init_64.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/system.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/dma.h>
  37. #include <asm/fixmap.h>
  38. #include <asm/e820.h>
  39. #include <asm/apic.h>
  40. #include <asm/tlb.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/proto.h>
  43. #include <asm/smp.h>
  44. #include <asm/sections.h>
  45. #include <asm/kdebug.h>
  46. #include <asm/numa.h>
  47. #include <asm/cacheflush.h>
  48. /*
  49. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  50. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  51. * apertures, ACPI and other tables without having to play with fixmaps.
  52. */
  53. unsigned long max_low_pfn_mapped;
  54. unsigned long max_pfn_mapped;
  55. static unsigned long dma_reserve __initdata;
  56. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  57. int direct_gbpages
  58. #ifdef CONFIG_DIRECT_GBPAGES
  59. = 1
  60. #endif
  61. ;
  62. static int __init parse_direct_gbpages_off(char *arg)
  63. {
  64. direct_gbpages = 0;
  65. return 0;
  66. }
  67. early_param("nogbpages", parse_direct_gbpages_off);
  68. static int __init parse_direct_gbpages_on(char *arg)
  69. {
  70. direct_gbpages = 1;
  71. return 0;
  72. }
  73. early_param("gbpages", parse_direct_gbpages_on);
  74. /*
  75. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  76. * physical space so we can cache the place of the first one and move
  77. * around without checking the pgd every time.
  78. */
  79. int after_bootmem;
  80. unsigned long __supported_pte_mask __read_mostly = ~0UL;
  81. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  82. static int do_not_nx __cpuinitdata;
  83. /* noexec=on|off
  84. Control non executable mappings for 64bit processes.
  85. on Enable(default)
  86. off Disable
  87. */
  88. static int __init nonx_setup(char *str)
  89. {
  90. if (!str)
  91. return -EINVAL;
  92. if (!strncmp(str, "on", 2)) {
  93. __supported_pte_mask |= _PAGE_NX;
  94. do_not_nx = 0;
  95. } else if (!strncmp(str, "off", 3)) {
  96. do_not_nx = 1;
  97. __supported_pte_mask &= ~_PAGE_NX;
  98. }
  99. return 0;
  100. }
  101. early_param("noexec", nonx_setup);
  102. void __cpuinit check_efer(void)
  103. {
  104. unsigned long efer;
  105. rdmsrl(MSR_EFER, efer);
  106. if (!(efer & EFER_NX) || do_not_nx)
  107. __supported_pte_mask &= ~_PAGE_NX;
  108. }
  109. int force_personality32;
  110. /* noexec32=on|off
  111. Control non executable heap for 32bit processes.
  112. To control the stack too use noexec=off
  113. on PROT_READ does not imply PROT_EXEC for 32bit processes (default)
  114. off PROT_READ implies PROT_EXEC
  115. */
  116. static int __init nonx32_setup(char *str)
  117. {
  118. if (!strcmp(str, "on"))
  119. force_personality32 &= ~READ_IMPLIES_EXEC;
  120. else if (!strcmp(str, "off"))
  121. force_personality32 |= READ_IMPLIES_EXEC;
  122. return 1;
  123. }
  124. __setup("noexec32=", nonx32_setup);
  125. /*
  126. * NOTE: This function is marked __ref because it calls __init function
  127. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  128. */
  129. static __ref void *spp_getpage(void)
  130. {
  131. void *ptr;
  132. if (after_bootmem)
  133. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  134. else
  135. ptr = alloc_bootmem_pages(PAGE_SIZE);
  136. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  137. panic("set_pte_phys: cannot allocate page data %s\n",
  138. after_bootmem ? "after bootmem" : "");
  139. }
  140. pr_debug("spp_getpage %p\n", ptr);
  141. return ptr;
  142. }
  143. void
  144. set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  145. {
  146. pud_t *pud;
  147. pmd_t *pmd;
  148. pte_t *pte;
  149. pud = pud_page + pud_index(vaddr);
  150. if (pud_none(*pud)) {
  151. pmd = (pmd_t *) spp_getpage();
  152. pud_populate(&init_mm, pud, pmd);
  153. if (pmd != pmd_offset(pud, 0)) {
  154. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  155. pmd, pmd_offset(pud, 0));
  156. return;
  157. }
  158. }
  159. pmd = pmd_offset(pud, vaddr);
  160. if (pmd_none(*pmd)) {
  161. pte = (pte_t *) spp_getpage();
  162. pmd_populate_kernel(&init_mm, pmd, pte);
  163. if (pte != pte_offset_kernel(pmd, 0)) {
  164. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  165. return;
  166. }
  167. }
  168. pte = pte_offset_kernel(pmd, vaddr);
  169. if (!pte_none(*pte) && pte_val(new_pte) &&
  170. pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
  171. pte_ERROR(*pte);
  172. set_pte(pte, new_pte);
  173. /*
  174. * It's enough to flush this one mapping.
