s2io.c 233 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.26.2"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[2] = {32,48};
  87. static int rxd_count[2] = {127,85};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. static inline int is_s2io_card_up(const struct s2io_nic * sp)
  120. {
  121. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  122. }
  123. /* Ethtool related variables and Macros. */
  124. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  125. "Register test\t(offline)",
  126. "Eeprom test\t(offline)",
  127. "Link test\t(online)",
  128. "RLDRAM test\t(offline)",
  129. "BIST Test\t(offline)"
  130. };
  131. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  132. {"tmac_frms"},
  133. {"tmac_data_octets"},
  134. {"tmac_drop_frms"},
  135. {"tmac_mcst_frms"},
  136. {"tmac_bcst_frms"},
  137. {"tmac_pause_ctrl_frms"},
  138. {"tmac_ttl_octets"},
  139. {"tmac_ucst_frms"},
  140. {"tmac_nucst_frms"},
  141. {"tmac_any_err_frms"},
  142. {"tmac_ttl_less_fb_octets"},
  143. {"tmac_vld_ip_octets"},
  144. {"tmac_vld_ip"},
  145. {"tmac_drop_ip"},
  146. {"tmac_icmp"},
  147. {"tmac_rst_tcp"},
  148. {"tmac_tcp"},
  149. {"tmac_udp"},
  150. {"rmac_vld_frms"},
  151. {"rmac_data_octets"},
  152. {"rmac_fcs_err_frms"},
  153. {"rmac_drop_frms"},
  154. {"rmac_vld_mcst_frms"},
  155. {"rmac_vld_bcst_frms"},
  156. {"rmac_in_rng_len_err_frms"},
  157. {"rmac_out_rng_len_err_frms"},
  158. {"rmac_long_frms"},
  159. {"rmac_pause_ctrl_frms"},
  160. {"rmac_unsup_ctrl_frms"},
  161. {"rmac_ttl_octets"},
  162. {"rmac_accepted_ucst_frms"},
  163. {"rmac_accepted_nucst_frms"},
  164. {"rmac_discarded_frms"},
  165. {"rmac_drop_events"},
  166. {"rmac_ttl_less_fb_octets"},
  167. {"rmac_ttl_frms"},
  168. {"rmac_usized_frms"},
  169. {"rmac_osized_frms"},
  170. {"rmac_frag_frms"},
  171. {"rmac_jabber_frms"},
  172. {"rmac_ttl_64_frms"},
  173. {"rmac_ttl_65_127_frms"},
  174. {"rmac_ttl_128_255_frms"},
  175. {"rmac_ttl_256_511_frms"},
  176. {"rmac_ttl_512_1023_frms"},
  177. {"rmac_ttl_1024_1518_frms"},
  178. {"rmac_ip"},
  179. {"rmac_ip_octets"},
  180. {"rmac_hdr_err_ip"},
  181. {"rmac_drop_ip"},
  182. {"rmac_icmp"},
  183. {"rmac_tcp"},
  184. {"rmac_udp"},
  185. {"rmac_err_drp_udp"},
  186. {"rmac_xgmii_err_sym"},
  187. {"rmac_frms_q0"},
  188. {"rmac_frms_q1"},
  189. {"rmac_frms_q2"},
  190. {"rmac_frms_q3"},
  191. {"rmac_frms_q4"},
  192. {"rmac_frms_q5"},
  193. {"rmac_frms_q6"},
  194. {"rmac_frms_q7"},
  195. {"rmac_full_q0"},
  196. {"rmac_full_q1"},
  197. {"rmac_full_q2"},
  198. {"rmac_full_q3"},
  199. {"rmac_full_q4"},
  200. {"rmac_full_q5"},
  201. {"rmac_full_q6"},
  202. {"rmac_full_q7"},
  203. {"rmac_pause_cnt"},
  204. {"rmac_xgmii_data_err_cnt"},
  205. {"rmac_xgmii_ctrl_err_cnt"},
  206. {"rmac_accepted_ip"},
  207. {"rmac_err_tcp"},
  208. {"rd_req_cnt"},
  209. {"new_rd_req_cnt"},
  210. {"new_rd_req_rtry_cnt"},
  211. {"rd_rtry_cnt"},
  212. {"wr_rtry_rd_ack_cnt"},
  213. {"wr_req_cnt"},
  214. {"new_wr_req_cnt"},
  215. {"new_wr_req_rtry_cnt"},
  216. {"wr_rtry_cnt"},
  217. {"wr_disc_cnt"},
  218. {"rd_rtry_wr_ack_cnt"},
  219. {"txp_wr_cnt"},
  220. {"txd_rd_cnt"},
  221. {"txd_wr_cnt"},
  222. {"rxd_rd_cnt"},
  223. {"rxd_wr_cnt"},
  224. {"txf_rd_cnt"},
  225. {"rxf_wr_cnt"}
  226. };
  227. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  228. {"rmac_ttl_1519_4095_frms"},
  229. {"rmac_ttl_4096_8191_frms"},
  230. {"rmac_ttl_8192_max_frms"},
  231. {"rmac_ttl_gt_max_frms"},
  232. {"rmac_osized_alt_frms"},
  233. {"rmac_jabber_alt_frms"},
  234. {"rmac_gt_max_alt_frms"},
  235. {"rmac_vlan_frms"},
  236. {"rmac_len_discard"},
  237. {"rmac_fcs_discard"},
  238. {"rmac_pf_discard"},
  239. {"rmac_da_discard"},
  240. {"rmac_red_discard"},
  241. {"rmac_rts_discard"},
  242. {"rmac_ingm_full_discard"},
  243. {"link_fault_cnt"}
  244. };
  245. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  246. {"\n DRIVER STATISTICS"},
  247. {"single_bit_ecc_errs"},
  248. {"double_bit_ecc_errs"},
  249. {"parity_err_cnt"},
  250. {"serious_err_cnt"},
  251. {"soft_reset_cnt"},
  252. {"fifo_full_cnt"},
  253. {"ring_0_full_cnt"},
  254. {"ring_1_full_cnt"},
  255. {"ring_2_full_cnt"},
  256. {"ring_3_full_cnt"},
  257. {"ring_4_full_cnt"},
  258. {"ring_5_full_cnt"},
  259. {"ring_6_full_cnt"},
  260. {"ring_7_full_cnt"},
  261. ("alarm_transceiver_temp_high"),
  262. ("alarm_transceiver_temp_low"),
  263. ("alarm_laser_bias_current_high"),
  264. ("alarm_laser_bias_current_low"),
  265. ("alarm_laser_output_power_high"),
  266. ("alarm_laser_output_power_low"),
  267. ("warn_transceiver_temp_high"),
  268. ("warn_transceiver_temp_low"),
  269. ("warn_laser_bias_current_high"),
  270. ("warn_laser_bias_current_low"),
  271. ("warn_laser_output_power_high"),
  272. ("warn_laser_output_power_low"),
  273. ("lro_aggregated_pkts"),
  274. ("lro_flush_both_count"),
  275. ("lro_out_of_sequence_pkts"),
  276. ("lro_flush_due_to_max_pkts"),
  277. ("lro_avg_aggr_pkts"),
  278. ("mem_alloc_fail_cnt"),
  279. ("pci_map_fail_cnt"),
  280. ("watchdog_timer_cnt"),
  281. ("mem_allocated"),
  282. ("mem_freed"),
  283. ("link_up_cnt"),
  284. ("link_down_cnt"),
  285. ("link_up_time"),
  286. ("link_down_time"),
  287. ("tx_tcode_buf_abort_cnt"),
  288. ("tx_tcode_desc_abort_cnt"),
  289. ("tx_tcode_parity_err_cnt"),
  290. ("tx_tcode_link_loss_cnt"),
  291. ("tx_tcode_list_proc_err_cnt"),
  292. ("rx_tcode_parity_err_cnt"),
  293. ("rx_tcode_abort_cnt"),
  294. ("rx_tcode_parity_abort_cnt"),
  295. ("rx_tcode_rda_fail_cnt"),
  296. ("rx_tcode_unkn_prot_cnt"),
  297. ("rx_tcode_fcs_err_cnt"),
  298. ("rx_tcode_buf_size_err_cnt"),
  299. ("rx_tcode_rxd_corrupt_cnt"),
  300. ("rx_tcode_unkn_err_cnt"),
  301. {"tda_err_cnt"},
  302. {"pfc_err_cnt"},
  303. {"pcc_err_cnt"},
  304. {"tti_err_cnt"},
  305. {"tpa_err_cnt"},
  306. {"sm_err_cnt"},
  307. {"lso_err_cnt"},
  308. {"mac_tmac_err_cnt"},
  309. {"mac_rmac_err_cnt"},
  310. {"xgxs_txgxs_err_cnt"},
  311. {"xgxs_rxgxs_err_cnt"},
  312. {"rc_err_cnt"},
  313. {"prc_pcix_err_cnt"},
  314. {"rpa_err_cnt"},
  315. {"rda_err_cnt"},
  316. {"rti_err_cnt"},
  317. {"mc_err_cnt"}
  318. };
  319. #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
  320. #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
  321. ETH_GSTRING_LEN
  322. #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
  323. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  324. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  325. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  326. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  327. #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
  328. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  329. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  330. init_timer(&timer); \
  331. timer.function = handle; \
  332. timer.data = (unsigned long) arg; \
  333. mod_timer(&timer, (jiffies + exp)) \
  334. /* Add the vlan */
  335. static void s2io_vlan_rx_register(struct net_device *dev,
  336. struct vlan_group *grp)
  337. {
  338. struct s2io_nic *nic = dev->priv;
  339. unsigned long flags;
  340. spin_lock_irqsave(&nic->tx_lock, flags);
  341. nic->vlgrp = grp;
  342. spin_unlock_irqrestore(&nic->tx_lock, flags);
  343. }
  344. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  345. static int vlan_strip_flag;
  346. /*
  347. * Constants to be programmed into the Xena's registers, to configure
  348. * the XAUI.
  349. */
  350. #define END_SIGN 0x0
  351. static const u64 herc_act_dtx_cfg[] = {
  352. /* Set address */
  353. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  354. /* Write data */
  355. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  356. /* Set address */
  357. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  358. /* Write data */
  359. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  360. /* Set address */
  361. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  362. /* Write data */
  363. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  364. /* Set address */
  365. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  366. /* Write data */
  367. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  368. /* Done */
  369. END_SIGN
  370. };
  371. static const u64 xena_dtx_cfg[] = {
  372. /* Set address */
  373. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  374. /* Write data */
  375. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  376. /* Set address */
  377. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  378. /* Write data */
  379. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  380. /* Set address */
  381. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  382. /* Write data */
  383. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  384. END_SIGN
  385. };
  386. /*
  387. * Constants for Fixing the MacAddress problem seen mostly on
  388. * Alpha machines.
  389. */
  390. static const u64 fix_mac[] = {
  391. 0x0060000000000000ULL, 0x0060600000000000ULL,
  392. 0x0040600000000000ULL, 0x0000600000000000ULL,
  393. 0x0020600000000000ULL, 0x0060600000000000ULL,
  394. 0x0020600000000000ULL, 0x0060600000000000ULL,
  395. 0x0020600000000000ULL, 0x0060600000000000ULL,
  396. 0x0020600000000000ULL, 0x0060600000000000ULL,
  397. 0x0020600000000000ULL, 0x0060600000000000ULL,
  398. 0x0020600000000000ULL, 0x0060600000000000ULL,
  399. 0x0020600000000000ULL, 0x0060600000000000ULL,
  400. 0x0020600000000000ULL, 0x0060600000000000ULL,
  401. 0x0020600000000000ULL, 0x0060600000000000ULL,
  402. 0x0020600000000000ULL, 0x0060600000000000ULL,
  403. 0x0020600000000000ULL, 0x0000600000000000ULL,
  404. 0x0040600000000000ULL, 0x0060600000000000ULL,
  405. END_SIGN
  406. };
  407. MODULE_LICENSE("GPL");
  408. MODULE_VERSION(DRV_VERSION);
  409. /* Module Loadable parameters. */
  410. S2IO_PARM_INT(tx_fifo_num, 1);
  411. S2IO_PARM_INT(rx_ring_num, 1);
  412. S2IO_PARM_INT(rx_ring_mode, 1);
  413. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  414. S2IO_PARM_INT(rmac_pause_time, 0x100);
  415. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  416. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  417. S2IO_PARM_INT(shared_splits, 0);
  418. S2IO_PARM_INT(tmac_util_period, 5);
  419. S2IO_PARM_INT(rmac_util_period, 5);
  420. S2IO_PARM_INT(bimodal, 0);
  421. S2IO_PARM_INT(l3l4hdr_size, 128);
  422. /* Frequency of Rx desc syncs expressed as power of 2 */
  423. S2IO_PARM_INT(rxsync_frequency, 3);
  424. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  425. S2IO_PARM_INT(intr_type, 2);
  426. /* Large receive offload feature */
  427. S2IO_PARM_INT(lro, 0);
  428. /* Max pkts to be aggregated by LRO at one time. If not specified,
  429. * aggregation happens until we hit max IP pkt size(64K)
  430. */
  431. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  432. S2IO_PARM_INT(indicate_max_pkts, 0);
  433. S2IO_PARM_INT(napi, 1);
  434. S2IO_PARM_INT(ufo, 0);
  435. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  436. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  437. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  438. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  439. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  440. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  441. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  442. module_param_array(tx_fifo_len, uint, NULL, 0);
  443. module_param_array(rx_ring_sz, uint, NULL, 0);
  444. module_param_array(rts_frm_len, uint, NULL, 0);
  445. /*
  446. * S2IO device table.
  447. * This table lists all the devices that this driver supports.
  448. */
  449. static struct pci_device_id s2io_tbl[] __devinitdata = {
  450. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  451. PCI_ANY_ID, PCI_ANY_ID},
  452. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  453. PCI_ANY_ID, PCI_ANY_ID},
  454. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  455. PCI_ANY_ID, PCI_ANY_ID},
  456. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  457. PCI_ANY_ID, PCI_ANY_ID},
  458. {0,}
  459. };
  460. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  461. static struct pci_error_handlers s2io_err_handler = {
  462. .error_detected = s2io_io_error_detected,
  463. .slot_reset = s2io_io_slot_reset,
  464. .resume = s2io_io_resume,
  465. };
  466. static struct pci_driver s2io_driver = {
  467. .name = "S2IO",
  468. .id_table = s2io_tbl,
  469. .probe = s2io_init_nic,
  470. .remove = __devexit_p(s2io_rem_nic),
  471. .err_handler = &s2io_err_handler,
  472. };
  473. /* A simplifier macro used both by init and free shared_mem Fns(). */
  474. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  475. /**
  476. * init_shared_mem - Allocation and Initialization of Memory
  477. * @nic: Device private variable.
  478. * Description: The function allocates all the memory areas shared
  479. * between the NIC and the driver. This includes Tx descriptors,
  480. * Rx descriptors and the statistics block.
  481. */
  482. static int init_shared_mem(struct s2io_nic *nic)
  483. {
  484. u32 size;
  485. void *tmp_v_addr, *tmp_v_addr_next;
  486. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  487. struct RxD_block *pre_rxd_blk = NULL;
  488. int i, j, blk_cnt;
  489. int lst_size, lst_per_page;
  490. struct net_device *dev = nic->dev;
  491. unsigned long tmp;
  492. struct buffAdd *ba;
  493. struct mac_info *mac_control;
  494. struct config_param *config;
  495. unsigned long long mem_allocated = 0;
  496. mac_control = &nic->mac_control;
  497. config = &nic->config;
  498. /* Allocation and initialization of TXDLs in FIOFs */
  499. size = 0;
  500. for (i = 0; i < config->tx_fifo_num; i++) {
  501. size += config->tx_cfg[i].fifo_len;
  502. }
  503. if (size > MAX_AVAILABLE_TXDS) {
  504. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  505. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  506. return -EINVAL;
  507. }
  508. lst_size = (sizeof(struct TxD) * config->max_txds);
  509. lst_per_page = PAGE_SIZE / lst_size;
  510. for (i = 0; i < config->tx_fifo_num; i++) {
  511. int fifo_len = config->tx_cfg[i].fifo_len;
  512. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  513. mac_control->fifos[i].list_info = kzalloc(list_holder_size,
  514. GFP_KERNEL);
  515. if (!mac_control->fifos[i].list_info) {
  516. DBG_PRINT(INFO_DBG,
  517. "Malloc failed for list_info\n");
  518. return -ENOMEM;
  519. }
  520. mem_allocated += list_holder_size;
  521. }
  522. for (i = 0; i < config->tx_fifo_num; i++) {
  523. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  524. lst_per_page);
  525. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  526. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  527. config->tx_cfg[i].fifo_len - 1;
  528. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  529. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  530. config->tx_cfg[i].fifo_len - 1;
  531. mac_control->fifos[i].fifo_no = i;
  532. mac_control->fifos[i].nic = nic;
  533. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  534. for (j = 0; j < page_num; j++) {
  535. int k = 0;
  536. dma_addr_t tmp_p;
  537. void *tmp_v;
  538. tmp_v = pci_alloc_consistent(nic->pdev,
  539. PAGE_SIZE, &tmp_p);
  540. if (!tmp_v) {
  541. DBG_PRINT(INFO_DBG,
  542. "pci_alloc_consistent ");
  543. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  544. return -ENOMEM;
  545. }
  546. /* If we got a zero DMA address(can happen on
  547. * certain platforms like PPC), reallocate.
  548. * Store virtual address of page we don't want,
  549. * to be freed later.
  550. */
  551. if (!tmp_p) {
  552. mac_control->zerodma_virt_addr = tmp_v;
  553. DBG_PRINT(INIT_DBG,
  554. "%s: Zero DMA address for TxDL. ", dev->name);
  555. DBG_PRINT(INIT_DBG,
  556. "Virtual address %p\n", tmp_v);
  557. tmp_v = pci_alloc_consistent(nic->pdev,
  558. PAGE_SIZE, &tmp_p);
  559. if (!tmp_v) {
  560. DBG_PRINT(INFO_DBG,
  561. "pci_alloc_consistent ");
  562. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  563. return -ENOMEM;
  564. }
  565. mem_allocated += PAGE_SIZE;
  566. }
  567. while (k < lst_per_page) {
  568. int l = (j * lst_per_page) + k;
  569. if (l == config->tx_cfg[i].fifo_len)
  570. break;
  571. mac_control->fifos[i].list_info[l].list_virt_addr =
  572. tmp_v + (k * lst_size);
  573. mac_control->fifos[i].list_info[l].list_phy_addr =
  574. tmp_p + (k * lst_size);
  575. k++;
  576. }
  577. }
  578. }
  579. nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  580. if (!nic->ufo_in_band_v)
  581. return -ENOMEM;
  582. mem_allocated += (size * sizeof(u64));
  583. /* Allocation and initialization of RXDs in Rings */
  584. size = 0;
  585. for (i = 0; i < config->rx_ring_num; i++) {
  586. if (config->rx_cfg[i].num_rxd %
  587. (rxd_count[nic->rxd_mode] + 1)) {
  588. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  589. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  590. i);
  591. DBG_PRINT(ERR_DBG, "RxDs per Block");
  592. return FAILURE;
  593. }
  594. size += config->rx_cfg[i].num_rxd;
  595. mac_control->rings[i].block_count =
  596. config->rx_cfg[i].num_rxd /
  597. (rxd_count[nic->rxd_mode] + 1 );
  598. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  599. mac_control->rings[i].block_count;
  600. }
  601. if (nic->rxd_mode == RXD_MODE_1)
  602. size = (size * (sizeof(struct RxD1)));
  603. else
  604. size = (size * (sizeof(struct RxD3)));
  605. for (i = 0; i < config->rx_ring_num; i++) {
  606. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  607. mac_control->rings[i].rx_curr_get_info.offset = 0;
  608. mac_control->rings[i].rx_curr_get_info.ring_len =
  609. config->rx_cfg[i].num_rxd - 1;
  610. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  611. mac_control->rings[i].rx_curr_put_info.offset = 0;
  612. mac_control->rings[i].rx_curr_put_info.ring_len =
  613. config->rx_cfg[i].num_rxd - 1;
  614. mac_control->rings[i].nic = nic;
  615. mac_control->rings[i].ring_no = i;
  616. blk_cnt = config->rx_cfg[i].num_rxd /
  617. (rxd_count[nic->rxd_mode] + 1);
  618. /* Allocating all the Rx blocks */
  619. for (j = 0; j < blk_cnt; j++) {
  620. struct rx_block_info *rx_blocks;
  621. int l;
  622. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  623. size = SIZE_OF_BLOCK; //size is always page size
  624. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  625. &tmp_p_addr);
  626. if (tmp_v_addr == NULL) {
  627. /*
  628. * In case of failure, free_shared_mem()
  629. * is called, which should free any
  630. * memory that was alloced till the
  631. * failure happened.
  632. */
  633. rx_blocks->block_virt_addr = tmp_v_addr;
  634. return -ENOMEM;
  635. }
  636. mem_allocated += size;
  637. memset(tmp_v_addr, 0, size);
  638. rx_blocks->block_virt_addr = tmp_v_addr;
  639. rx_blocks->block_dma_addr = tmp_p_addr;
  640. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  641. rxd_count[nic->rxd_mode],
  642. GFP_KERNEL);
  643. if (!rx_blocks->rxds)
  644. return -ENOMEM;
  645. mem_allocated +=
  646. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  647. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  648. rx_blocks->rxds[l].virt_addr =
  649. rx_blocks->block_virt_addr +
  650. (rxd_size[nic->rxd_mode] * l);
  651. rx_blocks->rxds[l].dma_addr =
  652. rx_blocks->block_dma_addr +
  653. (rxd_size[nic->rxd_mode] * l);
  654. }
  655. }
  656. /* Interlinking all Rx Blocks */
  657. for (j = 0; j < blk_cnt; j++) {
  658. tmp_v_addr =
  659. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  660. tmp_v_addr_next =
  661. mac_control->rings[i].rx_blocks[(j + 1) %
  662. blk_cnt].block_virt_addr;
  663. tmp_p_addr =
  664. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  665. tmp_p_addr_next =
  666. mac_control->rings[i].rx_blocks[(j + 1) %
  667. blk_cnt].block_dma_addr;
  668. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  669. pre_rxd_blk->reserved_2_pNext_RxD_block =
  670. (unsigned long) tmp_v_addr_next;
  671. pre_rxd_blk->pNext_RxD_Blk_physical =
  672. (u64) tmp_p_addr_next;
  673. }
  674. }
  675. if (nic->rxd_mode == RXD_MODE_3B) {
  676. /*
  677. * Allocation of Storages for buffer addresses in 2BUFF mode
  678. * and the buffers as well.
  679. */
  680. for (i = 0; i < config->rx_ring_num; i++) {
  681. blk_cnt = config->rx_cfg[i].num_rxd /
  682. (rxd_count[nic->rxd_mode]+ 1);
  683. mac_control->rings[i].ba =
  684. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  685. GFP_KERNEL);
  686. if (!mac_control->rings[i].ba)
  687. return -ENOMEM;
  688. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  689. for (j = 0; j < blk_cnt; j++) {
  690. int k = 0;
  691. mac_control->rings[i].ba[j] =
  692. kmalloc((sizeof(struct buffAdd) *
  693. (rxd_count[nic->rxd_mode] + 1)),
  694. GFP_KERNEL);
  695. if (!mac_control->rings[i].ba[j])
  696. return -ENOMEM;
  697. mem_allocated += (sizeof(struct buffAdd) * \
  698. (rxd_count[nic->rxd_mode] + 1));
  699. while (k != rxd_count[nic->rxd_mode]) {
  700. ba = &mac_control->rings[i].ba[j][k];
  701. ba->ba_0_org = (void *) kmalloc
  702. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  703. if (!ba->ba_0_org)
  704. return -ENOMEM;
  705. mem_allocated +=
  706. (BUF0_LEN + ALIGN_SIZE);
  707. tmp = (unsigned long)ba->ba_0_org;
  708. tmp += ALIGN_SIZE;
  709. tmp &= ~((unsigned long) ALIGN_SIZE);
  710. ba->ba_0 = (void *) tmp;
  711. ba->ba_1_org = (void *) kmalloc
  712. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  713. if (!ba->ba_1_org)
  714. return -ENOMEM;
  715. mem_allocated
  716. += (BUF1_LEN + ALIGN_SIZE);
  717. tmp = (unsigned long) ba->ba_1_org;
  718. tmp += ALIGN_SIZE;
  719. tmp &= ~((unsigned long) ALIGN_SIZE);
  720. ba->ba_1 = (void *) tmp;
  721. k++;
  722. }
  723. }
  724. }
  725. }
  726. /* Allocation and initialization of Statistics block */
  727. size = sizeof(struct stat_block);
  728. mac_control->stats_mem = pci_alloc_consistent
  729. (nic->pdev, size, &mac_control->stats_mem_phy);
  730. if (!mac_control->stats_mem) {
  731. /*
  732. * In case of failure, free_shared_mem() is called, which
  733. * should free any memory that was alloced till the
  734. * failure happened.
  735. */
  736. return -ENOMEM;
  737. }
  738. mem_allocated += size;
  739. mac_control->stats_mem_sz = size;
  740. tmp_v_addr = mac_control->stats_mem;
  741. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  742. memset(tmp_v_addr, 0, size);
  743. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  744. (unsigned long long) tmp_p_addr);
  745. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  746. return SUCCESS;
  747. }
  748. /**
  749. * free_shared_mem - Free the allocated Memory
  750. * @nic: Device private variable.
  751. * Description: This function is to free all memory locations allocated by
  752. * the init_shared_mem() function and return it to the kernel.
  753. */
  754. static void free_shared_mem(struct s2io_nic *nic)
  755. {
  756. int i, j, blk_cnt, size;
  757. u32 ufo_size = 0;
  758. void *tmp_v_addr;
  759. dma_addr_t tmp_p_addr;
  760. struct mac_info *mac_control;
  761. struct config_param *config;
  762. int lst_size, lst_per_page;
  763. struct net_device *dev;
  764. int page_num = 0;
  765. if (!nic)
  766. return;
  767. dev = nic->dev;
  768. mac_control = &nic->mac_control;
  769. config = &nic->config;
  770. lst_size = (sizeof(struct TxD) * config->max_txds);
  771. lst_per_page = PAGE_SIZE / lst_size;
  772. for (i = 0; i < config->tx_fifo_num; i++) {
  773. ufo_size += config->tx_cfg[i].fifo_len;
  774. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  775. lst_per_page);
  776. for (j = 0; j < page_num; j++) {
  777. int mem_blks = (j * lst_per_page);
  778. if (!mac_control->fifos[i].list_info)
  779. return;
  780. if (!mac_control->fifos[i].list_info[mem_blks].
  781. list_virt_addr)
  782. break;
  783. pci_free_consistent(nic->pdev, PAGE_SIZE,
  784. mac_control->fifos[i].
  785. list_info[mem_blks].
  786. list_virt_addr,
  787. mac_control->fifos[i].
  788. list_info[mem_blks].
  789. list_phy_addr);
  790. nic->mac_control.stats_info->sw_stat.mem_freed
  791. += PAGE_SIZE;
  792. }
  793. /* If we got a zero DMA address during allocation,
  794. * free the page now
  795. */
  796. if (mac_control->zerodma_virt_addr) {
  797. pci_free_consistent(nic->pdev, PAGE_SIZE,
  798. mac_control->zerodma_virt_addr,
  799. (dma_addr_t)0);
  800. DBG_PRINT(INIT_DBG,
  801. "%s: Freeing TxDL with zero DMA addr. ",
  802. dev->name);
  803. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  804. mac_control->zerodma_virt_addr);
  805. nic->mac_control.stats_info->sw_stat.mem_freed
  806. += PAGE_SIZE;
  807. }
  808. kfree(mac_control->fifos[i].list_info);
  809. nic->mac_control.stats_info->sw_stat.mem_freed +=
  810. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  811. }
  812. size = SIZE_OF_BLOCK;
  813. for (i = 0; i < config->rx_ring_num; i++) {
  814. blk_cnt = mac_control->rings[i].block_count;
  815. for (j = 0; j < blk_cnt; j++) {
  816. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  817. block_virt_addr;
  818. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  819. block_dma_addr;
  820. if (tmp_v_addr == NULL)
  821. break;
  822. pci_free_consistent(nic->pdev, size,
  823. tmp_v_addr, tmp_p_addr);
  824. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  825. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  826. nic->mac_control.stats_info->sw_stat.mem_freed +=
  827. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  828. }
  829. }
  830. if (nic->rxd_mode == RXD_MODE_3B) {
  831. /* Freeing buffer storage addresses in 2BUFF mode. */
  832. for (i = 0; i < config->rx_ring_num; i++) {
  833. blk_cnt = config->rx_cfg[i].num_rxd /
  834. (rxd_count[nic->rxd_mode] + 1);
  835. for (j = 0; j < blk_cnt; j++) {
  836. int k = 0;
  837. if (!mac_control->rings[i].ba[j])
  838. continue;
  839. while (k != rxd_count[nic->rxd_mode]) {
  840. struct buffAdd *ba =
  841. &mac_control->rings[i].ba[j][k];
  842. kfree(ba->ba_0_org);
  843. nic->mac_control.stats_info->sw_stat.\
  844. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  845. kfree(ba->ba_1_org);
  846. nic->mac_control.stats_info->sw_stat.\
  847. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  848. k++;
  849. }
  850. kfree(mac_control->rings[i].ba[j]);
  851. nic->mac_control.stats_info->sw_stat.mem_freed +=
  852. (sizeof(struct buffAdd) *
  853. (rxd_count[nic->rxd_mode] + 1));
  854. }
  855. kfree(mac_control->rings[i].ba);
  856. nic->mac_control.stats_info->sw_stat.mem_freed +=
  857. (sizeof(struct buffAdd *) * blk_cnt);
  858. }
  859. }
  860. if (mac_control->stats_mem) {
  861. pci_free_consistent(nic->pdev,
  862. mac_control->stats_mem_sz,
  863. mac_control->stats_mem,
  864. mac_control->stats_mem_phy);
  865. nic->mac_control.stats_info->sw_stat.mem_freed +=
  866. mac_control->stats_mem_sz;
  867. }
  868. if (nic->ufo_in_band_v) {
  869. kfree(nic->ufo_in_band_v);
  870. nic->mac_control.stats_info->sw_stat.mem_freed
  871. += (ufo_size * sizeof(u64));
  872. }
  873. }
  874. /**
  875. * s2io_verify_pci_mode -
  876. */
  877. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  878. {
  879. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  880. register u64 val64 = 0;
  881. int mode;
  882. val64 = readq(&bar0->pci_mode);
  883. mode = (u8)GET_PCI_MODE(val64);
  884. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  885. return -1; /* Unknown PCI mode */
  886. return mode;
  887. }
  888. #define NEC_VENID 0x1033
  889. #define NEC_DEVID 0x0125
  890. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  891. {
  892. struct pci_dev *tdev = NULL;
  893. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  894. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  895. if (tdev->bus == s2io_pdev->bus->parent)
  896. pci_dev_put(tdev);
  897. return 1;
  898. }
  899. }
  900. return 0;
  901. }
  902. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  903. /**
  904. * s2io_print_pci_mode -
  905. */
  906. static int s2io_print_pci_mode(struct s2io_nic *nic)
  907. {
  908. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  909. register u64 val64 = 0;
  910. int mode;
  911. struct config_param *config = &nic->config;
  912. val64 = readq(&bar0->pci_mode);
  913. mode = (u8)GET_PCI_MODE(val64);
  914. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  915. return -1; /* Unknown PCI mode */
  916. config->bus_speed = bus_speed[mode];
  917. if (s2io_on_nec_bridge(nic->pdev)) {
  918. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  919. nic->dev->name);
  920. return mode;
  921. }
  922. if (val64 & PCI_MODE_32_BITS) {
  923. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  924. } else {
  925. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  926. }
  927. switch(mode) {
  928. case PCI_MODE_PCI_33:
  929. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  930. break;
  931. case PCI_MODE_PCI_66:
  932. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  933. break;
  934. case PCI_MODE_PCIX_M1_66:
  935. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  936. break;
  937. case PCI_MODE_PCIX_M1_100:
  938. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  939. break;
  940. case PCI_MODE_PCIX_M1_133:
  941. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  942. break;
  943. case PCI_MODE_PCIX_M2_66:
  944. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  945. break;
  946. case PCI_MODE_PCIX_M2_100:
  947. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  948. break;
  949. case PCI_MODE_PCIX_M2_133:
  950. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  951. break;
  952. default:
  953. return -1; /* Unsupported bus speed */
  954. }
  955. return mode;
  956. }
  957. /**
  958. * init_nic - Initialization of hardware
  959. * @nic: device peivate variable
  960. * Description: The function sequentially configures every block
  961. * of the H/W from their reset values.
