pch_can.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317
  1. /*
  2. * Copyright (C) 1999 - 2010 Intel Corporation.
  3. * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  17. */
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/io.h>
  21. #include <linux/module.h>
  22. #include <linux/sched.h>
  23. #include <linux/pci.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/types.h>
  27. #include <linux/errno.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/can.h>
  31. #include <linux/can/dev.h>
  32. #include <linux/can/error.h>
  33. #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
  34. #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
  35. #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
  36. #define PCH_CTRL_CCE BIT(6)
  37. #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
  38. #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
  39. #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
  40. #define PCH_CMASK_RX_TX_SET 0x00f3
  41. #define PCH_CMASK_RX_TX_GET 0x0073
  42. #define PCH_CMASK_ALL 0xff
  43. #define PCH_CMASK_NEWDAT BIT(2)
  44. #define PCH_CMASK_CLRINTPND BIT(3)
  45. #define PCH_CMASK_CTRL BIT(4)
  46. #define PCH_CMASK_ARB BIT(5)
  47. #define PCH_CMASK_MASK BIT(6)
  48. #define PCH_CMASK_RDWR BIT(7)
  49. #define PCH_IF_MCONT_NEWDAT BIT(15)
  50. #define PCH_IF_MCONT_MSGLOST BIT(14)
  51. #define PCH_IF_MCONT_INTPND BIT(13)
  52. #define PCH_IF_MCONT_UMASK BIT(12)
  53. #define PCH_IF_MCONT_TXIE BIT(11)
  54. #define PCH_IF_MCONT_RXIE BIT(10)
  55. #define PCH_IF_MCONT_RMTEN BIT(9)
  56. #define PCH_IF_MCONT_TXRQXT BIT(8)
  57. #define PCH_IF_MCONT_EOB BIT(7)
  58. #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  59. #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
  60. #define PCH_ID2_DIR BIT(13)
  61. #define PCH_ID2_XTD BIT(14)
  62. #define PCH_ID_MSGVAL BIT(15)
  63. #define PCH_IF_CREQ_BUSY BIT(15)
  64. #define PCH_STATUS_INT 0x8000
  65. #define PCH_REC 0x00007f00
  66. #define PCH_TEC 0x000000ff
  67. #define PCH_TX_OK BIT(3)
  68. #define PCH_RX_OK BIT(4)
  69. #define PCH_EPASSIV BIT(5)
  70. #define PCH_EWARN BIT(6)
  71. #define PCH_BUS_OFF BIT(7)
  72. /* bit position of certain controller bits. */
  73. #define PCH_BIT_BRP_SHIFT 0
  74. #define PCH_BIT_SJW_SHIFT 6
  75. #define PCH_BIT_TSEG1_SHIFT 8
  76. #define PCH_BIT_TSEG2_SHIFT 12
  77. #define PCH_BIT_BRPE_BRPE_SHIFT 6
  78. #define PCH_MSK_BITT_BRP 0x3f
  79. #define PCH_MSK_BRPE_BRPE 0x3c0
  80. #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
  81. #define PCH_COUNTER_LIMIT 10
  82. #define PCH_CAN_CLK 50000000 /* 50MHz */
  83. /* Define the number of message object.
  84. * PCH CAN communications are done via Message RAM.
  85. * The Message RAM consists of 32 message objects. */
  86. #define PCH_RX_OBJ_NUM 26
  87. #define PCH_TX_OBJ_NUM 6
  88. #define PCH_RX_OBJ_START 1
  89. #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
  90. #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
  91. #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
  92. #define PCH_FIFO_THRESH 16
  93. /* TxRqst2 show status of MsgObjNo.17~32 */
  94. #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
  95. (PCH_RX_OBJ_END - 16))
  96. enum pch_ifreg {
  97. PCH_RX_IFREG,
  98. PCH_TX_IFREG,
  99. };
  100. enum pch_can_err {
  101. PCH_STUF_ERR = 1,
  102. PCH_FORM_ERR,
  103. PCH_ACK_ERR,
  104. PCH_BIT1_ERR,
  105. PCH_BIT0_ERR,
  106. PCH_CRC_ERR,
  107. PCH_LEC_ALL,
  108. };
  109. enum pch_can_mode {
  110. PCH_CAN_ENABLE,
  111. PCH_CAN_DISABLE,
  112. PCH_CAN_ALL,
  113. PCH_CAN_NONE,
  114. PCH_CAN_STOP,
  115. PCH_CAN_RUN
  116. };
  117. struct pch_can_if_regs {
  118. u32 creq;
  119. u32 cmask;
  120. u32 mask1;
  121. u32 mask2;
  122. u32 id1;
  123. u32 id2;
  124. u32 mcont;
  125. u32 data[4];
  126. u32 rsv[13];
  127. };
  128. struct pch_can_regs {
  129. u32 cont;
  130. u32 stat;
  131. u32 errc;
  132. u32 bitt;
  133. u32 intr;
  134. u32 opt;
  135. u32 brpe;
  136. u32 reserve;
  137. struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
  138. u32 reserve1[8];
  139. u32 treq1;
  140. u32 treq2;
  141. u32 reserve2[6];
  142. u32 data1;
  143. u32 data2;
  144. u32 reserve3[6];
  145. u32 canipend1;
  146. u32 canipend2;
  147. u32 reserve4[6];
  148. u32 canmval1;
  149. u32 canmval2;
  150. u32 reserve5[37];
  151. u32 srst;
  152. };
  153. struct pch_can_priv {
  154. struct can_priv can;
  155. struct pci_dev *dev;
  156. u32 tx_enable[PCH_TX_OBJ_END];
  157. u32 rx_enable[PCH_TX_OBJ_END];
  158. u32 rx_link[PCH_TX_OBJ_END];
  159. u32 int_enables;
  160. struct net_device *ndev;
  161. struct pch_can_regs __iomem *regs;
  162. struct napi_struct napi;
  163. int tx_obj; /* Point next Tx Obj index */
  164. int use_msi;
  165. };
  166. static struct can_bittiming_const pch_can_bittiming_const = {
  167. .name = KBUILD_MODNAME,
  168. .tseg1_min = 1,
  169. .tseg1_max = 16,
  170. .tseg2_min = 1,
  171. .tseg2_max = 8,