  175. * (PGE mappings get flushed as well)
  176. */
  177. __flush_tlb_one(vaddr);
  178. }
  179. void
  180. set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  181. {
  182. pgd_t *pgd;
  183. pud_t *pud_page;
  184. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  185. pgd = pgd_offset_k(vaddr);
  186. if (pgd_none(*pgd)) {
  187. printk(KERN_ERR
  188. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  189. return;
  190. }
  191. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  192. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  193. }
  194. /*
  195. * Create large page table mappings for a range of physical addresses.
  196. */
  197. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  198. pgprot_t prot)
  199. {
  200. pgd_t *pgd;
  201. pud_t *pud;
  202. pmd_t *pmd;
  203. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  204. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  205. pgd = pgd_offset_k((unsigned long)__va(phys));
  206. if (pgd_none(*pgd)) {
  207. pud = (pud_t *) spp_getpage();
  208. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  209. _PAGE_USER));
  210. }
  211. pud = pud_offset(pgd, (unsigned long)__va(phys));
  212. if (pud_none(*pud)) {
  213. pmd = (pmd_t *) spp_getpage();
  214. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  215. _PAGE_USER));
  216. }
  217. pmd = pmd_offset(pud, phys);
  218. BUG_ON(!pmd_none(*pmd));
  219. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  220. }
  221. }
  222. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  223. {
  224. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  225. }
  226. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  227. {
  228. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  229. }
  230. /*
  231. * The head.S code sets up the kernel high mapping:
  232. *
  233. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  234. *
  235. * phys_addr holds the negative offset to the kernel, which is added
  236. * to the compile time generated pmds. This results in invalid pmds up
  237. * to the point where we hit the physaddr 0 mapping.
  238. *
  239. * We limit the mappings to the region from _text to _end. _end is
  240. * rounded up to the 2MB boundary. This catches the invalid pmds as
  241. * well, as they are located before _text:
  242. */
  243. void __init cleanup_highmap(void)
  244. {
  245. unsigned long vaddr = __START_KERNEL_map;
  246. unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
  247. pmd_t *pmd = level2_kernel_pgt;
  248. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  249. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  250. if (pmd_none(*pmd))
  251. continue;
  252. if (vaddr < (unsigned long) _text || vaddr > end)
  253. set_pmd(pmd, __pmd(0));
  254. }
  255. }
  256. static unsigned long __initdata table_start;
  257. static unsigned long __meminitdata table_end;
  258. static unsigned long __meminitdata table_top;
  259. static __ref void *alloc_low_page(unsigned long *phys)
  260. {
  261. unsigned long pfn = table_end++;
  262. void *adr;
  263. if (after_bootmem) {
  264. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  265. *phys = __pa(adr);
  266. return adr;
  267. }
  268. if (pfn >= table_top)
  269. panic("alloc_low_page: ran out of memory");
  270. adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
  271. memset(adr, 0, PAGE_SIZE);
  272. *phys = pfn * PAGE_SIZE;
  273. return adr;
  274. }
  275. static __ref void unmap_low_page(void *adr)
  276. {
  277. if (after_bootmem)
  278. return;
  279. early_iounmap(adr, PAGE_SIZE);
  280. }
  281. static unsigned long __meminit
  282. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
  283. {
  284. unsigned pages = 0;
  285. unsigned long last_map_addr = end;
  286. int i;
  287. pte_t *pte = pte_page + pte_index(addr);
  288. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  289. if (addr >= end) {
  290. if (!after_bootmem) {
  291. for(; i < PTRS_PER_PTE; i++, pte++)