  962. * Return Value: SUCCESS on success and
  963. * '-1' on failure (endian settings incorrect).
  964. */
  965. static int init_nic(struct s2io_nic *nic)
  966. {
  967. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  968. struct net_device *dev = nic->dev;
  969. register u64 val64 = 0;
  970. void __iomem *add;
  971. u32 time;
  972. int i, j;
  973. struct mac_info *mac_control;
  974. struct config_param *config;
  975. int dtx_cnt = 0;
  976. unsigned long long mem_share;
  977. int mem_size;
  978. mac_control = &nic->mac_control;
  979. config = &nic->config;
  980. /* to set the swapper controle on the card */
  981. if(s2io_set_swapper(nic)) {
  982. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  983. return -1;
  984. }
  985. /*
  986. * Herc requires EOI to be removed from reset before XGXS, so..
  987. */
  988. if (nic->device_type & XFRAME_II_DEVICE) {
  989. val64 = 0xA500000000ULL;
  990. writeq(val64, &bar0->sw_reset);
  991. msleep(500);
  992. val64 = readq(&bar0->sw_reset);
  993. }
  994. /* Remove XGXS from reset state */
  995. val64 = 0;
  996. writeq(val64, &bar0->sw_reset);
  997. msleep(500);
  998. val64 = readq(&bar0->sw_reset);
  999. /* Enable Receiving broadcasts */
  1000. add = &bar0->mac_cfg;
  1001. val64 = readq(&bar0->mac_cfg);
  1002. val64 |= MAC_RMAC_BCAST_ENABLE;
  1003. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1004. writel((u32) val64, add);
  1005. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1006. writel((u32) (val64 >> 32), (add + 4));
  1007. /* Read registers in all blocks */
  1008. val64 = readq(&bar0->mac_int_mask);
  1009. val64 = readq(&bar0->mc_int_mask);
  1010. val64 = readq(&bar0->xgxs_int_mask);
  1011. /* Set MTU */
  1012. val64 = dev->mtu;
  1013. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1014. if (nic->device_type & XFRAME_II_DEVICE) {
  1015. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1016. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1017. &bar0->dtx_control, UF);
  1018. if (dtx_cnt & 0x1)
  1019. msleep(1); /* Necessary!! */
  1020. dtx_cnt++;
  1021. }
  1022. } else {
  1023. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1024. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1025. &bar0->dtx_control, UF);
  1026. val64 = readq(&bar0->dtx_control);
  1027. dtx_cnt++;
  1028. }
  1029. }
  1030. /* Tx DMA Initialization */
  1031. val64 = 0;
  1032. writeq(val64, &bar0->tx_fifo_partition_0);
  1033. writeq(val64, &bar0->tx_fifo_partition_1);
  1034. writeq(val64, &bar0->tx_fifo_partition_2);
  1035. writeq(val64, &bar0->tx_fifo_partition_3);
  1036. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1037. val64 |=
  1038. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  1039. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1040. ((i * 32) + 5), 3);
  1041. if (i == (config->tx_fifo_num - 1)) {
  1042. if (i % 2 == 0)
  1043. i++;
  1044. }
  1045. switch (i) {
  1046. case 1:
  1047. writeq(val64, &bar0->tx_fifo_partition_0);
  1048. val64 = 0;
  1049. break;
  1050. case 3:
  1051. writeq(val64, &bar0->tx_fifo_partition_1);
  1052. val64 = 0;
  1053. break;
  1054. case 5:
  1055. writeq(val64, &bar0->tx_fifo_partition_2);
  1056. val64 = 0;
  1057. break;
  1058. case 7:
  1059. writeq(val64, &bar0->tx_fifo_partition_3);
  1060. break;
  1061. }
  1062. }
  1063. /*
  1064. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1065. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1066. */
  1067. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1068. (nic->pdev->revision < 4))
  1069. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1070. val64 = readq(&bar0->tx_fifo_partition_0);
  1071. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1072. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1073. /*
  1074. * Initialization of Tx_PA_CONFIG register to ignore packet
  1075. * integrity checking.
  1076. */
  1077. val64 = readq(&bar0->tx_pa_cfg);
  1078. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1079. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1080. writeq(val64, &bar0->tx_pa_cfg);
  1081. /* Rx DMA intialization. */
  1082. val64 = 0;
  1083. for (i = 0; i < config->rx_ring_num; i++) {
  1084. val64 |=
  1085. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1086. 3);
  1087. }
  1088. writeq(val64, &bar0->rx_queue_priority);
  1089. /*
  1090. * Allocating equal share of memory to all the
  1091. * configured Rings.
  1092. */
  1093. val64 = 0;
  1094. if (nic->device_type & XFRAME_II_DEVICE)
  1095. mem_size = 32;
  1096. else
  1097. mem_size = 64;
  1098. for (i = 0; i < config->rx_ring_num; i++) {
  1099. switch (i) {
  1100. case 0:
  1101. mem_share = (mem_size / config->rx_ring_num +
  1102. mem_size % config->rx_ring_num);
  1103. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1104. continue;
  1105. case 1:
  1106. mem_share = (mem_size / config->rx_ring_num);
  1107. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1108. continue;
  1109. case 2:
  1110. mem_share = (mem_size / config->rx_ring_num);
  1111. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1112. continue;
  1113. case 3:
  1114. mem_share = (mem_size / config->rx_ring_num);
  1115. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1116. continue;
  1117. case 4:
  1118. mem_share = (mem_size / config->rx_ring_num);
  1119. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1120. continue;
  1121. case 5:
  1122. mem_share = (mem_size / config->rx_ring_num);
  1123. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1124. continue;
  1125. case 6:
  1126. mem_share = (mem_size / config->rx_ring_num);
  1127. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1128. continue;
  1129. case 7:
  1130. mem_share = (mem_size / config->rx_ring_num);
  1131. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1132. continue;
  1133. }
  1134. }
  1135. writeq(val64, &bar0->rx_queue_cfg);
  1136. /*
  1137. * Filling Tx round robin registers
  1138. * as per the number of FIFOs
  1139. */
  1140. switch (config->tx_fifo_num) {
  1141. case 1:
  1142. val64 = 0x0000000000000000ULL;
  1143. writeq(val64, &bar0->tx_w_round_robin_0);
  1144. writeq(val64, &bar0->tx_w_round_robin_1);
  1145. writeq(val64, &bar0->tx_w_round_robin_2);
  1146. writeq(val64, &bar0->tx_w_round_robin_3);
  1147. writeq(val64, &bar0->tx_w_round_robin_4);
  1148. break;
  1149. case 2:
  1150. val64 = 0x0000010000010000ULL;
  1151. writeq(val64, &bar0->tx_w_round_robin_0);
  1152. val64 = 0x0100000100000100ULL;
  1153. writeq(val64, &bar0->tx_w_round_robin_1);
  1154. val64 = 0x0001000001000001ULL;
  1155. writeq(val64, &bar0->tx_w_round_robin_2);
  1156. val64 = 0x0000010000010000ULL;
  1157. writeq(val64, &bar0->tx_w_round_robin_3);
  1158. val64 = 0x0100000000000000ULL;
  1159. writeq(val64, &bar0->tx_w_round_robin_4);
  1160. break;
  1161. case 3:
  1162. val64 = 0x0001000102000001ULL;
  1163. writeq(val64, &bar0->tx_w_round_robin_0);
  1164. val64 = 0x0001020000010001ULL;
  1165. writeq(val64, &bar0->tx_w_round_robin_1);
  1166. val64 = 0x0200000100010200ULL;
  1167. writeq(val64, &bar0->tx_w_round_robin_2);
  1168. val64 = 0x0001000102000001ULL;
  1169. writeq(val64, &bar0->tx_w_round_robin_3);
  1170. val64 = 0x0001020000000000ULL;
  1171. writeq(val64, &bar0->tx_w_round_robin_4);
  1172. break;
  1173. case 4:
  1174. val64 = 0x0001020300010200ULL;
  1175. writeq(val64, &bar0->tx_w_round_robin_0);
  1176. val64 = 0x0100000102030001ULL;
  1177. writeq(val64, &bar0->tx_w_round_robin_1);
  1178. val64 = 0x0200010000010203ULL;
  1179. writeq(val64, &bar0->tx_w_round_robin_2);
  1180. val64 = 0x0001020001000001ULL;
  1181. writeq(val64, &bar0->tx_w_round_robin_3);
  1182. val64 = 0x0203000100000000ULL;
  1183. writeq(val64, &bar0->tx_w_round_robin_4);
  1184. break;
  1185. case 5:
  1186. val64 = 0x0001000203000102ULL;
  1187. writeq(val64, &bar0->tx_w_round_robin_0);
  1188. val64 = 0x0001020001030004ULL;
  1189. writeq(val64, &bar0->tx_w_round_robin_1);
  1190. val64 = 0x0001000203000102ULL;
  1191. writeq(val64, &bar0->tx_w_round_robin_2);
  1192. val64 = 0x0001020001030004ULL;
  1193. writeq(val64, &bar0->tx_w_round_robin_3);
  1194. val64 = 0x0001000000000000ULL;
  1195. writeq(val64, &bar0->tx_w_round_robin_4);
  1196. break;
  1197. case 6:
  1198. val64 = 0x0001020304000102ULL;
  1199. writeq(val64, &bar0->tx_w_round_robin_0);
  1200. val64 = 0x0304050001020001ULL;
  1201. writeq(val64, &bar0->tx_w_round_robin_1);
  1202. val64 = 0x0203000100000102ULL;
  1203. writeq(val64, &bar0->tx_w_round_robin_2);
  1204. val64 = 0x0304000102030405ULL;
  1205. writeq(val64, &bar0->tx_w_round_robin_3);
  1206. val64 = 0x0001000200000000ULL;
  1207. writeq(val64, &bar0->tx_w_round_robin_4);
  1208. break;
  1209. case 7:
  1210. val64 = 0x0001020001020300ULL;
  1211. writeq(val64, &bar0->tx_w_round_robin_0);
  1212. val64 = 0x0102030400010203ULL;
  1213. writeq(val64, &bar0->tx_w_round_robin_1);
  1214. val64 = 0x0405060001020001ULL;
  1215. writeq(val64, &bar0->tx_w_round_robin_2);
  1216. val64 = 0x0304050000010200ULL;
  1217. writeq(val64, &bar0->tx_w_round_robin_3);
  1218. val64 = 0x0102030000000000ULL;
  1219. writeq(val64, &bar0->tx_w_round_robin_4);
  1220. break;
  1221. case 8:
  1222. val64 = 0x0001020300040105ULL;
  1223. writeq(val64, &bar0->tx_w_round_robin_0);
  1224. val64 = 0x0200030106000204ULL;
  1225. writeq(val64, &bar0->tx_w_round_robin_1);
  1226. val64 = 0x0103000502010007ULL;
  1227. writeq(val64, &bar0->tx_w_round_robin_2);
  1228. val64 = 0x0304010002060500ULL;
  1229. writeq(val64, &bar0->tx_w_round_robin_3);
  1230. val64 = 0x0103020400000000ULL;
  1231. writeq(val64, &bar0->tx_w_round_robin_4);
  1232. break;
  1233. }
  1234. /* Enable all configured Tx FIFO partitions */
  1235. val64 = readq(&bar0->tx_fifo_partition_0);
  1236. val64 |= (TX_FIFO_PARTITION_EN);
  1237. writeq(val64, &bar0->tx_fifo_partition_0);
  1238. /* Filling the Rx round robin registers as per the
  1239. * number of Rings and steering based on QoS.
  1240. */
  1241. switch (config->rx_ring_num) {
  1242. case 1:
  1243. val64 = 0x8080808080808080ULL;
  1244. writeq(val64, &bar0->rts_qos_steering);
  1245. break;
  1246. case 2:
  1247. val64 = 0x0000010000010000ULL;
  1248. writeq(val64, &bar0->rx_w_round_robin_0);
  1249. val64 = 0x0100000100000100ULL;
  1250. writeq(val64, &bar0->rx_w_round_robin_1);
  1251. val64 = 0x0001000001000001ULL;
  1252. writeq(val64, &bar0->rx_w_round_robin_2);
  1253. val64 = 0x0000010000010000ULL;
  1254. writeq(val64, &bar0->rx_w_round_robin_3);
  1255. val64 = 0x0100000000000000ULL;
  1256. writeq(val64, &bar0->rx_w_round_robin_4);
  1257. val64 = 0x8080808040404040ULL;
  1258. writeq(val64, &bar0->rts_qos_steering);
  1259. break;
  1260. case 3:
  1261. val64 = 0x0001000102000001ULL;
  1262. writeq(val64, &bar0->rx_w_round_robin_0);
  1263. val64 = 0x0001020000010001ULL;
  1264. writeq(val64, &bar0->rx_w_round_robin_1);
  1265. val64 = 0x0200000100010200ULL;
  1266. writeq(val64, &bar0->rx_w_round_robin_2);
  1267. val64 = 0x0001000102000001ULL;
  1268. writeq(val64, &bar0->rx_w_round_robin_3);
  1269. val64 = 0x0001020000000000ULL;
  1270. writeq(val64, &bar0->rx_w_round_robin_4);
  1271. val64 = 0x8080804040402020ULL;
  1272. writeq(val64, &bar0->rts_qos_steering);
  1273. break;
  1274. case 4:
  1275. val64 = 0x0001020300010200ULL;
  1276. writeq(val64, &bar0->rx_w_round_robin_0);
  1277. val64 = 0x0100000102030001ULL;
  1278. writeq(val64, &bar0->rx_w_round_robin_1);
  1279. val64 = 0x0200010000010203ULL;
  1280. writeq(val64, &bar0->rx_w_round_robin_2);
  1281. val64 = 0x0001020001000001ULL;
  1282. writeq(val64, &bar0->rx_w_round_robin_3);
  1283. val64 = 0x0203000100000000ULL;
  1284. writeq(val64, &bar0->rx_w_round_robin_4);
  1285. val64 = 0x8080404020201010ULL;
  1286. writeq(val64, &bar0->rts_qos_steering);
  1287. break;
  1288. case 5:
  1289. val64 = 0x0001000203000102ULL;
  1290. writeq(val64, &bar0->rx_w_round_robin_0);
  1291. val64 = 0x0001020001030004ULL;
  1292. writeq(val64, &bar0->rx_w_round_robin_1);
  1293. val64 = 0x0001000203000102ULL;
  1294. writeq(val64, &bar0->rx_w_round_robin_2);
  1295. val64 = 0x0001020001030004ULL;
  1296. writeq(val64, &bar0->rx_w_round_robin_3);
  1297. val64 = 0x0001000000000000ULL;
  1298. writeq(val64, &bar0->rx_w_round_robin_4);
  1299. val64 = 0x8080404020201008ULL;
  1300. writeq(val64, &bar0->rts_qos_steering);
  1301. break;
  1302. case 6:
  1303. val64 = 0x0001020304000102ULL;
  1304. writeq(val64, &bar0->rx_w_round_robin_0);
  1305. val64 = 0x0304050001020001ULL;
  1306. writeq(val64, &bar0->rx_w_round_robin_1);
  1307. val64 = 0x0203000100000102ULL;
  1308. writeq(val64, &bar0->rx_w_round_robin_2);
  1309. val64 = 0x0304000102030405ULL;
  1310. writeq(val64, &bar0->rx_w_round_robin_3);
  1311. val64 = 0x0001000200000000ULL;
  1312. writeq(val64, &bar0->rx_w_round_robin_4);
  1313. val64 = 0x8080404020100804ULL;
  1314. writeq(val64, &bar0->rts_qos_steering);
  1315. break;
  1316. case 7:
  1317. val64 = 0x0001020001020300ULL;
  1318. writeq(val64, &bar0->rx_w_round_robin_0);
  1319. val64 = 0x0102030400010203ULL;
  1320. writeq(val64, &bar0->rx_w_round_robin_1);
  1321. val64 = 0x0405060001020001ULL;
  1322. writeq(val64, &bar0->rx_w_round_robin_2);
  1323. val64 = 0x0304050000010200ULL;
  1324. writeq(val64, &bar0->rx_w_round_robin_3);
  1325. val64 = 0x0102030000000000ULL;
  1326. writeq(val64, &bar0->rx_w_round_robin_4);
  1327. val64 = 0x8080402010080402ULL;
  1328. writeq(val64, &bar0->rts_qos_steering);
  1329. break;
  1330. case 8:
  1331. val64 = 0x0001020300040105ULL;
  1332. writeq(val64, &bar0->rx_w_round_robin_0);
  1333. val64 = 0x0200030106000204ULL;
  1334. writeq(val64, &bar0->rx_w_round_robin_1);
  1335. val64 = 0x0103000502010007ULL;
  1336. writeq(val64, &bar0->rx_w_round_robin_2);
  1337. val64 = 0x0304010002060500ULL;
  1338. writeq(val64, &bar0->rx_w_round_robin_3);
  1339. val64 = 0x0103020400000000ULL;
  1340. writeq(val64, &bar0->rx_w_round_robin_4);
  1341. val64 = 0x8040201008040201ULL;
  1342. writeq(val64, &bar0->rts_qos_steering);
  1343. break;
  1344. }
  1345. /* UDP Fix */
  1346. val64 = 0;
  1347. for (i = 0; i < 8; i++)
  1348. writeq(val64, &bar0->rts_frm_len_n[i]);
  1349. /* Set the default rts frame length for the rings configured */
  1350. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1351. for (i = 0 ; i < config->rx_ring_num ; i++)
  1352. writeq(val64, &bar0->rts_frm_len_n[i]);
  1353. /* Set the frame length for the configured rings
  1354. * desired by the user
  1355. */
  1356. for (i = 0; i < config->rx_ring_num; i++) {
  1357. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1358. * specified frame length steering.
  1359. * If the user provides the frame length then program
  1360. * the rts_frm_len register for those values or else
  1361. * leave it as it is.
  1362. */
  1363. if (rts_frm_len[i] != 0) {
  1364. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1365. &bar0->rts_frm_len_n[i]);
  1366. }
  1367. }
  1368. /* Disable differentiated services steering logic */
  1369. for (i = 0; i < 64; i++) {
  1370. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1371. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1372. dev->name);
  1373. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1374. return FAILURE;
  1375. }
  1376. }
  1377. /* Program statistics memory */
  1378. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1379. if (nic->device_type == XFRAME_II_DEVICE) {
  1380. val64 = STAT_BC(0x320);
  1381. writeq(val64, &bar0->stat_byte_cnt);
  1382. }
  1383. /*
  1384. * Initializing the sampling rate for the device to calculate the
  1385. * bandwidth utilization.
  1386. */
  1387. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1388. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1389. writeq(val64, &bar0->mac_link_util);
  1390. /*
  1391. * Initializing the Transmit and Receive Traffic Interrupt
  1392. * Scheme.
  1393. */
  1394. /*
  1395. * TTI Initialization. Default Tx timer gets us about
  1396. * 250 interrupts per sec. Continuous interrupts are enabled
  1397. * by default.
  1398. */
  1399. if (nic->device_type == XFRAME_II_DEVICE) {
  1400. int count = (nic->config.bus_speed * 125)/2;
  1401. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1402. } else {
  1403. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1404. }
  1405. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1406. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1407. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1408. if (use_continuous_tx_intrs)
  1409. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1410. writeq(val64, &bar0->tti_data1_mem);
  1411. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1412. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1413. TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1414. writeq(val64, &bar0->tti_data2_mem);
  1415. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1416. writeq(val64, &bar0->tti_command_mem);
  1417. /*
  1418. * Once the operation completes, the Strobe bit of the command
  1419. * register will be reset. We poll for this particular condition
  1420. * We wait for a maximum of 500ms for the operation to complete,
  1421. * if it's not complete by then we return error.
  1422. */
  1423. time = 0;
  1424. while (TRUE) {
  1425. val64 = readq(&bar0->tti_command_mem);
  1426. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1427. break;
  1428. }
  1429. if (time > 10) {
  1430. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1431. dev->name);
  1432. return -1;
  1433. }
  1434. msleep(50);
  1435. time++;
  1436. }
  1437. if (nic->config.bimodal) {
  1438. int k = 0;
  1439. for (k = 0; k < config->rx_ring_num; k++) {
  1440. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1441. val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
  1442. writeq(val64, &bar0->tti_command_mem);
  1443. /*
  1444. * Once the operation completes, the Strobe bit of the command
  1445. * register will be reset. We poll for this particular condition
  1446. * We wait for a maximum of 500ms for the operation to complete,
  1447. * if it's not complete by then we return error.
  1448. */
  1449. time = 0;
  1450. while (TRUE) {
  1451. val64 = readq(&bar0->tti_command_mem);
  1452. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1453. break;
  1454. }
  1455. if (time > 10) {
  1456. DBG_PRINT(ERR_DBG,
  1457. "%s: TTI init Failed\n",
  1458. dev->name);
  1459. return -1;
  1460. }
  1461. time++;
  1462. msleep(50);
  1463. }
  1464. }
  1465. } else {
  1466. /* RTI Initialization */
  1467. if (nic->device_type == XFRAME_II_DEVICE) {
  1468. /*
  1469. * Programmed to generate Apprx 500 Intrs per
  1470. * second
  1471. */
  1472. int count = (nic->config.bus_speed * 125)/4;
  1473. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1474. } else {
  1475. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1476. }
  1477. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1478. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1479. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1480. writeq(val64, &bar0->rti_data1_mem);
  1481. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1482. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1483. if (nic->config.intr_type == MSI_X)
  1484. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1485. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1486. else
  1487. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1488. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1489. writeq(val64, &bar0->rti_data2_mem);
  1490. for (i = 0; i < config->rx_ring_num; i++) {
  1491. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1492. | RTI_CMD_MEM_OFFSET(i);
  1493. writeq(val64, &bar0->rti_command_mem);
  1494. /*
  1495. * Once the operation completes, the Strobe bit of the
  1496. * command register will be reset. We poll for this
  1497. * particular condition. We wait for a maximum of 500ms
  1498. * for the operation to complete, if it's not complete
  1499. * by then we return error.
  1500. */
  1501. time = 0;
  1502. while (TRUE) {
  1503. val64 = readq(&bar0->rti_command_mem);
  1504. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
  1505. break;
  1506. }
  1507. if (time > 10) {
  1508. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1509. dev->name);
  1510. return -1;
  1511. }
  1512. time++;
  1513. msleep(50);
  1514. }
  1515. }
  1516. }
  1517. /*
  1518. * Initializing proper values as Pause threshold into all
  1519. * the 8 Queues on Rx side.
  1520. */
  1521. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1522. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1523. /* Disable RMAC PAD STRIPPING */
  1524. add = &bar0->mac_cfg;
  1525. val64 = readq(&bar0->mac_cfg);
  1526. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1527. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1528. writel((u32) (val64), add);
  1529. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1530. writel((u32) (val64 >> 32), (add + 4));
  1531. val64 = readq(&bar0->mac_cfg);
  1532. /* Enable FCS stripping by adapter */
  1533. add = &bar0->mac_cfg;
  1534. val64 = readq(&bar0->mac_cfg);
  1535. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1536. if (nic->device_type == XFRAME_II_DEVICE)
  1537. writeq(val64, &bar0->mac_cfg);
  1538. else {
  1539. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1540. writel((u32) (val64), add);
  1541. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1542. writel((u32) (val64 >> 32), (add + 4));
  1543. }
  1544. /*
  1545. * Set the time value to be inserted in the pause frame
  1546. * generated by xena.
  1547. */
  1548. val64 = readq(&bar0->rmac_pause_cfg);
  1549. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1550. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1551. writeq(val64, &bar0->rmac_pause_cfg);
  1552. /*
  1553. * Set the Threshold Limit for Generating the pause frame
  1554. * If the amount of data in any Queue exceeds ratio of
  1555. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1556. * pause frame is generated
  1557. */
  1558. val64 = 0;
  1559. for (i = 0; i < 4; i++) {
  1560. val64 |=
  1561. (((u64) 0xFF00 | nic->mac_control.
  1562. mc_pause_threshold_q0q3)
  1563. << (i * 2 * 8));
  1564. }
  1565. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1566. val64 = 0;
  1567. for (i = 0; i < 4; i++) {
  1568. val64 |=
  1569. (((u64) 0xFF00 | nic->mac_control.
  1570. mc_pause_threshold_q4q7)
  1571. << (i * 2 * 8));
  1572. }
  1573. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1574. /*
  1575. * TxDMA will stop Read request if the number of read split has
  1576. * exceeded the limit pointed by shared_splits
  1577. */
  1578. val64 = readq(&bar0->pic_control);
  1579. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1580. writeq(val64, &bar0->pic_control);
  1581. if (nic->config.bus_speed == 266) {
  1582. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1583. writeq(0x0, &bar0->read_retry_delay);
  1584. writeq(0x0, &bar0->write_retry_delay);
  1585. }
  1586. /*
  1587. * Programming the Herc to split every write transaction
  1588. * that does not start on an ADB to reduce disconnects.
  1589. */
  1590. if (nic->device_type == XFRAME_II_DEVICE) {
  1591. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1592. MISC_LINK_STABILITY_PRD(3);
  1593. writeq(val64, &bar0->misc_control);
  1594. val64 = readq(&bar0->pic_control2);
  1595. val64 &= ~(BIT(13)|BIT(14)|BIT(15));
  1596. writeq(val64, &bar0->pic_control2);
  1597. }
  1598. if (strstr(nic->product_name, "CX4")) {
  1599. val64 = TMAC_AVG_IPG(0x17);
  1600. writeq(val64, &bar0->tmac_avg_ipg);
  1601. }
  1602. return SUCCESS;
  1603. }
  1604. #define LINK_UP_DOWN_INTERRUPT 1
  1605. #define MAC_RMAC_ERR_TIMER 2
  1606. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1607. {
  1608. if (nic->config.intr_type != INTA)
  1609. return MAC_RMAC_ERR_TIMER;
  1610. if (nic->device_type == XFRAME_II_DEVICE)
  1611. return LINK_UP_DOWN_INTERRUPT;
  1612. else
  1613. return MAC_RMAC_ERR_TIMER;
  1614. }
  1615. /**
  1616. * do_s2io_write_bits - update alarm bits in alarm register
  1617. * @value: alarm bits
  1618. * @flag: interrupt status
  1619. * @addr: address value
  1620. * Description: update alarm bits in alarm register
  1621. * Return Value:
  1622. * NONE.
  1623. */
  1624. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1625. {
  1626. u64 temp64;
  1627. temp64 = readq(addr);
  1628. if(flag == ENABLE_INTRS)
  1629. temp64 &= ~((u64) value);
  1630. else
  1631. temp64 |= ((u64) value);
  1632. writeq(temp64, addr);
  1633. }
  1634. void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1635. {
  1636. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1637. register u64 gen_int_mask = 0;
  1638. if (mask & TX_DMA_INTR) {
  1639. gen_int_mask |= TXDMA_INT_M;
  1640. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1641. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1642. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1643. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1644. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1645. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1646. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1647. &bar0->pfc_err_mask);
  1648. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1649. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1650. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1651. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1652. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1653. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1654. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1655. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1656. PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
  1657. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1658. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1659. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1660. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1661. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1662. flag, &bar0->lso_err_mask);
  1663. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1664. flag, &bar0->tpa_err_mask);
  1665. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1666. }
  1667. if (mask & TX_MAC_INTR) {
  1668. gen_int_mask |= TXMAC_INT_M;
  1669. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1670. &bar0->mac_int_mask);
  1671. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1672. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1673. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1674. flag, &bar0->mac_tmac_err_mask);
  1675. }
  1676. if (mask & TX_XGXS_INTR) {
  1677. gen_int_mask |= TXXGXS_INT_M;
  1678. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1679. &bar0->xgxs_int_mask);
  1680. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1681. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1682. flag, &bar0->xgxs_txgxs_err_mask);
  1683. }
  1684. if (mask & RX_DMA_INTR) {
  1685. gen_int_mask |= RXDMA_INT_M;
  1686. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1687. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1688. flag, &bar0->rxdma_int_mask);
  1689. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1690. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1691. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1692. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1693. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1694. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1695. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1696. &bar0->prc_pcix_err_mask);
  1697. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1698. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1699. &bar0->rpa_err_mask);
  1700. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1701. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1702. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1703. RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
  1704. flag, &bar0->rda_err_mask);
  1705. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1706. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1707. flag, &bar0->rti_err_mask);
  1708. }
  1709. if (mask & RX_MAC_INTR) {
  1710. gen_int_mask |= RXMAC_INT_M;
  1711. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1712. &bar0->mac_int_mask);
  1713. do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1714. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1715. RMAC_DOUBLE_ECC_ERR |
  1716. RMAC_LINK_STATE_CHANGE_INT,
  1717. flag, &bar0->mac_rmac_err_mask);
  1718. }
  1719. if (mask & RX_XGXS_INTR)
  1720. {
  1721. gen_int_mask |= RXXGXS_INT_M;
  1722. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1723. &bar0->xgxs_int_mask);
  1724. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1725. &bar0->xgxs_rxgxs_err_mask);
  1726. }
  1727. if (mask & MC_INTR) {
  1728. gen_int_mask |= MC_INT_M;
  1729. do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
  1730. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1731. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1732. &bar0->mc_err_mask);
  1733. }
  1734. nic->general_int_mask = gen_int_mask;
  1735. /* Remove this line when alarm interrupts are enabled */
  1736. nic->general_int_mask = 0;
  1737. }
  1738. /**
  1739. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1740. * @nic: device private variable,
  1741. * @mask: A mask indicating which Intr block must be modified and,
  1742. * @flag: A flag indicating whether to enable or disable the Intrs.
  1743. * Description: This function will either disable or enable the interrupts
  1744. * depending on the flag argument. The mask argument can be used to
  1745. * enable/disable any Intr block.
  1746. * Return Value: NONE.
  1747. */
  1748. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1749. {
  1750. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1751. register u64 temp64 = 0, intr_mask = 0;
  1752. intr_mask = nic->general_int_mask;
  1753. /* Top level interrupt classification */
  1754. /* PIC Interrupts */
  1755. if (mask & TX_PIC_INTR) {
  1756. /* Enable PIC Intrs in the general intr mask register */
  1757. intr_mask |= TXPIC_INT_M;
  1758. if (flag == ENABLE_INTRS) {
  1759. /*
  1760. * If Hercules adapter enable GPIO otherwise
  1761. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1762. * interrupts for now.