  172. .sjw_max = 4,
  173. .brp_min = 1,
  174. .brp_max = 1024, /* 6bit + extended 4bit */
  175. .brp_inc = 1,
  176. };
  177. static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
  178. {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
  179. {0,}
  180. };
  181. MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
  182. static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
  183. {
  184. iowrite32(ioread32(addr) | mask, addr);
  185. }
  186. static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
  187. {
  188. iowrite32(ioread32(addr) & ~mask, addr);
  189. }
  190. static void pch_can_set_run_mode(struct pch_can_priv *priv,
  191. enum pch_can_mode mode)
  192. {
  193. switch (mode) {
  194. case PCH_CAN_RUN:
  195. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
  196. break;
  197. case PCH_CAN_STOP:
  198. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
  199. break;
  200. default:
  201. dev_err(&priv->ndev->dev, "%s -> Invalid Mode.\n", __func__);
  202. break;
  203. }
  204. }
  205. static void pch_can_set_optmode(struct pch_can_priv *priv)
  206. {
  207. u32 reg_val = ioread32(&priv->regs->opt);
  208. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  209. reg_val |= PCH_OPT_SILENT;
  210. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  211. reg_val |= PCH_OPT_LBACK;
  212. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
  213. iowrite32(reg_val, &priv->regs->opt);
  214. }
  215. static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
  216. {
  217. int counter = PCH_COUNTER_LIMIT;
  218. u32 ifx_creq;
  219. iowrite32(num, creq_addr);
  220. while (counter) {
  221. ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
  222. if (!ifx_creq)
  223. break;
  224. counter--;
  225. udelay(1);
  226. }
  227. if (!counter)
  228. pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
  229. }
  230. static void pch_can_set_int_enables(struct pch_can_priv *priv,
  231. enum pch_can_mode interrupt_no)
  232. {
  233. switch (interrupt_no) {
  234. case PCH_CAN_DISABLE:
  235. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
  236. break;
  237. case PCH_CAN_ALL:
  238. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  239. break;
  240. case PCH_CAN_NONE:
  241. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  242. break;
  243. default:
  244. dev_err(&priv->ndev->dev, "Invalid interrupt number.\n");
  245. break;
  246. }
  247. }
  248. static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
  249. int set, enum pch_ifreg dir)
  250. {
  251. u32 ie;
  252. if (dir)
  253. ie = PCH_IF_MCONT_TXIE;
  254. else
  255. ie = PCH_IF_MCONT_RXIE;
  256. /* Reading the receive buffer data from RAM to Interface1 registers */
  257. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  258. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  259. /* Setting the IF1MASK1 register to access MsgVal and RxIE bits */
  260. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
  261. &priv->regs->ifregs[dir].cmask);
  262. if (set) {
  263. /* Setting the MsgVal and RxIE bits */
  264. pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
  265. pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  266. } else {
  267. /* Resetting the MsgVal and RxIE bits */
  268. pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
  269. pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  270. }
  271. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  272. }
  273. static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
  274. {
  275. int i;
  276. /* Traversing to obtain the object configured as receivers. */
  277. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
  278. pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
  279. }
  280. static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
  281. {
  282. int i;
  283. /* Traversing to obtain the object configured as transmit object. */
  284. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  285. pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
  286. }
  287. static u32 pch_can_int_pending(struct pch_can_priv *priv)
  288. {
  289. return ioread32(&priv->regs->intr) & 0xffff;
  290. }
  291. static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
  292. {
  293. int i; /* Msg Obj ID (1~32) */
  294. for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  295. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
  296. iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
  297. iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
  298. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  299. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  300. iowrite32(0x0, &priv->regs->ifregs[0].mcont);
  301. iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
  302. iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
  303. iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
  304. iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
