time.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. /*
  2. * linux/arch/ia64/kernel/time.c
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * Stephane Eranian <eranian@hpl.hp.com>
  6. * David Mosberger <davidm@hpl.hp.com>
  7. * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  8. * Copyright (C) 1999-2000 VA Linux Systems
  9. * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/profile.h>
  16. #include <linux/sched.h>
  17. #include <linux/time.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/efi.h>
  20. #include <linux/timex.h>
  21. #include <linux/timekeeper_internal.h>
  22. #include <linux/platform_device.h>
  23. #include <asm/machvec.h>
  24. #include <asm/delay.h>
  25. #include <asm/hw_irq.h>
  26. #include <asm/paravirt.h>
  27. #include <asm/ptrace.h>
  28. #include <asm/sal.h>
  29. #include <asm/sections.h>
  30. #include "fsyscall_gtod_data.h"
  31. static cycle_t itc_get_cycles(struct clocksource *cs);
  32. struct fsyscall_gtod_data_t fsyscall_gtod_data;
  33. struct itc_jitter_data_t itc_jitter_data;
  34. volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  35. #ifdef CONFIG_IA64_DEBUG_IRQ
  36. unsigned long last_cli_ip;
  37. EXPORT_SYMBOL(last_cli_ip);
  38. #endif
  39. #ifdef CONFIG_PARAVIRT
  40. /* We need to define a real function for sched_clock, to override the
  41. weak default version */
  42. unsigned long long sched_clock(void)
  43. {
  44. return paravirt_sched_clock();
  45. }
  46. #endif
  47. #ifdef CONFIG_PARAVIRT
  48. static void
  49. paravirt_clocksource_resume(struct clocksource *cs)
  50. {
  51. if (pv_time_ops.clocksource_resume)
  52. pv_time_ops.clocksource_resume();
  53. }
  54. #endif
  55. static struct clocksource clocksource_itc = {
  56. .name = "itc",
  57. .rating = 350,
  58. .read = itc_get_cycles,
  59. .mask = CLOCKSOURCE_MASK(64),
  60. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  61. #ifdef CONFIG_PARAVIRT
  62. .resume = paravirt_clocksource_resume,
  63. #endif
  64. };
  65. static struct clocksource *itc_clocksource;
  66. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  67. #include <linux/kernel_stat.h>
  68. extern cputime_t cycle_to_cputime(u64 cyc);
  69. void vtime_account_user(struct task_struct *tsk)
  70. {
  71. cputime_t delta_utime;
  72. struct thread_info *ti = task_thread_info(tsk);
  73. if (ti->ac_utime) {
  74. delta_utime = cycle_to_cputime(ti->ac_utime);
  75. account_user_time(tsk, delta_utime, delta_utime);
  76. ti->ac_utime = 0;
  77. }
  78. }
  79. /*
  80. * Called from the context switch with interrupts disabled, to charge all
  81. * accumulated times to the current process, and to prepare accounting on
  82. * the next process.
  83. */
  84. void vtime_task_switch(struct task_struct *prev)
  85. {
  86. struct thread_info *pi = task_thread_info(prev);
  87. struct thread_info *ni = task_thread_info(current);
  88. if (idle_task(smp_processor_id()) != prev)
  89. vtime_account_system(prev);
  90. else
  91. vtime_account_idle(prev);
  92. vtime_account_user(prev);
  93. pi->ac_stamp = ni->ac_stamp;
  94. ni->ac_stime = ni->ac_utime = 0;
  95. }
  96. /*
  97. * Account time for a transition between system, hard irq or soft irq state.
  98. * Note that this function is called with interrupts enabled.
  99. */
  100. static cputime_t vtime_delta(struct task_struct *tsk)
  101. {
  102. struct thread_info *ti = task_thread_info(tsk);
  103. cputime_t delta_stime;
  104. __u64 now;
  105. now = ia64_get_itc();
  106. delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
  107. ti->ac_stime = 0;
  108. ti->ac_stamp = now;
  109. return delta_stime;
  110. }
  111. void vtime_account_system(struct task_struct *tsk)
  112. {
  113. cputime_t delta = vtime_delta(tsk);
  114. account_system_time(tsk, 0, delta, delta);
  115. }
  116. void vtime_account_idle(struct task_struct *tsk)
  117. {
  118. account_idle_time(vtime_delta(tsk));
  119. }
  120. #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
  121. static irqreturn_t
  122. timer_interrupt (int irq, void *dev_id)
  123. {
  124. unsigned long new_itm;
  125. if (cpu_is_offline(smp_processor_id())) {
  126. return IRQ_HANDLED;
  127. }
  128. platform_timer_interrupt(irq, dev_id);
  129. new_itm = local_cpu_data->itm_next;
  130. if (!time_after(ia64_get_itc(), new_itm))
  131. printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
  132. ia64_get_itc(), new_itm);
  133. profile_tick(CPU_PROFILING);
  134. if (paravirt_do_steal_accounting(&new_itm))
  135. goto skip_process_time_accounting;
  136. while (1) {
  137. update_process_times(user_mode(get_irq_regs()));
  138. new_itm += local_cpu_data->itm_delta;
  139. if (smp_processor_id() == time_keeper_id)
  140. xtime_update(1);
  141. local_cpu_data->itm_next = new_itm;
  142. if (time_after(new_itm, ia64_get_itc()))
  143. break;
  144. /*
  145. * Allow IPIs to interrupt the timer loop.
