mask;
  4602. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4603. return -EINVAL;
  4604. if (len & (sizeof(unsigned long)-1))
  4605. return -EINVAL;
  4606. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4607. return -ENOMEM;
  4608. ret = sched_getaffinity(pid, mask);
  4609. if (ret == 0) {
  4610. size_t retlen = min_t(size_t, len, cpumask_size());
  4611. if (copy_to_user(user_mask_ptr, mask, retlen))
  4612. ret = -EFAULT;
  4613. else
  4614. ret = retlen;
  4615. }
  4616. free_cpumask_var(mask);
  4617. return ret;
  4618. }
  4619. /**
  4620. * sys_sched_yield - yield the current processor to other threads.
  4621. *
  4622. * This function yields the current CPU to other tasks. If there are no
  4623. * other threads running on this CPU then this function will return.
  4624. */
  4625. SYSCALL_DEFINE0(sched_yield)
  4626. {
  4627. struct rq *rq = this_rq_lock();
  4628. schedstat_inc(rq, yld_count);
  4629. current->sched_class->yield_task(rq);
  4630. /*
  4631. * Since we are going to call schedule() anyway, there's
  4632. * no need to preempt or enable interrupts:
  4633. */
  4634. __release(rq->lock);
  4635. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4636. do_raw_spin_unlock(&rq->lock);
  4637. preempt_enable_no_resched();
  4638. schedule();
  4639. return 0;
  4640. }
  4641. static inline int should_resched(void)
  4642. {
  4643. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4644. }
  4645. static void __cond_resched(void)
  4646. {
  4647. add_preempt_count(PREEMPT_ACTIVE);
  4648. schedule();
  4649. sub_preempt_count(PREEMPT_ACTIVE);
  4650. }
  4651. int __sched _cond_resched(void)
  4652. {
  4653. if (should_resched()) {
  4654. __cond_resched();
  4655. return 1;
  4656. }
  4657. return 0;
  4658. }
  4659. EXPORT_SYMBOL(_cond_resched);
  4660. /*
  4661. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4662. * call schedule, and on return reacquire the lock.
  4663. *
  4664. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4665. * operations here to prevent schedule() from being called twice (once via
  4666. * spin_unlock(), once by hand).
  4667. */
  4668. int __cond_resched_lock(spinlock_t *lock)
  4669. {
  4670. int resched = should_resched();
  4671. int ret = 0;
  4672. lockdep_assert_held(lock);
  4673. if (spin_needbreak(lock) || resched) {
  4674. spin_unlock(lock);
  4675. if (resched)
  4676. __cond_resched();
  4677. else
  4678. cpu_relax();
  4679. ret = 1;
  4680. spin_lock(lock);
  4681. }
  4682. return ret;
  4683. }
  4684. EXPORT_SYMBOL(__cond_resched_lock);
  4685. int __sched __cond_resched_softirq(void)
  4686. {
  4687. BUG_ON(!in_softirq());
  4688. if (should_resched()) {
  4689. local_bh_enable();
  4690. __cond_resched();
  4691. local_bh_disable();
  4692. return 1;
  4693. }
  4694. return 0;
  4695. }
  4696. EXPORT_SYMBOL(__cond_resched_softirq);
  4697. /**
  4698. * yield - yield the current processor to other threads.
  4699. *
  4700. * This is a shortcut for kernel-space yielding - it marks the
  4701. * thread runnable and calls sys_sched_yield().
  4702. */
  4703. void __sched yield(void)
  4704. {
  4705. set_current_state(TASK_RUNNING);
  4706. sys_sched_yield();
  4707. }
  4708. EXPORT_SYMBOL(yield);
  4709. /**
  4710. * yield_to - yield the current processor to another thread in
  4711. * your thread group, or accelerate that thread toward the
  4712. * processor it's on.
  4713. * @p: target task
  4714. * @preempt: whether task preemption is allowed or not
  4715. *
  4716. * It's the caller's job to ensure that the target task struct
  4717. * can't go away on us before we can do any checks.
  4718. *
  4719. * Returns true if we indeed boosted the target task.
  4720. */
  4721. bool __sched yield_to(struct task_struct *p, bool preempt)
  4722. {
  4723. struct task_struct *curr = current;
  4724. struct rq *rq, *p_rq;
  4725. unsigned long flags;
  4726. bool yielded = 0;
  4727. local_irq_save(flags);
  4728. rq = this_rq();
  4729. again:
  4730. p_rq = task_rq(p);
  4731. double_rq_lock(rq, p_rq);
  4732. while (task_rq(p) != p_rq) {
  4733. double_rq_unlock(rq, p_rq);
  4734. goto again;
  4735. }
  4736. if (!curr->sched_class->yield_to_task)
  4737. goto out;
  4738. if (curr->sched_class != p->sched_class)
  4739. goto out;
  4740. if (task_running(p_rq, p) || p->state)
  4741. goto out;
  4742. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4743. if (yielded) {
  4744. schedstat_inc(rq, yld_count);
  4745. /*
  4746. * Make p's CPU reschedule; pick_next_entity takes care of
  4747. * fairness.
  4748. */
  4749. if (preempt && rq != p_rq)
  4750. resched_task(p_rq->curr);
  4751. }
  4752. out:
  4753. double_rq_unlock(rq, p_rq);
  4754. local_irq_restore(flags);
  4755. if (yielded)
  4756. schedule();
  4757. return yielded;
  4758. }
  4759. EXPORT_SYMBOL_GPL(yield_to);
  4760. /*
  4761. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4762. * that process accounting knows that this is a task in IO wait state.
  4763. */
  4764. void __sched io_schedule(void)
  4765. {
  4766. struct rq *rq = raw_rq();
  4767. delayacct_blkio_start();
  4768. atomic_inc(&rq->nr_iowait);
  4769. blk_flush_plug(current);
  4770. current->in_iowait = 1;
  4771. schedule();
  4772. current->in_iowait = 0;
  4773. atomic_dec(&rq->nr_iowait);
  4774. delayacct_blkio_end();
  4775. }
  4776. EXPORT_SYMBOL(io_schedule);
  4777. long __sched io_schedule_timeout(long timeout)
  4778. {
  4779. struct rq *rq = raw_rq();
  4780. long ret;
  4781. delayacct_blkio_start();
  4782. atomic_inc(&rq->nr_iowait);
  4783. blk_flush_plug(current);
  4784. current->in_iowait = 1;
  4785. ret = schedule_timeout(timeout);
  4786. current->in_iowait = 0;
  4787. atomic_dec(&rq->nr_iowait);
  4788. delayacct_blkio_end();
  4789. return ret;
  4790. }
  4791. /**
  4792. * sys_sched_get_priority_max - return maximum RT priority.
  4793. * @policy: scheduling class.
  4794. *
  4795. * this syscall returns the maximum rt_priority that can be used
  4796. * by a given scheduling class.
  4797. */
  4798. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4799. {
  4800. int ret = -EINVAL;
  4801. switch (policy) {
  4802. case SCHED_FIFO:
  4803. case SCHED_RR:
  4804. ret = MAX_USER_RT_PRIO-1;
  4805. break;
  4806. case SCHED_NORMAL:
  4807. case SCHED_BATCH:
  4808. case SCHED_IDLE:
  4809. ret = 0;
  4810. break;
  4811. }
  4812. return ret;
  4813. }
  4814. /**
  4815. * sys_sched_get_priority_min - return minimum RT priority.
  4816. * @policy: scheduling class.
  4817. *
  4818. * this syscall returns the minimum rt_priority that can be used
  4819. * by a given scheduling class.
  4820. */
  4821. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4822. {
  4823. int ret = -EINVAL;
  4824. switch (policy) {
  4825. case SCHED_FIFO:
  4826. case SCHED_RR:
  4827. ret = 1;
  4828. break;
  4829. case SCHED_NORMAL:
  4830. case SCHED_BATCH:
  4831. case SCHED_IDLE:
  4832. ret = 0;
  4833. }
  4834. return ret;
  4835. }
  4836. /**
  4837. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4838. * @pid: pid of the process.
  4839. * @interval: userspace pointer to the timeslice value.
  4840. *
  4841. * this syscall writes the default timeslice value of a given process
  4842. * into the user-space timespec buffer. A value of '0' means infinity.
  4843. */
  4844. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4845. struct timespec __user *, interval)
  4846. {
  4847. struct task_struct *p;
  4848. unsigned int time_slice;
  4849. unsigned long flags;
  4850. struct rq *rq;
  4851. int retval;
  4852. struct timespec t;
  4853. if (pid < 0)
  4854. return -EINVAL;
  4855. retval = -ESRCH;
  4856. rcu_read_lock();
  4857. p = find_process_by_pid(pid);
  4858. if (!p)
  4859. goto out_unlock;
  4860. retval = security_task_getscheduler(p);
  4861. if (retval)
  4862. goto out_unlock;
  4863. rq = task_rq_lock(p, &flags);
  4864. time_slice = p->sched_class->get_rr_interval(rq, p);
  4865. task_rq_unlock(rq, p, &flags);
  4866. rcu_read_unlock();
  4867. jiffies_to_timespec(time_slice, &t);
  4868. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4869. return retval;
  4870. out_unlock:
  4871. rcu_read_unlock();
  4872. return retval;
  4873. }
  4874. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4875. void sched_show_task(struct task_struct *p)
  4876. {
  4877. unsigned long free = 0;
  4878. unsigned state;
  4879. state = p->state ? __ffs(p->state) + 1 : 0;
  4880. printk(KERN_INFO "%-15.15s %c", p->comm,
  4881. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4882. #if BITS_PER_LONG == 32
  4883. if (state == TASK_RUNNING)
  4884. printk(KERN_CONT " running ");
  4885. else
  4886. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4887. #else
  4888. if (state == TASK_RUNNING)
  4889. printk(KERN_CONT " running task ");
  4890. else
  4891. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4892. #endif
  4893. #ifdef CONFIG_DEBUG_STACK_USAGE
  4894. free = stack_not_used(p);
  4895. #endif
  4896. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4897. task_pid_nr(p), task_pid_nr(p->real_parent),
  4898. (unsigned long)task_thread_info(p)->flags);
  4899. show_stack(p, NULL);
  4900. }
  4901. void show_state_filter(unsigned long state_filter)
  4902. {
  4903. struct task_struct *g, *p;
  4904. #if BITS_PER_LONG == 32
  4905. printk(KERN_INFO
  4906. " task PC stack pid father\n");
  4907. #else
  4908. printk(KERN_INFO
  4909. " task PC stack pid father\n");
  4910. #endif
  4911. read_lock(&tasklist_lock);
  4912. do_each_thread(g, p) {
  4913. /*
  4914. * reset the NMI-timeout, listing all files on a slow
  4915. * console might take a lot of time:
  4916. */
  4917. touch_nmi_watchdog();
  4918. if (!state_filter || (p->state & state_filter))
  4919. sched_show_task(p);
  4920. } while_each_thread(g, p);
  4921. touch_all_softlockup_watchdogs();
  4922. #ifdef CONFIG_SCHED_DEBUG
  4923. sysrq_sched_debug_show();
  4924. #endif
  4925. read_unlock(&tasklist_lock);
  4926. /*
  4927. * Only show locks if all tasks are dumped:
  4928. */
  4929. if (!state_filter)
  4930. debug_show_all_locks();
  4931. }
  4932. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4933. {
  4934. idle->sched_class = &idle_sched_class;
  4935. }
  4936. /**
  4937. * init_idle - set up an idle thread for a given CPU
  4938. * @idle: task in question
  4939. * @cpu: cpu the idle task belongs to
  4940. *
  4941. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4942. * flag, to make booting more robust.
  4943. */
  4944. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4945. {
  4946. struct rq *rq = cpu_rq(cpu);
  4947. unsigned long flags;
  4948. raw_spin_lock_irqsave(&rq->lock, flags);
  4949. __sched_fork(idle);
  4950. idle->state = TASK_RUNNING;
  4951. idle->se.exec_start = sched_clock();
  4952. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4953. /*
  4954. * We're having a chicken and egg problem, even though we are
  4955. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4956. * lockdep check in task_group() will fail.
  4957. *
  4958. * Similar case to sched_fork(). / Alternatively we could
  4959. * use task_rq_lock() here and obtain the other rq->lock.
  4960. *
  4961. * Silence PROVE_RCU
  4962. */
  4963. rcu_read_lock();
  4964. __set_task_cpu(idle, cpu);
  4965. rcu_read_unlock();
  4966. rq->curr = rq->idle = idle;
  4967. #if defined(CONFIG_SMP)
  4968. idle->on_cpu = 1;
  4969. #endif
  4970. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4971. /* Set the preempt count _outside_ the spinlocks! */
  4972. #if defined(CONFIG_PREEMPT)
  4973. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4974. #else
  4975. task_thread_info(idle)->preempt_count = 0;
  4976. #endif
  4977. /*
  4978. * The idle tasks have their own, simple scheduling class:
  4979. */
  4980. idle->sched_class = &idle_sched_class;
  4981. ftrace_graph_init_idle_task(idle, cpu);
  4982. }
  4983. /*
  4984. * In a system that switches off the HZ timer nohz_cpu_mask
  4985. * indicates which cpus entered this state. This is used
  4986. * in the rcu update to wait only for active cpus. For system
  4987. * which do not switch off the HZ timer nohz_cpu_mask should
  4988. * always be CPU_BITS_NONE.
  4989. */
  4990. cpumask_var_t nohz_cpu_mask;
  4991. /*
  4992. * Increase the granularity value when there are more CPUs,
  4993. * because with more CPUs the 'effective latency' as visible
  4994. * to users decreases. But the relationship is not linear,
  4995. * so pick a second-best guess by going with the log2 of the
  4996. * number of CPUs.
  4997. *
  4998. * This idea comes from the SD scheduler of Con Kolivas:
  4999. */
  5000. static int get_update_sysctl_factor(void)
  5001. {
  5002. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5003. unsigned int factor;
  5004. switch (sysctl_sched_tunable_scaling) {
  5005. case SCHED_TUNABLESCALING_NONE:
  5006. factor = 1;
  5007. break;
  5008. case SCHED_TUNABLESCALING_LINEAR:
  5009. factor = cpus;
  5010. break;
  5011. case SCHED_TUNABLESCALING_LOG:
  5012. default:
  5013. factor = 1 + ilog2(cpus);
  5014. break;
  5015. }
  5016. return factor;
  5017. }
  5018. static void update_sysctl(void)
  5019. {
  5020. unsigned int factor = get_update_sysctl_factor();
  5021. #define SET_SYSCTL(name) \
  5022. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5023. SET_SYSCTL(sched_min_granularity);
  5024. SET_SYSCTL(sched_latency);
  5025. SET_SYSCTL(sched_wakeup_granularity);
  5026. #undef SET_SYSCTL
  5027. }
  5028. static inline void sched_init_granularity(void)
  5029. {
  5030. update_sysctl();
  5031. }
  5032. #ifdef CONFIG_SMP
  5033. /*
  5034. * This is how migration works:
  5035. *
  5036. * 1) we invoke migration_cpu_stop() on the target CPU using
  5037. * stop_one_cpu().