  305. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  306. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  307. &priv->regs->ifregs[0].cmask);
  308. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  309. }
  310. }
  311. static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
  312. {
  313. int i;
  314. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  315. iowrite32(PCH_CMASK_RX_TX_GET,
  316. &priv->regs->ifregs[0].cmask);
  317. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  318. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  319. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  320. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  321. PCH_IF_MCONT_UMASK);
  322. /* Set FIFO mode set to 0 except last Rx Obj*/
  323. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  324. PCH_IF_MCONT_EOB);
  325. /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
  326. if (i == PCH_RX_OBJ_END)
  327. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  328. PCH_IF_MCONT_EOB);
  329. else
  330. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  331. PCH_IF_MCONT_EOB);
  332. iowrite32(0, &priv->regs->ifregs[0].mask1);
  333. pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
  334. 0x1fff | PCH_MASK2_MDIR_MXTD);
  335. /* Setting CMASK for writing */
  336. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  337. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  338. &priv->regs->ifregs[0].cmask);
  339. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  340. }
  341. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  342. iowrite32(PCH_CMASK_RX_TX_GET,
  343. &priv->regs->ifregs[1].cmask);
  344. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  345. /* Resetting DIR bit for reception */
  346. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  347. iowrite32(0x0, &priv->regs->ifregs[1].id2);
  348. pch_can_bit_set(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
  349. /* Setting EOB bit for transmitter */
  350. iowrite32(PCH_IF_MCONT_EOB, &priv->regs->ifregs[1].mcont);
  351. pch_can_bit_set(&priv->regs->ifregs[1].mcont,
  352. PCH_IF_MCONT_UMASK);
  353. iowrite32(0, &priv->regs->ifregs[1].mask1);
  354. pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
  355. /* Setting CMASK for writing */
  356. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  357. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  358. &priv->regs->ifregs[1].cmask);
  359. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  360. }
  361. }
  362. static void pch_can_init(struct pch_can_priv *priv)
  363. {
  364. /* Stopping the Can device. */
  365. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  366. /* Clearing all the message object buffers. */
  367. pch_can_clear_if_buffers(priv);
  368. /* Configuring the respective message object as either rx/tx object. */
  369. pch_can_config_rx_tx_buffers(priv);
  370. /* Enabling the interrupts. */
  371. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  372. }
  373. static void pch_can_release(struct pch_can_priv *priv)
  374. {
  375. /* Stooping the CAN device. */
  376. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  377. /* Disabling the interrupts. */
  378. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  379. /* Disabling all the receive object. */
  380. pch_can_set_rx_all(priv, 0);
  381. /* Disabling all the transmit object. */
  382. pch_can_set_tx_all(priv, 0);
  383. }
  384. /* This function clears interrupt(s) from the CAN device. */
  385. static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
  386. {
  387. if (mask == PCH_STATUS_INT) {
  388. ioread32(&priv->regs->stat);
  389. return;
  390. }
  391. /* Clear interrupt for transmit object */
  392. if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
  393. /* Setting CMASK for clearing the reception interrupts. */
  394. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  395. &priv->regs->ifregs[0].cmask);
  396. /* Clearing the Dir bit. */
  397. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  398. /* Clearing NewDat & IntPnd */
  399. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  400. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
  401. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
  402. } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
  403. /* Setting CMASK for clearing interrupts for
  404. frame transmission. */
  405. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  406. &priv->regs->ifregs[1].cmask);
  407. /* Resetting the ID registers. */
  408. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  409. PCH_ID2_DIR | (0x7ff << 2));
  410. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  411. /* Claring NewDat, TxRqst & IntPnd */
  412. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  413. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  414. PCH_IF_MCONT_TXRQXT);
  415. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
  416. }
