udp.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The User Datagram Protocol (UDP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11. * Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12. * Hirokazu Takahashi, <taka@valinux.co.jp>
  13. *
  14. * Fixes:
  15. * Alan Cox : verify_area() calls
  16. * Alan Cox : stopped close while in use off icmp
  17. * messages. Not a fix but a botch that
  18. * for udp at least is 'valid'.
  19. * Alan Cox : Fixed icmp handling properly
  20. * Alan Cox : Correct error for oversized datagrams
  21. * Alan Cox : Tidied select() semantics.
  22. * Alan Cox : udp_err() fixed properly, also now
  23. * select and read wake correctly on errors
  24. * Alan Cox : udp_send verify_area moved to avoid mem leak
  25. * Alan Cox : UDP can count its memory
  26. * Alan Cox : send to an unknown connection causes
  27. * an ECONNREFUSED off the icmp, but
  28. * does NOT close.
  29. * Alan Cox : Switched to new sk_buff handlers. No more backlog!
  30. * Alan Cox : Using generic datagram code. Even smaller and the PEEK
  31. * bug no longer crashes it.
  32. * Fred Van Kempen : Net2e support for sk->broadcast.
  33. * Alan Cox : Uses skb_free_datagram
  34. * Alan Cox : Added get/set sockopt support.
  35. * Alan Cox : Broadcasting without option set returns EACCES.
  36. * Alan Cox : No wakeup calls. Instead we now use the callbacks.
  37. * Alan Cox : Use ip_tos and ip_ttl
  38. * Alan Cox : SNMP Mibs
  39. * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
  40. * Matt Dillon : UDP length checks.
  41. * Alan Cox : Smarter af_inet used properly.
  42. * Alan Cox : Use new kernel side addressing.
  43. * Alan Cox : Incorrect return on truncated datagram receive.
  44. * Arnt Gulbrandsen : New udp_send and stuff
  45. * Alan Cox : Cache last socket
  46. * Alan Cox : Route cache
  47. * Jon Peatfield : Minor efficiency fix to sendto().
  48. * Mike Shaver : RFC1122 checks.
  49. * Alan Cox : Nonblocking error fix.
  50. * Willy Konynenberg : Transparent proxying support.
  51. * Mike McLagan : Routing by source
  52. * David S. Miller : New socket lookup architecture.
  53. * Last socket cache retained as it
  54. * does have a high hit rate.
  55. * Olaf Kirch : Don't linearise iovec on sendmsg.
  56. * Andi Kleen : Some cleanups, cache destination entry
  57. * for connect.
  58. * Vitaly E. Lavrov : Transparent proxy revived after year coma.
  59. * Melvin Smith : Check msg_name not msg_namelen in sendto(),
  60. * return ENOTCONN for unconnected sockets (POSIX)
  61. * Janos Farkas : don't deliver multi/broadcasts to a different
  62. * bound-to-device socket
  63. * Hirokazu Takahashi : HW checksumming for outgoing UDP
  64. * datagrams.
  65. * Hirokazu Takahashi : sendfile() on UDP works now.
  66. * Arnaldo C. Melo : convert /proc/net/udp to seq_file
  67. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  68. * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
  69. * a single port at the same time.
  70. * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71. * James Chapman : Add L2TP encapsulation type.
  72. *
  73. *
  74. * This program is free software; you can redistribute it and/or
  75. * modify it under the terms of the GNU General Public License
  76. * as published by the Free Software Foundation; either version
  77. * 2 of the License, or (at your option) any later version.
  78. */
  79. #define pr_fmt(fmt) "UDP: " fmt
  80. #include <asm/uaccess.h>
  81. #include <asm/ioctls.h>
  82. #include <linux/bootmem.h>
  83. #include <linux/highmem.h>
  84. #include <linux/swap.h>
  85. #include <linux/types.h>
  86. #include <linux/fcntl.h>
  87. #include <linux/module.h>
  88. #include <linux/socket.h>
  89. #include <linux/sockios.h>
  90. #include <linux/igmp.h>
  91. #include <linux/in.h>
  92. #include <linux/errno.h>
  93. #include <linux/timer.h>
  94. #include <linux/mm.h>
  95. #include <linux/inet.h>
  96. #include <linux/netdevice.h>
  97. #include <linux/slab.h>
  98. #include <net/tcp_states.h>
  99. #include <linux/skbuff.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <net/net_namespace.h>
  103. #include <net/icmp.h>
  104. #include <net/inet_hashtables.h>
  105. #include <net/route.h>
  106. #include <net/checksum.h>
  107. #include <net/xfrm.h>
  108. #include <trace/events/udp.h>
  109. #include <linux/static_key.h>
  110. #include <trace/events/skb.h>
  111. #include <net/busy_poll.h>
  112. #include "udp_impl.h"
  113. struct udp_table udp_table __read_mostly;
  114. EXPORT_SYMBOL(udp_table);
  115. long sysctl_udp_mem[3] __read_mostly;
  116. EXPORT_SYMBOL(sysctl_udp_mem);
  117. int sysctl_udp_rmem_min __read_mostly;
  118. EXPORT_SYMBOL(sysctl_udp_rmem_min);
  119. int sysctl_udp_wmem_min __read_mostly;
  120. EXPORT_SYMBOL(sysctl_udp_wmem_min);
  121. atomic_long_t udp_memory_allocated;
  122. EXPORT_SYMBOL(udp_memory_allocated);
  123. #define MAX_UDP_PORTS 65536
  124. #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
  125. static int udp_lib_lport_inuse(struct net *net, __u16 num,
  126. const struct udp_hslot *hslot,
  127. unsigned long *bitmap,
  128. struct sock *sk,
  129. int (*saddr_comp)(const struct sock *sk1,
  130. const struct sock *sk2),
  131. unsigned int log)
  132. {
  133. struct sock *sk2;
  134. struct hlist_nulls_node *node;
  135. kuid_t uid = sock_i_uid(sk);
  136. sk_nulls_for_each(sk2, node, &hslot->head)
  137. if (net_eq(sock_net(sk2), net) &&
  138. sk2 != sk &&
  139. (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
  140. (!sk2->sk_reuse || !sk->sk_reuse) &&
  141. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  142. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  143. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  144. !uid_eq(uid, sock_i_uid(sk2))) &&
  145. (*saddr_comp)(sk, sk2)) {
  146. if (bitmap)
  147. __set_bit(udp_sk(sk2)->udp_port_hash >> log,
  148. bitmap);
  149. else
  150. return 1;
  151. }
  152. return 0;
  153. }
  154. /*
  155. * Note: we still hold spinlock of primary hash chain, so no other writer
  156. * can insert/delete a socket with local_port == num
  157. */
  158. static int udp_lib_lport_inuse2(struct net *net, __u16 num,
  159. struct udp_hslot *hslot2,
  160. struct sock *sk,
  161. int (*saddr_comp)(const struct sock *sk1,
  162. const struct sock *sk2))
  163. {
  164. struct sock *sk2;
  165. struct hlist_nulls_node *node;
  166. kuid_t uid = sock_i_uid(sk);
  167. int res = 0;
  168. spin_lock(&hslot2->lock);
  169. udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
  170. if (net_eq(sock_net(sk2), net) &&
  171. sk2 != sk &&
  172. (udp_sk(sk2)->udp_port_hash == num) &&
  173. (!sk2->sk_reuse || !sk->sk_reuse) &&
  174. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  175. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  176. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  177. !uid_eq(uid, sock_i_uid(sk2))) &&
  178. (*saddr_comp)(sk, sk2)) {
  179. res = 1;
  180. break;
  181. }
  182. spin_unlock(&hslot2->lock);
  183. return res;
  184. }
  185. /**
  186. * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
  187. *
  188. * @sk: socket struct in question
  189. * @snum: port number to look up
  190. * @saddr_comp: AF-dependent comparison of bound local IP addresses
  191. * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
  192. * with NULL address
  193. */
  194. int udp_lib_get_port(struct sock *sk, unsigned short snum,
  195. int (*saddr_comp)(const struct sock *sk1,
  196. const struct sock *sk2),
  197. unsigned int hash2_nulladdr)
  198. {
  199. struct udp_hslot *hslot, *hslot2;
  200. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  201. int error = 1;
  202. struct net *net = sock_net(sk);
  203. if (!snum) {
  204. int low, high, remaining;
  205. unsigned int rand;
  206. unsigned short first, last;
  207. DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
  208. inet_get_local_port_range(net, &low, &high);
  209. remaining = (high - low) + 1;
  210. rand = net_random();
  211. first = (((u64)rand * remaining) >> 32) + low;
  212. /*
  213. * force rand to be an odd multiple of UDP_HTABLE_SIZE
  214. */
  215. rand = (rand | 1) * (udptable->mask + 1);
  216. last = first + udptable->mask + 1;
  217. do {
  218. hslot = udp_hashslot(udptable, net, first);
  219. bitmap_zero(bitmap, PORTS_PER_CHAIN);
  220. spin_lock_bh(&hslot->lock);
  221. udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
  222. saddr_comp, udptable->log);
  223. snum = first;
  224. /*
  225. * Iterate on all possible values of snum for this hash.
  226. * Using steps of an odd multiple of UDP_HTABLE_SIZE
  227. * give us randomization and full range coverage.
