usb.h 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223
  1. #ifndef __LINUX_USB_H
  2. #define __LINUX_USB_H
  3. #include <linux/mod_devicetable.h>
  4. #include <linux/usb_ch9.h>
  5. #define USB_MAJOR 180
  6. #define USB_DEVICE_MAJOR 189
  7. #ifdef __KERNEL__
  8. #include <linux/errno.h> /* for -ENODEV */
  9. #include <linux/delay.h> /* for mdelay() */
  10. #include <linux/interrupt.h> /* for in_interrupt() */
  11. #include <linux/list.h> /* for struct list_head */
  12. #include <linux/kref.h> /* for struct kref */
  13. #include <linux/device.h> /* for struct device */
  14. #include <linux/fs.h> /* for struct file_operations */
  15. #include <linux/completion.h> /* for struct completion */
  16. #include <linux/sched.h> /* for current && schedule_timeout */
  17. struct usb_device;
  18. struct usb_driver;
  19. /*-------------------------------------------------------------------------*/
  20. /*
  21. * Host-side wrappers for standard USB descriptors ... these are parsed
  22. * from the data provided by devices. Parsing turns them from a flat
  23. * sequence of descriptors into a hierarchy:
  24. *
  25. * - devices have one (usually) or more configs;
  26. * - configs have one (often) or more interfaces;
  27. * - interfaces have one (usually) or more settings;
  28. * - each interface setting has zero or (usually) more endpoints.
  29. *
  30. * And there might be other descriptors mixed in with those.
  31. *
  32. * Devices may also have class-specific or vendor-specific descriptors.
  33. */
  34. struct ep_device;
  35. /**
  36. * struct usb_host_endpoint - host-side endpoint descriptor and queue
  37. * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  38. * @urb_list: urbs queued to this endpoint; maintained by usbcore
  39. * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  40. * with one or more transfer descriptors (TDs) per urb
  41. * @kobj: kobject for sysfs info
  42. * @extra: descriptors following this endpoint in the configuration
  43. * @extralen: how many bytes of "extra" are valid
  44. *
  45. * USB requests are always queued to a given endpoint, identified by a
  46. * descriptor within an active interface in a given USB configuration.
  47. */
  48. struct usb_host_endpoint {
  49. struct usb_endpoint_descriptor desc;
  50. struct list_head urb_list;
  51. void *hcpriv;
  52. struct ep_device *ep_dev; /* For sysfs info */
  53. unsigned char *extra; /* Extra descriptors */
  54. int extralen;
  55. };
  56. /* host-side wrapper for one interface setting's parsed descriptors */
  57. struct usb_host_interface {
  58. struct usb_interface_descriptor desc;
  59. /* array of desc.bNumEndpoint endpoints associated with this
  60. * interface setting. these will be in no particular order.
  61. */
  62. struct usb_host_endpoint *endpoint;
  63. char *string; /* iInterface string, if present */
  64. unsigned char *extra; /* Extra descriptors */
  65. int extralen;
  66. };
  67. enum usb_interface_condition {
  68. USB_INTERFACE_UNBOUND = 0,
  69. USB_INTERFACE_BINDING,
  70. USB_INTERFACE_BOUND,
  71. USB_INTERFACE_UNBINDING,
  72. };
  73. /**
  74. * struct usb_interface - what usb device drivers talk to
  75. * @altsetting: array of interface structures, one for each alternate
  76. * setting that may be selected. Each one includes a set of
  77. * endpoint configurations. They will be in no particular order.
  78. * @num_altsetting: number of altsettings defined.
  79. * @cur_altsetting: the current altsetting.
  80. * @driver: the USB driver that is bound to this interface.
  81. * @minor: the minor number assigned to this interface, if this
  82. * interface is bound to a driver that uses the USB major number.
  83. * If this interface does not use the USB major, this field should
  84. * be unused. The driver should set this value in the probe()
  85. * function of the driver, after it has been assigned a minor
  86. * number from the USB core by calling usb_register_dev().
  87. * @condition: binding state of the interface: not bound, binding
  88. * (in probe()), bound to a driver, or unbinding (in disconnect())
  89. * @dev: driver model's view of this device
  90. * @usb_dev: if an interface is bound to the USB major, this will point
  91. * to the sysfs representation for that device.
  92. *
  93. * USB device drivers attach to interfaces on a physical device. Each
  94. * interface encapsulates a single high level function, such as feeding
  95. * an audio stream to a speaker or reporting a change in a volume control.
  96. * Many USB devices only have one interface. The protocol used to talk to
  97. * an interface's endpoints can be defined in a usb "class" specification,
  98. * or by a product's vendor. The (default) control endpoint is part of
  99. * every interface, but is never listed among the interface's descriptors.
  100. *
  101. * The driver that is bound to the interface can use standard driver model
  102. * calls such as dev_get_drvdata() on the dev member of this structure.
  103. *
  104. * Each interface may have alternate settings. The initial configuration
  105. * of a device sets altsetting 0, but the device driver can change
  106. * that setting using usb_set_interface(). Alternate settings are often
  107. * used to control the the use of periodic endpoints, such as by having
  108. * different endpoints use different amounts of reserved USB bandwidth.
  109. * All standards-conformant USB devices that use isochronous endpoints
  110. * will use them in non-default settings.
  111. *
  112. * The USB specification says that alternate setting numbers must run from
  113. * 0 to one less than the total number of alternate settings. But some
  114. * devices manage to mess this up, and the structures aren't necessarily
  115. * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
  116. * look up an alternate setting in the altsetting array based on its number.