  1763. * TODO
  1764. */
  1765. if (s2io_link_fault_indication(nic) ==
  1766. LINK_UP_DOWN_INTERRUPT ) {
  1767. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1768. &bar0->pic_int_mask);
  1769. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1770. &bar0->gpio_int_mask);
  1771. } else
  1772. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1773. } else if (flag == DISABLE_INTRS) {
  1774. /*
  1775. * Disable PIC Intrs in the general
  1776. * intr mask register
  1777. */
  1778. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1779. }
  1780. }
  1781. /* Tx traffic interrupts */
  1782. if (mask & TX_TRAFFIC_INTR) {
  1783. intr_mask |= TXTRAFFIC_INT_M;
  1784. if (flag == ENABLE_INTRS) {
  1785. /*
  1786. * Enable all the Tx side interrupts
  1787. * writing 0 Enables all 64 TX interrupt levels
  1788. */
  1789. writeq(0x0, &bar0->tx_traffic_mask);
  1790. } else if (flag == DISABLE_INTRS) {
  1791. /*
  1792. * Disable Tx Traffic Intrs in the general intr mask
  1793. * register.
  1794. */
  1795. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1796. }
  1797. }
  1798. /* Rx traffic interrupts */
  1799. if (mask & RX_TRAFFIC_INTR) {
  1800. intr_mask |= RXTRAFFIC_INT_M;
  1801. if (flag == ENABLE_INTRS) {
  1802. /* writing 0 Enables all 8 RX interrupt levels */
  1803. writeq(0x0, &bar0->rx_traffic_mask);
  1804. } else if (flag == DISABLE_INTRS) {
  1805. /*
  1806. * Disable Rx Traffic Intrs in the general intr mask
  1807. * register.
  1808. */
  1809. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1810. }
  1811. }
  1812. temp64 = readq(&bar0->general_int_mask);
  1813. if (flag == ENABLE_INTRS)
  1814. temp64 &= ~((u64) intr_mask);
  1815. else
  1816. temp64 = DISABLE_ALL_INTRS;
  1817. writeq(temp64, &bar0->general_int_mask);
  1818. nic->general_int_mask = readq(&bar0->general_int_mask);
  1819. }
  1820. /**
  1821. * verify_pcc_quiescent- Checks for PCC quiescent state
  1822. * Return: 1 If PCC is quiescence
  1823. * 0 If PCC is not quiescence
  1824. */
  1825. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1826. {
  1827. int ret = 0, herc;
  1828. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1829. u64 val64 = readq(&bar0->adapter_status);
  1830. herc = (sp->device_type == XFRAME_II_DEVICE);
  1831. if (flag == FALSE) {
  1832. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1833. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1834. ret = 1;
  1835. } else {
  1836. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1837. ret = 1;
  1838. }
  1839. } else {
  1840. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1841. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1842. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1843. ret = 1;
  1844. } else {
  1845. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1846. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1847. ret = 1;
  1848. }
  1849. }
  1850. return ret;
  1851. }
  1852. /**
  1853. * verify_xena_quiescence - Checks whether the H/W is ready
  1854. * Description: Returns whether the H/W is ready to go or not. Depending
  1855. * on whether adapter enable bit was written or not the comparison
  1856. * differs and the calling function passes the input argument flag to
  1857. * indicate this.
  1858. * Return: 1 If xena is quiescence
  1859. * 0 If Xena is not quiescence
  1860. */
  1861. static int verify_xena_quiescence(struct s2io_nic *sp)
  1862. {
  1863. int mode;
  1864. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1865. u64 val64 = readq(&bar0->adapter_status);
  1866. mode = s2io_verify_pci_mode(sp);
  1867. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1868. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1869. return 0;
  1870. }
  1871. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1872. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1873. return 0;
  1874. }
  1875. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1876. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1877. return 0;
  1878. }
  1879. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1880. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1881. return 0;
  1882. }
  1883. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1884. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1885. return 0;
  1886. }
  1887. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1888. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1889. return 0;
  1890. }
  1891. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1892. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1893. return 0;
  1894. }
  1895. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1896. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1897. return 0;
  1898. }
  1899. /*
  1900. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1901. * the the P_PLL_LOCK bit in the adapter_status register will
  1902. * not be asserted.
  1903. */
  1904. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1905. sp->device_type == XFRAME_II_DEVICE && mode !=
  1906. PCI_MODE_PCI_33) {
  1907. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1908. return 0;
  1909. }
  1910. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1911. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1912. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1913. return 0;
  1914. }
  1915. return 1;
  1916. }
  1917. /**
  1918. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1919. * @sp: Pointer to device specifc structure
  1920. * Description :
  1921. * New procedure to clear mac address reading problems on Alpha platforms
  1922. *
  1923. */
  1924. static void fix_mac_address(struct s2io_nic * sp)
  1925. {
  1926. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1927. u64 val64;
  1928. int i = 0;
  1929. while (fix_mac[i] != END_SIGN) {
  1930. writeq(fix_mac[i++], &bar0->gpio_control);
  1931. udelay(10);
  1932. val64 = readq(&bar0->gpio_control);
  1933. }
  1934. }
  1935. /**
  1936. * start_nic - Turns the device on
  1937. * @nic : device private variable.
  1938. * Description:
  1939. * This function actually turns the device on. Before this function is
  1940. * called,all Registers are configured from their reset states
  1941. * and shared memory is allocated but the NIC is still quiescent. On
  1942. * calling this function, the device interrupts are cleared and the NIC is
  1943. * literally switched on by writing into the adapter control register.
  1944. * Return Value:
  1945. * SUCCESS on success and -1 on failure.
  1946. */
  1947. static int start_nic(struct s2io_nic *nic)
  1948. {
  1949. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1950. struct net_device *dev = nic->dev;
  1951. register u64 val64 = 0;
  1952. u16 subid, i;
  1953. struct mac_info *mac_control;
  1954. struct config_param *config;
  1955. mac_control = &nic->mac_control;
  1956. config = &nic->config;
  1957. /* PRC Initialization and configuration */
  1958. for (i = 0; i < config->rx_ring_num; i++) {
  1959. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1960. &bar0->prc_rxd0_n[i]);
  1961. val64 = readq(&bar0->prc_ctrl_n[i]);
  1962. if (nic->config.bimodal)
  1963. val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
  1964. if (nic->rxd_mode == RXD_MODE_1)
  1965. val64 |= PRC_CTRL_RC_ENABLED;
  1966. else
  1967. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1968. if (nic->device_type == XFRAME_II_DEVICE)
  1969. val64 |= PRC_CTRL_GROUP_READS;
  1970. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1971. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1972. writeq(val64, &bar0->prc_ctrl_n[i]);
  1973. }
  1974. if (nic->rxd_mode == RXD_MODE_3B) {
  1975. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1976. val64 = readq(&bar0->rx_pa_cfg);
  1977. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1978. writeq(val64, &bar0->rx_pa_cfg);
  1979. }
  1980. if (vlan_tag_strip == 0) {
  1981. val64 = readq(&bar0->rx_pa_cfg);
  1982. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  1983. writeq(val64, &bar0->rx_pa_cfg);
  1984. vlan_strip_flag = 0;
  1985. }
  1986. /*
  1987. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1988. * for around 100ms, which is approximately the time required
  1989. * for the device to be ready for operation.
  1990. */
  1991. val64 = readq(&bar0->mc_rldram_mrs);
  1992. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1993. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1994. val64 = readq(&bar0->mc_rldram_mrs);
  1995. msleep(100); /* Delay by around 100 ms. */
  1996. /* Enabling ECC Protection. */
  1997. val64 = readq(&bar0->adapter_control);
  1998. val64 &= ~ADAPTER_ECC_EN;
  1999. writeq(val64, &bar0->adapter_control);
  2000. /*
  2001. * Verify if the device is ready to be enabled, if so enable
  2002. * it.
  2003. */
  2004. val64 = readq(&bar0->adapter_status);
  2005. if (!verify_xena_quiescence(nic)) {
  2006. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  2007. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  2008. (unsigned long long) val64);
  2009. return FAILURE;
  2010. }
  2011. /*
  2012. * With some switches, link might be already up at this point.
  2013. * Because of this weird behavior, when we enable laser,
  2014. * we may not get link. We need to handle this. We cannot
  2015. * figure out which switch is misbehaving. So we are forced to
  2016. * make a global change.
  2017. */
  2018. /* Enabling Laser. */
  2019. val64 = readq(&bar0->adapter_control);
  2020. val64 |= ADAPTER_EOI_TX_ON;
  2021. writeq(val64, &bar0->adapter_control);
  2022. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2023. /*
  2024. * Dont see link state interrupts initally on some switches,
  2025. * so directly scheduling the link state task here.
  2026. */
  2027. schedule_work(&nic->set_link_task);
  2028. }
  2029. /* SXE-002: Initialize link and activity LED */
  2030. subid = nic->pdev->subsystem_device;
  2031. if (((subid & 0xFF) >= 0x07) &&
  2032. (nic->device_type == XFRAME_I_DEVICE)) {
  2033. val64 = readq(&bar0->gpio_control);
  2034. val64 |= 0x0000800000000000ULL;
  2035. writeq(val64, &bar0->gpio_control);
  2036. val64 = 0x0411040400000000ULL;
  2037. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2038. }
  2039. return SUCCESS;
  2040. }
  2041. /**
  2042. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2043. */
  2044. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  2045. TxD *txdlp, int get_off)
  2046. {
  2047. struct s2io_nic *nic = fifo_data->nic;
  2048. struct sk_buff *skb;
  2049. struct TxD *txds;
  2050. u16 j, frg_cnt;
  2051. txds = txdlp;
  2052. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  2053. pci_unmap_single(nic->pdev, (dma_addr_t)
  2054. txds->Buffer_Pointer, sizeof(u64),
  2055. PCI_DMA_TODEVICE);
  2056. txds++;
  2057. }
  2058. skb = (struct sk_buff *) ((unsigned long)
  2059. txds->Host_Control);
  2060. if (!skb) {
  2061. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2062. return NULL;
  2063. }
  2064. pci_unmap_single(nic->pdev, (dma_addr_t)
  2065. txds->Buffer_Pointer,
  2066. skb->len - skb->data_len,
  2067. PCI_DMA_TODEVICE);
  2068. frg_cnt = skb_shinfo(skb)->nr_frags;
  2069. if (frg_cnt) {
  2070. txds++;
  2071. for (j = 0; j < frg_cnt; j++, txds++) {
  2072. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2073. if (!txds->Buffer_Pointer)
  2074. break;
  2075. pci_unmap_page(nic->pdev, (dma_addr_t)
  2076. txds->Buffer_Pointer,
  2077. frag->size, PCI_DMA_TODEVICE);
  2078. }
  2079. }
  2080. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  2081. return(skb);
  2082. }
  2083. /**
  2084. * free_tx_buffers - Free all queued Tx buffers
  2085. * @nic : device private variable.
  2086. * Description:
  2087. * Free all queued Tx buffers.
  2088. * Return Value: void
  2089. */
  2090. static void free_tx_buffers(struct s2io_nic *nic)
  2091. {
  2092. struct net_device *dev = nic->dev;
  2093. struct sk_buff *skb;
  2094. struct TxD *txdp;
  2095. int i, j;
  2096. struct mac_info *mac_control;
  2097. struct config_param *config;
  2098. int cnt = 0;
  2099. mac_control = &nic->mac_control;
  2100. config = &nic->config;
  2101. for (i = 0; i < config->tx_fifo_num; i++) {
  2102. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  2103. txdp = (struct TxD *) \
  2104. mac_control->fifos[i].list_info[j].list_virt_addr;
  2105. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2106. if (skb) {
  2107. nic->mac_control.stats_info->sw_stat.mem_freed
  2108. += skb->truesize;
  2109. dev_kfree_skb(skb);
  2110. cnt++;
  2111. }
  2112. }
  2113. DBG_PRINT(INTR_DBG,
  2114. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2115. dev->name, cnt, i);
  2116. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2117. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2118. }
  2119. }
  2120. /**
  2121. * stop_nic - To stop the nic
  2122. * @nic ; device private variable.
  2123. * Description:
  2124. * This function does exactly the opposite of what the start_nic()
  2125. * function does. This function is called to stop the device.
  2126. * Return Value:
  2127. * void.
  2128. */
  2129. static void stop_nic(struct s2io_nic *nic)
  2130. {
  2131. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2132. register u64 val64 = 0;
  2133. u16 interruptible;
  2134. struct mac_info *mac_control;
  2135. struct config_param *config;
  2136. mac_control = &nic->mac_control;
  2137. config = &nic->config;
  2138. /* Disable all interrupts */
  2139. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2140. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2141. interruptible |= TX_PIC_INTR;
  2142. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2143. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2144. val64 = readq(&bar0->adapter_control);
  2145. val64 &= ~(ADAPTER_CNTL_EN);
  2146. writeq(val64, &bar0->adapter_control);
  2147. }
  2148. /**
  2149. * fill_rx_buffers - Allocates the Rx side skbs
  2150. * @nic: device private variable
  2151. * @ring_no: ring number
  2152. * Description:
  2153. * The function allocates Rx side skbs and puts the physical
  2154. * address of these buffers into the RxD buffer pointers, so that the NIC
  2155. * can DMA the received frame into these locations.
  2156. * The NIC supports 3 receive modes, viz
  2157. * 1. single buffer,
  2158. * 2. three buffer and
  2159. * 3. Five buffer modes.
  2160. * Each mode defines how many fragments the received frame will be split
  2161. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2162. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2163. * is split into 3 fragments. As of now only single buffer mode is
  2164. * supported.
  2165. * Return Value:
  2166. * SUCCESS on success or an appropriate -ve value on failure.
  2167. */
  2168. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2169. {
  2170. struct net_device *dev = nic->dev;
  2171. struct sk_buff *skb;
  2172. struct RxD_t *rxdp;
  2173. int off, off1, size, block_no, block_no1;
  2174. u32 alloc_tab = 0;
  2175. u32 alloc_cnt;
  2176. struct mac_info *mac_control;
  2177. struct config_param *config;
  2178. u64 tmp;
  2179. struct buffAdd *ba;
  2180. unsigned long flags;
  2181. struct RxD_t *first_rxdp = NULL;
  2182. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2183. struct RxD1 *rxdp1;
  2184. struct RxD3 *rxdp3;
  2185. struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
  2186. mac_control = &nic->mac_control;
  2187. config = &nic->config;
  2188. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2189. atomic_read(&nic->rx_bufs_left[ring_no]);
  2190. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2191. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2192. while (alloc_tab < alloc_cnt) {
  2193. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2194. block_index;
  2195. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2196. rxdp = mac_control->rings[ring_no].
  2197. rx_blocks[block_no].rxds[off].virt_addr;
  2198. if ((block_no == block_no1) && (off == off1) &&
  2199. (rxdp->Host_Control)) {
  2200. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2201. dev->name);
  2202. DBG_PRINT(INTR_DBG, " info equated\n");
  2203. goto end;
  2204. }
  2205. if (off && (off == rxd_count[nic->rxd_mode])) {
  2206. mac_control->rings[ring_no].rx_curr_put_info.
  2207. block_index++;
  2208. if (mac_control->rings[ring_no].rx_curr_put_info.
  2209. block_index == mac_control->rings[ring_no].
  2210. block_count)
  2211. mac_control->rings[ring_no].rx_curr_put_info.
  2212. block_index = 0;
  2213. block_no = mac_control->rings[ring_no].
  2214. rx_curr_put_info.block_index;
  2215. if (off == rxd_count[nic->rxd_mode])
  2216. off = 0;
  2217. mac_control->rings[ring_no].rx_curr_put_info.
  2218. offset = off;
  2219. rxdp = mac_control->rings[ring_no].
  2220. rx_blocks[block_no].block_virt_addr;
  2221. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2222. dev->name, rxdp);
  2223. }
  2224. if(!napi) {
  2225. spin_lock_irqsave(&nic->put_lock, flags);
  2226. mac_control->rings[ring_no].put_pos =
  2227. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2228. spin_unlock_irqrestore(&nic->put_lock, flags);
  2229. } else {
  2230. mac_control->rings[ring_no].put_pos =
  2231. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2232. }
  2233. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2234. ((nic->rxd_mode == RXD_MODE_3B) &&
  2235. (rxdp->Control_2 & BIT(0)))) {
  2236. mac_control->rings[ring_no].rx_curr_put_info.
  2237. offset = off;
  2238. goto end;
  2239. }
  2240. /* calculate size of skb based on ring mode */
  2241. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2242. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2243. if (nic->rxd_mode == RXD_MODE_1)
  2244. size += NET_IP_ALIGN;
  2245. else
  2246. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2247. /* allocate skb */
  2248. skb = dev_alloc_skb(size);
  2249. if(!skb) {
  2250. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2251. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2252. if (first_rxdp) {
  2253. wmb();
  2254. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2255. }
  2256. nic->mac_control.stats_info->sw_stat. \
  2257. mem_alloc_fail_cnt++;
  2258. return -ENOMEM ;
  2259. }
  2260. nic->mac_control.stats_info->sw_stat.mem_allocated
  2261. += skb->truesize;
  2262. if (nic->rxd_mode == RXD_MODE_1) {
  2263. /* 1 buffer mode - normal operation mode */
  2264. rxdp1 = (struct RxD1*)rxdp;
  2265. memset(rxdp, 0, sizeof(struct RxD1));
  2266. skb_reserve(skb, NET_IP_ALIGN);
  2267. rxdp1->Buffer0_ptr = pci_map_single
  2268. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2269. PCI_DMA_FROMDEVICE);
  2270. if( (rxdp1->Buffer0_ptr == 0) ||
  2271. (rxdp1->Buffer0_ptr ==
  2272. DMA_ERROR_CODE))
  2273. goto pci_map_failed;
  2274. rxdp->Control_2 =
  2275. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2276. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2277. /*
  2278. * 2 buffer mode -
  2279. * 2 buffer mode provides 128
  2280. * byte aligned receive buffers.
  2281. */
  2282. rxdp3 = (struct RxD3*)rxdp;
  2283. /* save buffer pointers to avoid frequent dma mapping */
  2284. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2285. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2286. memset(rxdp, 0, sizeof(struct RxD3));
  2287. /* restore the buffer pointers for dma sync*/
  2288. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2289. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2290. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2291. skb_reserve(skb, BUF0_LEN);
  2292. tmp = (u64)(unsigned long) skb->data;
  2293. tmp += ALIGN_SIZE;
  2294. tmp &= ~ALIGN_SIZE;
  2295. skb->data = (void *) (unsigned long)tmp;
  2296. skb_reset_tail_pointer(skb);
  2297. if (!(rxdp3->Buffer0_ptr))
  2298. rxdp3->Buffer0_ptr =
  2299. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2300. PCI_DMA_FROMDEVICE);
  2301. else
  2302. pci_dma_sync_single_for_device(nic->pdev,
  2303. (dma_addr_t) rxdp3->Buffer0_ptr,
  2304. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2305. if( (rxdp3->Buffer0_ptr == 0) ||
  2306. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2307. goto pci_map_failed;
  2308. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2309. if (nic->rxd_mode == RXD_MODE_3B) {
  2310. /* Two buffer mode */
  2311. /*
  2312. * Buffer2 will have L3/L4 header plus
  2313. * L4 payload
  2314. */
  2315. rxdp3->Buffer2_ptr = pci_map_single
  2316. (nic->pdev, skb->data, dev->mtu + 4,
  2317. PCI_DMA_FROMDEVICE);
  2318. if( (rxdp3->Buffer2_ptr == 0) ||
  2319. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2320. goto pci_map_failed;
  2321. rxdp3->Buffer1_ptr =
  2322. pci_map_single(nic->pdev,
  2323. ba->ba_1, BUF1_LEN,
  2324. PCI_DMA_FROMDEVICE);
  2325. if( (rxdp3->Buffer1_ptr == 0) ||
  2326. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2327. pci_unmap_single
  2328. (nic->pdev,
  2329. (dma_addr_t)rxdp3->Buffer2_ptr,
  2330. dev->mtu + 4,
  2331. PCI_DMA_FROMDEVICE);
  2332. goto pci_map_failed;
  2333. }
  2334. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2335. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2336. (dev->mtu + 4);
  2337. }
  2338. rxdp->Control_2 |= BIT(0);
  2339. }
  2340. rxdp->Host_Control = (unsigned long) (skb);
  2341. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2342. rxdp->Control_1 |= RXD_OWN_XENA;
  2343. off++;
  2344. if (off == (rxd_count[nic->rxd_mode] + 1))
  2345. off = 0;
  2346. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2347. rxdp->Control_2 |= SET_RXD_MARKER;
  2348. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2349. if (first_rxdp) {
  2350. wmb();
  2351. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2352. }
  2353. first_rxdp = rxdp;
  2354. }
  2355. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2356. alloc_tab++;
  2357. }
  2358. end:
  2359. /* Transfer ownership of first descriptor to adapter just before
  2360. * exiting. Before that, use memory barrier so that ownership
  2361. * and other fields are seen by adapter correctly.
  2362. */
  2363. if (first_rxdp) {
  2364. wmb();
  2365. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2366. }
  2367. return SUCCESS;
  2368. pci_map_failed:
  2369. stats->pci_map_fail_cnt++;
  2370. stats->mem_freed += skb->truesize;
  2371. dev_kfree_skb_irq(skb);
  2372. return -ENOMEM;
  2373. }
  2374. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2375. {
  2376. struct net_device *dev = sp->dev;
  2377. int j;
  2378. struct sk_buff *skb;
  2379. struct RxD_t *rxdp;
  2380. struct mac_info *mac_control;
  2381. struct buffAdd *ba;
  2382. struct RxD1 *rxdp1;
  2383. struct RxD3 *rxdp3;
  2384. mac_control = &sp->mac_control;
  2385. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2386. rxdp = mac_control->rings[ring_no].
  2387. rx_blocks[blk].rxds[j].virt_addr;
  2388. skb = (struct sk_buff *)
  2389. ((unsigned long) rxdp->Host_Control);
  2390. if (!skb) {
  2391. continue;
  2392. }
  2393. if (sp->rxd_mode == RXD_MODE_1) {
  2394. rxdp1 = (struct RxD1*)rxdp;
  2395. pci_unmap_single(sp->pdev, (dma_addr_t)
  2396. rxdp1->Buffer0_ptr,
  2397. dev->mtu +
  2398. HEADER_ETHERNET_II_802_3_SIZE
  2399. + HEADER_802_2_SIZE +
  2400. HEADER_SNAP_SIZE,
  2401. PCI_DMA_FROMDEVICE);
  2402. memset(rxdp, 0, sizeof(struct RxD1));
  2403. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2404. rxdp3 = (struct RxD3*)rxdp;
  2405. ba = &mac_control->rings[ring_no].
  2406. ba[blk][j];
  2407. pci_unmap_single(sp->pdev, (dma_addr_t)
  2408. rxdp3->Buffer0_ptr,
  2409. BUF0_LEN,
  2410. PCI_DMA_FROMDEVICE);
  2411. pci_unmap_single(sp->pdev, (dma_addr_t)
  2412. rxdp3->Buffer1_ptr,
  2413. BUF1_LEN,
  2414. PCI_DMA_FROMDEVICE);
  2415. pci_unmap_single(sp->pdev, (dma_addr_t)
  2416. rxdp3->Buffer2_ptr,
  2417. dev->mtu + 4,
  2418. PCI_DMA_FROMDEVICE);
  2419. memset(rxdp, 0, sizeof(struct RxD3));
  2420. }
  2421. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2422. dev_kfree_skb(skb);
  2423. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2424. }
  2425. }
  2426. /**
  2427. * free_rx_buffers - Frees all Rx buffers
  2428. * @sp: device private variable.
  2429. * Description:
  2430. * This function will free all Rx buffers allocated by host.
  2431. * Return Value:
  2432. * NONE.
  2433. */
  2434. static void free_rx_buffers(struct s2io_nic *sp)
  2435. {
  2436. struct net_device *dev = sp->dev;
  2437. int i, blk = 0, buf_cnt = 0;
  2438. struct mac_info *mac_control;
  2439. struct config_param *config;
  2440. mac_control = &sp->mac_control;
  2441. config = &sp->config;
  2442. for (i = 0; i < config->rx_ring_num; i++) {
  2443. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2444. free_rxd_blk(sp,i,blk);
  2445. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2446. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2447. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2448. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2449. atomic_set(&sp->rx_bufs_left[i], 0);
  2450. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2451. dev->name, buf_cnt, i);
  2452. }
  2453. }
  2454. /**
  2455. * s2io_poll - Rx interrupt handler for NAPI support
  2456. * @napi : pointer to the napi structure.
  2457. * @budget : The number of packets that were budgeted to be processed
  2458. * during one pass through the 'Poll" function.
  2459. * Description:
  2460. * Comes into picture only if NAPI support has been incorporated. It does
  2461. * the same thing that rx_intr_handler does, but not in a interrupt context
  2462. * also It will process only a given number of packets.
  2463. * Return value:
  2464. * 0 on success and 1 if there are No Rx packets to be processed.
  2465. */
  2466. static int s2io_poll(struct napi_struct *napi, int budget)
  2467. {
  2468. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2469. struct net_device *dev = nic->dev;
  2470. int pkt_cnt = 0, org_pkts_to_process;
  2471. struct mac_info *mac_control;
  2472. struct config_param *config;
  2473. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2474. int i;
  2475. if (!is_s2io_card_up(nic))
  2476. return 0;
  2477. mac_control = &nic->mac_control;
  2478. config = &nic->config;
  2479. nic->pkts_to_process = budget;
  2480. org_pkts_to_process = nic->pkts_to_process;
  2481. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2482. readl(&bar0->rx_traffic_int);
  2483. for (i = 0; i < config->rx_ring_num; i++) {
  2484. rx_intr_handler(&mac_control->rings[i]);
  2485. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2486. if (!nic->pkts_to_process) {
  2487. /* Quota for the current iteration has been met */
  2488. goto no_rx;
  2489. }
  2490. }
  2491. netif_rx_complete(dev, napi);
  2492. for (i = 0; i < config->rx_ring_num; i++) {
  2493. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2494. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2495. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2496. break;
  2497. }
  2498. }
  2499. /* Re enable the Rx interrupts. */
  2500. writeq(0x0, &bar0->rx_traffic_mask);
  2501. readl(&bar0->rx_traffic_mask);
  2502. return pkt_cnt;
  2503. no_rx:
  2504. for (i = 0; i < config->rx_ring_num; i++) {
  2505. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2506. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2507. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2508. break;
  2509. }
  2510. }
  2511. return pkt_cnt;
  2512. }
  2513. #ifdef CONFIG_NET_POLL_CONTROLLER
  2514. /**
  2515. * s2io_netpoll - netpoll event handler entry point
  2516. * @dev : pointer to the device structure.
  2517. * Description:
  2518. * This function will be called by upper layer to check for events on the
  2519. * interface in situations where interrupts are disabled. It is used for
  2520. * specific in-kernel networking tasks, such as remote consoles and kernel
  2521. * debugging over the network (example netdump in RedHat).
  2522. */
  2523. static void s2io_netpoll(struct net_device *dev)
  2524. {
  2525. struct s2io_nic *nic = dev->priv;
  2526. struct mac_info *mac_control;
  2527. struct config_param *config;
  2528. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2529. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2530. int i;
  2531. if (pci_channel_offline(nic->pdev))
  2532. return;
  2533. disable_irq(dev->irq);
  2534. mac_control = &nic->mac_control;
  2535. config = &nic->config;
  2536. writeq(val64, &bar0->rx_traffic_int);
  2537. writeq(val64, &bar0->tx_traffic_int);
  2538. /* we need to free up the transmitted skbufs or else netpoll will
  2539. * run out of skbs and will fail and eventually netpoll application such
  2540. * as netdump will fail.
  2541. */
  2542. for (i = 0; i < config->tx_fifo_num; i++)
  2543. tx_intr_handler(&mac_control->fifos[i]);
  2544. /* check for received packet and indicate up to network */
  2545. for (i = 0; i < config->rx_ring_num; i++)
  2546. rx_intr_handler(&mac_control->rings[i]);
  2547. for (i = 0; i < config->rx_ring_num; i++) {
  2548. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2549. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2550. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2551. break;
  2552. }
  2553. }
  2554. enable_irq(dev->irq);
  2555. return;
  2556. }
  2557. #endif
  2558. /**
  2559. * rx_intr_handler - Rx interrupt handler
  2560. * @nic: device private variable.
  2561. * Description:
  2562. * If the interrupt is because of a received frame or if the
  2563. * receive ring contains fresh as yet un-processed frames,this function is
  2564. * called. It picks out the RxD at which place the last Rx processing had
  2565. * stopped and sends the skb to the OSM's Rx handler and then increments
  2566. * the offset.
  2567. * Return Value:
  2568. * NONE.
  2569. */
  2570. static void rx_intr_handler(struct ring_info *ring_data)
  2571. {
  2572. struct s2io_nic *nic = ring_data->nic;
  2573. struct net_device *dev = (struct net_device *) nic->dev;
  2574. int get_block, put_block, put_offset;
  2575. struct rx_curr_get_info get_info, put_info;
  2576. struct RxD_t *rxdp;
  2577. struct sk_buff *skb;
  2578. int pkt_cnt = 0;
  2579. int i;
  2580. struct RxD1* rxdp1;
  2581. struct RxD3* rxdp3;
  2582. spin_lock(&nic->rx_lock);
  2583. get_info = ring_data->rx_curr_get_info;
  2584. get_block = get_info.block_index;
  2585. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2586. put_block = put_info.block_index;
  2587. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2588. if (!napi) {
  2589. spin_lock(&nic->put_lock);
  2590. put_offset = ring_data->put_pos;
  2591. spin_unlock(&nic->put_lock);
  2592. } else
  2593. put_offset = ring_data->put_pos;
  2594. while (RXD_IS_UP2DT(rxdp)) {
  2595. /*
  2596. * If your are next to put index then it's
  2597. * FIFO full condition
  2598. */
  2599. if ((get_block == put_block) &&
  2600. (get_info.offset + 1) == put_info.offset) {
  2601. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2602. break;
  2603. }
  2604. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2605. if (skb == NULL) {
  2606. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2607. dev->name);
  2608. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2609. spin_unlock(&nic->rx_lock);
  2610. return;
  2611. }
  2612. if (nic->rxd_mode == RXD_MODE_1) {
  2613. rxdp1 = (struct RxD1*)rxdp;
  2614. pci_unmap_single(nic->pdev, (dma_addr_t)
  2615. rxdp1->Buffer0_ptr,
  2616. dev->mtu +
  2617. HEADER_ETHERNET_II_802_3_SIZE +
  2618. HEADER_802_2_SIZE +
  2619. HEADER_SNAP_SIZE,
  2620. PCI_DMA_FROMDEVICE);
  2621. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2622. rxdp3 = (struct RxD3*)rxdp;
  2623. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2624. rxdp3->Buffer0_ptr,
  2625. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2626. pci_unmap_single(nic->pdev, (dma_addr_t)
  2627. rxdp3->Buffer2_ptr,
  2628. dev->mtu + 4,
  2629. PCI_DMA_FROMDEVICE);
  2630. }
  2631. prefetch(skb->data);
  2632. rx_osm_handler(ring_data, rxdp);
  2633. get_info.offset++;
  2634. ring_data->rx_curr_get_info.offset = get_info.offset;
  2635. rxdp = ring_data->rx_blocks[get_block].
