inode.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include <linux/namei.h>
  40. #include <trace/events/ext3.h>
  41. #include "xattr.h"
  42. #include "acl.h"
  43. static int ext3_writepage_trans_blocks(struct inode *inode);
  44. static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  45. /*
  46. * Test whether an inode is a fast symlink.
  47. */
  48. static int ext3_inode_is_fast_symlink(struct inode *inode)
  49. {
  50. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  51. (inode->i_sb->s_blocksize >> 9) : 0;
  52. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  53. }
  54. /*
  55. * The ext3 forget function must perform a revoke if we are freeing data
  56. * which has been journaled. Metadata (eg. indirect blocks) must be
  57. * revoked in all cases.
  58. *
  59. * "bh" may be NULL: a metadata block may have been freed from memory
  60. * but there may still be a record of it in the journal, and that record
  61. * still needs to be revoked.
  62. */
  63. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  64. struct buffer_head *bh, ext3_fsblk_t blocknr)
  65. {
  66. int err;
  67. might_sleep();
  68. trace_ext3_forget(inode, is_metadata, blocknr);
  69. BUFFER_TRACE(bh, "enter");
  70. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  71. "data mode %lx\n",
  72. bh, is_metadata, inode->i_mode,
  73. test_opt(inode->i_sb, DATA_FLAGS));
  74. /* Never use the revoke function if we are doing full data
  75. * journaling: there is no need to, and a V1 superblock won't
  76. * support it. Otherwise, only skip the revoke on un-journaled
  77. * data blocks. */
  78. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  79. (!is_metadata && !ext3_should_journal_data(inode))) {
  80. if (bh) {
  81. BUFFER_TRACE(bh, "call journal_forget");
  82. return ext3_journal_forget(handle, bh);
  83. }
  84. return 0;
  85. }
  86. /*
  87. * data!=journal && (is_metadata || should_journal_data(inode))
  88. */
  89. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  90. err = ext3_journal_revoke(handle, blocknr, bh);
  91. if (err)
  92. ext3_abort(inode->i_sb, __func__,
  93. "error %d when attempting revoke", err);
  94. BUFFER_TRACE(bh, "exit");
  95. return err;
  96. }
  97. /*
  98. * Work out how many blocks we need to proceed with the next chunk of a
  99. * truncate transaction.
  100. */
  101. static unsigned long blocks_for_truncate(struct inode *inode)
  102. {
  103. unsigned long needed;
  104. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  105. /* Give ourselves just enough room to cope with inodes in which
  106. * i_blocks is corrupt: we've seen disk corruptions in the past
  107. * which resulted in random data in an inode which looked enough
  108. * like a regular file for ext3 to try to delete it. Things
  109. * will go a bit crazy if that happens, but at least we should
  110. * try not to panic the whole kernel. */
  111. if (needed < 2)
  112. needed = 2;
  113. /* But we need to bound the transaction so we don't overflow the
  114. * journal. */
  115. if (needed > EXT3_MAX_TRANS_DATA)
  116. needed = EXT3_MAX_TRANS_DATA;
  117. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  118. }
  119. /*
  120. * Truncate transactions can be complex and absolutely huge. So we need to
  121. * be able to restart the transaction at a conventient checkpoint to make
  122. * sure we don't overflow the journal.
  123. *
  124. * start_transaction gets us a new handle for a truncate transaction,
  125. * and extend_transaction tries to extend the existing one a bit. If
  126. * extend fails, we need to propagate the failure up and restart the
  127. * transaction in the top-level truncate loop. --sct
  128. */
  129. static handle_t *start_transaction(struct inode *inode)
  130. {
  131. handle_t *result;
  132. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  133. if (!IS_ERR(result))
  134. return result;
  135. ext3_std_error(inode->i_sb, PTR_ERR(result));
  136. return result;
  137. }
  138. /*
  139. * Try to extend this transaction for the purposes of truncation.
  140. *
  141. * Returns 0 if we managed to create more room. If we can't create more
  142. * room, and the transaction must be restarted we return 1.
  143. */
  144. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  145. {
  146. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  147. return 0;
  148. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  149. return 0;
  150. return 1;
  151. }
  152. /*
  153. * Restart the transaction associated with *handle. This does a commit,
  154. * so before we call here everything must be consistently dirtied against
  155. * this transaction.