  117. */
  118. struct usb_interface {
  119. /* array of alternate settings for this interface,
  120. * stored in no particular order */
  121. struct usb_host_interface *altsetting;
  122. struct usb_host_interface *cur_altsetting; /* the currently
  123. * active alternate setting */
  124. unsigned num_altsetting; /* number of alternate settings */
  125. int minor; /* minor number this interface is
  126. * bound to */
  127. enum usb_interface_condition condition; /* state of binding */
  128. struct device dev; /* interface specific device info */
  129. struct device *usb_dev; /* pointer to the usb class's device, if any */
  130. };
  131. #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
  132. #define interface_to_usbdev(intf) \
  133. container_of(intf->dev.parent, struct usb_device, dev)
  134. static inline void *usb_get_intfdata (struct usb_interface *intf)
  135. {
  136. return dev_get_drvdata (&intf->dev);
  137. }
  138. static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
  139. {
  140. dev_set_drvdata(&intf->dev, data);
  141. }
  142. struct usb_interface *usb_get_intf(struct usb_interface *intf);
  143. void usb_put_intf(struct usb_interface *intf);
  144. /* this maximum is arbitrary */
  145. #define USB_MAXINTERFACES 32
  146. /**
  147. * struct usb_interface_cache - long-term representation of a device interface
  148. * @num_altsetting: number of altsettings defined.
  149. * @ref: reference counter.
  150. * @altsetting: variable-length array of interface structures, one for
  151. * each alternate setting that may be selected. Each one includes a
  152. * set of endpoint configurations. They will be in no particular order.
  153. *
  154. * These structures persist for the lifetime of a usb_device, unlike
  155. * struct usb_interface (which persists only as long as its configuration
  156. * is installed). The altsetting arrays can be accessed through these
  157. * structures at any time, permitting comparison of configurations and
  158. * providing support for the /proc/bus/usb/devices pseudo-file.
  159. */
  160. struct usb_interface_cache {
  161. unsigned num_altsetting; /* number of alternate settings */
  162. struct kref ref; /* reference counter */
  163. /* variable-length array of alternate settings for this interface,
  164. * stored in no particular order */
  165. struct usb_host_interface altsetting[0];
  166. };
  167. #define ref_to_usb_interface_cache(r) \
  168. container_of(r, struct usb_interface_cache, ref)
  169. #define altsetting_to_usb_interface_cache(a) \
  170. container_of(a, struct usb_interface_cache, altsetting[0])
  171. /**
  172. * struct usb_host_config - representation of a device's configuration
  173. * @desc: the device's configuration descriptor.
  174. * @string: pointer to the cached version of the iConfiguration string, if
  175. * present for this configuration.
  176. * @interface: array of pointers to usb_interface structures, one for each
  177. * interface in the configuration. The number of interfaces is stored
  178. * in desc.bNumInterfaces. These pointers are valid only while the
  179. * the configuration is active.
  180. * @intf_cache: array of pointers to usb_interface_cache structures, one
  181. * for each interface in the configuration. These structures exist
  182. * for the entire life of the device.
  183. * @extra: pointer to buffer containing all extra descriptors associated
  184. * with this configuration (those preceding the first interface
  185. * descriptor).
  186. * @extralen: length of the extra descriptors buffer.
  187. *
  188. * USB devices may have multiple configurations, but only one can be active
  189. * at any time. Each encapsulates a different operational environment;
  190. * for example, a dual-speed device would have separate configurations for
  191. * full-speed and high-speed operation. The number of configurations
  192. * available is stored in the device descriptor as bNumConfigurations.
  193. *
  194. * A configuration can contain multiple interfaces. Each corresponds to
  195. * a different function of the USB device, and all are available whenever
  196. * the configuration is active. The USB standard says that interfaces
  197. * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
  198. * of devices get this wrong. In addition, the interface array is not
  199. * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
  200. * look up an interface entry based on its number.
  201. *
  202. * Device drivers should not attempt to activate configurations. The choice
  203. * of which configuration to install is a policy decision based on such
  204. * considerations as available power, functionality provided, and the user's
  205. * desires (expressed through userspace tools). However, drivers can call
  206. * usb_reset_configuration() to reinitialize the current configuration and
  207. * all its interfaces.
  208. */
  209. struct usb_host_config {
  210. struct usb_config_descriptor desc;
  211. char *string; /* iConfiguration string, if present */
  212. /* the interfaces associated with this configuration,
  213. * stored in no particular order */
  214. struct usb_interface *interface[USB_MAXINTERFACES];
  215. /* Interface information available even when this is not the
  216. * active configuration */
  217. struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
  218. unsigned char *extra; /* Extra descriptors */
  219. int extralen;
  220. };
  221. int __usb_get_extra_descriptor(char *buffer, unsigned size,
  222. unsigned char type, void **ptr);
  223. #define usb_get_extra_descriptor(ifpoint,type,ptr)\
  224. __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
  225. type,(void**)ptr)
  226. /* ----------------------------------------------------------------------- */
  227. struct usb_operations;
  228. /* USB device number allocation bitmap */
  229. struct usb_devmap {
  230. unsigned long devicemap[128 / (8*sizeof(unsigned long))];
  231. };
  232. /*
  233. * Allocated per bus (tree of devices) we have:
  234. */
  235. struct usb_bus {
  236. struct device *controller; /* host/master side hardware */
  237. int busnum; /* Bus number (in order of reg) */
  238. char *bus_name; /* stable id (PCI slot_name etc) */
  239. u8 otg_port; /* 0, or number of OTG/HNP port */
  240. unsigned is_b_host:1; /* true during some HNP roleswitches */
  241. unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
  242. int devnum_next; /* Next open device number in
  243. * round-robin allocation */
  244. struct usb_devmap devmap; /* device address allocation map */
  245. struct usb_operations *op; /* Operations (specific to the HC) */
  246. struct usb_device *root_hub; /* Root hub */
  247. struct list_head bus_list; /* list of busses */
  248. void *hcpriv; /* Host Controller private data */
  249. int bandwidth_allocated; /* on this bus: how much of the time
  250. * reserved for periodic (intr/iso)
  251. * requests is used, on average?
  252. * Units: microseconds/frame.
  253. * Limits: Full/low speed reserve 90%,
  254. * while high speed reserves 80%.