  292. set_pte(pte, __pte(0));
  293. }
  294. break;
  295. }
  296. if (pte_val(*pte))
  297. continue;
  298. if (0)
  299. printk(" pte=%p addr=%lx pte=%016lx\n",
  300. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  301. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
  302. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  303. pages++;
  304. }
  305. update_page_count(PG_LEVEL_4K, pages);
  306. return last_map_addr;
  307. }
  308. static unsigned long __meminit
  309. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
  310. {
  311. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  312. return phys_pte_init(pte, address, end);
  313. }
  314. static unsigned long __meminit
  315. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  316. unsigned long page_size_mask)
  317. {
  318. unsigned long pages = 0;
  319. unsigned long last_map_addr = end;
  320. unsigned long start = address;
  321. int i = pmd_index(address);
  322. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  323. unsigned long pte_phys;
  324. pmd_t *pmd = pmd_page + pmd_index(address);
  325. pte_t *pte;
  326. if (address >= end) {
  327. if (!after_bootmem) {
  328. for (; i < PTRS_PER_PMD; i++, pmd++)
  329. set_pmd(pmd, __pmd(0));
  330. }
  331. break;
  332. }
  333. if (pmd_val(*pmd)) {
  334. if (!pmd_large(*pmd)) {
  335. spin_lock(&init_mm.page_table_lock);
  336. last_map_addr = phys_pte_update(pmd, address,
  337. end);
  338. spin_unlock(&init_mm.page_table_lock);
  339. }
  340. /* Count entries we're using from level2_ident_pgt */
  341. if (start == 0)
  342. pages++;
  343. continue;
  344. }
  345. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  346. pages++;
  347. spin_lock(&init_mm.page_table_lock);
  348. set_pte((pte_t *)pmd,
  349. pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  350. spin_unlock(&init_mm.page_table_lock);
  351. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  352. continue;
  353. }
  354. pte = alloc_low_page(&pte_phys);
  355. last_map_addr = phys_pte_init(pte, address, end);
  356. unmap_low_page(pte);
  357. spin_lock(&init_mm.page_table_lock);
  358. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  359. spin_unlock(&init_mm.page_table_lock);
  360. }
  361. update_page_count(PG_LEVEL_2M, pages);
  362. return last_map_addr;
  363. }
  364. static unsigned long __meminit
  365. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  366. unsigned long page_size_mask)
  367. {
  368. pmd_t *pmd = pmd_offset(pud, 0);
  369. unsigned long last_map_addr;
  370. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
  371. __flush_tlb_all();
  372. return last_map_addr;
  373. }
  374. static unsigned long __meminit
  375. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  376. unsigned long page_size_mask)
  377. {
  378. unsigned long pages = 0;
  379. unsigned long last_map_addr = end;
  380. int i = pud_index(addr);
  381. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  382. unsigned long pmd_phys;
  383. pud_t *pud = pud_page + pud_index(addr);
  384. pmd_t *pmd;
  385. if (addr >= end)
  386. break;
  387. if (!after_bootmem &&
  388. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  389. set_pud(pud, __pud(0));
  390. continue;
  391. }
  392. if (pud_val(*pud)) {
  393. if (!pud_large(*pud))
  394. last_map_addr = phys_pmd_update(pud, addr, end,
  395. page_size_mask);
  396. continue;
  397. }
  398. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  399. pages++;
  400. spin_lock(&init_mm.page_table_lock);
  401. set_pte((pte_t *)pud,
  402. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  403. spin_unlock(&init_mm.page_table_lock);
  404. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  405. continue;
  406. }
  407. pmd = alloc_low_page(&pmd_phys);
  408. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
  409. unmap_low_page(pmd);
  410. spin_lock(&init_mm.page_table_lock);
  411. pud_populate(&init_mm, pud, __va(pmd_phys));
