crypto.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265
  1. /**
  2. * eCryptfs: Linux filesystem encryption layer
  3. *
  4. * Copyright (C) 1997-2004 Erez Zadok
  5. * Copyright (C) 2001-2004 Stony Brook University
  6. * Copyright (C) 2004-2007 International Business Machines Corp.
  7. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
  8. * Michael C. Thompson <mcthomps@us.ibm.com>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23. * 02111-1307, USA.
  24. */
  25. #include <linux/fs.h>
  26. #include <linux/mount.h>
  27. #include <linux/pagemap.h>
  28. #include <linux/random.h>
  29. #include <linux/compiler.h>
  30. #include <linux/key.h>
  31. #include <linux/namei.h>
  32. #include <linux/crypto.h>
  33. #include <linux/file.h>
  34. #include <linux/scatterlist.h>
  35. #include <linux/slab.h>
  36. #include <asm/unaligned.h>
  37. #include "ecryptfs_kernel.h"
  38. static int
  39. ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  40. struct page *dst_page, int dst_offset,
  41. struct page *src_page, int src_offset, int size,
  42. unsigned char *iv);
  43. static int
  44. ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  45. struct page *dst_page, int dst_offset,
  46. struct page *src_page, int src_offset, int size,
  47. unsigned char *iv);
  48. /**
  49. * ecryptfs_to_hex
  50. * @dst: Buffer to take hex character representation of contents of
  51. * src; must be at least of size (src_size * 2)
  52. * @src: Buffer to be converted to a hex string respresentation
  53. * @src_size: number of bytes to convert
  54. */
  55. void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
  56. {
  57. int x;
  58. for (x = 0; x < src_size; x++)
  59. sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
  60. }
  61. /**
  62. * ecryptfs_from_hex
  63. * @dst: Buffer to take the bytes from src hex; must be at least of
  64. * size (src_size / 2)
  65. * @src: Buffer to be converted from a hex string respresentation to raw value
  66. * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  67. */
  68. void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  69. {
  70. int x;
  71. char tmp[3] = { 0, };
  72. for (x = 0; x < dst_size; x++) {
  73. tmp[0] = src[x * 2];
  74. tmp[1] = src[x * 2 + 1];
  75. dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  76. }
  77. }
  78. /**
  79. * ecryptfs_calculate_md5 - calculates the md5 of @src
  80. * @dst: Pointer to 16 bytes of allocated memory
  81. * @crypt_stat: Pointer to crypt_stat struct for the current inode
  82. * @src: Data to be md5'd
  83. * @len: Length of @src
  84. *
  85. * Uses the allocated crypto context that crypt_stat references to
  86. * generate the MD5 sum of the contents of src.
  87. */
  88. static int ecryptfs_calculate_md5(char *dst,
  89. struct ecryptfs_crypt_stat *crypt_stat,
  90. char *src, int len)
  91. {
  92. struct scatterlist sg;
  93. struct hash_desc desc = {
  94. .tfm = crypt_stat->hash_tfm,
  95. .flags = CRYPTO_TFM_REQ_MAY_SLEEP
  96. };
  97. int rc = 0;
  98. mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
  99. sg_init_one(&sg, (u8 *)src, len);
  100. if (!desc.tfm) {
  101. desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
  102. CRYPTO_ALG_ASYNC);
  103. if (IS_ERR(desc.tfm)) {
  104. rc = PTR_ERR(desc.tfm);
  105. ecryptfs_printk(KERN_ERR, "Error attempting to "
  106. "allocate crypto context; rc = [%d]\n",
  107. rc);
  108. goto out;
  109. }
  110. crypt_stat->hash_tfm = desc.tfm;
  111. }
  112. rc = crypto_hash_init(&desc);
  113. if (rc) {
  114. printk(KERN_ERR
  115. "%s: Error initializing crypto hash; rc = [%d]\n",
  116. __func__, rc);
  117. goto out;
  118. }
  119. rc = crypto_hash_update(&desc, &sg, len);
  120. if (rc) {
  121. printk(KERN_ERR
  122. "%s: Error updating crypto hash; rc = [%d]\n",
  123. __func__, rc);
  124. goto out;
  125. }
  126. rc = crypto_hash_final(&desc, dst);
  127. if (rc) {
  128. printk(KERN_ERR
  129. "%s: Error finalizing crypto hash; rc = [%d]\n",
  130. __func__, rc);
  131. goto out;
  132. }
  133. out:
  134. mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
  135. return rc;
  136. }
  137. static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
  138. char *cipher_name,
  139. char *chaining_modifier)
  140. {
  141. int cipher_name_len = strlen(cipher_name);
  142. int chaining_modifier_len = strlen(chaining_modifier);
  143. int algified_name_len;
  144. int rc;
  145. algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
  146. (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
  147. if (!(*algified_name)) {
  148. rc = -ENOMEM;
  149. goto out;
  150. }
  151. snprintf((*algified_name), algified_name_len, "%s(%s)",
  152. chaining_modifier, cipher_name);
  153. rc = 0;
  154. out:
  155. return rc;
  156. }
  157. /**
  158. * ecryptfs_derive_iv
  159. * @iv: destination for the derived iv vale
  160. * @crypt_stat: Pointer to crypt_stat struct for the current inode
  161. * @offset: Offset of the extent whose IV we are to derive
  162. *
  163. * Generate the initialization vector from the given root IV and page
  164. * offset.
  165. *
  166. * Returns zero on success; non-zero on error.
  167. */
  168. int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
  169. loff_t offset)
  170. {
  171. int rc = 0;
  172. char dst[MD5_DIGEST_SIZE];
  173. char src[ECRYPTFS_MAX_IV_BYTES + 16];
  174. if (unlikely(ecryptfs_verbosity > 0)) {
  175. ecryptfs_printk(KERN_DEBUG, "root iv:\n");
  176. ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
  177. }
  178. /* TODO: It is probably secure to just cast the least
  179. * significant bits of the root IV into an unsigned long and
  180. * add the offset to that rather than go through all this
  181. * hashing business. -Halcrow */
  182. memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
  183. memset((src + crypt_stat->iv_bytes), 0, 16);
  184. snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
  185. if (unlikely(ecryptfs_verbosity > 0)) {
  186. ecryptfs_printk(KERN_DEBUG, "source:\n");
  187. ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
  188. }
  189. rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
  190. (crypt_stat->iv_bytes + 16));
  191. if (rc) {
  192. ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
  193. "MD5 while generating IV for a page\n");
  194. goto out;
  195. }
  196. memcpy(iv, dst, crypt_stat->iv_bytes);
  197. if (unlikely(ecryptfs_verbosity > 0)) {
  198. ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
  199. ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
  200. }
  201. out:
  202. return rc;
  203. }
  204. /**
  205. * ecryptfs_init_crypt_stat
  206. * @crypt_stat: Pointer to the crypt_stat struct to initialize.
  207. *
  208. * Initialize the crypt_stat structure.
  209. */
  210. void
  211. ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
  212. {
  213. memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
  214. INIT_LIST_HEAD(&crypt_stat->keysig_list);
  215. mutex_init(&crypt_stat->keysig_list_mutex);
  216. mutex_init(&crypt_stat->cs_mutex);
  217. mutex_init(&crypt_stat->cs_tfm_mutex);
  218. mutex_init(&crypt_stat->cs_hash_tfm_mutex);
  219. crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
  220. }
  221. /**
  222. * ecryptfs_destroy_crypt_stat
  223. * @crypt_stat: Pointer to the crypt_stat struct to initialize.
  224. *
  225. * Releases all memory associated with a crypt_stat struct.
  226. */
  227. void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
  228. {
  229. struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
  230. if (crypt_stat->tfm)
  231. crypto_free_blkcipher(crypt_stat->tfm);
  232. if (crypt_stat->hash_tfm)
  233. crypto_free_hash(crypt_stat->hash_tfm);
  234. list_for_each_entry_safe(key_sig, key_sig_tmp,
  235. &crypt_stat->keysig_list, crypt_stat_list) {
  236. list_del(&key_sig->crypt_stat_list);
  237. kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
  238. }
  239. memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
  240. }
  241. void ecryptfs_destroy_mount_crypt_stat(
  242. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  243. {
  244. struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
  245. if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
  246. return;
  247. mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
  248. list_for_each_entry_safe(auth_tok, auth_tok_tmp,
  249. &mount_crypt_stat->global_auth_tok_list,
  250. mount_crypt_stat_list) {
  251. list_del(&auth_tok->mount_crypt_stat_list);
  252. mount_crypt_stat->num_global_auth_toks--;
  253. if (auth_tok->global_auth_tok_key
  254. && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
  255. key_put(auth_tok->global_auth_tok_key);
  256. kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
  257. }
  258. mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
  259. memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
  260. }
  261. /**
  262. * virt_to_scatterlist
  263. * @addr: Virtual address
  264. * @size: Size of data; should be an even multiple of the block size
  265. * @sg: Pointer to scatterlist array; set to NULL to obtain only
  266. * the number of scatterlist structs required in array
  267. * @sg_size: Max array size
  268. *
  269. * Fills in a scatterlist array with page references for a passed
  270. * virtual address.