  5038. * 2) stopper starts to run (implicitly forcing the migrated thread
  5039. * off the CPU)
  5040. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5041. * 4) if it's in the wrong runqueue then the migration thread removes
  5042. * it and puts it into the right queue.
  5043. * 5) stopper completes and stop_one_cpu() returns and the migration
  5044. * is done.
  5045. */
  5046. /*
  5047. * Change a given task's CPU affinity. Migrate the thread to a
  5048. * proper CPU and schedule it away if the CPU it's executing on
  5049. * is removed from the allowed bitmask.
  5050. *
  5051. * NOTE: the caller must have a valid reference to the task, the
  5052. * task must not exit() & deallocate itself prematurely. The
  5053. * call is not atomic; no spinlocks may be held.
  5054. */
  5055. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5056. {
  5057. unsigned long flags;
  5058. struct rq *rq;
  5059. unsigned int dest_cpu;
  5060. int ret = 0;
  5061. rq = task_rq_lock(p, &flags);
  5062. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5063. ret = -EINVAL;
  5064. goto out;
  5065. }
  5066. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5067. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5068. ret = -EINVAL;
  5069. goto out;
  5070. }
  5071. if (p->sched_class->set_cpus_allowed)
  5072. p->sched_class->set_cpus_allowed(p, new_mask);
  5073. else {
  5074. cpumask_copy(&p->cpus_allowed, new_mask);
  5075. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5076. }
  5077. /* Can the task run on the task's current CPU? If so, we're done */
  5078. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5079. goto out;
  5080. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5081. if (p->on_rq) {
  5082. struct migration_arg arg = { p, dest_cpu };
  5083. /* Need help from migration thread: drop lock and wait. */
  5084. task_rq_unlock(rq, p, &flags);
  5085. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5086. tlb_migrate_finish(p->mm);
  5087. return 0;
  5088. }
  5089. out:
  5090. task_rq_unlock(rq, p, &flags);
  5091. return ret;
  5092. }
  5093. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5094. /*
  5095. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5096. * this because either it can't run here any more (set_cpus_allowed()
  5097. * away from this CPU, or CPU going down), or because we're
  5098. * attempting to rebalance this task on exec (sched_exec).
  5099. *
  5100. * So we race with normal scheduler movements, but that's OK, as long
  5101. * as the task is no longer on this CPU.
  5102. *
  5103. * Returns non-zero if task was successfully migrated.
  5104. */
  5105. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5106. {
  5107. struct rq *rq_dest, *rq_src;
  5108. int ret = 0;
  5109. if (unlikely(!cpu_active(dest_cpu)))
  5110. return ret;
  5111. rq_src = cpu_rq(src_cpu);
  5112. rq_dest = cpu_rq(dest_cpu);
  5113. raw_spin_lock(&p->pi_lock);
  5114. double_rq_lock(rq_src, rq_dest);
  5115. /* Already moved. */
  5116. if (task_cpu(p) != src_cpu)
  5117. goto done;
  5118. /* Affinity changed (again). */
  5119. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5120. goto fail;
  5121. /*
  5122. * If we're not on a rq, the next wake-up will ensure we're
  5123. * placed properly.
  5124. */
  5125. if (p->on_rq) {
  5126. deactivate_task(rq_src, p, 0);
  5127. set_task_cpu(p, dest_cpu);
  5128. activate_task(rq_dest, p, 0);
  5129. check_preempt_curr(rq_dest, p, 0);
  5130. }
  5131. done:
  5132. ret = 1;
  5133. fail:
  5134. double_rq_unlock(rq_src, rq_dest);
  5135. raw_spin_unlock(&p->pi_lock);
  5136. return ret;
  5137. }
  5138. /*
  5139. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5140. * and performs thread migration by bumping thread off CPU then
  5141. * 'pushing' onto another runqueue.
  5142. */
  5143. static int migration_cpu_stop(void *data)
  5144. {
  5145. struct migration_arg *arg = data;
  5146. /*
  5147. * The original target cpu might have gone down and we might
  5148. * be on another cpu but it doesn't matter.
  5149. */
  5150. local_irq_disable();
  5151. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5152. local_irq_enable();
  5153. return 0;
  5154. }
  5155. #ifdef CONFIG_HOTPLUG_CPU
  5156. /*
  5157. * Ensures that the idle task is using init_mm right before its cpu goes
  5158. * offline.
  5159. */
  5160. void idle_task_exit(void)
  5161. {
  5162. struct mm_struct *mm = current->active_mm;
  5163. BUG_ON(cpu_online(smp_processor_id()));
  5164. if (mm != &init_mm)
  5165. switch_mm(mm, &init_mm, current);
  5166. mmdrop(mm);
  5167. }
  5168. /*
  5169. * While a dead CPU has no uninterruptible tasks queued at this point,
  5170. * it might still have a nonzero ->nr_uninterruptible counter, because
  5171. * for performance reasons the counter is not stricly tracking tasks to
  5172. * their home CPUs. So we just add the counter to another CPU's counter,
  5173. * to keep the global sum constant after CPU-down:
  5174. */
  5175. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5176. {
  5177. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5178. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5179. rq_src->nr_uninterruptible = 0;
  5180. }
  5181. /*
  5182. * remove the tasks which were accounted by rq from calc_load_tasks.
  5183. */
  5184. static void calc_global_load_remove(struct rq *rq)
  5185. {
  5186. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5187. rq->calc_load_active = 0;
  5188. }
  5189. /*
  5190. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5191. * try_to_wake_up()->select_task_rq().
  5192. *
  5193. * Called with rq->lock held even though we'er in stop_machine() and
  5194. * there's no concurrency possible, we hold the required locks anyway
  5195. * because of lock validation efforts.
  5196. */
  5197. static void migrate_tasks(unsigned int dead_cpu)
  5198. {
  5199. struct rq *rq = cpu_rq(dead_cpu);
  5200. struct task_struct *next, *stop = rq->stop;
  5201. int dest_cpu;
  5202. /*
  5203. * Fudge the rq selection such that the below task selection loop
  5204. * doesn't get stuck on the currently eligible stop task.
  5205. *
  5206. * We're currently inside stop_machine() and the rq is either stuck
  5207. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5208. * either way we should never end up calling schedule() until we're
  5209. * done here.
  5210. */
  5211. rq->stop = NULL;
  5212. for ( ; ; ) {
  5213. /*
  5214. * There's this thread running, bail when that's the only
  5215. * remaining thread.
  5216. */
  5217. if (rq->nr_running == 1)
  5218. break;
  5219. next = pick_next_task(rq);
  5220. BUG_ON(!next);
  5221. next->sched_class->put_prev_task(rq, next);
  5222. /* Find suitable destination for @next, with force if needed. */
  5223. dest_cpu = select_fallback_rq(dead_cpu, next);
  5224. raw_spin_unlock(&rq->lock);
  5225. __migrate_task(next, dead_cpu, dest_cpu);
  5226. raw_spin_lock(&rq->lock);
  5227. }
  5228. rq->stop = stop;
  5229. }
  5230. #endif /* CONFIG_HOTPLUG_CPU */
  5231. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5232. static struct ctl_table sd_ctl_dir[] = {
  5233. {
  5234. .procname = "sched_domain",
  5235. .mode = 0555,
  5236. },
  5237. {}
  5238. };
  5239. static struct ctl_table sd_ctl_root[] = {
  5240. {
  5241. .procname = "kernel",
  5242. .mode = 0555,
  5243. .child = sd_ctl_dir,
  5244. },
  5245. {}
  5246. };
  5247. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5248. {
  5249. struct ctl_table *entry =
  5250. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5251. return entry;
  5252. }
  5253. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5254. {
  5255. struct ctl_table *entry;
  5256. /*
  5257. * In the intermediate directories, both the child directory and
  5258. * procname are dynamically allocated and could fail but the mode
  5259. * will always be set. In the lowest directory the names are
  5260. * static strings and all have proc handlers.
  5261. */
  5262. for (entry = *tablep; entry->mode; entry++) {
  5263. if (entry->child)
  5264. sd_free_ctl_entry(&entry->child);
  5265. if (entry->proc_handler == NULL)
  5266. kfree(entry->procname);
  5267. }
  5268. kfree(*tablep);
  5269. *tablep = NULL;
  5270. }
  5271. static void
  5272. set_table_entry(struct ctl_table *entry,
  5273. const char *procname, void *data, int maxlen,
  5274. mode_t mode, proc_handler *proc_handler)
  5275. {
  5276. entry->procname = procname;
  5277. entry->data = data;
  5278. entry->maxlen = maxlen;
  5279. entry->mode = mode;
  5280. entry->proc_handler = proc_handler;
  5281. }
  5282. static struct ctl_table *
  5283. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5284. {
  5285. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5286. if (table == NULL)
  5287. return NULL;
  5288. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5289. sizeof(long), 0644, proc_doulongvec_minmax);
  5290. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5291. sizeof(long), 0644, proc_doulongvec_minmax);
  5292. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5293. sizeof(int), 0644, proc_dointvec_minmax);
  5294. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5295. sizeof(int), 0644, proc_dointvec_minmax);
  5296. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5297. sizeof(int), 0644, proc_dointvec_minmax);
  5298. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5299. sizeof(int), 0644, proc_dointvec_minmax);
  5300. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5301. sizeof(int), 0644, proc_dointvec_minmax);
  5302. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5303. sizeof(int), 0644, proc_dointvec_minmax);
  5304. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5305. sizeof(int), 0644, proc_dointvec_minmax);
  5306. set_table_entry(&table[9], "cache_nice_tries",
  5307. &sd->cache_nice_tries,
  5308. sizeof(int), 0644, proc_dointvec_minmax);
  5309. set_table_entry(&table[10], "flags", &sd->flags,
  5310. sizeof(int), 0644, proc_dointvec_minmax);
  5311. set_table_entry(&table[11], "name", sd->name,
  5312. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5313. /* &table[12] is terminator */
  5314. return table;
  5315. }
  5316. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5317. {
  5318. struct ctl_table *entry, *table;
  5319. struct sched_domain *sd;
  5320. int domain_num = 0, i;
  5321. char buf[32];
  5322. for_each_domain(cpu, sd)
  5323. domain_num++;
  5324. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5325. if (table == NULL)
  5326. return NULL;
  5327. i = 0;
  5328. for_each_domain(cpu, sd) {
  5329. snprintf(buf, 32, "domain%d", i);
  5330. entry->procname = kstrdup(buf, GFP_KERNEL);
  5331. entry->mode = 0555;
  5332. entry->child = sd_alloc_ctl_domain_table(sd);
  5333. entry++;
  5334. i++;
  5335. }
  5336. return table;
  5337. }
  5338. static struct ctl_table_header *sd_sysctl_header;
  5339. static void register_sched_domain_sysctl(void)
  5340. {
  5341. int i, cpu_num = num_possible_cpus();
  5342. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5343. char buf[32];
  5344. WARN_ON(sd_ctl_dir[0].child);
  5345. sd_ctl_dir[0].child = entry;
  5346. if (entry == NULL)
  5347. return;
  5348. for_each_possible_cpu(i) {
  5349. snprintf(buf, 32, "cpu%d", i);
  5350. entry->procname = kstrdup(buf, GFP_KERNEL);
  5351. entry->mode = 0555;
  5352. entry->child = sd_alloc_ctl_cpu_table(i);
  5353. entry++;
  5354. }
  5355. WARN_ON(sd_sysctl_header);
  5356. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5357. }
  5358. /* may be called multiple times per register */
  5359. static void unregister_sched_domain_sysctl(void)
  5360. {
  5361. if (sd_sysctl_header)
  5362. unregister_sysctl_table(sd_sysctl_header);
  5363. sd_sysctl_header = NULL;
  5364. if (sd_ctl_dir[0].child)
  5365. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5366. }
  5367. #else
  5368. static void register_sched_domain_sysctl(void)
  5369. {
  5370. }
  5371. static void unregister_sched_domain_sysctl(void)
  5372. {
  5373. }
  5374. #endif
  5375. static void set_rq_online(struct rq *rq)
  5376. {
  5377. if (!rq->online) {
  5378. const struct sched_class *class;
  5379. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5380. rq->online = 1;
  5381. for_each_class(class) {
  5382. if (class->rq_online)
  5383. class->rq_online(rq);
  5384. }
  5385. }
  5386. }
  5387. static void set_rq_offline(struct rq *rq)
  5388. {
  5389. if (rq->online) {
  5390. const struct sched_class *class;
  5391. for_each_class(class) {
  5392. if (class->rq_offline)
  5393. class->rq_offline(rq);
  5394. }
  5395. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5396. rq->online = 0;
  5397. }
  5398. }
  5399. /*
  5400. * migration_call - callback that gets triggered when a CPU is added.
  5401. * Here we can start up the necessary migration thread for the new CPU.
  5402. */
  5403. static int __cpuinit
  5404. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5405. {
  5406. int cpu = (long)hcpu;
  5407. unsigned long flags;
  5408. struct rq *rq = cpu_rq(cpu);
  5409. switch (action & ~CPU_TASKS_FROZEN) {
  5410. case CPU_UP_PREPARE:
  5411. rq->calc_load_update = calc_load_update;
  5412. break;
  5413. case CPU_ONLINE:
  5414. /* Update our root-domain */
  5415. raw_spin_lock_irqsave(&rq->lock, flags);
  5416. if (rq->rd) {
  5417. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5418. set_rq_online(rq);
  5419. }
  5420. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5421. break;
  5422. #ifdef CONFIG_HOTPLUG_CPU
  5423. case CPU_DYING:
  5424. sched_ttwu_pending();
  5425. /* Update our root-domain */
  5426. raw_spin_lock_irqsave(&rq->lock, flags);
  5427. if (rq->rd) {
  5428. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5429. set_rq_offline(rq);
  5430. }
  5431. migrate_tasks(cpu);
  5432. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5433. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5434. migrate_nr_uninterruptible(rq);
  5435. calc_global_load_remove(rq);
  5436. break;
  5437. #endif
  5438. }
  5439. update_max_interval();
  5440. return NOTIFY_OK;
  5441. }
  5442. /*
  5443. * Register at high priority so that task migration (migrate_all_tasks)
  5444. * happens before everything else. This has to be lower priority than
  5445. * the notifier in the perf_event subsystem, though.