  228. */
  229. do {
  230. if (low <= snum && snum <= high &&
  231. !test_bit(snum >> udptable->log, bitmap) &&
  232. !inet_is_reserved_local_port(snum))
  233. goto found;
  234. snum += rand;
  235. } while (snum != first);
  236. spin_unlock_bh(&hslot->lock);
  237. } while (++first != last);
  238. goto fail;
  239. } else {
  240. hslot = udp_hashslot(udptable, net, snum);
  241. spin_lock_bh(&hslot->lock);
  242. if (hslot->count > 10) {
  243. int exist;
  244. unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
  245. slot2 &= udptable->mask;
  246. hash2_nulladdr &= udptable->mask;
  247. hslot2 = udp_hashslot2(udptable, slot2);
  248. if (hslot->count < hslot2->count)
  249. goto scan_primary_hash;
  250. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  251. sk, saddr_comp);
  252. if (!exist && (hash2_nulladdr != slot2)) {
  253. hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
  254. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  255. sk, saddr_comp);
  256. }
  257. if (exist)
  258. goto fail_unlock;
  259. else
  260. goto found;
  261. }
  262. scan_primary_hash:
  263. if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
  264. saddr_comp, 0))
  265. goto fail_unlock;
  266. }
  267. found:
  268. inet_sk(sk)->inet_num = snum;
  269. udp_sk(sk)->udp_port_hash = snum;
  270. udp_sk(sk)->udp_portaddr_hash ^= snum;
  271. if (sk_unhashed(sk)) {
  272. sk_nulls_add_node_rcu(sk, &hslot->head);
  273. hslot->count++;
  274. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
  275. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  276. spin_lock(&hslot2->lock);
  277. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  278. &hslot2->head);
  279. hslot2->count++;
  280. spin_unlock(&hslot2->lock);
  281. }
  282. error = 0;
  283. fail_unlock:
  284. spin_unlock_bh(&hslot->lock);
  285. fail:
  286. return error;
  287. }
  288. EXPORT_SYMBOL(udp_lib_get_port);
  289. static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
  290. {
  291. struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
  292. return (!ipv6_only_sock(sk2) &&
  293. (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
  294. inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
  295. }
  296. static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
  297. unsigned int port)
  298. {
  299. return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
  300. }
  301. int udp_v4_get_port(struct sock *sk, unsigned short snum)
  302. {
  303. unsigned int hash2_nulladdr =
  304. udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
  305. unsigned int hash2_partial =
  306. udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
  307. /* precompute partial secondary hash */
  308. udp_sk(sk)->udp_portaddr_hash = hash2_partial;
  309. return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
  310. }
  311. static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
  312. unsigned short hnum,
  313. __be16 sport, __be32 daddr, __be16 dport, int dif)
  314. {
  315. int score = -1;
  316. if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
  317. !ipv6_only_sock(sk)) {
  318. struct inet_sock *inet = inet_sk(sk);
  319. score = (sk->sk_family == PF_INET ? 2 : 1);
  320. if (inet->inet_rcv_saddr) {
  321. if (inet->inet_rcv_saddr != daddr)
  322. return -1;
  323. score += 4;
  324. }
  325. if (inet->inet_daddr) {
  326. if (inet->inet_daddr != saddr)
  327. return -1;
  328. score += 4;
  329. }
  330. if (inet->inet_dport) {
  331. if (inet->inet_dport != sport)
  332. return -1;
  333. score += 4;
  334. }
  335. if (sk->sk_bound_dev_if) {
  336. if (sk->sk_bound_dev_if != dif)
  337. return -1;
  338. score += 4;
  339. }
  340. }
  341. return score;
  342. }
  343. /*
  344. * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
  345. */
  346. static inline int compute_score2(struct sock *sk, struct net *net,
  347. __be32 saddr, __be16 sport,
  348. __be32 daddr, unsigned int hnum, int dif)
  349. {
  350. int score = -1;
  351. if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
  352. struct inet_sock *inet = inet_sk(sk);
  353. if (inet->inet_rcv_saddr != daddr)
  354. return -1;
  355. if (inet->inet_num != hnum)
  356. return -1;
  357. score = (sk->sk_family == PF_INET ? 2 : 1);
  358. if (inet->inet_daddr) {
  359. if (inet->inet_daddr != saddr)
  360. return -1;
  361. score += 4;
  362. }
  363. if (inet->inet_dport) {
  364. if (inet->inet_dport != sport)
  365. return -1;
  366. score += 4;
  367. }
  368. if (sk->sk_bound_dev_if) {
  369. if (sk->sk_bound_dev_if != dif)
  370. return -1;
  371. score += 4;
  372. }
  373. }
  374. return score;
  375. }
  376. static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
  377. const __u16 lport, const __be32 faddr,
  378. const __be16 fport)
  379. {
  380. static u32 udp_ehash_secret __read_mostly;
  381. net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
  382. return __inet_ehashfn(laddr, lport, faddr, fport,
  383. udp_ehash_secret + net_hash_mix(net));
  384. }
  385. /* called with read_rcu_lock() */
  386. static struct sock *udp4_lib_lookup2(struct net *net,
  387. __be32 saddr, __be16 sport,
  388. __be32 daddr, unsigned int hnum, int dif,
  389. struct udp_hslot *hslot2, unsigned int slot2)
  390. {
  391. struct sock *sk, *result;
  392. struct hlist_nulls_node *node;
  393. int score, badness, matches = 0, reuseport = 0;
  394. u32 hash = 0;
  395. begin:
  396. result = NULL;
  397. badness = 0;
  398. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  399. score = compute_score2(sk, net, saddr, sport,
  400. daddr, hnum, dif);
  401. if (score > badness) {
  402. result = sk;
  403. badness = score;
  404. reuseport = sk->sk_reuseport;
  405. if (reuseport) {
  406. hash = udp_ehashfn(net, daddr, hnum,
  407. saddr, sport);
  408. matches = 1;
  409. }
  410. } else if (score == badness && reuseport) {
  411. matches++;
  412. if (((u64)hash * matches) >> 32 == 0)
  413. result = sk;
  414. hash = next_pseudo_random32(hash);
  415. }
  416. }
  417. /*
  418. * if the nulls value we got at the end of this lookup is
  419. * not the expected one, we must restart lookup.
  420. * We probably met an item that was moved to another chain.
  421. */
  422. if (get_nulls_value(node) != slot2)
  423. goto begin;
  424. if (result) {
  425. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  426. result = NULL;
  427. else if (unlikely(compute_score2(result, net, saddr, sport,
  428. daddr, hnum, dif) < badness)) {
  429. sock_put(result);
  430. goto begin;
  431. }
  432. }
  433. return result;
  434. }
  435. /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
  436. * harder than this. -DaveM
  437. */
  438. struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
  439. __be16 sport, __be32 daddr, __be16 dport,
  440. int dif, struct udp_table *udptable)
  441. {
  442. struct sock *sk, *result;
  443. struct hlist_nulls_node *node;
  444. unsigned short hnum = ntohs(dport);
  445. unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
  446. struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
  447. int score, badness, matches = 0, reuseport = 0;
  448. u32 hash = 0;
  449. rcu_read_lock();
  450. if (hslot->count > 10) {
  451. hash2 = udp4_portaddr_hash(net, daddr, hnum);
  452. slot2 = hash2 & udptable->mask;
  453. hslot2 = &udptable->hash2[slot2];
  454. if (hslot->count < hslot2->count)
  455. goto begin;
  456. result = udp4_lib_lookup2(net, saddr, sport,
  457. daddr, hnum, dif,
  458. hslot2, slot2);
  459. if (!result) {
  460. hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
  461. slot2 = hash2 & udptable->mask;
  462. hslot2 = &udptable->hash2[slot2];
  463. if (hslot->count < hslot2->count)
  464. goto begin;
  465. result = udp4_lib_lookup2(net, saddr, sport,
  466. htonl(INADDR_ANY), hnum, dif,
  467. hslot2, slot2);
  468. }
  469. rcu_read_unlock();
  470. return result;
  471. }
  472. begin:
  473. result = NULL;
  474. badness = 0;
  475. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  476. score = compute_score(sk, net, saddr, hnum, sport,
  477. daddr, dport, dif);
  478. if (score > badness) {
  479. result = sk;
  480. badness = score;
  481. reuseport = sk->sk_reuseport;
  482. if (reuseport) {
  483. hash = udp_ehashfn(net, daddr, hnum,
  484. saddr, sport);
  485. matches = 1;
  486. }
  487. } else if (score == badness && reuseport) {
  488. matches++;
  489. if (((u64)hash * matches) >> 32 == 0)
  490. result = sk;
  491. hash = next_pseudo_random32(hash);
  492. }
  493. }
  494. /*
  495. * if the nulls value we got at the end of this lookup is
  496. * not the expected one, we must restart lookup.
  497. * We probably met an item that was moved to another chain.
  498. */
  499. if (get_nulls_value(node) != slot)
  500. goto begin;
  501. if (result) {
  502. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  503. result = NULL;
  504. else if (unlikely(compute_score(result, net, saddr, hnum, sport,
  505. daddr, dport, dif) < badness)) {
  506. sock_put(result);
  507. goto begin;
  508. }
  509. }
  510. rcu_read_unlock();
  511. return result;
  512. }
  513. EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
  514. static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
  515. __be16 sport, __be16 dport,
  516. struct udp_table *udptable)
  517. {
  518. struct sock *sk;
  519. const struct iphdr *iph = ip_hdr(skb);
  520. if (unlikely(sk = skb_steal_sock(skb)))
  521. return sk;
  522. else
  523. return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
  524. iph->daddr, dport, inet_iif(skb),
  525. udptable);
  526. }
  527. struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
  528. __be32 daddr, __be16 dport, int dif)
  529. {
  530. return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
  531. }
  532. EXPORT_SYMBOL_GPL(udp4_lib_lookup);
  533. static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
  534. __be16 loc_port, __be32 loc_addr,
  535. __be16 rmt_port, __be32 rmt_addr,
  536. int dif, unsigned short hnum)
  537. {
  538. struct inet_sock *inet = inet_sk(sk);
  539. if (!net_eq(sock_net(sk), net) ||
  540. udp_sk(sk)->udp_port_hash != hnum ||
  541. (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
  542. (inet->inet_dport != rmt_port && inet->inet_dport) ||
  543. (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
  544. ipv6_only_sock(sk) ||
  545. (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
  546. return false;
  547. if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
  548. return false;
  549. return true;
  550. }
  551. static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
  552. __be16 loc_port, __be32 loc_addr,
  553. __be16 rmt_port, __be32 rmt_addr,
  554. int dif)
  555. {
  556. struct hlist_nulls_node *node;
  557. struct sock *s = sk;
  558. unsigned short hnum = ntohs(loc_port);
  559. sk_nulls_for_each_from(s, node) {
  560. if (__udp_is_mcast_sock(net, s,
  561. loc_port, loc_addr,
  562. rmt_port, rmt_addr,
  563. dif, hnum))
  564. goto found;
  565. }
  566. s = NULL;
  567. found:
  568. return s;
  569. }
  570. /*
  571. * This routine is called by the ICMP module when it gets some
  572. * sort of error condition. If err < 0 then the socket should
  573. * be closed and the error returned to the user. If err > 0
  574. * it's just the icmp type << 8 | icmp code.