  271. *
  272. * Returns the number of scatterlist structs in array used
  273. */
  274. int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
  275. int sg_size)
  276. {
  277. int i = 0;
  278. struct page *pg;
  279. int offset;
  280. int remainder_of_page;
  281. sg_init_table(sg, sg_size);
  282. while (size > 0 && i < sg_size) {
  283. pg = virt_to_page(addr);
  284. offset = offset_in_page(addr);
  285. if (sg)
  286. sg_set_page(&sg[i], pg, 0, offset);
  287. remainder_of_page = PAGE_CACHE_SIZE - offset;
  288. if (size >= remainder_of_page) {
  289. if (sg)
  290. sg[i].length = remainder_of_page;
  291. addr += remainder_of_page;
  292. size -= remainder_of_page;
  293. } else {
  294. if (sg)
  295. sg[i].length = size;
  296. addr += size;
  297. size = 0;
  298. }
  299. i++;
  300. }
  301. if (size > 0)
  302. return -ENOMEM;
  303. return i;
  304. }
  305. /**
  306. * encrypt_scatterlist
  307. * @crypt_stat: Pointer to the crypt_stat struct to initialize.
  308. * @dest_sg: Destination of encrypted data
  309. * @src_sg: Data to be encrypted
  310. * @size: Length of data to be encrypted
  311. * @iv: iv to use during encryption
  312. *
  313. * Returns the number of bytes encrypted; negative value on error
  314. */
  315. static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
  316. struct scatterlist *dest_sg,
  317. struct scatterlist *src_sg, int size,
  318. unsigned char *iv)
  319. {
  320. struct blkcipher_desc desc = {
  321. .tfm = crypt_stat->tfm,
  322. .info = iv,
  323. .flags = CRYPTO_TFM_REQ_MAY_SLEEP
  324. };
  325. int rc = 0;
  326. BUG_ON(!crypt_stat || !crypt_stat->tfm
  327. || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
  328. if (unlikely(ecryptfs_verbosity > 0)) {
  329. ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
  330. crypt_stat->key_size);
  331. ecryptfs_dump_hex(crypt_stat->key,
  332. crypt_stat->key_size);
  333. }
  334. /* Consider doing this once, when the file is opened */
  335. mutex_lock(&crypt_stat->cs_tfm_mutex);
  336. if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
  337. rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
  338. crypt_stat->key_size);
  339. crypt_stat->flags |= ECRYPTFS_KEY_SET;
  340. }
  341. if (rc) {
  342. ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
  343. rc);
  344. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  345. rc = -EINVAL;
  346. goto out;
  347. }
  348. ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
  349. crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
  350. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  351. out:
  352. return rc;
  353. }
  354. /**
  355. * ecryptfs_lower_offset_for_extent
  356. *
  357. * Convert an eCryptfs page index into a lower byte offset
  358. */
  359. static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
  360. struct ecryptfs_crypt_stat *crypt_stat)
  361. {
  362. (*offset) = ecryptfs_lower_header_size(crypt_stat)
  363. + (crypt_stat->extent_size * extent_num);
  364. }
  365. /**
  366. * ecryptfs_encrypt_extent
  367. * @enc_extent_page: Allocated page into which to encrypt the data in
  368. * @page
  369. * @crypt_stat: crypt_stat containing cryptographic context for the
  370. * encryption operation
  371. * @page: Page containing plaintext data extent to encrypt
  372. * @extent_offset: Page extent offset for use in generating IV
  373. *
  374. * Encrypts one extent of data.
  375. *
  376. * Return zero on success; non-zero otherwise
  377. */
  378. static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
  379. struct ecryptfs_crypt_stat *crypt_stat,
  380. struct page *page,
  381. unsigned long extent_offset)
  382. {
  383. loff_t extent_base;
  384. char extent_iv[ECRYPTFS_MAX_IV_BYTES];
  385. int rc;
  386. extent_base = (((loff_t)page->index)
  387. * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
  388. rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
  389. (extent_base + extent_offset));
  390. if (rc) {
  391. ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
  392. "extent [0x%.16llx]; rc = [%d]\n",
  393. (unsigned long long)(extent_base + extent_offset), rc);
  394. goto out;
  395. }
  396. if (unlikely(ecryptfs_verbosity > 0)) {
  397. ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
  398. "with iv:\n");
  399. ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
  400. ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
  401. "encryption:\n");
  402. ecryptfs_dump_hex((char *)
  403. (page_address(page)
  404. + (extent_offset * crypt_stat->extent_size)),
  405. 8);
  406. }
  407. rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
  408. page, (extent_offset
  409. * crypt_stat->extent_size),
  410. crypt_stat->extent_size, extent_iv);
  411. if (rc < 0) {
  412. printk(KERN_ERR "%s: Error attempting to encrypt page with "
  413. "page->index = [%ld], extent_offset = [%ld]; "
  414. "rc = [%d]\n", __func__, page->index, extent_offset,
  415. rc);
  416. goto out;
  417. }
  418. rc = 0;
  419. if (unlikely(ecryptfs_verbosity > 0)) {
  420. ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; "
  421. "rc = [%d]\n",
  422. (unsigned long long)(extent_base + extent_offset), rc);
  423. ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
  424. "encryption:\n");
  425. ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
  426. }
  427. out:
  428. return rc;
  429. }
  430. /**
  431. * ecryptfs_encrypt_page
  432. * @page: Page mapped from the eCryptfs inode for the file; contains
  433. * decrypted content that needs to be encrypted (to a temporary
  434. * page; not in place) and written out to the lower file
  435. *
  436. * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
  437. * that eCryptfs pages may straddle the lower pages -- for instance,
  438. * if the file was created on a machine with an 8K page size
  439. * (resulting in an 8K header), and then the file is copied onto a
  440. * host with a 32K page size, then when reading page 0 of the eCryptfs
  441. * file, 24K of page 0 of the lower file will be read and decrypted,
  442. * and then 8K of page 1 of the lower file will be read and decrypted.
  443. *
  444. * Returns zero on success; negative on error
  445. */
  446. int ecryptfs_encrypt_page(struct page *page)
  447. {
  448. struct inode *ecryptfs_inode;
  449. struct ecryptfs_crypt_stat *crypt_stat;
  450. char *enc_extent_virt;
  451. struct page *enc_extent_page = NULL;
  452. loff_t extent_offset;
  453. int rc = 0;
  454. ecryptfs_inode = page->mapping->host;
  455. crypt_stat =
  456. &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
  457. BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
  458. enc_extent_page = alloc_page(GFP_USER);
  459. if (!enc_extent_page) {
  460. rc = -ENOMEM;
  461. ecryptfs_printk(KERN_ERR, "Error allocating memory for "
  462. "encrypted extent\n");
  463. goto out;
  464. }
  465. enc_extent_virt = kmap(enc_extent_page);
  466. for (extent_offset = 0;
  467. extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
  468. extent_offset++) {
  469. loff_t offset;
  470. rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
  471. extent_offset);
  472. if (rc) {
  473. printk(KERN_ERR "%s: Error encrypting extent; "
  474. "rc = [%d]\n", __func__, rc);
  475. goto out;
  476. }
  477. ecryptfs_lower_offset_for_extent(
  478. &offset, ((((loff_t)page->index)
  479. * (PAGE_CACHE_SIZE
  480. / crypt_stat->extent_size))
  481. + extent_offset), crypt_stat);
  482. rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
  483. offset, crypt_stat->extent_size);
  484. if (rc < 0) {
  485. ecryptfs_printk(KERN_ERR, "Error attempting "
  486. "to write lower page; rc = [%d]"
  487. "\n", rc);
  488. goto out;
  489. }
  490. }
  491. rc = 0;
  492. out:
  493. if (enc_extent_page) {
  494. kunmap(enc_extent_page);
  495. __free_page(enc_extent_page);
  496. }
  497. return rc;
  498. }
  499. static int ecryptfs_decrypt_extent(struct page *page,
  500. struct ecryptfs_crypt_stat *crypt_stat,
  501. struct page *enc_extent_page,
  502. unsigned long extent_offset)
  503. {
  504. loff_t extent_base;
  505. char extent_iv[ECRYPTFS_MAX_IV_BYTES];
  506. int rc;
  507. extent_base = (((loff_t)page->index)
  508. * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
  509. rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
  510. (extent_base + extent_offset));
  511. if (rc) {
  512. ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
  513. "extent [0x%.16llx]; rc = [%d]\n",
  514. (unsigned long long)(extent_base + extent_offset), rc);
  515. goto out;
  516. }
  517. if (unlikely(ecryptfs_verbosity > 0)) {
  518. ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
  519. "with iv:\n");
  520. ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
  521. ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
  522. "decryption:\n");
  523. ecryptfs_dump_hex((char *)
  524. (page_address(enc_extent_page)
  525. + (extent_offset * crypt_stat->extent_size)),
  526. 8);
  527. }
  528. rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
  529. (extent_offset
  530. * crypt_stat->extent_size),
  531. enc_extent_page, 0,
  532. crypt_stat->extent_size, extent_iv);
  533. if (rc < 0) {
  534. printk(KERN_ERR "%s: Error attempting to decrypt to page with "
  535. "page->index = [%ld], extent_offset = [%ld]; "
  536. "rc = [%d]\n", __func__, page->index, extent_offset,
  537. rc);
  538. goto out;
  539. }
  540. rc = 0;
  541. if (unlikely(ecryptfs_verbosity > 0)) {
  542. ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; "
  543. "rc = [%d]\n",
  544. (unsigned long long)(extent_base + extent_offset), rc);
  545. ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
  546. "decryption:\n");
  547. ecryptfs_dump_hex((char *)(page_address(page)
  548. + (extent_offset
  549. * crypt_stat->extent_size)), 8);
  550. }
  551. out:
  552. return rc;
  553. }
  554. /**
  555. * ecryptfs_decrypt_page
  556. * @page: Page mapped from the eCryptfs inode for the file; data read
  557. * and decrypted from the lower file will be written into this
  558. * page
  559. *
  560. * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
  561. * that eCryptfs pages may straddle the lower pages -- for instance,
  562. * if the file was created on a machine with an 8K page size
  563. * (resulting in an 8K header), and then the file is copied onto a
  564. * host with a 32K page size, then when reading page 0 of the eCryptfs
  565. * file, 24K of page 0 of the lower file will be read and decrypted,
  566. * and then 8K of page 1 of the lower file will be read and decrypted.