  412. spin_unlock(&init_mm.page_table_lock);
  413. }
  414. __flush_tlb_all();
  415. update_page_count(PG_LEVEL_1G, pages);
  416. return last_map_addr;
  417. }
  418. static unsigned long __meminit
  419. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  420. unsigned long page_size_mask)
  421. {
  422. pud_t *pud;
  423. pud = (pud_t *)pgd_page_vaddr(*pgd);
  424. return phys_pud_init(pud, addr, end, page_size_mask);
  425. }
  426. static void __init find_early_table_space(unsigned long end)
  427. {
  428. unsigned long puds, pmds, ptes, tables, start;
  429. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  430. tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
  431. if (direct_gbpages) {
  432. unsigned long extra;
  433. extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
  434. pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
  435. } else
  436. pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  437. tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
  438. if (cpu_has_pse) {
  439. unsigned long extra;
  440. extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
  441. ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
  442. } else
  443. ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  444. tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
  445. /*
  446. * RED-PEN putting page tables only on node 0 could
  447. * cause a hotspot and fill up ZONE_DMA. The page tables
  448. * need roughly 0.5KB per GB.
  449. */
  450. start = 0x8000;
  451. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  452. if (table_start == -1UL)
  453. panic("Cannot find space for the kernel page tables");
  454. table_start >>= PAGE_SHIFT;
  455. table_end = table_start;
  456. table_top = table_start + (tables >> PAGE_SHIFT);
  457. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  458. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  459. }
  460. static void __init init_gbpages(void)
  461. {
  462. if (direct_gbpages && cpu_has_gbpages)
  463. printk(KERN_INFO "Using GB pages for direct mapping\n");
  464. else
  465. direct_gbpages = 0;
  466. }
  467. static unsigned long __init kernel_physical_mapping_init(unsigned long start,
  468. unsigned long end,
  469. unsigned long page_size_mask)
  470. {
  471. unsigned long next, last_map_addr = end;
  472. start = (unsigned long)__va(start);
  473. end = (unsigned long)__va(end);
  474. for (; start < end; start = next) {
  475. pgd_t *pgd = pgd_offset_k(start);
  476. unsigned long pud_phys;
  477. pud_t *pud;
  478. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  479. if (next > end)
  480. next = end;
  481. if (pgd_val(*pgd)) {
  482. last_map_addr = phys_pud_update(pgd, __pa(start),
  483. __pa(end), page_size_mask);
  484. continue;
  485. }
  486. pud = alloc_low_page(&pud_phys);
  487. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  488. page_size_mask);
  489. unmap_low_page(pud);
  490. spin_lock(&init_mm.page_table_lock);
  491. pgd_populate(&init_mm, pgd, __va(pud_phys));
  492. spin_unlock(&init_mm.page_table_lock);
  493. }
  494. return last_map_addr;
  495. }
  496. struct map_range {
  497. unsigned long start;
  498. unsigned long end;
  499. unsigned page_size_mask;
  500. };
  501. #define NR_RANGE_MR 5
  502. static int save_mr(struct map_range *mr, int nr_range,
  503. unsigned long start_pfn, unsigned long end_pfn,
  504. unsigned long page_size_mask)
  505. {
  506. if (start_pfn < end_pfn) {
  507. if (nr_range >= NR_RANGE_MR)
  508. panic("run out of range for init_memory_mapping\n");
  509. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  510. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  511. mr[nr_range].page_size_mask = page_size_mask;
  512. nr_range++;
  513. }
  514. return nr_range;
  515. }
  516. /*
  517. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  518. * This runs before bootmem is initialized and gets pages directly from
  519. * the physical memory. To access them they are temporarily mapped.