  575. * Header points to the ip header of the error packet. We move
  576. * on past this. Then (as it used to claim before adjustment)
  577. * header points to the first 8 bytes of the udp header. We need
  578. * to find the appropriate port.
  579. */
  580. void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
  581. {
  582. struct inet_sock *inet;
  583. const struct iphdr *iph = (const struct iphdr *)skb->data;
  584. struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
  585. const int type = icmp_hdr(skb)->type;
  586. const int code = icmp_hdr(skb)->code;
  587. struct sock *sk;
  588. int harderr;
  589. int err;
  590. struct net *net = dev_net(skb->dev);
  591. sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
  592. iph->saddr, uh->source, skb->dev->ifindex, udptable);
  593. if (sk == NULL) {
  594. ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
  595. return; /* No socket for error */
  596. }
  597. err = 0;
  598. harderr = 0;
  599. inet = inet_sk(sk);
  600. switch (type) {
  601. default:
  602. case ICMP_TIME_EXCEEDED:
  603. err = EHOSTUNREACH;
  604. break;
  605. case ICMP_SOURCE_QUENCH:
  606. goto out;
  607. case ICMP_PARAMETERPROB:
  608. err = EPROTO;
  609. harderr = 1;
  610. break;
  611. case ICMP_DEST_UNREACH:
  612. if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
  613. ipv4_sk_update_pmtu(skb, sk, info);
  614. if (inet->pmtudisc != IP_PMTUDISC_DONT) {
  615. err = EMSGSIZE;
  616. harderr = 1;
  617. break;
  618. }
  619. goto out;
  620. }
  621. err = EHOSTUNREACH;
  622. if (code <= NR_ICMP_UNREACH) {
  623. harderr = icmp_err_convert[code].fatal;
  624. err = icmp_err_convert[code].errno;
  625. }
  626. break;
  627. case ICMP_REDIRECT:
  628. ipv4_sk_redirect(skb, sk);
  629. goto out;
  630. }
  631. /*
  632. * RFC1122: OK. Passes ICMP errors back to application, as per
  633. * 4.1.3.3.
  634. */
  635. if (!inet->recverr) {
  636. if (!harderr || sk->sk_state != TCP_ESTABLISHED)
  637. goto out;
  638. } else
  639. ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
  640. sk->sk_err = err;
  641. sk->sk_error_report(sk);
  642. out:
  643. sock_put(sk);
  644. }
  645. void udp_err(struct sk_buff *skb, u32 info)
  646. {
  647. __udp4_lib_err(skb, info, &udp_table);
  648. }
  649. /*
  650. * Throw away all pending data and cancel the corking. Socket is locked.
  651. */
  652. void udp_flush_pending_frames(struct sock *sk)
  653. {
  654. struct udp_sock *up = udp_sk(sk);
  655. if (up->pending) {
  656. up->len = 0;
  657. up->pending = 0;
  658. ip_flush_pending_frames(sk);
  659. }
  660. }
  661. EXPORT_SYMBOL(udp_flush_pending_frames);
  662. /**
  663. * udp4_hwcsum - handle outgoing HW checksumming
  664. * @skb: sk_buff containing the filled-in UDP header
  665. * (checksum field must be zeroed out)
  666. * @src: source IP address
  667. * @dst: destination IP address
  668. */
  669. void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
  670. {
  671. struct udphdr *uh = udp_hdr(skb);
  672. struct sk_buff *frags = skb_shinfo(skb)->frag_list;
  673. int offset = skb_transport_offset(skb);
  674. int len = skb->len - offset;
  675. int hlen = len;
  676. __wsum csum = 0;
  677. if (!frags) {
  678. /*
  679. * Only one fragment on the socket.
  680. */
  681. skb->csum_start = skb_transport_header(skb) - skb->head;
  682. skb->csum_offset = offsetof(struct udphdr, check);
  683. uh->check = ~csum_tcpudp_magic(src, dst, len,
  684. IPPROTO_UDP, 0);
  685. } else {
  686. /*
  687. * HW-checksum won't work as there are two or more
  688. * fragments on the socket so that all csums of sk_buffs
  689. * should be together
  690. */
  691. do {
  692. csum = csum_add(csum, frags->csum);
  693. hlen -= frags->len;
  694. } while ((frags = frags->next));
  695. csum = skb_checksum(skb, offset, hlen, csum);
  696. skb->ip_summed = CHECKSUM_NONE;
  697. uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
  698. if (uh->check == 0)
  699. uh->check = CSUM_MANGLED_0;
  700. }
  701. }
  702. EXPORT_SYMBOL_GPL(udp4_hwcsum);
  703. static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
  704. {
  705. struct sock *sk = skb->sk;
  706. struct inet_sock *inet = inet_sk(sk);
  707. struct udphdr *uh;
  708. int err = 0;
  709. int is_udplite = IS_UDPLITE(sk);
  710. int offset = skb_transport_offset(skb);
  711. int len = skb->len - offset;
  712. __wsum csum = 0;
  713. /*
  714. * Create a UDP header
  715. */
  716. uh = udp_hdr(skb);
  717. uh->source = inet->inet_sport;
  718. uh->dest = fl4->fl4_dport;
  719. uh->len = htons(len);
  720. uh->check = 0;
  721. if (is_udplite) /* UDP-Lite */
  722. csum = udplite_csum(skb);
  723. else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
  724. skb->ip_summed = CHECKSUM_NONE;
  725. goto send;
  726. } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  727. udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
  728. goto send;
  729. } else
  730. csum = udp_csum(skb);
  731. /* add protocol-dependent pseudo-header */
  732. uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
  733. sk->sk_protocol, csum);
  734. if (uh->check == 0)
  735. uh->check = CSUM_MANGLED_0;
  736. send:
  737. err = ip_send_skb(sock_net(sk), skb);
  738. if (err) {
  739. if (err == -ENOBUFS && !inet->recverr) {
  740. UDP_INC_STATS_USER(sock_net(sk),
  741. UDP_MIB_SNDBUFERRORS, is_udplite);
  742. err = 0;
  743. }
  744. } else
  745. UDP_INC_STATS_USER(sock_net(sk),
  746. UDP_MIB_OUTDATAGRAMS, is_udplite);
  747. return err;
  748. }
  749. /*
  750. * Push out all pending data as one UDP datagram. Socket is locked.
  751. */
  752. int udp_push_pending_frames(struct sock *sk)
  753. {
  754. struct udp_sock *up = udp_sk(sk);
  755. struct inet_sock *inet = inet_sk(sk);
  756. struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
  757. struct sk_buff *skb;
  758. int err = 0;
  759. skb = ip_finish_skb(sk, fl4);
  760. if (!skb)
  761. goto out;
  762. err = udp_send_skb(skb, fl4);
  763. out:
  764. up->len = 0;
  765. up->pending = 0;
  766. return err;
  767. }
  768. EXPORT_SYMBOL(udp_push_pending_frames);
  769. int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  770. size_t len)
  771. {
  772. struct inet_sock *inet = inet_sk(sk);
  773. struct udp_sock *up = udp_sk(sk);
  774. struct flowi4 fl4_stack;
  775. struct flowi4 *fl4;
  776. int ulen = len;
  777. struct ipcm_cookie ipc;
  778. struct rtable *rt = NULL;
  779. int free = 0;
  780. int connected = 0;
  781. __be32 daddr, faddr, saddr;
  782. __be16 dport;
  783. u8 tos;
  784. int err, is_udplite = IS_UDPLITE(sk);
  785. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  786. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  787. struct sk_buff *skb;
  788. struct ip_options_data opt_copy;
  789. if (len > 0xFFFF)
  790. return -EMSGSIZE;
  791. /*
  792. * Check the flags.
  793. */
  794. if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
  795. return -EOPNOTSUPP;
  796. ipc.opt = NULL;
  797. ipc.tx_flags = 0;
  798. ipc.ttl = 0;
  799. ipc.tos = -1;
  800. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  801. fl4 = &inet->cork.fl.u.ip4;
  802. if (up->pending) {
  803. /*
  804. * There are pending frames.
  805. * The socket lock must be held while it's corked.
  806. */
  807. lock_sock(sk);
  808. if (likely(up->pending)) {
  809. if (unlikely(up->pending != AF_INET)) {
  810. release_sock(sk);
  811. return -EINVAL;
  812. }
  813. goto do_append_data;
  814. }
  815. release_sock(sk);
  816. }
  817. ulen += sizeof(struct udphdr);
  818. /*
  819. * Get and verify the address.
  820. */
  821. if (msg->msg_name) {
  822. struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
  823. if (msg->msg_namelen < sizeof(*usin))
  824. return -EINVAL;
  825. if (usin->sin_family != AF_INET) {
  826. if (usin->sin_family != AF_UNSPEC)
  827. return -EAFNOSUPPORT;
  828. }
  829. daddr = usin->sin_addr.s_addr;
  830. dport = usin->sin_port;
  831. if (dport == 0)
  832. return -EINVAL;
  833. } else {
  834. if (sk->sk_state != TCP_ESTABLISHED)
  835. return -EDESTADDRREQ;
  836. daddr = inet->inet_daddr;
  837. dport = inet->inet_dport;
  838. /* Open fast path for connected socket.