  567. *
  568. * Returns zero on success; negative on error
  569. */
  570. int ecryptfs_decrypt_page(struct page *page)
  571. {
  572. struct inode *ecryptfs_inode;
  573. struct ecryptfs_crypt_stat *crypt_stat;
  574. char *enc_extent_virt;
  575. struct page *enc_extent_page = NULL;
  576. unsigned long extent_offset;
  577. int rc = 0;
  578. ecryptfs_inode = page->mapping->host;
  579. crypt_stat =
  580. &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
  581. BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
  582. enc_extent_page = alloc_page(GFP_USER);
  583. if (!enc_extent_page) {
  584. rc = -ENOMEM;
  585. ecryptfs_printk(KERN_ERR, "Error allocating memory for "
  586. "encrypted extent\n");
  587. goto out;
  588. }
  589. enc_extent_virt = kmap(enc_extent_page);
  590. for (extent_offset = 0;
  591. extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
  592. extent_offset++) {
  593. loff_t offset;
  594. ecryptfs_lower_offset_for_extent(
  595. &offset, ((page->index * (PAGE_CACHE_SIZE
  596. / crypt_stat->extent_size))
  597. + extent_offset), crypt_stat);
  598. rc = ecryptfs_read_lower(enc_extent_virt, offset,
  599. crypt_stat->extent_size,
  600. ecryptfs_inode);
  601. if (rc < 0) {
  602. ecryptfs_printk(KERN_ERR, "Error attempting "
  603. "to read lower page; rc = [%d]"
  604. "\n", rc);
  605. goto out;
  606. }
  607. rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
  608. extent_offset);
  609. if (rc) {
  610. printk(KERN_ERR "%s: Error encrypting extent; "
  611. "rc = [%d]\n", __func__, rc);
  612. goto out;
  613. }
  614. }
  615. out:
  616. if (enc_extent_page) {
  617. kunmap(enc_extent_page);
  618. __free_page(enc_extent_page);
  619. }
  620. return rc;
  621. }
  622. /**
  623. * decrypt_scatterlist
  624. * @crypt_stat: Cryptographic context
  625. * @dest_sg: The destination scatterlist to decrypt into
  626. * @src_sg: The source scatterlist to decrypt from
  627. * @size: The number of bytes to decrypt
  628. * @iv: The initialization vector to use for the decryption
  629. *
  630. * Returns the number of bytes decrypted; negative value on error
  631. */
  632. static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
  633. struct scatterlist *dest_sg,
  634. struct scatterlist *src_sg, int size,
  635. unsigned char *iv)
  636. {
  637. struct blkcipher_desc desc = {
  638. .tfm = crypt_stat->tfm,
  639. .info = iv,
  640. .flags = CRYPTO_TFM_REQ_MAY_SLEEP
  641. };
  642. int rc = 0;
  643. /* Consider doing this once, when the file is opened */
  644. mutex_lock(&crypt_stat->cs_tfm_mutex);
  645. rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
  646. crypt_stat->key_size);
  647. if (rc) {
  648. ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
  649. rc);
  650. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  651. rc = -EINVAL;
  652. goto out;
  653. }
  654. ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
  655. rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
  656. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  657. if (rc) {
  658. ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
  659. rc);
  660. goto out;
  661. }
  662. rc = size;
  663. out:
  664. return rc;
  665. }
  666. /**
  667. * ecryptfs_encrypt_page_offset
  668. * @crypt_stat: The cryptographic context
  669. * @dst_page: The page to encrypt into
  670. * @dst_offset: The offset in the page to encrypt into
  671. * @src_page: The page to encrypt from
  672. * @src_offset: The offset in the page to encrypt from
  673. * @size: The number of bytes to encrypt
  674. * @iv: The initialization vector to use for the encryption
  675. *
  676. * Returns the number of bytes encrypted
  677. */
  678. static int
  679. ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  680. struct page *dst_page, int dst_offset,
  681. struct page *src_page, int src_offset, int size,
  682. unsigned char *iv)
  683. {
  684. struct scatterlist src_sg, dst_sg;
  685. sg_init_table(&src_sg, 1);
  686. sg_init_table(&dst_sg, 1);
  687. sg_set_page(&src_sg, src_page, size, src_offset);
  688. sg_set_page(&dst_sg, dst_page, size, dst_offset);
  689. return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
  690. }
  691. /**
  692. * ecryptfs_decrypt_page_offset
  693. * @crypt_stat: The cryptographic context
  694. * @dst_page: The page to decrypt into
  695. * @dst_offset: The offset in the page to decrypt into
  696. * @src_page: The page to decrypt from
  697. * @src_offset: The offset in the page to decrypt from
  698. * @size: The number of bytes to decrypt
  699. * @iv: The initialization vector to use for the decryption
  700. *
  701. * Returns the number of bytes decrypted
  702. */
  703. static int
  704. ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  705. struct page *dst_page, int dst_offset,
  706. struct page *src_page, int src_offset, int size,
  707. unsigned char *iv)
  708. {
  709. struct scatterlist src_sg, dst_sg;
  710. sg_init_table(&src_sg, 1);
  711. sg_set_page(&src_sg, src_page, size, src_offset);
  712. sg_init_table(&dst_sg, 1);
  713. sg_set_page(&dst_sg, dst_page, size, dst_offset);
  714. return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
  715. }
  716. #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
  717. /**
  718. * ecryptfs_init_crypt_ctx
  719. * @crypt_stat: Uninitialized crypt stats structure
  720. *
  721. * Initialize the crypto context.
  722. *
  723. * TODO: Performance: Keep a cache of initialized cipher contexts;
  724. * only init if needed
  725. */
  726. int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
  727. {
  728. char *full_alg_name;
  729. int rc = -EINVAL;
  730. if (!crypt_stat->cipher) {
  731. ecryptfs_printk(KERN_ERR, "No cipher specified\n");
  732. goto out;
  733. }
  734. ecryptfs_printk(KERN_DEBUG,
  735. "Initializing cipher [%s]; strlen = [%d]; "
  736. "key_size_bits = [%zd]\n",
  737. crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
  738. crypt_stat->key_size << 3);
  739. if (crypt_stat->tfm) {
  740. rc = 0;
  741. goto out;
  742. }
  743. mutex_lock(&crypt_stat->cs_tfm_mutex);
  744. rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
  745. crypt_stat->cipher, "cbc");
  746. if (rc)
  747. goto out_unlock;
  748. crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
  749. CRYPTO_ALG_ASYNC);
  750. kfree(full_alg_name);
  751. if (IS_ERR(crypt_stat->tfm)) {
  752. rc = PTR_ERR(crypt_stat->tfm);
  753. crypt_stat->tfm = NULL;
  754. ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
  755. "Error initializing cipher [%s]\n",
  756. crypt_stat->cipher);
  757. goto out_unlock;
  758. }
  759. crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
  760. rc = 0;
  761. out_unlock:
  762. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  763. out:
  764. return rc;
  765. }
  766. static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
  767. {
  768. int extent_size_tmp;
  769. crypt_stat->extent_mask = 0xFFFFFFFF;
  770. crypt_stat->extent_shift = 0;
  771. if (crypt_stat->extent_size == 0)
  772. return;
  773. extent_size_tmp = crypt_stat->extent_size;
  774. while ((extent_size_tmp & 0x01) == 0) {
  775. extent_size_tmp >>= 1;
  776. crypt_stat->extent_mask <<= 1;
  777. crypt_stat->extent_shift++;
  778. }
  779. }
  780. void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
  781. {
  782. /* Default values; may be overwritten as we are parsing the
  783. * packets. */
  784. crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
  785. set_extent_mask_and_shift(crypt_stat);
  786. crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
  787. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
  788. crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
  789. else {
  790. if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
  791. crypt_stat->metadata_size =
  792. ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
  793. else
  794. crypt_stat->metadata_size = PAGE_CACHE_SIZE;
  795. }
  796. }
  797. /**
  798. * ecryptfs_compute_root_iv
  799. * @crypt_stats
  800. *
  801. * On error, sets the root IV to all 0's.
