super.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/blkdev.h>
  19. #include <linux/module.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/fs.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/highmem.h>
  24. #include <linux/time.h>
  25. #include <linux/init.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mount.h>
  30. #include <linux/mpage.h>
  31. #include <linux/swap.h>
  32. #include <linux/writeback.h>
  33. #include <linux/statfs.h>
  34. #include <linux/compat.h>
  35. #include <linux/parser.h>
  36. #include <linux/ctype.h>
  37. #include <linux/namei.h>
  38. #include <linux/miscdevice.h>
  39. #include <linux/magic.h>
  40. #include "compat.h"
  41. #include "ctree.h"
  42. #include "disk-io.h"
  43. #include "transaction.h"
  44. #include "btrfs_inode.h"
  45. #include "ioctl.h"
  46. #include "print-tree.h"
  47. #include "xattr.h"
  48. #include "volumes.h"
  49. #include "version.h"
  50. #include "export.h"
  51. #include "compression.h"
  52. static const struct super_operations btrfs_super_ops;
  53. static void btrfs_put_super(struct super_block *sb)
  54. {
  55. struct btrfs_root *root = btrfs_sb(sb);
  56. int ret;
  57. ret = close_ctree(root);
  58. sb->s_fs_info = NULL;
  59. }
  60. enum {
  61. Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
  62. Opt_nodatacow, Opt_max_extent, Opt_max_inline, Opt_alloc_start,
  63. Opt_nobarrier, Opt_ssd, Opt_nossd, Opt_ssd_spread, Opt_thread_pool,
  64. Opt_noacl, Opt_compress, Opt_compress_force, Opt_notreelog, Opt_ratio,
  65. Opt_flushoncommit,
  66. Opt_discard, Opt_err,
  67. };
  68. static match_table_t tokens = {
  69. {Opt_degraded, "degraded"},
  70. {Opt_subvol, "subvol=%s"},
  71. {Opt_subvolid, "subvolid=%d"},
  72. {Opt_device, "device=%s"},
  73. {Opt_nodatasum, "nodatasum"},
  74. {Opt_nodatacow, "nodatacow"},
  75. {Opt_nobarrier, "nobarrier"},
  76. {Opt_max_extent, "max_extent=%s"},
  77. {Opt_max_inline, "max_inline=%s"},
  78. {Opt_alloc_start, "alloc_start=%s"},
  79. {Opt_thread_pool, "thread_pool=%d"},
  80. {Opt_compress, "compress"},
  81. {Opt_compress_force, "compress-force"},
  82. {Opt_ssd, "ssd"},
  83. {Opt_ssd_spread, "ssd_spread"},
  84. {Opt_nossd, "nossd"},
  85. {Opt_noacl, "noacl"},
  86. {Opt_notreelog, "notreelog"},
  87. {Opt_flushoncommit, "flushoncommit"},
  88. {Opt_ratio, "metadata_ratio=%d"},
  89. {Opt_discard, "discard"},
  90. {Opt_err, NULL},
  91. };
  92. u64 btrfs_parse_size(char *str)
  93. {
  94. u64 res;
  95. int mult = 1;
  96. char *end;
  97. char last;
  98. res = simple_strtoul(str, &end, 10);
  99. last = end[0];
  100. if (isalpha(last)) {
  101. last = tolower(last);
  102. switch (last) {
  103. case 'g':
  104. mult *= 1024;
  105. case 'm':
  106. mult *= 1024;
  107. case 'k':
  108. mult *= 1024;
  109. }
  110. res = res * mult;
  111. }
  112. return res;
  113. }
  114. /*
  115. * Regular mount options parser. Everything that is needed only when
  116. * reading in a new superblock is parsed here.