  146. */
  147. local_irq_enable();
  148. local_irq_disable();
  149. }
  150. skip_process_time_accounting:
  151. do {
  152. /*
  153. * If we're too close to the next clock tick for
  154. * comfort, we increase the safety margin by
  155. * intentionally dropping the next tick(s). We do NOT
  156. * update itm.next because that would force us to call
  157. * xtime_update() which in turn would let our clock run
  158. * too fast (with the potentially devastating effect
  159. * of losing monotony of time).
  160. */
  161. while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
  162. new_itm += local_cpu_data->itm_delta;
  163. ia64_set_itm(new_itm);
  164. /* double check, in case we got hit by a (slow) PMI: */
  165. } while (time_after_eq(ia64_get_itc(), new_itm));
  166. return IRQ_HANDLED;
  167. }
  168. /*
  169. * Encapsulate access to the itm structure for SMP.
  170. */
  171. void
  172. ia64_cpu_local_tick (void)
  173. {
  174. int cpu = smp_processor_id();
  175. unsigned long shift = 0, delta;
  176. /* arrange for the cycle counter to generate a timer interrupt: */
  177. ia64_set_itv(IA64_TIMER_VECTOR);
  178. delta = local_cpu_data->itm_delta;
  179. /*
  180. * Stagger the timer tick for each CPU so they don't occur all at (almost) the
  181. * same time:
  182. */
  183. if (cpu) {
  184. unsigned long hi = 1UL << ia64_fls(cpu);
  185. shift = (2*(cpu - hi) + 1) * delta/hi/2;
  186. }
  187. local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
  188. ia64_set_itm(local_cpu_data->itm_next);
  189. }
  190. static int nojitter;
  191. static int __init nojitter_setup(char *str)
  192. {
  193. nojitter = 1;
  194. printk("Jitter checking for ITC timers disabled\n");
  195. return 1;
  196. }
  197. __setup("nojitter", nojitter_setup);
  198. void __devinit
  199. ia64_init_itm (void)
  200. {
  201. unsigned long platform_base_freq, itc_freq;
  202. struct pal_freq_ratio itc_ratio, proc_ratio;
  203. long status, platform_base_drift, itc_drift;
  204. /*
  205. * According to SAL v2.6, we need to use a SAL call to determine the platform base
  206. * frequency and then a PAL call to determine the frequency ratio between the ITC
  207. * and the base frequency.
  208. */
  209. status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
  210. &platform_base_freq, &platform_base_drift);
  211. if (status != 0) {
  212. printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
  213. } else {
  214. status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
  215. if (status != 0)
  216. printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
  217. }
  218. if (status != 0) {
  219. /* invent "random" values */
  220. printk(KERN_ERR
  221. "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
  222. platform_base_freq = 100000000;
  223. platform_base_drift = -1; /* no drift info */
  224. itc_ratio.num = 3;
  225. itc_ratio.den = 1;
  226. }
  227. if (platform_base_freq < 40000000) {
  228. printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
  229. platform_base_freq);
  230. platform_base_freq = 75000000;
  231. platform_base_drift = -1;
  232. }
  233. if (!proc_ratio.den)
  234. proc_ratio.den = 1; /* avoid division by zero */
  235. if (!itc_ratio.den)
  236. itc_ratio.den = 1; /* avoid division by zero */
  237. itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
  238. local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
  239. printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
  240. "ITC freq=%lu.%03luMHz", smp_processor_id(),
  241. platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
  242. itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
  243. if (platform_base_drift != -1) {
  244. itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
  245. printk("+/-%ldppm\n", itc_drift);
  246. } else {
  247. itc_drift = -1;
  248. printk("\n");
  249. }
  250. local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
  251. local_cpu_data->itc_freq = itc_freq;
  252. local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
  253. local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
  254. + itc_freq/2)/itc_freq;
  255. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  256. #ifdef CONFIG_SMP
  257. /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
  258. * Jitter compensation requires a cmpxchg which may limit
  259. * the scalability of the syscalls for retrieving time.