  839. Route will not be used, if at least one option is set.
  840. */
  841. connected = 1;
  842. }
  843. ipc.addr = inet->inet_saddr;
  844. ipc.oif = sk->sk_bound_dev_if;
  845. sock_tx_timestamp(sk, &ipc.tx_flags);
  846. if (msg->msg_controllen) {
  847. err = ip_cmsg_send(sock_net(sk), msg, &ipc);
  848. if (err)
  849. return err;
  850. if (ipc.opt)
  851. free = 1;
  852. connected = 0;
  853. }
  854. if (!ipc.opt) {
  855. struct ip_options_rcu *inet_opt;
  856. rcu_read_lock();
  857. inet_opt = rcu_dereference(inet->inet_opt);
  858. if (inet_opt) {
  859. memcpy(&opt_copy, inet_opt,
  860. sizeof(*inet_opt) + inet_opt->opt.optlen);
  861. ipc.opt = &opt_copy.opt;
  862. }
  863. rcu_read_unlock();
  864. }
  865. saddr = ipc.addr;
  866. ipc.addr = faddr = daddr;
  867. if (ipc.opt && ipc.opt->opt.srr) {
  868. if (!daddr)
  869. return -EINVAL;
  870. faddr = ipc.opt->opt.faddr;
  871. connected = 0;
  872. }
  873. tos = get_rttos(&ipc, inet);
  874. if (sock_flag(sk, SOCK_LOCALROUTE) ||
  875. (msg->msg_flags & MSG_DONTROUTE) ||
  876. (ipc.opt && ipc.opt->opt.is_strictroute)) {
  877. tos |= RTO_ONLINK;
  878. connected = 0;
  879. }
  880. if (ipv4_is_multicast(daddr)) {
  881. if (!ipc.oif)
  882. ipc.oif = inet->mc_index;
  883. if (!saddr)
  884. saddr = inet->mc_addr;
  885. connected = 0;
  886. } else if (!ipc.oif)
  887. ipc.oif = inet->uc_index;
  888. if (connected)
  889. rt = (struct rtable *)sk_dst_check(sk, 0);
  890. if (rt == NULL) {
  891. struct net *net = sock_net(sk);
  892. fl4 = &fl4_stack;
  893. flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
  894. RT_SCOPE_UNIVERSE, sk->sk_protocol,
  895. inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
  896. faddr, saddr, dport, inet->inet_sport);
  897. security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
  898. rt = ip_route_output_flow(net, fl4, sk);
  899. if (IS_ERR(rt)) {
  900. err = PTR_ERR(rt);
  901. rt = NULL;
  902. if (err == -ENETUNREACH)
  903. IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
  904. goto out;
  905. }
  906. err = -EACCES;
  907. if ((rt->rt_flags & RTCF_BROADCAST) &&
  908. !sock_flag(sk, SOCK_BROADCAST))
  909. goto out;
  910. if (connected)
  911. sk_dst_set(sk, dst_clone(&rt->dst));
  912. }
  913. if (msg->msg_flags&MSG_CONFIRM)
  914. goto do_confirm;
  915. back_from_confirm:
  916. saddr = fl4->saddr;
  917. if (!ipc.addr)
  918. daddr = ipc.addr = fl4->daddr;
  919. /* Lockless fast path for the non-corking case. */
  920. if (!corkreq) {
  921. skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
  922. sizeof(struct udphdr), &ipc, &rt,
  923. msg->msg_flags);
  924. err = PTR_ERR(skb);
  925. if (!IS_ERR_OR_NULL(skb))
  926. err = udp_send_skb(skb, fl4);
  927. goto out;
  928. }
  929. lock_sock(sk);
  930. if (unlikely(up->pending)) {
  931. /* The socket is already corked while preparing it. */
  932. /* ... which is an evident application bug. --ANK */
  933. release_sock(sk);
  934. LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
  935. err = -EINVAL;
  936. goto out;
  937. }
  938. /*
  939. * Now cork the socket to pend data.
  940. */
  941. fl4 = &inet->cork.fl.u.ip4;
  942. fl4->daddr = daddr;
  943. fl4->saddr = saddr;
  944. fl4->fl4_dport = dport;
  945. fl4->fl4_sport = inet->inet_sport;
  946. up->pending = AF_INET;
  947. do_append_data:
  948. up->len += ulen;
  949. err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
  950. sizeof(struct udphdr), &ipc, &rt,
  951. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  952. if (err)
  953. udp_flush_pending_frames(sk);
  954. else if (!corkreq)
  955. err = udp_push_pending_frames(sk);
  956. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  957. up->pending = 0;
  958. release_sock(sk);
  959. out:
  960. ip_rt_put(rt);
  961. if (free)
  962. kfree(ipc.opt);
  963. if (!err)
  964. return len;
  965. /*
  966. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  967. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  968. * we don't have a good statistic (IpOutDiscards but it can be too many
  969. * things). We could add another new stat but at least for now that
  970. * seems like overkill.
  971. */
  972. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  973. UDP_INC_STATS_USER(sock_net(sk),
  974. UDP_MIB_SNDBUFERRORS, is_udplite);
  975. }
  976. return err;
  977. do_confirm:
  978. dst_confirm(&rt->dst);
  979. if (!(msg->msg_flags&MSG_PROBE) || len)
  980. goto back_from_confirm;
  981. err = 0;
  982. goto out;
  983. }
  984. EXPORT_SYMBOL(udp_sendmsg);
  985. int udp_sendpage(struct sock *sk, struct page *page, int offset,
  986. size_t size, int flags)
  987. {
  988. struct inet_sock *inet = inet_sk(sk);
  989. struct udp_sock *up = udp_sk(sk);
  990. int ret;
  991. if (!up->pending) {
  992. struct msghdr msg = { .msg_flags = flags|MSG_MORE };
  993. /* Call udp_sendmsg to specify destination address which
  994. * sendpage interface can't pass.
  995. * This will succeed only when the socket is connected.
  996. */
  997. ret = udp_sendmsg(NULL, sk, &msg, 0);
  998. if (ret < 0)
  999. return ret;
  1000. }
  1001. lock_sock(sk);
  1002. if (unlikely(!up->pending)) {
  1003. release_sock(sk);
  1004. LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
  1005. return -EINVAL;
  1006. }
  1007. ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
  1008. page, offset, size, flags);
  1009. if (ret == -EOPNOTSUPP) {
  1010. release_sock(sk);
  1011. return sock_no_sendpage(sk->sk_socket, page, offset,
  1012. size, flags);
  1013. }
  1014. if (ret < 0) {
  1015. udp_flush_pending_frames(sk);
  1016. goto out;
  1017. }
  1018. up->len += size;
  1019. if (!(up->corkflag || (flags&MSG_MORE)))
  1020. ret = udp_push_pending_frames(sk);
  1021. if (!ret)
  1022. ret = size;
  1023. out:
  1024. release_sock(sk);
  1025. return ret;
  1026. }
  1027. /**
  1028. * first_packet_length - return length of first packet in receive queue
  1029. * @sk: socket
  1030. *
  1031. * Drops all bad checksum frames, until a valid one is found.
  1032. * Returns the length of found skb, or 0 if none is found.
  1033. */
  1034. static unsigned int first_packet_length(struct sock *sk)
  1035. {
  1036. struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
  1037. struct sk_buff *skb;
  1038. unsigned int res;
  1039. __skb_queue_head_init(&list_kill);
  1040. spin_lock_bh(&rcvq->lock);
  1041. while ((skb = skb_peek(rcvq)) != NULL &&
  1042. udp_lib_checksum_complete(skb)) {
  1043. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
  1044. IS_UDPLITE(sk));
  1045. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  1046. IS_UDPLITE(sk));
  1047. atomic_inc(&sk->sk_drops);
  1048. __skb_unlink(skb, rcvq);
  1049. __skb_queue_tail(&list_kill, skb);
  1050. }
  1051. res = skb ? skb->len : 0;
  1052. spin_unlock_bh(&rcvq->lock);
  1053. if (!skb_queue_empty(&list_kill)) {
  1054. bool slow = lock_sock_fast(sk);
  1055. __skb_queue_purge(&list_kill);
  1056. sk_mem_reclaim_partial(sk);
  1057. unlock_sock_fast(sk, slow);
  1058. }
  1059. return res;
  1060. }
  1061. /*
  1062. * IOCTL requests applicable to the UDP protocol
  1063. */
  1064. int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  1065. {
  1066. switch (cmd) {
  1067. case SIOCOUTQ:
  1068. {
  1069. int amount = sk_wmem_alloc_get(sk);
  1070. return put_user(amount, (int __user *)arg);
  1071. }
  1072. case SIOCINQ:
  1073. {
  1074. unsigned int amount = first_packet_length(sk);
  1075. if (amount)
  1076. /*
  1077. * We will only return the amount
  1078. * of this packet since that is all
  1079. * that will be read.
  1080. */
  1081. amount -= sizeof(struct udphdr);
  1082. return put_user(amount, (int __user *)arg);
  1083. }
  1084. default:
  1085. return -ENOIOCTLCMD;
  1086. }
  1087. return 0;
  1088. }
  1089. EXPORT_SYMBOL(udp_ioctl);
  1090. /*
  1091. * This should be easy, if there is something there we
  1092. * return it, otherwise we block.
  1093. */
  1094. int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  1095. size_t len, int noblock, int flags, int *addr_len)
  1096. {
  1097. struct inet_sock *inet = inet_sk(sk);
  1098. struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
  1099. struct sk_buff *skb;
  1100. unsigned int ulen, copied;
  1101. int peeked, off = 0;
  1102. int err;
  1103. int is_udplite = IS_UDPLITE(sk);
  1104. bool slow;
  1105. if (flags & MSG_ERRQUEUE)
  1106. return ip_recv_error(sk, msg, len);
  1107. try_again:
  1108. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  1109. &peeked, &off, &err);
  1110. if (!skb)
  1111. goto out;
  1112. ulen = skb->len - sizeof(struct udphdr);
  1113. copied = len;
  1114. if (copied > ulen)
  1115. copied = ulen;
  1116. else if (copied < ulen)
  1117. msg->msg_flags |= MSG_TRUNC;
  1118. /*
  1119. * If checksum is needed at all, try to do it while copying the
  1120. * data. If the data is truncated, or if we only want a partial
  1121. * coverage checksum (UDP-Lite), do it before the copy.