  117. */
  118. int btrfs_parse_options(struct btrfs_root *root, char *options)
  119. {
  120. struct btrfs_fs_info *info = root->fs_info;
  121. substring_t args[MAX_OPT_ARGS];
  122. char *p, *num, *orig;
  123. int intarg;
  124. int ret = 0;
  125. if (!options)
  126. return 0;
  127. /*
  128. * strsep changes the string, duplicate it because parse_options
  129. * gets called twice
  130. */
  131. options = kstrdup(options, GFP_NOFS);
  132. if (!options)
  133. return -ENOMEM;
  134. orig = options;
  135. while ((p = strsep(&options, ",")) != NULL) {
  136. int token;
  137. if (!*p)
  138. continue;
  139. token = match_token(p, tokens, args);
  140. switch (token) {
  141. case Opt_degraded:
  142. printk(KERN_INFO "btrfs: allowing degraded mounts\n");
  143. btrfs_set_opt(info->mount_opt, DEGRADED);
  144. break;
  145. case Opt_subvol:
  146. case Opt_subvolid:
  147. case Opt_device:
  148. /*
  149. * These are parsed by btrfs_parse_early_options
  150. * and can be happily ignored here.
  151. */
  152. break;
  153. case Opt_nodatasum:
  154. printk(KERN_INFO "btrfs: setting nodatasum\n");
  155. btrfs_set_opt(info->mount_opt, NODATASUM);
  156. break;
  157. case Opt_nodatacow:
  158. printk(KERN_INFO "btrfs: setting nodatacow\n");
  159. btrfs_set_opt(info->mount_opt, NODATACOW);
  160. btrfs_set_opt(info->mount_opt, NODATASUM);
  161. break;
  162. case Opt_compress:
  163. printk(KERN_INFO "btrfs: use compression\n");
  164. btrfs_set_opt(info->mount_opt, COMPRESS);
  165. break;
  166. case Opt_compress_force:
  167. printk(KERN_INFO "btrfs: forcing compression\n");
  168. btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
  169. btrfs_set_opt(info->mount_opt, COMPRESS);
  170. break;
  171. case Opt_ssd:
  172. printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
  173. btrfs_set_opt(info->mount_opt, SSD);
  174. break;
  175. case Opt_ssd_spread:
  176. printk(KERN_INFO "btrfs: use spread ssd "
  177. "allocation scheme\n");
  178. btrfs_set_opt(info->mount_opt, SSD);
  179. btrfs_set_opt(info->mount_opt, SSD_SPREAD);
  180. break;
  181. case Opt_nossd:
  182. printk(KERN_INFO "btrfs: not using ssd allocation "
  183. "scheme\n");
  184. btrfs_set_opt(info->mount_opt, NOSSD);
  185. btrfs_clear_opt(info->mount_opt, SSD);
  186. btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
  187. break;
  188. case Opt_nobarrier:
  189. printk(KERN_INFO "btrfs: turning off barriers\n");
  190. btrfs_set_opt(info->mount_opt, NOBARRIER);
  191. break;
  192. case Opt_thread_pool:
  193. intarg = 0;
  194. match_int(&args[0], &intarg);
  195. if (intarg) {
  196. info->thread_pool_size = intarg;
  197. printk(KERN_INFO "btrfs: thread pool %d\n",
  198. info->thread_pool_size);
  199. }
  200. break;
  201. case Opt_max_extent:
  202. num = match_strdup(&args[0]);
  203. if (num) {
  204. info->max_extent = btrfs_parse_size(num);
  205. kfree(num);
  206. info->max_extent = max_t(u64,
  207. info->max_extent, root->sectorsize);
  208. printk(KERN_INFO "btrfs: max_extent at %llu\n",
  209. (unsigned long long)info->max_extent);
  210. }
  211. break;
  212. case Opt_max_inline:
  213. num = match_strdup(&args[0]);
  214. if (num) {
  215. info->max_inline = btrfs_parse_size(num);
  216. kfree(num);
  217. if (info->max_inline) {