  255. */
  256. int bandwidth_int_reqs; /* number of Interrupt requests */
  257. int bandwidth_isoc_reqs; /* number of Isoc. requests */
  258. struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
  259. struct class_device *class_dev; /* class device for this bus */
  260. struct kref kref; /* reference counting for this bus */
  261. void (*release)(struct usb_bus *bus);
  262. #if defined(CONFIG_USB_MON)
  263. struct mon_bus *mon_bus; /* non-null when associated */
  264. int monitored; /* non-zero when monitored */
  265. #endif
  266. };
  267. /* ----------------------------------------------------------------------- */
  268. /* This is arbitrary.
  269. * From USB 2.0 spec Table 11-13, offset 7, a hub can
  270. * have up to 255 ports. The most yet reported is 10.
  271. */
  272. #define USB_MAXCHILDREN (16)
  273. struct usb_tt;
  274. /*
  275. * struct usb_device - kernel's representation of a USB device
  276. *
  277. * FIXME: Write the kerneldoc!
  278. *
  279. * Usbcore drivers should not set usbdev->state directly. Instead use
  280. * usb_set_device_state().
  281. */
  282. struct usb_device {
  283. int devnum; /* Address on USB bus */
  284. char devpath [16]; /* Use in messages: /port/port/... */
  285. enum usb_device_state state; /* configured, not attached, etc */
  286. enum usb_device_speed speed; /* high/full/low (or error) */
  287. struct usb_tt *tt; /* low/full speed dev, highspeed hub */
  288. int ttport; /* device port on that tt hub */
  289. unsigned int toggle[2]; /* one bit for each endpoint
  290. * ([0] = IN, [1] = OUT) */
  291. struct usb_device *parent; /* our hub, unless we're the root */
  292. struct usb_bus *bus; /* Bus we're part of */
  293. struct usb_host_endpoint ep0;
  294. struct device dev; /* Generic device interface */
  295. struct usb_device_descriptor descriptor;/* Descriptor */
  296. struct usb_host_config *config; /* All of the configs */
  297. struct usb_host_config *actconfig;/* the active configuration */
  298. struct usb_host_endpoint *ep_in[16];
  299. struct usb_host_endpoint *ep_out[16];
  300. char **rawdescriptors; /* Raw descriptors for each config */
  301. unsigned short bus_mA; /* Current available from the bus */
  302. u8 portnum; /* Parent port number (origin 1) */
  303. int have_langid; /* whether string_langid is valid */
  304. int string_langid; /* language ID for strings */
  305. /* static strings from the device */
  306. char *product; /* iProduct string, if present */
  307. char *manufacturer; /* iManufacturer string, if present */
  308. char *serial; /* iSerialNumber string, if present */
  309. struct list_head filelist;
  310. struct device *usbfs_dev;
  311. struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
  312. /*
  313. * Child devices - these can be either new devices
  314. * (if this is a hub device), or different instances
  315. * of this same device.
  316. *
  317. * Each instance needs its own set of data structures.
  318. */
  319. int maxchild; /* Number of ports if hub */
  320. struct usb_device *children[USB_MAXCHILDREN];
  321. };
  322. #define to_usb_device(d) container_of(d, struct usb_device, dev)
  323. extern struct usb_device *usb_get_dev(struct usb_device *dev);
  324. extern void usb_put_dev(struct usb_device *dev);
  325. /* USB device locking */
  326. #define usb_lock_device(udev) down(&(udev)->dev.sem)
  327. #define usb_unlock_device(udev) up(&(udev)->dev.sem)
  328. #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
  329. extern int usb_lock_device_for_reset(struct usb_device *udev,
  330. struct usb_interface *iface);
  331. /* USB port reset for device reinitialization */
  332. extern int usb_reset_device(struct usb_device *dev);
  333. extern int usb_reset_composite_device(struct usb_device *dev,
  334. struct usb_interface *iface);
  335. extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
  336. /*-------------------------------------------------------------------------*/
  337. /* for drivers using iso endpoints */
  338. extern int usb_get_current_frame_number (struct usb_device *usb_dev);
  339. /* used these for multi-interface device registration */
  340. extern int usb_driver_claim_interface(struct usb_driver *driver,
  341. struct usb_interface *iface, void* priv);
  342. /**
  343. * usb_interface_claimed - returns true iff an interface is claimed
  344. * @iface: the interface being checked
  345. *
  346. * Returns true (nonzero) iff the interface is claimed, else false (zero).
  347. * Callers must own the driver model's usb bus readlock. So driver
  348. * probe() entries don't need extra locking, but other call contexts
  349. * may need to explicitly claim that lock.
  350. *
  351. */
  352. static inline int usb_interface_claimed(struct usb_interface *iface) {
  353. return (iface->dev.driver != NULL);
  354. }
  355. extern void usb_driver_release_interface(struct usb_driver *driver,
  356. struct usb_interface *iface);
  357. const struct usb_device_id *usb_match_id(struct usb_interface *interface,
  358. const struct usb_device_id *id);
  359. extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
  360. int minor);
  361. extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
  362. unsigned ifnum);
  363. extern struct usb_host_interface *usb_altnum_to_altsetting(
  364. struct usb_interface *intf, unsigned int altnum);
  365. /**
  366. * usb_make_path - returns stable device path in the usb tree
  367. * @dev: the device whose path is being constructed
  368. * @buf: where to put the string
  369. * @size: how big is "buf"?
  370. *
  371. * Returns length of the string (> 0) or negative if size was too small.
  372. *
  373. * This identifier is intended to be "stable", reflecting physical paths in
  374. * hardware such as physical bus addresses for host controllers or ports on
  375. * USB hubs. That makes it stay the same until systems are physically
  376. * reconfigured, by re-cabling a tree of USB devices or by moving USB host
  377. * controllers. Adding and removing devices, including virtual root hubs
  378. * in host controller driver modules, does not change these path identifers;
  379. * neither does rebooting or re-enumerating. These are more useful identifiers
  380. * than changeable ("unstable") ones like bus numbers or device addresses.
  381. *
  382. * With a partial exception for devices connected to USB 2.0 root hubs, these
  383. * identifiers are also predictable. So long as the device tree isn't changed,
  384. * plugging any USB device into a given hub port always gives it the same path.