  5446. */
  5447. static struct notifier_block __cpuinitdata migration_notifier = {
  5448. .notifier_call = migration_call,
  5449. .priority = CPU_PRI_MIGRATION,
  5450. };
  5451. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5452. unsigned long action, void *hcpu)
  5453. {
  5454. switch (action & ~CPU_TASKS_FROZEN) {
  5455. case CPU_ONLINE:
  5456. case CPU_DOWN_FAILED:
  5457. set_cpu_active((long)hcpu, true);
  5458. return NOTIFY_OK;
  5459. default:
  5460. return NOTIFY_DONE;
  5461. }
  5462. }
  5463. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5464. unsigned long action, void *hcpu)
  5465. {
  5466. switch (action & ~CPU_TASKS_FROZEN) {
  5467. case CPU_DOWN_PREPARE:
  5468. set_cpu_active((long)hcpu, false);
  5469. return NOTIFY_OK;
  5470. default:
  5471. return NOTIFY_DONE;
  5472. }
  5473. }
  5474. static int __init migration_init(void)
  5475. {
  5476. void *cpu = (void *)(long)smp_processor_id();
  5477. int err;
  5478. /* Initialize migration for the boot CPU */
  5479. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5480. BUG_ON(err == NOTIFY_BAD);
  5481. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5482. register_cpu_notifier(&migration_notifier);
  5483. /* Register cpu active notifiers */
  5484. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5485. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5486. return 0;
  5487. }
  5488. early_initcall(migration_init);
  5489. #endif
  5490. #ifdef CONFIG_SMP
  5491. #ifdef CONFIG_SCHED_DEBUG
  5492. static __read_mostly int sched_domain_debug_enabled;
  5493. static int __init sched_domain_debug_setup(char *str)
  5494. {
  5495. sched_domain_debug_enabled = 1;
  5496. return 0;
  5497. }
  5498. early_param("sched_debug", sched_domain_debug_setup);
  5499. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5500. struct cpumask *groupmask)
  5501. {
  5502. struct sched_group *group = sd->groups;
  5503. char str[256];
  5504. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5505. cpumask_clear(groupmask);
  5506. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5507. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5508. printk("does not load-balance\n");
  5509. if (sd->parent)
  5510. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5511. " has parent");
  5512. return -1;
  5513. }
  5514. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5515. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5516. printk(KERN_ERR "ERROR: domain->span does not contain "
  5517. "CPU%d\n", cpu);
  5518. }
  5519. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5520. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5521. " CPU%d\n", cpu);
  5522. }
  5523. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5524. do {
  5525. if (!group) {
  5526. printk("\n");
  5527. printk(KERN_ERR "ERROR: group is NULL\n");
  5528. break;
  5529. }
  5530. if (!group->cpu_power) {
  5531. printk(KERN_CONT "\n");
  5532. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5533. "set\n");
  5534. break;
  5535. }
  5536. if (!cpumask_weight(sched_group_cpus(group))) {
  5537. printk(KERN_CONT "\n");
  5538. printk(KERN_ERR "ERROR: empty group\n");
  5539. break;
  5540. }
  5541. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5542. printk(KERN_CONT "\n");
  5543. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5544. break;
  5545. }
  5546. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5547. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5548. printk(KERN_CONT " %s", str);
  5549. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5550. printk(KERN_CONT " (cpu_power = %d)",
  5551. group->cpu_power);
  5552. }
  5553. group = group->next;
  5554. } while (group != sd->groups);
  5555. printk(KERN_CONT "\n");
  5556. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5557. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5558. if (sd->parent &&
  5559. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5560. printk(KERN_ERR "ERROR: parent span is not a superset "
  5561. "of domain->span\n");
  5562. return 0;
  5563. }
  5564. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5565. {
  5566. cpumask_var_t groupmask;
  5567. int level = 0;
  5568. if (!sched_domain_debug_enabled)
  5569. return;
  5570. if (!sd) {
  5571. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5572. return;
  5573. }
  5574. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5575. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5576. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5577. return;
  5578. }
  5579. for (;;) {
  5580. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5581. break;
  5582. level++;
  5583. sd = sd->parent;
  5584. if (!sd)
  5585. break;
  5586. }
  5587. free_cpumask_var(groupmask);
  5588. }
  5589. #else /* !CONFIG_SCHED_DEBUG */
  5590. # define sched_domain_debug(sd, cpu) do { } while (0)
  5591. #endif /* CONFIG_SCHED_DEBUG */
  5592. static int sd_degenerate(struct sched_domain *sd)
  5593. {
  5594. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5595. return 1;
  5596. /* Following flags need at least 2 groups */
  5597. if (sd->flags & (SD_LOAD_BALANCE |
  5598. SD_BALANCE_NEWIDLE |
  5599. SD_BALANCE_FORK |
  5600. SD_BALANCE_EXEC |
  5601. SD_SHARE_CPUPOWER |
  5602. SD_SHARE_PKG_RESOURCES)) {
  5603. if (sd->groups != sd->groups->next)
  5604. return 0;
  5605. }
  5606. /* Following flags don't use groups */
  5607. if (sd->flags & (SD_WAKE_AFFINE))
  5608. return 0;
  5609. return 1;
  5610. }
  5611. static int
  5612. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5613. {
  5614. unsigned long cflags = sd->flags, pflags = parent->flags;
  5615. if (sd_degenerate(parent))
  5616. return 1;
  5617. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5618. return 0;
  5619. /* Flags needing groups don't count if only 1 group in parent */
  5620. if (parent->groups == parent->groups->next) {
  5621. pflags &= ~(SD_LOAD_BALANCE |
  5622. SD_BALANCE_NEWIDLE |
  5623. SD_BALANCE_FORK |
  5624. SD_BALANCE_EXEC |
  5625. SD_SHARE_CPUPOWER |
  5626. SD_SHARE_PKG_RESOURCES);
  5627. if (nr_node_ids == 1)
  5628. pflags &= ~SD_SERIALIZE;
  5629. }
  5630. if (~cflags & pflags)
  5631. return 0;
  5632. return 1;
  5633. }
  5634. static void free_rootdomain(struct root_domain *rd)
  5635. {
  5636. synchronize_sched();
  5637. cpupri_cleanup(&rd->cpupri);
  5638. free_cpumask_var(rd->rto_mask);
  5639. free_cpumask_var(rd->online);
  5640. free_cpumask_var(rd->span);
  5641. kfree(rd);
  5642. }
  5643. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5644. {
  5645. struct root_domain *old_rd = NULL;
  5646. unsigned long flags;
  5647. raw_spin_lock_irqsave(&rq->lock, flags);
  5648. if (rq->rd) {
  5649. old_rd = rq->rd;
  5650. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5651. set_rq_offline(rq);
  5652. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5653. /*
  5654. * If we dont want to free the old_rt yet then
  5655. * set old_rd to NULL to skip the freeing later
  5656. * in this function:
  5657. */
  5658. if (!atomic_dec_and_test(&old_rd->refcount))
  5659. old_rd = NULL;
  5660. }
  5661. atomic_inc(&rd->refcount);
  5662. rq->rd = rd;
  5663. cpumask_set_cpu(rq->cpu, rd->span);
  5664. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5665. set_rq_online(rq);
  5666. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5667. if (old_rd)
  5668. free_rootdomain(old_rd);
  5669. }
  5670. static int init_rootdomain(struct root_domain *rd)
  5671. {
  5672. memset(rd, 0, sizeof(*rd));
  5673. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5674. goto out;
  5675. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5676. goto free_span;
  5677. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5678. goto free_online;
  5679. if (cpupri_init(&rd->cpupri) != 0)
  5680. goto free_rto_mask;
  5681. return 0;
  5682. free_rto_mask:
  5683. free_cpumask_var(rd->rto_mask);
  5684. free_online:
  5685. free_cpumask_var(rd->online);
  5686. free_span:
  5687. free_cpumask_var(rd->span);
  5688. out:
  5689. return -ENOMEM;
  5690. }
  5691. static void init_defrootdomain(void)
  5692. {
  5693. init_rootdomain(&def_root_domain);
  5694. atomic_set(&def_root_domain.refcount, 1);
  5695. }
  5696. static struct root_domain *alloc_rootdomain(void)
  5697. {
  5698. struct root_domain *rd;
  5699. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5700. if (!rd)
  5701. return NULL;
  5702. if (init_rootdomain(rd) != 0) {
  5703. kfree(rd);
  5704. return NULL;
  5705. }
  5706. return rd;
  5707. }
  5708. /*
  5709. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5710. * hold the hotplug lock.
  5711. */
  5712. static void
  5713. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5714. {
  5715. struct rq *rq = cpu_rq(cpu);
  5716. struct sched_domain *tmp;
  5717. for (tmp = sd; tmp; tmp = tmp->parent)
  5718. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5719. /* Remove the sched domains which do not contribute to scheduling. */
  5720. for (tmp = sd; tmp; ) {
  5721. struct sched_domain *parent = tmp->parent;
  5722. if (!parent)
  5723. break;
  5724. if (sd_parent_degenerate(tmp, parent)) {
  5725. tmp->parent = parent->parent;
  5726. if (parent->parent)
  5727. parent->parent->child = tmp;
  5728. } else
  5729. tmp = tmp->parent;
  5730. }
  5731. if (sd && sd_degenerate(sd)) {
  5732. sd = sd->parent;
  5733. if (sd)
  5734. sd->child = NULL;
  5735. }
  5736. sched_domain_debug(sd, cpu);
  5737. rq_attach_root(rq, rd);
  5738. rcu_assign_pointer(rq->sd, sd);
  5739. }
  5740. /* cpus with isolated domains */
  5741. static cpumask_var_t cpu_isolated_map;
  5742. /* Setup the mask of cpus configured for isolated domains */
  5743. static int __init isolated_cpu_setup(char *str)
  5744. {
  5745. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5746. cpulist_parse(str, cpu_isolated_map);
  5747. return 1;
  5748. }
  5749. __setup("isolcpus=", isolated_cpu_setup);
  5750. /*
  5751. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5752. * to a function which identifies what group(along with sched group) a CPU
  5753. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5754. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5755. *
  5756. * init_sched_build_groups will build a circular linked list of the groups
  5757. * covered by the given span, and will set each group's ->cpumask correctly,
  5758. * and ->cpu_power to 0.
  5759. */
  5760. static void
  5761. init_sched_build_groups(const struct cpumask *span,
  5762. const struct cpumask *cpu_map,
  5763. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5764. struct sched_group **sg,
  5765. struct cpumask *tmpmask),
  5766. struct cpumask *covered, struct cpumask *tmpmask)
  5767. {
  5768. struct sched_group *first = NULL, *last = NULL;
  5769. int i;
  5770. cpumask_clear(covered);
  5771. for_each_cpu(i, span) {
  5772. struct sched_group *sg;
  5773. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5774. int j;
  5775. if (cpumask_test_cpu(i, covered))
  5776. continue;
  5777. cpumask_clear(sched_group_cpus(sg));
  5778. sg->cpu_power = 0;
  5779. for_each_cpu(j, span) {
  5780. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5781. continue;
  5782. cpumask_set_cpu(j, covered);
  5783. cpumask_set_cpu(j, sched_group_cpus(sg));
  5784. }
  5785. if (!first)
  5786. first = sg;
  5787. if (last)
  5788. last->next = sg;
  5789. last = sg;
  5790. }
  5791. last->next = first;
  5792. }
  5793. #define SD_NODES_PER_DOMAIN 16
  5794. #ifdef CONFIG_NUMA
  5795. /**
  5796. * find_next_best_node - find the next node to include in a sched_domain
  5797. * @node: node whose sched_domain we're building
  5798. * @used_nodes: nodes already in the sched_domain
  5799. *
  5800. * Find the next node to include in a given scheduling domain. Simply
  5801. * finds the closest node not already in the @used_nodes map.
  5802. *
  5803. * Should use nodemask_t.
  5804. */
  5805. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5806. {
  5807. int i, n, val, min_val, best_node = 0;
  5808. min_val = INT_MAX;
  5809. for (i = 0; i < nr_node_ids; i++) {
  5810. /* Start at @node */
  5811. n = (node + i) % nr_node_ids;
  5812. if (!nr_cpus_node(n))
  5813. continue;
  5814. /* Skip already used nodes */
  5815. if (node_isset(n, *used_nodes))
  5816. continue;
  5817. /* Simple min distance search */
  5818. val = node_distance(node, n);
  5819. if (val < min_val) {
  5820. min_val = val;
  5821. best_node = n;
  5822. }
  5823. }
  5824. node_set(best_node, *used_nodes);
  5825. return best_node;
  5826. }
  5827. /**
  5828. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5829. * @node: node whose cpumask we're constructing
  5830. * @span: resulting cpumask
  5831. *
  5832. * Given a node, construct a good cpumask for its sched_domain to span. It
  5833. * should be one that prevents unnecessary balancing, but also spreads tasks
  5834. * out optimally.
  5835. */
  5836. static void sched_domain_node_span(int node, struct cpumask *span)
  5837. {
  5838. nodemask_t used_nodes;
  5839. int i;
  5840. cpumask_clear(span);
  5841. nodes_clear(used_nodes);
  5842. cpumask_or(span, span, cpumask_of_node(node));
  5843. node_set(node, used_nodes);
  5844. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5845. int next_node = find_next_best_node(node, &used_nodes);
  5846. cpumask_or(span, span, cpumask_of_node(next_node));
  5847. }
  5848. }
  5849. #endif /* CONFIG_NUMA */
  5850. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5851. /*
  5852. * The cpus mask in sched_group and sched_domain hangs off the end.