  2636. rxds[get_info.offset].virt_addr;
  2637. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2638. get_info.offset = 0;
  2639. ring_data->rx_curr_get_info.offset = get_info.offset;
  2640. get_block++;
  2641. if (get_block == ring_data->block_count)
  2642. get_block = 0;
  2643. ring_data->rx_curr_get_info.block_index = get_block;
  2644. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2645. }
  2646. nic->pkts_to_process -= 1;
  2647. if ((napi) && (!nic->pkts_to_process))
  2648. break;
  2649. pkt_cnt++;
  2650. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2651. break;
  2652. }
  2653. if (nic->lro) {
  2654. /* Clear all LRO sessions before exiting */
  2655. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2656. struct lro *lro = &nic->lro0_n[i];
  2657. if (lro->in_use) {
  2658. update_L3L4_header(nic, lro);
  2659. queue_rx_frame(lro->parent);
  2660. clear_lro_session(lro);
  2661. }
  2662. }
  2663. }
  2664. spin_unlock(&nic->rx_lock);
  2665. }
  2666. /**
  2667. * tx_intr_handler - Transmit interrupt handler
  2668. * @nic : device private variable
  2669. * Description:
  2670. * If an interrupt was raised to indicate DMA complete of the
  2671. * Tx packet, this function is called. It identifies the last TxD
  2672. * whose buffer was freed and frees all skbs whose data have already
  2673. * DMA'ed into the NICs internal memory.
  2674. * Return Value:
  2675. * NONE
  2676. */
  2677. static void tx_intr_handler(struct fifo_info *fifo_data)
  2678. {
  2679. struct s2io_nic *nic = fifo_data->nic;
  2680. struct net_device *dev = (struct net_device *) nic->dev;
  2681. struct tx_curr_get_info get_info, put_info;
  2682. struct sk_buff *skb;
  2683. struct TxD *txdlp;
  2684. u8 err_mask;
  2685. get_info = fifo_data->tx_curr_get_info;
  2686. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2687. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2688. list_virt_addr;
  2689. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2690. (get_info.offset != put_info.offset) &&
  2691. (txdlp->Host_Control)) {
  2692. /* Check for TxD errors */
  2693. if (txdlp->Control_1 & TXD_T_CODE) {
  2694. unsigned long long err;
  2695. err = txdlp->Control_1 & TXD_T_CODE;
  2696. if (err & 0x1) {
  2697. nic->mac_control.stats_info->sw_stat.
  2698. parity_err_cnt++;
  2699. }
  2700. /* update t_code statistics */
  2701. err_mask = err >> 48;
  2702. switch(err_mask) {
  2703. case 2:
  2704. nic->mac_control.stats_info->sw_stat.
  2705. tx_buf_abort_cnt++;
  2706. break;
  2707. case 3:
  2708. nic->mac_control.stats_info->sw_stat.
  2709. tx_desc_abort_cnt++;
  2710. break;
  2711. case 7:
  2712. nic->mac_control.stats_info->sw_stat.
  2713. tx_parity_err_cnt++;
  2714. break;
  2715. case 10:
  2716. nic->mac_control.stats_info->sw_stat.
  2717. tx_link_loss_cnt++;
  2718. break;
  2719. case 15:
  2720. nic->mac_control.stats_info->sw_stat.
  2721. tx_list_proc_err_cnt++;
  2722. break;
  2723. }
  2724. }
  2725. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2726. if (skb == NULL) {
  2727. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2728. __FUNCTION__);
  2729. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2730. return;
  2731. }
  2732. /* Updating the statistics block */
  2733. nic->stats.tx_bytes += skb->len;
  2734. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2735. dev_kfree_skb_irq(skb);
  2736. get_info.offset++;
  2737. if (get_info.offset == get_info.fifo_len + 1)
  2738. get_info.offset = 0;
  2739. txdlp = (struct TxD *) fifo_data->list_info
  2740. [get_info.offset].list_virt_addr;
  2741. fifo_data->tx_curr_get_info.offset =
  2742. get_info.offset;
  2743. }
  2744. spin_lock(&nic->tx_lock);
  2745. if (netif_queue_stopped(dev))
  2746. netif_wake_queue(dev);
  2747. spin_unlock(&nic->tx_lock);
  2748. }
  2749. /**
  2750. * s2io_mdio_write - Function to write in to MDIO registers
  2751. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2752. * @addr : address value
  2753. * @value : data value
  2754. * @dev : pointer to net_device structure
  2755. * Description:
  2756. * This function is used to write values to the MDIO registers
  2757. * NONE
  2758. */
  2759. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2760. {
  2761. u64 val64 = 0x0;
  2762. struct s2io_nic *sp = dev->priv;
  2763. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2764. //address transaction
  2765. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2766. | MDIO_MMD_DEV_ADDR(mmd_type)
  2767. | MDIO_MMS_PRT_ADDR(0x0);
  2768. writeq(val64, &bar0->mdio_control);
  2769. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2770. writeq(val64, &bar0->mdio_control);
  2771. udelay(100);
  2772. //Data transaction
  2773. val64 = 0x0;
  2774. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2775. | MDIO_MMD_DEV_ADDR(mmd_type)
  2776. | MDIO_MMS_PRT_ADDR(0x0)
  2777. | MDIO_MDIO_DATA(value)
  2778. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2779. writeq(val64, &bar0->mdio_control);
  2780. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2781. writeq(val64, &bar0->mdio_control);
  2782. udelay(100);
  2783. val64 = 0x0;
  2784. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2785. | MDIO_MMD_DEV_ADDR(mmd_type)
  2786. | MDIO_MMS_PRT_ADDR(0x0)
  2787. | MDIO_OP(MDIO_OP_READ_TRANS);
  2788. writeq(val64, &bar0->mdio_control);
  2789. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2790. writeq(val64, &bar0->mdio_control);
  2791. udelay(100);
  2792. }
  2793. /**
  2794. * s2io_mdio_read - Function to write in to MDIO registers
  2795. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2796. * @addr : address value
  2797. * @dev : pointer to net_device structure
  2798. * Description:
  2799. * This function is used to read values to the MDIO registers
  2800. * NONE
  2801. */
  2802. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2803. {
  2804. u64 val64 = 0x0;
  2805. u64 rval64 = 0x0;
  2806. struct s2io_nic *sp = dev->priv;
  2807. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2808. /* address transaction */
  2809. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2810. | MDIO_MMD_DEV_ADDR(mmd_type)
  2811. | MDIO_MMS_PRT_ADDR(0x0);
  2812. writeq(val64, &bar0->mdio_control);
  2813. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2814. writeq(val64, &bar0->mdio_control);
  2815. udelay(100);
  2816. /* Data transaction */
  2817. val64 = 0x0;
  2818. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2819. | MDIO_MMD_DEV_ADDR(mmd_type)
  2820. | MDIO_MMS_PRT_ADDR(0x0)
  2821. | MDIO_OP(MDIO_OP_READ_TRANS);
  2822. writeq(val64, &bar0->mdio_control);
  2823. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2824. writeq(val64, &bar0->mdio_control);
  2825. udelay(100);
  2826. /* Read the value from regs */
  2827. rval64 = readq(&bar0->mdio_control);
  2828. rval64 = rval64 & 0xFFFF0000;
  2829. rval64 = rval64 >> 16;
  2830. return rval64;
  2831. }
  2832. /**
  2833. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2834. * @counter : couter value to be updated
  2835. * @flag : flag to indicate the status
  2836. * @type : counter type
  2837. * Description:
  2838. * This function is to check the status of the xpak counters value
  2839. * NONE
  2840. */
  2841. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2842. {
  2843. u64 mask = 0x3;
  2844. u64 val64;
  2845. int i;
  2846. for(i = 0; i <index; i++)
  2847. mask = mask << 0x2;
  2848. if(flag > 0)
  2849. {
  2850. *counter = *counter + 1;
  2851. val64 = *regs_stat & mask;
  2852. val64 = val64 >> (index * 0x2);
  2853. val64 = val64 + 1;
  2854. if(val64 == 3)
  2855. {
  2856. switch(type)
  2857. {
  2858. case 1:
  2859. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2860. "service. Excessive temperatures may "
  2861. "result in premature transceiver "
  2862. "failure \n");
  2863. break;
  2864. case 2:
  2865. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2866. "service Excessive bias currents may "
  2867. "indicate imminent laser diode "
  2868. "failure \n");
  2869. break;
  2870. case 3:
  2871. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2872. "service Excessive laser output "
  2873. "power may saturate far-end "
  2874. "receiver\n");
  2875. break;
  2876. default:
  2877. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2878. "type \n");
  2879. }
  2880. val64 = 0x0;
  2881. }
  2882. val64 = val64 << (index * 0x2);
  2883. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2884. } else {
  2885. *regs_stat = *regs_stat & (~mask);
  2886. }
  2887. }
  2888. /**
  2889. * s2io_updt_xpak_counter - Function to update the xpak counters
  2890. * @dev : pointer to net_device struct
  2891. * Description:
  2892. * This function is to upate the status of the xpak counters value
  2893. * NONE
  2894. */
  2895. static void s2io_updt_xpak_counter(struct net_device *dev)
  2896. {
  2897. u16 flag = 0x0;
  2898. u16 type = 0x0;
  2899. u16 val16 = 0x0;
  2900. u64 val64 = 0x0;
  2901. u64 addr = 0x0;
  2902. struct s2io_nic *sp = dev->priv;
  2903. struct stat_block *stat_info = sp->mac_control.stats_info;
  2904. /* Check the communication with the MDIO slave */
  2905. addr = 0x0000;
  2906. val64 = 0x0;
  2907. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2908. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2909. {
  2910. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2911. "Returned %llx\n", (unsigned long long)val64);
  2912. return;
  2913. }
  2914. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2915. if(val64 != 0x2040)
  2916. {
  2917. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2918. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2919. (unsigned long long)val64);
  2920. return;
  2921. }
  2922. /* Loading the DOM register to MDIO register */
  2923. addr = 0xA100;
  2924. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2925. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2926. /* Reading the Alarm flags */
  2927. addr = 0xA070;
  2928. val64 = 0x0;
  2929. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2930. flag = CHECKBIT(val64, 0x7);
  2931. type = 1;
  2932. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2933. &stat_info->xpak_stat.xpak_regs_stat,
  2934. 0x0, flag, type);
  2935. if(CHECKBIT(val64, 0x6))
  2936. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2937. flag = CHECKBIT(val64, 0x3);
  2938. type = 2;
  2939. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2940. &stat_info->xpak_stat.xpak_regs_stat,
  2941. 0x2, flag, type);
  2942. if(CHECKBIT(val64, 0x2))
  2943. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2944. flag = CHECKBIT(val64, 0x1);
  2945. type = 3;
  2946. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2947. &stat_info->xpak_stat.xpak_regs_stat,
  2948. 0x4, flag, type);
  2949. if(CHECKBIT(val64, 0x0))
  2950. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2951. /* Reading the Warning flags */
  2952. addr = 0xA074;
  2953. val64 = 0x0;
  2954. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2955. if(CHECKBIT(val64, 0x7))
  2956. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2957. if(CHECKBIT(val64, 0x6))
  2958. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2959. if(CHECKBIT(val64, 0x3))
  2960. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2961. if(CHECKBIT(val64, 0x2))
  2962. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2963. if(CHECKBIT(val64, 0x1))
  2964. stat_info->xpak_stat.warn_laser_output_power_high++;
  2965. if(CHECKBIT(val64, 0x0))
  2966. stat_info->xpak_stat.warn_laser_output_power_low++;
  2967. }
  2968. /**
  2969. * wait_for_cmd_complete - waits for a command to complete.
  2970. * @sp : private member of the device structure, which is a pointer to the
  2971. * s2io_nic structure.
  2972. * Description: Function that waits for a command to Write into RMAC
  2973. * ADDR DATA registers to be completed and returns either success or
  2974. * error depending on whether the command was complete or not.
  2975. * Return value:
  2976. * SUCCESS on success and FAILURE on failure.
  2977. */
  2978. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  2979. int bit_state)
  2980. {
  2981. int ret = FAILURE, cnt = 0, delay = 1;
  2982. u64 val64;
  2983. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  2984. return FAILURE;
  2985. do {
  2986. val64 = readq(addr);
  2987. if (bit_state == S2IO_BIT_RESET) {
  2988. if (!(val64 & busy_bit)) {
  2989. ret = SUCCESS;
  2990. break;
  2991. }
  2992. } else {
  2993. if (!(val64 & busy_bit)) {
  2994. ret = SUCCESS;
  2995. break;
  2996. }
  2997. }
  2998. if(in_interrupt())
  2999. mdelay(delay);
  3000. else
  3001. msleep(delay);
  3002. if (++cnt >= 10)
  3003. delay = 50;
  3004. } while (cnt < 20);
  3005. return ret;
  3006. }
  3007. /*
  3008. * check_pci_device_id - Checks if the device id is supported
  3009. * @id : device id
  3010. * Description: Function to check if the pci device id is supported by driver.
  3011. * Return value: Actual device id if supported else PCI_ANY_ID
  3012. */
  3013. static u16 check_pci_device_id(u16 id)
  3014. {
  3015. switch (id) {
  3016. case PCI_DEVICE_ID_HERC_WIN:
  3017. case PCI_DEVICE_ID_HERC_UNI:
  3018. return XFRAME_II_DEVICE;
  3019. case PCI_DEVICE_ID_S2IO_UNI:
  3020. case PCI_DEVICE_ID_S2IO_WIN:
  3021. return XFRAME_I_DEVICE;
  3022. default:
  3023. return PCI_ANY_ID;
  3024. }
  3025. }
  3026. /**
  3027. * s2io_reset - Resets the card.
  3028. * @sp : private member of the device structure.
  3029. * Description: Function to Reset the card. This function then also
  3030. * restores the previously saved PCI configuration space registers as
  3031. * the card reset also resets the configuration space.
  3032. * Return value:
  3033. * void.
  3034. */
  3035. static void s2io_reset(struct s2io_nic * sp)
  3036. {
  3037. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3038. u64 val64;
  3039. u16 subid, pci_cmd;
  3040. int i;
  3041. u16 val16;
  3042. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3043. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3044. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3045. __FUNCTION__, sp->dev->name);
  3046. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3047. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3048. val64 = SW_RESET_ALL;
  3049. writeq(val64, &bar0->sw_reset);
  3050. if (strstr(sp->product_name, "CX4")) {
  3051. msleep(750);
  3052. }
  3053. msleep(250);
  3054. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3055. /* Restore the PCI state saved during initialization. */
  3056. pci_restore_state(sp->pdev);
  3057. pci_read_config_word(sp->pdev, 0x2, &val16);
  3058. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3059. break;
  3060. msleep(200);
  3061. }
  3062. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3063. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3064. }
  3065. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3066. s2io_init_pci(sp);
  3067. /* Set swapper to enable I/O register access */
  3068. s2io_set_swapper(sp);
  3069. /* Restore the MSIX table entries from local variables */
  3070. restore_xmsi_data(sp);
  3071. /* Clear certain PCI/PCI-X fields after reset */
  3072. if (sp->device_type == XFRAME_II_DEVICE) {
  3073. /* Clear "detected parity error" bit */
  3074. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3075. /* Clearing PCIX Ecc status register */
  3076. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3077. /* Clearing PCI_STATUS error reflected here */
  3078. writeq(BIT(62), &bar0->txpic_int_reg);
  3079. }
  3080. /* Reset device statistics maintained by OS */
  3081. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3082. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3083. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3084. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3085. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3086. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3087. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3088. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3089. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3090. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3091. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3092. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3093. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3094. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3095. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3096. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3097. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3098. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3099. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3100. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3101. /* SXE-002: Configure link and activity LED to turn it off */
  3102. subid = sp->pdev->subsystem_device;
  3103. if (((subid & 0xFF) >= 0x07) &&
  3104. (sp->device_type == XFRAME_I_DEVICE)) {
  3105. val64 = readq(&bar0->gpio_control);
  3106. val64 |= 0x0000800000000000ULL;
  3107. writeq(val64, &bar0->gpio_control);
  3108. val64 = 0x0411040400000000ULL;
  3109. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3110. }
  3111. /*
  3112. * Clear spurious ECC interrupts that would have occured on
  3113. * XFRAME II cards after reset.
  3114. */
  3115. if (sp->device_type == XFRAME_II_DEVICE) {
  3116. val64 = readq(&bar0->pcc_err_reg);
  3117. writeq(val64, &bar0->pcc_err_reg);
  3118. }
  3119. /* restore the previously assigned mac address */
  3120. s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
  3121. sp->device_enabled_once = FALSE;
  3122. }
  3123. /**
  3124. * s2io_set_swapper - to set the swapper controle on the card
  3125. * @sp : private member of the device structure,
  3126. * pointer to the s2io_nic structure.
  3127. * Description: Function to set the swapper control on the card
  3128. * correctly depending on the 'endianness' of the system.
  3129. * Return value:
  3130. * SUCCESS on success and FAILURE on failure.
  3131. */
  3132. static int s2io_set_swapper(struct s2io_nic * sp)
  3133. {
  3134. struct net_device *dev = sp->dev;
  3135. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3136. u64 val64, valt, valr;
  3137. /*
  3138. * Set proper endian settings and verify the same by reading
  3139. * the PIF Feed-back register.
  3140. */
  3141. val64 = readq(&bar0->pif_rd_swapper_fb);
  3142. if (val64 != 0x0123456789ABCDEFULL) {
  3143. int i = 0;
  3144. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3145. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3146. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3147. 0}; /* FE=0, SE=0 */
  3148. while(i<4) {
  3149. writeq(value[i], &bar0->swapper_ctrl);
  3150. val64 = readq(&bar0->pif_rd_swapper_fb);
  3151. if (val64 == 0x0123456789ABCDEFULL)
  3152. break;
  3153. i++;
  3154. }
  3155. if (i == 4) {
  3156. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3157. dev->name);
  3158. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3159. (unsigned long long) val64);
  3160. return FAILURE;
  3161. }
  3162. valr = value[i];
  3163. } else {
  3164. valr = readq(&bar0->swapper_ctrl);
  3165. }
  3166. valt = 0x0123456789ABCDEFULL;
  3167. writeq(valt, &bar0->xmsi_address);
  3168. val64 = readq(&bar0->xmsi_address);
  3169. if(val64 != valt) {
  3170. int i = 0;
  3171. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3172. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3173. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3174. 0}; /* FE=0, SE=0 */
  3175. while(i<4) {
  3176. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3177. writeq(valt, &bar0->xmsi_address);
  3178. val64 = readq(&bar0->xmsi_address);
  3179. if(val64 == valt)
  3180. break;
  3181. i++;
  3182. }
  3183. if(i == 4) {
  3184. unsigned long long x = val64;
  3185. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3186. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3187. return FAILURE;
  3188. }
  3189. }
  3190. val64 = readq(&bar0->swapper_ctrl);
  3191. val64 &= 0xFFFF000000000000ULL;
  3192. #ifdef __BIG_ENDIAN
  3193. /*
  3194. * The device by default set to a big endian format, so a
  3195. * big endian driver need not set anything.
  3196. */
  3197. val64 |= (SWAPPER_CTRL_TXP_FE |
  3198. SWAPPER_CTRL_TXP_SE |
  3199. SWAPPER_CTRL_TXD_R_FE |
  3200. SWAPPER_CTRL_TXD_W_FE |
  3201. SWAPPER_CTRL_TXF_R_FE |
  3202. SWAPPER_CTRL_RXD_R_FE |
  3203. SWAPPER_CTRL_RXD_W_FE |
  3204. SWAPPER_CTRL_RXF_W_FE |
  3205. SWAPPER_CTRL_XMSI_FE |
  3206. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3207. if (sp->config.intr_type == INTA)
  3208. val64 |= SWAPPER_CTRL_XMSI_SE;
  3209. writeq(val64, &bar0->swapper_ctrl);
  3210. #else
  3211. /*
  3212. * Initially we enable all bits to make it accessible by the
  3213. * driver, then we selectively enable only those bits that
  3214. * we want to set.
  3215. */
  3216. val64 |= (SWAPPER_CTRL_TXP_FE |
  3217. SWAPPER_CTRL_TXP_SE |
  3218. SWAPPER_CTRL_TXD_R_FE |
  3219. SWAPPER_CTRL_TXD_R_SE |
  3220. SWAPPER_CTRL_TXD_W_FE |
  3221. SWAPPER_CTRL_TXD_W_SE |
  3222. SWAPPER_CTRL_TXF_R_FE |
  3223. SWAPPER_CTRL_RXD_R_FE |
  3224. SWAPPER_CTRL_RXD_R_SE |
  3225. SWAPPER_CTRL_RXD_W_FE |
  3226. SWAPPER_CTRL_RXD_W_SE |
  3227. SWAPPER_CTRL_RXF_W_FE |
  3228. SWAPPER_CTRL_XMSI_FE |
  3229. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3230. if (sp->config.intr_type == INTA)
  3231. val64 |= SWAPPER_CTRL_XMSI_SE;
  3232. writeq(val64, &bar0->swapper_ctrl);
  3233. #endif
  3234. val64 = readq(&bar0->swapper_ctrl);
  3235. /*
  3236. * Verifying if endian settings are accurate by reading a
  3237. * feedback register.
  3238. */
  3239. val64 = readq(&bar0->pif_rd_swapper_fb);
  3240. if (val64 != 0x0123456789ABCDEFULL) {
  3241. /* Endian settings are incorrect, calls for another dekko. */
  3242. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3243. dev->name);
  3244. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3245. (unsigned long long) val64);
  3246. return FAILURE;
  3247. }
  3248. return SUCCESS;
  3249. }
  3250. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3251. {
  3252. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3253. u64 val64;
  3254. int ret = 0, cnt = 0;
  3255. do {
  3256. val64 = readq(&bar0->xmsi_access);
  3257. if (!(val64 & BIT(15)))
  3258. break;
  3259. mdelay(1);
  3260. cnt++;
  3261. } while(cnt < 5);
  3262. if (cnt == 5) {
  3263. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3264. ret = 1;
  3265. }
  3266. return ret;
  3267. }
  3268. static void restore_xmsi_data(struct s2io_nic *nic)
  3269. {
  3270. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3271. u64 val64;
  3272. int i;
  3273. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3274. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3275. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3276. val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
  3277. writeq(val64, &bar0->xmsi_access);
  3278. if (wait_for_msix_trans(nic, i)) {
  3279. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3280. continue;
  3281. }
  3282. }
  3283. }
  3284. static void store_xmsi_data(struct s2io_nic *nic)
  3285. {
  3286. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3287. u64 val64, addr, data;
  3288. int i;
  3289. /* Store and display */
  3290. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3291. val64 = (BIT(15) | vBIT(i, 26, 6));
  3292. writeq(val64, &bar0->xmsi_access);
  3293. if (wait_for_msix_trans(nic, i)) {
  3294. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3295. continue;
  3296. }
  3297. addr = readq(&bar0->xmsi_address);
  3298. data = readq(&bar0->xmsi_data);
  3299. if (addr && data) {
  3300. nic->msix_info[i].addr = addr;
  3301. nic->msix_info[i].data = data;
  3302. }
  3303. }
  3304. }
  3305. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3306. {
  3307. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3308. u64 tx_mat, rx_mat;
  3309. u16 msi_control; /* Temp variable */
  3310. int ret, i, j, msix_indx = 1;
  3311. nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
  3312. GFP_KERNEL);
  3313. if (!nic->entries) {
  3314. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3315. __FUNCTION__);
  3316. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3317. return -ENOMEM;
  3318. }
  3319. nic->mac_control.stats_info->sw_stat.mem_allocated
  3320. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3321. nic->s2io_entries =
  3322. kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
  3323. GFP_KERNEL);
  3324. if (!nic->s2io_entries) {
  3325. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3326. __FUNCTION__);
  3327. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3328. kfree(nic->entries);
  3329. nic->mac_control.stats_info->sw_stat.mem_freed
  3330. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3331. return -ENOMEM;
  3332. }
  3333. nic->mac_control.stats_info->sw_stat.mem_allocated
  3334. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3335. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3336. nic->entries[i].entry = i;
  3337. nic->s2io_entries[i].entry = i;
  3338. nic->s2io_entries[i].arg = NULL;
  3339. nic->s2io_entries[i].in_use = 0;
  3340. }
  3341. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3342. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3343. tx_mat |= TX_MAT_SET(i, msix_indx);
  3344. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3345. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3346. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3347. }
  3348. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3349. if (!nic->config.bimodal) {
  3350. rx_mat = readq(&bar0->rx_mat);
  3351. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3352. rx_mat |= RX_MAT_SET(j, msix_indx);
  3353. nic->s2io_entries[msix_indx].arg
  3354. = &nic->mac_control.rings[j];
  3355. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3356. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3357. }
  3358. writeq(rx_mat, &bar0->rx_mat);
  3359. } else {
  3360. tx_mat = readq(&bar0->tx_mat0_n[7]);
  3361. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3362. tx_mat |= TX_MAT_SET(i, msix_indx);
  3363. nic->s2io_entries[msix_indx].arg
  3364. = &nic->mac_control.rings[j];
  3365. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3366. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3367. }
  3368. writeq(tx_mat, &bar0->tx_mat0_n[7]);
  3369. }
  3370. nic->avail_msix_vectors = 0;
  3371. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3372. /* We fail init if error or we get less vectors than min required */
  3373. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3374. nic->avail_msix_vectors = ret;
  3375. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3376. }
  3377. if (ret) {
  3378. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3379. kfree(nic->entries);
  3380. nic->mac_control.stats_info->sw_stat.mem_freed
  3381. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3382. kfree(nic->s2io_entries);
  3383. nic->mac_control.stats_info->sw_stat.mem_freed
  3384. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3385. nic->entries = NULL;
  3386. nic->s2io_entries = NULL;
  3387. nic->avail_msix_vectors = 0;
  3388. return -ENOMEM;
  3389. }
  3390. if (!nic->avail_msix_vectors)
  3391. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3392. /*
  3393. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3394. * in the herc NIC. (Temp change, needs to be removed later)
  3395. */
  3396. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3397. msi_control |= 0x1; /* Enable MSI */
  3398. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3399. return 0;
  3400. }
  3401. /* Handle software interrupt used during MSI(X) test */
  3402. static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
  3403. {
  3404. struct s2io_nic *sp = dev_id;
  3405. sp->msi_detected = 1;
  3406. wake_up(&sp->msi_wait);
  3407. return IRQ_HANDLED;
  3408. }
  3409. /* Test interrupt path by forcing a a software IRQ */
  3410. static int __devinit s2io_test_msi(struct s2io_nic *sp)
  3411. {
  3412. struct pci_dev *pdev = sp->pdev;
  3413. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3414. int err;
  3415. u64 val64, saved64;
  3416. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3417. sp->name, sp);
  3418. if (err) {
  3419. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3420. sp->dev->name, pci_name(pdev), pdev->irq);
  3421. return err;
  3422. }
  3423. init_waitqueue_head (&sp->msi_wait);
  3424. sp->msi_detected = 0;
  3425. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3426. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3427. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3428. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3429. writeq(val64, &bar0->scheduled_int_ctrl);
  3430. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3431. if (!sp->msi_detected) {
  3432. /* MSI(X) test failed, go back to INTx mode */
  3433. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
  3434. "using MSI(X) during test\n", sp->dev->name,
  3435. pci_name(pdev));
  3436. err = -EOPNOTSUPP;
  3437. }
  3438. free_irq(sp->entries[1].vector, sp);
  3439. writeq(saved64, &bar0->scheduled_int_ctrl);
  3440. return err;
  3441. }
  3442. /* ********************************************************* *
  3443. * Functions defined below concern the OS part of the driver *
  3444. * ********************************************************* */
  3445. /**
  3446. * s2io_open - open entry point of the driver
  3447. * @dev : pointer to the device structure.
  3448. * Description:
  3449. * This function is the open entry point of the driver. It mainly calls a
  3450. * function to allocate Rx buffers and inserts them into the buffer
  3451. * descriptors and then enables the Rx part of the NIC.
  3452. * Return value:
  3453. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3454. * file on failure.
  3455. */
  3456. static int s2io_open(struct net_device *dev)
  3457. {
  3458. struct s2io_nic *sp = dev->priv;
  3459. int err = 0;
  3460. /*
  3461. * Make sure you have link off by default every time
  3462. * Nic is initialized
  3463. */
  3464. netif_carrier_off(dev);
  3465. sp->last_link_state = 0;
  3466. napi_enable(&sp->napi);
  3467. if (sp->config.intr_type == MSI_X) {
  3468. int ret = s2io_enable_msi_x(sp);
  3469. if (!ret) {
  3470. u16 msi_control;
  3471. ret = s2io_test_msi(sp);
  3472. /* rollback MSI-X, will re-enable during add_isr() */
  3473. kfree(sp->entries);
  3474. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3475. (MAX_REQUESTED_MSI_X *
  3476. sizeof(struct msix_entry));
  3477. kfree(sp->s2io_entries);
  3478. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3479. (MAX_REQUESTED_MSI_X *
  3480. sizeof(struct s2io_msix_entry));
  3481. sp->entries = NULL;
  3482. sp->s2io_entries = NULL;
  3483. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3484. msi_control &= 0xFFFE; /* Disable MSI */
  3485. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3486. pci_disable_msix(sp->pdev);
  3487. }
  3488. if (ret) {
  3489. DBG_PRINT(ERR_DBG,
  3490. "%s: MSI-X requested but failed to enable\n",
  3491. dev->name);
  3492. sp->config.intr_type = INTA;
  3493. }
  3494. }
  3495. /* NAPI doesn't work well with MSI(X) */
  3496. if (sp->config.intr_type != INTA) {
  3497. if(sp->config.napi)
  3498. sp->config.napi = 0;
  3499. }
  3500. /* Initialize H/W and enable interrupts */
  3501. err = s2io_card_up(sp);
  3502. if (err) {
  3503. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3504. dev->name);
  3505. goto hw_init_failed;
  3506. }
  3507. if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
  3508. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3509. s2io_card_down(sp);
  3510. err = -ENODEV;
  3511. goto hw_init_failed;
  3512. }
  3513. netif_start_queue(dev);
  3514. return 0;
  3515. hw_init_failed:
  3516. napi_disable(&sp->napi);
  3517. if (sp->config.intr_type == MSI_X) {
  3518. if (sp->entries) {
  3519. kfree(sp->entries);
  3520. sp->mac_control.stats_info->sw_stat.mem_freed
  3521. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3522. }
  3523. if (sp->s2io_entries) {
  3524. kfree(sp->s2io_entries);
  3525. sp->mac_control.stats_info->sw_stat.mem_freed
  3526. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3527. }
  3528. }
  3529. return err;
  3530. }
  3531. /**
  3532. * s2io_close -close entry point of the driver
  3533. * @dev : device pointer.
  3534. * Description:
  3535. * This is the stop entry point of the driver. It needs to undo exactly
  3536. * whatever was done by the open entry point,thus it's usually referred to
  3537. * as the close function.Among other things this function mainly stops the
  3538. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3539. * Return value:
  3540. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3541. * file on failure.
  3542. */
  3543. static int s2io_close(struct net_device *dev)
  3544. {
  3545. struct s2io_nic *sp = dev->priv;
  3546. netif_stop_queue(dev);
  3547. napi_disable(&sp->napi);
  3548. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3549. s2io_card_down(sp);
  3550. return 0;
  3551. }
  3552. /**
  3553. * s2io_xmit - Tx entry point of te driver
  3554. * @skb : the socket buffer containing the Tx data.
  3555. * @dev : device pointer.
  3556. * Description :
  3557. * This function is the Tx entry point of the driver. S2IO NIC supports
  3558. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3559. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3560. * not be upadted.
  3561. * Return value:
  3562. * 0 on success & 1 on failure.