  417. }
  418. static void pch_can_reset(struct pch_can_priv *priv)
  419. {
  420. /* write to sw reset register */
  421. iowrite32(1, &priv->regs->srst);
  422. iowrite32(0, &priv->regs->srst);
  423. }
  424. static void pch_can_error(struct net_device *ndev, u32 status)
  425. {
  426. struct sk_buff *skb;
  427. struct pch_can_priv *priv = netdev_priv(ndev);
  428. struct can_frame *cf;
  429. u32 errc, lec;
  430. struct net_device_stats *stats = &(priv->ndev->stats);
  431. enum can_state state = priv->can.state;
  432. skb = alloc_can_err_skb(ndev, &cf);
  433. if (!skb)
  434. return;
  435. if (status & PCH_BUS_OFF) {
  436. pch_can_set_tx_all(priv, 0);
  437. pch_can_set_rx_all(priv, 0);
  438. state = CAN_STATE_BUS_OFF;
  439. cf->can_id |= CAN_ERR_BUSOFF;
  440. can_bus_off(ndev);
  441. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  442. dev_err(&ndev->dev, "%s -> Bus Off occurres.\n", __func__);
  443. }
  444. /* Warning interrupt. */
  445. if (status & PCH_EWARN) {
  446. state = CAN_STATE_ERROR_WARNING;
  447. priv->can.can_stats.error_warning++;
  448. cf->can_id |= CAN_ERR_CRTL;
  449. errc = ioread32(&priv->regs->errc);
  450. if (((errc & PCH_REC) >> 8) > 96)
  451. cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
  452. if ((errc & PCH_TEC) > 96)
  453. cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
  454. dev_warn(&ndev->dev,
  455. "%s -> Error Counter is more than 96.\n", __func__);
  456. }
  457. /* Error passive interrupt. */
  458. if (status & PCH_EPASSIV) {
  459. priv->can.can_stats.error_passive++;
  460. state = CAN_STATE_ERROR_PASSIVE;
  461. cf->can_id |= CAN_ERR_CRTL;
  462. errc = ioread32(&priv->regs->errc);
  463. if (((errc & PCH_REC) >> 8) > 127)
  464. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  465. if ((errc & PCH_TEC) > 127)
  466. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  467. dev_err(&ndev->dev,
  468. "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
  469. }
  470. lec = status & PCH_LEC_ALL;
  471. switch (lec) {
  472. case PCH_STUF_ERR:
  473. cf->data[2] |= CAN_ERR_PROT_STUFF;
  474. priv->can.can_stats.bus_error++;
  475. stats->rx_errors++;
  476. break;
  477. case PCH_FORM_ERR:
  478. cf->data[2] |= CAN_ERR_PROT_FORM;
  479. priv->can.can_stats.bus_error++;
  480. stats->rx_errors++;
  481. break;
  482. case PCH_ACK_ERR:
  483. cf->can_id |= CAN_ERR_ACK;
  484. priv->can.can_stats.bus_error++;
  485. stats->rx_errors++;
  486. break;
  487. case PCH_BIT1_ERR:
  488. case PCH_BIT0_ERR:
  489. cf->data[2] |= CAN_ERR_PROT_BIT;
  490. priv->can.can_stats.bus_error++;
  491. stats->rx_errors++;
  492. break;
  493. case PCH_CRC_ERR:
  494. cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
  495. CAN_ERR_PROT_LOC_CRC_DEL;
  496. priv->can.can_stats.bus_error++;
  497. stats->rx_errors++;
  498. break;
  499. case PCH_LEC_ALL: /* Written by CPU. No error status */
  500. break;
  501. }
  502. priv->can.state = state;
  503. netif_rx(skb);
  504. stats->rx_packets++;
  505. stats->rx_bytes += cf->can_dlc;
  506. }
  507. static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
  508. {
  509. struct net_device *ndev = (struct net_device *)dev_id;
  510. struct pch_can_priv *priv = netdev_priv(ndev);
  511. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  512. napi_schedule(&priv->napi);
  513. return IRQ_HANDLED;
  514. }
  515. static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
  516. {
  517. if (obj_id < PCH_FIFO_THRESH) {
  518. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
  519. PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
  520. /* Clearing the Dir bit. */
  521. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  522. /* Clearing NewDat & IntPnd */
  523. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  524. PCH_IF_MCONT_INTPND);
  525. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  526. } else if (obj_id > PCH_FIFO_THRESH) {
  527. pch_can_int_clr(priv, obj_id);
  528. } else if (obj_id == PCH_FIFO_THRESH) {
  529. int cnt;
  530. for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
  531. pch_can_int_clr(priv, cnt + 1);
  532. }
  533. }
  534. static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
  535. {
  536. struct pch_can_priv *priv = netdev_priv(ndev);
  537. struct net_device_stats *stats = &(priv->ndev->stats);
  538. struct sk_buff *skb;
  539. struct can_frame *cf;
  540. netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
  541. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  542. PCH_IF_MCONT_MSGLOST);
  543. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  544. &priv->regs->ifregs[0].cmask);
  545. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  546. skb = alloc_can_err_skb(ndev, &cf);
  547. if (!skb)
  548. return;
  549. cf->can_id |= CAN_ERR_CRTL;
  550. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  551. stats->rx_over_errors++;
  552. stats->rx_errors++;
  553. netif_receive_skb(skb);