  802. */
  803. int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
  804. {
  805. int rc = 0;
  806. char dst[MD5_DIGEST_SIZE];
  807. BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
  808. BUG_ON(crypt_stat->iv_bytes <= 0);
  809. if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
  810. rc = -EINVAL;
  811. ecryptfs_printk(KERN_WARNING, "Session key not valid; "
  812. "cannot generate root IV\n");
  813. goto out;
  814. }
  815. rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
  816. crypt_stat->key_size);
  817. if (rc) {
  818. ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
  819. "MD5 while generating root IV\n");
  820. goto out;
  821. }
  822. memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
  823. out:
  824. if (rc) {
  825. memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
  826. crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
  827. }
  828. return rc;
  829. }
  830. static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
  831. {
  832. get_random_bytes(crypt_stat->key, crypt_stat->key_size);
  833. crypt_stat->flags |= ECRYPTFS_KEY_VALID;
  834. ecryptfs_compute_root_iv(crypt_stat);
  835. if (unlikely(ecryptfs_verbosity > 0)) {
  836. ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
  837. ecryptfs_dump_hex(crypt_stat->key,
  838. crypt_stat->key_size);
  839. }
  840. }
  841. /**
  842. * ecryptfs_copy_mount_wide_flags_to_inode_flags
  843. * @crypt_stat: The inode's cryptographic context
  844. * @mount_crypt_stat: The mount point's cryptographic context
  845. *
  846. * This function propagates the mount-wide flags to individual inode
  847. * flags.
  848. */
  849. static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
  850. struct ecryptfs_crypt_stat *crypt_stat,
  851. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  852. {
  853. if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
  854. crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
  855. if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
  856. crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
  857. if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
  858. crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
  859. if (mount_crypt_stat->flags
  860. & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
  861. crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
  862. else if (mount_crypt_stat->flags
  863. & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
  864. crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
  865. }
  866. }
  867. static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
  868. struct ecryptfs_crypt_stat *crypt_stat,
  869. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  870. {
  871. struct ecryptfs_global_auth_tok *global_auth_tok;
  872. int rc = 0;
  873. mutex_lock(&crypt_stat->keysig_list_mutex);
  874. mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
  875. list_for_each_entry(global_auth_tok,
  876. &mount_crypt_stat->global_auth_tok_list,
  877. mount_crypt_stat_list) {
  878. if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
  879. continue;
  880. rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
  881. if (rc) {
  882. printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
  883. goto out;
  884. }
  885. }
  886. out:
  887. mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
  888. mutex_unlock(&crypt_stat->keysig_list_mutex);
  889. return rc;
  890. }
  891. /**
  892. * ecryptfs_set_default_crypt_stat_vals
  893. * @crypt_stat: The inode's cryptographic context
  894. * @mount_crypt_stat: The mount point's cryptographic context
  895. *
  896. * Default values in the event that policy does not override them.
  897. */
  898. static void ecryptfs_set_default_crypt_stat_vals(
  899. struct ecryptfs_crypt_stat *crypt_stat,
  900. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  901. {
  902. ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
  903. mount_crypt_stat);
  904. ecryptfs_set_default_sizes(crypt_stat);
  905. strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
  906. crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
  907. crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
  908. crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
  909. crypt_stat->mount_crypt_stat = mount_crypt_stat;
  910. }
  911. /**
  912. * ecryptfs_new_file_context
  913. * @ecryptfs_dentry: The eCryptfs dentry
  914. *
  915. * If the crypto context for the file has not yet been established,
  916. * this is where we do that. Establishing a new crypto context
  917. * involves the following decisions:
  918. * - What cipher to use?
  919. * - What set of authentication tokens to use?
  920. * Here we just worry about getting enough information into the
  921. * authentication tokens so that we know that they are available.
  922. * We associate the available authentication tokens with the new file
  923. * via the set of signatures in the crypt_stat struct. Later, when
  924. * the headers are actually written out, we may again defer to
  925. * userspace to perform the encryption of the session key; for the
  926. * foreseeable future, this will be the case with public key packets.
  927. *
  928. * Returns zero on success; non-zero otherwise
  929. */
  930. int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
  931. {
  932. struct ecryptfs_crypt_stat *crypt_stat =
  933. &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
  934. struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
  935. &ecryptfs_superblock_to_private(
  936. ecryptfs_dentry->d_sb)->mount_crypt_stat;
  937. int cipher_name_len;
  938. int rc = 0;
  939. ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
  940. crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
  941. ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
  942. mount_crypt_stat);
  943. rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
  944. mount_crypt_stat);
  945. if (rc) {
  946. printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
  947. "to the inode key sigs; rc = [%d]\n", rc);
  948. goto out;
  949. }
  950. cipher_name_len =
  951. strlen(mount_crypt_stat->global_default_cipher_name);
  952. memcpy(crypt_stat->cipher,
  953. mount_crypt_stat->global_default_cipher_name,
  954. cipher_name_len);
  955. crypt_stat->cipher[cipher_name_len] = '\0';
  956. crypt_stat->key_size =
  957. mount_crypt_stat->global_default_cipher_key_size;
  958. ecryptfs_generate_new_key(crypt_stat);
  959. rc = ecryptfs_init_crypt_ctx(crypt_stat);
  960. if (rc)
  961. ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
  962. "context for cipher [%s]: rc = [%d]\n",
  963. crypt_stat->cipher, rc);
  964. out:
  965. return rc;
  966. }
  967. /**
  968. * contains_ecryptfs_marker - check for the ecryptfs marker
  969. * @data: The data block in which to check
  970. *
  971. * Returns one if marker found; zero if not found
  972. */
  973. static int contains_ecryptfs_marker(char *data)
  974. {
  975. u32 m_1, m_2;
  976. m_1 = get_unaligned_be32(data);
  977. m_2 = get_unaligned_be32(data + 4);
  978. if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
  979. return 1;
  980. ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
  981. "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
  982. MAGIC_ECRYPTFS_MARKER);
  983. ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
  984. "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
  985. return 0;
  986. }
  987. struct ecryptfs_flag_map_elem {
  988. u32 file_flag;
  989. u32 local_flag;
  990. };
  991. /* Add support for additional flags by adding elements here. */
  992. static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
  993. {0x00000001, ECRYPTFS_ENABLE_HMAC},
  994. {0x00000002, ECRYPTFS_ENCRYPTED},
  995. {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
  996. {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
  997. };
  998. /**
  999. * ecryptfs_process_flags
  1000. * @crypt_stat: The cryptographic context
  1001. * @page_virt: Source data to be parsed
  1002. * @bytes_read: Updated with the number of bytes read
  1003. *
  1004. * Returns zero on success; non-zero if the flag set is invalid
  1005. */
  1006. static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
  1007. char *page_virt, int *bytes_read)
  1008. {
  1009. int rc = 0;
  1010. int i;
  1011. u32 flags;
  1012. flags = get_unaligned_be32(page_virt);
  1013. for (i = 0; i < ((sizeof(ecryptfs_flag_map)
  1014. / sizeof(struct ecryptfs_flag_map_elem))); i++)
  1015. if (flags & ecryptfs_flag_map[i].file_flag) {
  1016. crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
  1017. } else
  1018. crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
  1019. /* Version is in top 8 bits of the 32-bit flag vector */
  1020. crypt_stat->file_version = ((flags >> 24) & 0xFF);
  1021. (*bytes_read) = 4;
  1022. return rc;
  1023. }
  1024. /**
  1025. * write_ecryptfs_marker
  1026. * @page_virt: The pointer to in a page to begin writing the marker
  1027. * @written: Number of bytes written
  1028. *
  1029. * Marker = 0x3c81b7f5
  1030. */
  1031. static void write_ecryptfs_marker(char *page_virt, size_t *written)
  1032. {
  1033. u32 m_1, m_2;
  1034. get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
  1035. m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
  1036. put_unaligned_be32(m_1, page_virt);
  1037. page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
  1038. put_unaligned_be32(m_2, page_virt);
  1039. (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
  1040. }
  1041. void ecryptfs_write_crypt_stat_flags(char *page_virt,
  1042. struct ecryptfs_crypt_stat *crypt_stat,
  1043. size_t *written)
  1044. {
  1045. u32 flags = 0;
  1046. int i;
  1047. for (i = 0; i < ((sizeof(ecryptfs_flag_map)
  1048. / sizeof(struct ecryptfs_flag_map_elem))); i++)
  1049. if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
  1050. flags |= ecryptfs_flag_map[i].file_flag;
  1051. /* Version is in top 8 bits of the 32-bit flag vector */
  1052. flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
  1053. put_unaligned_be32(flags, page_virt);
  1054. (*written) = 4;
  1055. }
  1056. struct ecryptfs_cipher_code_str_map_elem {
  1057. char cipher_str[16];
  1058. u8 cipher_code;
  1059. };