  3563. */
  3564. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3565. {
  3566. struct s2io_nic *sp = dev->priv;
  3567. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3568. register u64 val64;
  3569. struct TxD *txdp;
  3570. struct TxFIFO_element __iomem *tx_fifo;
  3571. unsigned long flags;
  3572. u16 vlan_tag = 0;
  3573. int vlan_priority = 0;
  3574. struct mac_info *mac_control;
  3575. struct config_param *config;
  3576. int offload_type;
  3577. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3578. mac_control = &sp->mac_control;
  3579. config = &sp->config;
  3580. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3581. if (unlikely(skb->len <= 0)) {
  3582. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3583. dev_kfree_skb_any(skb);
  3584. return 0;
  3585. }
  3586. spin_lock_irqsave(&sp->tx_lock, flags);
  3587. if (!is_s2io_card_up(sp)) {
  3588. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3589. dev->name);
  3590. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3591. dev_kfree_skb(skb);
  3592. return 0;
  3593. }
  3594. queue = 0;
  3595. /* Get Fifo number to Transmit based on vlan priority */
  3596. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3597. vlan_tag = vlan_tx_tag_get(skb);
  3598. vlan_priority = vlan_tag >> 13;
  3599. queue = config->fifo_mapping[vlan_priority];
  3600. }
  3601. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3602. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3603. txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
  3604. list_virt_addr;
  3605. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3606. /* Avoid "put" pointer going beyond "get" pointer */
  3607. if (txdp->Host_Control ||
  3608. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3609. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3610. netif_stop_queue(dev);
  3611. dev_kfree_skb(skb);
  3612. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3613. return 0;
  3614. }
  3615. offload_type = s2io_offload_type(skb);
  3616. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3617. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3618. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3619. }
  3620. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3621. txdp->Control_2 |=
  3622. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3623. TXD_TX_CKO_UDP_EN);
  3624. }
  3625. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3626. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3627. txdp->Control_2 |= config->tx_intr_type;
  3628. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3629. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3630. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3631. }
  3632. frg_len = skb->len - skb->data_len;
  3633. if (offload_type == SKB_GSO_UDP) {
  3634. int ufo_size;
  3635. ufo_size = s2io_udp_mss(skb);
  3636. ufo_size &= ~7;
  3637. txdp->Control_1 |= TXD_UFO_EN;
  3638. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3639. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3640. #ifdef __BIG_ENDIAN
  3641. sp->ufo_in_band_v[put_off] =
  3642. (u64)skb_shinfo(skb)->ip6_frag_id;
  3643. #else
  3644. sp->ufo_in_band_v[put_off] =
  3645. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3646. #endif
  3647. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3648. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3649. sp->ufo_in_band_v,
  3650. sizeof(u64), PCI_DMA_TODEVICE);
  3651. if((txdp->Buffer_Pointer == 0) ||
  3652. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3653. goto pci_map_failed;
  3654. txdp++;
  3655. }
  3656. txdp->Buffer_Pointer = pci_map_single
  3657. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3658. if((txdp->Buffer_Pointer == 0) ||
  3659. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3660. goto pci_map_failed;
  3661. txdp->Host_Control = (unsigned long) skb;
  3662. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3663. if (offload_type == SKB_GSO_UDP)
  3664. txdp->Control_1 |= TXD_UFO_EN;
  3665. frg_cnt = skb_shinfo(skb)->nr_frags;
  3666. /* For fragmented SKB. */
  3667. for (i = 0; i < frg_cnt; i++) {
  3668. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3669. /* A '0' length fragment will be ignored */
  3670. if (!frag->size)
  3671. continue;
  3672. txdp++;
  3673. txdp->Buffer_Pointer = (u64) pci_map_page
  3674. (sp->pdev, frag->page, frag->page_offset,
  3675. frag->size, PCI_DMA_TODEVICE);
  3676. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3677. if (offload_type == SKB_GSO_UDP)
  3678. txdp->Control_1 |= TXD_UFO_EN;
  3679. }
  3680. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3681. if (offload_type == SKB_GSO_UDP)
  3682. frg_cnt++; /* as Txd0 was used for inband header */
  3683. tx_fifo = mac_control->tx_FIFO_start[queue];
  3684. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3685. writeq(val64, &tx_fifo->TxDL_Pointer);
  3686. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3687. TX_FIFO_LAST_LIST);
  3688. if (offload_type)
  3689. val64 |= TX_FIFO_SPECIAL_FUNC;
  3690. writeq(val64, &tx_fifo->List_Control);
  3691. mmiowb();
  3692. put_off++;
  3693. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3694. put_off = 0;
  3695. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3696. /* Avoid "put" pointer going beyond "get" pointer */
  3697. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3698. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3699. DBG_PRINT(TX_DBG,
  3700. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3701. put_off, get_off);
  3702. netif_stop_queue(dev);
  3703. }
  3704. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3705. dev->trans_start = jiffies;
  3706. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3707. return 0;
  3708. pci_map_failed:
  3709. stats->pci_map_fail_cnt++;
  3710. netif_stop_queue(dev);
  3711. stats->mem_freed += skb->truesize;
  3712. dev_kfree_skb(skb);
  3713. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3714. return 0;
  3715. }
  3716. static void
  3717. s2io_alarm_handle(unsigned long data)
  3718. {
  3719. struct s2io_nic *sp = (struct s2io_nic *)data;
  3720. struct net_device *dev = sp->dev;
  3721. s2io_handle_errors(dev);
  3722. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3723. }
  3724. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3725. {
  3726. int rxb_size, level;
  3727. if (!sp->lro) {
  3728. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3729. level = rx_buffer_level(sp, rxb_size, rng_n);
  3730. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3731. int ret;
  3732. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3733. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3734. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3735. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3736. __FUNCTION__);
  3737. clear_bit(0, (&sp->tasklet_status));
  3738. return -1;
  3739. }
  3740. clear_bit(0, (&sp->tasklet_status));
  3741. } else if (level == LOW)
  3742. tasklet_schedule(&sp->task);
  3743. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3744. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3745. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3746. }
  3747. return 0;
  3748. }
  3749. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3750. {
  3751. struct ring_info *ring = (struct ring_info *)dev_id;
  3752. struct s2io_nic *sp = ring->nic;
  3753. if (!is_s2io_card_up(sp))
  3754. return IRQ_HANDLED;
  3755. rx_intr_handler(ring);
  3756. s2io_chk_rx_buffers(sp, ring->ring_no);
  3757. return IRQ_HANDLED;
  3758. }
  3759. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3760. {
  3761. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3762. struct s2io_nic *sp = fifo->nic;
  3763. if (!is_s2io_card_up(sp))
  3764. return IRQ_HANDLED;
  3765. tx_intr_handler(fifo);
  3766. return IRQ_HANDLED;
  3767. }
  3768. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3769. {
  3770. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3771. u64 val64;
  3772. val64 = readq(&bar0->pic_int_status);
  3773. if (val64 & PIC_INT_GPIO) {
  3774. val64 = readq(&bar0->gpio_int_reg);
  3775. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3776. (val64 & GPIO_INT_REG_LINK_UP)) {
  3777. /*
  3778. * This is unstable state so clear both up/down
  3779. * interrupt and adapter to re-evaluate the link state.
  3780. */
  3781. val64 |= GPIO_INT_REG_LINK_DOWN;
  3782. val64 |= GPIO_INT_REG_LINK_UP;
  3783. writeq(val64, &bar0->gpio_int_reg);
  3784. val64 = readq(&bar0->gpio_int_mask);
  3785. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3786. GPIO_INT_MASK_LINK_DOWN);
  3787. writeq(val64, &bar0->gpio_int_mask);
  3788. }
  3789. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3790. val64 = readq(&bar0->adapter_status);
  3791. /* Enable Adapter */
  3792. val64 = readq(&bar0->adapter_control);
  3793. val64 |= ADAPTER_CNTL_EN;
  3794. writeq(val64, &bar0->adapter_control);
  3795. val64 |= ADAPTER_LED_ON;
  3796. writeq(val64, &bar0->adapter_control);
  3797. if (!sp->device_enabled_once)
  3798. sp->device_enabled_once = 1;
  3799. s2io_link(sp, LINK_UP);
  3800. /*
  3801. * unmask link down interrupt and mask link-up
  3802. * intr
  3803. */
  3804. val64 = readq(&bar0->gpio_int_mask);
  3805. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3806. val64 |= GPIO_INT_MASK_LINK_UP;
  3807. writeq(val64, &bar0->gpio_int_mask);
  3808. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3809. val64 = readq(&bar0->adapter_status);
  3810. s2io_link(sp, LINK_DOWN);
  3811. /* Link is down so unmaks link up interrupt */
  3812. val64 = readq(&bar0->gpio_int_mask);
  3813. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3814. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3815. writeq(val64, &bar0->gpio_int_mask);
  3816. /* turn off LED */
  3817. val64 = readq(&bar0->adapter_control);
  3818. val64 = val64 &(~ADAPTER_LED_ON);
  3819. writeq(val64, &bar0->adapter_control);
  3820. }
  3821. }
  3822. val64 = readq(&bar0->gpio_int_mask);
  3823. }
  3824. /**
  3825. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3826. * @value: alarm bits
  3827. * @addr: address value
  3828. * @cnt: counter variable
  3829. * Description: Check for alarm and increment the counter
  3830. * Return Value:
  3831. * 1 - if alarm bit set
  3832. * 0 - if alarm bit is not set
  3833. */
  3834. int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
  3835. unsigned long long *cnt)
  3836. {
  3837. u64 val64;
  3838. val64 = readq(addr);
  3839. if ( val64 & value ) {
  3840. writeq(val64, addr);
  3841. (*cnt)++;
  3842. return 1;
  3843. }
  3844. return 0;
  3845. }
  3846. /**
  3847. * s2io_handle_errors - Xframe error indication handler
  3848. * @nic: device private variable
  3849. * Description: Handle alarms such as loss of link, single or
  3850. * double ECC errors, critical and serious errors.
  3851. * Return Value:
  3852. * NONE
  3853. */
  3854. static void s2io_handle_errors(void * dev_id)
  3855. {
  3856. struct net_device *dev = (struct net_device *) dev_id;
  3857. struct s2io_nic *sp = dev->priv;
  3858. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3859. u64 temp64 = 0,val64=0;
  3860. int i = 0;
  3861. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3862. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3863. if (!is_s2io_card_up(sp))
  3864. return;
  3865. if (pci_channel_offline(sp->pdev))
  3866. return;
  3867. memset(&sw_stat->ring_full_cnt, 0,
  3868. sizeof(sw_stat->ring_full_cnt));
  3869. /* Handling the XPAK counters update */
  3870. if(stats->xpak_timer_count < 72000) {
  3871. /* waiting for an hour */
  3872. stats->xpak_timer_count++;
  3873. } else {
  3874. s2io_updt_xpak_counter(dev);
  3875. /* reset the count to zero */
  3876. stats->xpak_timer_count = 0;
  3877. }
  3878. /* Handling link status change error Intr */
  3879. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3880. val64 = readq(&bar0->mac_rmac_err_reg);
  3881. writeq(val64, &bar0->mac_rmac_err_reg);
  3882. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3883. schedule_work(&sp->set_link_task);
  3884. }
  3885. /* In case of a serious error, the device will be Reset. */
  3886. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3887. &sw_stat->serious_err_cnt))
  3888. goto reset;
  3889. /* Check for data parity error */
  3890. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3891. &sw_stat->parity_err_cnt))
  3892. goto reset;
  3893. /* Check for ring full counter */
  3894. if (sp->device_type == XFRAME_II_DEVICE) {
  3895. val64 = readq(&bar0->ring_bump_counter1);
  3896. for (i=0; i<4; i++) {
  3897. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3898. temp64 >>= 64 - ((i+1)*16);
  3899. sw_stat->ring_full_cnt[i] += temp64;
  3900. }
  3901. val64 = readq(&bar0->ring_bump_counter2);
  3902. for (i=0; i<4; i++) {
  3903. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3904. temp64 >>= 64 - ((i+1)*16);
  3905. sw_stat->ring_full_cnt[i+4] += temp64;
  3906. }
  3907. }
  3908. val64 = readq(&bar0->txdma_int_status);
  3909. /*check for pfc_err*/
  3910. if (val64 & TXDMA_PFC_INT) {
  3911. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
  3912. PFC_MISC_0_ERR | PFC_MISC_1_ERR|
  3913. PFC_PCIX_ERR, &bar0->pfc_err_reg,
  3914. &sw_stat->pfc_err_cnt))
  3915. goto reset;
  3916. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
  3917. &sw_stat->pfc_err_cnt);
  3918. }
  3919. /*check for tda_err*/
  3920. if (val64 & TXDMA_TDA_INT) {
  3921. if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  3922. TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
  3923. &sw_stat->tda_err_cnt))
  3924. goto reset;
  3925. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3926. &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
  3927. }
  3928. /*check for pcc_err*/
  3929. if (val64 & TXDMA_PCC_INT) {
  3930. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
  3931. | PCC_N_SERR | PCC_6_COF_OV_ERR
  3932. | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
  3933. | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
  3934. | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
  3935. &sw_stat->pcc_err_cnt))
  3936. goto reset;
  3937. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3938. &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
  3939. }
  3940. /*check for tti_err*/
  3941. if (val64 & TXDMA_TTI_INT) {
  3942. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
  3943. &sw_stat->tti_err_cnt))
  3944. goto reset;
  3945. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3946. &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
  3947. }
  3948. /*check for lso_err*/
  3949. if (val64 & TXDMA_LSO_INT) {
  3950. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
  3951. | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3952. &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
  3953. goto reset;
  3954. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3955. &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
  3956. }
  3957. /*check for tpa_err*/
  3958. if (val64 & TXDMA_TPA_INT) {
  3959. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
  3960. &sw_stat->tpa_err_cnt))
  3961. goto reset;
  3962. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
  3963. &sw_stat->tpa_err_cnt);
  3964. }
  3965. /*check for sm_err*/
  3966. if (val64 & TXDMA_SM_INT) {
  3967. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
  3968. &sw_stat->sm_err_cnt))
  3969. goto reset;
  3970. }
  3971. val64 = readq(&bar0->mac_int_status);
  3972. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  3973. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  3974. &bar0->mac_tmac_err_reg,
  3975. &sw_stat->mac_tmac_err_cnt))
  3976. goto reset;
  3977. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
  3978. | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  3979. &bar0->mac_tmac_err_reg,
  3980. &sw_stat->mac_tmac_err_cnt);
  3981. }
  3982. val64 = readq(&bar0->xgxs_int_status);
  3983. if (val64 & XGXS_INT_STATUS_TXGXS) {
  3984. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  3985. &bar0->xgxs_txgxs_err_reg,
  3986. &sw_stat->xgxs_txgxs_err_cnt))
  3987. goto reset;
  3988. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  3989. &bar0->xgxs_txgxs_err_reg,
  3990. &sw_stat->xgxs_txgxs_err_cnt);
  3991. }
  3992. val64 = readq(&bar0->rxdma_int_status);
  3993. if (val64 & RXDMA_INT_RC_INT_M) {
  3994. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
  3995. | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
  3996. &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
  3997. goto reset;
  3998. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
  3999. | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  4000. &sw_stat->rc_err_cnt);
  4001. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
  4002. | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4003. &sw_stat->prc_pcix_err_cnt))
  4004. goto reset;
  4005. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
  4006. | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4007. &sw_stat->prc_pcix_err_cnt);
  4008. }
  4009. if (val64 & RXDMA_INT_RPA_INT_M) {
  4010. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4011. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
  4012. goto reset;
  4013. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4014. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
  4015. }
  4016. if (val64 & RXDMA_INT_RDA_INT_M) {
  4017. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
  4018. | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
  4019. | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
  4020. &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
  4021. goto reset;
  4022. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
  4023. | RDA_MISC_ERR | RDA_PCIX_ERR,
  4024. &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
  4025. }
  4026. if (val64 & RXDMA_INT_RTI_INT_M) {
  4027. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
  4028. &sw_stat->rti_err_cnt))
  4029. goto reset;
  4030. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4031. &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
  4032. }
  4033. val64 = readq(&bar0->mac_int_status);
  4034. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4035. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4036. &bar0->mac_rmac_err_reg,
  4037. &sw_stat->mac_rmac_err_cnt))
  4038. goto reset;
  4039. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
  4040. RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
  4041. &sw_stat->mac_rmac_err_cnt);
  4042. }
  4043. val64 = readq(&bar0->xgxs_int_status);
  4044. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4045. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4046. &bar0->xgxs_rxgxs_err_reg,
  4047. &sw_stat->xgxs_rxgxs_err_cnt))
  4048. goto reset;
  4049. }
  4050. val64 = readq(&bar0->mc_int_status);
  4051. if(val64 & MC_INT_STATUS_MC_INT) {
  4052. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
  4053. &sw_stat->mc_err_cnt))
  4054. goto reset;
  4055. /* Handling Ecc errors */
  4056. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4057. writeq(val64, &bar0->mc_err_reg);
  4058. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4059. sw_stat->double_ecc_errs++;
  4060. if (sp->device_type != XFRAME_II_DEVICE) {
  4061. /*
  4062. * Reset XframeI only if critical error
  4063. */
  4064. if (val64 &
  4065. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4066. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4067. goto reset;
  4068. }
  4069. } else
  4070. sw_stat->single_ecc_errs++;
  4071. }
  4072. }
  4073. return;
  4074. reset:
  4075. netif_stop_queue(dev);
  4076. schedule_work(&sp->rst_timer_task);
  4077. sw_stat->soft_reset_cnt++;
  4078. return;
  4079. }
  4080. /**
  4081. * s2io_isr - ISR handler of the device .
  4082. * @irq: the irq of the device.
  4083. * @dev_id: a void pointer to the dev structure of the NIC.
  4084. * Description: This function is the ISR handler of the device. It
  4085. * identifies the reason for the interrupt and calls the relevant
  4086. * service routines. As a contongency measure, this ISR allocates the
  4087. * recv buffers, if their numbers are below the panic value which is
  4088. * presently set to 25% of the original number of rcv buffers allocated.
  4089. * Return value:
  4090. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4091. * IRQ_NONE: will be returned if interrupt is not from our device
  4092. */
  4093. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4094. {
  4095. struct net_device *dev = (struct net_device *) dev_id;
  4096. struct s2io_nic *sp = dev->priv;
  4097. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4098. int i;
  4099. u64 reason = 0;
  4100. struct mac_info *mac_control;
  4101. struct config_param *config;
  4102. /* Pretend we handled any irq's from a disconnected card */
  4103. if (pci_channel_offline(sp->pdev))
  4104. return IRQ_NONE;
  4105. if (!is_s2io_card_up(sp))
  4106. return IRQ_NONE;
  4107. mac_control = &sp->mac_control;
  4108. config = &sp->config;
  4109. /*
  4110. * Identify the cause for interrupt and call the appropriate
  4111. * interrupt handler. Causes for the interrupt could be;
  4112. * 1. Rx of packet.
  4113. * 2. Tx complete.
  4114. * 3. Link down.
  4115. */
  4116. reason = readq(&bar0->general_int_status);
  4117. if (unlikely(reason == S2IO_MINUS_ONE) ) {
  4118. /* Nothing much can be done. Get out */
  4119. return IRQ_HANDLED;
  4120. }
  4121. if (reason & (GEN_INTR_RXTRAFFIC |
  4122. GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
  4123. {
  4124. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4125. if (config->napi) {
  4126. if (reason & GEN_INTR_RXTRAFFIC) {
  4127. if (likely(netif_rx_schedule_prep(dev,
  4128. &sp->napi))) {
  4129. __netif_rx_schedule(dev, &sp->napi);
  4130. writeq(S2IO_MINUS_ONE,
  4131. &bar0->rx_traffic_mask);
  4132. } else
  4133. writeq(S2IO_MINUS_ONE,
  4134. &bar0->rx_traffic_int);
  4135. }
  4136. } else {
  4137. /*
  4138. * rx_traffic_int reg is an R1 register, writing all 1's
  4139. * will ensure that the actual interrupt causing bit
  4140. * get's cleared and hence a read can be avoided.
  4141. */
  4142. if (reason & GEN_INTR_RXTRAFFIC)
  4143. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4144. for (i = 0; i < config->rx_ring_num; i++)
  4145. rx_intr_handler(&mac_control->rings[i]);
  4146. }
  4147. /*
  4148. * tx_traffic_int reg is an R1 register, writing all 1's
  4149. * will ensure that the actual interrupt causing bit get's
  4150. * cleared and hence a read can be avoided.
  4151. */
  4152. if (reason & GEN_INTR_TXTRAFFIC)
  4153. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4154. for (i = 0; i < config->tx_fifo_num; i++)
  4155. tx_intr_handler(&mac_control->fifos[i]);
  4156. if (reason & GEN_INTR_TXPIC)
  4157. s2io_txpic_intr_handle(sp);
  4158. /*
  4159. * Reallocate the buffers from the interrupt handler itself.
  4160. */
  4161. if (!config->napi) {
  4162. for (i = 0; i < config->rx_ring_num; i++)
  4163. s2io_chk_rx_buffers(sp, i);
  4164. }
  4165. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4166. readl(&bar0->general_int_status);
  4167. return IRQ_HANDLED;
  4168. }
  4169. else if (!reason) {
  4170. /* The interrupt was not raised by us */
  4171. return IRQ_NONE;
  4172. }
  4173. return IRQ_HANDLED;
  4174. }
  4175. /**
  4176. * s2io_updt_stats -
  4177. */
  4178. static void s2io_updt_stats(struct s2io_nic *sp)
  4179. {
  4180. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4181. u64 val64;
  4182. int cnt = 0;
  4183. if (is_s2io_card_up(sp)) {
  4184. /* Apprx 30us on a 133 MHz bus */
  4185. val64 = SET_UPDT_CLICKS(10) |
  4186. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4187. writeq(val64, &bar0->stat_cfg);
  4188. do {
  4189. udelay(100);
  4190. val64 = readq(&bar0->stat_cfg);
  4191. if (!(val64 & BIT(0)))
  4192. break;
  4193. cnt++;
  4194. if (cnt == 5)
  4195. break; /* Updt failed */
  4196. } while(1);
  4197. }
  4198. }
  4199. /**
  4200. * s2io_get_stats - Updates the device statistics structure.
  4201. * @dev : pointer to the device structure.
  4202. * Description:
  4203. * This function updates the device statistics structure in the s2io_nic
  4204. * structure and returns a pointer to the same.
  4205. * Return value:
  4206. * pointer to the updated net_device_stats structure.
  4207. */
  4208. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4209. {
  4210. struct s2io_nic *sp = dev->priv;
  4211. struct mac_info *mac_control;
  4212. struct config_param *config;
  4213. mac_control = &sp->mac_control;
  4214. config = &sp->config;
  4215. /* Configure Stats for immediate updt */
  4216. s2io_updt_stats(sp);
  4217. sp->stats.tx_packets =
  4218. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4219. sp->stats.tx_errors =
  4220. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4221. sp->stats.rx_errors =
  4222. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4223. sp->stats.multicast =
  4224. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4225. sp->stats.rx_length_errors =
  4226. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4227. return (&sp->stats);
  4228. }
  4229. /**
  4230. * s2io_set_multicast - entry point for multicast address enable/disable.
  4231. * @dev : pointer to the device structure
  4232. * Description:
  4233. * This function is a driver entry point which gets called by the kernel
  4234. * whenever multicast addresses must be enabled/disabled. This also gets
  4235. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4236. * determine, if multicast address must be enabled or if promiscuous mode
  4237. * is to be disabled etc.
  4238. * Return value:
  4239. * void.
  4240. */
  4241. static void s2io_set_multicast(struct net_device *dev)
  4242. {
  4243. int i, j, prev_cnt;
  4244. struct dev_mc_list *mclist;
  4245. struct s2io_nic *sp = dev->priv;
  4246. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4247. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4248. 0xfeffffffffffULL;
  4249. u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
  4250. void __iomem *add;
  4251. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4252. /* Enable all Multicast addresses */
  4253. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4254. &bar0->rmac_addr_data0_mem);
  4255. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4256. &bar0->rmac_addr_data1_mem);
  4257. val64 = RMAC_ADDR_CMD_MEM_WE |
  4258. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4259. RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
  4260. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4261. /* Wait till command completes */
  4262. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4263. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4264. S2IO_BIT_RESET);
  4265. sp->m_cast_flg = 1;
  4266. sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
  4267. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4268. /* Disable all Multicast addresses */
  4269. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4270. &bar0->rmac_addr_data0_mem);
  4271. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4272. &bar0->rmac_addr_data1_mem);
  4273. val64 = RMAC_ADDR_CMD_MEM_WE |
  4274. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4275. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4276. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4277. /* Wait till command completes */
  4278. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4279. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4280. S2IO_BIT_RESET);
  4281. sp->m_cast_flg = 0;
  4282. sp->all_multi_pos = 0;
  4283. }
  4284. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4285. /* Put the NIC into promiscuous mode */
  4286. add = &bar0->mac_cfg;
  4287. val64 = readq(&bar0->mac_cfg);
  4288. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4289. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4290. writel((u32) val64, add);
  4291. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4292. writel((u32) (val64 >> 32), (add + 4));
  4293. if (vlan_tag_strip != 1) {
  4294. val64 = readq(&bar0->rx_pa_cfg);
  4295. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4296. writeq(val64, &bar0->rx_pa_cfg);
  4297. vlan_strip_flag = 0;
  4298. }
  4299. val64 = readq(&bar0->mac_cfg);
  4300. sp->promisc_flg = 1;
  4301. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4302. dev->name);
  4303. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4304. /* Remove the NIC from promiscuous mode */
  4305. add = &bar0->mac_cfg;
  4306. val64 = readq(&bar0->mac_cfg);
  4307. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4308. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4309. writel((u32) val64, add);
  4310. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4311. writel((u32) (val64 >> 32), (add + 4));
  4312. if (vlan_tag_strip != 0) {
  4313. val64 = readq(&bar0->rx_pa_cfg);
  4314. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4315. writeq(val64, &bar0->rx_pa_cfg);
  4316. vlan_strip_flag = 1;
  4317. }
  4318. val64 = readq(&bar0->mac_cfg);
  4319. sp->promisc_flg = 0;
  4320. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4321. dev->name);
  4322. }
  4323. /* Update individual M_CAST address list */
  4324. if ((!sp->m_cast_flg) && dev->mc_count) {
  4325. if (dev->mc_count >
  4326. (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
  4327. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4328. dev->name);
  4329. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4330. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4331. return;
  4332. }
  4333. prev_cnt = sp->mc_addr_count;
  4334. sp->mc_addr_count = dev->mc_count;
  4335. /* Clear out the previous list of Mc in the H/W. */
  4336. for (i = 0; i < prev_cnt; i++) {
  4337. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4338. &bar0->rmac_addr_data0_mem);
  4339. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4340. &bar0->rmac_addr_data1_mem);
  4341. val64 = RMAC_ADDR_CMD_MEM_WE |
  4342. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4343. RMAC_ADDR_CMD_MEM_OFFSET
  4344. (MAC_MC_ADDR_START_OFFSET + i);
  4345. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4346. /* Wait for command completes */
  4347. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4348. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4349. S2IO_BIT_RESET)) {
  4350. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4351. dev->name);
  4352. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4353. return;
  4354. }
  4355. }
  4356. /* Create the new Rx filter list and update the same in H/W. */
  4357. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4358. i++, mclist = mclist->next) {
  4359. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4360. ETH_ALEN);
  4361. mac_addr = 0;
  4362. for (j = 0; j < ETH_ALEN; j++) {
  4363. mac_addr |= mclist->dmi_addr[j];
  4364. mac_addr <<= 8;
  4365. }
  4366. mac_addr >>= 8;
  4367. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4368. &bar0->rmac_addr_data0_mem);
  4369. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4370. &bar0->rmac_addr_data1_mem);
  4371. val64 = RMAC_ADDR_CMD_MEM_WE |
  4372. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4373. RMAC_ADDR_CMD_MEM_OFFSET
  4374. (i + MAC_MC_ADDR_START_OFFSET);
  4375. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4376. /* Wait for command completes */
  4377. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4378. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4379. S2IO_BIT_RESET)) {
  4380. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4381. dev->name);
  4382. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4383. return;
  4384. }
  4385. }
  4386. }
  4387. }
  4388. /**
  4389. * s2io_set_mac_addr - Programs the Xframe mac address
  4390. * @dev : pointer to the device structure.
  4391. * @addr: a uchar pointer to the new mac address which is to be set.
  4392. * Description : This procedure will program the Xframe to receive
  4393. * frames with new Mac Address
  4394. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4395. * as defined in errno.h file on failure.
  4396. */
  4397. static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
  4398. {
  4399. struct s2io_nic *sp = dev->priv;
  4400. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4401. register u64 val64, mac_addr = 0;
  4402. int i;
  4403. u64 old_mac_addr = 0;
  4404. /*
  4405. * Set the new MAC address as the new unicast filter and reflect this
  4406. * change on the device address registered with the OS. It will be
  4407. * at offset 0.
  4408. */
  4409. for (i = 0; i < ETH_ALEN; i++) {
  4410. mac_addr <<= 8;
  4411. mac_addr |= addr[i];
  4412. old_mac_addr <<= 8;
  4413. old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
  4414. }
  4415. if(0 == mac_addr)
  4416. return SUCCESS;
  4417. /* Update the internal structure with this new mac address */
  4418. if(mac_addr != old_mac_addr) {
  4419. memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
  4420. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
  4421. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
  4422. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
  4423. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
  4424. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
  4425. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
  4426. }
  4427. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4428. &bar0->rmac_addr_data0_mem);
  4429. val64 =
  4430. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4431. RMAC_ADDR_CMD_MEM_OFFSET(0);
  4432. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4433. /* Wait till command completes */
  4434. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4435. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
  4436. DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
  4437. return FAILURE;
  4438. }
  4439. return SUCCESS;
  4440. }
  4441. /**
  4442. * s2io_ethtool_sset - Sets different link parameters.
  4443. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4444. * @info: pointer to the structure with parameters given by ethtool to set
  4445. * link information.
  4446. * Description:
  4447. * The function sets different link parameters provided by the user onto
  4448. * the NIC.
  4449. * Return value:
  4450. * 0 on success.
  4451. */
  4452. static int s2io_ethtool_sset(struct net_device *dev,
  4453. struct ethtool_cmd *info)
  4454. {
  4455. struct s2io_nic *sp = dev->priv;
  4456. if ((info->autoneg == AUTONEG_ENABLE) ||
  4457. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4458. return -EINVAL;
  4459. else {
  4460. s2io_close(sp->dev);
  4461. s2io_open(sp->dev);
  4462. }
  4463. return 0;
  4464. }
  4465. /**
  4466. * s2io_ethtol_gset - Return link specific information.
  4467. * @sp : private member of the device structure, pointer to the
  4468. * s2io_nic structure.
  4469. * @info : pointer to the structure with parameters given by ethtool
  4470. * to return link information.
  4471. * Description:
  4472. * Returns link specific information like speed, duplex etc.. to ethtool.
  4473. * Return value :
  4474. * return 0 on success.
  4475. */
  4476. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4477. {
  4478. struct s2io_nic *sp = dev->priv;
  4479. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4480. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4481. info->port = PORT_FIBRE;
  4482. /* info->transceiver?? TODO */
  4483. if (netif_carrier_ok(sp->dev)) {
  4484. info->speed = 10000;
  4485. info->duplex = DUPLEX_FULL;
  4486. } else {
  4487. info->speed = -1;
  4488. info->duplex = -1;
  4489. }
  4490. info->autoneg = AUTONEG_DISABLE;
  4491. return 0;
  4492. }
  4493. /**
  4494. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4495. * @sp : private member of the device structure, which is a pointer to the
  4496. * s2io_nic structure.
  4497. * @info : pointer to the structure with parameters given by ethtool to
  4498. * return driver information.
  4499. * Description:
  4500. * Returns driver specefic information like name, version etc.. to ethtool.