  1122. */
  1123. if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
  1124. if (udp_lib_checksum_complete(skb))
  1125. goto csum_copy_err;
  1126. }
  1127. if (skb_csum_unnecessary(skb))
  1128. err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
  1129. msg->msg_iov, copied);
  1130. else {
  1131. err = skb_copy_and_csum_datagram_iovec(skb,
  1132. sizeof(struct udphdr),
  1133. msg->msg_iov);
  1134. if (err == -EINVAL)
  1135. goto csum_copy_err;
  1136. }
  1137. if (unlikely(err)) {
  1138. trace_kfree_skb(skb, udp_recvmsg);
  1139. if (!peeked) {
  1140. atomic_inc(&sk->sk_drops);
  1141. UDP_INC_STATS_USER(sock_net(sk),
  1142. UDP_MIB_INERRORS, is_udplite);
  1143. }
  1144. goto out_free;
  1145. }
  1146. if (!peeked)
  1147. UDP_INC_STATS_USER(sock_net(sk),
  1148. UDP_MIB_INDATAGRAMS, is_udplite);
  1149. sock_recv_ts_and_drops(msg, sk, skb);
  1150. /* Copy the address. */
  1151. if (sin) {
  1152. sin->sin_family = AF_INET;
  1153. sin->sin_port = udp_hdr(skb)->source;
  1154. sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
  1155. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1156. *addr_len = sizeof(*sin);
  1157. }
  1158. if (inet->cmsg_flags)
  1159. ip_cmsg_recv(msg, skb);
  1160. err = copied;
  1161. if (flags & MSG_TRUNC)
  1162. err = ulen;
  1163. out_free:
  1164. skb_free_datagram_locked(sk, skb);
  1165. out:
  1166. return err;
  1167. csum_copy_err:
  1168. slow = lock_sock_fast(sk);
  1169. if (!skb_kill_datagram(sk, skb, flags)) {
  1170. UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1171. UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1172. }
  1173. unlock_sock_fast(sk, slow);
  1174. if (noblock)
  1175. return -EAGAIN;
  1176. /* starting over for a new packet */
  1177. msg->msg_flags &= ~MSG_TRUNC;
  1178. goto try_again;
  1179. }
  1180. int udp_disconnect(struct sock *sk, int flags)
  1181. {
  1182. struct inet_sock *inet = inet_sk(sk);
  1183. /*
  1184. * 1003.1g - break association.
  1185. */
  1186. sk->sk_state = TCP_CLOSE;
  1187. inet->inet_daddr = 0;
  1188. inet->inet_dport = 0;
  1189. sock_rps_reset_rxhash(sk);
  1190. sk->sk_bound_dev_if = 0;
  1191. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1192. inet_reset_saddr(sk);
  1193. if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
  1194. sk->sk_prot->unhash(sk);
  1195. inet->inet_sport = 0;
  1196. }
  1197. sk_dst_reset(sk);
  1198. return 0;
  1199. }
  1200. EXPORT_SYMBOL(udp_disconnect);
  1201. void udp_lib_unhash(struct sock *sk)
  1202. {
  1203. if (sk_hashed(sk)) {
  1204. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1205. struct udp_hslot *hslot, *hslot2;
  1206. hslot = udp_hashslot(udptable, sock_net(sk),
  1207. udp_sk(sk)->udp_port_hash);
  1208. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1209. spin_lock_bh(&hslot->lock);
  1210. if (sk_nulls_del_node_init_rcu(sk)) {
  1211. hslot->count--;
  1212. inet_sk(sk)->inet_num = 0;
  1213. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
  1214. spin_lock(&hslot2->lock);
  1215. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1216. hslot2->count--;
  1217. spin_unlock(&hslot2->lock);
  1218. }
  1219. spin_unlock_bh(&hslot->lock);
  1220. }
  1221. }
  1222. EXPORT_SYMBOL(udp_lib_unhash);
  1223. /*
  1224. * inet_rcv_saddr was changed, we must rehash secondary hash
  1225. */
  1226. void udp_lib_rehash(struct sock *sk, u16 newhash)
  1227. {
  1228. if (sk_hashed(sk)) {
  1229. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1230. struct udp_hslot *hslot, *hslot2, *nhslot2;
  1231. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1232. nhslot2 = udp_hashslot2(udptable, newhash);
  1233. udp_sk(sk)->udp_portaddr_hash = newhash;
  1234. if (hslot2 != nhslot2) {
  1235. hslot = udp_hashslot(udptable, sock_net(sk),
  1236. udp_sk(sk)->udp_port_hash);
  1237. /* we must lock primary chain too */
  1238. spin_lock_bh(&hslot->lock);
  1239. spin_lock(&hslot2->lock);
  1240. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1241. hslot2->count--;
  1242. spin_unlock(&hslot2->lock);
  1243. spin_lock(&nhslot2->lock);
  1244. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  1245. &nhslot2->head);
  1246. nhslot2->count++;
  1247. spin_unlock(&nhslot2->lock);
  1248. spin_unlock_bh(&hslot->lock);
  1249. }
  1250. }
  1251. }
  1252. EXPORT_SYMBOL(udp_lib_rehash);
  1253. static void udp_v4_rehash(struct sock *sk)
  1254. {
  1255. u16 new_hash = udp4_portaddr_hash(sock_net(sk),
  1256. inet_sk(sk)->inet_rcv_saddr,
  1257. inet_sk(sk)->inet_num);
  1258. udp_lib_rehash(sk, new_hash);
  1259. }
  1260. static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1261. {
  1262. int rc;
  1263. if (inet_sk(sk)->inet_daddr) {
  1264. sock_rps_save_rxhash(sk, skb);
  1265. sk_mark_napi_id(sk, skb);
  1266. }
  1267. rc = sock_queue_rcv_skb(sk, skb);
  1268. if (rc < 0) {
  1269. int is_udplite = IS_UDPLITE(sk);
  1270. /* Note that an ENOMEM error is charged twice */
  1271. if (rc == -ENOMEM)
  1272. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1273. is_udplite);
  1274. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1275. kfree_skb(skb);
  1276. trace_udp_fail_queue_rcv_skb(rc, sk);
  1277. return -1;
  1278. }
  1279. return 0;
  1280. }
  1281. static struct static_key udp_encap_needed __read_mostly;
  1282. void udp_encap_enable(void)
  1283. {
  1284. if (!static_key_enabled(&udp_encap_needed))
  1285. static_key_slow_inc(&udp_encap_needed);
  1286. }
  1287. EXPORT_SYMBOL(udp_encap_enable);
  1288. /* returns:
  1289. * -1: error
  1290. * 0: success
  1291. * >0: "udp encap" protocol resubmission
  1292. *
  1293. * Note that in the success and error cases, the skb is assumed to
  1294. * have either been requeued or freed.
  1295. */
  1296. int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1297. {
  1298. struct udp_sock *up = udp_sk(sk);
  1299. int rc;
  1300. int is_udplite = IS_UDPLITE(sk);
  1301. /*
  1302. * Charge it to the socket, dropping if the queue is full.
  1303. */
  1304. if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
  1305. goto drop;
  1306. nf_reset(skb);
  1307. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1308. int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
  1309. /*
  1310. * This is an encapsulation socket so pass the skb to
  1311. * the socket's udp_encap_rcv() hook. Otherwise, just
  1312. * fall through and pass this up the UDP socket.
  1313. * up->encap_rcv() returns the following value:
  1314. * =0 if skb was successfully passed to the encap
  1315. * handler or was discarded by it.
  1316. * >0 if skb should be passed on to UDP.
  1317. * <0 if skb should be resubmitted as proto -N
  1318. */
  1319. /* if we're overly short, let UDP handle it */
  1320. encap_rcv = ACCESS_ONCE(up->encap_rcv);
  1321. if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
  1322. int ret;
  1323. ret = encap_rcv(sk, skb);
  1324. if (ret <= 0) {
  1325. UDP_INC_STATS_BH(sock_net(sk),
  1326. UDP_MIB_INDATAGRAMS,
  1327. is_udplite);
  1328. return -ret;
  1329. }
  1330. }
  1331. /* FALLTHROUGH -- it's a UDP Packet */
  1332. }
  1333. /*
  1334. * UDP-Lite specific tests, ignored on UDP sockets
  1335. */
  1336. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  1337. /*
  1338. * MIB statistics other than incrementing the error count are
  1339. * disabled for the following two types of errors: these depend
  1340. * on the application settings, not on the functioning of the
  1341. * protocol stack as such.
  1342. *
  1343. * RFC 3828 here recommends (sec 3.3): "There should also be a
  1344. * way ... to ... at least let the receiving application block
  1345. * delivery of packets with coverage values less than a value
  1346. * provided by the application."
  1347. */
  1348. if (up->pcrlen == 0) { /* full coverage was set */
  1349. LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
  1350. UDP_SKB_CB(skb)->cscov, skb->len);
  1351. goto drop;
  1352. }
  1353. /* The next case involves violating the min. coverage requested
  1354. * by the receiver. This is subtle: if receiver wants x and x is
  1355. * greater than the buffersize/MTU then receiver will complain
  1356. * that it wants x while sender emits packets of smaller size y.
  1357. * Therefore the above ...()->partial_cov statement is essential.
  1358. */
  1359. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  1360. LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
  1361. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  1362. goto drop;
  1363. }
  1364. }
  1365. if (rcu_access_pointer(sk->sk_filter) &&
  1366. udp_lib_checksum_complete(skb))
  1367. goto csum_error;
  1368. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
  1369. goto drop;
  1370. rc = 0;
  1371. ipv4_pktinfo_prepare(sk, skb);
  1372. bh_lock_sock(sk);
  1373. if (!sock_owned_by_user(sk))
  1374. rc = __udp_queue_rcv_skb(sk, skb);
  1375. else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  1376. bh_unlock_sock(sk);
  1377. goto drop;
  1378. }
  1379. bh_unlock_sock(sk);
  1380. return rc;
  1381. csum_error:
  1382. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1383. drop:
  1384. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1385. atomic_inc(&sk->sk_drops);
  1386. kfree_skb(skb);
  1387. return -1;
  1388. }
  1389. static void flush_stack(struct sock **stack, unsigned int count,
  1390. struct sk_buff *skb, unsigned int final)
  1391. {
  1392. unsigned int i;
  1393. struct sk_buff *skb1 = NULL;
  1394. struct sock *sk;
  1395. for (i = 0; i < count; i++) {
  1396. sk = stack[i];
  1397. if (likely(skb1 == NULL))
  1398. skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
  1399. if (!skb1) {
  1400. atomic_inc(&sk->sk_drops);
  1401. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1402. IS_UDPLITE(sk));
  1403. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  1404. IS_UDPLITE(sk));
  1405. }
  1406. if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
  1407. skb1 = NULL;
  1408. }
  1409. if (unlikely(skb1))
  1410. kfree_skb(skb1);
  1411. }
  1412. static void udp_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
  1413. {
  1414. struct dst_entry *dst = skb_dst(skb);
  1415. dst_hold(dst);
  1416. sk->sk_rx_dst = dst;
  1417. }
  1418. /*
  1419. * Multicasts and broadcasts go to each listener.
  1420. *
  1421. * Note: called only from the BH handler context.
