perf_event.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/bitmap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/perf_event.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/cputype.h>
  22. #include <asm/irq.h>
  23. #include <asm/irq_regs.h>
  24. #include <asm/pmu.h>
  25. #include <asm/stacktrace.h>
  26. /*
  27. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  28. * another platform that supports more, we need to increase this to be the
  29. * largest of all platforms.
  30. *
  31. * ARMv7 supports up to 32 events:
  32. * cycle counter CCNT + 31 events counters CNT0..30.
  33. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  34. */
  35. #define ARMPMU_MAX_HWEVENTS 32
  36. static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
  37. static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
  38. static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
  39. #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
  40. /* Set at runtime when we know what CPU type we are. */
  41. static struct arm_pmu *cpu_pmu;
  42. enum arm_perf_pmu_ids
  43. armpmu_get_pmu_id(void)
  44. {
  45. int id = -ENODEV;
  46. if (cpu_pmu != NULL)
  47. id = cpu_pmu->id;
  48. return id;
  49. }
  50. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  51. int
  52. armpmu_get_max_events(void)
  53. {
  54. int max_events = 0;
  55. if (cpu_pmu != NULL)
  56. max_events = cpu_pmu->num_events;
  57. return max_events;
  58. }
  59. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  60. int perf_num_counters(void)
  61. {
  62. return armpmu_get_max_events();
  63. }
  64. EXPORT_SYMBOL_GPL(perf_num_counters);
  65. #define HW_OP_UNSUPPORTED 0xFFFF
  66. #define C(_x) \
  67. PERF_COUNT_HW_CACHE_##_x
  68. #define CACHE_OP_UNSUPPORTED 0xFFFF
  69. static int
  70. armpmu_map_cache_event(const unsigned (*cache_map)
  71. [PERF_COUNT_HW_CACHE_MAX]
  72. [PERF_COUNT_HW_CACHE_OP_MAX]
  73. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  74. u64 config)
  75. {
  76. unsigned int cache_type, cache_op, cache_result, ret;
  77. cache_type = (config >> 0) & 0xff;
  78. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  79. return -EINVAL;
  80. cache_op = (config >> 8) & 0xff;
  81. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  82. return -EINVAL;
  83. cache_result = (config >> 16) & 0xff;
  84. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  85. return -EINVAL;
  86. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  87. if (ret == CACHE_OP_UNSUPPORTED)
  88. return -ENOENT;
  89. return ret;
  90. }
  91. static int
  92. armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  93. {
  94. int mapping = (*event_map)[config];
  95. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  96. }
  97. static int
  98. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  99. {
  100. return (int)(config & raw_event_mask);
  101. }
  102. static int map_cpu_event(struct perf_event *event,
  103. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  104. const unsigned (*cache_map)
  105. [PERF_COUNT_HW_CACHE_MAX]
  106. [PERF_COUNT_HW_CACHE_OP_MAX]
  107. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  108. u32 raw_event_mask)
  109. {
  110. u64 config = event->attr.config;
  111. switch (event->attr.type) {
  112. case PERF_TYPE_HARDWARE:
  113. return armpmu_map_event(event_map, config);
  114. case PERF_TYPE_HW_CACHE:
  115. return armpmu_map_cache_event(cache_map, config);
  116. case PERF_TYPE_RAW:
  117. return armpmu_map_raw_event(raw_event_mask, config);
  118. }
  119. return -ENOENT;
  120. }
  121. int
  122. armpmu_event_set_period(struct perf_event *event,
  123. struct hw_perf_event *hwc,
  124. int idx)
  125. {
  126. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  127. s64 left = local64_read(&hwc->period_left);
  128. s64 period = hwc->sample_period;
  129. int ret = 0;
  130. if (unlikely(left <= -period)) {
  131. left = period;
  132. local64_set(&hwc->period_left, left);
  133. hwc->last_period = period;
  134. ret = 1;
  135. }
  136. if (unlikely(left <= 0)) {
  137. left += period;
  138. local64_set(&hwc->period_left, left);
  139. hwc->last_period = period;
  140. ret = 1;
  141. }
  142. if (left > (s64)armpmu->max_period)
  143. left = armpmu->max_period;
  144. local64_set(&hwc->prev_count, (u64)-left);
  145. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  146. perf_event_update_userpage(event);
  147. return ret;
  148. }
  149. u64
  150. armpmu_event_update(struct perf_event *event,
  151. struct hw_perf_event *hwc,
  152. int idx, int overflow)
  153. {
  154. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  155. u64 delta, prev_raw_count, new_raw_count;
  156. again:
  157. prev_raw_count = local64_read(&hwc->prev_count);
  158. new_raw_count = armpmu->read_counter(idx);
  159. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  160. new_raw_count) != prev_raw_count)
  161. goto again;
  162. new_raw_count &= armpmu->max_period;
  163. prev_raw_count &= armpmu->max_period;
  164. if (overflow)
  165. delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
  166. else
  167. delta = new_raw_count - prev_raw_count;
  168. local64_add(delta, &event->count);
  169. local64_sub(delta, &hwc->period_left);
  170. return new_raw_count;
  171. }
  172. static void
  173. armpmu_read(struct perf_event *event)
  174. {
  175. struct hw_perf_event *hwc = &event->hw;
  176. /* Don't read disabled counters! */
  177. if (hwc->idx < 0)
  178. return;
  179. armpmu_event_update(event, hwc, hwc->idx, 0);
  180. }
  181. static void
  182. armpmu_stop(struct perf_event *event, int flags)
  183. {
  184. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  185. struct hw_perf_event *hwc = &event->hw;
  186. /*
  187. * ARM pmu always has to update the counter, so ignore
  188. * PERF_EF_UPDATE, see comments in armpmu_start().