  4501. * Return value:
  4502. * void
  4503. */
  4504. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4505. struct ethtool_drvinfo *info)
  4506. {
  4507. struct s2io_nic *sp = dev->priv;
  4508. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4509. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4510. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4511. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4512. info->regdump_len = XENA_REG_SPACE;
  4513. info->eedump_len = XENA_EEPROM_SPACE;
  4514. }
  4515. /**
  4516. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4517. * @sp: private member of the device structure, which is a pointer to the
  4518. * s2io_nic structure.
  4519. * @regs : pointer to the structure with parameters given by ethtool for
  4520. * dumping the registers.
  4521. * @reg_space: The input argumnet into which all the registers are dumped.
  4522. * Description:
  4523. * Dumps the entire register space of xFrame NIC into the user given
  4524. * buffer area.
  4525. * Return value :
  4526. * void .
  4527. */
  4528. static void s2io_ethtool_gregs(struct net_device *dev,
  4529. struct ethtool_regs *regs, void *space)
  4530. {
  4531. int i;
  4532. u64 reg;
  4533. u8 *reg_space = (u8 *) space;
  4534. struct s2io_nic *sp = dev->priv;
  4535. regs->len = XENA_REG_SPACE;
  4536. regs->version = sp->pdev->subsystem_device;
  4537. for (i = 0; i < regs->len; i += 8) {
  4538. reg = readq(sp->bar0 + i);
  4539. memcpy((reg_space + i), &reg, 8);
  4540. }
  4541. }
  4542. /**
  4543. * s2io_phy_id - timer function that alternates adapter LED.
  4544. * @data : address of the private member of the device structure, which
  4545. * is a pointer to the s2io_nic structure, provided as an u32.
  4546. * Description: This is actually the timer function that alternates the
  4547. * adapter LED bit of the adapter control bit to set/reset every time on
  4548. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4549. * once every second.
  4550. */
  4551. static void s2io_phy_id(unsigned long data)
  4552. {
  4553. struct s2io_nic *sp = (struct s2io_nic *) data;
  4554. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4555. u64 val64 = 0;
  4556. u16 subid;
  4557. subid = sp->pdev->subsystem_device;
  4558. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4559. ((subid & 0xFF) >= 0x07)) {
  4560. val64 = readq(&bar0->gpio_control);
  4561. val64 ^= GPIO_CTRL_GPIO_0;
  4562. writeq(val64, &bar0->gpio_control);
  4563. } else {
  4564. val64 = readq(&bar0->adapter_control);
  4565. val64 ^= ADAPTER_LED_ON;
  4566. writeq(val64, &bar0->adapter_control);
  4567. }
  4568. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4569. }
  4570. /**
  4571. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4572. * @sp : private member of the device structure, which is a pointer to the
  4573. * s2io_nic structure.
  4574. * @id : pointer to the structure with identification parameters given by
  4575. * ethtool.
  4576. * Description: Used to physically identify the NIC on the system.
  4577. * The Link LED will blink for a time specified by the user for
  4578. * identification.
  4579. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4580. * identification is possible only if it's link is up.
  4581. * Return value:
  4582. * int , returns 0 on success
  4583. */
  4584. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4585. {
  4586. u64 val64 = 0, last_gpio_ctrl_val;
  4587. struct s2io_nic *sp = dev->priv;
  4588. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4589. u16 subid;
  4590. subid = sp->pdev->subsystem_device;
  4591. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4592. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4593. ((subid & 0xFF) < 0x07)) {
  4594. val64 = readq(&bar0->adapter_control);
  4595. if (!(val64 & ADAPTER_CNTL_EN)) {
  4596. printk(KERN_ERR
  4597. "Adapter Link down, cannot blink LED\n");
  4598. return -EFAULT;
  4599. }
  4600. }
  4601. if (sp->id_timer.function == NULL) {
  4602. init_timer(&sp->id_timer);
  4603. sp->id_timer.function = s2io_phy_id;
  4604. sp->id_timer.data = (unsigned long) sp;
  4605. }
  4606. mod_timer(&sp->id_timer, jiffies);
  4607. if (data)
  4608. msleep_interruptible(data * HZ);
  4609. else
  4610. msleep_interruptible(MAX_FLICKER_TIME);
  4611. del_timer_sync(&sp->id_timer);
  4612. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4613. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4614. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4615. }
  4616. return 0;
  4617. }
  4618. static void s2io_ethtool_gringparam(struct net_device *dev,
  4619. struct ethtool_ringparam *ering)
  4620. {
  4621. struct s2io_nic *sp = dev->priv;
  4622. int i,tx_desc_count=0,rx_desc_count=0;
  4623. if (sp->rxd_mode == RXD_MODE_1)
  4624. ering->rx_max_pending = MAX_RX_DESC_1;
  4625. else if (sp->rxd_mode == RXD_MODE_3B)
  4626. ering->rx_max_pending = MAX_RX_DESC_2;
  4627. ering->tx_max_pending = MAX_TX_DESC;
  4628. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4629. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4630. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4631. ering->tx_pending = tx_desc_count;
  4632. rx_desc_count = 0;
  4633. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4634. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4635. ering->rx_pending = rx_desc_count;
  4636. ering->rx_mini_max_pending = 0;
  4637. ering->rx_mini_pending = 0;
  4638. if(sp->rxd_mode == RXD_MODE_1)
  4639. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4640. else if (sp->rxd_mode == RXD_MODE_3B)
  4641. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4642. ering->rx_jumbo_pending = rx_desc_count;
  4643. }
  4644. /**
  4645. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4646. * @sp : private member of the device structure, which is a pointer to the
  4647. * s2io_nic structure.
  4648. * @ep : pointer to the structure with pause parameters given by ethtool.
  4649. * Description:
  4650. * Returns the Pause frame generation and reception capability of the NIC.
  4651. * Return value:
  4652. * void
  4653. */
  4654. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4655. struct ethtool_pauseparam *ep)
  4656. {
  4657. u64 val64;
  4658. struct s2io_nic *sp = dev->priv;
  4659. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4660. val64 = readq(&bar0->rmac_pause_cfg);
  4661. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4662. ep->tx_pause = TRUE;
  4663. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4664. ep->rx_pause = TRUE;
  4665. ep->autoneg = FALSE;
  4666. }
  4667. /**
  4668. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4669. * @sp : private member of the device structure, which is a pointer to the
  4670. * s2io_nic structure.
  4671. * @ep : pointer to the structure with pause parameters given by ethtool.
  4672. * Description:
  4673. * It can be used to set or reset Pause frame generation or reception
  4674. * support of the NIC.
  4675. * Return value:
  4676. * int, returns 0 on Success
  4677. */
  4678. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4679. struct ethtool_pauseparam *ep)
  4680. {
  4681. u64 val64;
  4682. struct s2io_nic *sp = dev->priv;
  4683. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4684. val64 = readq(&bar0->rmac_pause_cfg);
  4685. if (ep->tx_pause)
  4686. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4687. else
  4688. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4689. if (ep->rx_pause)
  4690. val64 |= RMAC_PAUSE_RX_ENABLE;
  4691. else
  4692. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4693. writeq(val64, &bar0->rmac_pause_cfg);
  4694. return 0;
  4695. }
  4696. /**
  4697. * read_eeprom - reads 4 bytes of data from user given offset.
  4698. * @sp : private member of the device structure, which is a pointer to the
  4699. * s2io_nic structure.
  4700. * @off : offset at which the data must be written
  4701. * @data : Its an output parameter where the data read at the given
  4702. * offset is stored.
  4703. * Description:
  4704. * Will read 4 bytes of data from the user given offset and return the
  4705. * read data.
  4706. * NOTE: Will allow to read only part of the EEPROM visible through the
  4707. * I2C bus.
  4708. * Return value:
  4709. * -1 on failure and 0 on success.
  4710. */
  4711. #define S2IO_DEV_ID 5
  4712. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4713. {
  4714. int ret = -1;
  4715. u32 exit_cnt = 0;
  4716. u64 val64;
  4717. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4718. if (sp->device_type == XFRAME_I_DEVICE) {
  4719. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4720. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4721. I2C_CONTROL_CNTL_START;
  4722. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4723. while (exit_cnt < 5) {
  4724. val64 = readq(&bar0->i2c_control);
  4725. if (I2C_CONTROL_CNTL_END(val64)) {
  4726. *data = I2C_CONTROL_GET_DATA(val64);
  4727. ret = 0;
  4728. break;
  4729. }
  4730. msleep(50);
  4731. exit_cnt++;
  4732. }
  4733. }
  4734. if (sp->device_type == XFRAME_II_DEVICE) {
  4735. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4736. SPI_CONTROL_BYTECNT(0x3) |
  4737. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4738. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4739. val64 |= SPI_CONTROL_REQ;
  4740. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4741. while (exit_cnt < 5) {
  4742. val64 = readq(&bar0->spi_control);
  4743. if (val64 & SPI_CONTROL_NACK) {
  4744. ret = 1;
  4745. break;
  4746. } else if (val64 & SPI_CONTROL_DONE) {
  4747. *data = readq(&bar0->spi_data);
  4748. *data &= 0xffffff;
  4749. ret = 0;
  4750. break;
  4751. }
  4752. msleep(50);
  4753. exit_cnt++;
  4754. }
  4755. }
  4756. return ret;
  4757. }
  4758. /**
  4759. * write_eeprom - actually writes the relevant part of the data value.
  4760. * @sp : private member of the device structure, which is a pointer to the
  4761. * s2io_nic structure.
  4762. * @off : offset at which the data must be written
  4763. * @data : The data that is to be written
  4764. * @cnt : Number of bytes of the data that are actually to be written into
  4765. * the Eeprom. (max of 3)
  4766. * Description:
  4767. * Actually writes the relevant part of the data value into the Eeprom
  4768. * through the I2C bus.
  4769. * Return value:
  4770. * 0 on success, -1 on failure.
  4771. */
  4772. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4773. {
  4774. int exit_cnt = 0, ret = -1;
  4775. u64 val64;
  4776. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4777. if (sp->device_type == XFRAME_I_DEVICE) {
  4778. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4779. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4780. I2C_CONTROL_CNTL_START;
  4781. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4782. while (exit_cnt < 5) {
  4783. val64 = readq(&bar0->i2c_control);
  4784. if (I2C_CONTROL_CNTL_END(val64)) {
  4785. if (!(val64 & I2C_CONTROL_NACK))
  4786. ret = 0;
  4787. break;
  4788. }
  4789. msleep(50);
  4790. exit_cnt++;
  4791. }
  4792. }
  4793. if (sp->device_type == XFRAME_II_DEVICE) {
  4794. int write_cnt = (cnt == 8) ? 0 : cnt;
  4795. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4796. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4797. SPI_CONTROL_BYTECNT(write_cnt) |
  4798. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4799. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4800. val64 |= SPI_CONTROL_REQ;
  4801. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4802. while (exit_cnt < 5) {
  4803. val64 = readq(&bar0->spi_control);
  4804. if (val64 & SPI_CONTROL_NACK) {
  4805. ret = 1;
  4806. break;
  4807. } else if (val64 & SPI_CONTROL_DONE) {
  4808. ret = 0;
  4809. break;
  4810. }
  4811. msleep(50);
  4812. exit_cnt++;
  4813. }
  4814. }
  4815. return ret;
  4816. }
  4817. static void s2io_vpd_read(struct s2io_nic *nic)
  4818. {
  4819. u8 *vpd_data;
  4820. u8 data;
  4821. int i=0, cnt, fail = 0;
  4822. int vpd_addr = 0x80;
  4823. if (nic->device_type == XFRAME_II_DEVICE) {
  4824. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4825. vpd_addr = 0x80;
  4826. }
  4827. else {
  4828. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4829. vpd_addr = 0x50;
  4830. }
  4831. strcpy(nic->serial_num, "NOT AVAILABLE");
  4832. vpd_data = kmalloc(256, GFP_KERNEL);
  4833. if (!vpd_data) {
  4834. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  4835. return;
  4836. }
  4837. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  4838. for (i = 0; i < 256; i +=4 ) {
  4839. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4840. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4841. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4842. for (cnt = 0; cnt <5; cnt++) {
  4843. msleep(2);
  4844. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4845. if (data == 0x80)
  4846. break;
  4847. }
  4848. if (cnt >= 5) {
  4849. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4850. fail = 1;
  4851. break;
  4852. }
  4853. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4854. (u32 *)&vpd_data[i]);
  4855. }
  4856. if(!fail) {
  4857. /* read serial number of adapter */
  4858. for (cnt = 0; cnt < 256; cnt++) {
  4859. if ((vpd_data[cnt] == 'S') &&
  4860. (vpd_data[cnt+1] == 'N') &&
  4861. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  4862. memset(nic->serial_num, 0, VPD_STRING_LEN);
  4863. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  4864. vpd_data[cnt+2]);
  4865. break;
  4866. }
  4867. }
  4868. }
  4869. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  4870. memset(nic->product_name, 0, vpd_data[1]);
  4871. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  4872. }
  4873. kfree(vpd_data);
  4874. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  4875. }
  4876. /**
  4877. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  4878. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4879. * @eeprom : pointer to the user level structure provided by ethtool,
  4880. * containing all relevant information.
  4881. * @data_buf : user defined value to be written into Eeprom.
  4882. * Description: Reads the values stored in the Eeprom at given offset
  4883. * for a given length. Stores these values int the input argument data
  4884. * buffer 'data_buf' and returns these to the caller (ethtool.)
  4885. * Return value:
  4886. * int 0 on success
  4887. */
  4888. static int s2io_ethtool_geeprom(struct net_device *dev,
  4889. struct ethtool_eeprom *eeprom, u8 * data_buf)
  4890. {
  4891. u32 i, valid;
  4892. u64 data;
  4893. struct s2io_nic *sp = dev->priv;
  4894. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  4895. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  4896. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  4897. for (i = 0; i < eeprom->len; i += 4) {
  4898. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  4899. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  4900. return -EFAULT;
  4901. }
  4902. valid = INV(data);
  4903. memcpy((data_buf + i), &valid, 4);
  4904. }
  4905. return 0;
  4906. }
  4907. /**
  4908. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  4909. * @sp : private member of the device structure, which is a pointer to the
  4910. * s2io_nic structure.
  4911. * @eeprom : pointer to the user level structure provided by ethtool,
  4912. * containing all relevant information.
  4913. * @data_buf ; user defined value to be written into Eeprom.
  4914. * Description:
  4915. * Tries to write the user provided value in the Eeprom, at the offset
  4916. * given by the user.
  4917. * Return value:
  4918. * 0 on success, -EFAULT on failure.
  4919. */
  4920. static int s2io_ethtool_seeprom(struct net_device *dev,
  4921. struct ethtool_eeprom *eeprom,
  4922. u8 * data_buf)
  4923. {
  4924. int len = eeprom->len, cnt = 0;
  4925. u64 valid = 0, data;
  4926. struct s2io_nic *sp = dev->priv;
  4927. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  4928. DBG_PRINT(ERR_DBG,
  4929. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  4930. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  4931. eeprom->magic);
  4932. return -EFAULT;
  4933. }
  4934. while (len) {
  4935. data = (u32) data_buf[cnt] & 0x000000FF;
  4936. if (data) {
  4937. valid = (u32) (data << 24);
  4938. } else
  4939. valid = data;
  4940. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  4941. DBG_PRINT(ERR_DBG,
  4942. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  4943. DBG_PRINT(ERR_DBG,
  4944. "write into the specified offset\n");
  4945. return -EFAULT;
  4946. }
  4947. cnt++;
  4948. len--;
  4949. }
  4950. return 0;
  4951. }
  4952. /**
  4953. * s2io_register_test - reads and writes into all clock domains.
  4954. * @sp : private member of the device structure, which is a pointer to the
  4955. * s2io_nic structure.
  4956. * @data : variable that returns the result of each of the test conducted b
  4957. * by the driver.
  4958. * Description:
  4959. * Read and write into all clock domains. The NIC has 3 clock domains,
  4960. * see that registers in all the three regions are accessible.
  4961. * Return value:
  4962. * 0 on success.
  4963. */
  4964. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  4965. {
  4966. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4967. u64 val64 = 0, exp_val;
  4968. int fail = 0;
  4969. val64 = readq(&bar0->pif_rd_swapper_fb);
  4970. if (val64 != 0x123456789abcdefULL) {
  4971. fail = 1;
  4972. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  4973. }
  4974. val64 = readq(&bar0->rmac_pause_cfg);
  4975. if (val64 != 0xc000ffff00000000ULL) {
  4976. fail = 1;
  4977. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  4978. }
  4979. val64 = readq(&bar0->rx_queue_cfg);
  4980. if (sp->device_type == XFRAME_II_DEVICE)
  4981. exp_val = 0x0404040404040404ULL;
  4982. else
  4983. exp_val = 0x0808080808080808ULL;
  4984. if (val64 != exp_val) {
  4985. fail = 1;
  4986. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  4987. }
  4988. val64 = readq(&bar0->xgxs_efifo_cfg);
  4989. if (val64 != 0x000000001923141EULL) {
  4990. fail = 1;
  4991. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  4992. }
  4993. val64 = 0x5A5A5A5A5A5A5A5AULL;
  4994. writeq(val64, &bar0->xmsi_data);
  4995. val64 = readq(&bar0->xmsi_data);
  4996. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  4997. fail = 1;
  4998. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  4999. }
  5000. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5001. writeq(val64, &bar0->xmsi_data);
  5002. val64 = readq(&bar0->xmsi_data);
  5003. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5004. fail = 1;
  5005. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  5006. }
  5007. *data = fail;
  5008. return fail;
  5009. }
  5010. /**
  5011. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5012. * @sp : private member of the device structure, which is a pointer to the
  5013. * s2io_nic structure.
  5014. * @data:variable that returns the result of each of the test conducted by
  5015. * the driver.
  5016. * Description:
  5017. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5018. * register.
  5019. * Return value:
  5020. * 0 on success.
  5021. */
  5022. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  5023. {
  5024. int fail = 0;
  5025. u64 ret_data, org_4F0, org_7F0;
  5026. u8 saved_4F0 = 0, saved_7F0 = 0;
  5027. struct net_device *dev = sp->dev;
  5028. /* Test Write Error at offset 0 */
  5029. /* Note that SPI interface allows write access to all areas
  5030. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5031. */
  5032. if (sp->device_type == XFRAME_I_DEVICE)
  5033. if (!write_eeprom(sp, 0, 0, 3))
  5034. fail = 1;
  5035. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5036. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5037. saved_4F0 = 1;
  5038. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5039. saved_7F0 = 1;
  5040. /* Test Write at offset 4f0 */
  5041. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5042. fail = 1;
  5043. if (read_eeprom(sp, 0x4F0, &ret_data))
  5044. fail = 1;
  5045. if (ret_data != 0x012345) {
  5046. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5047. "Data written %llx Data read %llx\n",
  5048. dev->name, (unsigned long long)0x12345,
  5049. (unsigned long long)ret_data);
  5050. fail = 1;
  5051. }
  5052. /* Reset the EEPROM data go FFFF */
  5053. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5054. /* Test Write Request Error at offset 0x7c */
  5055. if (sp->device_type == XFRAME_I_DEVICE)
  5056. if (!write_eeprom(sp, 0x07C, 0, 3))
  5057. fail = 1;
  5058. /* Test Write Request at offset 0x7f0 */
  5059. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5060. fail = 1;
  5061. if (read_eeprom(sp, 0x7F0, &ret_data))
  5062. fail = 1;
  5063. if (ret_data != 0x012345) {
  5064. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5065. "Data written %llx Data read %llx\n",
  5066. dev->name, (unsigned long long)0x12345,
  5067. (unsigned long long)ret_data);
  5068. fail = 1;
  5069. }
  5070. /* Reset the EEPROM data go FFFF */
  5071. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5072. if (sp->device_type == XFRAME_I_DEVICE) {
  5073. /* Test Write Error at offset 0x80 */
  5074. if (!write_eeprom(sp, 0x080, 0, 3))
  5075. fail = 1;
  5076. /* Test Write Error at offset 0xfc */
  5077. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5078. fail = 1;
  5079. /* Test Write Error at offset 0x100 */
  5080. if (!write_eeprom(sp, 0x100, 0, 3))
  5081. fail = 1;
  5082. /* Test Write Error at offset 4ec */
  5083. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5084. fail = 1;
  5085. }
  5086. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5087. if (saved_4F0)
  5088. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5089. if (saved_7F0)
  5090. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5091. *data = fail;
  5092. return fail;
  5093. }
  5094. /**
  5095. * s2io_bist_test - invokes the MemBist test of the card .
  5096. * @sp : private member of the device structure, which is a pointer to the
  5097. * s2io_nic structure.
  5098. * @data:variable that returns the result of each of the test conducted by
  5099. * the driver.
  5100. * Description:
  5101. * This invokes the MemBist test of the card. We give around
  5102. * 2 secs time for the Test to complete. If it's still not complete
  5103. * within this peiod, we consider that the test failed.
  5104. * Return value:
  5105. * 0 on success and -1 on failure.
  5106. */
  5107. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  5108. {
  5109. u8 bist = 0;
  5110. int cnt = 0, ret = -1;
  5111. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5112. bist |= PCI_BIST_START;
  5113. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5114. while (cnt < 20) {
  5115. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5116. if (!(bist & PCI_BIST_START)) {
  5117. *data = (bist & PCI_BIST_CODE_MASK);
  5118. ret = 0;
  5119. break;
  5120. }
  5121. msleep(100);
  5122. cnt++;
  5123. }
  5124. return ret;
  5125. }
  5126. /**
  5127. * s2io-link_test - verifies the link state of the nic
  5128. * @sp ; private member of the device structure, which is a pointer to the
  5129. * s2io_nic structure.
  5130. * @data: variable that returns the result of each of the test conducted by
  5131. * the driver.
  5132. * Description:
  5133. * The function verifies the link state of the NIC and updates the input
  5134. * argument 'data' appropriately.
  5135. * Return value:
  5136. * 0 on success.
  5137. */
  5138. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  5139. {
  5140. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5141. u64 val64;
  5142. val64 = readq(&bar0->adapter_status);
  5143. if(!(LINK_IS_UP(val64)))
  5144. *data = 1;
  5145. else
  5146. *data = 0;
  5147. return *data;
  5148. }
  5149. /**
  5150. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5151. * @sp - private member of the device structure, which is a pointer to the
  5152. * s2io_nic structure.
  5153. * @data - variable that returns the result of each of the test
  5154. * conducted by the driver.
  5155. * Description:
  5156. * This is one of the offline test that tests the read and write
  5157. * access to the RldRam chip on the NIC.
  5158. * Return value:
  5159. * 0 on success.
  5160. */
  5161. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  5162. {
  5163. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5164. u64 val64;
  5165. int cnt, iteration = 0, test_fail = 0;
  5166. val64 = readq(&bar0->adapter_control);
  5167. val64 &= ~ADAPTER_ECC_EN;
  5168. writeq(val64, &bar0->adapter_control);
  5169. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5170. val64 |= MC_RLDRAM_TEST_MODE;
  5171. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5172. val64 = readq(&bar0->mc_rldram_mrs);
  5173. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5174. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5175. val64 |= MC_RLDRAM_MRS_ENABLE;
  5176. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5177. while (iteration < 2) {
  5178. val64 = 0x55555555aaaa0000ULL;
  5179. if (iteration == 1) {
  5180. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5181. }
  5182. writeq(val64, &bar0->mc_rldram_test_d0);
  5183. val64 = 0xaaaa5a5555550000ULL;
  5184. if (iteration == 1) {
  5185. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5186. }
  5187. writeq(val64, &bar0->mc_rldram_test_d1);
  5188. val64 = 0x55aaaaaaaa5a0000ULL;
  5189. if (iteration == 1) {
  5190. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5191. }
  5192. writeq(val64, &bar0->mc_rldram_test_d2);
  5193. val64 = (u64) (0x0000003ffffe0100ULL);
  5194. writeq(val64, &bar0->mc_rldram_test_add);
  5195. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5196. MC_RLDRAM_TEST_GO;
  5197. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5198. for (cnt = 0; cnt < 5; cnt++) {
  5199. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5200. if (val64 & MC_RLDRAM_TEST_DONE)
  5201. break;
  5202. msleep(200);
  5203. }
  5204. if (cnt == 5)
  5205. break;
  5206. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5207. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5208. for (cnt = 0; cnt < 5; cnt++) {
  5209. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5210. if (val64 & MC_RLDRAM_TEST_DONE)
  5211. break;
  5212. msleep(500);
  5213. }
  5214. if (cnt == 5)
  5215. break;
  5216. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5217. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5218. test_fail = 1;
  5219. iteration++;
  5220. }
  5221. *data = test_fail;
  5222. /* Bring the adapter out of test mode */
  5223. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5224. return test_fail;
  5225. }
  5226. /**
  5227. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5228. * @sp : private member of the device structure, which is a pointer to the
  5229. * s2io_nic structure.
  5230. * @ethtest : pointer to a ethtool command specific structure that will be
  5231. * returned to the user.
  5232. * @data : variable that returns the result of each of the test
  5233. * conducted by the driver.
  5234. * Description:
  5235. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5236. * the health of the card.
  5237. * Return value:
  5238. * void
  5239. */
  5240. static void s2io_ethtool_test(struct net_device *dev,
  5241. struct ethtool_test *ethtest,
  5242. uint64_t * data)
  5243. {
  5244. struct s2io_nic *sp = dev->priv;
  5245. int orig_state = netif_running(sp->dev);
  5246. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5247. /* Offline Tests. */
  5248. if (orig_state)
  5249. s2io_close(sp->dev);
  5250. if (s2io_register_test(sp, &data[0]))
  5251. ethtest->flags |= ETH_TEST_FL_FAILED;
  5252. s2io_reset(sp);
  5253. if (s2io_rldram_test(sp, &data[3]))
  5254. ethtest->flags |= ETH_TEST_FL_FAILED;
  5255. s2io_reset(sp);
  5256. if (s2io_eeprom_test(sp, &data[1]))
  5257. ethtest->flags |= ETH_TEST_FL_FAILED;
  5258. if (s2io_bist_test(sp, &data[4]))
  5259. ethtest->flags |= ETH_TEST_FL_FAILED;
  5260. if (orig_state)
  5261. s2io_open(sp->dev);
  5262. data[2] = 0;
  5263. } else {
  5264. /* Online Tests. */
  5265. if (!orig_state) {
  5266. DBG_PRINT(ERR_DBG,
  5267. "%s: is not up, cannot run test\n",
  5268. dev->name);
  5269. data[0] = -1;
  5270. data[1] = -1;
  5271. data[2] = -1;
  5272. data[3] = -1;
  5273. data[4] = -1;
  5274. }
  5275. if (s2io_link_test(sp, &data[2]))
  5276. ethtest->flags |= ETH_TEST_FL_FAILED;
  5277. data[0] = 0;
  5278. data[1] = 0;
  5279. data[3] = 0;
  5280. data[4] = 0;
  5281. }
  5282. }
  5283. static void s2io_get_ethtool_stats(struct net_device *dev,
  5284. struct ethtool_stats *estats,
  5285. u64 * tmp_stats)
  5286. {
  5287. int i = 0, k;
  5288. struct s2io_nic *sp = dev->priv;
  5289. struct stat_block *stat_info = sp->mac_control.stats_info;
  5290. s2io_updt_stats(sp);
  5291. tmp_stats[i++] =
  5292. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5293. le32_to_cpu(stat_info->tmac_frms);
  5294. tmp_stats[i++] =
  5295. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5296. le32_to_cpu(stat_info->tmac_data_octets);
  5297. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5298. tmp_stats[i++] =
  5299. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5300. le32_to_cpu(stat_info->tmac_mcst_frms);
  5301. tmp_stats[i++] =
  5302. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5303. le32_to_cpu(stat_info->tmac_bcst_frms);
  5304. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5305. tmp_stats[i++] =
  5306. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5307. le32_to_cpu(stat_info->tmac_ttl_octets);
  5308. tmp_stats[i++] =
  5309. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5310. le32_to_cpu(stat_info->tmac_ucst_frms);
  5311. tmp_stats[i++] =
  5312. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5313. le32_to_cpu(stat_info->tmac_nucst_frms);
  5314. tmp_stats[i++] =
  5315. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5316. le32_to_cpu(stat_info->tmac_any_err_frms);
  5317. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5318. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5319. tmp_stats[i++] =
  5320. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5321. le32_to_cpu(stat_info->tmac_vld_ip);
  5322. tmp_stats[i++] =
  5323. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5324. le32_to_cpu(stat_info->tmac_drop_ip);
  5325. tmp_stats[i++] =
  5326. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5327. le32_to_cpu(stat_info->tmac_icmp);
  5328. tmp_stats[i++] =
  5329. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5330. le32_to_cpu(stat_info->tmac_rst_tcp);
  5331. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5332. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5333. le32_to_cpu(stat_info->tmac_udp);
  5334. tmp_stats[i++] =
  5335. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5336. le32_to_cpu(stat_info->rmac_vld_frms);
  5337. tmp_stats[i++] =
  5338. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5339. le32_to_cpu(stat_info->rmac_data_octets);
  5340. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5341. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5342. tmp_stats[i++] =
  5343. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5344. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5345. tmp_stats[i++] =
  5346. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5347. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5348. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5349. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5350. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5351. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5352. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5353. tmp_stats[i++] =
  5354. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5355. le32_to_cpu(stat_info->rmac_ttl_octets);
  5356. tmp_stats[i++] =
  5357. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5358. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5359. tmp_stats[i++] =
  5360. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5361. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5362. tmp_stats[i++] =
  5363. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5364. le32_to_cpu(stat_info->rmac_discarded_frms);
  5365. tmp_stats[i++] =
  5366. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5367. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5368. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5369. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5370. tmp_stats[i++] =
  5371. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5372. le32_to_cpu(stat_info->rmac_usized_frms);
  5373. tmp_stats[i++] =
  5374. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5375. le32_to_cpu(stat_info->rmac_osized_frms);
  5376. tmp_stats[i++] =
  5377. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5378. le32_to_cpu(stat_info->rmac_frag_frms);
  5379. tmp_stats[i++] =
  5380. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5381. le32_to_cpu(stat_info->rmac_jabber_frms);
  5382. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5383. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5384. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5385. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5386. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5387. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5388. tmp_stats[i++] =
  5389. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5390. le32_to_cpu(stat_info->rmac_ip);
  5391. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5392. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5393. tmp_stats[i++] =
  5394. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5395. le32_to_cpu(stat_info->rmac_drop_ip);
  5396. tmp_stats[i++] =
  5397. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5398. le32_to_cpu(stat_info->rmac_icmp);
  5399. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5400. tmp_stats[i++] =
  5401. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5402. le32_to_cpu(stat_info->rmac_udp);
  5403. tmp_stats[i++] =
  5404. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5405. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5406. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5407. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5408. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5409. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5410. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5411. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5412. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5413. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5414. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5415. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5416. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5417. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5418. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5419. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5420. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5421. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5422. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5423. tmp_stats[i++] =
  5424. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5425. le32_to_cpu(stat_info->rmac_pause_cnt);
  5426. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5427. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5428. tmp_stats[i++] =
  5429. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5430. le32_to_cpu(stat_info->rmac_accepted_ip);
  5431. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5432. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5433. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5434. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5435. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5436. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5437. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5438. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5439. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5440. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5441. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5442. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5443. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5444. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5445. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5446. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5447. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5448. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5449. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5450. /* Enhanced statistics exist only for Hercules */
  5451. if(sp->device_type == XFRAME_II_DEVICE) {
  5452. tmp_stats[i++] =
  5453. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5454. tmp_stats[i++] =
  5455. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5456. tmp_stats[i++] =
  5457. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5458. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5459. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5460. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5461. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5462. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5463. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5464. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5465. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5466. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5467. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5468. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5469. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5470. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5471. }
  5472. tmp_stats[i++] = 0;
  5473. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5474. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5475. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5476. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5477. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5478. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5479. for (k = 0; k < MAX_RX_RINGS; k++)
  5480. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
  5481. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5482. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5483. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5484. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5485. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5486. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5487. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5488. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5489. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5490. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5491. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5492. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5493. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5494. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5495. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5496. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5497. if (stat_info->sw_stat.num_aggregations) {
  5498. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5499. int count = 0;
  5500. /*
  5501. * Since 64-bit divide does not work on all platforms,
  5502. * do repeated subtraction.