  1422. */
  1423. static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  1424. struct udphdr *uh,
  1425. __be32 saddr, __be32 daddr,
  1426. struct udp_table *udptable)
  1427. {
  1428. struct sock *sk, *stack[256 / sizeof(struct sock *)];
  1429. struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
  1430. int dif;
  1431. unsigned int i, count = 0;
  1432. spin_lock(&hslot->lock);
  1433. sk = sk_nulls_head(&hslot->head);
  1434. dif = skb->dev->ifindex;
  1435. sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
  1436. while (sk) {
  1437. stack[count++] = sk;
  1438. sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
  1439. daddr, uh->source, saddr, dif);
  1440. if (unlikely(count == ARRAY_SIZE(stack))) {
  1441. if (!sk)
  1442. break;
  1443. flush_stack(stack, count, skb, ~0);
  1444. count = 0;
  1445. }
  1446. }
  1447. /*
  1448. * before releasing chain lock, we must take a reference on sockets
  1449. */
  1450. for (i = 0; i < count; i++)
  1451. sock_hold(stack[i]);
  1452. spin_unlock(&hslot->lock);
  1453. /*
  1454. * do the slow work with no lock held
  1455. */
  1456. if (count) {
  1457. flush_stack(stack, count, skb, count - 1);
  1458. for (i = 0; i < count; i++)
  1459. sock_put(stack[i]);
  1460. } else {
  1461. kfree_skb(skb);
  1462. }
  1463. return 0;
  1464. }
  1465. /* Initialize UDP checksum. If exited with zero value (success),
  1466. * CHECKSUM_UNNECESSARY means, that no more checks are required.
  1467. * Otherwise, csum completion requires chacksumming packet body,
  1468. * including udp header and folding it to skb->csum.
  1469. */
  1470. static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
  1471. int proto)
  1472. {
  1473. const struct iphdr *iph;
  1474. int err;
  1475. UDP_SKB_CB(skb)->partial_cov = 0;
  1476. UDP_SKB_CB(skb)->cscov = skb->len;
  1477. if (proto == IPPROTO_UDPLITE) {
  1478. err = udplite_checksum_init(skb, uh);
  1479. if (err)
  1480. return err;
  1481. }
  1482. iph = ip_hdr(skb);
  1483. if (uh->check == 0) {
  1484. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1485. } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
  1486. if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
  1487. proto, skb->csum))
  1488. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1489. }
  1490. if (!skb_csum_unnecessary(skb))
  1491. skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
  1492. skb->len, proto, 0);
  1493. /* Probably, we should checksum udp header (it should be in cache
  1494. * in any case) and data in tiny packets (< rx copybreak).
  1495. */
  1496. return 0;
  1497. }
  1498. /*
  1499. * All we need to do is get the socket, and then do a checksum.
  1500. */
  1501. int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  1502. int proto)
  1503. {
  1504. struct sock *sk;
  1505. struct udphdr *uh;
  1506. unsigned short ulen;
  1507. struct rtable *rt = skb_rtable(skb);
  1508. __be32 saddr, daddr;
  1509. struct net *net = dev_net(skb->dev);
  1510. /*
  1511. * Validate the packet.
  1512. */
  1513. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  1514. goto drop; /* No space for header. */
  1515. uh = udp_hdr(skb);
  1516. ulen = ntohs(uh->len);
  1517. saddr = ip_hdr(skb)->saddr;
  1518. daddr = ip_hdr(skb)->daddr;
  1519. if (ulen > skb->len)
  1520. goto short_packet;
  1521. if (proto == IPPROTO_UDP) {
  1522. /* UDP validates ulen. */
  1523. if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
  1524. goto short_packet;
  1525. uh = udp_hdr(skb);
  1526. }
  1527. if (udp4_csum_init(skb, uh, proto))
  1528. goto csum_error;
  1529. if (skb->sk) {
  1530. int ret;
  1531. sk = skb->sk;
  1532. if (unlikely(sk->sk_rx_dst == NULL))
  1533. udp_sk_rx_dst_set(sk, skb);
  1534. ret = udp_queue_rcv_skb(sk, skb);
  1535. /* a return value > 0 means to resubmit the input, but
  1536. * it wants the return to be -protocol, or 0
  1537. */
  1538. if (ret > 0)
  1539. return -ret;
  1540. return 0;
  1541. } else {
  1542. if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
  1543. return __udp4_lib_mcast_deliver(net, skb, uh,
  1544. saddr, daddr, udptable);
  1545. sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  1546. }
  1547. if (sk != NULL) {
  1548. int ret;
  1549. ret = udp_queue_rcv_skb(sk, skb);
  1550. sock_put(sk);
  1551. /* a return value > 0 means to resubmit the input, but
  1552. * it wants the return to be -protocol, or 0
  1553. */
  1554. if (ret > 0)
  1555. return -ret;
  1556. return 0;
  1557. }
  1558. if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
  1559. goto drop;
  1560. nf_reset(skb);
  1561. /* No socket. Drop packet silently, if checksum is wrong */
  1562. if (udp_lib_checksum_complete(skb))
  1563. goto csum_error;
  1564. UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
  1565. icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
  1566. /*
  1567. * Hmm. We got an UDP packet to a port to which we
  1568. * don't wanna listen. Ignore it.
  1569. */
  1570. kfree_skb(skb);
  1571. return 0;
  1572. short_packet:
  1573. LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
  1574. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1575. &saddr, ntohs(uh->source),
  1576. ulen, skb->len,
  1577. &daddr, ntohs(uh->dest));
  1578. goto drop;
  1579. csum_error:
  1580. /*
  1581. * RFC1122: OK. Discards the bad packet silently (as far as
  1582. * the network is concerned, anyway) as per 4.1.3.4 (MUST).
  1583. */
  1584. LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
  1585. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1586. &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
  1587. ulen);
  1588. UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
  1589. drop:
  1590. UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  1591. kfree_skb(skb);
  1592. return 0;
  1593. }
  1594. /* We can only early demux multicast if there is a single matching socket.
  1595. * If more than one socket found returns NULL
  1596. */
  1597. static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
  1598. __be16 loc_port, __be32 loc_addr,
  1599. __be16 rmt_port, __be32 rmt_addr,
  1600. int dif)
  1601. {
  1602. struct sock *sk, *result;
  1603. struct hlist_nulls_node *node;
  1604. unsigned short hnum = ntohs(loc_port);
  1605. unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
  1606. struct udp_hslot *hslot = &udp_table.hash[slot];
  1607. rcu_read_lock();
  1608. begin:
  1609. count = 0;
  1610. result = NULL;
  1611. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  1612. if (__udp_is_mcast_sock(net, sk,
  1613. loc_port, loc_addr,
  1614. rmt_port, rmt_addr,
  1615. dif, hnum)) {
  1616. result = sk;
  1617. ++count;
  1618. }
  1619. }
  1620. /*
  1621. * if the nulls value we got at the end of this lookup is
  1622. * not the expected one, we must restart lookup.
  1623. * We probably met an item that was moved to another chain.
  1624. */
  1625. if (get_nulls_value(node) != slot)
  1626. goto begin;
  1627. if (result) {
  1628. if (count != 1 ||
  1629. unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  1630. result = NULL;
  1631. else if (unlikely(!__udp_is_mcast_sock(net, result,
  1632. loc_port, loc_addr,
  1633. rmt_port, rmt_addr,
  1634. dif, hnum))) {
  1635. sock_put(result);
  1636. result = NULL;
  1637. }
  1638. }
  1639. rcu_read_unlock();
  1640. return result;
  1641. }
  1642. /* For unicast we should only early demux connected sockets or we can
  1643. * break forwarding setups. The chains here can be long so only check
  1644. * if the first socket is an exact match and if not move on.
  1645. */
  1646. static struct sock *__udp4_lib_demux_lookup(struct net *net,
  1647. __be16 loc_port, __be32 loc_addr,
  1648. __be16 rmt_port, __be32 rmt_addr,
  1649. int dif)
  1650. {
  1651. struct sock *sk, *result;
  1652. struct hlist_nulls_node *node;
  1653. unsigned short hnum = ntohs(loc_port);
  1654. unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
  1655. unsigned int slot2 = hash2 & udp_table.mask;
  1656. struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
  1657. INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr)
  1658. const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
  1659. rcu_read_lock();
  1660. result = NULL;
  1661. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  1662. if (INET_MATCH(sk, net, acookie,
  1663. rmt_addr, loc_addr, ports, dif))
  1664. result = sk;
  1665. /* Only check first socket in chain */
  1666. break;
  1667. }
  1668. if (result) {
  1669. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  1670. result = NULL;
  1671. else if (unlikely(!INET_MATCH(sk, net, acookie,
  1672. rmt_addr, loc_addr,
  1673. ports, dif))) {
  1674. sock_put(result);
  1675. result = NULL;
  1676. }
  1677. }
  1678. rcu_read_unlock();
  1679. return result;
  1680. }
  1681. void udp_v4_early_demux(struct sk_buff *skb)
  1682. {
  1683. const struct iphdr *iph = ip_hdr(skb);
  1684. const struct udphdr *uh = udp_hdr(skb);
  1685. struct sock *sk;
  1686. struct dst_entry *dst;
  1687. struct net *net = dev_net(skb->dev);
  1688. int dif = skb->dev->ifindex;
  1689. /* validate the packet */
  1690. if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
  1691. return;
  1692. if (skb->pkt_type == PACKET_BROADCAST ||
  1693. skb->pkt_type == PACKET_MULTICAST)
  1694. sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
  1695. uh->source, iph->saddr, dif);
  1696. else if (skb->pkt_type == PACKET_HOST)
  1697. sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
  1698. uh->source, iph->saddr, dif);
  1699. else
  1700. return;
  1701. if (!sk)
  1702. return;
  1703. skb->sk = sk;
  1704. skb->destructor = sock_edemux;
  1705. dst = sk->sk_rx_dst;
  1706. if (dst)
  1707. dst = dst_check(dst, 0);
  1708. if (dst)
  1709. skb_dst_set_noref(skb, dst);
  1710. }
  1711. int udp_rcv(struct sk_buff *skb)
  1712. {
  1713. return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  1714. }
  1715. void udp_destroy_sock(struct sock *sk)
  1716. {
  1717. struct udp_sock *up = udp_sk(sk);
  1718. bool slow = lock_sock_fast(sk);
  1719. udp_flush_pending_frames(sk);
  1720. unlock_sock_fast(sk, slow);
  1721. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1722. void (*encap_destroy)(struct sock *sk);
  1723. encap_destroy = ACCESS_ONCE(up->encap_destroy);
  1724. if (encap_destroy)
  1725. encap_destroy(sk);
  1726. }
  1727. }
  1728. /*
  1729. * Socket option code for UDP
  1730. */
  1731. int udp_lib_setsockopt(struct sock *sk, int level, int optname,
  1732. char __user *optval, unsigned int optlen,
  1733. int (*push_pending_frames)(struct sock *))
  1734. {
  1735. struct udp_sock *up = udp_sk(sk);
  1736. int val;
  1737. int err = 0;
  1738. int is_udplite = IS_UDPLITE(sk);
  1739. if (optlen < sizeof(int))
  1740. return -EINVAL;
  1741. if (get_user(val, (int __user *)optval))
  1742. return -EFAULT;
  1743. switch (optname) {
  1744. case UDP_CORK:
  1745. if (val != 0) {
  1746. up->corkflag = 1;
  1747. } else {
  1748. up->corkflag = 0;
  1749. lock_sock(sk);
  1750. (*push_pending_frames)(sk);
  1751. release_sock(sk);
  1752. }
  1753. break;
  1754. case UDP_ENCAP:
  1755. switch (val) {
  1756. case 0:
  1757. case UDP_ENCAP_ESPINUDP:
  1758. case UDP_ENCAP_ESPINUDP_NON_IKE:
  1759. up->encap_rcv = xfrm4_udp_encap_rcv;
  1760. /* FALLTHROUGH */
  1761. case UDP_ENCAP_L2TPINUDP:
  1762. up->encap_type = val;
  1763. udp_encap_enable();
  1764. break;
  1765. default:
  1766. err = -ENOPROTOOPT;
  1767. break;
  1768. }
  1769. break;
  1770. /*
  1771. * UDP-Lite's partial checksum coverage (RFC 3828).