  156. */
  157. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  158. {
  159. int ret;
  160. jbd_debug(2, "restarting handle %p\n", handle);
  161. /*
  162. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  163. * At this moment, get_block can be called only for blocks inside
  164. * i_size since page cache has been already dropped and writes are
  165. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  166. */
  167. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  168. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  169. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  170. return ret;
  171. }
  172. /*
  173. * Called at inode eviction from icache
  174. */
  175. void ext3_evict_inode (struct inode *inode)
  176. {
  177. struct ext3_inode_info *ei = EXT3_I(inode);
  178. struct ext3_block_alloc_info *rsv;
  179. handle_t *handle;
  180. int want_delete = 0;
  181. trace_ext3_evict_inode(inode);
  182. if (!inode->i_nlink && !is_bad_inode(inode)) {
  183. dquot_initialize(inode);
  184. want_delete = 1;
  185. }
  186. /*
  187. * When journalling data dirty buffers are tracked only in the journal.
  188. * So although mm thinks everything is clean and ready for reaping the
  189. * inode might still have some pages to write in the running
  190. * transaction or waiting to be checkpointed. Thus calling
  191. * journal_invalidatepage() (via truncate_inode_pages()) to discard
  192. * these buffers can cause data loss. Also even if we did not discard
  193. * these buffers, we would have no way to find them after the inode
  194. * is reaped and thus user could see stale data if he tries to read
  195. * them before the transaction is checkpointed. So be careful and
  196. * force everything to disk here... We use ei->i_datasync_tid to
  197. * store the newest transaction containing inode's data.
  198. *
  199. * Note that directories do not have this problem because they don't
  200. * use page cache.
  201. *
  202. * The s_journal check handles the case when ext3_get_journal() fails
  203. * and puts the journal inode.
  204. */
  205. if (inode->i_nlink && ext3_should_journal_data(inode) &&
  206. EXT3_SB(inode->i_sb)->s_journal &&
  207. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
  208. tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  209. journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  210. log_start_commit(journal, commit_tid);
  211. log_wait_commit(journal, commit_tid);
  212. filemap_write_and_wait(&inode->i_data);
  213. }
  214. truncate_inode_pages(&inode->i_data, 0);
  215. ext3_discard_reservation(inode);
  216. rsv = ei->i_block_alloc_info;
  217. ei->i_block_alloc_info = NULL;
  218. if (unlikely(rsv))
  219. kfree(rsv);
  220. if (!want_delete)
  221. goto no_delete;
  222. handle = start_transaction(inode);
  223. if (IS_ERR(handle)) {
  224. /*
  225. * If we're going to skip the normal cleanup, we still need to
  226. * make sure that the in-core orphan linked list is properly
  227. * cleaned up.
  228. */
  229. ext3_orphan_del(NULL, inode);
  230. goto no_delete;
  231. }
  232. if (IS_SYNC(inode))
  233. handle->h_sync = 1;
  234. inode->i_size = 0;
  235. if (inode->i_blocks)
  236. ext3_truncate(inode);
  237. /*
  238. * Kill off the orphan record created when the inode lost the last
  239. * link. Note that ext3_orphan_del() has to be able to cope with the
  240. * deletion of a non-existent orphan - ext3_truncate() could
  241. * have removed the record.
  242. */
  243. ext3_orphan_del(handle, inode);
  244. ei->i_dtime = get_seconds();
  245. /*
  246. * One subtle ordering requirement: if anything has gone wrong
  247. * (transaction abort, IO errors, whatever), then we can still
  248. * do these next steps (the fs will already have been marked as
  249. * having errors), but we can't free the inode if the mark_dirty
  250. * fails.