  5503. */
  5504. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5505. tmp -= stat_info->sw_stat.num_aggregations;
  5506. count++;
  5507. }
  5508. tmp_stats[i++] = count;
  5509. }
  5510. else
  5511. tmp_stats[i++] = 0;
  5512. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5513. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5514. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5515. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5516. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5517. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5518. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5519. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5520. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5521. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5522. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5523. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5524. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5525. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5526. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5527. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5528. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5529. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5530. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5531. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5532. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5533. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5534. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5535. tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
  5536. tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
  5537. tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
  5538. tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
  5539. tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
  5540. tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
  5541. tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
  5542. tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
  5543. tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
  5544. tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
  5545. tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
  5546. tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
  5547. tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
  5548. tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
  5549. tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
  5550. tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
  5551. tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
  5552. }
  5553. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5554. {
  5555. return (XENA_REG_SPACE);
  5556. }
  5557. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5558. {
  5559. struct s2io_nic *sp = dev->priv;
  5560. return (sp->rx_csum);
  5561. }
  5562. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5563. {
  5564. struct s2io_nic *sp = dev->priv;
  5565. if (data)
  5566. sp->rx_csum = 1;
  5567. else
  5568. sp->rx_csum = 0;
  5569. return 0;
  5570. }
  5571. static int s2io_get_eeprom_len(struct net_device *dev)
  5572. {
  5573. return (XENA_EEPROM_SPACE);
  5574. }
  5575. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5576. {
  5577. struct s2io_nic *sp = dev->priv;
  5578. switch (sset) {
  5579. case ETH_SS_TEST:
  5580. return S2IO_TEST_LEN;
  5581. case ETH_SS_STATS:
  5582. switch(sp->device_type) {
  5583. case XFRAME_I_DEVICE:
  5584. return XFRAME_I_STAT_LEN;
  5585. case XFRAME_II_DEVICE:
  5586. return XFRAME_II_STAT_LEN;
  5587. default:
  5588. return 0;
  5589. }
  5590. default:
  5591. return -EOPNOTSUPP;
  5592. }
  5593. }
  5594. static void s2io_ethtool_get_strings(struct net_device *dev,
  5595. u32 stringset, u8 * data)
  5596. {
  5597. int stat_size = 0;
  5598. struct s2io_nic *sp = dev->priv;
  5599. switch (stringset) {
  5600. case ETH_SS_TEST:
  5601. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5602. break;
  5603. case ETH_SS_STATS:
  5604. stat_size = sizeof(ethtool_xena_stats_keys);
  5605. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5606. if(sp->device_type == XFRAME_II_DEVICE) {
  5607. memcpy(data + stat_size,
  5608. &ethtool_enhanced_stats_keys,
  5609. sizeof(ethtool_enhanced_stats_keys));
  5610. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5611. }
  5612. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5613. sizeof(ethtool_driver_stats_keys));
  5614. }
  5615. }
  5616. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5617. {
  5618. if (data)
  5619. dev->features |= NETIF_F_IP_CSUM;
  5620. else
  5621. dev->features &= ~NETIF_F_IP_CSUM;
  5622. return 0;
  5623. }
  5624. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5625. {
  5626. return (dev->features & NETIF_F_TSO) != 0;
  5627. }
  5628. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5629. {
  5630. if (data)
  5631. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5632. else
  5633. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5634. return 0;
  5635. }
  5636. static const struct ethtool_ops netdev_ethtool_ops = {
  5637. .get_settings = s2io_ethtool_gset,
  5638. .set_settings = s2io_ethtool_sset,
  5639. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5640. .get_regs_len = s2io_ethtool_get_regs_len,
  5641. .get_regs = s2io_ethtool_gregs,
  5642. .get_link = ethtool_op_get_link,
  5643. .get_eeprom_len = s2io_get_eeprom_len,
  5644. .get_eeprom = s2io_ethtool_geeprom,
  5645. .set_eeprom = s2io_ethtool_seeprom,
  5646. .get_ringparam = s2io_ethtool_gringparam,
  5647. .get_pauseparam = s2io_ethtool_getpause_data,
  5648. .set_pauseparam = s2io_ethtool_setpause_data,
  5649. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5650. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5651. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5652. .set_sg = ethtool_op_set_sg,
  5653. .get_tso = s2io_ethtool_op_get_tso,
  5654. .set_tso = s2io_ethtool_op_set_tso,
  5655. .set_ufo = ethtool_op_set_ufo,
  5656. .self_test = s2io_ethtool_test,
  5657. .get_strings = s2io_ethtool_get_strings,
  5658. .phys_id = s2io_ethtool_idnic,
  5659. .get_ethtool_stats = s2io_get_ethtool_stats,
  5660. .get_sset_count = s2io_get_sset_count,
  5661. };
  5662. /**
  5663. * s2io_ioctl - Entry point for the Ioctl
  5664. * @dev : Device pointer.
  5665. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5666. * a proprietary structure used to pass information to the driver.
  5667. * @cmd : This is used to distinguish between the different commands that
  5668. * can be passed to the IOCTL functions.
  5669. * Description:
  5670. * Currently there are no special functionality supported in IOCTL, hence
  5671. * function always return EOPNOTSUPPORTED
  5672. */
  5673. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5674. {
  5675. return -EOPNOTSUPP;
  5676. }
  5677. /**
  5678. * s2io_change_mtu - entry point to change MTU size for the device.
  5679. * @dev : device pointer.
  5680. * @new_mtu : the new MTU size for the device.
  5681. * Description: A driver entry point to change MTU size for the device.
  5682. * Before changing the MTU the device must be stopped.
  5683. * Return value:
  5684. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5685. * file on failure.
  5686. */
  5687. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5688. {
  5689. struct s2io_nic *sp = dev->priv;
  5690. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5691. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5692. dev->name);
  5693. return -EPERM;
  5694. }
  5695. dev->mtu = new_mtu;
  5696. if (netif_running(dev)) {
  5697. s2io_card_down(sp);
  5698. netif_stop_queue(dev);
  5699. if (s2io_card_up(sp)) {
  5700. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5701. __FUNCTION__);
  5702. }
  5703. if (netif_queue_stopped(dev))
  5704. netif_wake_queue(dev);
  5705. } else { /* Device is down */
  5706. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5707. u64 val64 = new_mtu;
  5708. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5709. }
  5710. return 0;
  5711. }
  5712. /**
  5713. * s2io_tasklet - Bottom half of the ISR.
  5714. * @dev_adr : address of the device structure in dma_addr_t format.
  5715. * Description:
  5716. * This is the tasklet or the bottom half of the ISR. This is
  5717. * an extension of the ISR which is scheduled by the scheduler to be run
  5718. * when the load on the CPU is low. All low priority tasks of the ISR can
  5719. * be pushed into the tasklet. For now the tasklet is used only to
  5720. * replenish the Rx buffers in the Rx buffer descriptors.
  5721. * Return value:
  5722. * void.
  5723. */
  5724. static void s2io_tasklet(unsigned long dev_addr)
  5725. {
  5726. struct net_device *dev = (struct net_device *) dev_addr;
  5727. struct s2io_nic *sp = dev->priv;
  5728. int i, ret;
  5729. struct mac_info *mac_control;
  5730. struct config_param *config;
  5731. mac_control = &sp->mac_control;
  5732. config = &sp->config;
  5733. if (!TASKLET_IN_USE) {
  5734. for (i = 0; i < config->rx_ring_num; i++) {
  5735. ret = fill_rx_buffers(sp, i);
  5736. if (ret == -ENOMEM) {
  5737. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5738. dev->name);
  5739. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5740. break;
  5741. } else if (ret == -EFILL) {
  5742. DBG_PRINT(INFO_DBG,
  5743. "%s: Rx Ring %d is full\n",
  5744. dev->name, i);
  5745. break;
  5746. }
  5747. }
  5748. clear_bit(0, (&sp->tasklet_status));
  5749. }
  5750. }
  5751. /**
  5752. * s2io_set_link - Set the LInk status
  5753. * @data: long pointer to device private structue
  5754. * Description: Sets the link status for the adapter
  5755. */
  5756. static void s2io_set_link(struct work_struct *work)
  5757. {
  5758. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5759. struct net_device *dev = nic->dev;
  5760. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5761. register u64 val64;
  5762. u16 subid;
  5763. rtnl_lock();
  5764. if (!netif_running(dev))
  5765. goto out_unlock;
  5766. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5767. /* The card is being reset, no point doing anything */
  5768. goto out_unlock;
  5769. }
  5770. subid = nic->pdev->subsystem_device;
  5771. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5772. /*
  5773. * Allow a small delay for the NICs self initiated
  5774. * cleanup to complete.
  5775. */
  5776. msleep(100);
  5777. }
  5778. val64 = readq(&bar0->adapter_status);
  5779. if (LINK_IS_UP(val64)) {
  5780. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5781. if (verify_xena_quiescence(nic)) {
  5782. val64 = readq(&bar0->adapter_control);
  5783. val64 |= ADAPTER_CNTL_EN;
  5784. writeq(val64, &bar0->adapter_control);
  5785. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5786. nic->device_type, subid)) {
  5787. val64 = readq(&bar0->gpio_control);
  5788. val64 |= GPIO_CTRL_GPIO_0;
  5789. writeq(val64, &bar0->gpio_control);
  5790. val64 = readq(&bar0->gpio_control);
  5791. } else {
  5792. val64 |= ADAPTER_LED_ON;
  5793. writeq(val64, &bar0->adapter_control);
  5794. }
  5795. nic->device_enabled_once = TRUE;
  5796. } else {
  5797. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5798. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5799. netif_stop_queue(dev);
  5800. }
  5801. }
  5802. val64 = readq(&bar0->adapter_control);
  5803. val64 |= ADAPTER_LED_ON;
  5804. writeq(val64, &bar0->adapter_control);
  5805. s2io_link(nic, LINK_UP);
  5806. } else {
  5807. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5808. subid)) {
  5809. val64 = readq(&bar0->gpio_control);
  5810. val64 &= ~GPIO_CTRL_GPIO_0;
  5811. writeq(val64, &bar0->gpio_control);
  5812. val64 = readq(&bar0->gpio_control);
  5813. }
  5814. /* turn off LED */
  5815. val64 = readq(&bar0->adapter_control);
  5816. val64 = val64 &(~ADAPTER_LED_ON);
  5817. writeq(val64, &bar0->adapter_control);
  5818. s2io_link(nic, LINK_DOWN);
  5819. }
  5820. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5821. out_unlock:
  5822. rtnl_unlock();
  5823. }
  5824. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5825. struct buffAdd *ba,
  5826. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5827. u64 *temp2, int size)
  5828. {
  5829. struct net_device *dev = sp->dev;
  5830. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  5831. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5832. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  5833. /* allocate skb */
  5834. if (*skb) {
  5835. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5836. /*
  5837. * As Rx frame are not going to be processed,
  5838. * using same mapped address for the Rxd
  5839. * buffer pointer
  5840. */
  5841. rxdp1->Buffer0_ptr = *temp0;
  5842. } else {
  5843. *skb = dev_alloc_skb(size);
  5844. if (!(*skb)) {
  5845. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5846. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5847. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  5848. sp->mac_control.stats_info->sw_stat. \
  5849. mem_alloc_fail_cnt++;
  5850. return -ENOMEM ;
  5851. }
  5852. sp->mac_control.stats_info->sw_stat.mem_allocated
  5853. += (*skb)->truesize;
  5854. /* storing the mapped addr in a temp variable
  5855. * such it will be used for next rxd whose
  5856. * Host Control is NULL
  5857. */
  5858. rxdp1->Buffer0_ptr = *temp0 =
  5859. pci_map_single( sp->pdev, (*skb)->data,
  5860. size - NET_IP_ALIGN,
  5861. PCI_DMA_FROMDEVICE);
  5862. if( (rxdp1->Buffer0_ptr == 0) ||
  5863. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  5864. goto memalloc_failed;
  5865. }
  5866. rxdp->Host_Control = (unsigned long) (*skb);
  5867. }
  5868. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  5869. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  5870. /* Two buffer Mode */
  5871. if (*skb) {
  5872. rxdp3->Buffer2_ptr = *temp2;
  5873. rxdp3->Buffer0_ptr = *temp0;
  5874. rxdp3->Buffer1_ptr = *temp1;
  5875. } else {
  5876. *skb = dev_alloc_skb(size);
  5877. if (!(*skb)) {
  5878. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5879. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5880. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  5881. sp->mac_control.stats_info->sw_stat. \
  5882. mem_alloc_fail_cnt++;
  5883. return -ENOMEM;
  5884. }
  5885. sp->mac_control.stats_info->sw_stat.mem_allocated
  5886. += (*skb)->truesize;
  5887. rxdp3->Buffer2_ptr = *temp2 =
  5888. pci_map_single(sp->pdev, (*skb)->data,
  5889. dev->mtu + 4,
  5890. PCI_DMA_FROMDEVICE);
  5891. if( (rxdp3->Buffer2_ptr == 0) ||
  5892. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  5893. goto memalloc_failed;
  5894. }
  5895. rxdp3->Buffer0_ptr = *temp0 =
  5896. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  5897. PCI_DMA_FROMDEVICE);
  5898. if( (rxdp3->Buffer0_ptr == 0) ||
  5899. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  5900. pci_unmap_single (sp->pdev,
  5901. (dma_addr_t)rxdp3->Buffer2_ptr,
  5902. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5903. goto memalloc_failed;
  5904. }
  5905. rxdp->Host_Control = (unsigned long) (*skb);
  5906. /* Buffer-1 will be dummy buffer not used */
  5907. rxdp3->Buffer1_ptr = *temp1 =
  5908. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  5909. PCI_DMA_FROMDEVICE);
  5910. if( (rxdp3->Buffer1_ptr == 0) ||
  5911. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  5912. pci_unmap_single (sp->pdev,
  5913. (dma_addr_t)rxdp3->Buffer0_ptr,
  5914. BUF0_LEN, PCI_DMA_FROMDEVICE);
  5915. pci_unmap_single (sp->pdev,
  5916. (dma_addr_t)rxdp3->Buffer2_ptr,
  5917. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5918. goto memalloc_failed;
  5919. }
  5920. }
  5921. }
  5922. return 0;
  5923. memalloc_failed:
  5924. stats->pci_map_fail_cnt++;
  5925. stats->mem_freed += (*skb)->truesize;
  5926. dev_kfree_skb(*skb);
  5927. return -ENOMEM;
  5928. }
  5929. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  5930. int size)
  5931. {
  5932. struct net_device *dev = sp->dev;
  5933. if (sp->rxd_mode == RXD_MODE_1) {
  5934. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  5935. } else if (sp->rxd_mode == RXD_MODE_3B) {
  5936. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5937. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  5938. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  5939. }
  5940. }
  5941. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  5942. {
  5943. int i, j, k, blk_cnt = 0, size;
  5944. struct mac_info * mac_control = &sp->mac_control;
  5945. struct config_param *config = &sp->config;
  5946. struct net_device *dev = sp->dev;
  5947. struct RxD_t *rxdp = NULL;
  5948. struct sk_buff *skb = NULL;
  5949. struct buffAdd *ba = NULL;
  5950. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  5951. /* Calculate the size based on ring mode */
  5952. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  5953. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  5954. if (sp->rxd_mode == RXD_MODE_1)
  5955. size += NET_IP_ALIGN;
  5956. else if (sp->rxd_mode == RXD_MODE_3B)
  5957. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  5958. for (i = 0; i < config->rx_ring_num; i++) {
  5959. blk_cnt = config->rx_cfg[i].num_rxd /
  5960. (rxd_count[sp->rxd_mode] +1);
  5961. for (j = 0; j < blk_cnt; j++) {
  5962. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  5963. rxdp = mac_control->rings[i].
  5964. rx_blocks[j].rxds[k].virt_addr;
  5965. if(sp->rxd_mode == RXD_MODE_3B)
  5966. ba = &mac_control->rings[i].ba[j][k];
  5967. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  5968. &skb,(u64 *)&temp0_64,
  5969. (u64 *)&temp1_64,
  5970. (u64 *)&temp2_64,
  5971. size) == ENOMEM) {
  5972. return 0;
  5973. }
  5974. set_rxd_buffer_size(sp, rxdp, size);
  5975. wmb();
  5976. /* flip the Ownership bit to Hardware */
  5977. rxdp->Control_1 |= RXD_OWN_XENA;
  5978. }
  5979. }
  5980. }
  5981. return 0;
  5982. }
  5983. static int s2io_add_isr(struct s2io_nic * sp)
  5984. {
  5985. int ret = 0;
  5986. struct net_device *dev = sp->dev;
  5987. int err = 0;
  5988. if (sp->config.intr_type == MSI_X)
  5989. ret = s2io_enable_msi_x(sp);
  5990. if (ret) {
  5991. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  5992. sp->config.intr_type = INTA;
  5993. }
  5994. /* Store the values of the MSIX table in the struct s2io_nic structure */
  5995. store_xmsi_data(sp);
  5996. /* After proper initialization of H/W, register ISR */
  5997. if (sp->config.intr_type == MSI_X) {
  5998. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  5999. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  6000. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  6001. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  6002. dev->name, i);
  6003. err = request_irq(sp->entries[i].vector,
  6004. s2io_msix_fifo_handle, 0, sp->desc[i],
  6005. sp->s2io_entries[i].arg);
  6006. /* If either data or addr is zero print it */
  6007. if(!(sp->msix_info[i].addr &&
  6008. sp->msix_info[i].data)) {
  6009. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6010. "Data:0x%lx\n",sp->desc[i],
  6011. (unsigned long long)
  6012. sp->msix_info[i].addr,
  6013. (unsigned long)
  6014. ntohl(sp->msix_info[i].data));
  6015. } else {
  6016. msix_tx_cnt++;
  6017. }
  6018. } else {
  6019. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6020. dev->name, i);
  6021. err = request_irq(sp->entries[i].vector,
  6022. s2io_msix_ring_handle, 0, sp->desc[i],
  6023. sp->s2io_entries[i].arg);
  6024. /* If either data or addr is zero print it */
  6025. if(!(sp->msix_info[i].addr &&
  6026. sp->msix_info[i].data)) {
  6027. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6028. "Data:0x%lx\n",sp->desc[i],
  6029. (unsigned long long)
  6030. sp->msix_info[i].addr,
  6031. (unsigned long)
  6032. ntohl(sp->msix_info[i].data));
  6033. } else {
  6034. msix_rx_cnt++;
  6035. }
  6036. }
  6037. if (err) {
  6038. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  6039. "failed\n", dev->name, i);
  6040. DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
  6041. return -1;
  6042. }
  6043. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  6044. }
  6045. printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
  6046. printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
  6047. }
  6048. if (sp->config.intr_type == INTA) {
  6049. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6050. sp->name, dev);
  6051. if (err) {
  6052. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6053. dev->name);
  6054. return -1;
  6055. }
  6056. }
  6057. return 0;
  6058. }
  6059. static void s2io_rem_isr(struct s2io_nic * sp)
  6060. {
  6061. struct net_device *dev = sp->dev;
  6062. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6063. if (sp->config.intr_type == MSI_X) {
  6064. int i;
  6065. u16 msi_control;
  6066. for (i=1; (sp->s2io_entries[i].in_use ==
  6067. MSIX_REGISTERED_SUCCESS); i++) {
  6068. int vector = sp->entries[i].vector;
  6069. void *arg = sp->s2io_entries[i].arg;
  6070. synchronize_irq(vector);
  6071. free_irq(vector, arg);
  6072. }
  6073. kfree(sp->entries);
  6074. stats->mem_freed +=
  6075. (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  6076. kfree(sp->s2io_entries);
  6077. stats->mem_freed +=
  6078. (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  6079. sp->entries = NULL;
  6080. sp->s2io_entries = NULL;
  6081. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  6082. msi_control &= 0xFFFE; /* Disable MSI */
  6083. pci_write_config_word(sp->pdev, 0x42, msi_control);
  6084. pci_disable_msix(sp->pdev);
  6085. } else {
  6086. synchronize_irq(sp->pdev->irq);
  6087. free_irq(sp->pdev->irq, dev);
  6088. }
  6089. }
  6090. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  6091. {
  6092. int cnt = 0;
  6093. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6094. unsigned long flags;
  6095. register u64 val64 = 0;
  6096. del_timer_sync(&sp->alarm_timer);
  6097. /* If s2io_set_link task is executing, wait till it completes. */
  6098. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
  6099. msleep(50);
  6100. }
  6101. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6102. /* disable Tx and Rx traffic on the NIC */
  6103. if (do_io)
  6104. stop_nic(sp);
  6105. s2io_rem_isr(sp);
  6106. /* Kill tasklet. */
  6107. tasklet_kill(&sp->task);
  6108. /* Check if the device is Quiescent and then Reset the NIC */
  6109. while(do_io) {
  6110. /* As per the HW requirement we need to replenish the
  6111. * receive buffer to avoid the ring bump. Since there is
  6112. * no intention of processing the Rx frame at this pointwe are
  6113. * just settting the ownership bit of rxd in Each Rx
  6114. * ring to HW and set the appropriate buffer size
  6115. * based on the ring mode
  6116. */
  6117. rxd_owner_bit_reset(sp);
  6118. val64 = readq(&bar0->adapter_status);
  6119. if (verify_xena_quiescence(sp)) {
  6120. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  6121. break;
  6122. }
  6123. msleep(50);
  6124. cnt++;
  6125. if (cnt == 10) {
  6126. DBG_PRINT(ERR_DBG,
  6127. "s2io_close:Device not Quiescent ");
  6128. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  6129. (unsigned long long) val64);
  6130. break;
  6131. }
  6132. }
  6133. if (do_io)
  6134. s2io_reset(sp);
  6135. spin_lock_irqsave(&sp->tx_lock, flags);
  6136. /* Free all Tx buffers */
  6137. free_tx_buffers(sp);
  6138. spin_unlock_irqrestore(&sp->tx_lock, flags);
  6139. /* Free all Rx buffers */
  6140. spin_lock_irqsave(&sp->rx_lock, flags);
  6141. free_rx_buffers(sp);
  6142. spin_unlock_irqrestore(&sp->rx_lock, flags);
  6143. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6144. }
  6145. static void s2io_card_down(struct s2io_nic * sp)
  6146. {
  6147. do_s2io_card_down(sp, 1);
  6148. }
  6149. static int s2io_card_up(struct s2io_nic * sp)
  6150. {
  6151. int i, ret = 0;
  6152. struct mac_info *mac_control;
  6153. struct config_param *config;
  6154. struct net_device *dev = (struct net_device *) sp->dev;
  6155. u16 interruptible;
  6156. /* Initialize the H/W I/O registers */
  6157. if (init_nic(sp) != 0) {
  6158. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6159. dev->name);
  6160. s2io_reset(sp);
  6161. return -ENODEV;
  6162. }
  6163. /*
  6164. * Initializing the Rx buffers. For now we are considering only 1
  6165. * Rx ring and initializing buffers into 30 Rx blocks
  6166. */
  6167. mac_control = &sp->mac_control;
  6168. config = &sp->config;
  6169. for (i = 0; i < config->rx_ring_num; i++) {
  6170. if ((ret = fill_rx_buffers(sp, i))) {
  6171. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6172. dev->name);
  6173. s2io_reset(sp);
  6174. free_rx_buffers(sp);
  6175. return -ENOMEM;
  6176. }
  6177. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6178. atomic_read(&sp->rx_bufs_left[i]));
  6179. }
  6180. /* Maintain the state prior to the open */
  6181. if (sp->promisc_flg)
  6182. sp->promisc_flg = 0;
  6183. if (sp->m_cast_flg) {
  6184. sp->m_cast_flg = 0;
  6185. sp->all_multi_pos= 0;
  6186. }
  6187. /* Setting its receive mode */
  6188. s2io_set_multicast(dev);
  6189. if (sp->lro) {
  6190. /* Initialize max aggregatable pkts per session based on MTU */
  6191. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6192. /* Check if we can use(if specified) user provided value */
  6193. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6194. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6195. }
  6196. /* Enable Rx Traffic and interrupts on the NIC */
  6197. if (start_nic(sp)) {
  6198. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6199. s2io_reset(sp);
  6200. free_rx_buffers(sp);
  6201. return -ENODEV;
  6202. }
  6203. /* Add interrupt service routine */
  6204. if (s2io_add_isr(sp) != 0) {
  6205. if (sp->config.intr_type == MSI_X)
  6206. s2io_rem_isr(sp);
  6207. s2io_reset(sp);
  6208. free_rx_buffers(sp);
  6209. return -ENODEV;
  6210. }
  6211. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6212. /* Enable tasklet for the device */
  6213. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  6214. /* Enable select interrupts */
  6215. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6216. if (sp->config.intr_type != INTA)
  6217. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6218. else {
  6219. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6220. interruptible |= TX_PIC_INTR;
  6221. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6222. }
  6223. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6224. return 0;
  6225. }
  6226. /**
  6227. * s2io_restart_nic - Resets the NIC.
  6228. * @data : long pointer to the device private structure
  6229. * Description:
  6230. * This function is scheduled to be run by the s2io_tx_watchdog
  6231. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6232. * the run time of the watch dog routine which is run holding a
  6233. * spin lock.
  6234. */
  6235. static void s2io_restart_nic(struct work_struct *work)
  6236. {
  6237. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6238. struct net_device *dev = sp->dev;
  6239. rtnl_lock();
  6240. if (!netif_running(dev))
  6241. goto out_unlock;
  6242. s2io_card_down(sp);
  6243. if (s2io_card_up(sp)) {
  6244. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6245. dev->name);
  6246. }
  6247. netif_wake_queue(dev);
  6248. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6249. dev->name);
  6250. out_unlock:
  6251. rtnl_unlock();
  6252. }
  6253. /**
  6254. * s2io_tx_watchdog - Watchdog for transmit side.
  6255. * @dev : Pointer to net device structure
  6256. * Description:
  6257. * This function is triggered if the Tx Queue is stopped
  6258. * for a pre-defined amount of time when the Interface is still up.
  6259. * If the Interface is jammed in such a situation, the hardware is
  6260. * reset (by s2io_close) and restarted again (by s2io_open) to
  6261. * overcome any problem that might have been caused in the hardware.
  6262. * Return value:
  6263. * void
  6264. */
  6265. static void s2io_tx_watchdog(struct net_device *dev)
  6266. {
  6267. struct s2io_nic *sp = dev->priv;
  6268. if (netif_carrier_ok(dev)) {
  6269. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6270. schedule_work(&sp->rst_timer_task);
  6271. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6272. }
  6273. }
  6274. /**
  6275. * rx_osm_handler - To perform some OS related operations on SKB.
  6276. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6277. * @skb : the socket buffer pointer.
  6278. * @len : length of the packet
  6279. * @cksum : FCS checksum of the frame.
  6280. * @ring_no : the ring from which this RxD was extracted.
  6281. * Description:
  6282. * This function is called by the Rx interrupt serivce routine to perform
  6283. * some OS related operations on the SKB before passing it to the upper
  6284. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6285. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6286. * to the upper layer. If the checksum is wrong, it increments the Rx
  6287. * packet error count, frees the SKB and returns error.
  6288. * Return value:
  6289. * SUCCESS on success and -1 on failure.
  6290. */
  6291. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6292. {
  6293. struct s2io_nic *sp = ring_data->nic;
  6294. struct net_device *dev = (struct net_device *) sp->dev;
  6295. struct sk_buff *skb = (struct sk_buff *)
  6296. ((unsigned long) rxdp->Host_Control);
  6297. int ring_no = ring_data->ring_no;
  6298. u16 l3_csum, l4_csum;
  6299. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6300. struct lro *lro;
  6301. u8 err_mask;
  6302. skb->dev = dev;
  6303. if (err) {
  6304. /* Check for parity error */
  6305. if (err & 0x1) {
  6306. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6307. }
  6308. err_mask = err >> 48;
  6309. switch(err_mask) {
  6310. case 1:
  6311. sp->mac_control.stats_info->sw_stat.
  6312. rx_parity_err_cnt++;
  6313. break;
  6314. case 2:
  6315. sp->mac_control.stats_info->sw_stat.
  6316. rx_abort_cnt++;
  6317. break;
  6318. case 3:
  6319. sp->mac_control.stats_info->sw_stat.
  6320. rx_parity_abort_cnt++;
  6321. break;
  6322. case 4:
  6323. sp->mac_control.stats_info->sw_stat.
  6324. rx_rda_fail_cnt++;
  6325. break;
  6326. case 5:
  6327. sp->mac_control.stats_info->sw_stat.
  6328. rx_unkn_prot_cnt++;
  6329. break;
  6330. case 6:
  6331. sp->mac_control.stats_info->sw_stat.
  6332. rx_fcs_err_cnt++;
  6333. break;
  6334. case 7:
  6335. sp->mac_control.stats_info->sw_stat.
  6336. rx_buf_size_err_cnt++;
  6337. break;
  6338. case 8:
  6339. sp->mac_control.stats_info->sw_stat.
  6340. rx_rxd_corrupt_cnt++;
  6341. break;
  6342. case 15:
  6343. sp->mac_control.stats_info->sw_stat.
  6344. rx_unkn_err_cnt++;
  6345. break;
  6346. }
  6347. /*
  6348. * Drop the packet if bad transfer code. Exception being
  6349. * 0x5, which could be due to unsupported IPv6 extension header.
  6350. * In this case, we let stack handle the packet.
  6351. * Note that in this case, since checksum will be incorrect,
  6352. * stack will validate the same.
  6353. */
  6354. if (err_mask != 0x5) {
  6355. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6356. dev->name, err_mask);
  6357. sp->stats.rx_crc_errors++;
  6358. sp->mac_control.stats_info->sw_stat.mem_freed
  6359. += skb->truesize;
  6360. dev_kfree_skb(skb);
  6361. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6362. rxdp->Host_Control = 0;
  6363. return 0;
  6364. }
  6365. }
  6366. /* Updating statistics */
  6367. sp->stats.rx_packets++;
  6368. rxdp->Host_Control = 0;
  6369. if (sp->rxd_mode == RXD_MODE_1) {
  6370. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6371. sp->stats.rx_bytes += len;
  6372. skb_put(skb, len);
  6373. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6374. int get_block = ring_data->rx_curr_get_info.block_index;
  6375. int get_off = ring_data->rx_curr_get_info.offset;
  6376. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6377. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6378. unsigned char *buff = skb_push(skb, buf0_len);
  6379. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6380. sp->stats.rx_bytes += buf0_len + buf2_len;
  6381. memcpy(buff, ba->ba_0, buf0_len);
  6382. skb_put(skb, buf2_len);
  6383. }
  6384. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6385. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6386. (sp->rx_csum)) {
  6387. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6388. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6389. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6390. /*
  6391. * NIC verifies if the Checksum of the received
  6392. * frame is Ok or not and accordingly returns
  6393. * a flag in the RxD.