  385. * Because of the use of "companion" controllers, devices connected to ports on
  386. * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
  387. * high speed, and a different one if they are full or low speed.
  388. */
  389. static inline int usb_make_path (struct usb_device *dev, char *buf,
  390. size_t size)
  391. {
  392. int actual;
  393. actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
  394. dev->devpath);
  395. return (actual >= (int)size) ? -1 : actual;
  396. }
  397. /*-------------------------------------------------------------------------*/
  398. #define USB_DEVICE_ID_MATCH_DEVICE \
  399. (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
  400. #define USB_DEVICE_ID_MATCH_DEV_RANGE \
  401. (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
  402. #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
  403. (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
  404. #define USB_DEVICE_ID_MATCH_DEV_INFO \
  405. (USB_DEVICE_ID_MATCH_DEV_CLASS | \
  406. USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
  407. USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
  408. #define USB_DEVICE_ID_MATCH_INT_INFO \
  409. (USB_DEVICE_ID_MATCH_INT_CLASS | \
  410. USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
  411. USB_DEVICE_ID_MATCH_INT_PROTOCOL)
  412. /**
  413. * USB_DEVICE - macro used to describe a specific usb device
  414. * @vend: the 16 bit USB Vendor ID
  415. * @prod: the 16 bit USB Product ID
  416. *
  417. * This macro is used to create a struct usb_device_id that matches a
  418. * specific device.
  419. */
  420. #define USB_DEVICE(vend,prod) \
  421. .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
  422. .idProduct = (prod)
  423. /**
  424. * USB_DEVICE_VER - macro used to describe a specific usb device with a
  425. * version range
  426. * @vend: the 16 bit USB Vendor ID
  427. * @prod: the 16 bit USB Product ID
  428. * @lo: the bcdDevice_lo value
  429. * @hi: the bcdDevice_hi value
  430. *
  431. * This macro is used to create a struct usb_device_id that matches a
  432. * specific device, with a version range.
  433. */
  434. #define USB_DEVICE_VER(vend,prod,lo,hi) \
  435. .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
  436. .idVendor = (vend), .idProduct = (prod), \
  437. .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
  438. /**
  439. * USB_DEVICE_INFO - macro used to describe a class of usb devices
  440. * @cl: bDeviceClass value
  441. * @sc: bDeviceSubClass value
  442. * @pr: bDeviceProtocol value
  443. *
  444. * This macro is used to create a struct usb_device_id that matches a
  445. * specific class of devices.
  446. */
  447. #define USB_DEVICE_INFO(cl,sc,pr) \
  448. .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
  449. .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
  450. /**
  451. * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
  452. * @cl: bInterfaceClass value
  453. * @sc: bInterfaceSubClass value
  454. * @pr: bInterfaceProtocol value
  455. *
  456. * This macro is used to create a struct usb_device_id that matches a
  457. * specific class of interfaces.
  458. */
  459. #define USB_INTERFACE_INFO(cl,sc,pr) \
  460. .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
  461. .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
  462. /* ----------------------------------------------------------------------- */
  463. struct usb_dynids {
  464. spinlock_t lock;
  465. struct list_head list;
  466. };
  467. /**
  468. * struct usb_driver - identifies USB driver to usbcore
  469. * @name: The driver name should be unique among USB drivers,
  470. * and should normally be the same as the module name.
  471. * @probe: Called to see if the driver is willing to manage a particular
  472. * interface on a device. If it is, probe returns zero and uses
  473. * dev_set_drvdata() to associate driver-specific data with the
  474. * interface. It may also use usb_set_interface() to specify the
  475. * appropriate altsetting. If unwilling to manage the interface,
  476. * return a negative errno value.
  477. * @disconnect: Called when the interface is no longer accessible, usually
  478. * because its device has been (or is being) disconnected or the
  479. * driver module is being unloaded.
  480. * @ioctl: Used for drivers that want to talk to userspace through
  481. * the "usbfs" filesystem. This lets devices provide ways to
  482. * expose information to user space regardless of where they
  483. * do (or don't) show up otherwise in the filesystem.
  484. * @suspend: Called when the device is going to be suspended by the system.
  485. * @resume: Called when the device is being resumed by the system.
  486. * @pre_reset: Called by usb_reset_composite_device() when the device
  487. * is about to be reset.
  488. * @post_reset: Called by usb_reset_composite_device() after the device
  489. * has been reset.
  490. * @id_table: USB drivers use ID table to support hotplugging.
  491. * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
  492. * or your driver's probe function will never get called.
  493. * @dynids: used internally to hold the list of dynamically added device
  494. * ids for this driver.
  495. * @driver: the driver model core driver structure.
  496. * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
  497. * added to this driver by preventing the sysfs file from being created.
  498. *
  499. * USB drivers must provide a name, probe() and disconnect() methods,
  500. * and an id_table. Other driver fields are optional.
  501. *
  502. * The id_table is used in hotplugging. It holds a set of descriptors,
  503. * and specialized data may be associated with each entry. That table
  504. * is used by both user and kernel mode hotplugging support.
  505. *
  506. * The probe() and disconnect() methods are called in a context where
  507. * they can sleep, but they should avoid abusing the privilege. Most
  508. * work to connect to a device should be done when the device is opened,
  509. * and undone at the last close. The disconnect code needs to address
  510. * concurrency issues with respect to open() and close() methods, as
  511. * well as forcing all pending I/O requests to complete (by unlinking
  512. * them as necessary, and blocking until the unlinks complete).
  513. */
  514. struct usb_driver {
  515. const char *name;
  516. int (*probe) (struct usb_interface *intf,
  517. const struct usb_device_id *id);
  518. void (*disconnect) (struct usb_interface *intf);
  519. int (*ioctl) (struct usb_interface *intf, unsigned int code,
  520. void *buf);
  521. int (*suspend) (struct usb_interface *intf, pm_message_t message);
  522. int (*resume) (struct usb_interface *intf);
  523. void (*pre_reset) (struct usb_interface *intf);
  524. void (*post_reset) (struct usb_interface *intf);
  525. const struct usb_device_id *id_table;
  526. struct usb_dynids dynids;
  527. struct device_driver driver;
  528. unsigned int no_dynamic_id:1;
  529. };
  530. #define to_usb_driver(d) container_of(d, struct usb_driver, driver)
  531. extern struct bus_type usb_bus_type;
  532. /**
  533. * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
  534. * @name: the usb class device name for this driver. Will show up in sysfs.