  5853. *
  5854. * ( See the the comments in include/linux/sched.h:struct sched_group
  5855. * and struct sched_domain. )
  5856. */
  5857. struct static_sched_group {
  5858. struct sched_group sg;
  5859. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5860. };
  5861. struct static_sched_domain {
  5862. struct sched_domain sd;
  5863. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5864. };
  5865. struct s_data {
  5866. #ifdef CONFIG_NUMA
  5867. int sd_allnodes;
  5868. cpumask_var_t domainspan;
  5869. cpumask_var_t covered;
  5870. cpumask_var_t notcovered;
  5871. #endif
  5872. cpumask_var_t nodemask;
  5873. cpumask_var_t this_sibling_map;
  5874. cpumask_var_t this_core_map;
  5875. cpumask_var_t this_book_map;
  5876. cpumask_var_t send_covered;
  5877. cpumask_var_t tmpmask;
  5878. struct sched_group **sched_group_nodes;
  5879. struct root_domain *rd;
  5880. };
  5881. enum s_alloc {
  5882. sa_sched_groups = 0,
  5883. sa_rootdomain,
  5884. sa_tmpmask,
  5885. sa_send_covered,
  5886. sa_this_book_map,
  5887. sa_this_core_map,
  5888. sa_this_sibling_map,
  5889. sa_nodemask,
  5890. sa_sched_group_nodes,
  5891. #ifdef CONFIG_NUMA
  5892. sa_notcovered,
  5893. sa_covered,
  5894. sa_domainspan,
  5895. #endif
  5896. sa_none,
  5897. };
  5898. /*
  5899. * SMT sched-domains:
  5900. */
  5901. #ifdef CONFIG_SCHED_SMT
  5902. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5903. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5904. static int
  5905. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5906. struct sched_group **sg, struct cpumask *unused)
  5907. {
  5908. if (sg)
  5909. *sg = &per_cpu(sched_groups, cpu).sg;
  5910. return cpu;
  5911. }
  5912. #endif /* CONFIG_SCHED_SMT */
  5913. /*
  5914. * multi-core sched-domains:
  5915. */
  5916. #ifdef CONFIG_SCHED_MC
  5917. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5918. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5919. static int
  5920. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5921. struct sched_group **sg, struct cpumask *mask)
  5922. {
  5923. int group;
  5924. #ifdef CONFIG_SCHED_SMT
  5925. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5926. group = cpumask_first(mask);
  5927. #else
  5928. group = cpu;
  5929. #endif
  5930. if (sg)
  5931. *sg = &per_cpu(sched_group_core, group).sg;
  5932. return group;
  5933. }
  5934. #endif /* CONFIG_SCHED_MC */
  5935. /*
  5936. * book sched-domains:
  5937. */
  5938. #ifdef CONFIG_SCHED_BOOK
  5939. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5940. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5941. static int
  5942. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5943. struct sched_group **sg, struct cpumask *mask)
  5944. {
  5945. int group = cpu;
  5946. #ifdef CONFIG_SCHED_MC
  5947. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5948. group = cpumask_first(mask);
  5949. #elif defined(CONFIG_SCHED_SMT)
  5950. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5951. group = cpumask_first(mask);
  5952. #endif
  5953. if (sg)
  5954. *sg = &per_cpu(sched_group_book, group).sg;
  5955. return group;
  5956. }
  5957. #endif /* CONFIG_SCHED_BOOK */
  5958. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5959. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5960. static int
  5961. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5962. struct sched_group **sg, struct cpumask *mask)
  5963. {
  5964. int group;
  5965. #ifdef CONFIG_SCHED_BOOK
  5966. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5967. group = cpumask_first(mask);
  5968. #elif defined(CONFIG_SCHED_MC)
  5969. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5970. group = cpumask_first(mask);
  5971. #elif defined(CONFIG_SCHED_SMT)
  5972. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5973. group = cpumask_first(mask);
  5974. #else
  5975. group = cpu;
  5976. #endif
  5977. if (sg)
  5978. *sg = &per_cpu(sched_group_phys, group).sg;
  5979. return group;
  5980. }
  5981. #ifdef CONFIG_NUMA
  5982. /*
  5983. * The init_sched_build_groups can't handle what we want to do with node
  5984. * groups, so roll our own. Now each node has its own list of groups which
  5985. * gets dynamically allocated.
  5986. */
  5987. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5988. static struct sched_group ***sched_group_nodes_bycpu;
  5989. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5990. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5991. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5992. struct sched_group **sg,
  5993. struct cpumask *nodemask)
  5994. {
  5995. int group;
  5996. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5997. group = cpumask_first(nodemask);
  5998. if (sg)
  5999. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6000. return group;
  6001. }
  6002. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6003. {
  6004. struct sched_group *sg = group_head;
  6005. int j;
  6006. if (!sg)
  6007. return;
  6008. do {
  6009. for_each_cpu(j, sched_group_cpus(sg)) {
  6010. struct sched_domain *sd;
  6011. sd = &per_cpu(phys_domains, j).sd;
  6012. if (j != group_first_cpu(sd->groups)) {
  6013. /*
  6014. * Only add "power" once for each
  6015. * physical package.
  6016. */
  6017. continue;
  6018. }
  6019. sg->cpu_power += sd->groups->cpu_power;
  6020. }
  6021. sg = sg->next;
  6022. } while (sg != group_head);
  6023. }
  6024. static int build_numa_sched_groups(struct s_data *d,
  6025. const struct cpumask *cpu_map, int num)
  6026. {
  6027. struct sched_domain *sd;
  6028. struct sched_group *sg, *prev;
  6029. int n, j;
  6030. cpumask_clear(d->covered);
  6031. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  6032. if (cpumask_empty(d->nodemask)) {
  6033. d->sched_group_nodes[num] = NULL;
  6034. goto out;
  6035. }
  6036. sched_domain_node_span(num, d->domainspan);
  6037. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  6038. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6039. GFP_KERNEL, num);
  6040. if (!sg) {
  6041. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  6042. num);
  6043. return -ENOMEM;
  6044. }
  6045. d->sched_group_nodes[num] = sg;
  6046. for_each_cpu(j, d->nodemask) {
  6047. sd = &per_cpu(node_domains, j).sd;
  6048. sd->groups = sg;
  6049. }
  6050. sg->cpu_power = 0;
  6051. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  6052. sg->next = sg;
  6053. cpumask_or(d->covered, d->covered, d->nodemask);
  6054. prev = sg;
  6055. for (j = 0; j < nr_node_ids; j++) {
  6056. n = (num + j) % nr_node_ids;
  6057. cpumask_complement(d->notcovered, d->covered);
  6058. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6059. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6060. if (cpumask_empty(d->tmpmask))
  6061. break;
  6062. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6063. if (cpumask_empty(d->tmpmask))
  6064. continue;
  6065. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6066. GFP_KERNEL, num);
  6067. if (!sg) {
  6068. printk(KERN_WARNING
  6069. "Can not alloc domain group for node %d\n", j);
  6070. return -ENOMEM;
  6071. }
  6072. sg->cpu_power = 0;
  6073. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6074. sg->next = prev->next;
  6075. cpumask_or(d->covered, d->covered, d->tmpmask);
  6076. prev->next = sg;
  6077. prev = sg;
  6078. }
  6079. out:
  6080. return 0;
  6081. }
  6082. #endif /* CONFIG_NUMA */
  6083. #ifdef CONFIG_NUMA
  6084. /* Free memory allocated for various sched_group structures */
  6085. static void free_sched_groups(const struct cpumask *cpu_map,
  6086. struct cpumask *nodemask)
  6087. {
  6088. int cpu, i;
  6089. for_each_cpu(cpu, cpu_map) {
  6090. struct sched_group **sched_group_nodes
  6091. = sched_group_nodes_bycpu[cpu];
  6092. if (!sched_group_nodes)
  6093. continue;
  6094. for (i = 0; i < nr_node_ids; i++) {
  6095. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6096. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6097. if (cpumask_empty(nodemask))
  6098. continue;
  6099. if (sg == NULL)
  6100. continue;
  6101. sg = sg->next;
  6102. next_sg:
  6103. oldsg = sg;
  6104. sg = sg->next;
  6105. kfree(oldsg);
  6106. if (oldsg != sched_group_nodes[i])
  6107. goto next_sg;
  6108. }
  6109. kfree(sched_group_nodes);
  6110. sched_group_nodes_bycpu[cpu] = NULL;
  6111. }
  6112. }
  6113. #else /* !CONFIG_NUMA */
  6114. static void free_sched_groups(const struct cpumask *cpu_map,
  6115. struct cpumask *nodemask)
  6116. {
  6117. }
  6118. #endif /* CONFIG_NUMA */
  6119. /*
  6120. * Initialize sched groups cpu_power.
  6121. *
  6122. * cpu_power indicates the capacity of sched group, which is used while
  6123. * distributing the load between different sched groups in a sched domain.
  6124. * Typically cpu_power for all the groups in a sched domain will be same unless
  6125. * there are asymmetries in the topology. If there are asymmetries, group
  6126. * having more cpu_power will pickup more load compared to the group having
  6127. * less cpu_power.
  6128. */
  6129. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6130. {
  6131. struct sched_domain *child;
  6132. struct sched_group *group;
  6133. long power;
  6134. int weight;
  6135. WARN_ON(!sd || !sd->groups);
  6136. if (cpu != group_first_cpu(sd->groups))
  6137. return;
  6138. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6139. child = sd->child;
  6140. sd->groups->cpu_power = 0;
  6141. if (!child) {
  6142. power = SCHED_LOAD_SCALE;
  6143. weight = cpumask_weight(sched_domain_span(sd));
  6144. /*
  6145. * SMT siblings share the power of a single core.
  6146. * Usually multiple threads get a better yield out of
  6147. * that one core than a single thread would have,
  6148. * reflect that in sd->smt_gain.
  6149. */
  6150. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6151. power *= sd->smt_gain;
  6152. power /= weight;
  6153. power >>= SCHED_LOAD_SHIFT;
  6154. }
  6155. sd->groups->cpu_power += power;
  6156. return;
  6157. }
  6158. /*
  6159. * Add cpu_power of each child group to this groups cpu_power.
  6160. */
  6161. group = child->groups;
  6162. do {
  6163. sd->groups->cpu_power += group->cpu_power;
  6164. group = group->next;
  6165. } while (group != child->groups);
  6166. }
  6167. /*
  6168. * Initializers for schedule domains
  6169. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6170. */
  6171. #ifdef CONFIG_SCHED_DEBUG
  6172. # define SD_INIT_NAME(sd, type) sd->name = #type
  6173. #else
  6174. # define SD_INIT_NAME(sd, type) do { } while (0)
  6175. #endif
  6176. #define SD_INIT(sd, type) sd_init_##type(sd)
  6177. #define SD_INIT_FUNC(type) \
  6178. static noinline void sd_init_##type(struct sched_domain *sd) \
  6179. { \
  6180. memset(sd, 0, sizeof(*sd)); \
  6181. *sd = SD_##type##_INIT; \
  6182. sd->level = SD_LV_##type; \
  6183. SD_INIT_NAME(sd, type); \
  6184. }
  6185. SD_INIT_FUNC(CPU)
  6186. #ifdef CONFIG_NUMA
  6187. SD_INIT_FUNC(ALLNODES)
  6188. SD_INIT_FUNC(NODE)
  6189. #endif
  6190. #ifdef CONFIG_SCHED_SMT
  6191. SD_INIT_FUNC(SIBLING)
  6192. #endif
  6193. #ifdef CONFIG_SCHED_MC
  6194. SD_INIT_FUNC(MC)
  6195. #endif
  6196. #ifdef CONFIG_SCHED_BOOK
  6197. SD_INIT_FUNC(BOOK)
  6198. #endif
  6199. static int default_relax_domain_level = -1;
  6200. static int __init setup_relax_domain_level(char *str)
  6201. {
  6202. unsigned long val;
  6203. val = simple_strtoul(str, NULL, 0);
  6204. if (val < SD_LV_MAX)
  6205. default_relax_domain_level = val;
  6206. return 1;
  6207. }
  6208. __setup("relax_domain_level=", setup_relax_domain_level);
  6209. static void set_domain_attribute(struct sched_domain *sd,
  6210. struct sched_domain_attr *attr)
  6211. {
  6212. int request;
  6213. if (!attr || attr->relax_domain_level < 0) {
  6214. if (default_relax_domain_level < 0)
  6215. return;
  6216. else
  6217. request = default_relax_domain_level;
  6218. } else
  6219. request = attr->relax_domain_level;
  6220. if (request < sd->level) {
  6221. /* turn off idle balance on this domain */
  6222. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6223. } else {
  6224. /* turn on idle balance on this domain */
  6225. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6226. }
  6227. }
  6228. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6229. const struct cpumask *cpu_map)
  6230. {
  6231. switch (what) {
  6232. case sa_sched_groups:
  6233. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6234. d->sched_group_nodes = NULL;
  6235. case sa_rootdomain:
  6236. free_rootdomain(d->rd); /* fall through */
  6237. case sa_tmpmask:
  6238. free_cpumask_var(d->tmpmask); /* fall through */
  6239. case sa_send_covered:
  6240. free_cpumask_var(d->send_covered); /* fall through */
  6241. case sa_this_book_map:
  6242. free_cpumask_var(d->this_book_map); /* fall through */
  6243. case sa_this_core_map:
  6244. free_cpumask_var(d->this_core_map); /* fall through */
  6245. case sa_this_sibling_map:
  6246. free_cpumask_var(d->this_sibling_map); /* fall through */
  6247. case sa_nodemask:
  6248. free_cpumask_var(d->nodemask); /* fall through */
  6249. case sa_sched_group_nodes:
  6250. #ifdef CONFIG_NUMA
  6251. kfree(d->sched_group_nodes); /* fall through */
  6252. case sa_notcovered:
  6253. free_cpumask_var(d->notcovered); /* fall through */
  6254. case sa_covered:
  6255. free_cpumask_var(d->covered); /* fall through */
  6256. case sa_domainspan:
  6257. free_cpumask_var(d->domainspan); /* fall through */
  6258. #endif
  6259. case sa_none:
  6260. break;
  6261. }
  6262. }
  6263. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6264. const struct cpumask *cpu_map)
  6265. {
  6266. #ifdef CONFIG_NUMA
  6267. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6268. return sa_none;
  6269. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6270. return sa_domainspan;
  6271. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6272. return sa_covered;
  6273. /* Allocate the per-node list of sched groups */
  6274. d->sched_group_nodes = kcalloc(nr_node_ids,
  6275. sizeof(struct sched_group *), GFP_KERNEL);
  6276. if (!d->sched_group_nodes) {
  6277. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6278. return sa_notcovered;
  6279. }
  6280. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6281. #endif
  6282. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6283. return sa_sched_group_nodes;
  6284. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6285. return sa_nodemask;
  6286. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6287. return sa_this_sibling_map;
  6288. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6289. return sa_this_core_map;
  6290. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6291. return sa_this_book_map;
  6292. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6293. return sa_send_covered;
  6294. d->rd = alloc_rootdomain();
  6295. if (!d->rd) {
  6296. printk(KERN_WARNING "Cannot alloc root domain\n");
  6297. return sa_tmpmask;
  6298. }
  6299. return sa_rootdomain;
  6300. }
  6301. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6302. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6303. {
  6304. struct sched_domain *sd = NULL;
  6305. #ifdef CONFIG_NUMA
  6306. struct sched_domain *parent;
  6307. d->sd_allnodes = 0;
  6308. if (cpumask_weight(cpu_map) >
  6309. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6310. sd = &per_cpu(allnodes_domains, i).sd;
  6311. SD_INIT(sd, ALLNODES);
  6312. set_domain_attribute(sd, attr);
  6313. cpumask_copy(sched_domain_span(sd), cpu_map);
  6314. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6315. d->sd_allnodes = 1;
  6316. }
  6317. parent = sd;
  6318. sd = &per_cpu(node_domains, i).sd;
  6319. SD_INIT(sd, NODE);
  6320. set_domain_attribute(sd, attr);
  6321. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6322. sd->parent = parent;
  6323. if (parent)
  6324. parent->child = sd;
  6325. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6326. #endif
  6327. return sd;
  6328. }
  6329. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6330. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6331. struct sched_domain *parent, int i)
  6332. {
  6333. struct sched_domain *sd;
  6334. sd = &per_cpu(phys_domains, i).sd;
  6335. SD_INIT(sd, CPU);
  6336. set_domain_attribute(sd, attr);
  6337. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6338. sd->parent = parent;
  6339. if (parent)
  6340. parent->child = sd;
  6341. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6342. return sd;
  6343. }
  6344. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6345. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6346. struct sched_domain *parent, int i)
  6347. {
  6348. struct sched_domain *sd = parent;
  6349. #ifdef CONFIG_SCHED_BOOK
  6350. sd = &per_cpu(book_domains, i).sd;
  6351. SD_INIT(sd, BOOK);
  6352. set_domain_attribute(sd, attr);
  6353. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6354. sd->parent = parent;
  6355. parent->child = sd;
  6356. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6357. #endif
  6358. return sd;
  6359. }
  6360. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6361. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6362. struct sched_domain *parent, int i)
  6363. {
  6364. struct sched_domain *sd = parent;
  6365. #ifdef CONFIG_SCHED_MC
  6366. sd = &per_cpu(core_domains, i).sd;
  6367. SD_INIT(sd, MC);
  6368. set_domain_attribute(sd, attr);
  6369. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6370. sd->parent = parent;
  6371. parent->child = sd;
  6372. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6373. #endif
  6374. return sd;
  6375. }
  6376. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6377. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6378. struct sched_domain *parent, int i)
  6379. {
  6380. struct sched_domain *sd = parent;
  6381. #ifdef CONFIG_SCHED_SMT
  6382. sd = &per_cpu(cpu_domains, i).sd;
  6383. SD_INIT(sd, SIBLING);
  6384. set_domain_attribute(sd, attr);
  6385. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6386. sd->parent = parent;
  6387. parent->child = sd;
  6388. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6389. #endif
  6390. return sd;
  6391. }
  6392. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6393. const struct cpumask *cpu_map, int cpu)
  6394. {
  6395. switch (l) {
  6396. #ifdef CONFIG_SCHED_SMT
  6397. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6398. cpumask_and(d->this_sibling_map, cpu_map,
  6399. topology_thread_cpumask(cpu));
  6400. if (cpu == cpumask_first(d->this_sibling_map))
  6401. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6402. &cpu_to_cpu_group,
  6403. d->send_covered, d->tmpmask);
  6404. break;
  6405. #endif
  6406. #ifdef CONFIG_SCHED_MC
  6407. case SD_LV_MC: /* set up multi-core groups */
  6408. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6409. if (cpu == cpumask_first(d->this_core_map))
  6410. init_sched_build_groups(d->this_core_map, cpu_map,
  6411. &cpu_to_core_group,
  6412. d->send_covered, d->tmpmask);
  6413. break;
  6414. #endif
  6415. #ifdef CONFIG_SCHED_BOOK
  6416. case SD_LV_BOOK: /* set up book groups */
  6417. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6418. if (cpu == cpumask_first(d->this_book_map))
  6419. init_sched_build_groups(d->this_book_map, cpu_map,
  6420. &cpu_to_book_group,
  6421. d->send_covered, d->tmpmask);
  6422. break;
  6423. #endif
  6424. case SD_LV_CPU: /* set up physical groups */
  6425. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6426. if (!cpumask_empty(d->nodemask))
  6427. init_sched_build_groups(d->nodemask, cpu_map,
  6428. &cpu_to_phys_group,
  6429. d->send_covered, d->tmpmask);
  6430. break;
  6431. #ifdef CONFIG_NUMA
  6432. case SD_LV_ALLNODES:
  6433. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6434. d->send_covered, d->tmpmask);
  6435. break;
  6436. #endif
  6437. default:
  6438. break;
  6439. }
  6440. }
  6441. /*
  6442. * Build sched domains for a given set of cpus and attach the sched domains
  6443. * to the individual cpus
  6444. */
  6445. static int __build_sched_domains(const struct cpumask *cpu_map,
  6446. struct sched_domain_attr *attr)
  6447. {
  6448. enum s_alloc alloc_state = sa_none;
  6449. struct s_data d;
  6450. struct sched_domain *sd;
  6451. int i;
  6452. #ifdef CONFIG_NUMA
  6453. d.sd_allnodes = 0;
  6454. #endif
  6455. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6456. if (alloc_state != sa_rootdomain)
  6457. goto error;
  6458. alloc_state = sa_sched_groups;
  6459. /*
  6460. * Set up domains for cpus specified by the cpu_map.