  1060. /* Add support for additional ciphers by adding elements here. The
  1061. * cipher_code is whatever OpenPGP applicatoins use to identify the
  1062. * ciphers. List in order of probability. */
  1063. static struct ecryptfs_cipher_code_str_map_elem
  1064. ecryptfs_cipher_code_str_map[] = {
  1065. {"aes",RFC2440_CIPHER_AES_128 },
  1066. {"blowfish", RFC2440_CIPHER_BLOWFISH},
  1067. {"des3_ede", RFC2440_CIPHER_DES3_EDE},
  1068. {"cast5", RFC2440_CIPHER_CAST_5},
  1069. {"twofish", RFC2440_CIPHER_TWOFISH},
  1070. {"cast6", RFC2440_CIPHER_CAST_6},
  1071. {"aes", RFC2440_CIPHER_AES_192},
  1072. {"aes", RFC2440_CIPHER_AES_256}
  1073. };
  1074. /**
  1075. * ecryptfs_code_for_cipher_string
  1076. * @cipher_name: The string alias for the cipher
  1077. * @key_bytes: Length of key in bytes; used for AES code selection
  1078. *
  1079. * Returns zero on no match, or the cipher code on match
  1080. */
  1081. u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
  1082. {
  1083. int i;
  1084. u8 code = 0;
  1085. struct ecryptfs_cipher_code_str_map_elem *map =
  1086. ecryptfs_cipher_code_str_map;
  1087. if (strcmp(cipher_name, "aes") == 0) {
  1088. switch (key_bytes) {
  1089. case 16:
  1090. code = RFC2440_CIPHER_AES_128;
  1091. break;
  1092. case 24:
  1093. code = RFC2440_CIPHER_AES_192;
  1094. break;
  1095. case 32:
  1096. code = RFC2440_CIPHER_AES_256;
  1097. }
  1098. } else {
  1099. for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
  1100. if (strcmp(cipher_name, map[i].cipher_str) == 0) {
  1101. code = map[i].cipher_code;
  1102. break;
  1103. }
  1104. }
  1105. return code;
  1106. }
  1107. /**
  1108. * ecryptfs_cipher_code_to_string
  1109. * @str: Destination to write out the cipher name
  1110. * @cipher_code: The code to convert to cipher name string
  1111. *
  1112. * Returns zero on success
  1113. */
  1114. int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
  1115. {
  1116. int rc = 0;
  1117. int i;
  1118. str[0] = '\0';
  1119. for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
  1120. if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
  1121. strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
  1122. if (str[0] == '\0') {
  1123. ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
  1124. "[%d]\n", cipher_code);
  1125. rc = -EINVAL;
  1126. }
  1127. return rc;
  1128. }
  1129. int ecryptfs_read_and_validate_header_region(char *data,
  1130. struct inode *ecryptfs_inode)
  1131. {
  1132. struct ecryptfs_crypt_stat *crypt_stat =
  1133. &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
  1134. int rc;
  1135. if (crypt_stat->extent_size == 0)
  1136. crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
  1137. rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
  1138. ecryptfs_inode);
  1139. if (rc < 0) {
  1140. printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
  1141. __func__, rc);
  1142. goto out;
  1143. }
  1144. if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
  1145. rc = -EINVAL;
  1146. } else
  1147. rc = 0;
  1148. out:
  1149. return rc;
  1150. }
  1151. void
  1152. ecryptfs_write_header_metadata(char *virt,
  1153. struct ecryptfs_crypt_stat *crypt_stat,
  1154. size_t *written)
  1155. {
  1156. u32 header_extent_size;
  1157. u16 num_header_extents_at_front;
  1158. header_extent_size = (u32)crypt_stat->extent_size;
  1159. num_header_extents_at_front =
  1160. (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
  1161. put_unaligned_be32(header_extent_size, virt);
  1162. virt += 4;
  1163. put_unaligned_be16(num_header_extents_at_front, virt);
  1164. (*written) = 6;
  1165. }
  1166. struct kmem_cache *ecryptfs_header_cache_1;
  1167. struct kmem_cache *ecryptfs_header_cache_2;
  1168. /**
  1169. * ecryptfs_write_headers_virt
  1170. * @page_virt: The virtual address to write the headers to
  1171. * @max: The size of memory allocated at page_virt
  1172. * @size: Set to the number of bytes written by this function
  1173. * @crypt_stat: The cryptographic context
  1174. * @ecryptfs_dentry: The eCryptfs dentry
  1175. *
  1176. * Format version: 1
  1177. *
  1178. * Header Extent:
  1179. * Octets 0-7: Unencrypted file size (big-endian)
  1180. * Octets 8-15: eCryptfs special marker
  1181. * Octets 16-19: Flags
  1182. * Octet 16: File format version number (between 0 and 255)
  1183. * Octets 17-18: Reserved
  1184. * Octet 19: Bit 1 (lsb): Reserved
  1185. * Bit 2: Encrypted?
  1186. * Bits 3-8: Reserved
  1187. * Octets 20-23: Header extent size (big-endian)
  1188. * Octets 24-25: Number of header extents at front of file
  1189. * (big-endian)
  1190. * Octet 26: Begin RFC 2440 authentication token packet set
  1191. * Data Extent 0:
  1192. * Lower data (CBC encrypted)
  1193. * Data Extent 1:
  1194. * Lower data (CBC encrypted)
  1195. * ...
  1196. *
  1197. * Returns zero on success
  1198. */
  1199. static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
  1200. size_t *size,
  1201. struct ecryptfs_crypt_stat *crypt_stat,
  1202. struct dentry *ecryptfs_dentry)
  1203. {
  1204. int rc;
  1205. size_t written;
  1206. size_t offset;
  1207. offset = ECRYPTFS_FILE_SIZE_BYTES;
  1208. write_ecryptfs_marker((page_virt + offset), &written);
  1209. offset += written;
  1210. ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
  1211. &written);
  1212. offset += written;
  1213. ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
  1214. &written);
  1215. offset += written;
  1216. rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
  1217. ecryptfs_dentry, &written,
  1218. max - offset);
  1219. if (rc)
  1220. ecryptfs_printk(KERN_WARNING, "Error generating key packet "
  1221. "set; rc = [%d]\n", rc);
  1222. if (size) {
  1223. offset += written;
  1224. *size = offset;
  1225. }
  1226. return rc;
  1227. }
  1228. static int
  1229. ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
  1230. char *virt, size_t virt_len)
  1231. {
  1232. int rc;
  1233. rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
  1234. 0, virt_len);
  1235. if (rc < 0)
  1236. printk(KERN_ERR "%s: Error attempting to write header "
  1237. "information to lower file; rc = [%d]\n", __func__, rc);
  1238. else
  1239. rc = 0;
  1240. return rc;
  1241. }
  1242. static int
  1243. ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
  1244. char *page_virt, size_t size)
  1245. {
  1246. int rc;
  1247. rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
  1248. size, 0);
  1249. return rc;
  1250. }
  1251. static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
  1252. unsigned int order)
  1253. {
  1254. struct page *page;
  1255. page = alloc_pages(gfp_mask | __GFP_ZERO, order);
  1256. if (page)
  1257. return (unsigned long) page_address(page);
  1258. return 0;
  1259. }
  1260. /**
  1261. * ecryptfs_write_metadata
  1262. * @ecryptfs_dentry: The eCryptfs dentry
  1263. *
  1264. * Write the file headers out. This will likely involve a userspace
  1265. * callout, in which the session key is encrypted with one or more
  1266. * public keys and/or the passphrase necessary to do the encryption is
  1267. * retrieved via a prompt. Exactly what happens at this point should
  1268. * be policy-dependent.
  1269. *
  1270. * Returns zero on success; non-zero on error
  1271. */
  1272. int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
  1273. {
  1274. struct ecryptfs_crypt_stat *crypt_stat =
  1275. &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
  1276. unsigned int order;
  1277. char *virt;
  1278. size_t virt_len;
  1279. size_t size = 0;
  1280. int rc = 0;
  1281. if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
  1282. if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
  1283. printk(KERN_ERR "Key is invalid; bailing out\n");
  1284. rc = -EINVAL;
  1285. goto out;
  1286. }
  1287. } else {
  1288. printk(KERN_WARNING "%s: Encrypted flag not set\n",
  1289. __func__);
  1290. rc = -EINVAL;
  1291. goto out;
  1292. }
  1293. virt_len = crypt_stat->metadata_size;
  1294. order = get_order(virt_len);
  1295. /* Released in this function */
  1296. virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
  1297. if (!virt) {
  1298. printk(KERN_ERR "%s: Out of memory\n", __func__);
  1299. rc = -ENOMEM;
  1300. goto out;
  1301. }
  1302. /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
  1303. rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
  1304. ecryptfs_dentry);
  1305. if (unlikely(rc)) {
  1306. printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
  1307. __func__, rc);
  1308. goto out_free;
  1309. }
  1310. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
  1311. rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
  1312. size);
  1313. else
  1314. rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
  1315. virt_len);
  1316. if (rc) {
  1317. printk(KERN_ERR "%s: Error writing metadata out to lower file; "
  1318. "rc = [%d]\n", __func__, rc);
  1319. goto out_free;
  1320. }
  1321. out_free:
  1322. free_pages((unsigned long)virt, order);
  1323. out:
  1324. return rc;
  1325. }
  1326. #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
  1327. #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
  1328. static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
  1329. char *virt, int *bytes_read,
  1330. int validate_header_size)
  1331. {
  1332. int rc = 0;
  1333. u32 header_extent_size;
  1334. u16 num_header_extents_at_front;
  1335. header_extent_size = get_unaligned_be32(virt);
  1336. virt += sizeof(__be32);
  1337. num_header_extents_at_front = get_unaligned_be16(virt);
  1338. crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
  1339. * (size_t)header_extent_size));
  1340. (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
  1341. if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
  1342. && (crypt_stat->metadata_size
  1343. < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
  1344. rc = -EINVAL;
  1345. printk(KERN_WARNING "Invalid header size: [%zd]\n",
  1346. crypt_stat->metadata_size);
  1347. }
  1348. return rc;
  1349. }
  1350. /**
  1351. * set_default_header_data
  1352. * @crypt_stat: The cryptographic context
  1353. *
  1354. * For version 0 file format; this function is only for backwards
  1355. * compatibility for files created with the prior versions of
  1356. * eCryptfs.