  554. }
  555. static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
  556. {
  557. u32 reg;
  558. canid_t id;
  559. int rcv_pkts = 0;
  560. struct sk_buff *skb;
  561. struct can_frame *cf;
  562. struct pch_can_priv *priv = netdev_priv(ndev);
  563. struct net_device_stats *stats = &(priv->ndev->stats);
  564. int i;
  565. u32 id2;
  566. u16 data_reg;
  567. do {
  568. /* Reading the messsage object from the Message RAM */
  569. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  570. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
  571. /* Reading the MCONT register. */
  572. reg = ioread32(&priv->regs->ifregs[0].mcont);
  573. if (reg & PCH_IF_MCONT_EOB)
  574. break;
  575. /* If MsgLost bit set. */
  576. if (reg & PCH_IF_MCONT_MSGLOST) {
  577. pch_can_rx_msg_lost(ndev, obj_num);
  578. rcv_pkts++;
  579. quota--;
  580. obj_num++;
  581. continue;
  582. } else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
  583. obj_num++;
  584. continue;
  585. }
  586. skb = alloc_can_skb(priv->ndev, &cf);
  587. if (!skb)
  588. return -ENOMEM;
  589. /* Get Received data */
  590. id2 = ioread32(&priv->regs->ifregs[0].id2);
  591. if (id2 & PCH_ID2_XTD) {
  592. id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
  593. id |= (((id2) & 0x1fff) << 16);
  594. cf->can_id = id | CAN_EFF_FLAG;
  595. } else {
  596. id = (id2 >> 2) & CAN_SFF_MASK;
  597. cf->can_id = id;
  598. }
  599. if (id2 & PCH_ID2_DIR)
  600. cf->can_id |= CAN_RTR_FLAG;
  601. cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
  602. ifregs[0].mcont)) & 0xF);
  603. for (i = 0; i < cf->can_dlc; i += 2) {
  604. data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
  605. cf->data[i] = data_reg;
  606. cf->data[i + 1] = data_reg >> 8;
  607. }
  608. netif_receive_skb(skb);
  609. rcv_pkts++;
  610. stats->rx_packets++;
  611. quota--;
  612. stats->rx_bytes += cf->can_dlc;
  613. pch_fifo_thresh(priv, obj_num);
  614. obj_num++;
  615. } while (quota > 0);
  616. return rcv_pkts;
  617. }
  618. static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
  619. {
  620. struct pch_can_priv *priv = netdev_priv(ndev);
  621. struct net_device_stats *stats = &(priv->ndev->stats);
  622. u32 dlc;
  623. can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
  624. iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
  625. &priv->regs->ifregs[1].cmask);
  626. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
  627. dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
  628. PCH_IF_MCONT_DLC);
  629. stats->tx_bytes += dlc;
  630. stats->tx_packets++;
  631. if (int_stat == PCH_TX_OBJ_END)
  632. netif_wake_queue(ndev);
  633. }
  634. static int pch_can_poll(struct napi_struct *napi, int quota)
  635. {
  636. struct net_device *ndev = napi->dev;
  637. struct pch_can_priv *priv = netdev_priv(ndev);
  638. u32 int_stat;
  639. int rcv_pkts = 0;
  640. u32 reg_stat;
  641. int_stat = pch_can_int_pending(priv);
  642. if (!int_stat)
  643. goto end;
  644. if ((int_stat == PCH_STATUS_INT) && (quota > 0)) {
  645. reg_stat = ioread32(&priv->regs->stat);
  646. if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) {
  647. if (reg_stat & PCH_BUS_OFF ||
  648. (reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL) {
  649. pch_can_error(ndev, reg_stat);
  650. quota--;
  651. }
  652. }
  653. if (reg_stat & PCH_TX_OK)
  654. pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK);
  655. if (reg_stat & PCH_RX_OK)
  656. pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK);
  657. int_stat = pch_can_int_pending(priv);
  658. }
  659. if (quota == 0)
  660. goto end;
  661. if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
  662. rcv_pkts += pch_can_rx_normal(ndev, int_stat, quota);
  663. quota -= rcv_pkts;
  664. if (quota < 0)
  665. goto end;
  666. } else if ((int_stat >= PCH_TX_OBJ_START) &&
  667. (int_stat <= PCH_TX_OBJ_END)) {
  668. /* Handle transmission interrupt */
  669. pch_can_tx_complete(ndev, int_stat);
  670. }
  671. end:
  672. napi_complete(napi);
  673. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  674. return rcv_pkts;
  675. }
  676. static int pch_set_bittiming(struct net_device *ndev)
  677. {
  678. struct pch_can_priv *priv = netdev_priv(ndev);
  679. const struct can_bittiming *bt = &priv->can.bittiming;
  680. u32 canbit;
  681. u32 bepe;
  682. u32 brp;
  683. /* Setting the CCE bit for accessing the Can Timing register. */
  684. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
  685. brp = (bt->tq) / (1000000000/PCH_CAN_CLK) - 1;
  686. canbit = brp & PCH_MSK_BITT_BRP;
  687. canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
  688. canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
  689. canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
  690. bepe = (brp & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
  691. iowrite32(canbit, &priv->regs->bitt);
  692. iowrite32(bepe, &priv->regs->brpe);