  520. */
  521. unsigned long __init_refok init_memory_mapping(unsigned long start,
  522. unsigned long end)
  523. {
  524. unsigned long last_map_addr = 0;
  525. unsigned long page_size_mask = 0;
  526. unsigned long start_pfn, end_pfn;
  527. struct map_range mr[NR_RANGE_MR];
  528. int nr_range, i;
  529. printk(KERN_INFO "init_memory_mapping\n");
  530. /*
  531. * Find space for the kernel direct mapping tables.
  532. *
  533. * Later we should allocate these tables in the local node of the
  534. * memory mapped. Unfortunately this is done currently before the
  535. * nodes are discovered.
  536. */
  537. if (!after_bootmem)
  538. init_gbpages();
  539. if (direct_gbpages)
  540. page_size_mask |= 1 << PG_LEVEL_1G;
  541. if (cpu_has_pse)
  542. page_size_mask |= 1 << PG_LEVEL_2M;
  543. memset(mr, 0, sizeof(mr));
  544. nr_range = 0;
  545. /* head if not big page alignment ?*/
  546. start_pfn = start >> PAGE_SHIFT;
  547. end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
  548. << (PMD_SHIFT - PAGE_SHIFT);
  549. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  550. /* big page (2M) range*/
  551. start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
  552. << (PMD_SHIFT - PAGE_SHIFT);
  553. end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
  554. << (PUD_SHIFT - PAGE_SHIFT);
  555. if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
  556. end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
  557. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  558. page_size_mask & (1<<PG_LEVEL_2M));
  559. /* big page (1G) range */
  560. start_pfn = end_pfn;
  561. end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
  562. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  563. page_size_mask &
  564. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  565. /* tail is not big page (1G) alignment */
  566. start_pfn = end_pfn;
  567. end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  568. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  569. page_size_mask & (1<<PG_LEVEL_2M));
  570. /* tail is not big page (2M) alignment */
  571. start_pfn = end_pfn;
  572. end_pfn = end>>PAGE_SHIFT;
  573. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  574. /* try to merge same page size and continuous */
  575. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  576. unsigned long old_start;
  577. if (mr[i].end != mr[i+1].start ||
  578. mr[i].page_size_mask != mr[i+1].page_size_mask)
  579. continue;
  580. /* move it */
  581. old_start = mr[i].start;
  582. memmove(&mr[i], &mr[i+1],
  583. (nr_range - 1 - i) * sizeof (struct map_range));
  584. mr[i].start = old_start;
  585. nr_range--;
  586. }
  587. for (i = 0; i < nr_range; i++)
  588. printk(KERN_DEBUG " %010lx - %010lx page %s\n",
  589. mr[i].start, mr[i].end,
  590. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  591. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  592. if (!after_bootmem)
  593. find_early_table_space(end);
  594. for (i = 0; i < nr_range; i++)
  595. last_map_addr = kernel_physical_mapping_init(
  596. mr[i].start, mr[i].end,
  597. mr[i].page_size_mask);
  598. if (!after_bootmem)
  599. mmu_cr4_features = read_cr4();
  600. __flush_tlb_all();
  601. if (!after_bootmem && table_end > table_start)
  602. reserve_early(table_start << PAGE_SHIFT,
  603. table_end << PAGE_SHIFT, "PGTABLE");
  604. printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
  605. last_map_addr, end);
  606. if (!after_bootmem)
  607. early_memtest(start, end);
  608. return last_map_addr >> PAGE_SHIFT;
  609. }
  610. #ifndef CONFIG_NUMA
  611. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  612. {
  613. unsigned long bootmap_size, bootmap;
  614. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  615. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  616. PAGE_SIZE);
  617. if (bootmap == -1L)
  618. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  619. /* don't touch min_low_pfn */
  620. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  621. 0, end_pfn);
  622. e820_register_active_regions(0, start_pfn, end_pfn);
  623. free_bootmem_with_active_regions(0, end_pfn);
  624. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  625. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  626. }
  627. void __init paging_init(void)
  628. {
  629. unsigned long max_zone_pfns[MAX_NR_ZONES];
  630. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  631. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  632. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  633. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  634. memory_present(0, 0, max_pfn);
  635. sparse_init();
  636. free_area_init_nodes(max_zone_pfns);
  637. }
  638. #endif
  639. /*
  640. * Memory hotplug specific functions
  641. */
  642. #ifdef CONFIG_MEMORY_HOTPLUG
  643. /*
  644. * Memory is added always to NORMAL zone. This means you will never get
  645. * additional DMA/DMA32 memory.