  6461. */
  6462. for_each_cpu(i, cpu_map) {
  6463. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6464. cpu_map);
  6465. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6466. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6467. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6468. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6469. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6470. }
  6471. for_each_cpu(i, cpu_map) {
  6472. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6473. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6474. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6475. }
  6476. /* Set up physical groups */
  6477. for (i = 0; i < nr_node_ids; i++)
  6478. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6479. #ifdef CONFIG_NUMA
  6480. /* Set up node groups */
  6481. if (d.sd_allnodes)
  6482. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6483. for (i = 0; i < nr_node_ids; i++)
  6484. if (build_numa_sched_groups(&d, cpu_map, i))
  6485. goto error;
  6486. #endif
  6487. /* Calculate CPU power for physical packages and nodes */
  6488. #ifdef CONFIG_SCHED_SMT
  6489. for_each_cpu(i, cpu_map) {
  6490. sd = &per_cpu(cpu_domains, i).sd;
  6491. init_sched_groups_power(i, sd);
  6492. }
  6493. #endif
  6494. #ifdef CONFIG_SCHED_MC
  6495. for_each_cpu(i, cpu_map) {
  6496. sd = &per_cpu(core_domains, i).sd;
  6497. init_sched_groups_power(i, sd);
  6498. }
  6499. #endif
  6500. #ifdef CONFIG_SCHED_BOOK
  6501. for_each_cpu(i, cpu_map) {
  6502. sd = &per_cpu(book_domains, i).sd;
  6503. init_sched_groups_power(i, sd);
  6504. }
  6505. #endif
  6506. for_each_cpu(i, cpu_map) {
  6507. sd = &per_cpu(phys_domains, i).sd;
  6508. init_sched_groups_power(i, sd);
  6509. }
  6510. #ifdef CONFIG_NUMA
  6511. for (i = 0; i < nr_node_ids; i++)
  6512. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6513. if (d.sd_allnodes) {
  6514. struct sched_group *sg;
  6515. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6516. d.tmpmask);
  6517. init_numa_sched_groups_power(sg);
  6518. }
  6519. #endif
  6520. /* Attach the domains */
  6521. for_each_cpu(i, cpu_map) {
  6522. #ifdef CONFIG_SCHED_SMT
  6523. sd = &per_cpu(cpu_domains, i).sd;
  6524. #elif defined(CONFIG_SCHED_MC)
  6525. sd = &per_cpu(core_domains, i).sd;
  6526. #elif defined(CONFIG_SCHED_BOOK)
  6527. sd = &per_cpu(book_domains, i).sd;
  6528. #else
  6529. sd = &per_cpu(phys_domains, i).sd;
  6530. #endif
  6531. cpu_attach_domain(sd, d.rd, i);
  6532. }
  6533. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6534. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6535. return 0;
  6536. error:
  6537. __free_domain_allocs(&d, alloc_state, cpu_map);
  6538. return -ENOMEM;
  6539. }
  6540. static int build_sched_domains(const struct cpumask *cpu_map)
  6541. {
  6542. return __build_sched_domains(cpu_map, NULL);
  6543. }
  6544. static cpumask_var_t *doms_cur; /* current sched domains */
  6545. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6546. static struct sched_domain_attr *dattr_cur;
  6547. /* attribues of custom domains in 'doms_cur' */
  6548. /*
  6549. * Special case: If a kmalloc of a doms_cur partition (array of
  6550. * cpumask) fails, then fallback to a single sched domain,
  6551. * as determined by the single cpumask fallback_doms.
  6552. */
  6553. static cpumask_var_t fallback_doms;
  6554. /*
  6555. * arch_update_cpu_topology lets virtualized architectures update the
  6556. * cpu core maps. It is supposed to return 1 if the topology changed
  6557. * or 0 if it stayed the same.
  6558. */
  6559. int __attribute__((weak)) arch_update_cpu_topology(void)
  6560. {
  6561. return 0;
  6562. }
  6563. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6564. {
  6565. int i;
  6566. cpumask_var_t *doms;
  6567. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6568. if (!doms)
  6569. return NULL;
  6570. for (i = 0; i < ndoms; i++) {
  6571. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6572. free_sched_domains(doms, i);
  6573. return NULL;
  6574. }
  6575. }
  6576. return doms;
  6577. }
  6578. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6579. {
  6580. unsigned int i;
  6581. for (i = 0; i < ndoms; i++)
  6582. free_cpumask_var(doms[i]);
  6583. kfree(doms);
  6584. }
  6585. /*
  6586. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6587. * For now this just excludes isolated cpus, but could be used to
  6588. * exclude other special cases in the future.
  6589. */
  6590. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6591. {
  6592. int err;
  6593. arch_update_cpu_topology();
  6594. ndoms_cur = 1;
  6595. doms_cur = alloc_sched_domains(ndoms_cur);
  6596. if (!doms_cur)
  6597. doms_cur = &fallback_doms;
  6598. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6599. dattr_cur = NULL;
  6600. err = build_sched_domains(doms_cur[0]);
  6601. register_sched_domain_sysctl();
  6602. return err;
  6603. }
  6604. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6605. struct cpumask *tmpmask)
  6606. {
  6607. free_sched_groups(cpu_map, tmpmask);
  6608. }
  6609. /*
  6610. * Detach sched domains from a group of cpus specified in cpu_map
  6611. * These cpus will now be attached to the NULL domain
  6612. */
  6613. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6614. {
  6615. /* Save because hotplug lock held. */
  6616. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6617. int i;
  6618. for_each_cpu(i, cpu_map)
  6619. cpu_attach_domain(NULL, &def_root_domain, i);
  6620. synchronize_sched();
  6621. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6622. }
  6623. /* handle null as "default" */
  6624. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6625. struct sched_domain_attr *new, int idx_new)
  6626. {
  6627. struct sched_domain_attr tmp;
  6628. /* fast path */
  6629. if (!new && !cur)
  6630. return 1;
  6631. tmp = SD_ATTR_INIT;
  6632. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6633. new ? (new + idx_new) : &tmp,
  6634. sizeof(struct sched_domain_attr));
  6635. }
  6636. /*
  6637. * Partition sched domains as specified by the 'ndoms_new'
  6638. * cpumasks in the array doms_new[] of cpumasks. This compares
  6639. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6640. * It destroys each deleted domain and builds each new domain.
  6641. *
  6642. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6643. * The masks don't intersect (don't overlap.) We should setup one
  6644. * sched domain for each mask. CPUs not in any of the cpumasks will
  6645. * not be load balanced. If the same cpumask appears both in the
  6646. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6647. * it as it is.
  6648. *
  6649. * The passed in 'doms_new' should be allocated using
  6650. * alloc_sched_domains. This routine takes ownership of it and will
  6651. * free_sched_domains it when done with it. If the caller failed the
  6652. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6653. * and partition_sched_domains() will fallback to the single partition
  6654. * 'fallback_doms', it also forces the domains to be rebuilt.
  6655. *
  6656. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6657. * ndoms_new == 0 is a special case for destroying existing domains,
  6658. * and it will not create the default domain.
  6659. *
  6660. * Call with hotplug lock held
  6661. */
  6662. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6663. struct sched_domain_attr *dattr_new)
  6664. {
  6665. int i, j, n;
  6666. int new_topology;
  6667. mutex_lock(&sched_domains_mutex);
  6668. /* always unregister in case we don't destroy any domains */
  6669. unregister_sched_domain_sysctl();
  6670. /* Let architecture update cpu core mappings. */
  6671. new_topology = arch_update_cpu_topology();
  6672. n = doms_new ? ndoms_new : 0;
  6673. /* Destroy deleted domains */
  6674. for (i = 0; i < ndoms_cur; i++) {
  6675. for (j = 0; j < n && !new_topology; j++) {
  6676. if (cpumask_equal(doms_cur[i], doms_new[j])
  6677. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6678. goto match1;
  6679. }
  6680. /* no match - a current sched domain not in new doms_new[] */
  6681. detach_destroy_domains(doms_cur[i]);
  6682. match1:
  6683. ;
  6684. }
  6685. if (doms_new == NULL) {
  6686. ndoms_cur = 0;
  6687. doms_new = &fallback_doms;
  6688. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6689. WARN_ON_ONCE(dattr_new);
  6690. }
  6691. /* Build new domains */
  6692. for (i = 0; i < ndoms_new; i++) {
  6693. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6694. if (cpumask_equal(doms_new[i], doms_cur[j])
  6695. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6696. goto match2;
  6697. }
  6698. /* no match - add a new doms_new */
  6699. __build_sched_domains(doms_new[i],
  6700. dattr_new ? dattr_new + i : NULL);
  6701. match2:
  6702. ;
  6703. }
  6704. /* Remember the new sched domains */
  6705. if (doms_cur != &fallback_doms)
  6706. free_sched_domains(doms_cur, ndoms_cur);
  6707. kfree(dattr_cur); /* kfree(NULL) is safe */
  6708. doms_cur = doms_new;
  6709. dattr_cur = dattr_new;
  6710. ndoms_cur = ndoms_new;
  6711. register_sched_domain_sysctl();
  6712. mutex_unlock(&sched_domains_mutex);
  6713. }
  6714. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6715. static void arch_reinit_sched_domains(void)
  6716. {
  6717. get_online_cpus();
  6718. /* Destroy domains first to force the rebuild */
  6719. partition_sched_domains(0, NULL, NULL);
  6720. rebuild_sched_domains();
  6721. put_online_cpus();
  6722. }
  6723. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6724. {
  6725. unsigned int level = 0;
  6726. if (sscanf(buf, "%u", &level) != 1)
  6727. return -EINVAL;
  6728. /*
  6729. * level is always be positive so don't check for
  6730. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6731. * What happens on 0 or 1 byte write,
  6732. * need to check for count as well?
  6733. */
  6734. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6735. return -EINVAL;
  6736. if (smt)
  6737. sched_smt_power_savings = level;
  6738. else
  6739. sched_mc_power_savings = level;
  6740. arch_reinit_sched_domains();
  6741. return count;
  6742. }
  6743. #ifdef CONFIG_SCHED_MC
  6744. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6745. struct sysdev_class_attribute *attr,
  6746. char *page)
  6747. {
  6748. return sprintf(page, "%u\n", sched_mc_power_savings);
  6749. }
  6750. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6751. struct sysdev_class_attribute *attr,
  6752. const char *buf, size_t count)
  6753. {
  6754. return sched_power_savings_store(buf, count, 0);
  6755. }
  6756. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6757. sched_mc_power_savings_show,
  6758. sched_mc_power_savings_store);
  6759. #endif
  6760. #ifdef CONFIG_SCHED_SMT
  6761. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6762. struct sysdev_class_attribute *attr,
  6763. char *page)
  6764. {
  6765. return sprintf(page, "%u\n", sched_smt_power_savings);
  6766. }
  6767. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6768. struct sysdev_class_attribute *attr,
  6769. const char *buf, size_t count)
  6770. {
  6771. return sched_power_savings_store(buf, count, 1);
  6772. }
  6773. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6774. sched_smt_power_savings_show,
  6775. sched_smt_power_savings_store);
  6776. #endif
  6777. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6778. {
  6779. int err = 0;
  6780. #ifdef CONFIG_SCHED_SMT
  6781. if (smt_capable())
  6782. err = sysfs_create_file(&cls->kset.kobj,
  6783. &attr_sched_smt_power_savings.attr);
  6784. #endif
  6785. #ifdef CONFIG_SCHED_MC
  6786. if (!err && mc_capable())
  6787. err = sysfs_create_file(&cls->kset.kobj,
  6788. &attr_sched_mc_power_savings.attr);
  6789. #endif
  6790. return err;
  6791. }
  6792. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6793. /*
  6794. * Update cpusets according to cpu_active mask. If cpusets are
  6795. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6796. * around partition_sched_domains().