  535. * @fops: pointer to the struct file_operations of this driver.
  536. * @minor_base: the start of the minor range for this driver.
  537. *
  538. * This structure is used for the usb_register_dev() and
  539. * usb_unregister_dev() functions, to consolidate a number of the
  540. * parameters used for them.
  541. */
  542. struct usb_class_driver {
  543. char *name;
  544. const struct file_operations *fops;
  545. int minor_base;
  546. };
  547. /*
  548. * use these in module_init()/module_exit()
  549. * and don't forget MODULE_DEVICE_TABLE(usb, ...)
  550. */
  551. int usb_register_driver(struct usb_driver *, struct module *);
  552. static inline int usb_register(struct usb_driver *driver)
  553. {
  554. return usb_register_driver(driver, THIS_MODULE);
  555. }
  556. extern void usb_deregister(struct usb_driver *);
  557. extern int usb_register_dev(struct usb_interface *intf,
  558. struct usb_class_driver *class_driver);
  559. extern void usb_deregister_dev(struct usb_interface *intf,
  560. struct usb_class_driver *class_driver);
  561. extern int usb_disabled(void);
  562. /* ----------------------------------------------------------------------- */
  563. /*
  564. * URB support, for asynchronous request completions
  565. */
  566. /*
  567. * urb->transfer_flags:
  568. */
  569. #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
  570. #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
  571. * ignored */
  572. #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
  573. #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
  574. #define URB_NO_FSBR 0x0020 /* UHCI-specific */
  575. #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
  576. #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
  577. * needed */
  578. struct usb_iso_packet_descriptor {
  579. unsigned int offset;
  580. unsigned int length; /* expected length */
  581. unsigned int actual_length;
  582. unsigned int status;
  583. };
  584. struct urb;
  585. struct pt_regs;
  586. typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
  587. /**
  588. * struct urb - USB Request Block
  589. * @urb_list: For use by current owner of the URB.
  590. * @pipe: Holds endpoint number, direction, type, and more.
  591. * Create these values with the eight macros available;
  592. * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
  593. * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
  594. * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
  595. * numbers range from zero to fifteen. Note that "in" endpoint two
  596. * is a different endpoint (and pipe) from "out" endpoint two.
  597. * The current configuration controls the existence, type, and
  598. * maximum packet size of any given endpoint.
  599. * @dev: Identifies the USB device to perform the request.
  600. * @status: This is read in non-iso completion functions to get the
  601. * status of the particular request. ISO requests only use it
  602. * to tell whether the URB was unlinked; detailed status for
  603. * each frame is in the fields of the iso_frame-desc.
  604. * @transfer_flags: A variety of flags may be used to affect how URB
  605. * submission, unlinking, or operation are handled. Different
  606. * kinds of URB can use different flags.
  607. * @transfer_buffer: This identifies the buffer to (or from) which
  608. * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
  609. * is set). This buffer must be suitable for DMA; allocate it with
  610. * kmalloc() or equivalent. For transfers to "in" endpoints, contents
  611. * of this buffer will be modified. This buffer is used for the data
  612. * stage of control transfers.
  613. * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
  614. * the device driver is saying that it provided this DMA address,
  615. * which the host controller driver should use in preference to the
  616. * transfer_buffer.
  617. * @transfer_buffer_length: How big is transfer_buffer. The transfer may
  618. * be broken up into chunks according to the current maximum packet
  619. * size for the endpoint, which is a function of the configuration
  620. * and is encoded in the pipe. When the length is zero, neither
  621. * transfer_buffer nor transfer_dma is used.
  622. * @actual_length: This is read in non-iso completion functions, and
  623. * it tells how many bytes (out of transfer_buffer_length) were
  624. * transferred. It will normally be the same as requested, unless
  625. * either an error was reported or a short read was performed.
  626. * The URB_SHORT_NOT_OK transfer flag may be used to make such
  627. * short reads be reported as errors.
  628. * @setup_packet: Only used for control transfers, this points to eight bytes
  629. * of setup data. Control transfers always start by sending this data
  630. * to the device. Then transfer_buffer is read or written, if needed.
  631. * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
  632. * device driver has provided this DMA address for the setup packet.
  633. * The host controller driver should use this in preference to
  634. * setup_packet.
  635. * @start_frame: Returns the initial frame for isochronous transfers.
  636. * @number_of_packets: Lists the number of ISO transfer buffers.
  637. * @interval: Specifies the polling interval for interrupt or isochronous
  638. * transfers. The units are frames (milliseconds) for for full and low
  639. * speed devices, and microframes (1/8 millisecond) for highspeed ones.
  640. * @error_count: Returns the number of ISO transfers that reported errors.
  641. * @context: For use in completion functions. This normally points to
  642. * request-specific driver context.
  643. * @complete: Completion handler. This URB is passed as the parameter to the
  644. * completion function. The completion function may then do what
  645. * it likes with the URB, including resubmitting or freeing it.
  646. * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
  647. * collect the transfer status for each buffer.
  648. *
  649. * This structure identifies USB transfer requests. URBs must be allocated by
  650. * calling usb_alloc_urb() and freed with a call to usb_free_urb().
  651. * Initialization may be done using various usb_fill_*_urb() functions. URBs
  652. * are submitted using usb_submit_urb(), and pending requests may be canceled
  653. * using usb_unlink_urb() or usb_kill_urb().
  654. *
  655. * Data Transfer Buffers:
  656. *
  657. * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
  658. * taken from the general page pool. That is provided by transfer_buffer
  659. * (control requests also use setup_packet), and host controller drivers
  660. * perform a dma mapping (and unmapping) for each buffer transferred. Those
  661. * mapping operations can be expensive on some platforms (perhaps using a dma
  662. * bounce buffer or talking to an IOMMU),
  663. * although they're cheap on commodity x86 and ppc hardware.