  251. */
  252. if (ext3_mark_inode_dirty(handle, inode)) {
  253. /* If that failed, just dquot_drop() and be done with that */
  254. dquot_drop(inode);
  255. end_writeback(inode);
  256. } else {
  257. ext3_xattr_delete_inode(handle, inode);
  258. dquot_free_inode(inode);
  259. dquot_drop(inode);
  260. end_writeback(inode);
  261. ext3_free_inode(handle, inode);
  262. }
  263. ext3_journal_stop(handle);
  264. return;
  265. no_delete:
  266. end_writeback(inode);
  267. dquot_drop(inode);
  268. }
  269. typedef struct {
  270. __le32 *p;
  271. __le32 key;
  272. struct buffer_head *bh;
  273. } Indirect;
  274. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  275. {
  276. p->key = *(p->p = v);
  277. p->bh = bh;
  278. }
  279. static int verify_chain(Indirect *from, Indirect *to)
  280. {
  281. while (from <= to && from->key == *from->p)
  282. from++;
  283. return (from > to);
  284. }
  285. /**
  286. * ext3_block_to_path - parse the block number into array of offsets
  287. * @inode: inode in question (we are only interested in its superblock)
  288. * @i_block: block number to be parsed
  289. * @offsets: array to store the offsets in
  290. * @boundary: set this non-zero if the referred-to block is likely to be
  291. * followed (on disk) by an indirect block.
  292. *
  293. * To store the locations of file's data ext3 uses a data structure common
  294. * for UNIX filesystems - tree of pointers anchored in the inode, with
  295. * data blocks at leaves and indirect blocks in intermediate nodes.
  296. * This function translates the block number into path in that tree -
  297. * return value is the path length and @offsets[n] is the offset of
  298. * pointer to (n+1)th node in the nth one. If @block is out of range
  299. * (negative or too large) warning is printed and zero returned.
  300. *
  301. * Note: function doesn't find node addresses, so no IO is needed. All
  302. * we need to know is the capacity of indirect blocks (taken from the
  303. * inode->i_sb).
  304. */
  305. /*
  306. * Portability note: the last comparison (check that we fit into triple
  307. * indirect block) is spelled differently, because otherwise on an
  308. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  309. * if our filesystem had 8Kb blocks. We might use long long, but that would
  310. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  311. * i_block would have to be negative in the very beginning, so we would not
  312. * get there at all.
  313. */
  314. static int ext3_block_to_path(struct inode *inode,
  315. long i_block, int offsets[4], int *boundary)
  316. {
  317. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  318. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  319. const long direct_blocks = EXT3_NDIR_BLOCKS,
  320. indirect_blocks = ptrs,
  321. double_blocks = (1 << (ptrs_bits * 2));
  322. int n = 0;
  323. int final = 0;
  324. if (i_block < 0) {
  325. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  326. } else if (i_block < direct_blocks) {
  327. offsets[n++] = i_block;
  328. final = direct_blocks;
  329. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  330. offsets[n++] = EXT3_IND_BLOCK;
  331. offsets[n++] = i_block;
  332. final = ptrs;
  333. } else if ((i_block -= indirect_blocks) < double_blocks) {
  334. offsets[n++] = EXT3_DIND_BLOCK;
  335. offsets[n++] = i_block >> ptrs_bits;
  336. offsets[n++] = i_block & (ptrs - 1);
  337. final = ptrs;
  338. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  339. offsets[n++] = EXT3_TIND_BLOCK;
  340. offsets[n++] = i_block >> (ptrs_bits * 2);
  341. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  342. offsets[n++] = i_block & (ptrs - 1);
  343. final = ptrs;
  344. } else {
  345. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  346. }
  347. if (boundary)
  348. *boundary = final - 1 - (i_block & (ptrs - 1));
  349. return n;
  350. }
  351. /**
  352. * ext3_get_branch - read the chain of indirect blocks leading to data
  353. * @inode: inode in question
  354. * @depth: depth of the chain (1 - direct pointer, etc.)
  355. * @offsets: offsets of pointers in inode/indirect blocks
  356. * @chain: place to store the result
  357. * @err: here we store the error value
  358. *
  359. * Function fills the array of triples <key, p, bh> and returns %NULL
  360. * if everything went OK or the pointer to the last filled triple
  361. * (incomplete one) otherwise. Upon the return chain[i].key contains
  362. * the number of (i+1)-th block in the chain (as it is stored in memory,
  363. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  364. * number (it points into struct inode for i==0 and into the bh->b_data
  365. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  366. * block for i>0 and NULL for i==0. In other words, it holds the block
  367. * numbers of the chain, addresses they were taken from (and where we can
  368. * verify that chain did not change) and buffer_heads hosting these
  369. * numbers.