  6797. */
  6798. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6799. void *hcpu)
  6800. {
  6801. switch (action & ~CPU_TASKS_FROZEN) {
  6802. case CPU_ONLINE:
  6803. case CPU_DOWN_FAILED:
  6804. cpuset_update_active_cpus();
  6805. return NOTIFY_OK;
  6806. default:
  6807. return NOTIFY_DONE;
  6808. }
  6809. }
  6810. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6811. void *hcpu)
  6812. {
  6813. switch (action & ~CPU_TASKS_FROZEN) {
  6814. case CPU_DOWN_PREPARE:
  6815. cpuset_update_active_cpus();
  6816. return NOTIFY_OK;
  6817. default:
  6818. return NOTIFY_DONE;
  6819. }
  6820. }
  6821. static int update_runtime(struct notifier_block *nfb,
  6822. unsigned long action, void *hcpu)
  6823. {
  6824. int cpu = (int)(long)hcpu;
  6825. switch (action) {
  6826. case CPU_DOWN_PREPARE:
  6827. case CPU_DOWN_PREPARE_FROZEN:
  6828. disable_runtime(cpu_rq(cpu));
  6829. return NOTIFY_OK;
  6830. case CPU_DOWN_FAILED:
  6831. case CPU_DOWN_FAILED_FROZEN:
  6832. case CPU_ONLINE:
  6833. case CPU_ONLINE_FROZEN:
  6834. enable_runtime(cpu_rq(cpu));
  6835. return NOTIFY_OK;
  6836. default:
  6837. return NOTIFY_DONE;
  6838. }
  6839. }
  6840. void __init sched_init_smp(void)
  6841. {
  6842. cpumask_var_t non_isolated_cpus;
  6843. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6844. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6845. #if defined(CONFIG_NUMA)
  6846. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6847. GFP_KERNEL);
  6848. BUG_ON(sched_group_nodes_bycpu == NULL);
  6849. #endif
  6850. get_online_cpus();
  6851. mutex_lock(&sched_domains_mutex);
  6852. arch_init_sched_domains(cpu_active_mask);
  6853. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6854. if (cpumask_empty(non_isolated_cpus))
  6855. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6856. mutex_unlock(&sched_domains_mutex);
  6857. put_online_cpus();
  6858. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6859. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6860. /* RT runtime code needs to handle some hotplug events */
  6861. hotcpu_notifier(update_runtime, 0);
  6862. init_hrtick();
  6863. /* Move init over to a non-isolated CPU */
  6864. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6865. BUG();
  6866. sched_init_granularity();
  6867. free_cpumask_var(non_isolated_cpus);
  6868. init_sched_rt_class();
  6869. }
  6870. #else
  6871. void __init sched_init_smp(void)
  6872. {
  6873. sched_init_granularity();
  6874. }
  6875. #endif /* CONFIG_SMP */
  6876. const_debug unsigned int sysctl_timer_migration = 1;
  6877. int in_sched_functions(unsigned long addr)
  6878. {
  6879. return in_lock_functions(addr) ||
  6880. (addr >= (unsigned long)__sched_text_start
  6881. && addr < (unsigned long)__sched_text_end);
  6882. }
  6883. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6884. {
  6885. cfs_rq->tasks_timeline = RB_ROOT;
  6886. INIT_LIST_HEAD(&cfs_rq->tasks);
  6887. #ifdef CONFIG_FAIR_GROUP_SCHED
  6888. cfs_rq->rq = rq;
  6889. /* allow initial update_cfs_load() to truncate */
  6890. #ifdef CONFIG_SMP
  6891. cfs_rq->load_stamp = 1;
  6892. #endif
  6893. #endif
  6894. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6895. }
  6896. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6897. {
  6898. struct rt_prio_array *array;
  6899. int i;
  6900. array = &rt_rq->active;
  6901. for (i = 0; i < MAX_RT_PRIO; i++) {
  6902. INIT_LIST_HEAD(array->queue + i);
  6903. __clear_bit(i, array->bitmap);
  6904. }
  6905. /* delimiter for bitsearch: */
  6906. __set_bit(MAX_RT_PRIO, array->bitmap);
  6907. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6908. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6909. #ifdef CONFIG_SMP
  6910. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6911. #endif
  6912. #endif
  6913. #ifdef CONFIG_SMP
  6914. rt_rq->rt_nr_migratory = 0;
  6915. rt_rq->overloaded = 0;
  6916. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6917. #endif
  6918. rt_rq->rt_time = 0;
  6919. rt_rq->rt_throttled = 0;
  6920. rt_rq->rt_runtime = 0;
  6921. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6922. #ifdef CONFIG_RT_GROUP_SCHED
  6923. rt_rq->rt_nr_boosted = 0;
  6924. rt_rq->rq = rq;
  6925. #endif
  6926. }
  6927. #ifdef CONFIG_FAIR_GROUP_SCHED
  6928. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6929. struct sched_entity *se, int cpu,
  6930. struct sched_entity *parent)
  6931. {
  6932. struct rq *rq = cpu_rq(cpu);
  6933. tg->cfs_rq[cpu] = cfs_rq;
  6934. init_cfs_rq(cfs_rq, rq);
  6935. cfs_rq->tg = tg;
  6936. tg->se[cpu] = se;
  6937. /* se could be NULL for root_task_group */
  6938. if (!se)
  6939. return;
  6940. if (!parent)
  6941. se->cfs_rq = &rq->cfs;
  6942. else
  6943. se->cfs_rq = parent->my_q;
  6944. se->my_q = cfs_rq;
  6945. update_load_set(&se->load, 0);
  6946. se->parent = parent;
  6947. }
  6948. #endif
  6949. #ifdef CONFIG_RT_GROUP_SCHED
  6950. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6951. struct sched_rt_entity *rt_se, int cpu,
  6952. struct sched_rt_entity *parent)
  6953. {
  6954. struct rq *rq = cpu_rq(cpu);
  6955. tg->rt_rq[cpu] = rt_rq;
  6956. init_rt_rq(rt_rq, rq);
  6957. rt_rq->tg = tg;
  6958. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6959. tg->rt_se[cpu] = rt_se;
  6960. if (!rt_se)
  6961. return;
  6962. if (!parent)
  6963. rt_se->rt_rq = &rq->rt;
  6964. else
  6965. rt_se->rt_rq = parent->my_q;
  6966. rt_se->my_q = rt_rq;
  6967. rt_se->parent = parent;
  6968. INIT_LIST_HEAD(&rt_se->run_list);
  6969. }
  6970. #endif
  6971. void __init sched_init(void)
  6972. {
  6973. int i, j;
  6974. unsigned long alloc_size = 0, ptr;
  6975. #ifdef CONFIG_FAIR_GROUP_SCHED
  6976. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6977. #endif
  6978. #ifdef CONFIG_RT_GROUP_SCHED
  6979. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6980. #endif
  6981. #ifdef CONFIG_CPUMASK_OFFSTACK
  6982. alloc_size += num_possible_cpus() * cpumask_size();
  6983. #endif
  6984. if (alloc_size) {
  6985. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6986. #ifdef CONFIG_FAIR_GROUP_SCHED
  6987. root_task_group.se = (struct sched_entity **)ptr;
  6988. ptr += nr_cpu_ids * sizeof(void **);
  6989. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6990. ptr += nr_cpu_ids * sizeof(void **);
  6991. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6992. #ifdef CONFIG_RT_GROUP_SCHED
  6993. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6994. ptr += nr_cpu_ids * sizeof(void **);
  6995. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6996. ptr += nr_cpu_ids * sizeof(void **);
  6997. #endif /* CONFIG_RT_GROUP_SCHED */
  6998. #ifdef CONFIG_CPUMASK_OFFSTACK
  6999. for_each_possible_cpu(i) {
  7000. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7001. ptr += cpumask_size();
  7002. }
  7003. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7004. }
  7005. #ifdef CONFIG_SMP
  7006. init_defrootdomain();
  7007. #endif
  7008. init_rt_bandwidth(&def_rt_bandwidth,
  7009. global_rt_period(), global_rt_runtime());
  7010. #ifdef CONFIG_RT_GROUP_SCHED
  7011. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7012. global_rt_period(), global_rt_runtime());
  7013. #endif /* CONFIG_RT_GROUP_SCHED */
  7014. #ifdef CONFIG_CGROUP_SCHED
  7015. list_add(&root_task_group.list, &task_groups);
  7016. INIT_LIST_HEAD(&root_task_group.children);
  7017. autogroup_init(&init_task);
  7018. #endif /* CONFIG_CGROUP_SCHED */
  7019. for_each_possible_cpu(i) {
  7020. struct rq *rq;
  7021. rq = cpu_rq(i);
  7022. raw_spin_lock_init(&rq->lock);
  7023. rq->nr_running = 0;
  7024. rq->calc_load_active = 0;
  7025. rq->calc_load_update = jiffies + LOAD_FREQ;
  7026. init_cfs_rq(&rq->cfs, rq);
  7027. init_rt_rq(&rq->rt, rq);
  7028. #ifdef CONFIG_FAIR_GROUP_SCHED
  7029. root_task_group.shares = root_task_group_load;
  7030. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7031. /*
  7032. * How much cpu bandwidth does root_task_group get?
  7033. *
  7034. * In case of task-groups formed thr' the cgroup filesystem, it
  7035. * gets 100% of the cpu resources in the system. This overall
  7036. * system cpu resource is divided among the tasks of
  7037. * root_task_group and its child task-groups in a fair manner,
  7038. * based on each entity's (task or task-group's) weight
  7039. * (se->load.weight).
  7040. *
  7041. * In other words, if root_task_group has 10 tasks of weight
  7042. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7043. * then A0's share of the cpu resource is:
  7044. *
  7045. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7046. *
  7047. * We achieve this by letting root_task_group's tasks sit
  7048. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  7049. */
  7050. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  7051. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7052. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7053. #ifdef CONFIG_RT_GROUP_SCHED
  7054. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7055. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7056. #endif
  7057. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7058. rq->cpu_load[j] = 0;
  7059. rq->last_load_update_tick = jiffies;
  7060. #ifdef CONFIG_SMP
  7061. rq->sd = NULL;
  7062. rq->rd = NULL;
  7063. rq->cpu_power = SCHED_LOAD_SCALE;
  7064. rq->post_schedule = 0;
  7065. rq->active_balance = 0;
  7066. rq->next_balance = jiffies;
  7067. rq->push_cpu = 0;
  7068. rq->cpu = i;
  7069. rq->online = 0;
  7070. rq->idle_stamp = 0;
  7071. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7072. rq_attach_root(rq, &def_root_domain);
  7073. #ifdef CONFIG_NO_HZ
  7074. rq->nohz_balance_kick = 0;
  7075. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7076. #endif
  7077. #endif
  7078. init_rq_hrtick(rq);
  7079. atomic_set(&rq->nr_iowait, 0);
  7080. }
  7081. set_load_weight(&init_task);
  7082. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7083. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7084. #endif
  7085. #ifdef CONFIG_SMP
  7086. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7087. #endif
  7088. #ifdef CONFIG_RT_MUTEXES
  7089. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7090. #endif
  7091. /*
  7092. * The boot idle thread does lazy MMU switching as well:
  7093. */
  7094. atomic_inc(&init_mm.mm_count);
  7095. enter_lazy_tlb(&init_mm, current);
  7096. /*
  7097. * Make us the idle thread. Technically, schedule() should not be
  7098. * called from this thread, however somewhere below it might be,
  7099. * but because we are the idle thread, we just pick up running again
  7100. * when this runqueue becomes "idle".
  7101. */
  7102. init_idle(current, smp_processor_id());
  7103. calc_load_update = jiffies + LOAD_FREQ;
  7104. /*
  7105. * During early bootup we pretend to be a normal task:
  7106. */
  7107. current->sched_class = &fair_sched_class;
  7108. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7109. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7110. #ifdef CONFIG_SMP
  7111. #ifdef CONFIG_NO_HZ
  7112. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7113. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7114. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7115. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7116. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7117. #endif
  7118. /* May be allocated at isolcpus cmdline parse time */
  7119. if (cpu_isolated_map == NULL)
  7120. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7121. #endif /* SMP */
  7122. scheduler_running = 1;
  7123. }
  7124. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7125. static inline int preempt_count_equals(int preempt_offset)
  7126. {
  7127. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7128. return (nested == preempt_offset);
  7129. }
  7130. void __might_sleep(const char *file, int line, int preempt_offset)
  7131. {
  7132. #ifdef in_atomic
  7133. static unsigned long prev_jiffy; /* ratelimiting */
  7134. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7135. system_state != SYSTEM_RUNNING || oops_in_progress)
  7136. return;
  7137. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7138. return;
  7139. prev_jiffy = jiffies;
  7140. printk(KERN_ERR
  7141. "BUG: sleeping function called from invalid context at %s:%d\n",
  7142. file, line);
  7143. printk(KERN_ERR
  7144. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7145. in_atomic(), irqs_disabled(),
  7146. current->pid, current->comm);
  7147. debug_show_held_locks(current);
  7148. if (irqs_disabled())
  7149. print_irqtrace_events(current);
  7150. dump_stack();
  7151. #endif
  7152. }
  7153. EXPORT_SYMBOL(__might_sleep);
  7154. #endif
  7155. #ifdef CONFIG_MAGIC_SYSRQ
  7156. static void normalize_task(struct rq *rq, struct task_struct *p)
  7157. {
  7158. const struct sched_class *prev_class = p->sched_class;
  7159. int old_prio = p->prio;
  7160. int on_rq;
  7161. on_rq = p->on_rq;
  7162. if (on_rq)
  7163. deactivate_task(rq, p, 0);
  7164. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7165. if (on_rq) {
  7166. activate_task(rq, p, 0);
  7167. resched_task(rq->curr);
  7168. }
  7169. check_class_changed(rq, p, prev_class, old_prio);
  7170. }
  7171. void normalize_rt_tasks(void)
  7172. {
  7173. struct task_struct *g, *p;
  7174. unsigned long flags;
  7175. struct rq *rq;
  7176. read_lock_irqsave(&tasklist_lock, flags);
  7177. do_each_thread(g, p) {
  7178. /*
  7179. * Only normalize user tasks:
  7180. */
  7181. if (!p->mm)
  7182. continue;
  7183. p->se.exec_start = 0;
  7184. #ifdef CONFIG_SCHEDSTATS
  7185. p->se.statistics.wait_start = 0;
  7186. p->se.statistics.sleep_start = 0;
  7187. p->se.statistics.block_start = 0;
  7188. #endif
  7189. if (!rt_task(p)) {
  7190. /*
  7191. * Renice negative nice level userspace
  7192. * tasks back to 0:
  7193. */
  7194. if (TASK_NICE(p) < 0 && p->mm)
  7195. set_user_nice(p, 0);
  7196. continue;
  7197. }
  7198. raw_spin_lock(&p->pi_lock);
  7199. rq = __task_rq_lock(p);
  7200. normalize_task(rq, p);
  7201. __task_rq_unlock(rq);
  7202. raw_spin_unlock(&p->pi_lock);
  7203. } while_each_thread(g, p);
  7204. read_unlock_irqrestore(&tasklist_lock, flags);
  7205. }
  7206. #endif /* CONFIG_MAGIC_SYSRQ */
  7207. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7208. /*
  7209. * These functions are only useful for the IA64 MCA handling, or kdb.