  664. *
  665. * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
  666. * which tell the host controller driver that no such mapping is needed since
  667. * the device driver is DMA-aware. For example, a device driver might
  668. * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
  669. * When these transfer flags are provided, host controller drivers will
  670. * attempt to use the dma addresses found in the transfer_dma and/or
  671. * setup_dma fields rather than determining a dma address themselves. (Note
  672. * that transfer_buffer and setup_packet must still be set because not all
  673. * host controllers use DMA, nor do virtual root hubs).
  674. *
  675. * Initialization:
  676. *
  677. * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
  678. * zero), and complete fields. All URBs must also initialize
  679. * transfer_buffer and transfer_buffer_length. They may provide the
  680. * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
  681. * to be treated as errors; that flag is invalid for write requests.
  682. *
  683. * Bulk URBs may
  684. * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
  685. * should always terminate with a short packet, even if it means adding an
  686. * extra zero length packet.
  687. *
  688. * Control URBs must provide a setup_packet. The setup_packet and
  689. * transfer_buffer may each be mapped for DMA or not, independently of
  690. * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
  691. * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
  692. * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
  693. *
  694. * Interrupt URBs must provide an interval, saying how often (in milliseconds
  695. * or, for highspeed devices, 125 microsecond units)
  696. * to poll for transfers. After the URB has been submitted, the interval
  697. * field reflects how the transfer was actually scheduled.
  698. * The polling interval may be more frequent than requested.
  699. * For example, some controllers have a maximum interval of 32 milliseconds,
  700. * while others support intervals of up to 1024 milliseconds.
  701. * Isochronous URBs also have transfer intervals. (Note that for isochronous
  702. * endpoints, as well as high speed interrupt endpoints, the encoding of
  703. * the transfer interval in the endpoint descriptor is logarithmic.
  704. * Device drivers must convert that value to linear units themselves.)
  705. *
  706. * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
  707. * the host controller to schedule the transfer as soon as bandwidth
  708. * utilization allows, and then set start_frame to reflect the actual frame
  709. * selected during submission. Otherwise drivers must specify the start_frame
  710. * and handle the case where the transfer can't begin then. However, drivers
  711. * won't know how bandwidth is currently allocated, and while they can
  712. * find the current frame using usb_get_current_frame_number () they can't
  713. * know the range for that frame number. (Ranges for frame counter values
  714. * are HC-specific, and can go from 256 to 65536 frames from "now".)
  715. *
  716. * Isochronous URBs have a different data transfer model, in part because
  717. * the quality of service is only "best effort". Callers provide specially
  718. * allocated URBs, with number_of_packets worth of iso_frame_desc structures
  719. * at the end. Each such packet is an individual ISO transfer. Isochronous
  720. * URBs are normally queued, submitted by drivers to arrange that
  721. * transfers are at least double buffered, and then explicitly resubmitted
  722. * in completion handlers, so
  723. * that data (such as audio or video) streams at as constant a rate as the
  724. * host controller scheduler can support.
  725. *
  726. * Completion Callbacks:
  727. *
  728. * The completion callback is made in_interrupt(), and one of the first
  729. * things that a completion handler should do is check the status field.
  730. * The status field is provided for all URBs. It is used to report
  731. * unlinked URBs, and status for all non-ISO transfers. It should not
  732. * be examined before the URB is returned to the completion handler.
  733. *
  734. * The context field is normally used to link URBs back to the relevant
  735. * driver or request state.
  736. *
  737. * When the completion callback is invoked for non-isochronous URBs, the
  738. * actual_length field tells how many bytes were transferred. This field
  739. * is updated even when the URB terminated with an error or was unlinked.
  740. *
  741. * ISO transfer status is reported in the status and actual_length fields
  742. * of the iso_frame_desc array, and the number of errors is reported in
  743. * error_count. Completion callbacks for ISO transfers will normally
  744. * (re)submit URBs to ensure a constant transfer rate.
  745. *
  746. * Note that even fields marked "public" should not be touched by the driver
  747. * when the urb is owned by the hcd, that is, since the call to
  748. * usb_submit_urb() till the entry into the completion routine.
  749. */
  750. struct urb
  751. {
  752. /* private: usb core and host controller only fields in the urb */
  753. struct kref kref; /* reference count of the URB */
  754. spinlock_t lock; /* lock for the URB */
  755. void *hcpriv; /* private data for host controller */
  756. int bandwidth; /* bandwidth for INT/ISO request */
  757. atomic_t use_count; /* concurrent submissions counter */
  758. u8 reject; /* submissions will fail */
  759. /* public: documented fields in the urb that can be used by drivers */
  760. struct list_head urb_list; /* list head for use by the urb's
  761. * current owner */
  762. struct usb_device *dev; /* (in) pointer to associated device */
  763. unsigned int pipe; /* (in) pipe information */
  764. int status; /* (return) non-ISO status */
  765. unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
  766. void *transfer_buffer; /* (in) associated data buffer */
  767. dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
  768. int transfer_buffer_length; /* (in) data buffer length */
  769. int actual_length; /* (return) actual transfer length */
  770. unsigned char *setup_packet; /* (in) setup packet (control only) */
  771. dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
  772. int start_frame; /* (modify) start frame (ISO) */
  773. int number_of_packets; /* (in) number of ISO packets */
  774. int interval; /* (modify) transfer interval
  775. * (INT/ISO) */
  776. int error_count; /* (return) number of ISO errors */
  777. void *context; /* (in) context for completion */
  778. usb_complete_t complete; /* (in) completion routine */
  779. struct usb_iso_packet_descriptor iso_frame_desc[0];
  780. /* (in) ISO ONLY */
  781. };
  782. /* ----------------------------------------------------------------------- */
  783. /**
  784. * usb_fill_control_urb - initializes a control urb
  785. * @urb: pointer to the urb to initialize.
  786. * @dev: pointer to the struct usb_device for this urb.