  218. info->max_inline = max_t(u64,
  219. info->max_inline,
  220. root->sectorsize);
  221. }
  222. printk(KERN_INFO "btrfs: max_inline at %llu\n",
  223. (unsigned long long)info->max_inline);
  224. }
  225. break;
  226. case Opt_alloc_start:
  227. num = match_strdup(&args[0]);
  228. if (num) {
  229. info->alloc_start = btrfs_parse_size(num);
  230. kfree(num);
  231. printk(KERN_INFO
  232. "btrfs: allocations start at %llu\n",
  233. (unsigned long long)info->alloc_start);
  234. }
  235. break;
  236. case Opt_noacl:
  237. root->fs_info->sb->s_flags &= ~MS_POSIXACL;
  238. break;
  239. case Opt_notreelog:
  240. printk(KERN_INFO "btrfs: disabling tree log\n");
  241. btrfs_set_opt(info->mount_opt, NOTREELOG);
  242. break;
  243. case Opt_flushoncommit:
  244. printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
  245. btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
  246. break;
  247. case Opt_ratio:
  248. intarg = 0;
  249. match_int(&args[0], &intarg);
  250. if (intarg) {
  251. info->metadata_ratio = intarg;
  252. printk(KERN_INFO "btrfs: metadata ratio %d\n",
  253. info->metadata_ratio);
  254. }
  255. break;
  256. case Opt_discard:
  257. btrfs_set_opt(info->mount_opt, DISCARD);
  258. break;
  259. case Opt_err:
  260. printk(KERN_INFO "btrfs: unrecognized mount option "
  261. "'%s'\n", p);
  262. ret = -EINVAL;
  263. goto out;
  264. default:
  265. break;
  266. }
  267. }
  268. out:
  269. kfree(orig);
  270. return ret;
  271. }
  272. /*
  273. * Parse mount options that are required early in the mount process.
  274. *
  275. * All other options will be parsed on much later in the mount process and
  276. * only when we need to allocate a new super block.
  277. */
  278. static int btrfs_parse_early_options(const char *options, fmode_t flags,
  279. void *holder, char **subvol_name, u64 *subvol_objectid,
  280. struct btrfs_fs_devices **fs_devices)
  281. {
  282. substring_t args[MAX_OPT_ARGS];
  283. char *opts, *p;
  284. int error = 0;
  285. int intarg;
  286. if (!options)
  287. goto out;
  288. /*
  289. * strsep changes the string, duplicate it because parse_options
  290. * gets called twice
  291. */
  292. opts = kstrdup(options, GFP_KERNEL);
  293. if (!opts)
  294. return -ENOMEM;
  295. while ((p = strsep(&opts, ",")) != NULL) {
  296. int token;
  297. if (!*p)
  298. continue;
  299. token = match_token(p, tokens, args);
  300. switch (token) {
  301. case Opt_subvol:
  302. *subvol_name = match_strdup(&args[0]);
  303. break;
  304. case Opt_subvolid:
  305. intarg = 0;
  306. error = match_int(&args[0], &intarg);
  307. if (!error) {
  308. /* we want the original fs_tree */
  309. if (!intarg)
  310. *subvol_objectid =
  311. BTRFS_FS_TREE_OBJECTID;
  312. else
  313. *subvol_objectid = intarg;
  314. }
  315. break;
  316. case Opt_device:
  317. error = btrfs_scan_one_device(match_strdup(&args[0]),
  318. flags, holder, fs_devices);
  319. if (error)
  320. goto out_free_opts;
  321. break;
  322. default:
  323. break;
  324. }
  325. }
  326. out_free_opts:
  327. kfree(opts);
  328. out:
  329. /*
  330. * If no subvolume name is specified we use the default one. Allocate
  331. * a copy of the string "." here so that code later in the
  332. * mount path doesn't care if it's the default volume or another one.