  646. */
  647. int arch_add_memory(int nid, u64 start, u64 size)
  648. {
  649. struct pglist_data *pgdat = NODE_DATA(nid);
  650. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  651. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  652. unsigned long nr_pages = size >> PAGE_SHIFT;
  653. int ret;
  654. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  655. if (last_mapped_pfn > max_pfn_mapped)
  656. max_pfn_mapped = last_mapped_pfn;
  657. ret = __add_pages(zone, start_pfn, nr_pages);
  658. WARN_ON(1);
  659. return ret;
  660. }
  661. EXPORT_SYMBOL_GPL(arch_add_memory);
  662. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  663. int memory_add_physaddr_to_nid(u64 start)
  664. {
  665. return 0;
  666. }
  667. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  668. #endif
  669. #endif /* CONFIG_MEMORY_HOTPLUG */
  670. /*
  671. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  672. * is valid. The argument is a physical page number.
  673. *
  674. *
  675. * On x86, access has to be given to the first megabyte of ram because that area
  676. * contains bios code and data regions used by X and dosemu and similar apps.
  677. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  678. * mmio resources as well as potential bios/acpi data regions.
  679. */
  680. int devmem_is_allowed(unsigned long pagenr)
  681. {
  682. if (pagenr <= 256)
  683. return 1;
  684. if (!page_is_ram(pagenr))
  685. return 1;
  686. return 0;
  687. }
  688. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  689. kcore_modules, kcore_vsyscall;
  690. void __init mem_init(void)
  691. {
  692. long codesize, reservedpages, datasize, initsize;
  693. pci_iommu_alloc();
  694. /* clear_bss() already clear the empty_zero_page */
  695. reservedpages = 0;
  696. /* this will put all low memory onto the freelists */
  697. #ifdef CONFIG_NUMA
  698. totalram_pages = numa_free_all_bootmem();
  699. #else
  700. totalram_pages = free_all_bootmem();
  701. #endif
  702. reservedpages = max_pfn - totalram_pages -
  703. absent_pages_in_range(0, max_pfn);
  704. after_bootmem = 1;
  705. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  706. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  707. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  708. /* Register memory areas for /proc/kcore */
  709. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  710. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  711. VMALLOC_END-VMALLOC_START);
  712. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  713. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  714. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  715. VSYSCALL_END - VSYSCALL_START);
  716. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  717. "%ldk reserved, %ldk data, %ldk init)\n",
  718. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  719. max_pfn << (PAGE_SHIFT-10),
  720. codesize >> 10,
  721. reservedpages << (PAGE_SHIFT-10),
  722. datasize >> 10,
  723. initsize >> 10);
  724. cpa_init();
  725. }
  726. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  727. {
  728. unsigned long addr = begin;
  729. if (addr >= end)
  730. return;
  731. /*
  732. * If debugging page accesses then do not free this memory but
  733. * mark them not present - any buggy init-section access will
  734. * create a kernel page fault:
  735. */
  736. #ifdef CONFIG_DEBUG_PAGEALLOC
  737. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  738. begin, PAGE_ALIGN(end));
  739. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  740. #else
  741. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  742. for (; addr < end; addr += PAGE_SIZE) {