  787. * @pipe: the endpoint pipe
  788. * @setup_packet: pointer to the setup_packet buffer
  789. * @transfer_buffer: pointer to the transfer buffer
  790. * @buffer_length: length of the transfer buffer
  791. * @complete: pointer to the usb_complete_t function
  792. * @context: what to set the urb context to.
  793. *
  794. * Initializes a control urb with the proper information needed to submit
  795. * it to a device.
  796. */
  797. static inline void usb_fill_control_urb (struct urb *urb,
  798. struct usb_device *dev,
  799. unsigned int pipe,
  800. unsigned char *setup_packet,
  801. void *transfer_buffer,
  802. int buffer_length,
  803. usb_complete_t complete,
  804. void *context)
  805. {
  806. spin_lock_init(&urb->lock);
  807. urb->dev = dev;
  808. urb->pipe = pipe;
  809. urb->setup_packet = setup_packet;
  810. urb->transfer_buffer = transfer_buffer;
  811. urb->transfer_buffer_length = buffer_length;
  812. urb->complete = complete;
  813. urb->context = context;
  814. }
  815. /**
  816. * usb_fill_bulk_urb - macro to help initialize a bulk urb
  817. * @urb: pointer to the urb to initialize.
  818. * @dev: pointer to the struct usb_device for this urb.
  819. * @pipe: the endpoint pipe
  820. * @transfer_buffer: pointer to the transfer buffer
  821. * @buffer_length: length of the transfer buffer
  822. * @complete: pointer to the usb_complete_t function
  823. * @context: what to set the urb context to.
  824. *
  825. * Initializes a bulk urb with the proper information needed to submit it
  826. * to a device.
  827. */
  828. static inline void usb_fill_bulk_urb (struct urb *urb,
  829. struct usb_device *dev,
  830. unsigned int pipe,
  831. void *transfer_buffer,
  832. int buffer_length,
  833. usb_complete_t complete,
  834. void *context)
  835. {
  836. spin_lock_init(&urb->lock);
  837. urb->dev = dev;
  838. urb->pipe = pipe;
  839. urb->transfer_buffer = transfer_buffer;
  840. urb->transfer_buffer_length = buffer_length;
  841. urb->complete = complete;
  842. urb->context = context;
  843. }
  844. /**
  845. * usb_fill_int_urb - macro to help initialize a interrupt urb
  846. * @urb: pointer to the urb to initialize.
  847. * @dev: pointer to the struct usb_device for this urb.
  848. * @pipe: the endpoint pipe
  849. * @transfer_buffer: pointer to the transfer buffer
  850. * @buffer_length: length of the transfer buffer
  851. * @complete: pointer to the usb_complete_t function
  852. * @context: what to set the urb context to.
  853. * @interval: what to set the urb interval to, encoded like
  854. * the endpoint descriptor's bInterval value.
  855. *
  856. * Initializes a interrupt urb with the proper information needed to submit
  857. * it to a device.
  858. * Note that high speed interrupt endpoints use a logarithmic encoding of
  859. * the endpoint interval, and express polling intervals in microframes
  860. * (eight per millisecond) rather than in frames (one per millisecond).
  861. */
  862. static inline void usb_fill_int_urb (struct urb *urb,
  863. struct usb_device *dev,
  864. unsigned int pipe,
  865. void *transfer_buffer,
  866. int buffer_length,
  867. usb_complete_t complete,
  868. void *context,
  869. int interval)
  870. {
  871. spin_lock_init(&urb->lock);
  872. urb->dev = dev;
  873. urb->pipe = pipe;
  874. urb->transfer_buffer = transfer_buffer;
  875. urb->transfer_buffer_length = buffer_length;
  876. urb->complete = complete;
  877. urb->context = context;
  878. if (dev->speed == USB_SPEED_HIGH)
  879. urb->interval = 1 << (interval - 1);
  880. else
  881. urb->interval = interval;
  882. urb->start_frame = -1;
  883. }
  884. extern void usb_init_urb(struct urb *urb);
  885. extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
  886. extern void usb_free_urb(struct urb *urb);
  887. #define usb_put_urb usb_free_urb
  888. extern struct urb *usb_get_urb(struct urb *urb);
  889. extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
  890. extern int usb_unlink_urb(struct urb *urb);
  891. extern void usb_kill_urb(struct urb *urb);
  892. #define HAVE_USB_BUFFERS
  893. void *usb_buffer_alloc (struct usb_device *dev, size_t size,
  894. gfp_t mem_flags, dma_addr_t *dma);
  895. void usb_buffer_free (struct usb_device *dev, size_t size,
  896. void *addr, dma_addr_t dma);
  897. #if 0
  898. struct urb *usb_buffer_map (struct urb *urb);
  899. void usb_buffer_dmasync (struct urb *urb);
  900. void usb_buffer_unmap (struct urb *urb);
  901. #endif
  902. struct scatterlist;
  903. int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
  904. struct scatterlist *sg, int nents);
  905. #if 0
  906. void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
  907. struct scatterlist *sg, int n_hw_ents);
  908. #endif
  909. void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
  910. struct scatterlist *sg, int n_hw_ents);
  911. /*-------------------------------------------------------------------*
  912. * SYNCHRONOUS CALL SUPPORT *
  913. *-------------------------------------------------------------------*/
  914. extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
  915. __u8 request, __u8 requesttype, __u16 value, __u16 index,
  916. void *data, __u16 size, int timeout);
  917. extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
  918. void *data, int len, int *actual_length, int timeout);
  919. extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
  920. void *data, int len, int *actual_length,
  921. int timeout);
  922. /* wrappers around usb_control_msg() for the most common standard requests */
  923. extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
  924. unsigned char descindex, void *buf, int size);
  925. extern int usb_get_status(struct usb_device *dev,
  926. int type, int target, void *data);
  927. extern int usb_string(struct usb_device *dev, int index,
  928. char *buf, size_t size);
  929. /* wrappers that also update important state inside usbcore */
  930. extern int usb_clear_halt(struct usb_device *dev, int pipe);
  931. extern int usb_reset_configuration(struct usb_device *dev);
  932. extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
  933. /*
  934. * timeouts, in milliseconds, used for sending/receiving control messages
  935. * they typically complete within a few frames (msec) after they're issued
  936. * USB identifies 5 second timeouts, maybe more in a few cases, and a few
  937. * slow devices (like some MGE Ellipse UPSes) actually push that limit.