  189. */
  190. if (!(hwc->state & PERF_HES_STOPPED)) {
  191. armpmu->disable(hwc, hwc->idx);
  192. barrier(); /* why? */
  193. armpmu_event_update(event, hwc, hwc->idx, 0);
  194. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  195. }
  196. }
  197. static void
  198. armpmu_start(struct perf_event *event, int flags)
  199. {
  200. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  201. struct hw_perf_event *hwc = &event->hw;
  202. /*
  203. * ARM pmu always has to reprogram the period, so ignore
  204. * PERF_EF_RELOAD, see the comment below.
  205. */
  206. if (flags & PERF_EF_RELOAD)
  207. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  208. hwc->state = 0;
  209. /*
  210. * Set the period again. Some counters can't be stopped, so when we
  211. * were stopped we simply disabled the IRQ source and the counter
  212. * may have been left counting. If we don't do this step then we may
  213. * get an interrupt too soon or *way* too late if the overflow has
  214. * happened since disabling.
  215. */
  216. armpmu_event_set_period(event, hwc, hwc->idx);
  217. armpmu->enable(hwc, hwc->idx);
  218. }
  219. static void
  220. armpmu_del(struct perf_event *event, int flags)
  221. {
  222. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  223. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  224. struct hw_perf_event *hwc = &event->hw;
  225. int idx = hwc->idx;
  226. WARN_ON(idx < 0);
  227. armpmu_stop(event, PERF_EF_UPDATE);
  228. hw_events->events[idx] = NULL;
  229. clear_bit(idx, hw_events->used_mask);
  230. perf_event_update_userpage(event);
  231. }
  232. static int
  233. armpmu_add(struct perf_event *event, int flags)
  234. {
  235. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  236. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  237. struct hw_perf_event *hwc = &event->hw;
  238. int idx;
  239. int err = 0;
  240. perf_pmu_disable(event->pmu);
  241. /* If we don't have a space for the counter then finish early. */
  242. idx = armpmu->get_event_idx(hw_events, hwc);
  243. if (idx < 0) {
  244. err = idx;
  245. goto out;
  246. }
  247. /*
  248. * If there is an event in the counter we are going to use then make
  249. * sure it is disabled.
  250. */
  251. event->hw.idx = idx;
  252. armpmu->disable(hwc, idx);
  253. hw_events->events[idx] = event;
  254. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  255. if (flags & PERF_EF_START)
  256. armpmu_start(event, PERF_EF_RELOAD);
  257. /* Propagate our changes to the userspace mapping. */
  258. perf_event_update_userpage(event);
  259. out:
  260. perf_pmu_enable(event->pmu);
  261. return err;
  262. }
  263. static int
  264. validate_event(struct pmu_hw_events *hw_events,
  265. struct perf_event *event)
  266. {
  267. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  268. struct hw_perf_event fake_event = event->hw;
  269. struct pmu *leader_pmu = event->group_leader->pmu;
  270. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  271. return 1;
  272. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  273. }
  274. static int
  275. validate_group(struct perf_event *event)
  276. {
  277. struct perf_event *sibling, *leader = event->group_leader;
  278. struct pmu_hw_events fake_pmu;
  279. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  280. /*
  281. * Initialise the fake PMU. We only need to populate the
  282. * used_mask for the purposes of validation.