  1772. */
  1773. /* The sender sets actual checksum coverage length via this option.
  1774. * The case coverage > packet length is handled by send module. */
  1775. case UDPLITE_SEND_CSCOV:
  1776. if (!is_udplite) /* Disable the option on UDP sockets */
  1777. return -ENOPROTOOPT;
  1778. if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
  1779. val = 8;
  1780. else if (val > USHRT_MAX)
  1781. val = USHRT_MAX;
  1782. up->pcslen = val;
  1783. up->pcflag |= UDPLITE_SEND_CC;
  1784. break;
  1785. /* The receiver specifies a minimum checksum coverage value. To make
  1786. * sense, this should be set to at least 8 (as done below). If zero is
  1787. * used, this again means full checksum coverage. */
  1788. case UDPLITE_RECV_CSCOV:
  1789. if (!is_udplite) /* Disable the option on UDP sockets */
  1790. return -ENOPROTOOPT;
  1791. if (val != 0 && val < 8) /* Avoid silly minimal values. */
  1792. val = 8;
  1793. else if (val > USHRT_MAX)
  1794. val = USHRT_MAX;
  1795. up->pcrlen = val;
  1796. up->pcflag |= UDPLITE_RECV_CC;
  1797. break;
  1798. default:
  1799. err = -ENOPROTOOPT;
  1800. break;
  1801. }
  1802. return err;
  1803. }
  1804. EXPORT_SYMBOL(udp_lib_setsockopt);
  1805. int udp_setsockopt(struct sock *sk, int level, int optname,
  1806. char __user *optval, unsigned int optlen)
  1807. {
  1808. if (level == SOL_UDP || level == SOL_UDPLITE)
  1809. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1810. udp_push_pending_frames);
  1811. return ip_setsockopt(sk, level, optname, optval, optlen);
  1812. }
  1813. #ifdef CONFIG_COMPAT
  1814. int compat_udp_setsockopt(struct sock *sk, int level, int optname,
  1815. char __user *optval, unsigned int optlen)
  1816. {
  1817. if (level == SOL_UDP || level == SOL_UDPLITE)
  1818. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1819. udp_push_pending_frames);
  1820. return compat_ip_setsockopt(sk, level, optname, optval, optlen);
  1821. }
  1822. #endif
  1823. int udp_lib_getsockopt(struct sock *sk, int level, int optname,
  1824. char __user *optval, int __user *optlen)
  1825. {
  1826. struct udp_sock *up = udp_sk(sk);
  1827. int val, len;
  1828. if (get_user(len, optlen))
  1829. return -EFAULT;
  1830. len = min_t(unsigned int, len, sizeof(int));
  1831. if (len < 0)
  1832. return -EINVAL;
  1833. switch (optname) {
  1834. case UDP_CORK:
  1835. val = up->corkflag;
  1836. break;
  1837. case UDP_ENCAP:
  1838. val = up->encap_type;
  1839. break;
  1840. /* The following two cannot be changed on UDP sockets, the return is
  1841. * always 0 (which corresponds to the full checksum coverage of UDP). */
  1842. case UDPLITE_SEND_CSCOV:
  1843. val = up->pcslen;
  1844. break;
  1845. case UDPLITE_RECV_CSCOV:
  1846. val = up->pcrlen;
  1847. break;
  1848. default:
  1849. return -ENOPROTOOPT;
  1850. }
  1851. if (put_user(len, optlen))
  1852. return -EFAULT;
  1853. if (copy_to_user(optval, &val, len))
  1854. return -EFAULT;
  1855. return 0;
  1856. }
  1857. EXPORT_SYMBOL(udp_lib_getsockopt);
  1858. int udp_getsockopt(struct sock *sk, int level, int optname,
  1859. char __user *optval, int __user *optlen)
  1860. {
  1861. if (level == SOL_UDP || level == SOL_UDPLITE)
  1862. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1863. return ip_getsockopt(sk, level, optname, optval, optlen);
  1864. }
  1865. #ifdef CONFIG_COMPAT
  1866. int compat_udp_getsockopt(struct sock *sk, int level, int optname,
  1867. char __user *optval, int __user *optlen)
  1868. {
  1869. if (level == SOL_UDP || level == SOL_UDPLITE)
  1870. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1871. return compat_ip_getsockopt(sk, level, optname, optval, optlen);
  1872. }
  1873. #endif
  1874. /**
  1875. * udp_poll - wait for a UDP event.
  1876. * @file - file struct
  1877. * @sock - socket
  1878. * @wait - poll table
  1879. *
  1880. * This is same as datagram poll, except for the special case of
  1881. * blocking sockets. If application is using a blocking fd
  1882. * and a packet with checksum error is in the queue;
  1883. * then it could get return from select indicating data available
  1884. * but then block when reading it. Add special case code
  1885. * to work around these arguably broken applications.
  1886. */
  1887. unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
  1888. {
  1889. unsigned int mask = datagram_poll(file, sock, wait);
  1890. struct sock *sk = sock->sk;
  1891. sock_rps_record_flow(sk);
  1892. /* Check for false positives due to checksum errors */
  1893. if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
  1894. !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
  1895. mask &= ~(POLLIN | POLLRDNORM);
  1896. return mask;
  1897. }
  1898. EXPORT_SYMBOL(udp_poll);
  1899. struct proto udp_prot = {
  1900. .name = "UDP",
  1901. .owner = THIS_MODULE,
  1902. .close = udp_lib_close,
  1903. .connect = ip4_datagram_connect,
  1904. .disconnect = udp_disconnect,
  1905. .ioctl = udp_ioctl,
  1906. .destroy = udp_destroy_sock,
  1907. .setsockopt = udp_setsockopt,
  1908. .getsockopt = udp_getsockopt,
  1909. .sendmsg = udp_sendmsg,
  1910. .recvmsg = udp_recvmsg,
  1911. .sendpage = udp_sendpage,
  1912. .backlog_rcv = __udp_queue_rcv_skb,
  1913. .release_cb = ip4_datagram_release_cb,
  1914. .hash = udp_lib_hash,
  1915. .unhash = udp_lib_unhash,
  1916. .rehash = udp_v4_rehash,
  1917. .get_port = udp_v4_get_port,
  1918. .memory_allocated = &udp_memory_allocated,
  1919. .sysctl_mem = sysctl_udp_mem,
  1920. .sysctl_wmem = &sysctl_udp_wmem_min,
  1921. .sysctl_rmem = &sysctl_udp_rmem_min,
  1922. .obj_size = sizeof(struct udp_sock),
  1923. .slab_flags = SLAB_DESTROY_BY_RCU,
  1924. .h.udp_table = &udp_table,
  1925. #ifdef CONFIG_COMPAT
  1926. .compat_setsockopt = compat_udp_setsockopt,
  1927. .compat_getsockopt = compat_udp_getsockopt,
  1928. #endif
  1929. .clear_sk = sk_prot_clear_portaddr_nulls,
  1930. };
  1931. EXPORT_SYMBOL(udp_prot);
  1932. /* ------------------------------------------------------------------------ */
  1933. #ifdef CONFIG_PROC_FS
  1934. static struct sock *udp_get_first(struct seq_file *seq, int start)
  1935. {
  1936. struct sock *sk;
  1937. struct udp_iter_state *state = seq->private;
  1938. struct net *net = seq_file_net(seq);
  1939. for (state->bucket = start; state->bucket <= state->udp_table->mask;
  1940. ++state->bucket) {
  1941. struct hlist_nulls_node *node;
  1942. struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
  1943. if (hlist_nulls_empty(&hslot->head))
  1944. continue;
  1945. spin_lock_bh(&hslot->lock);
  1946. sk_nulls_for_each(sk, node, &hslot->head) {
  1947. if (!net_eq(sock_net(sk), net))
  1948. continue;
  1949. if (sk->sk_family == state->family)
  1950. goto found;
  1951. }
  1952. spin_unlock_bh(&hslot->lock);
  1953. }
  1954. sk = NULL;
  1955. found:
  1956. return sk;
  1957. }
  1958. static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
  1959. {
  1960. struct udp_iter_state *state = seq->private;
  1961. struct net *net = seq_file_net(seq);
  1962. do {
  1963. sk = sk_nulls_next(sk);
  1964. } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
  1965. if (!sk) {
  1966. if (state->bucket <= state->udp_table->mask)
  1967. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  1968. return udp_get_first(seq, state->bucket + 1);
  1969. }
  1970. return sk;
  1971. }
  1972. static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
  1973. {
  1974. struct sock *sk = udp_get_first(seq, 0);
  1975. if (sk)
  1976. while (pos && (sk = udp_get_next(seq, sk)) != NULL)
  1977. --pos;
  1978. return pos ? NULL : sk;
  1979. }
  1980. static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
  1981. {
  1982. struct udp_iter_state *state = seq->private;
  1983. state->bucket = MAX_UDP_PORTS;
  1984. return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
  1985. }
  1986. static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1987. {
  1988. struct sock *sk;
  1989. if (v == SEQ_START_TOKEN)
  1990. sk = udp_get_idx(seq, 0);
  1991. else
  1992. sk = udp_get_next(seq, v);
  1993. ++*pos;
  1994. return sk;
  1995. }