  693. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
  694. return 0;
  695. }
  696. static void pch_can_start(struct net_device *ndev)
  697. {
  698. struct pch_can_priv *priv = netdev_priv(ndev);
  699. if (priv->can.state != CAN_STATE_STOPPED)
  700. pch_can_reset(priv);
  701. pch_set_bittiming(ndev);
  702. pch_can_set_optmode(priv);
  703. pch_can_set_tx_all(priv, 1);
  704. pch_can_set_rx_all(priv, 1);
  705. /* Setting the CAN to run mode. */
  706. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  707. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  708. return;
  709. }
  710. static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
  711. {
  712. int ret = 0;
  713. switch (mode) {
  714. case CAN_MODE_START:
  715. pch_can_start(ndev);
  716. netif_wake_queue(ndev);
  717. break;
  718. default:
  719. ret = -EOPNOTSUPP;
  720. break;
  721. }
  722. return ret;
  723. }
  724. static int pch_can_open(struct net_device *ndev)
  725. {
  726. struct pch_can_priv *priv = netdev_priv(ndev);
  727. int retval;
  728. retval = pci_enable_msi(priv->dev);
  729. if (retval) {
  730. dev_info(&ndev->dev, "PCH CAN opened without MSI\n");
  731. priv->use_msi = 0;
  732. } else {
  733. dev_info(&ndev->dev, "PCH CAN opened with MSI\n");
  734. priv->use_msi = 1;
  735. }
  736. /* Regsitering the interrupt. */
  737. retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
  738. ndev->name, ndev);
  739. if (retval) {
  740. dev_err(&ndev->dev, "request_irq failed.\n");
  741. goto req_irq_err;
  742. }
  743. /* Open common can device */
  744. retval = open_candev(ndev);
  745. if (retval) {
  746. dev_err(ndev->dev.parent, "open_candev() failed %d\n", retval);
  747. goto err_open_candev;
  748. }
  749. pch_can_init(priv);
  750. pch_can_start(ndev);
  751. napi_enable(&priv->napi);
  752. netif_start_queue(ndev);
  753. return 0;
  754. err_open_candev:
  755. free_irq(priv->dev->irq, ndev);
  756. req_irq_err:
  757. if (priv->use_msi)
  758. pci_disable_msi(priv->dev);
  759. pch_can_release(priv);
  760. return retval;
  761. }
  762. static int pch_close(struct net_device *ndev)
  763. {
  764. struct pch_can_priv *priv = netdev_priv(ndev);
  765. netif_stop_queue(ndev);
  766. napi_disable(&priv->napi);
  767. pch_can_release(priv);
  768. free_irq(priv->dev->irq, ndev);
  769. if (priv->use_msi)
  770. pci_disable_msi(priv->dev);
  771. close_candev(ndev);
  772. priv->can.state = CAN_STATE_STOPPED;
  773. return 0;
  774. }
  775. static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
  776. {
  777. struct pch_can_priv *priv = netdev_priv(ndev);
  778. struct can_frame *cf = (struct can_frame *)skb->data;
  779. int tx_obj_no;
  780. int i;
  781. if (can_dropped_invalid_skb(ndev, skb))
  782. return NETDEV_TX_OK;
  783. if (priv->tx_obj == PCH_TX_OBJ_END) {
  784. if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
  785. netif_stop_queue(ndev);
  786. tx_obj_no = priv->tx_obj;
  787. priv->tx_obj = PCH_TX_OBJ_START;
  788. } else {
  789. tx_obj_no = priv->tx_obj;
  790. priv->tx_obj++;
  791. }
  792. /* Reading the Msg Obj from the Msg RAM to the Interface register. */
  793. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
  794. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
  795. /* Setting the CMASK register. */
  796. pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
  797. /* If ID extended is set. */
  798. pch_can_bit_clear(&priv->regs->ifregs[1].id1, 0xffff);
  799. pch_can_bit_clear(&priv->regs->ifregs[1].id2, 0x1fff | PCH_ID2_XTD);
  800. if (cf->can_id & CAN_EFF_FLAG) {
  801. pch_can_bit_set(&priv->regs->ifregs[1].id1,
  802. cf->can_id & 0xffff);
  803. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  804. ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD);
  805. } else {
  806. pch_can_bit_set(&priv->regs->ifregs[1].id1, 0);
  807. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  808. (cf->can_id & CAN_SFF_MASK) << 2);
  809. }
  810. /* If remote frame has to be transmitted.. */
  811. if (cf->can_id & CAN_RTR_FLAG)
  812. pch_can_bit_clear(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
  813. /* Copy data to register */
  814. for (i = 0; i < cf->can_dlc; i += 2) {
  815. iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
  816. &priv->regs->ifregs[1].data[i / 2]);
  817. }
  818. can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
  819. /* Updating the size of the data. */
  820. pch_can_bit_clear(&priv->regs->ifregs[1].mcont, 0x0f);
  821. pch_can_bit_set(&priv->regs->ifregs[1].mcont, cf->can_dlc);
  822. /* Clearing IntPend, NewDat & TxRqst */
  823. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  824. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  825. PCH_IF_MCONT_TXRQXT);
  826. /* Setting NewDat, TxRqst bits */
  827. pch_can_bit_set(&priv->regs->ifregs[1].mcont,
  828. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT);
  829. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
  830. return NETDEV_TX_OK;