  283. */
  284. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  285. fake_pmu.used_mask = fake_used_mask;
  286. if (!validate_event(&fake_pmu, leader))
  287. return -ENOSPC;
  288. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  289. if (!validate_event(&fake_pmu, sibling))
  290. return -ENOSPC;
  291. }
  292. if (!validate_event(&fake_pmu, event))
  293. return -ENOSPC;
  294. return 0;
  295. }
  296. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  297. {
  298. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  299. struct platform_device *plat_device = armpmu->plat_device;
  300. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  301. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  302. }
  303. static void
  304. armpmu_release_hardware(struct arm_pmu *armpmu)
  305. {
  306. int i, irq, irqs;
  307. struct platform_device *pmu_device = armpmu->plat_device;
  308. irqs = min(pmu_device->num_resources, num_possible_cpus());
  309. for (i = 0; i < irqs; ++i) {
  310. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  311. continue;
  312. irq = platform_get_irq(pmu_device, i);
  313. if (irq >= 0)
  314. free_irq(irq, armpmu);
  315. }
  316. release_pmu(armpmu->type);
  317. }
  318. static int
  319. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  320. {
  321. struct arm_pmu_platdata *plat;
  322. irq_handler_t handle_irq;
  323. int i, err, irq, irqs;
  324. struct platform_device *pmu_device = armpmu->plat_device;
  325. err = reserve_pmu(armpmu->type);
  326. if (err) {
  327. pr_warning("unable to reserve pmu\n");
  328. return err;
  329. }
  330. plat = dev_get_platdata(&pmu_device->dev);
  331. if (plat && plat->handle_irq)
  332. handle_irq = armpmu_platform_irq;
  333. else
  334. handle_irq = armpmu->handle_irq;
  335. irqs = min(pmu_device->num_resources, num_possible_cpus());
  336. if (irqs < 1) {
  337. pr_err("no irqs for PMUs defined\n");
  338. return -ENODEV;
  339. }
  340. for (i = 0; i < irqs; ++i) {
  341. err = 0;
  342. irq = platform_get_irq(pmu_device, i);
  343. if (irq < 0)
  344. continue;
  345. /*
  346. * If we have a single PMU interrupt that we can't shift,
  347. * assume that we're running on a uniprocessor machine and
  348. * continue. Otherwise, continue without this interrupt.
  349. */
  350. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  351. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  352. irq, i);
  353. continue;
  354. }
  355. err = request_irq(irq, handle_irq,
  356. IRQF_DISABLED | IRQF_NOBALANCING,
  357. "arm-pmu", armpmu);
  358. if (err) {
  359. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  360. irq);
  361. armpmu_release_hardware(armpmu);
  362. return err;
  363. }
  364. cpumask_set_cpu(i, &armpmu->active_irqs);
  365. }
  366. return 0;
  367. }
  368. static void
  369. hw_perf_event_destroy(struct perf_event *event)
  370. {
  371. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  372. atomic_t *active_events = &armpmu->active_events;
  373. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  374. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  375. armpmu_release_hardware(armpmu);
  376. mutex_unlock(pmu_reserve_mutex);
  377. }
  378. }
  379. static int
  380. event_requires_mode_exclusion(struct perf_event_attr *attr)
  381. {
  382. return attr->exclude_idle || attr->exclude_user ||
  383. attr->exclude_kernel || attr->exclude_hv;
  384. }
  385. static int
  386. __hw_perf_event_init(struct perf_event *event)
  387. {
  388. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  389. struct hw_perf_event *hwc = &event->hw;
  390. int mapping, err;
  391. mapping = armpmu->map_event(event);
  392. if (mapping < 0) {
  393. pr_debug("event %x:%llx not supported\n", event->attr.type,
  394. event->attr.config);
  395. return mapping;
  396. }
  397. /*
  398. * We don't assign an index until we actually place the event onto
  399. * hardware. Use -1 to signify that we haven't decided where to put it
  400. * yet. For SMP systems, each core has it's own PMU so we can't do any
  401. * clever allocation or constraints checking at this point.
  402. */
  403. hwc->idx = -1;
  404. hwc->config_base = 0;
  405. hwc->config = 0;
  406. hwc->event_base = 0;
  407. /*
  408. * Check whether we need to exclude the counter from certain modes.
  409. */
  410. if ((!armpmu->set_event_filter ||
  411. armpmu->set_event_filter(hwc, &event->attr)) &&
  412. event_requires_mode_exclusion(&event->attr)) {
  413. pr_debug("ARM performance counters do not support "
  414. "mode exclusion\n");
  415. return -EPERM;
  416. }
  417. /*
  418. * Store the event encoding into the config_base field.