  333. */
  334. if (!*subvol_name) {
  335. *subvol_name = kstrdup(".", GFP_KERNEL);
  336. if (!*subvol_name)
  337. return -ENOMEM;
  338. }
  339. return error;
  340. }
  341. static struct dentry *get_default_root(struct super_block *sb,
  342. u64 subvol_objectid)
  343. {
  344. struct btrfs_root *root = sb->s_fs_info;
  345. struct btrfs_root *new_root;
  346. struct btrfs_dir_item *di;
  347. struct btrfs_path *path;
  348. struct btrfs_key location;
  349. struct inode *inode;
  350. struct dentry *dentry;
  351. u64 dir_id;
  352. int new = 0;
  353. /*
  354. * We have a specific subvol we want to mount, just setup location and
  355. * go look up the root.
  356. */
  357. if (subvol_objectid) {
  358. location.objectid = subvol_objectid;
  359. location.type = BTRFS_ROOT_ITEM_KEY;
  360. location.offset = (u64)-1;
  361. goto find_root;
  362. }
  363. path = btrfs_alloc_path();
  364. if (!path)
  365. return ERR_PTR(-ENOMEM);
  366. path->leave_spinning = 1;
  367. /*
  368. * Find the "default" dir item which points to the root item that we
  369. * will mount by default if we haven't been given a specific subvolume
  370. * to mount.
  371. */
  372. dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
  373. di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
  374. if (!di) {
  375. /*
  376. * Ok the default dir item isn't there. This is weird since
  377. * it's always been there, but don't freak out, just try and
  378. * mount to root most subvolume.
  379. */
  380. btrfs_free_path(path);
  381. dir_id = BTRFS_FIRST_FREE_OBJECTID;
  382. new_root = root->fs_info->fs_root;
  383. goto setup_root;
  384. }
  385. btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
  386. btrfs_free_path(path);
  387. find_root:
  388. new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
  389. if (IS_ERR(new_root))
  390. return ERR_PTR(PTR_ERR(new_root));
  391. if (btrfs_root_refs(&new_root->root_item) == 0)
  392. return ERR_PTR(-ENOENT);
  393. dir_id = btrfs_root_dirid(&new_root->root_item);
  394. setup_root:
  395. location.objectid = dir_id;
  396. location.type = BTRFS_INODE_ITEM_KEY;
  397. location.offset = 0;
  398. inode = btrfs_iget(sb, &location, new_root, &new);
  399. if (!inode)
  400. return ERR_PTR(-ENOMEM);
  401. /*
  402. * If we're just mounting the root most subvol put the inode and return
  403. * a reference to the dentry. We will have already gotten a reference
  404. * to the inode in btrfs_fill_super so we're good to go.
  405. */
  406. if (!new && sb->s_root->d_inode == inode) {
  407. iput(inode);
  408. return dget(sb->s_root);
  409. }
  410. if (new) {
  411. const struct qstr name = { .name = "/", .len = 1 };
  412. /*
  413. * New inode, we need to make the dentry a sibling of s_root so
  414. * everything gets cleaned up properly on unmount.
  415. */
  416. dentry = d_alloc(sb->s_root, &name);
  417. if (!dentry) {
  418. iput(inode);
  419. return ERR_PTR(-ENOMEM);
  420. }
  421. d_splice_alias(inode, dentry);
  422. } else {
  423. /*
  424. * We found the inode in cache, just find a dentry for it and
  425. * put the reference to the inode we just got.