  831. }
  832. static const struct net_device_ops pch_can_netdev_ops = {
  833. .ndo_open = pch_can_open,
  834. .ndo_stop = pch_close,
  835. .ndo_start_xmit = pch_xmit,
  836. };
  837. static void __devexit pch_can_remove(struct pci_dev *pdev)
  838. {
  839. struct net_device *ndev = pci_get_drvdata(pdev);
  840. struct pch_can_priv *priv = netdev_priv(ndev);
  841. unregister_candev(priv->ndev);
  842. free_candev(priv->ndev);
  843. pci_iounmap(pdev, priv->regs);
  844. pci_release_regions(pdev);
  845. pci_disable_device(pdev);
  846. pci_set_drvdata(pdev, NULL);
  847. pch_can_reset(priv);
  848. }
  849. #ifdef CONFIG_PM
  850. static void pch_can_set_int_custom(struct pch_can_priv *priv)
  851. {
  852. /* Clearing the IE, SIE and EIE bits of Can control register. */
  853. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  854. /* Appropriately setting them. */
  855. pch_can_bit_set(&priv->regs->cont,
  856. ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
  857. }
  858. /* This function retrieves interrupt enabled for the CAN device. */
  859. static void pch_can_get_int_enables(struct pch_can_priv *priv, u32 *enables)
  860. {
  861. /* Obtaining the status of IE, SIE and EIE interrupt bits. */
  862. *enables = ((ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1);
  863. }
  864. static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
  865. enum pch_ifreg dir)
  866. {
  867. u32 ie, enable;
  868. if (dir)
  869. ie = PCH_IF_MCONT_RXIE;
  870. else
  871. ie = PCH_IF_MCONT_TXIE;
  872. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  873. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  874. if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
  875. ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie)) {
  876. enable = 1;
  877. } else {
  878. enable = 0;
  879. }
  880. return enable;
  881. }
  882. static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
  883. u32 buffer_num, int set)
  884. {
  885. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  886. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  887. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  888. &priv->regs->ifregs[0].cmask);
  889. if (set)
  890. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  891. PCH_IF_MCONT_EOB);
  892. else
  893. pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
  894. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  895. }
  896. static void pch_can_get_rx_buffer_link(struct pch_can_priv *priv,
  897. u32 buffer_num, u32 *link)
  898. {
  899. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  900. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  901. if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
  902. *link = 0;
  903. else
  904. *link = 1;
  905. }
  906. static int pch_can_get_buffer_status(struct pch_can_priv *priv)
  907. {
  908. return (ioread32(&priv->regs->treq1) & 0xffff) |
  909. (ioread32(&priv->regs->treq2) << 16);
  910. }
  911. static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
  912. {
  913. int i; /* Counter variable. */
  914. int retval; /* Return value. */
  915. u32 buf_stat; /* Variable for reading the transmit buffer status. */
  916. int counter = PCH_COUNTER_LIMIT;
  917. struct net_device *dev = pci_get_drvdata(pdev);
  918. struct pch_can_priv *priv = netdev_priv(dev);
  919. /* Stop the CAN controller */
  920. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  921. /* Indicate that we are aboutto/in suspend */
  922. priv->can.state = CAN_STATE_SLEEPING;
  923. /* Waiting for all transmission to complete. */
  924. while (counter) {
  925. buf_stat = pch_can_get_buffer_status(priv);
  926. if (!buf_stat)
  927. break;
  928. counter--;
  929. udelay(1);
  930. }
  931. if (!counter)
  932. dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
  933. /* Save interrupt configuration and then disable them */
  934. pch_can_get_int_enables(priv, &(priv->int_enables));
  935. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  936. /* Save Tx buffer enable state */
  937. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  938. priv->tx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_TX_IFREG);
  939. /* Disable all Transmit buffers */
  940. pch_can_set_tx_all(priv, 0);
  941. /* Save Rx buffer enable state */
  942. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  943. priv->rx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_RX_IFREG);
  944. pch_can_get_rx_buffer_link(priv, i, &priv->rx_link[i]);
  945. }
  946. /* Disable all Receive buffers */
  947. pch_can_set_rx_all(priv, 0);
  948. retval = pci_save_state(pdev);
  949. if (retval) {
  950. dev_err(&pdev->dev, "pci_save_state failed.\n");
  951. } else {
  952. pci_enable_wake(pdev, PCI_D3hot, 0);
  953. pci_disable_device(pdev);
  954. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  955. }
  956. return retval;
  957. }
  958. static int pch_can_resume(struct pci_dev *pdev)
  959. {