  419. */
  420. hwc->config_base |= (unsigned long)mapping;
  421. if (!hwc->sample_period) {
  422. hwc->sample_period = armpmu->max_period;
  423. hwc->last_period = hwc->sample_period;
  424. local64_set(&hwc->period_left, hwc->sample_period);
  425. }
  426. err = 0;
  427. if (event->group_leader != event) {
  428. err = validate_group(event);
  429. if (err)
  430. return -EINVAL;
  431. }
  432. return err;
  433. }
  434. static int armpmu_event_init(struct perf_event *event)
  435. {
  436. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  437. int err = 0;
  438. atomic_t *active_events = &armpmu->active_events;
  439. if (armpmu->map_event(event) == -ENOENT)
  440. return -ENOENT;
  441. event->destroy = hw_perf_event_destroy;
  442. if (!atomic_inc_not_zero(active_events)) {
  443. mutex_lock(&armpmu->reserve_mutex);
  444. if (atomic_read(active_events) == 0)
  445. err = armpmu_reserve_hardware(armpmu);
  446. if (!err)
  447. atomic_inc(active_events);
  448. mutex_unlock(&armpmu->reserve_mutex);
  449. }
  450. if (err)
  451. return err;
  452. err = __hw_perf_event_init(event);
  453. if (err)
  454. hw_perf_event_destroy(event);
  455. return err;
  456. }
  457. static void armpmu_enable(struct pmu *pmu)
  458. {
  459. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  460. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  461. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  462. if (enabled)
  463. armpmu->start();
  464. }
  465. static void armpmu_disable(struct pmu *pmu)
  466. {
  467. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  468. armpmu->stop();
  469. }
  470. static void __init armpmu_init(struct arm_pmu *armpmu)
  471. {
  472. atomic_set(&armpmu->active_events, 0);
  473. mutex_init(&armpmu->reserve_mutex);
  474. armpmu->pmu = (struct pmu) {
  475. .pmu_enable = armpmu_enable,
  476. .pmu_disable = armpmu_disable,
  477. .event_init = armpmu_event_init,
  478. .add = armpmu_add,
  479. .del = armpmu_del,
  480. .start = armpmu_start,
  481. .stop = armpmu_stop,
  482. .read = armpmu_read,
  483. };
  484. }
  485. int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  486. {
  487. armpmu_init(armpmu);
  488. return perf_pmu_register(&armpmu->pmu, name, type);
  489. }
  490. /* Include the PMU-specific implementations. */
  491. #include "perf_event_xscale.c"
  492. #include "perf_event_v6.c"
  493. #include "perf_event_v7.c"
  494. /*
  495. * Ensure the PMU has sane values out of reset.
  496. * This requires SMP to be available, so exists as a separate initcall.
  497. */
  498. static int __init
  499. cpu_pmu_reset(void)
  500. {
  501. if (cpu_pmu && cpu_pmu->reset)
  502. return on_each_cpu(cpu_pmu->reset, NULL, 1);
  503. return 0;
  504. }
  505. arch_initcall(cpu_pmu_reset);
  506. /*
  507. * PMU platform driver and devicetree bindings.
  508. */
  509. static struct of_device_id armpmu_of_device_ids[] = {
  510. {.compatible = "arm,cortex-a9-pmu"},
  511. {.compatible = "arm,cortex-a8-pmu"},
  512. {.compatible = "arm,arm1136-pmu"},
  513. {.compatible = "arm,arm1176-pmu"},
  514. {},
  515. };
  516. static struct platform_device_id armpmu_plat_device_ids[] = {
  517. {.name = "arm-pmu"},
  518. {},
  519. };
  520. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  521. {
  522. cpu_pmu->plat_device = pdev;
  523. return 0;
  524. }
  525. static struct platform_driver armpmu_driver = {
  526. .driver = {
  527. .name = "arm-pmu",
  528. .of_match_table = armpmu_of_device_ids,
  529. },
  530. .probe = armpmu_device_probe,
  531. .id_table = armpmu_plat_device_ids,
  532. };
  533. static int __init register_pmu_driver(void)
  534. {
  535. return platform_driver_register(&armpmu_driver);
  536. }
  537. device_initcall(register_pmu_driver);
  538. static struct pmu_hw_events *armpmu_get_cpu_events(void)
  539. {
  540. return &__get_cpu_var(cpu_hw_events);
  541. }
  542. static void __init cpu_pmu_init(struct arm_pmu *armpmu)
  543. {
  544. int cpu;
  545. for_each_possible_cpu(cpu) {
  546. struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
  547. events->events = per_cpu(hw_events, cpu);
  548. events->used_mask = per_cpu(used_mask, cpu);
  549. raw_spin_lock_init(&events->pmu_lock);
  550. }
  551. armpmu->get_hw_events = armpmu_get_cpu_events;
  552. armpmu->type = ARM_PMU_DEVICE_CPU;
  553. }
  554. /*
  555. * CPU PMU identification and registration.