  1357. */
  1358. static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
  1359. {
  1360. crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
  1361. }
  1362. /**
  1363. * ecryptfs_read_headers_virt
  1364. * @page_virt: The virtual address into which to read the headers
  1365. * @crypt_stat: The cryptographic context
  1366. * @ecryptfs_dentry: The eCryptfs dentry
  1367. * @validate_header_size: Whether to validate the header size while reading
  1368. *
  1369. * Read/parse the header data. The header format is detailed in the
  1370. * comment block for the ecryptfs_write_headers_virt() function.
  1371. *
  1372. * Returns zero on success
  1373. */
  1374. static int ecryptfs_read_headers_virt(char *page_virt,
  1375. struct ecryptfs_crypt_stat *crypt_stat,
  1376. struct dentry *ecryptfs_dentry,
  1377. int validate_header_size)
  1378. {
  1379. int rc = 0;
  1380. int offset;
  1381. int bytes_read;
  1382. ecryptfs_set_default_sizes(crypt_stat);
  1383. crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
  1384. ecryptfs_dentry->d_sb)->mount_crypt_stat;
  1385. offset = ECRYPTFS_FILE_SIZE_BYTES;
  1386. rc = contains_ecryptfs_marker(page_virt + offset);
  1387. if (rc == 0) {
  1388. rc = -EINVAL;
  1389. goto out;
  1390. }
  1391. offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
  1392. rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
  1393. &bytes_read);
  1394. if (rc) {
  1395. ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
  1396. goto out;
  1397. }
  1398. if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
  1399. ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
  1400. "file version [%d] is supported by this "
  1401. "version of eCryptfs\n",
  1402. crypt_stat->file_version,
  1403. ECRYPTFS_SUPPORTED_FILE_VERSION);
  1404. rc = -EINVAL;
  1405. goto out;
  1406. }
  1407. offset += bytes_read;
  1408. if (crypt_stat->file_version >= 1) {
  1409. rc = parse_header_metadata(crypt_stat, (page_virt + offset),
  1410. &bytes_read, validate_header_size);
  1411. if (rc) {
  1412. ecryptfs_printk(KERN_WARNING, "Error reading header "
  1413. "metadata; rc = [%d]\n", rc);
  1414. }
  1415. offset += bytes_read;
  1416. } else
  1417. set_default_header_data(crypt_stat);
  1418. rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
  1419. ecryptfs_dentry);
  1420. out:
  1421. return rc;
  1422. }
  1423. /**
  1424. * ecryptfs_read_xattr_region
  1425. * @page_virt: The vitual address into which to read the xattr data
  1426. * @ecryptfs_inode: The eCryptfs inode
  1427. *
  1428. * Attempts to read the crypto metadata from the extended attribute
  1429. * region of the lower file.
  1430. *
  1431. * Returns zero on success; non-zero on error
  1432. */
  1433. int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
  1434. {
  1435. struct dentry *lower_dentry =
  1436. ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
  1437. ssize_t size;
  1438. int rc = 0;
  1439. size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
  1440. page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
  1441. if (size < 0) {
  1442. if (unlikely(ecryptfs_verbosity > 0))
  1443. printk(KERN_INFO "Error attempting to read the [%s] "
  1444. "xattr from the lower file; return value = "
  1445. "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
  1446. rc = -EINVAL;
  1447. goto out;
  1448. }
  1449. out:
  1450. return rc;
  1451. }
  1452. int ecryptfs_read_and_validate_xattr_region(char *page_virt,
  1453. struct dentry *ecryptfs_dentry)
  1454. {
  1455. int rc;
  1456. rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
  1457. if (rc)
  1458. goto out;
  1459. if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
  1460. printk(KERN_WARNING "Valid data found in [%s] xattr, but "
  1461. "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
  1462. rc = -EINVAL;
  1463. }
  1464. out:
  1465. return rc;
  1466. }
  1467. /**
  1468. * ecryptfs_read_metadata
  1469. *
  1470. * Common entry point for reading file metadata. From here, we could
  1471. * retrieve the header information from the header region of the file,
  1472. * the xattr region of the file, or some other repostory that is
  1473. * stored separately from the file itself. The current implementation
  1474. * supports retrieving the metadata information from the file contents
  1475. * and from the xattr region.
  1476. *
  1477. * Returns zero if valid headers found and parsed; non-zero otherwise
  1478. */
  1479. int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
  1480. {
  1481. int rc = 0;
  1482. char *page_virt = NULL;
  1483. struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
  1484. struct ecryptfs_crypt_stat *crypt_stat =
  1485. &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
  1486. struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
  1487. &ecryptfs_superblock_to_private(
  1488. ecryptfs_dentry->d_sb)->mount_crypt_stat;
  1489. ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
  1490. mount_crypt_stat);
  1491. /* Read the first page from the underlying file */
  1492. page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
  1493. if (!page_virt) {
  1494. rc = -ENOMEM;
  1495. printk(KERN_ERR "%s: Unable to allocate page_virt\n",
  1496. __func__);
  1497. goto out;
  1498. }
  1499. rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
  1500. ecryptfs_inode);
  1501. if (rc >= 0)
  1502. rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
  1503. ecryptfs_dentry,
  1504. ECRYPTFS_VALIDATE_HEADER_SIZE);
  1505. if (rc) {
  1506. memset(page_virt, 0, PAGE_CACHE_SIZE);
  1507. rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
  1508. if (rc) {
  1509. printk(KERN_DEBUG "Valid eCryptfs headers not found in "
  1510. "file header region or xattr region\n");
  1511. rc = -EINVAL;
  1512. goto out;
  1513. }
  1514. rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
  1515. ecryptfs_dentry,
  1516. ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
  1517. if (rc) {
  1518. printk(KERN_DEBUG "Valid eCryptfs headers not found in "
  1519. "file xattr region either\n");
  1520. rc = -EINVAL;
  1521. }
  1522. if (crypt_stat->mount_crypt_stat->flags
  1523. & ECRYPTFS_XATTR_METADATA_ENABLED) {
  1524. crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
  1525. } else {
  1526. printk(KERN_WARNING "Attempt to access file with "
  1527. "crypto metadata only in the extended attribute "
  1528. "region, but eCryptfs was mounted without "
  1529. "xattr support enabled. eCryptfs will not treat "
  1530. "this like an encrypted file.\n");
  1531. rc = -EINVAL;
  1532. }
  1533. }
  1534. out:
  1535. if (page_virt) {
  1536. memset(page_virt, 0, PAGE_CACHE_SIZE);
  1537. kmem_cache_free(ecryptfs_header_cache_1, page_virt);
  1538. }
  1539. return rc;
  1540. }
  1541. /**
  1542. * ecryptfs_encrypt_filename - encrypt filename
  1543. *
  1544. * CBC-encrypts the filename. We do not want to encrypt the same
  1545. * filename with the same key and IV, which may happen with hard
  1546. * links, so we prepend random bits to each filename.
  1547. *
  1548. * Returns zero on success; non-zero otherwise
  1549. */
  1550. static int
  1551. ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
  1552. struct ecryptfs_crypt_stat *crypt_stat,
  1553. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  1554. {
  1555. int rc = 0;
  1556. filename->encrypted_filename = NULL;
  1557. filename->encrypted_filename_size = 0;
  1558. if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
  1559. || (mount_crypt_stat && (mount_crypt_stat->flags
  1560. & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
  1561. size_t packet_size;
  1562. size_t remaining_bytes;
  1563. rc = ecryptfs_write_tag_70_packet(
  1564. NULL, NULL,
  1565. &filename->encrypted_filename_size,
  1566. mount_crypt_stat, NULL,
  1567. filename->filename_size);
  1568. if (rc) {
  1569. printk(KERN_ERR "%s: Error attempting to get packet "
  1570. "size for tag 72; rc = [%d]\n", __func__,
  1571. rc);
  1572. filename->encrypted_filename_size = 0;
  1573. goto out;
  1574. }
  1575. filename->encrypted_filename =
  1576. kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
  1577. if (!filename->encrypted_filename) {
  1578. printk(KERN_ERR "%s: Out of memory whilst attempting "
  1579. "to kmalloc [%zd] bytes\n", __func__,
  1580. filename->encrypted_filename_size);
  1581. rc = -ENOMEM;
  1582. goto out;
  1583. }
  1584. remaining_bytes = filename->encrypted_filename_size;
  1585. rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
  1586. &remaining_bytes,
  1587. &packet_size,
  1588. mount_crypt_stat,
  1589. filename->filename,
  1590. filename->filename_size);
  1591. if (rc) {
  1592. printk(KERN_ERR "%s: Error attempting to generate "
  1593. "tag 70 packet; rc = [%d]\n", __func__,
  1594. rc);
  1595. kfree(filename->encrypted_filename);
  1596. filename->encrypted_filename = NULL;
  1597. filename->encrypted_filename_size = 0;
  1598. goto out;
  1599. }
  1600. filename->encrypted_filename_size = packet_size;
  1601. } else {
  1602. printk(KERN_ERR "%s: No support for requested filename "
  1603. "encryption method in this release\n", __func__);
  1604. rc = -EOPNOTSUPP;
  1605. goto out;
  1606. }
  1607. out:
  1608. return rc;
  1609. }
  1610. static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
  1611. const char *name, size_t name_size)
  1612. {
  1613. int rc = 0;
  1614. (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
  1615. if (!(*copied_name)) {
  1616. rc = -ENOMEM;
  1617. goto out;
  1618. }
  1619. memcpy((void *)(*copied_name), (void *)name, name_size);
  1620. (*copied_name)[(name_size)] = '\0'; /* Only for convenience
  1621. * in printing out the
  1622. * string in debug
  1623. * messages */
  1624. (*copied_name_size) = name_size;
  1625. out:
  1626. return rc;
  1627. }
  1628. /**
  1629. * ecryptfs_process_key_cipher - Perform key cipher initialization.