  6394. */
  6395. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6396. if (sp->lro) {
  6397. u32 tcp_len;
  6398. u8 *tcp;
  6399. int ret = 0;
  6400. ret = s2io_club_tcp_session(skb->data, &tcp,
  6401. &tcp_len, &lro, rxdp, sp);
  6402. switch (ret) {
  6403. case 3: /* Begin anew */
  6404. lro->parent = skb;
  6405. goto aggregate;
  6406. case 1: /* Aggregate */
  6407. {
  6408. lro_append_pkt(sp, lro,
  6409. skb, tcp_len);
  6410. goto aggregate;
  6411. }
  6412. case 4: /* Flush session */
  6413. {
  6414. lro_append_pkt(sp, lro,
  6415. skb, tcp_len);
  6416. queue_rx_frame(lro->parent);
  6417. clear_lro_session(lro);
  6418. sp->mac_control.stats_info->
  6419. sw_stat.flush_max_pkts++;
  6420. goto aggregate;
  6421. }
  6422. case 2: /* Flush both */
  6423. lro->parent->data_len =
  6424. lro->frags_len;
  6425. sp->mac_control.stats_info->
  6426. sw_stat.sending_both++;
  6427. queue_rx_frame(lro->parent);
  6428. clear_lro_session(lro);
  6429. goto send_up;
  6430. case 0: /* sessions exceeded */
  6431. case -1: /* non-TCP or not
  6432. * L2 aggregatable
  6433. */
  6434. case 5: /*
  6435. * First pkt in session not
  6436. * L3/L4 aggregatable
  6437. */
  6438. break;
  6439. default:
  6440. DBG_PRINT(ERR_DBG,
  6441. "%s: Samadhana!!\n",
  6442. __FUNCTION__);
  6443. BUG();
  6444. }
  6445. }
  6446. } else {
  6447. /*
  6448. * Packet with erroneous checksum, let the
  6449. * upper layers deal with it.
  6450. */
  6451. skb->ip_summed = CHECKSUM_NONE;
  6452. }
  6453. } else {
  6454. skb->ip_summed = CHECKSUM_NONE;
  6455. }
  6456. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6457. if (!sp->lro) {
  6458. skb->protocol = eth_type_trans(skb, dev);
  6459. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6460. vlan_strip_flag)) {
  6461. /* Queueing the vlan frame to the upper layer */
  6462. if (napi)
  6463. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6464. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6465. else
  6466. vlan_hwaccel_rx(skb, sp->vlgrp,
  6467. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6468. } else {
  6469. if (napi)
  6470. netif_receive_skb(skb);
  6471. else
  6472. netif_rx(skb);
  6473. }
  6474. } else {
  6475. send_up:
  6476. queue_rx_frame(skb);
  6477. }
  6478. dev->last_rx = jiffies;
  6479. aggregate:
  6480. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6481. return SUCCESS;
  6482. }
  6483. /**
  6484. * s2io_link - stops/starts the Tx queue.
  6485. * @sp : private member of the device structure, which is a pointer to the
  6486. * s2io_nic structure.
  6487. * @link : inidicates whether link is UP/DOWN.
  6488. * Description:
  6489. * This function stops/starts the Tx queue depending on whether the link
  6490. * status of the NIC is is down or up. This is called by the Alarm
  6491. * interrupt handler whenever a link change interrupt comes up.
  6492. * Return value:
  6493. * void.
  6494. */
  6495. static void s2io_link(struct s2io_nic * sp, int link)
  6496. {
  6497. struct net_device *dev = (struct net_device *) sp->dev;
  6498. if (link != sp->last_link_state) {
  6499. if (link == LINK_DOWN) {
  6500. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6501. netif_carrier_off(dev);
  6502. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6503. sp->mac_control.stats_info->sw_stat.link_up_time =
  6504. jiffies - sp->start_time;
  6505. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6506. } else {
  6507. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6508. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6509. sp->mac_control.stats_info->sw_stat.link_down_time =
  6510. jiffies - sp->start_time;
  6511. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6512. netif_carrier_on(dev);
  6513. }
  6514. }
  6515. sp->last_link_state = link;
  6516. sp->start_time = jiffies;
  6517. }
  6518. /**
  6519. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6520. * @sp : private member of the device structure, which is a pointer to the
  6521. * s2io_nic structure.
  6522. * Description:
  6523. * This function initializes a few of the PCI and PCI-X configuration registers
  6524. * with recommended values.
  6525. * Return value:
  6526. * void
  6527. */
  6528. static void s2io_init_pci(struct s2io_nic * sp)
  6529. {
  6530. u16 pci_cmd = 0, pcix_cmd = 0;
  6531. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6532. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6533. &(pcix_cmd));
  6534. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6535. (pcix_cmd | 1));
  6536. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6537. &(pcix_cmd));
  6538. /* Set the PErr Response bit in PCI command register. */
  6539. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6540. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6541. (pci_cmd | PCI_COMMAND_PARITY));
  6542. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6543. }
  6544. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6545. {
  6546. if ( tx_fifo_num > 8) {
  6547. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6548. "supported\n");
  6549. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6550. tx_fifo_num = 8;
  6551. }
  6552. if ( rx_ring_num > 8) {
  6553. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6554. "supported\n");
  6555. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6556. rx_ring_num = 8;
  6557. }
  6558. if (*dev_intr_type != INTA)
  6559. napi = 0;
  6560. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6561. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6562. "Defaulting to INTA\n");
  6563. *dev_intr_type = INTA;
  6564. }
  6565. if ((*dev_intr_type == MSI_X) &&
  6566. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6567. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6568. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6569. "Defaulting to INTA\n");
  6570. *dev_intr_type = INTA;
  6571. }
  6572. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6573. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6574. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6575. rx_ring_mode = 1;
  6576. }
  6577. return SUCCESS;
  6578. }
  6579. /**
  6580. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6581. * or Traffic class respectively.
  6582. * @nic: device peivate variable
  6583. * Description: The function configures the receive steering to
  6584. * desired receive ring.
  6585. * Return Value: SUCCESS on success and
  6586. * '-1' on failure (endian settings incorrect).
  6587. */
  6588. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6589. {
  6590. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6591. register u64 val64 = 0;
  6592. if (ds_codepoint > 63)
  6593. return FAILURE;
  6594. val64 = RTS_DS_MEM_DATA(ring);
  6595. writeq(val64, &bar0->rts_ds_mem_data);
  6596. val64 = RTS_DS_MEM_CTRL_WE |
  6597. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6598. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6599. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6600. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6601. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6602. S2IO_BIT_RESET);
  6603. }
  6604. /**
  6605. * s2io_init_nic - Initialization of the adapter .
  6606. * @pdev : structure containing the PCI related information of the device.
  6607. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6608. * Description:
  6609. * The function initializes an adapter identified by the pci_dec structure.
  6610. * All OS related initialization including memory and device structure and
  6611. * initlaization of the device private variable is done. Also the swapper
  6612. * control register is initialized to enable read and write into the I/O
  6613. * registers of the device.
  6614. * Return value:
  6615. * returns 0 on success and negative on failure.
  6616. */
  6617. static int __devinit
  6618. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6619. {
  6620. struct s2io_nic *sp;
  6621. struct net_device *dev;
  6622. int i, j, ret;
  6623. int dma_flag = FALSE;
  6624. u32 mac_up, mac_down;
  6625. u64 val64 = 0, tmp64 = 0;
  6626. struct XENA_dev_config __iomem *bar0 = NULL;
  6627. u16 subid;
  6628. struct mac_info *mac_control;
  6629. struct config_param *config;
  6630. int mode;
  6631. u8 dev_intr_type = intr_type;
  6632. DECLARE_MAC_BUF(mac);
  6633. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6634. return ret;
  6635. if ((ret = pci_enable_device(pdev))) {
  6636. DBG_PRINT(ERR_DBG,
  6637. "s2io_init_nic: pci_enable_device failed\n");
  6638. return ret;
  6639. }
  6640. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6641. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6642. dma_flag = TRUE;
  6643. if (pci_set_consistent_dma_mask
  6644. (pdev, DMA_64BIT_MASK)) {
  6645. DBG_PRINT(ERR_DBG,
  6646. "Unable to obtain 64bit DMA for \
  6647. consistent allocations\n");
  6648. pci_disable_device(pdev);
  6649. return -ENOMEM;
  6650. }
  6651. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6652. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6653. } else {
  6654. pci_disable_device(pdev);
  6655. return -ENOMEM;
  6656. }
  6657. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6658. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6659. pci_disable_device(pdev);
  6660. return -ENODEV;
  6661. }
  6662. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6663. if (dev == NULL) {
  6664. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6665. pci_disable_device(pdev);
  6666. pci_release_regions(pdev);
  6667. return -ENODEV;
  6668. }
  6669. pci_set_master(pdev);
  6670. pci_set_drvdata(pdev, dev);
  6671. SET_NETDEV_DEV(dev, &pdev->dev);
  6672. /* Private member variable initialized to s2io NIC structure */
  6673. sp = dev->priv;
  6674. memset(sp, 0, sizeof(struct s2io_nic));
  6675. sp->dev = dev;
  6676. sp->pdev = pdev;
  6677. sp->high_dma_flag = dma_flag;
  6678. sp->device_enabled_once = FALSE;
  6679. if (rx_ring_mode == 1)
  6680. sp->rxd_mode = RXD_MODE_1;
  6681. if (rx_ring_mode == 2)
  6682. sp->rxd_mode = RXD_MODE_3B;
  6683. sp->config.intr_type = dev_intr_type;
  6684. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6685. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6686. sp->device_type = XFRAME_II_DEVICE;
  6687. else
  6688. sp->device_type = XFRAME_I_DEVICE;
  6689. sp->lro = lro;
  6690. /* Initialize some PCI/PCI-X fields of the NIC. */
  6691. s2io_init_pci(sp);
  6692. /*
  6693. * Setting the device configuration parameters.
  6694. * Most of these parameters can be specified by the user during
  6695. * module insertion as they are module loadable parameters. If
  6696. * these parameters are not not specified during load time, they
  6697. * are initialized with default values.
  6698. */
  6699. mac_control = &sp->mac_control;
  6700. config = &sp->config;
  6701. config->napi = napi;
  6702. /* Tx side parameters. */
  6703. config->tx_fifo_num = tx_fifo_num;
  6704. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6705. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6706. config->tx_cfg[i].fifo_priority = i;
  6707. }
  6708. /* mapping the QoS priority to the configured fifos */
  6709. for (i = 0; i < MAX_TX_FIFOS; i++)
  6710. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6711. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6712. for (i = 0; i < config->tx_fifo_num; i++) {
  6713. config->tx_cfg[i].f_no_snoop =
  6714. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6715. if (config->tx_cfg[i].fifo_len < 65) {
  6716. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6717. break;
  6718. }
  6719. }
  6720. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6721. config->max_txds = MAX_SKB_FRAGS + 2;
  6722. /* Rx side parameters. */
  6723. config->rx_ring_num = rx_ring_num;
  6724. for (i = 0; i < MAX_RX_RINGS; i++) {
  6725. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6726. (rxd_count[sp->rxd_mode] + 1);
  6727. config->rx_cfg[i].ring_priority = i;
  6728. }
  6729. for (i = 0; i < rx_ring_num; i++) {
  6730. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6731. config->rx_cfg[i].f_no_snoop =
  6732. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6733. }
  6734. /* Setting Mac Control parameters */
  6735. mac_control->rmac_pause_time = rmac_pause_time;
  6736. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6737. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6738. /* Initialize Ring buffer parameters. */
  6739. for (i = 0; i < config->rx_ring_num; i++)
  6740. atomic_set(&sp->rx_bufs_left[i], 0);
  6741. /* initialize the shared memory used by the NIC and the host */
  6742. if (init_shared_mem(sp)) {
  6743. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6744. dev->name);
  6745. ret = -ENOMEM;
  6746. goto mem_alloc_failed;
  6747. }
  6748. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6749. pci_resource_len(pdev, 0));
  6750. if (!sp->bar0) {
  6751. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6752. dev->name);
  6753. ret = -ENOMEM;
  6754. goto bar0_remap_failed;
  6755. }
  6756. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6757. pci_resource_len(pdev, 2));
  6758. if (!sp->bar1) {
  6759. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6760. dev->name);
  6761. ret = -ENOMEM;
  6762. goto bar1_remap_failed;
  6763. }
  6764. dev->irq = pdev->irq;
  6765. dev->base_addr = (unsigned long) sp->bar0;
  6766. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6767. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6768. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6769. (sp->bar1 + (j * 0x00020000));
  6770. }
  6771. /* Driver entry points */
  6772. dev->open = &s2io_open;
  6773. dev->stop = &s2io_close;
  6774. dev->hard_start_xmit = &s2io_xmit;
  6775. dev->get_stats = &s2io_get_stats;
  6776. dev->set_multicast_list = &s2io_set_multicast;
  6777. dev->do_ioctl = &s2io_ioctl;
  6778. dev->change_mtu = &s2io_change_mtu;
  6779. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6780. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6781. dev->vlan_rx_register = s2io_vlan_rx_register;
  6782. /*
  6783. * will use eth_mac_addr() for dev->set_mac_address
  6784. * mac address will be set every time dev->open() is called
  6785. */
  6786. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  6787. #ifdef CONFIG_NET_POLL_CONTROLLER
  6788. dev->poll_controller = s2io_netpoll;
  6789. #endif
  6790. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6791. if (sp->high_dma_flag == TRUE)
  6792. dev->features |= NETIF_F_HIGHDMA;
  6793. dev->features |= NETIF_F_TSO;
  6794. dev->features |= NETIF_F_TSO6;
  6795. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6796. dev->features |= NETIF_F_UFO;
  6797. dev->features |= NETIF_F_HW_CSUM;
  6798. }
  6799. dev->tx_timeout = &s2io_tx_watchdog;
  6800. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6801. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6802. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6803. pci_save_state(sp->pdev);
  6804. /* Setting swapper control on the NIC, for proper reset operation */
  6805. if (s2io_set_swapper(sp)) {
  6806. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6807. dev->name);
  6808. ret = -EAGAIN;
  6809. goto set_swap_failed;
  6810. }
  6811. /* Verify if the Herc works on the slot its placed into */
  6812. if (sp->device_type & XFRAME_II_DEVICE) {
  6813. mode = s2io_verify_pci_mode(sp);
  6814. if (mode < 0) {
  6815. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6816. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6817. ret = -EBADSLT;
  6818. goto set_swap_failed;
  6819. }
  6820. }
  6821. /* Not needed for Herc */
  6822. if (sp->device_type & XFRAME_I_DEVICE) {
  6823. /*
  6824. * Fix for all "FFs" MAC address problems observed on
  6825. * Alpha platforms
  6826. */
  6827. fix_mac_address(sp);
  6828. s2io_reset(sp);
  6829. }
  6830. /*
  6831. * MAC address initialization.
  6832. * For now only one mac address will be read and used.
  6833. */
  6834. bar0 = sp->bar0;
  6835. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6836. RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
  6837. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6838. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6839. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  6840. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6841. mac_down = (u32) tmp64;
  6842. mac_up = (u32) (tmp64 >> 32);
  6843. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6844. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6845. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6846. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6847. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6848. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6849. /* Set the factory defined MAC address initially */
  6850. dev->addr_len = ETH_ALEN;
  6851. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6852. /* Store the values of the MSIX table in the s2io_nic structure */
  6853. store_xmsi_data(sp);
  6854. /* reset Nic and bring it to known state */
  6855. s2io_reset(sp);
  6856. /*
  6857. * Initialize the tasklet status and link state flags
  6858. * and the card state parameter
  6859. */
  6860. sp->tasklet_status = 0;
  6861. sp->state = 0;
  6862. /* Initialize spinlocks */
  6863. spin_lock_init(&sp->tx_lock);
  6864. if (!napi)
  6865. spin_lock_init(&sp->put_lock);
  6866. spin_lock_init(&sp->rx_lock);
  6867. /*
  6868. * SXE-002: Configure link and activity LED to init state
  6869. * on driver load.
  6870. */
  6871. subid = sp->pdev->subsystem_device;
  6872. if ((subid & 0xFF) >= 0x07) {
  6873. val64 = readq(&bar0->gpio_control);
  6874. val64 |= 0x0000800000000000ULL;
  6875. writeq(val64, &bar0->gpio_control);
  6876. val64 = 0x0411040400000000ULL;
  6877. writeq(val64, (void __iomem *) bar0 + 0x2700);
  6878. val64 = readq(&bar0->gpio_control);
  6879. }
  6880. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  6881. if (register_netdev(dev)) {
  6882. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  6883. ret = -ENODEV;
  6884. goto register_failed;
  6885. }
  6886. s2io_vpd_read(sp);
  6887. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  6888. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  6889. sp->product_name, pdev->revision);
  6890. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  6891. s2io_driver_version);
  6892. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
  6893. dev->name, print_mac(mac, dev->dev_addr));
  6894. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  6895. if (sp->device_type & XFRAME_II_DEVICE) {
  6896. mode = s2io_print_pci_mode(sp);
  6897. if (mode < 0) {
  6898. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6899. ret = -EBADSLT;
  6900. unregister_netdev(dev);
  6901. goto set_swap_failed;
  6902. }
  6903. }
  6904. switch(sp->rxd_mode) {
  6905. case RXD_MODE_1:
  6906. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  6907. dev->name);
  6908. break;
  6909. case RXD_MODE_3B:
  6910. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  6911. dev->name);
  6912. break;
  6913. }
  6914. if (napi)
  6915. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  6916. switch(sp->config.intr_type) {
  6917. case INTA:
  6918. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  6919. break;
  6920. case MSI_X:
  6921. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  6922. break;
  6923. }
  6924. if (sp->lro)
  6925. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  6926. dev->name);
  6927. if (ufo)
  6928. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  6929. " enabled\n", dev->name);
  6930. /* Initialize device name */
  6931. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  6932. /* Initialize bimodal Interrupts */
  6933. sp->config.bimodal = bimodal;
  6934. if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
  6935. sp->config.bimodal = 0;
  6936. DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
  6937. dev->name);
  6938. }
  6939. /*
  6940. * Make Link state as off at this point, when the Link change
  6941. * interrupt comes the state will be automatically changed to
  6942. * the right state.
  6943. */
  6944. netif_carrier_off(dev);
  6945. return 0;
  6946. register_failed:
  6947. set_swap_failed:
  6948. iounmap(sp->bar1);
  6949. bar1_remap_failed:
  6950. iounmap(sp->bar0);
  6951. bar0_remap_failed:
  6952. mem_alloc_failed:
  6953. free_shared_mem(sp);
  6954. pci_disable_device(pdev);
  6955. pci_release_regions(pdev);
  6956. pci_set_drvdata(pdev, NULL);
  6957. free_netdev(dev);
  6958. return ret;
  6959. }
  6960. /**
  6961. * s2io_rem_nic - Free the PCI device
  6962. * @pdev: structure containing the PCI related information of the device.
  6963. * Description: This function is called by the Pci subsystem to release a
  6964. * PCI device and free up all resource held up by the device. This could
  6965. * be in response to a Hot plug event or when the driver is to be removed
  6966. * from memory.
  6967. */
  6968. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  6969. {
  6970. struct net_device *dev =
  6971. (struct net_device *) pci_get_drvdata(pdev);
  6972. struct s2io_nic *sp;
  6973. if (dev == NULL) {
  6974. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  6975. return;
  6976. }
  6977. flush_scheduled_work();
  6978. sp = dev->priv;
  6979. unregister_netdev(dev);
  6980. free_shared_mem(sp);
  6981. iounmap(sp->bar0);
  6982. iounmap(sp->bar1);
  6983. pci_release_regions(pdev);
  6984. pci_set_drvdata(pdev, NULL);
  6985. free_netdev(dev);
  6986. pci_disable_device(pdev);
  6987. }
  6988. /**
  6989. * s2io_starter - Entry point for the driver
  6990. * Description: This function is the entry point for the driver. It verifies
  6991. * the module loadable parameters and initializes PCI configuration space.
  6992. */
  6993. int __init s2io_starter(void)
  6994. {
  6995. return pci_register_driver(&s2io_driver);
  6996. }
  6997. /**
  6998. * s2io_closer - Cleanup routine for the driver
  6999. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  7000. */
  7001. static __exit void s2io_closer(void)
  7002. {
  7003. pci_unregister_driver(&s2io_driver);
  7004. DBG_PRINT(INIT_DBG, "cleanup done\n");
  7005. }
  7006. module_init(s2io_starter);
  7007. module_exit(s2io_closer);
  7008. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7009. struct tcphdr **tcp, struct RxD_t *rxdp)
  7010. {
  7011. int ip_off;
  7012. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7013. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7014. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  7015. __FUNCTION__);
  7016. return -1;
  7017. }
  7018. /* TODO:
  7019. * By default the VLAN field in the MAC is stripped by the card, if this
  7020. * feature is turned off in rx_pa_cfg register, then the ip_off field
  7021. * has to be shifted by a further 2 bytes
  7022. */
  7023. switch (l2_type) {
  7024. case 0: /* DIX type */
  7025. case 4: /* DIX type with VLAN */
  7026. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7027. break;
  7028. /* LLC, SNAP etc are considered non-mergeable */
  7029. default:
  7030. return -1;
  7031. }
  7032. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7033. ip_len = (u8)((*ip)->ihl);
  7034. ip_len <<= 2;
  7035. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7036. return 0;
  7037. }
  7038. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7039. struct tcphdr *tcp)
  7040. {
  7041. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7042. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  7043. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  7044. return -1;
  7045. return 0;
  7046. }
  7047. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7048. {
  7049. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  7050. }
  7051. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7052. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  7053. {
  7054. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7055. lro->l2h = l2h;
  7056. lro->iph = ip;
  7057. lro->tcph = tcp;
  7058. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7059. lro->tcp_ack = ntohl(tcp->ack_seq);
  7060. lro->sg_num = 1;
  7061. lro->total_len = ntohs(ip->tot_len);
  7062. lro->frags_len = 0;
  7063. /*
  7064. * check if we saw TCP timestamp. Other consistency checks have
  7065. * already been done.
  7066. */
  7067. if (tcp->doff == 8) {
  7068. u32 *ptr;
  7069. ptr = (u32 *)(tcp+1);
  7070. lro->saw_ts = 1;
  7071. lro->cur_tsval = *(ptr+1);
  7072. lro->cur_tsecr = *(ptr+2);
  7073. }
  7074. lro->in_use = 1;
  7075. }
  7076. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7077. {
  7078. struct iphdr *ip = lro->iph;
  7079. struct tcphdr *tcp = lro->tcph;
  7080. __sum16 nchk;
  7081. struct stat_block *statinfo = sp->mac_control.stats_info;
  7082. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7083. /* Update L3 header */
  7084. ip->tot_len = htons(lro->total_len);
  7085. ip->check = 0;
  7086. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7087. ip->check = nchk;
  7088. /* Update L4 header */
  7089. tcp->ack_seq = lro->tcp_ack;
  7090. tcp->window = lro->window;
  7091. /* Update tsecr field if this session has timestamps enabled */
  7092. if (lro->saw_ts) {
  7093. u32 *ptr = (u32 *)(tcp + 1);
  7094. *(ptr+2) = lro->cur_tsecr;
  7095. }
  7096. /* Update counters required for calculation of
  7097. * average no. of packets aggregated.
  7098. */
  7099. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7100. statinfo->sw_stat.num_aggregations++;
  7101. }
  7102. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7103. struct tcphdr *tcp, u32 l4_pyld)
  7104. {
  7105. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7106. lro->total_len += l4_pyld;
  7107. lro->frags_len += l4_pyld;
  7108. lro->tcp_next_seq += l4_pyld;
  7109. lro->sg_num++;
  7110. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7111. lro->tcp_ack = tcp->ack_seq;
  7112. lro->window = tcp->window;
  7113. if (lro->saw_ts) {
  7114. u32 *ptr;
  7115. /* Update tsecr and tsval from this packet */
  7116. ptr = (u32 *) (tcp + 1);
  7117. lro->cur_tsval = *(ptr + 1);
  7118. lro->cur_tsecr = *(ptr + 2);
  7119. }
  7120. }
  7121. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7122. struct tcphdr *tcp, u32 tcp_pyld_len)
  7123. {
  7124. u8 *ptr;
  7125. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7126. if (!tcp_pyld_len) {
  7127. /* Runt frame or a pure ack */
  7128. return -1;
  7129. }
  7130. if (ip->ihl != 5) /* IP has options */
  7131. return -1;
  7132. /* If we see CE codepoint in IP header, packet is not mergeable */
  7133. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7134. return -1;
  7135. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7136. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7137. tcp->ece || tcp->cwr || !tcp->ack) {
  7138. /*
  7139. * Currently recognize only the ack control word and
  7140. * any other control field being set would result in
  7141. * flushing the LRO session
  7142. */
  7143. return -1;
  7144. }
  7145. /*
  7146. * Allow only one TCP timestamp option. Don't aggregate if
  7147. * any other options are detected.
  7148. */
  7149. if (tcp->doff != 5 && tcp->doff != 8)
  7150. return -1;
  7151. if (tcp->doff == 8) {
  7152. ptr = (u8 *)(tcp + 1);
  7153. while (*ptr == TCPOPT_NOP)
  7154. ptr++;
  7155. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7156. return -1;
  7157. /* Ensure timestamp value increases monotonically */
  7158. if (l_lro)
  7159. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  7160. return -1;
  7161. /* timestamp echo reply should be non-zero */
  7162. if (*((u32 *)(ptr+6)) == 0)
  7163. return -1;
  7164. }
  7165. return 0;
  7166. }
  7167. static int
  7168. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  7169. struct RxD_t *rxdp, struct s2io_nic *sp)
  7170. {
  7171. struct iphdr *ip;
  7172. struct tcphdr *tcph;
  7173. int ret = 0, i;
  7174. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7175. rxdp))) {
  7176. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7177. ip->saddr, ip->daddr);
  7178. } else {
  7179. return ret;
  7180. }
  7181. tcph = (struct tcphdr *)*tcp;
  7182. *tcp_len = get_l4_pyld_length(ip, tcph);
  7183. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7184. struct lro *l_lro = &sp->lro0_n[i];
  7185. if (l_lro->in_use) {
  7186. if (check_for_socket_match(l_lro, ip, tcph))
  7187. continue;
  7188. /* Sock pair matched */
  7189. *lro = l_lro;
  7190. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7191. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7192. "0x%x, actual 0x%x\n", __FUNCTION__,
  7193. (*lro)->tcp_next_seq,
  7194. ntohl(tcph->seq));
  7195. sp->mac_control.stats_info->
  7196. sw_stat.outof_sequence_pkts++;
  7197. ret = 2;
  7198. break;
  7199. }
  7200. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7201. ret = 1; /* Aggregate */
  7202. else
  7203. ret = 2; /* Flush both */
  7204. break;
  7205. }
  7206. }
  7207. if (ret == 0) {
  7208. /* Before searching for available LRO objects,
  7209. * check if the pkt is L3/L4 aggregatable. If not
  7210. * don't create new LRO session. Just send this
  7211. * packet up.
  7212. */
  7213. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7214. return 5;
  7215. }
  7216. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7217. struct lro *l_lro = &sp->lro0_n[i];
  7218. if (!(l_lro->in_use)) {
  7219. *lro = l_lro;
  7220. ret = 3; /* Begin anew */
  7221. break;
  7222. }
  7223. }
  7224. }
  7225. if (ret == 0) { /* sessions exceeded */
  7226. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7227. __FUNCTION__);
  7228. *lro = NULL;
  7229. return ret;
  7230. }
  7231. switch (ret) {
  7232. case 3:
  7233. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7234. break;
  7235. case 2:
  7236. update_L3L4_header(sp, *lro);
  7237. break;
  7238. case 1:
  7239. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7240. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7241. update_L3L4_header(sp, *lro);
  7242. ret = 4; /* Flush the LRO */
  7243. }
  7244. break;
  7245. default:
  7246. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7247. __FUNCTION__);
  7248. break;
  7249. }
  7250. return ret;
  7251. }
  7252. static void clear_lro_session(struct lro *lro)
  7253. {
  7254. static u16 lro_struct_size = sizeof(struct lro);
  7255. memset(lro, 0, lro_struct_size);
  7256. }
  7257. static void queue_rx_frame(struct sk_buff *skb)
  7258. {
  7259. struct net_device *dev = skb->dev;
  7260. skb->protocol = eth_type_trans(skb, dev);
  7261. if (napi)
  7262. netif_receive_skb(skb);
  7263. else
  7264. netif_rx(skb);
  7265. }
  7266. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7267. struct sk_buff *skb,
  7268. u32 tcp_len)
  7269. {
  7270. struct sk_buff *first = lro->parent;
  7271. first->len += tcp_len;
  7272. first->data_len = lro->frags_len;
  7273. skb_pull(skb, (skb->len - tcp_len));
  7274. if (skb_shinfo(first)->frag_list)
  7275. lro->last_frag->next = skb;
  7276. else
  7277. skb_shinfo(first)->frag_list = skb;
  7278. first->truesize += skb->truesize;
  7279. lro->last_frag = skb;
  7280. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7281. return;
  7282. }
  7283. /**
  7284. * s2io_io_error_detected - called when PCI error is detected
  7285. * @pdev: Pointer to PCI device
  7286. * @state: The current pci connection state
  7287. *
  7288. * This function is called after a PCI bus error affecting
  7289. * this device has been detected.
  7290. */
  7291. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7292. pci_channel_state_t state)
  7293. {
  7294. struct net_device *netdev = pci_get_drvdata(pdev);
  7295. struct s2io_nic *sp = netdev->priv;
  7296. netif_device_detach(netdev);
  7297. if (netif_running(netdev)) {
  7298. /* Bring down the card, while avoiding PCI I/O */
  7299. do_s2io_card_down(sp, 0);
  7300. }
  7301. pci_disable_device(pdev);
  7302. return PCI_ERS_RESULT_NEED_RESET;
  7303. }
  7304. /**
  7305. * s2io_io_slot_reset - called after the pci bus has been reset.
  7306. * @pdev: Pointer to PCI device
  7307. *
  7308. * Restart the card from scratch, as if from a cold-boot.
  7309. * At this point, the card has exprienced a hard reset,
  7310. * followed by fixups by BIOS, and has its config space
  7311. * set up identically to what it was at cold boot.
  7312. */
  7313. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7314. {
  7315. struct net_device *netdev = pci_get_drvdata(pdev);
  7316. struct s2io_nic *sp = netdev->priv;
  7317. if (pci_enable_device(pdev)) {
  7318. printk(KERN_ERR "s2io: "
  7319. "Cannot re-enable PCI device after reset.\n");
  7320. return PCI_ERS_RESULT_DISCONNECT;
  7321. }
  7322. pci_set_master(pdev);
  7323. s2io_reset(sp);
  7324. return PCI_ERS_RESULT_RECOVERED;
  7325. }
  7326. /**
  7327. * s2io_io_resume - called when traffic can start flowing again.
  7328. * @pdev: Pointer to PCI device
  7329. *
  7330. * This callback is called when the error recovery driver tells
  7331. * us that its OK to resume normal operation.
  7332. */
  7333. static void s2io_io_resume(struct pci_dev *pdev)
  7334. {
  7335. struct net_device *netdev = pci_get_drvdata(pdev);
  7336. struct s2io_nic *sp = netdev->priv;
  7337. if (netif_running(netdev)) {
  7338. if (s2io_card_up(sp)) {
  7339. printk(KERN_ERR "s2io: "
  7340. "Can't bring device back up after reset.\n");
  7341. return;
  7342. }
  7343. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7344. s2io_card_down(sp);
  7345. printk(KERN_ERR "s2io: "
  7346. "Can't resetore mac addr after reset.\n");
  7347. return;
  7348. }
  7349. }
  7350. netif_device_attach(netdev);
  7351. netif_wake_queue(netdev);
  7352. }