  426. */
  427. dentry = d_find_alias(inode);
  428. iput(inode);
  429. }
  430. return dentry;
  431. }
  432. static int btrfs_fill_super(struct super_block *sb,
  433. struct btrfs_fs_devices *fs_devices,
  434. void *data, int silent)
  435. {
  436. struct inode *inode;
  437. struct dentry *root_dentry;
  438. struct btrfs_super_block *disk_super;
  439. struct btrfs_root *tree_root;
  440. struct btrfs_key key;
  441. int err;
  442. sb->s_maxbytes = MAX_LFS_FILESIZE;
  443. sb->s_magic = BTRFS_SUPER_MAGIC;
  444. sb->s_op = &btrfs_super_ops;
  445. sb->s_export_op = &btrfs_export_ops;
  446. sb->s_xattr = btrfs_xattr_handlers;
  447. sb->s_time_gran = 1;
  448. #ifdef CONFIG_BTRFS_FS_POSIX_ACL
  449. sb->s_flags |= MS_POSIXACL;
  450. #endif
  451. tree_root = open_ctree(sb, fs_devices, (char *)data);
  452. if (IS_ERR(tree_root)) {
  453. printk("btrfs: open_ctree failed\n");
  454. return PTR_ERR(tree_root);
  455. }
  456. sb->s_fs_info = tree_root;
  457. disk_super = &tree_root->fs_info->super_copy;
  458. key.objectid = BTRFS_FIRST_FREE_OBJECTID;
  459. key.type = BTRFS_INODE_ITEM_KEY;
  460. key.offset = 0;
  461. inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
  462. if (IS_ERR(inode)) {
  463. err = PTR_ERR(inode);
  464. goto fail_close;
  465. }
  466. root_dentry = d_alloc_root(inode);
  467. if (!root_dentry) {
  468. iput(inode);
  469. err = -ENOMEM;
  470. goto fail_close;
  471. }
  472. sb->s_root = root_dentry;
  473. save_mount_options(sb, data);
  474. return 0;
  475. fail_close:
  476. close_ctree(tree_root);
  477. return err;
  478. }
  479. int btrfs_sync_fs(struct super_block *sb, int wait)
  480. {
  481. struct btrfs_trans_handle *trans;
  482. struct btrfs_root *root = btrfs_sb(sb);
  483. int ret;
  484. if (!wait) {
  485. filemap_flush(root->fs_info->btree_inode->i_mapping);
  486. return 0;
  487. }
  488. btrfs_start_delalloc_inodes(root, 0);
  489. btrfs_wait_ordered_extents(root, 0, 0);
  490. trans = btrfs_start_transaction(root, 1);
  491. ret = btrfs_commit_transaction(trans, root);
  492. return ret;
  493. }
  494. static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
  495. {
  496. struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
  497. struct btrfs_fs_info *info = root->fs_info;
  498. if (btrfs_test_opt(root, DEGRADED))
  499. seq_puts(seq, ",degraded");
  500. if (btrfs_test_opt(root, NODATASUM))
  501. seq_puts(seq, ",nodatasum");
  502. if (btrfs_test_opt(root, NODATACOW))
  503. seq_puts(seq, ",nodatacow");
  504. if (btrfs_test_opt(root, NOBARRIER))
  505. seq_puts(seq, ",nobarrier");
  506. if (info->max_extent != (u64)-1)
  507. seq_printf(seq, ",max_extent=%llu",
  508. (unsigned long long)info->max_extent);
  509. if (info->max_inline != 8192 * 1024)
  510. seq_printf(seq, ",max_inline=%llu",
  511. (unsigned long long)info->max_inline);
  512. if (info->alloc_start != 0)
  513. seq_printf(seq, ",alloc_start=%llu",
  514. (unsigned long long)info->alloc_start);
  515. if (info->thread_pool_size != min_t(unsigned long,
  516. num_online_cpus() + 2, 8))
  517. seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
  518. if (btrfs_test_opt(root, COMPRESS))
  519. seq_puts(seq, ",compress");
  520. if (btrfs_test_opt(root, NOSSD))
  521. seq_puts(seq, ",nossd");
  522. if (btrfs_test_opt(root, SSD_SPREAD))
  523. seq_puts(seq, ",ssd_spread");
  524. else if (btrfs_test_opt(root, SSD))
  525. seq_puts(seq, ",ssd");
  526. if (btrfs_test_opt(root, NOTREELOG))
  527. seq_puts(seq, ",notreelog");
  528. if (btrfs_test_opt(root, FLUSHONCOMMIT))
  529. seq_puts(seq, ",flushoncommit");
  530. if (btrfs_test_opt(root, DISCARD))
  531. seq_puts(seq, ",discard");
  532. if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
  533. seq_puts(seq, ",noacl");
  534. return 0;
  535. }
  536. static int btrfs_test_super(struct super_block *s, void *data)
  537. {
  538. struct btrfs_fs_devices *test_fs_devices = data;
  539. struct btrfs_root *root = btrfs_sb(s);
  540. return root->fs_info->fs_devices == test_fs_devices;
  541. }
  542. /*
  543. * Find a superblock for the given device / mount point.