  1630. * @key_tfm: Crypto context for key material, set by this function
  1631. * @cipher_name: Name of the cipher
  1632. * @key_size: Size of the key in bytes
  1633. *
  1634. * Returns zero on success. Any crypto_tfm structs allocated here
  1635. * should be released by other functions, such as on a superblock put
  1636. * event, regardless of whether this function succeeds for fails.
  1637. */
  1638. static int
  1639. ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
  1640. char *cipher_name, size_t *key_size)
  1641. {
  1642. char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
  1643. char *full_alg_name = NULL;
  1644. int rc;
  1645. *key_tfm = NULL;
  1646. if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
  1647. rc = -EINVAL;
  1648. printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
  1649. "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
  1650. goto out;
  1651. }
  1652. rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
  1653. "ecb");
  1654. if (rc)
  1655. goto out;
  1656. *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
  1657. if (IS_ERR(*key_tfm)) {
  1658. rc = PTR_ERR(*key_tfm);
  1659. printk(KERN_ERR "Unable to allocate crypto cipher with name "
  1660. "[%s]; rc = [%d]\n", full_alg_name, rc);
  1661. goto out;
  1662. }
  1663. crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
  1664. if (*key_size == 0) {
  1665. struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
  1666. *key_size = alg->max_keysize;
  1667. }
  1668. get_random_bytes(dummy_key, *key_size);
  1669. rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
  1670. if (rc) {
  1671. printk(KERN_ERR "Error attempting to set key of size [%zd] for "
  1672. "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
  1673. rc);
  1674. rc = -EINVAL;
  1675. goto out;
  1676. }
  1677. out:
  1678. kfree(full_alg_name);
  1679. return rc;
  1680. }
  1681. struct kmem_cache *ecryptfs_key_tfm_cache;
  1682. static struct list_head key_tfm_list;
  1683. struct mutex key_tfm_list_mutex;
  1684. int __init ecryptfs_init_crypto(void)
  1685. {
  1686. mutex_init(&key_tfm_list_mutex);
  1687. INIT_LIST_HEAD(&key_tfm_list);
  1688. return 0;
  1689. }
  1690. /**
  1691. * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
  1692. *
  1693. * Called only at module unload time
  1694. */
  1695. int ecryptfs_destroy_crypto(void)
  1696. {
  1697. struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
  1698. mutex_lock(&key_tfm_list_mutex);
  1699. list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
  1700. key_tfm_list) {
  1701. list_del(&key_tfm->key_tfm_list);
  1702. if (key_tfm->key_tfm)
  1703. crypto_free_blkcipher(key_tfm->key_tfm);
  1704. kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
  1705. }
  1706. mutex_unlock(&key_tfm_list_mutex);
  1707. return 0;
  1708. }
  1709. int
  1710. ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
  1711. size_t key_size)
  1712. {
  1713. struct ecryptfs_key_tfm *tmp_tfm;
  1714. int rc = 0;
  1715. BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
  1716. tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
  1717. if (key_tfm != NULL)
  1718. (*key_tfm) = tmp_tfm;
  1719. if (!tmp_tfm) {
  1720. rc = -ENOMEM;
  1721. printk(KERN_ERR "Error attempting to allocate from "
  1722. "ecryptfs_key_tfm_cache\n");
  1723. goto out;
  1724. }
  1725. mutex_init(&tmp_tfm->key_tfm_mutex);
  1726. strncpy(tmp_tfm->cipher_name, cipher_name,
  1727. ECRYPTFS_MAX_CIPHER_NAME_SIZE);
  1728. tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
  1729. tmp_tfm->key_size = key_size;
  1730. rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
  1731. tmp_tfm->cipher_name,
  1732. &tmp_tfm->key_size);
  1733. if (rc) {
  1734. printk(KERN_ERR "Error attempting to initialize key TFM "
  1735. "cipher with name = [%s]; rc = [%d]\n",
  1736. tmp_tfm->cipher_name, rc);
  1737. kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
  1738. if (key_tfm != NULL)
  1739. (*key_tfm) = NULL;
  1740. goto out;
  1741. }
  1742. list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
  1743. out:
  1744. return rc;
  1745. }
  1746. /**
  1747. * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
  1748. * @cipher_name: the name of the cipher to search for
  1749. * @key_tfm: set to corresponding tfm if found
  1750. *
  1751. * Searches for cached key_tfm matching @cipher_name
  1752. * Must be called with &key_tfm_list_mutex held
  1753. * Returns 1 if found, with @key_tfm set
  1754. * Returns 0 if not found, with @key_tfm set to NULL
  1755. */
  1756. int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
  1757. {
  1758. struct ecryptfs_key_tfm *tmp_key_tfm;
  1759. BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
  1760. list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
  1761. if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
  1762. if (key_tfm)
  1763. (*key_tfm) = tmp_key_tfm;
  1764. return 1;
  1765. }
  1766. }
  1767. if (key_tfm)
  1768. (*key_tfm) = NULL;
  1769. return 0;
  1770. }
  1771. /**
  1772. * ecryptfs_get_tfm_and_mutex_for_cipher_name
  1773. *
  1774. * @tfm: set to cached tfm found, or new tfm created
  1775. * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
  1776. * @cipher_name: the name of the cipher to search for and/or add
  1777. *
  1778. * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
  1779. * Searches for cached item first, and creates new if not found.
  1780. * Returns 0 on success, non-zero if adding new cipher failed
  1781. */
  1782. int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
  1783. struct mutex **tfm_mutex,
  1784. char *cipher_name)
  1785. {
  1786. struct ecryptfs_key_tfm *key_tfm;
  1787. int rc = 0;
  1788. (*tfm) = NULL;
  1789. (*tfm_mutex) = NULL;
  1790. mutex_lock(&key_tfm_list_mutex);
  1791. if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
  1792. rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
  1793. if (rc) {
  1794. printk(KERN_ERR "Error adding new key_tfm to list; "
  1795. "rc = [%d]\n", rc);
  1796. goto out;
  1797. }
  1798. }
  1799. (*tfm) = key_tfm->key_tfm;
  1800. (*tfm_mutex) = &key_tfm->key_tfm_mutex;
  1801. out:
  1802. mutex_unlock(&key_tfm_list_mutex);
  1803. return rc;
  1804. }
  1805. /* 64 characters forming a 6-bit target field */
  1806. static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
  1807. "EFGHIJKLMNOPQRST"
  1808. "UVWXYZabcdefghij"
  1809. "klmnopqrstuvwxyz");
  1810. /* We could either offset on every reverse map or just pad some 0x00's
  1811. * at the front here */
  1812. static const unsigned char filename_rev_map[] = {
  1813. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
  1814. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
  1815. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
  1816. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
  1817. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
  1818. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
  1819. 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
  1820. 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
  1821. 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
  1822. 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
  1823. 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
  1824. 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
  1825. 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
  1826. 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
  1827. 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
  1828. 0x3D, 0x3E, 0x3F
  1829. };
  1830. /**
  1831. * ecryptfs_encode_for_filename
  1832. * @dst: Destination location for encoded filename
  1833. * @dst_size: Size of the encoded filename in bytes
  1834. * @src: Source location for the filename to encode
  1835. * @src_size: Size of the source in bytes
  1836. */
  1837. void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
  1838. unsigned char *src, size_t src_size)
  1839. {
  1840. size_t num_blocks;
  1841. size_t block_num = 0;
  1842. size_t dst_offset = 0;
  1843. unsigned char last_block[3];
  1844. if (src_size == 0) {
  1845. (*dst_size) = 0;
  1846. goto out;
  1847. }
  1848. num_blocks = (src_size / 3);
  1849. if ((src_size % 3) == 0) {
  1850. memcpy(last_block, (&src[src_size - 3]), 3);
  1851. } else {
  1852. num_blocks++;
  1853. last_block[2] = 0x00;
  1854. switch (src_size % 3) {
  1855. case 1:
  1856. last_block[0] = src[src_size - 1];
  1857. last_block[1] = 0x00;
  1858. break;
  1859. case 2:
  1860. last_block[0] = src[src_size - 2];
  1861. last_block[1] = src[src_size - 1];
  1862. }
  1863. }
  1864. (*dst_size) = (num_blocks * 4);
  1865. if (!dst)
  1866. goto out;
  1867. while (block_num < num_blocks) {
  1868. unsigned char *src_block;
  1869. unsigned char dst_block[4];
  1870. if (block_num == (num_blocks - 1))
  1871. src_block = last_block;
  1872. else
  1873. src_block = &src[block_num * 3];
  1874. dst_block[0] = ((src_block[0] >> 2) & 0x3F);
  1875. dst_block[1] = (((src_block[0] << 4) & 0x30)
  1876. | ((src_block[1] >> 4) & 0x0F));
  1877. dst_block[2] = (((src_block[1] << 2) & 0x3C)
  1878. | ((src_block[2] >> 6) & 0x03));
  1879. dst_block[3] = (src_block[2] & 0x3F);
  1880. dst[dst_offset++] = portable_filename_chars[dst_block[0]];
  1881. dst[dst_offset++] = portable_filename_chars[dst_block[1]];
  1882. dst[dst_offset++] = portable_filename_chars[dst_block[2]];
  1883. dst[dst_offset++] = portable_filename_chars[dst_block[3]];
  1884. block_num++;
  1885. }
  1886. out:
  1887. return;
  1888. }
  1889. /**
  1890. * ecryptfs_decode_from_filename
  1891. * @dst: If NULL, this function only sets @dst_size and returns. If
  1892. * non-NULL, this function decodes the encoded octets in @src
  1893. * into the memory that @dst points to.