  7210. *
  7211. * They can only be called when the whole system has been
  7212. * stopped - every CPU needs to be quiescent, and no scheduling
  7213. * activity can take place. Using them for anything else would
  7214. * be a serious bug, and as a result, they aren't even visible
  7215. * under any other configuration.
  7216. */
  7217. /**
  7218. * curr_task - return the current task for a given cpu.
  7219. * @cpu: the processor in question.
  7220. *
  7221. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7222. */
  7223. struct task_struct *curr_task(int cpu)
  7224. {
  7225. return cpu_curr(cpu);
  7226. }
  7227. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7228. #ifdef CONFIG_IA64
  7229. /**
  7230. * set_curr_task - set the current task for a given cpu.
  7231. * @cpu: the processor in question.
  7232. * @p: the task pointer to set.
  7233. *
  7234. * Description: This function must only be used when non-maskable interrupts
  7235. * are serviced on a separate stack. It allows the architecture to switch the
  7236. * notion of the current task on a cpu in a non-blocking manner. This function
  7237. * must be called with all CPU's synchronized, and interrupts disabled, the
  7238. * and caller must save the original value of the current task (see
  7239. * curr_task() above) and restore that value before reenabling interrupts and
  7240. * re-starting the system.
  7241. *
  7242. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7243. */
  7244. void set_curr_task(int cpu, struct task_struct *p)
  7245. {
  7246. cpu_curr(cpu) = p;
  7247. }
  7248. #endif
  7249. #ifdef CONFIG_FAIR_GROUP_SCHED
  7250. static void free_fair_sched_group(struct task_group *tg)
  7251. {
  7252. int i;
  7253. for_each_possible_cpu(i) {
  7254. if (tg->cfs_rq)
  7255. kfree(tg->cfs_rq[i]);
  7256. if (tg->se)
  7257. kfree(tg->se[i]);
  7258. }
  7259. kfree(tg->cfs_rq);
  7260. kfree(tg->se);
  7261. }
  7262. static
  7263. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7264. {
  7265. struct cfs_rq *cfs_rq;
  7266. struct sched_entity *se;
  7267. int i;
  7268. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7269. if (!tg->cfs_rq)
  7270. goto err;
  7271. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7272. if (!tg->se)
  7273. goto err;
  7274. tg->shares = NICE_0_LOAD;
  7275. for_each_possible_cpu(i) {
  7276. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7277. GFP_KERNEL, cpu_to_node(i));
  7278. if (!cfs_rq)
  7279. goto err;
  7280. se = kzalloc_node(sizeof(struct sched_entity),
  7281. GFP_KERNEL, cpu_to_node(i));
  7282. if (!se)
  7283. goto err_free_rq;
  7284. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7285. }
  7286. return 1;
  7287. err_free_rq:
  7288. kfree(cfs_rq);
  7289. err:
  7290. return 0;
  7291. }
  7292. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7293. {
  7294. struct rq *rq = cpu_rq(cpu);
  7295. unsigned long flags;
  7296. /*
  7297. * Only empty task groups can be destroyed; so we can speculatively
  7298. * check on_list without danger of it being re-added.
  7299. */
  7300. if (!tg->cfs_rq[cpu]->on_list)
  7301. return;
  7302. raw_spin_lock_irqsave(&rq->lock, flags);
  7303. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7304. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7305. }
  7306. #else /* !CONFG_FAIR_GROUP_SCHED */
  7307. static inline void free_fair_sched_group(struct task_group *tg)
  7308. {
  7309. }
  7310. static inline
  7311. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7312. {
  7313. return 1;
  7314. }
  7315. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7316. {
  7317. }
  7318. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7319. #ifdef CONFIG_RT_GROUP_SCHED
  7320. static void free_rt_sched_group(struct task_group *tg)
  7321. {
  7322. int i;
  7323. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7324. for_each_possible_cpu(i) {
  7325. if (tg->rt_rq)
  7326. kfree(tg->rt_rq[i]);
  7327. if (tg->rt_se)
  7328. kfree(tg->rt_se[i]);
  7329. }
  7330. kfree(tg->rt_rq);
  7331. kfree(tg->rt_se);
  7332. }
  7333. static
  7334. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7335. {
  7336. struct rt_rq *rt_rq;
  7337. struct sched_rt_entity *rt_se;
  7338. struct rq *rq;
  7339. int i;
  7340. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7341. if (!tg->rt_rq)
  7342. goto err;
  7343. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7344. if (!tg->rt_se)
  7345. goto err;
  7346. init_rt_bandwidth(&tg->rt_bandwidth,
  7347. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7348. for_each_possible_cpu(i) {
  7349. rq = cpu_rq(i);
  7350. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7351. GFP_KERNEL, cpu_to_node(i));
  7352. if (!rt_rq)
  7353. goto err;
  7354. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7355. GFP_KERNEL, cpu_to_node(i));
  7356. if (!rt_se)
  7357. goto err_free_rq;
  7358. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7359. }
  7360. return 1;
  7361. err_free_rq:
  7362. kfree(rt_rq);
  7363. err:
  7364. return 0;
  7365. }
  7366. #else /* !CONFIG_RT_GROUP_SCHED */
  7367. static inline void free_rt_sched_group(struct task_group *tg)
  7368. {
  7369. }
  7370. static inline
  7371. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7372. {
  7373. return 1;
  7374. }
  7375. #endif /* CONFIG_RT_GROUP_SCHED */
  7376. #ifdef CONFIG_CGROUP_SCHED
  7377. static void free_sched_group(struct task_group *tg)
  7378. {
  7379. free_fair_sched_group(tg);
  7380. free_rt_sched_group(tg);
  7381. autogroup_free(tg);
  7382. kfree(tg);
  7383. }
  7384. /* allocate runqueue etc for a new task group */
  7385. struct task_group *sched_create_group(struct task_group *parent)
  7386. {
  7387. struct task_group *tg;
  7388. unsigned long flags;
  7389. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7390. if (!tg)
  7391. return ERR_PTR(-ENOMEM);
  7392. if (!alloc_fair_sched_group(tg, parent))
  7393. goto err;
  7394. if (!alloc_rt_sched_group(tg, parent))
  7395. goto err;
  7396. spin_lock_irqsave(&task_group_lock, flags);
  7397. list_add_rcu(&tg->list, &task_groups);
  7398. WARN_ON(!parent); /* root should already exist */
  7399. tg->parent = parent;
  7400. INIT_LIST_HEAD(&tg->children);
  7401. list_add_rcu(&tg->siblings, &parent->children);
  7402. spin_unlock_irqrestore(&task_group_lock, flags);
  7403. return tg;
  7404. err:
  7405. free_sched_group(tg);
  7406. return ERR_PTR(-ENOMEM);
  7407. }
  7408. /* rcu callback to free various structures associated with a task group */
  7409. static void free_sched_group_rcu(struct rcu_head *rhp)
  7410. {
  7411. /* now it should be safe to free those cfs_rqs */
  7412. free_sched_group(container_of(rhp, struct task_group, rcu));
  7413. }
  7414. /* Destroy runqueue etc associated with a task group */
  7415. void sched_destroy_group(struct task_group *tg)
  7416. {
  7417. unsigned long flags;
  7418. int i;
  7419. /* end participation in shares distribution */
  7420. for_each_possible_cpu(i)
  7421. unregister_fair_sched_group(tg, i);
  7422. spin_lock_irqsave(&task_group_lock, flags);
  7423. list_del_rcu(&tg->list);
  7424. list_del_rcu(&tg->siblings);
  7425. spin_unlock_irqrestore(&task_group_lock, flags);
  7426. /* wait for possible concurrent references to cfs_rqs complete */
  7427. call_rcu(&tg->rcu, free_sched_group_rcu);
  7428. }
  7429. /* change task's runqueue when it moves between groups.
  7430. * The caller of this function should have put the task in its new group
  7431. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7432. * reflect its new group.
  7433. */
  7434. void sched_move_task(struct task_struct *tsk)
  7435. {
  7436. int on_rq, running;
  7437. unsigned long flags;
  7438. struct rq *rq;
  7439. rq = task_rq_lock(tsk, &flags);
  7440. running = task_current(rq, tsk);
  7441. on_rq = tsk->on_rq;
  7442. if (on_rq)
  7443. dequeue_task(rq, tsk, 0);
  7444. if (unlikely(running))
  7445. tsk->sched_class->put_prev_task(rq, tsk);
  7446. #ifdef CONFIG_FAIR_GROUP_SCHED
  7447. if (tsk->sched_class->task_move_group)
  7448. tsk->sched_class->task_move_group(tsk, on_rq);
  7449. else
  7450. #endif
  7451. set_task_rq(tsk, task_cpu(tsk));
  7452. if (unlikely(running))
  7453. tsk->sched_class->set_curr_task(rq);
  7454. if (on_rq)
  7455. enqueue_task(rq, tsk, 0);
  7456. task_rq_unlock(rq, tsk, &flags);
  7457. }
  7458. #endif /* CONFIG_CGROUP_SCHED */
  7459. #ifdef CONFIG_FAIR_GROUP_SCHED
  7460. static DEFINE_MUTEX(shares_mutex);
  7461. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7462. {
  7463. int i;
  7464. unsigned long flags;
  7465. /*
  7466. * We can't change the weight of the root cgroup.
  7467. */
  7468. if (!tg->se[0])
  7469. return -EINVAL;
  7470. if (shares < MIN_SHARES)
  7471. shares = MIN_SHARES;
  7472. else if (shares > MAX_SHARES)
  7473. shares = MAX_SHARES;
  7474. mutex_lock(&shares_mutex);
  7475. if (tg->shares == shares)
  7476. goto done;
  7477. tg->shares = shares;
  7478. for_each_possible_cpu(i) {
  7479. struct rq *rq = cpu_rq(i);
  7480. struct sched_entity *se;
  7481. se = tg->se[i];
  7482. /* Propagate contribution to hierarchy */
  7483. raw_spin_lock_irqsave(&rq->lock, flags);
  7484. for_each_sched_entity(se)
  7485. update_cfs_shares(group_cfs_rq(se));
  7486. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7487. }
  7488. done:
  7489. mutex_unlock(&shares_mutex);
  7490. return 0;
  7491. }
  7492. unsigned long sched_group_shares(struct task_group *tg)
  7493. {
  7494. return tg->shares;
  7495. }
  7496. #endif
  7497. #ifdef CONFIG_RT_GROUP_SCHED
  7498. /*
  7499. * Ensure that the real time constraints are schedulable.
  7500. */
  7501. static DEFINE_MUTEX(rt_constraints_mutex);
  7502. static unsigned long to_ratio(u64 period, u64 runtime)
  7503. {
  7504. if (runtime == RUNTIME_INF)
  7505. return 1ULL << 20;
  7506. return div64_u64(runtime << 20, period);
  7507. }
  7508. /* Must be called with tasklist_lock held */
  7509. static inline int tg_has_rt_tasks(struct task_group *tg)
  7510. {
  7511. struct task_struct *g, *p;
  7512. do_each_thread(g, p) {
  7513. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7514. return 1;
  7515. } while_each_thread(g, p);
  7516. return 0;
  7517. }
  7518. struct rt_schedulable_data {
  7519. struct task_group *tg;
  7520. u64 rt_period;
  7521. u64 rt_runtime;
  7522. };
  7523. static int tg_schedulable(struct task_group *tg, void *data)
  7524. {
  7525. struct rt_schedulable_data *d = data;
  7526. struct task_group *child;
  7527. unsigned long total, sum = 0;
  7528. u64 period, runtime;
  7529. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7530. runtime = tg->rt_bandwidth.rt_runtime;
  7531. if (tg == d->tg) {
  7532. period = d->rt_period;
  7533. runtime = d->rt_runtime;
  7534. }
  7535. /*
  7536. * Cannot have more runtime than the period.
  7537. */
  7538. if (runtime > period && runtime != RUNTIME_INF)
  7539. return -EINVAL;
  7540. /*
  7541. * Ensure we don't starve existing RT tasks.
  7542. */
  7543. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7544. return -EBUSY;
  7545. total = to_ratio(period, runtime);
  7546. /*
  7547. * Nobody can have more than the global setting allows.
  7548. */
  7549. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7550. return -EINVAL;
  7551. /*
  7552. * The sum of our children's runtime should not exceed our own.
  7553. */
  7554. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7555. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7556. runtime = child->rt_bandwidth.rt_runtime;
  7557. if (child == d->tg) {
  7558. period = d->rt_period;
  7559. runtime = d->rt_runtime;
  7560. }
  7561. sum += to_ratio(period, runtime);
  7562. }
  7563. if (sum > total)
  7564. return -EINVAL;
  7565. return 0;
  7566. }
  7567. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7568. {
  7569. struct rt_schedulable_data data = {
  7570. .tg = tg,
  7571. .rt_period = period,
  7572. .rt_runtime = runtime,
  7573. };
  7574. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7575. }
  7576. static int tg_set_bandwidth(struct task_group *tg,
  7577. u64 rt_period, u64 rt_runtime)
  7578. {
  7579. int i, err = 0;
  7580. mutex_lock(&rt_constraints_mutex);
  7581. read_lock(&tasklist_lock);
  7582. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7583. if (err)
  7584. goto unlock;
  7585. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7586. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7587. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7588. for_each_possible_cpu(i) {
  7589. struct rt_rq *rt_rq = tg->rt_rq[i];
  7590. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7591. rt_rq->rt_runtime = rt_runtime;
  7592. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7593. }
  7594. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7595. unlock:
  7596. read_unlock(&tasklist_lock);
  7597. mutex_unlock(&rt_constraints_mutex);
  7598. return err;
  7599. }
  7600. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7601. {
  7602. u64 rt_runtime, rt_period;
  7603. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7604. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7605. if (rt_runtime_us < 0)
  7606. rt_runtime = RUNTIME_INF;
  7607. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7608. }
  7609. long sched_group_rt_runtime(struct task_group *tg)
  7610. {
  7611. u64 rt_runtime_us;
  7612. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7613. return -1;
  7614. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7615. do_div(rt_runtime_us, NSEC_PER_USEC);
  7616. return rt_runtime_us;
  7617. }
  7618. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7619. {
  7620. u64 rt_runtime, rt_period;
  7621. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7622. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7623. if (rt_period == 0)
  7624. return -EINVAL;
  7625. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7626. }
  7627. long sched_group_rt_period(struct task_group *tg)
  7628. {
  7629. u64 rt_period_us;
  7630. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7631. do_div(rt_period_us, NSEC_PER_USEC);
  7632. return rt_period_us;
  7633. }
  7634. static int sched_rt_global_constraints(void)
  7635. {
  7636. u64 runtime, period;
  7637. int ret = 0;
  7638. if (sysctl_sched_rt_period <= 0)
  7639. return -EINVAL;
  7640. runtime = global_rt_runtime();
  7641. period = global_rt_period();
  7642. /*
  7643. * Sanity check on the sysctl variables.