  544. *
  545. * Note: This is based on get_sb_bdev from fs/super.c with a few additions
  546. * for multiple device setup. Make sure to keep it in sync.
  547. */
  548. static int btrfs_get_sb(struct file_system_type *fs_type, int flags,
  549. const char *dev_name, void *data, struct vfsmount *mnt)
  550. {
  551. struct block_device *bdev = NULL;
  552. struct super_block *s;
  553. struct dentry *root;
  554. struct btrfs_fs_devices *fs_devices = NULL;
  555. fmode_t mode = FMODE_READ;
  556. char *subvol_name = NULL;
  557. u64 subvol_objectid = 0;
  558. int error = 0;
  559. int found = 0;
  560. if (!(flags & MS_RDONLY))
  561. mode |= FMODE_WRITE;
  562. error = btrfs_parse_early_options(data, mode, fs_type,
  563. &subvol_name, &subvol_objectid,
  564. &fs_devices);
  565. if (error)
  566. return error;
  567. error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
  568. if (error)
  569. goto error_free_subvol_name;
  570. error = btrfs_open_devices(fs_devices, mode, fs_type);
  571. if (error)
  572. goto error_free_subvol_name;
  573. if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
  574. error = -EACCES;
  575. goto error_close_devices;
  576. }
  577. bdev = fs_devices->latest_bdev;
  578. s = sget(fs_type, btrfs_test_super, set_anon_super, fs_devices);
  579. if (IS_ERR(s))
  580. goto error_s;
  581. if (s->s_root) {
  582. if ((flags ^ s->s_flags) & MS_RDONLY) {
  583. deactivate_locked_super(s);
  584. error = -EBUSY;
  585. goto error_close_devices;
  586. }
  587. found = 1;
  588. btrfs_close_devices(fs_devices);
  589. } else {
  590. char b[BDEVNAME_SIZE];
  591. s->s_flags = flags;
  592. strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
  593. error = btrfs_fill_super(s, fs_devices, data,
  594. flags & MS_SILENT ? 1 : 0);
  595. if (error) {
  596. deactivate_locked_super(s);
  597. goto error_free_subvol_name;
  598. }
  599. btrfs_sb(s)->fs_info->bdev_holder = fs_type;
  600. s->s_flags |= MS_ACTIVE;
  601. }
  602. root = get_default_root(s, subvol_objectid);
  603. if (IS_ERR(root)) {
  604. error = PTR_ERR(root);
  605. deactivate_locked_super(s);
  606. goto error;
  607. }
  608. /* if they gave us a subvolume name bind mount into that */
  609. if (strcmp(subvol_name, ".")) {
  610. struct dentry *new_root;
  611. mutex_lock(&root->d_inode->i_mutex);
  612. new_root = lookup_one_len(subvol_name, root,
  613. strlen(subvol_name));
  614. mutex_unlock(&root->d_inode->i_mutex);
  615. if (IS_ERR(new_root)) {
  616. deactivate_locked_super(s);
  617. error = PTR_ERR(new_root);
  618. dput(root);
  619. goto error_close_devices;
  620. }
  621. if (!new_root->d_inode) {
  622. dput(root);
  623. dput(new_root);
  624. deactivate_locked_super(s);
  625. error = -ENXIO;
  626. goto error_close_devices;
  627. }
  628. dput(root);
  629. root = new_root;
  630. }
  631. mnt->mnt_sb = s;
  632. mnt->mnt_root = root;
  633. kfree(subvol_name);
  634. return 0;
  635. error_s:
  636. error = PTR_ERR(s);
  637. error_close_devices:
  638. btrfs_close_devices(fs_devices);
  639. error_free_subvol_name:
  640. kfree(subvol_name);
  641. error:
  642. return error;
  643. }
  644. static int btrfs_remount(struct super_block *sb, int *flags, char *data)
  645. {