  1894. * @dst_size: Set to the size of the decoded string.
  1895. * @src: The encoded set of octets to decode.
  1896. * @src_size: The size of the encoded set of octets to decode.
  1897. */
  1898. static void
  1899. ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
  1900. const unsigned char *src, size_t src_size)
  1901. {
  1902. u8 current_bit_offset = 0;
  1903. size_t src_byte_offset = 0;
  1904. size_t dst_byte_offset = 0;
  1905. if (dst == NULL) {
  1906. /* Not exact; conservatively long. Every block of 4
  1907. * encoded characters decodes into a block of 3
  1908. * decoded characters. This segment of code provides
  1909. * the caller with the maximum amount of allocated
  1910. * space that @dst will need to point to in a
  1911. * subsequent call. */
  1912. (*dst_size) = (((src_size + 1) * 3) / 4);
  1913. goto out;
  1914. }
  1915. while (src_byte_offset < src_size) {
  1916. unsigned char src_byte =
  1917. filename_rev_map[(int)src[src_byte_offset]];
  1918. switch (current_bit_offset) {
  1919. case 0:
  1920. dst[dst_byte_offset] = (src_byte << 2);
  1921. current_bit_offset = 6;
  1922. break;
  1923. case 6:
  1924. dst[dst_byte_offset++] |= (src_byte >> 4);
  1925. dst[dst_byte_offset] = ((src_byte & 0xF)
  1926. << 4);
  1927. current_bit_offset = 4;
  1928. break;
  1929. case 4:
  1930. dst[dst_byte_offset++] |= (src_byte >> 2);
  1931. dst[dst_byte_offset] = (src_byte << 6);
  1932. current_bit_offset = 2;
  1933. break;
  1934. case 2:
  1935. dst[dst_byte_offset++] |= (src_byte);
  1936. dst[dst_byte_offset] = 0;
  1937. current_bit_offset = 0;
  1938. break;
  1939. }
  1940. src_byte_offset++;
  1941. }
  1942. (*dst_size) = dst_byte_offset;
  1943. out:
  1944. return;
  1945. }
  1946. /**
  1947. * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
  1948. * @crypt_stat: The crypt_stat struct associated with the file anem to encode
  1949. * @name: The plaintext name
  1950. * @length: The length of the plaintext
  1951. * @encoded_name: The encypted name
  1952. *
  1953. * Encrypts and encodes a filename into something that constitutes a
  1954. * valid filename for a filesystem, with printable characters.
  1955. *
  1956. * We assume that we have a properly initialized crypto context,
  1957. * pointed to by crypt_stat->tfm.
  1958. *
  1959. * Returns zero on success; non-zero on otherwise
  1960. */
  1961. int ecryptfs_encrypt_and_encode_filename(
  1962. char **encoded_name,
  1963. size_t *encoded_name_size,
  1964. struct ecryptfs_crypt_stat *crypt_stat,
  1965. struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
  1966. const char *name, size_t name_size)
  1967. {
  1968. size_t encoded_name_no_prefix_size;
  1969. int rc = 0;
  1970. (*encoded_name) = NULL;
  1971. (*encoded_name_size) = 0;
  1972. if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
  1973. || (mount_crypt_stat && (mount_crypt_stat->flags
  1974. & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
  1975. struct ecryptfs_filename *filename;
  1976. filename = kzalloc(sizeof(*filename), GFP_KERNEL);
  1977. if (!filename) {
  1978. printk(KERN_ERR "%s: Out of memory whilst attempting "
  1979. "to kzalloc [%zd] bytes\n", __func__,
  1980. sizeof(*filename));
  1981. rc = -ENOMEM;
  1982. goto out;
  1983. }
  1984. filename->filename = (char *)name;
  1985. filename->filename_size = name_size;
  1986. rc = ecryptfs_encrypt_filename(filename, crypt_stat,
  1987. mount_crypt_stat);
  1988. if (rc) {
  1989. printk(KERN_ERR "%s: Error attempting to encrypt "
  1990. "filename; rc = [%d]\n", __func__, rc);
  1991. kfree(filename);
  1992. goto out;
  1993. }
  1994. ecryptfs_encode_for_filename(
  1995. NULL, &encoded_name_no_prefix_size,
  1996. filename->encrypted_filename,
  1997. filename->encrypted_filename_size);
  1998. if ((crypt_stat && (crypt_stat->flags
  1999. & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
  2000. || (mount_crypt_stat
  2001. && (mount_crypt_stat->flags
  2002. & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
  2003. (*encoded_name_size) =
  2004. (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
  2005. + encoded_name_no_prefix_size);
  2006. else
  2007. (*encoded_name_size) =
  2008. (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
  2009. + encoded_name_no_prefix_size);
  2010. (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
  2011. if (!(*encoded_name)) {
  2012. printk(KERN_ERR "%s: Out of memory whilst attempting "
  2013. "to kzalloc [%zd] bytes\n", __func__,
  2014. (*encoded_name_size));
  2015. rc = -ENOMEM;
  2016. kfree(filename->encrypted_filename);
  2017. kfree(filename);
  2018. goto out;
  2019. }
  2020. if ((crypt_stat && (crypt_stat->flags
  2021. & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
  2022. || (mount_crypt_stat
  2023. && (mount_crypt_stat->flags
  2024. & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
  2025. memcpy((*encoded_name),
  2026. ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
  2027. ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
  2028. ecryptfs_encode_for_filename(
  2029. ((*encoded_name)
  2030. + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
  2031. &encoded_name_no_prefix_size,
  2032. filename->encrypted_filename,
  2033. filename->encrypted_filename_size);
  2034. (*encoded_name_size) =
  2035. (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
  2036. + encoded_name_no_prefix_size);
  2037. (*encoded_name)[(*encoded_name_size)] = '\0';
  2038. } else {
  2039. rc = -EOPNOTSUPP;
  2040. }
  2041. if (rc) {
  2042. printk(KERN_ERR "%s: Error attempting to encode "
  2043. "encrypted filename; rc = [%d]\n", __func__,
  2044. rc);
  2045. kfree((*encoded_name));
  2046. (*encoded_name) = NULL;
  2047. (*encoded_name_size) = 0;
  2048. }
  2049. kfree(filename->encrypted_filename);
  2050. kfree(filename);
  2051. } else {
  2052. rc = ecryptfs_copy_filename(encoded_name,
  2053. encoded_name_size,
  2054. name, name_size);
  2055. }
  2056. out:
  2057. return rc;
  2058. }
  2059. /**
  2060. * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
  2061. * @plaintext_name: The plaintext name
  2062. * @plaintext_name_size: The plaintext name size
  2063. * @ecryptfs_dir_dentry: eCryptfs directory dentry
  2064. * @name: The filename in cipher text
  2065. * @name_size: The cipher text name size
  2066. *
  2067. * Decrypts and decodes the filename.
  2068. *
  2069. * Returns zero on error; non-zero otherwise
  2070. */
  2071. int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
  2072. size_t *plaintext_name_size,
  2073. struct dentry *ecryptfs_dir_dentry,
  2074. const char *name, size_t name_size)
  2075. {
  2076. struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
  2077. &ecryptfs_superblock_to_private(
  2078. ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
  2079. char *decoded_name;
  2080. size_t decoded_name_size;
  2081. size_t packet_size;
  2082. int rc = 0;
  2083. if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
  2084. && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
  2085. && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
  2086. && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
  2087. ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
  2088. const char *orig_name = name;
  2089. size_t orig_name_size = name_size;
  2090. name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
  2091. name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
  2092. ecryptfs_decode_from_filename(NULL, &decoded_name_size,
  2093. name, name_size);
  2094. decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
  2095. if (!decoded_name) {
  2096. printk(KERN_ERR "%s: Out of memory whilst attempting "
  2097. "to kmalloc [%zd] bytes\n", __func__,
  2098. decoded_name_size);
  2099. rc = -ENOMEM;
  2100. goto out;
  2101. }
  2102. ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
  2103. name, name_size);
  2104. rc = ecryptfs_parse_tag_70_packet(plaintext_name,
  2105. plaintext_name_size,
  2106. &packet_size,
  2107. mount_crypt_stat,
  2108. decoded_name,
  2109. decoded_name_size);
  2110. if (rc) {
  2111. printk(KERN_INFO "%s: Could not parse tag 70 packet "
  2112. "from filename; copying through filename "
  2113. "as-is\n", __func__);
  2114. rc = ecryptfs_copy_filename(plaintext_name,
  2115. plaintext_name_size,
  2116. orig_name, orig_name_size);
  2117. goto out_free;
  2118. }
  2119. } else {
  2120. rc = ecryptfs_copy_filename(plaintext_name,
  2121. plaintext_name_size,
  2122. name, name_size);
  2123. goto out;
  2124. }
  2125. out_free:
  2126. kfree(decoded_name);
  2127. out:
  2128. return rc;
  2129. }