  743. ClearPageReserved(virt_to_page(addr));
  744. init_page_count(virt_to_page(addr));
  745. memset((void *)(addr & ~(PAGE_SIZE-1)),
  746. POISON_FREE_INITMEM, PAGE_SIZE);
  747. free_page(addr);
  748. totalram_pages++;
  749. }
  750. #endif
  751. }
  752. void free_initmem(void)
  753. {
  754. free_init_pages("unused kernel memory",
  755. (unsigned long)(&__init_begin),
  756. (unsigned long)(&__init_end));
  757. }
  758. #ifdef CONFIG_DEBUG_RODATA
  759. const int rodata_test_data = 0xC3;
  760. EXPORT_SYMBOL_GPL(rodata_test_data);
  761. void mark_rodata_ro(void)
  762. {
  763. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  764. unsigned long rodata_start =
  765. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  766. #ifdef CONFIG_DYNAMIC_FTRACE
  767. /* Dynamic tracing modifies the kernel text section */
  768. start = rodata_start;
  769. #endif
  770. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  771. (end - start) >> 10);
  772. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  773. /*
  774. * The rodata section (but not the kernel text!) should also be
  775. * not-executable.
  776. */
  777. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  778. rodata_test();
  779. #ifdef CONFIG_CPA_DEBUG
  780. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  781. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  782. printk(KERN_INFO "Testing CPA: again\n");
  783. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  784. #endif
  785. }
  786. #endif
  787. #ifdef CONFIG_BLK_DEV_INITRD
  788. void free_initrd_mem(unsigned long start, unsigned long end)
  789. {
  790. free_init_pages("initrd memory", start, end);
  791. }
  792. #endif
  793. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  794. int flags)
  795. {
  796. #ifdef CONFIG_NUMA
  797. int nid, next_nid;
  798. int ret;
  799. #endif
  800. unsigned long pfn = phys >> PAGE_SHIFT;
  801. if (pfn >= max_pfn) {
  802. /*
  803. * This can happen with kdump kernels when accessing
  804. * firmware tables:
  805. */
  806. if (pfn < max_pfn_mapped)
  807. return -EFAULT;
  808. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  809. phys, len);
  810. return -EFAULT;
  811. }
  812. /* Should check here against the e820 map to avoid double free */
  813. #ifdef CONFIG_NUMA
  814. nid = phys_to_nid(phys);
  815. next_nid = phys_to_nid(phys + len - 1);
  816. if (nid == next_nid)
  817. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  818. else
  819. ret = reserve_bootmem(phys, len, flags);
  820. if (ret != 0)
  821. return ret;
  822. #else
  823. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  824. #endif
  825. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  826. dma_reserve += len / PAGE_SIZE;
  827. set_dma_reserve(dma_reserve);
  828. }
  829. return 0;
  830. }
  831. int kern_addr_valid(unsigned long addr)
  832. {
  833. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  834. pgd_t *pgd;
  835. pud_t *pud;
  836. pmd_t *pmd;
  837. pte_t *pte;
  838. if (above != 0 && above != -1UL)
  839. return 0;
  840. pgd = pgd_offset_k(addr);
  841. if (pgd_none(*pgd))
  842. return 0;
  843. pud = pud_offset(pgd, addr);
  844. if (pud_none(*pud))
  845. return 0;
  846. pmd = pmd_offset(pud, addr);
  847. if (pmd_none(*pmd))
  848. return 0;
  849. if (pmd_large(*pmd))
  850. return pfn_valid(pmd_pfn(*pmd));
  851. pte = pte_offset_kernel(pmd, addr);
  852. if (pte_none(*pte))
  853. return 0;
  854. return pfn_valid(pte_pfn(*pte));
  855. }
  856. /*