  260. * The ITC synchronization is usually successful to within a few
  261. * ITC ticks but this is not a sure thing. If you need to improve
  262. * timer performance in SMP situations then boot the kernel with the
  263. * "nojitter" option. However, doing so may result in time fluctuating (maybe
  264. * even going backward) if the ITC offsets between the individual CPUs
  265. * are too large.
  266. */
  267. if (!nojitter)
  268. itc_jitter_data.itc_jitter = 1;
  269. #endif
  270. } else
  271. /*
  272. * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
  273. * ITC values may fluctuate significantly between processors.
  274. * Clock should not be used for hrtimers. Mark itc as only
  275. * useful for boot and testing.
  276. *
  277. * Note that jitter compensation is off! There is no point of
  278. * synchronizing ITCs since they may be large differentials
  279. * that change over time.
  280. *
  281. * The only way to fix this would be to repeatedly sync the
  282. * ITCs. Until that time we have to avoid ITC.
  283. */
  284. clocksource_itc.rating = 50;
  285. paravirt_init_missing_ticks_accounting(smp_processor_id());
  286. /* avoid softlock up message when cpu is unplug and plugged again. */
  287. touch_softlockup_watchdog();
  288. /* Setup the CPU local timer tick */
  289. ia64_cpu_local_tick();
  290. if (!itc_clocksource) {
  291. clocksource_register_hz(&clocksource_itc,
  292. local_cpu_data->itc_freq);
  293. itc_clocksource = &clocksource_itc;
  294. }
  295. }
  296. static cycle_t itc_get_cycles(struct clocksource *cs)
  297. {
  298. unsigned long lcycle, now, ret;
  299. if (!itc_jitter_data.itc_jitter)
  300. return get_cycles();
  301. lcycle = itc_jitter_data.itc_lastcycle;
  302. now = get_cycles();
  303. if (lcycle && time_after(lcycle, now))
  304. return lcycle;
  305. /*
  306. * Keep track of the last timer value returned.
  307. * In an SMP environment, you could lose out in contention of
  308. * cmpxchg. If so, your cmpxchg returns new value which the
  309. * winner of contention updated to. Use the new value instead.
  310. */
  311. ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
  312. if (unlikely(ret != lcycle))
  313. return ret;
  314. return now;
  315. }
  316. static struct irqaction timer_irqaction = {
  317. .handler = timer_interrupt,
  318. .flags = IRQF_DISABLED | IRQF_IRQPOLL,
  319. .name = "timer"
  320. };
  321. static struct platform_device rtc_efi_dev = {
  322. .name = "rtc-efi",
  323. .id = -1,
  324. };
  325. static int __init rtc_init(void)
  326. {
  327. if (platform_device_register(&rtc_efi_dev) < 0)
  328. printk(KERN_ERR "unable to register rtc device...\n");
  329. /* not necessarily an error */
  330. return 0;
  331. }
  332. module_init(rtc_init);
  333. void read_persistent_clock(struct timespec *ts)
  334. {
  335. efi_gettimeofday(ts);
  336. }
  337. void __init
  338. time_init (void)
  339. {
  340. register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
  341. ia64_init_itm();
  342. }
  343. /*
  344. * Generic udelay assumes that if preemption is allowed and the thread
  345. * migrates to another CPU, that the ITC values are synchronized across
  346. * all CPUs.
  347. */
  348. static void
  349. ia64_itc_udelay (unsigned long usecs)
  350. {
  351. unsigned long start = ia64_get_itc();
  352. unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
  353. while (time_before(ia64_get_itc(), end))
  354. cpu_relax();
  355. }
  356. void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
  357. void
  358. udelay (unsigned long usecs)
  359. {
  360. (*ia64_udelay)(usecs);
  361. }
  362. EXPORT_SYMBOL(udelay);
  363. /* IA64 doesn't cache the timezone */
  364. void update_vsyscall_tz(void)
  365. {
  366. }
  367. void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
  368. struct clocksource *c, u32 mult)
  369. {
  370. write_seqcount_begin(&fsyscall_gtod_data.seq);
  371. /* copy fsyscall clock data */
  372. fsyscall_gtod_data.clk_mask = c->mask;
  373. fsyscall_gtod_data.clk_mult = mult;
  374. fsyscall_gtod_data.clk_shift = c->shift;
  375. fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
  376. fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
  377. /* copy kernel time structures */
  378. fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
  379. fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
  380. fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
  381. + wall->tv_sec;
  382. fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
  383. + wall->tv_nsec;
  384. /* normalize */
  385. while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
  386. fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
  387. fsyscall_gtod_data.monotonic_time.tv_sec++;
  388. }
  389. write_seqcount_end(&fsyscall_gtod_data.seq);
  390. }