  1996. static void udp_seq_stop(struct seq_file *seq, void *v)
  1997. {
  1998. struct udp_iter_state *state = seq->private;
  1999. if (state->bucket <= state->udp_table->mask)
  2000. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2001. }
  2002. int udp_seq_open(struct inode *inode, struct file *file)
  2003. {
  2004. struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
  2005. struct udp_iter_state *s;
  2006. int err;
  2007. err = seq_open_net(inode, file, &afinfo->seq_ops,
  2008. sizeof(struct udp_iter_state));
  2009. if (err < 0)
  2010. return err;
  2011. s = ((struct seq_file *)file->private_data)->private;
  2012. s->family = afinfo->family;
  2013. s->udp_table = afinfo->udp_table;
  2014. return err;
  2015. }
  2016. EXPORT_SYMBOL(udp_seq_open);
  2017. /* ------------------------------------------------------------------------ */
  2018. int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
  2019. {
  2020. struct proc_dir_entry *p;
  2021. int rc = 0;
  2022. afinfo->seq_ops.start = udp_seq_start;
  2023. afinfo->seq_ops.next = udp_seq_next;
  2024. afinfo->seq_ops.stop = udp_seq_stop;
  2025. p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
  2026. afinfo->seq_fops, afinfo);
  2027. if (!p)
  2028. rc = -ENOMEM;
  2029. return rc;
  2030. }
  2031. EXPORT_SYMBOL(udp_proc_register);
  2032. void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
  2033. {
  2034. remove_proc_entry(afinfo->name, net->proc_net);
  2035. }
  2036. EXPORT_SYMBOL(udp_proc_unregister);
  2037. /* ------------------------------------------------------------------------ */
  2038. static void udp4_format_sock(struct sock *sp, struct seq_file *f,
  2039. int bucket, int *len)
  2040. {
  2041. struct inet_sock *inet = inet_sk(sp);
  2042. __be32 dest = inet->inet_daddr;
  2043. __be32 src = inet->inet_rcv_saddr;
  2044. __u16 destp = ntohs(inet->inet_dport);
  2045. __u16 srcp = ntohs(inet->inet_sport);
  2046. seq_printf(f, "%5d: %08X:%04X %08X:%04X"
  2047. " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d%n",
  2048. bucket, src, srcp, dest, destp, sp->sk_state,
  2049. sk_wmem_alloc_get(sp),
  2050. sk_rmem_alloc_get(sp),
  2051. 0, 0L, 0,
  2052. from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
  2053. 0, sock_i_ino(sp),
  2054. atomic_read(&sp->sk_refcnt), sp,
  2055. atomic_read(&sp->sk_drops), len);
  2056. }
  2057. int udp4_seq_show(struct seq_file *seq, void *v)
  2058. {
  2059. if (v == SEQ_START_TOKEN)
  2060. seq_printf(seq, "%-127s\n",
  2061. " sl local_address rem_address st tx_queue "
  2062. "rx_queue tr tm->when retrnsmt uid timeout "
  2063. "inode ref pointer drops");
  2064. else {
  2065. struct udp_iter_state *state = seq->private;
  2066. int len;
  2067. udp4_format_sock(v, seq, state->bucket, &len);
  2068. seq_printf(seq, "%*s\n", 127 - len, "");
  2069. }
  2070. return 0;
  2071. }
  2072. static const struct file_operations udp_afinfo_seq_fops = {
  2073. .owner = THIS_MODULE,
  2074. .open = udp_seq_open,
  2075. .read = seq_read,
  2076. .llseek = seq_lseek,
  2077. .release = seq_release_net
  2078. };
  2079. /* ------------------------------------------------------------------------ */
  2080. static struct udp_seq_afinfo udp4_seq_afinfo = {
  2081. .name = "udp",
  2082. .family = AF_INET,
  2083. .udp_table = &udp_table,
  2084. .seq_fops = &udp_afinfo_seq_fops,
  2085. .seq_ops = {
  2086. .show = udp4_seq_show,
  2087. },
  2088. };
  2089. static int __net_init udp4_proc_init_net(struct net *net)
  2090. {
  2091. return udp_proc_register(net, &udp4_seq_afinfo);
  2092. }
  2093. static void __net_exit udp4_proc_exit_net(struct net *net)
  2094. {
  2095. udp_proc_unregister(net, &udp4_seq_afinfo);
  2096. }
  2097. static struct pernet_operations udp4_net_ops = {
  2098. .init = udp4_proc_init_net,
  2099. .exit = udp4_proc_exit_net,
  2100. };
  2101. int __init udp4_proc_init(void)
  2102. {
  2103. return register_pernet_subsys(&udp4_net_ops);
  2104. }
  2105. void udp4_proc_exit(void)
  2106. {
  2107. unregister_pernet_subsys(&udp4_net_ops);
  2108. }
  2109. #endif /* CONFIG_PROC_FS */
  2110. static __initdata unsigned long uhash_entries;
  2111. static int __init set_uhash_entries(char *str)
  2112. {
  2113. ssize_t ret;
  2114. if (!str)
  2115. return 0;
  2116. ret = kstrtoul(str, 0, &uhash_entries);
  2117. if (ret)
  2118. return 0;
  2119. if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
  2120. uhash_entries = UDP_HTABLE_SIZE_MIN;
  2121. return 1;
  2122. }
  2123. __setup("uhash_entries=", set_uhash_entries);
  2124. void __init udp_table_init(struct udp_table *table, const char *name)
  2125. {
  2126. unsigned int i;
  2127. table->hash = alloc_large_system_hash(name,
  2128. 2 * sizeof(struct udp_hslot),
  2129. uhash_entries,
  2130. 21, /* one slot per 2 MB */
  2131. 0,
  2132. &table->log,
  2133. &table->mask,
  2134. UDP_HTABLE_SIZE_MIN,
  2135. 64 * 1024);
  2136. table->hash2 = table->hash + (table->mask + 1);
  2137. for (i = 0; i <= table->mask; i++) {
  2138. INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
  2139. table->hash[i].count = 0;
  2140. spin_lock_init(&table->hash[i].lock);
  2141. }
  2142. for (i = 0; i <= table->mask; i++) {
  2143. INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
  2144. table->hash2[i].count = 0;
  2145. spin_lock_init(&table->hash2[i].lock);
  2146. }
  2147. }
  2148. void __init udp_init(void)
  2149. {
  2150. unsigned long limit;
  2151. udp_table_init(&udp_table, "UDP");
  2152. limit = nr_free_buffer_pages() / 8;
  2153. limit = max(limit, 128UL);
  2154. sysctl_udp_mem[0] = limit / 4 * 3;
  2155. sysctl_udp_mem[1] = limit;
  2156. sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
  2157. sysctl_udp_rmem_min = SK_MEM_QUANTUM;
  2158. sysctl_udp_wmem_min = SK_MEM_QUANTUM;
  2159. }
  2160. struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
  2161. netdev_features_t features)
  2162. {
  2163. struct sk_buff *segs = ERR_PTR(-EINVAL);
  2164. int mac_len = skb->mac_len;
  2165. int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
  2166. __be16 protocol = skb->protocol;
  2167. netdev_features_t enc_features;
  2168. int outer_hlen;
  2169. if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
  2170. goto out;
  2171. skb->encapsulation = 0;
  2172. __skb_pull(skb, tnl_hlen);
  2173. skb_reset_mac_header(skb);
  2174. skb_set_network_header(skb, skb_inner_network_offset(skb));
  2175. skb->mac_len = skb_inner_network_offset(skb);
  2176. skb->protocol = htons(ETH_P_TEB);
  2177. /* segment inner packet. */
  2178. enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
  2179. segs = skb_mac_gso_segment(skb, enc_features);
  2180. if (!segs || IS_ERR(segs))
  2181. goto out;
  2182. outer_hlen = skb_tnl_header_len(skb);
  2183. skb = segs;
  2184. do {
  2185. struct udphdr *uh;
  2186. int udp_offset = outer_hlen - tnl_hlen;
  2187. skb_reset_inner_headers(skb);
  2188. skb->encapsulation = 1;
  2189. skb->mac_len = mac_len;
  2190. skb_push(skb, outer_hlen);
  2191. skb_reset_mac_header(skb);
  2192. skb_set_network_header(skb, mac_len);
  2193. skb_set_transport_header(skb, udp_offset);
  2194. uh = udp_hdr(skb);
  2195. uh->len = htons(skb->len - udp_offset);
  2196. /* csum segment if tunnel sets skb with csum. */
  2197. if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) {
  2198. struct iphdr *iph = ip_hdr(skb);
  2199. uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
  2200. skb->len - udp_offset,
  2201. IPPROTO_UDP, 0);
  2202. uh->check = csum_fold(skb_checksum(skb, udp_offset,
  2203. skb->len - udp_offset, 0));
  2204. if (uh->check == 0)
  2205. uh->check = CSUM_MANGLED_0;
  2206. } else if (protocol == htons(ETH_P_IPV6)) {
  2207. struct ipv6hdr *ipv6h = ipv6_hdr(skb);
  2208. u32 len = skb->len - udp_offset;
  2209. uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
  2210. len, IPPROTO_UDP, 0);
  2211. uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0));
  2212. if (uh->check == 0)
  2213. uh->check = CSUM_MANGLED_0;
  2214. skb->ip_summed = CHECKSUM_NONE;
  2215. }
  2216. skb->protocol = protocol;
  2217. } while ((skb = skb->next));
  2218. out:
  2219. return segs;
  2220. }