  857. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  858. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  859. * not need special handling anymore:
  860. */
  861. static struct vm_area_struct gate_vma = {
  862. .vm_start = VSYSCALL_START,
  863. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  864. .vm_page_prot = PAGE_READONLY_EXEC,
  865. .vm_flags = VM_READ | VM_EXEC
  866. };
  867. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  868. {
  869. #ifdef CONFIG_IA32_EMULATION
  870. if (test_tsk_thread_flag(tsk, TIF_IA32))
  871. return NULL;
  872. #endif
  873. return &gate_vma;
  874. }
  875. int in_gate_area(struct task_struct *task, unsigned long addr)
  876. {
  877. struct vm_area_struct *vma = get_gate_vma(task);
  878. if (!vma)
  879. return 0;
  880. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  881. }
  882. /*
  883. * Use this when you have no reliable task/vma, typically from interrupt
  884. * context. It is less reliable than using the task's vma and may give
  885. * false positives:
  886. */
  887. int in_gate_area_no_task(unsigned long addr)
  888. {
  889. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  890. }
  891. const char *arch_vma_name(struct vm_area_struct *vma)
  892. {
  893. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  894. return "[vdso]";
  895. if (vma == &gate_vma)
  896. return "[vsyscall]";
  897. return NULL;
  898. }
  899. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  900. /*
  901. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  902. */
  903. static long __meminitdata addr_start, addr_end;
  904. static void __meminitdata *p_start, *p_end;
  905. static int __meminitdata node_start;
  906. int __meminit
  907. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  908. {
  909. unsigned long addr = (unsigned long)start_page;
  910. unsigned long end = (unsigned long)(start_page + size);
  911. unsigned long next;
  912. pgd_t *pgd;
  913. pud_t *pud;
  914. pmd_t *pmd;
  915. for (; addr < end; addr = next) {
  916. void *p = NULL;
  917. pgd = vmemmap_pgd_populate(addr, node);
  918. if (!pgd)
  919. return -ENOMEM;
  920. pud = vmemmap_pud_populate(pgd, addr, node);
  921. if (!pud)
  922. return -ENOMEM;
  923. if (!cpu_has_pse) {
  924. next = (addr + PAGE_SIZE) & PAGE_MASK;
  925. pmd = vmemmap_pmd_populate(pud, addr, node);
  926. if (!pmd)
  927. return -ENOMEM;
  928. p = vmemmap_pte_populate(pmd, addr, node);
  929. if (!p)
  930. return -ENOMEM;
  931. addr_end = addr + PAGE_SIZE;
  932. p_end = p + PAGE_SIZE;
  933. } else {
  934. next = pmd_addr_end(addr, end);
  935. pmd = pmd_offset(pud, addr);
  936. if (pmd_none(*pmd)) {
  937. pte_t entry;
  938. p = vmemmap_alloc_block(PMD_SIZE, node);
  939. if (!p)
  940. return -ENOMEM;
  941. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  942. PAGE_KERNEL_LARGE);
  943. set_pmd(pmd, __pmd(pte_val(entry)));
  944. /* check to see if we have contiguous blocks */
  945. if (p_end != p || node_start != node) {
  946. if (p_start)
  947. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  948. addr_start, addr_end-1, p_start, p_end-1, node_start);
  949. addr_start = addr;
  950. node_start = node;
  951. p_start = p;
  952. }
  953. addr_end = addr + PMD_SIZE;
  954. p_end = p + PMD_SIZE;
  955. } else
  956. vmemmap_verify((pte_t *)pmd, node, addr, next);
  957. }
  958. }
  959. return 0;
  960. }
  961. void __meminit vmemmap_populate_print_last(void)
  962. {
  963. if (p_start) {
  964. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  965. addr_start, addr_end-1, p_start, p_end-1, node_start);
  966. p_start = NULL;
  967. p_end = NULL;
  968. node_start = 0;
  969. }
  970. }
  971. #endif