  646. struct btrfs_root *root = btrfs_sb(sb);
  647. int ret;
  648. ret = btrfs_parse_options(root, data);
  649. if (ret)
  650. return -EINVAL;
  651. if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
  652. return 0;
  653. if (*flags & MS_RDONLY) {
  654. sb->s_flags |= MS_RDONLY;
  655. ret = btrfs_commit_super(root);
  656. WARN_ON(ret);
  657. } else {
  658. if (root->fs_info->fs_devices->rw_devices == 0)
  659. return -EACCES;
  660. if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
  661. return -EINVAL;
  662. /* recover relocation */
  663. ret = btrfs_recover_relocation(root);
  664. WARN_ON(ret);
  665. ret = btrfs_cleanup_fs_roots(root->fs_info);
  666. WARN_ON(ret);
  667. sb->s_flags &= ~MS_RDONLY;
  668. }
  669. return 0;
  670. }
  671. static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  672. {
  673. struct btrfs_root *root = btrfs_sb(dentry->d_sb);
  674. struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
  675. struct list_head *head = &root->fs_info->space_info;
  676. struct btrfs_space_info *found;
  677. u64 total_used = 0;
  678. u64 data_used = 0;
  679. int bits = dentry->d_sb->s_blocksize_bits;
  680. __be32 *fsid = (__be32 *)root->fs_info->fsid;
  681. rcu_read_lock();
  682. list_for_each_entry_rcu(found, head, list) {
  683. if (found->flags & (BTRFS_BLOCK_GROUP_DUP|
  684. BTRFS_BLOCK_GROUP_RAID10|
  685. BTRFS_BLOCK_GROUP_RAID1)) {
  686. total_used += found->bytes_used;
  687. if (found->flags & BTRFS_BLOCK_GROUP_DATA)
  688. data_used += found->bytes_used;
  689. else
  690. data_used += found->total_bytes;
  691. }
  692. total_used += found->bytes_used;
  693. if (found->flags & BTRFS_BLOCK_GROUP_DATA)
  694. data_used += found->bytes_used;
  695. else
  696. data_used += found->total_bytes;
  697. }
  698. rcu_read_unlock();
  699. buf->f_namelen = BTRFS_NAME_LEN;
  700. buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
  701. buf->f_bfree = buf->f_blocks - (total_used >> bits);
  702. buf->f_bavail = buf->f_blocks - (data_used >> bits);
  703. buf->f_bsize = dentry->d_sb->s_blocksize;
  704. buf->f_type = BTRFS_SUPER_MAGIC;
  705. /* We treat it as constant endianness (it doesn't matter _which_)
  706. because we want the fsid to come out the same whether mounted
  707. on a big-endian or little-endian host */
  708. buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
  709. buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
  710. /* Mask in the root object ID too, to disambiguate subvols */
  711. buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
  712. buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
  713. return 0;
  714. }
  715. static struct file_system_type btrfs_fs_type = {
  716. .owner = THIS_MODULE,
  717. .name = "btrfs",
  718. .get_sb = btrfs_get_sb,
  719. .kill_sb = kill_anon_super,
  720. .fs_flags = FS_REQUIRES_DEV,
  721. };
  722. /*
  723. * used by btrfsctl to scan devices when no FS is mounted
  724. */
  725. static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
  726. unsigned long arg)
  727. {
  728. struct btrfs_ioctl_vol_args *vol;
  729. struct btrfs_fs_devices *fs_devices;
  730. int ret = -ENOTTY;
  731. if (!capable(CAP_SYS_ADMIN))
  732. return -EPERM;
  733. vol = memdup_user((void __user *)arg, sizeof(*vol));