  960. int i; /* Counter variable. */
  961. int retval; /* Return variable. */
  962. struct net_device *dev = pci_get_drvdata(pdev);
  963. struct pch_can_priv *priv = netdev_priv(dev);
  964. pci_set_power_state(pdev, PCI_D0);
  965. pci_restore_state(pdev);
  966. retval = pci_enable_device(pdev);
  967. if (retval) {
  968. dev_err(&pdev->dev, "pci_enable_device failed.\n");
  969. return retval;
  970. }
  971. pci_enable_wake(pdev, PCI_D3hot, 0);
  972. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  973. /* Disabling all interrupts. */
  974. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  975. /* Setting the CAN device in Stop Mode. */
  976. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  977. /* Configuring the transmit and receive buffers. */
  978. pch_can_config_rx_tx_buffers(priv);
  979. /* Restore the CAN state */
  980. pch_set_bittiming(dev);
  981. /* Listen/Active */
  982. pch_can_set_optmode(priv);
  983. /* Enabling the transmit buffer. */
  984. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  985. pch_can_set_rxtx(priv, i, priv->tx_enable[i], PCH_TX_IFREG);
  986. /* Configuring the receive buffer and enabling them. */
  987. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  988. /* Restore buffer link */
  989. pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i]);
  990. /* Restore buffer enables */
  991. pch_can_set_rxtx(priv, i, priv->rx_enable[i], PCH_RX_IFREG);
  992. }
  993. /* Enable CAN Interrupts */
  994. pch_can_set_int_custom(priv);
  995. /* Restore Run Mode */
  996. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  997. return retval;
  998. }
  999. #else
  1000. #define pch_can_suspend NULL
  1001. #define pch_can_resume NULL
  1002. #endif
  1003. static int pch_can_get_berr_counter(const struct net_device *dev,
  1004. struct can_berr_counter *bec)
  1005. {
  1006. struct pch_can_priv *priv = netdev_priv(dev);
  1007. bec->txerr = ioread32(&priv->regs->errc) & PCH_TEC;
  1008. bec->rxerr = (ioread32(&priv->regs->errc) & PCH_REC) >> 8;
  1009. return 0;
  1010. }
  1011. static int __devinit pch_can_probe(struct pci_dev *pdev,
  1012. const struct pci_device_id *id)
  1013. {
  1014. struct net_device *ndev;
  1015. struct pch_can_priv *priv;
  1016. int rc;
  1017. void __iomem *addr;
  1018. rc = pci_enable_device(pdev);
  1019. if (rc) {
  1020. dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
  1021. goto probe_exit_endev;
  1022. }
  1023. rc = pci_request_regions(pdev, KBUILD_MODNAME);
  1024. if (rc) {
  1025. dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
  1026. goto probe_exit_pcireq;
  1027. }
  1028. addr = pci_iomap(pdev, 1, 0);
  1029. if (!addr) {
  1030. rc = -EIO;
  1031. dev_err(&pdev->dev, "Failed pci_iomap\n");
  1032. goto probe_exit_ipmap;
  1033. }
  1034. ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
  1035. if (!ndev) {
  1036. rc = -ENOMEM;
  1037. dev_err(&pdev->dev, "Failed alloc_candev\n");
  1038. goto probe_exit_alloc_candev;
  1039. }
  1040. priv = netdev_priv(ndev);
  1041. priv->ndev = ndev;
  1042. priv->regs = addr;
  1043. priv->dev = pdev;
  1044. priv->can.bittiming_const = &pch_can_bittiming_const;
  1045. priv->can.do_set_mode = pch_can_do_set_mode;
  1046. priv->can.do_get_berr_counter = pch_can_get_berr_counter;
  1047. priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
  1048. CAN_CTRLMODE_LOOPBACK;
  1049. priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
  1050. ndev->irq = pdev->irq;
  1051. ndev->flags |= IFF_ECHO;
  1052. pci_set_drvdata(pdev, ndev);
  1053. SET_NETDEV_DEV(ndev, &pdev->dev);
  1054. ndev->netdev_ops = &pch_can_netdev_ops;
  1055. priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
  1056. netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
  1057. rc = register_candev(ndev);
  1058. if (rc) {
  1059. dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
  1060. goto probe_exit_reg_candev;
  1061. }
  1062. return 0;
  1063. probe_exit_reg_candev:
  1064. free_candev(ndev);
  1065. probe_exit_alloc_candev:
  1066. pci_iounmap(pdev, addr);
  1067. probe_exit_ipmap:
  1068. pci_release_regions(pdev);
  1069. probe_exit_pcireq:
  1070. pci_disable_device(pdev);
  1071. probe_exit_endev:
  1072. return rc;
  1073. }
  1074. static struct pci_driver pch_can_pci_driver = {
  1075. .name = "pch_can",
  1076. .id_table = pch_pci_tbl,
  1077. .probe = pch_can_probe,
  1078. .remove = __devexit_p(pch_can_remove),
  1079. .suspend = pch_can_suspend,
  1080. .resume = pch_can_resume,
  1081. };
  1082. static int __init pch_can_pci_init(void)
  1083. {
  1084. return pci_register_driver(&pch_can_pci_driver);
  1085. }
  1086. module_init(pch_can_pci_init);
  1087. static void __exit pch_can_pci_exit(void)
  1088. {
  1089. pci_unregister_driver(&pch_can_pci_driver);
  1090. }
  1091. module_exit(pch_can_pci_exit);
  1092. MODULE_DESCRIPTION("Controller Area Network Driver");
  1093. MODULE_LICENSE("GPL v2");
  1094. MODULE_VERSION("0.94");