  7644. */
  7645. if (runtime > period && runtime != RUNTIME_INF)
  7646. return -EINVAL;
  7647. mutex_lock(&rt_constraints_mutex);
  7648. read_lock(&tasklist_lock);
  7649. ret = __rt_schedulable(NULL, 0, 0);
  7650. read_unlock(&tasklist_lock);
  7651. mutex_unlock(&rt_constraints_mutex);
  7652. return ret;
  7653. }
  7654. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7655. {
  7656. /* Don't accept realtime tasks when there is no way for them to run */
  7657. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7658. return 0;
  7659. return 1;
  7660. }
  7661. #else /* !CONFIG_RT_GROUP_SCHED */
  7662. static int sched_rt_global_constraints(void)
  7663. {
  7664. unsigned long flags;
  7665. int i;
  7666. if (sysctl_sched_rt_period <= 0)
  7667. return -EINVAL;
  7668. /*
  7669. * There's always some RT tasks in the root group
  7670. * -- migration, kstopmachine etc..
  7671. */
  7672. if (sysctl_sched_rt_runtime == 0)
  7673. return -EBUSY;
  7674. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7675. for_each_possible_cpu(i) {
  7676. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7677. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7678. rt_rq->rt_runtime = global_rt_runtime();
  7679. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7680. }
  7681. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7682. return 0;
  7683. }
  7684. #endif /* CONFIG_RT_GROUP_SCHED */
  7685. int sched_rt_handler(struct ctl_table *table, int write,
  7686. void __user *buffer, size_t *lenp,
  7687. loff_t *ppos)
  7688. {
  7689. int ret;
  7690. int old_period, old_runtime;
  7691. static DEFINE_MUTEX(mutex);
  7692. mutex_lock(&mutex);
  7693. old_period = sysctl_sched_rt_period;
  7694. old_runtime = sysctl_sched_rt_runtime;
  7695. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7696. if (!ret && write) {
  7697. ret = sched_rt_global_constraints();
  7698. if (ret) {
  7699. sysctl_sched_rt_period = old_period;
  7700. sysctl_sched_rt_runtime = old_runtime;
  7701. } else {
  7702. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7703. def_rt_bandwidth.rt_period =
  7704. ns_to_ktime(global_rt_period());
  7705. }
  7706. }
  7707. mutex_unlock(&mutex);
  7708. return ret;
  7709. }
  7710. #ifdef CONFIG_CGROUP_SCHED
  7711. /* return corresponding task_group object of a cgroup */
  7712. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7713. {
  7714. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7715. struct task_group, css);
  7716. }
  7717. static struct cgroup_subsys_state *
  7718. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7719. {
  7720. struct task_group *tg, *parent;
  7721. if (!cgrp->parent) {
  7722. /* This is early initialization for the top cgroup */
  7723. return &root_task_group.css;
  7724. }
  7725. parent = cgroup_tg(cgrp->parent);
  7726. tg = sched_create_group(parent);
  7727. if (IS_ERR(tg))
  7728. return ERR_PTR(-ENOMEM);
  7729. return &tg->css;
  7730. }
  7731. static void
  7732. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7733. {
  7734. struct task_group *tg = cgroup_tg(cgrp);
  7735. sched_destroy_group(tg);
  7736. }
  7737. static int
  7738. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7739. {
  7740. #ifdef CONFIG_RT_GROUP_SCHED
  7741. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7742. return -EINVAL;
  7743. #else
  7744. /* We don't support RT-tasks being in separate groups */
  7745. if (tsk->sched_class != &fair_sched_class)
  7746. return -EINVAL;
  7747. #endif
  7748. return 0;
  7749. }
  7750. static int
  7751. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7752. struct task_struct *tsk, bool threadgroup)
  7753. {
  7754. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7755. if (retval)
  7756. return retval;
  7757. if (threadgroup) {
  7758. struct task_struct *c;
  7759. rcu_read_lock();
  7760. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7761. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7762. if (retval) {
  7763. rcu_read_unlock();
  7764. return retval;
  7765. }
  7766. }
  7767. rcu_read_unlock();
  7768. }
  7769. return 0;
  7770. }
  7771. static void
  7772. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7773. struct cgroup *old_cont, struct task_struct *tsk,
  7774. bool threadgroup)
  7775. {
  7776. sched_move_task(tsk);
  7777. if (threadgroup) {
  7778. struct task_struct *c;
  7779. rcu_read_lock();
  7780. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7781. sched_move_task(c);
  7782. }
  7783. rcu_read_unlock();
  7784. }
  7785. }
  7786. static void
  7787. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7788. struct cgroup *old_cgrp, struct task_struct *task)
  7789. {
  7790. /*
  7791. * cgroup_exit() is called in the copy_process() failure path.
  7792. * Ignore this case since the task hasn't ran yet, this avoids
  7793. * trying to poke a half freed task state from generic code.
  7794. */
  7795. if (!(task->flags & PF_EXITING))
  7796. return;
  7797. sched_move_task(task);
  7798. }
  7799. #ifdef CONFIG_FAIR_GROUP_SCHED
  7800. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7801. u64 shareval)
  7802. {
  7803. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7804. }
  7805. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7806. {
  7807. struct task_group *tg = cgroup_tg(cgrp);
  7808. return (u64) tg->shares;
  7809. }
  7810. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7811. #ifdef CONFIG_RT_GROUP_SCHED
  7812. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7813. s64 val)
  7814. {
  7815. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7816. }
  7817. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7818. {
  7819. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7820. }
  7821. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7822. u64 rt_period_us)
  7823. {
  7824. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7825. }
  7826. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7827. {
  7828. return sched_group_rt_period(cgroup_tg(cgrp));
  7829. }
  7830. #endif /* CONFIG_RT_GROUP_SCHED */
  7831. static struct cftype cpu_files[] = {
  7832. #ifdef CONFIG_FAIR_GROUP_SCHED
  7833. {
  7834. .name = "shares",
  7835. .read_u64 = cpu_shares_read_u64,
  7836. .write_u64 = cpu_shares_write_u64,
  7837. },
  7838. #endif
  7839. #ifdef CONFIG_RT_GROUP_SCHED
  7840. {
  7841. .name = "rt_runtime_us",
  7842. .read_s64 = cpu_rt_runtime_read,
  7843. .write_s64 = cpu_rt_runtime_write,
  7844. },
  7845. {
  7846. .name = "rt_period_us",
  7847. .read_u64 = cpu_rt_period_read_uint,
  7848. .write_u64 = cpu_rt_period_write_uint,
  7849. },
  7850. #endif
  7851. };
  7852. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7853. {
  7854. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7855. }
  7856. struct cgroup_subsys cpu_cgroup_subsys = {
  7857. .name = "cpu",
  7858. .create = cpu_cgroup_create,
  7859. .destroy = cpu_cgroup_destroy,
  7860. .can_attach = cpu_cgroup_can_attach,
  7861. .attach = cpu_cgroup_attach,
  7862. .exit = cpu_cgroup_exit,
  7863. .populate = cpu_cgroup_populate,
  7864. .subsys_id = cpu_cgroup_subsys_id,
  7865. .early_init = 1,
  7866. };
  7867. #endif /* CONFIG_CGROUP_SCHED */
  7868. #ifdef CONFIG_CGROUP_CPUACCT
  7869. /*
  7870. * CPU accounting code for task groups.
  7871. *
  7872. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7873. * (balbir@in.ibm.com).
  7874. */
  7875. /* track cpu usage of a group of tasks and its child groups */
  7876. struct cpuacct {
  7877. struct cgroup_subsys_state css;
  7878. /* cpuusage holds pointer to a u64-type object on every cpu */
  7879. u64 __percpu *cpuusage;
  7880. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7881. struct cpuacct *parent;
  7882. };
  7883. struct cgroup_subsys cpuacct_subsys;
  7884. /* return cpu accounting group corresponding to this container */
  7885. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7886. {
  7887. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7888. struct cpuacct, css);
  7889. }
  7890. /* return cpu accounting group to which this task belongs */
  7891. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7892. {
  7893. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7894. struct cpuacct, css);
  7895. }
  7896. /* create a new cpu accounting group */
  7897. static struct cgroup_subsys_state *cpuacct_create(
  7898. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7899. {
  7900. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7901. int i;
  7902. if (!ca)
  7903. goto out;
  7904. ca->cpuusage = alloc_percpu(u64);
  7905. if (!ca->cpuusage)
  7906. goto out_free_ca;
  7907. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7908. if (percpu_counter_init(&ca->cpustat[i], 0))
  7909. goto out_free_counters;
  7910. if (cgrp->parent)
  7911. ca->parent = cgroup_ca(cgrp->parent);
  7912. return &ca->css;
  7913. out_free_counters:
  7914. while (--i >= 0)
  7915. percpu_counter_destroy(&ca->cpustat[i]);
  7916. free_percpu(ca->cpuusage);
  7917. out_free_ca:
  7918. kfree(ca);
  7919. out:
  7920. return ERR_PTR(-ENOMEM);
  7921. }
  7922. /* destroy an existing cpu accounting group */
  7923. static void
  7924. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7925. {
  7926. struct cpuacct *ca = cgroup_ca(cgrp);
  7927. int i;
  7928. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7929. percpu_counter_destroy(&ca->cpustat[i]);
  7930. free_percpu(ca->cpuusage);
  7931. kfree(ca);
  7932. }
  7933. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7934. {
  7935. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7936. u64 data;
  7937. #ifndef CONFIG_64BIT
  7938. /*
  7939. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7940. */
  7941. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7942. data = *cpuusage;
  7943. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7944. #else
  7945. data = *cpuusage;
  7946. #endif
  7947. return data;
  7948. }
  7949. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7950. {
  7951. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7952. #ifndef CONFIG_64BIT
  7953. /*
  7954. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7955. */
  7956. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7957. *cpuusage = val;
  7958. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7959. #else
  7960. *cpuusage = val;
  7961. #endif
  7962. }
  7963. /* return total cpu usage (in nanoseconds) of a group */
  7964. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7965. {
  7966. struct cpuacct *ca = cgroup_ca(cgrp);
  7967. u64 totalcpuusage = 0;
  7968. int i;
  7969. for_each_present_cpu(i)
  7970. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7971. return totalcpuusage;
  7972. }
  7973. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7974. u64 reset)
  7975. {
  7976. struct cpuacct *ca = cgroup_ca(cgrp);
  7977. int err = 0;
  7978. int i;
  7979. if (reset) {
  7980. err = -EINVAL;
  7981. goto out;
  7982. }
  7983. for_each_present_cpu(i)
  7984. cpuacct_cpuusage_write(ca, i, 0);
  7985. out:
  7986. return err;
  7987. }
  7988. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7989. struct seq_file *m)
  7990. {
  7991. struct cpuacct *ca = cgroup_ca(cgroup);
  7992. u64 percpu;
  7993. int i;
  7994. for_each_present_cpu(i) {
  7995. percpu = cpuacct_cpuusage_read(ca, i);
  7996. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7997. }
  7998. seq_printf(m, "\n");
  7999. return 0;
  8000. }
  8001. static const char *cpuacct_stat_desc[] = {
  8002. [CPUACCT_STAT_USER] = "user",
  8003. [CPUACCT_STAT_SYSTEM] = "system",
  8004. };
  8005. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8006. struct cgroup_map_cb *cb)
  8007. {
  8008. struct cpuacct *ca = cgroup_ca(cgrp);
  8009. int i;
  8010. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8011. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8012. val = cputime64_to_clock_t(val);
  8013. cb->fill(cb, cpuacct_stat_desc[i], val);
  8014. }
  8015. return 0;
  8016. }
  8017. static struct cftype files[] = {
  8018. {
  8019. .name = "usage",
  8020. .read_u64 = cpuusage_read,
  8021. .write_u64 = cpuusage_write,
  8022. },
  8023. {
  8024. .name = "usage_percpu",
  8025. .read_seq_string = cpuacct_percpu_seq_read,
  8026. },
  8027. {
  8028. .name = "stat",
  8029. .read_map = cpuacct_stats_show,
  8030. },
  8031. };
  8032. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8033. {
  8034. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8035. }
  8036. /*
  8037. * charge this task's execution time to its accounting group.
  8038. *
  8039. * called with rq->lock held.
  8040. */
  8041. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8042. {
  8043. struct cpuacct *ca;
  8044. int cpu;
  8045. if (unlikely(!cpuacct_subsys.active))
  8046. return;
  8047. cpu = task_cpu(tsk);
  8048. rcu_read_lock();
  8049. ca = task_ca(tsk);
  8050. for (; ca; ca = ca->parent) {
  8051. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8052. *cpuusage += cputime;
  8053. }
  8054. rcu_read_unlock();
  8055. }
  8056. /*
  8057. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8058. * in cputime_t units. As a result, cpuacct_update_stats calls
  8059. * percpu_counter_add with values large enough to always overflow the
  8060. * per cpu batch limit causing bad SMP scalability.
  8061. *
  8062. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8063. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8064. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8065. */
  8066. #ifdef CONFIG_SMP
  8067. #define CPUACCT_BATCH \
  8068. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8069. #else
  8070. #define CPUACCT_BATCH 0
  8071. #endif
  8072. /*
  8073. * Charge the system/user time to the task's accounting group.
  8074. */
  8075. static void cpuacct_update_stats(struct task_struct *tsk,
  8076. enum cpuacct_stat_index idx, cputime_t val)
  8077. {
  8078. struct cpuacct *ca;
  8079. int batch = CPUACCT_BATCH;
  8080. if (unlikely(!cpuacct_subsys.active))
  8081. return;
  8082. rcu_read_lock();
  8083. ca = task_ca(tsk);
  8084. do {
  8085. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8086. ca = ca->parent;
  8087. } while (ca);
  8088. rcu_read_unlock();
  8089. }
  8090. struct cgroup_subsys cpuacct_subsys = {
  8091. .name = "cpuacct",
  8092. .create = cpuacct_create,
  8093. .destroy = cpuacct_destroy,
  8094. .populate = cpuacct_populate,
  8095. .subsys_id = cpuacct_subsys_id,
  8096. };
  8097. #endif /* CONFIG_CGROUP_CPUACCT */