  938. */
  939. #define USB_CTRL_GET_TIMEOUT 5000
  940. #define USB_CTRL_SET_TIMEOUT 5000
  941. /**
  942. * struct usb_sg_request - support for scatter/gather I/O
  943. * @status: zero indicates success, else negative errno
  944. * @bytes: counts bytes transferred.
  945. *
  946. * These requests are initialized using usb_sg_init(), and then are used
  947. * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
  948. * members of the request object aren't for driver access.
  949. *
  950. * The status and bytecount values are valid only after usb_sg_wait()
  951. * returns. If the status is zero, then the bytecount matches the total
  952. * from the request.
  953. *
  954. * After an error completion, drivers may need to clear a halt condition
  955. * on the endpoint.
  956. */
  957. struct usb_sg_request {
  958. int status;
  959. size_t bytes;
  960. /*
  961. * members below are private: to usbcore,
  962. * and are not provided for driver access!
  963. */
  964. spinlock_t lock;
  965. struct usb_device *dev;
  966. int pipe;
  967. struct scatterlist *sg;
  968. int nents;
  969. int entries;
  970. struct urb **urbs;
  971. int count;
  972. struct completion complete;
  973. };
  974. int usb_sg_init (
  975. struct usb_sg_request *io,
  976. struct usb_device *dev,
  977. unsigned pipe,
  978. unsigned period,
  979. struct scatterlist *sg,
  980. int nents,
  981. size_t length,
  982. gfp_t mem_flags
  983. );
  984. void usb_sg_cancel (struct usb_sg_request *io);
  985. void usb_sg_wait (struct usb_sg_request *io);
  986. /* ----------------------------------------------------------------------- */
  987. /*
  988. * For various legacy reasons, Linux has a small cookie that's paired with
  989. * a struct usb_device to identify an endpoint queue. Queue characteristics
  990. * are defined by the endpoint's descriptor. This cookie is called a "pipe",
  991. * an unsigned int encoded as:
  992. *
  993. * - direction: bit 7 (0 = Host-to-Device [Out],
  994. * 1 = Device-to-Host [In] ...
  995. * like endpoint bEndpointAddress)
  996. * - device address: bits 8-14 ... bit positions known to uhci-hcd
  997. * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
  998. * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
  999. * 10 = control, 11 = bulk)
  1000. *
  1001. * Given the device address and endpoint descriptor, pipes are redundant.
  1002. */
  1003. /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
  1004. /* (yet ... they're the values used by usbfs) */
  1005. #define PIPE_ISOCHRONOUS 0
  1006. #define PIPE_INTERRUPT 1
  1007. #define PIPE_CONTROL 2
  1008. #define PIPE_BULK 3
  1009. #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
  1010. #define usb_pipeout(pipe) (!usb_pipein(pipe))
  1011. #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
  1012. #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
  1013. #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
  1014. #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
  1015. #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
  1016. #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
  1017. #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
  1018. /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
  1019. #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
  1020. #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
  1021. #define usb_settoggle(dev, ep, out, bit) \
  1022. ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
  1023. ((bit) << (ep)))
  1024. static inline unsigned int __create_pipe(struct usb_device *dev,
  1025. unsigned int endpoint)
  1026. {
  1027. return (dev->devnum << 8) | (endpoint << 15);
  1028. }
  1029. /* Create various pipes... */
  1030. #define usb_sndctrlpipe(dev,endpoint) \
  1031. ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
  1032. #define usb_rcvctrlpipe(dev,endpoint) \
  1033. ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
  1034. #define usb_sndisocpipe(dev,endpoint) \
  1035. ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
  1036. #define usb_rcvisocpipe(dev,endpoint) \
  1037. ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
  1038. #define usb_sndbulkpipe(dev,endpoint) \
  1039. ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
  1040. #define usb_rcvbulkpipe(dev,endpoint) \
  1041. ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
  1042. #define usb_sndintpipe(dev,endpoint) \
  1043. ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
  1044. #define usb_rcvintpipe(dev,endpoint) \
  1045. ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
  1046. /*-------------------------------------------------------------------------*/
  1047. static inline __u16
  1048. usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
  1049. {
  1050. struct usb_host_endpoint *ep;
  1051. unsigned epnum = usb_pipeendpoint(pipe);
  1052. if (is_out) {
  1053. WARN_ON(usb_pipein(pipe));
  1054. ep = udev->ep_out[epnum];
  1055. } else {
  1056. WARN_ON(usb_pipeout(pipe));
  1057. ep = udev->ep_in[epnum];
  1058. }
  1059. if (!ep)
  1060. return 0;
  1061. /* NOTE: only 0x07ff bits are for packet size... */
  1062. return le16_to_cpu(ep->desc.wMaxPacketSize);
  1063. }
  1064. /* ----------------------------------------------------------------------- */
  1065. /* Events from the usb core */
  1066. #define USB_DEVICE_ADD 0x0001
  1067. #define USB_DEVICE_REMOVE 0x0002
  1068. #define USB_BUS_ADD 0x0003
  1069. #define USB_BUS_REMOVE 0x0004
  1070. extern void usb_register_notify(struct notifier_block *nb);
  1071. extern void usb_unregister_notify(struct notifier_block *nb);
  1072. #ifdef DEBUG
  1073. #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
  1074. __FILE__ , ## arg)
  1075. #else
  1076. #define dbg(format, arg...) do {} while (0)
  1077. #endif
  1078. #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
  1079. __FILE__ , ## arg)
  1080. #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
  1081. __FILE__ , ## arg)
  1082. #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
  1083. __FILE__ , ## arg)
  1084. #endif /* __KERNEL__ */
  1085. #endif