  556. */
  557. static int __init
  558. init_hw_perf_events(void)
  559. {
  560. unsigned long cpuid = read_cpuid_id();
  561. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  562. unsigned long part_number = (cpuid & 0xFFF0);
  563. /* ARM Ltd CPUs. */
  564. if (0x41 == implementor) {
  565. switch (part_number) {
  566. case 0xB360: /* ARM1136 */
  567. case 0xB560: /* ARM1156 */
  568. case 0xB760: /* ARM1176 */
  569. cpu_pmu = armv6pmu_init();
  570. break;
  571. case 0xB020: /* ARM11mpcore */
  572. cpu_pmu = armv6mpcore_pmu_init();
  573. break;
  574. case 0xC080: /* Cortex-A8 */
  575. cpu_pmu = armv7_a8_pmu_init();
  576. break;
  577. case 0xC090: /* Cortex-A9 */
  578. cpu_pmu = armv7_a9_pmu_init();
  579. break;
  580. case 0xC050: /* Cortex-A5 */
  581. cpu_pmu = armv7_a5_pmu_init();
  582. break;
  583. case 0xC0F0: /* Cortex-A15 */
  584. cpu_pmu = armv7_a15_pmu_init();
  585. break;
  586. }
  587. /* Intel CPUs [xscale]. */
  588. } else if (0x69 == implementor) {
  589. part_number = (cpuid >> 13) & 0x7;
  590. switch (part_number) {
  591. case 1:
  592. cpu_pmu = xscale1pmu_init();
  593. break;
  594. case 2:
  595. cpu_pmu = xscale2pmu_init();
  596. break;
  597. }
  598. }
  599. if (cpu_pmu) {
  600. pr_info("enabled with %s PMU driver, %d counters available\n",
  601. cpu_pmu->name, cpu_pmu->num_events);
  602. cpu_pmu_init(cpu_pmu);
  603. armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
  604. } else {
  605. pr_info("no hardware support available\n");
  606. }
  607. return 0;
  608. }
  609. early_initcall(init_hw_perf_events);
  610. /*
  611. * Callchain handling code.
  612. */
  613. /*
  614. * The registers we're interested in are at the end of the variable
  615. * length saved register structure. The fp points at the end of this
  616. * structure so the address of this struct is:
  617. * (struct frame_tail *)(xxx->fp)-1
  618. *
  619. * This code has been adapted from the ARM OProfile support.
  620. */
  621. struct frame_tail {
  622. struct frame_tail __user *fp;
  623. unsigned long sp;
  624. unsigned long lr;
  625. } __attribute__((packed));
  626. /*
  627. * Get the return address for a single stackframe and return a pointer to the
  628. * next frame tail.
  629. */
  630. static struct frame_tail __user *
  631. user_backtrace(struct frame_tail __user *tail,
  632. struct perf_callchain_entry *entry)
  633. {
  634. struct frame_tail buftail;
  635. /* Also check accessibility of one struct frame_tail beyond */
  636. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  637. return NULL;
  638. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  639. return NULL;
  640. perf_callchain_store(entry, buftail.lr);
  641. /*
  642. * Frame pointers should strictly progress back up the stack
  643. * (towards higher addresses).
  644. */
  645. if (tail + 1 >= buftail.fp)
  646. return NULL;
  647. return buftail.fp - 1;
  648. }
  649. void
  650. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  651. {
  652. struct frame_tail __user *tail;
  653. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  654. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  655. tail && !((unsigned long)tail & 0x3))
  656. tail = user_backtrace(tail, entry);
  657. }
  658. /*
  659. * Gets called by walk_stackframe() for every stackframe. This will be called
  660. * whist unwinding the stackframe and is like a subroutine return so we use
  661. * the PC.
  662. */
  663. static int
  664. callchain_trace(struct stackframe *fr,
  665. void *data)
  666. {
  667. struct perf_callchain_entry *entry = data;
  668. perf_callchain_store(entry, fr->pc);
  669. return 0;
  670. }
  671. void
  672. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  673. {
  674. struct stackframe fr;
  675. fr.fp = regs->ARM_fp;
  676. fr.sp = regs->ARM_sp;
  677. fr.lr = regs->ARM_lr;
  678. fr.pc = regs->ARM_pc;
  679. walk_stackframe(&fr, callchain_trace, entry);
  680. }