  734. if (IS_ERR(vol))
  735. return PTR_ERR(vol);
  736. switch (cmd) {
  737. case BTRFS_IOC_SCAN_DEV:
  738. ret = btrfs_scan_one_device(vol->name, FMODE_READ,
  739. &btrfs_fs_type, &fs_devices);
  740. break;
  741. }
  742. kfree(vol);
  743. return ret;
  744. }
  745. static int btrfs_freeze(struct super_block *sb)
  746. {
  747. struct btrfs_root *root = btrfs_sb(sb);
  748. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  749. mutex_lock(&root->fs_info->cleaner_mutex);
  750. return 0;
  751. }
  752. static int btrfs_unfreeze(struct super_block *sb)
  753. {
  754. struct btrfs_root *root = btrfs_sb(sb);
  755. mutex_unlock(&root->fs_info->cleaner_mutex);
  756. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  757. return 0;
  758. }
  759. static const struct super_operations btrfs_super_ops = {
  760. .drop_inode = btrfs_drop_inode,
  761. .delete_inode = btrfs_delete_inode,
  762. .put_super = btrfs_put_super,
  763. .sync_fs = btrfs_sync_fs,
  764. .show_options = btrfs_show_options,
  765. .write_inode = btrfs_write_inode,
  766. .dirty_inode = btrfs_dirty_inode,
  767. .alloc_inode = btrfs_alloc_inode,
  768. .destroy_inode = btrfs_destroy_inode,
  769. .statfs = btrfs_statfs,
  770. .remount_fs = btrfs_remount,
  771. .freeze_fs = btrfs_freeze,
  772. .unfreeze_fs = btrfs_unfreeze,
  773. };
  774. static const struct file_operations btrfs_ctl_fops = {
  775. .unlocked_ioctl = btrfs_control_ioctl,
  776. .compat_ioctl = btrfs_control_ioctl,
  777. .owner = THIS_MODULE,
  778. };
  779. static struct miscdevice btrfs_misc = {
  780. .minor = MISC_DYNAMIC_MINOR,
  781. .name = "btrfs-control",
  782. .fops = &btrfs_ctl_fops
  783. };
  784. static int btrfs_interface_init(void)
  785. {
  786. return misc_register(&btrfs_misc);
  787. }
  788. static void btrfs_interface_exit(void)
  789. {
  790. if (misc_deregister(&btrfs_misc) < 0)
  791. printk(KERN_INFO "misc_deregister failed for control device");
  792. }
  793. static int __init init_btrfs_fs(void)
  794. {
  795. int err;
  796. err = btrfs_init_sysfs();
  797. if (err)
  798. return err;
  799. err = btrfs_init_cachep();
  800. if (err)
  801. goto free_sysfs;
  802. err = extent_io_init();
  803. if (err)
  804. goto free_cachep;
  805. err = extent_map_init();
  806. if (err)
  807. goto free_extent_io;
  808. err = btrfs_interface_init();
  809. if (err)
  810. goto free_extent_map;
  811. err = register_filesystem(&btrfs_fs_type);
  812. if (err)
  813. goto unregister_ioctl;
  814. printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
  815. return 0;
  816. unregister_ioctl:
  817. btrfs_interface_exit();
  818. free_extent_map:
  819. extent_map_exit();
  820. free_extent_io:
  821. extent_io_exit();
  822. free_cachep:
  823. btrfs_destroy_cachep();
  824. free_sysfs:
  825. btrfs_exit_sysfs();
  826. return err;
  827. }
  828. static void __exit exit_btrfs_fs(void)
  829. {
  830. btrfs_destroy_cachep();
  831. extent_map_exit();
  832. extent_io_exit();
  833. btrfs_interface_exit();
  834. unregister_filesystem(&btrfs_fs_type);
  835. btrfs_exit_sysfs();
  836. btrfs_cleanup_fs_uuids();
  837. btrfs_zlib_exit();
  838. }
  839. module_init(init_btrfs_fs)
  840. module_exit(exit_btrfs_fs)
  841. MODULE_LICENSE("GPL");