  370. *
  371. * Function stops when it stumbles upon zero pointer (absent block)
  372. * (pointer to last triple returned, *@err == 0)
  373. * or when it gets an IO error reading an indirect block
  374. * (ditto, *@err == -EIO)
  375. * or when it notices that chain had been changed while it was reading
  376. * (ditto, *@err == -EAGAIN)
  377. * or when it reads all @depth-1 indirect blocks successfully and finds
  378. * the whole chain, all way to the data (returns %NULL, *err == 0).
  379. */
  380. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  381. Indirect chain[4], int *err)
  382. {
  383. struct super_block *sb = inode->i_sb;
  384. Indirect *p = chain;
  385. struct buffer_head *bh;
  386. *err = 0;
  387. /* i_data is not going away, no lock needed */
  388. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  389. if (!p->key)
  390. goto no_block;
  391. while (--depth) {
  392. bh = sb_bread(sb, le32_to_cpu(p->key));
  393. if (!bh)
  394. goto failure;
  395. /* Reader: pointers */
  396. if (!verify_chain(chain, p))
  397. goto changed;
  398. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  399. /* Reader: end */
  400. if (!p->key)
  401. goto no_block;
  402. }
  403. return NULL;
  404. changed:
  405. brelse(bh);
  406. *err = -EAGAIN;
  407. goto no_block;
  408. failure:
  409. *err = -EIO;
  410. no_block:
  411. return p;
  412. }
  413. /**
  414. * ext3_find_near - find a place for allocation with sufficient locality
  415. * @inode: owner
  416. * @ind: descriptor of indirect block.
  417. *
  418. * This function returns the preferred place for block allocation.
  419. * It is used when heuristic for sequential allocation fails.
  420. * Rules are:
  421. * + if there is a block to the left of our position - allocate near it.
  422. * + if pointer will live in indirect block - allocate near that block.
  423. * + if pointer will live in inode - allocate in the same
  424. * cylinder group.
  425. *
  426. * In the latter case we colour the starting block by the callers PID to
  427. * prevent it from clashing with concurrent allocations for a different inode
  428. * in the same block group. The PID is used here so that functionally related
  429. * files will be close-by on-disk.
  430. *
  431. * Caller must make sure that @ind is valid and will stay that way.
  432. */
  433. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  434. {
  435. struct ext3_inode_info *ei = EXT3_I(inode);
  436. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  437. __le32 *p;
  438. ext3_fsblk_t bg_start;
  439. ext3_grpblk_t colour;
  440. /* Try to find previous block */
  441. for (p = ind->p - 1; p >= start; p--) {
  442. if (*p)
  443. return le32_to_cpu(*p);
  444. }
  445. /* No such thing, so let's try location of indirect block */
  446. if (ind->bh)
  447. return ind->bh->b_blocknr;
  448. /*
  449. * It is going to be referred to from the inode itself? OK, just put it
  450. * into the same cylinder group then.
  451. */
  452. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  453. colour = (current->pid % 16) *
  454. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  455. return bg_start + colour;
  456. }
  457. /**
  458. * ext3_find_goal - find a preferred place for allocation.
  459. * @inode: owner
  460. * @block: block we want
  461. * @partial: pointer to the last triple within a chain
  462. *
  463. * Normally this function find the preferred place for block allocation,
  464. * returns it.
  465. */
  466. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  467. Indirect *partial)
  468. {
  469. struct ext3_block_alloc_info *block_i;
  470. block_i = EXT3_I(inode)->i_block_alloc_info;
  471. /*
  472. * try the heuristic for sequential allocation,
  473. * failing that at least try to get decent locality.
  474. */
  475. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  476. && (block_i->last_alloc_physical_block != 0)) {
  477. return block_i->last_alloc_physical_block + 1;
  478. }
  479. return ext3_find_near(inode, partial);
  480. }
  481. /**
  482. * ext3_blks_to_allocate - Look up the block map and count the number
  483. * of direct blocks need to be allocated for the given branch.
  484. *
  485. * @branch: chain of indirect blocks
  486. * @k: number of blocks need for indirect blocks
  487. * @blks: number of data blocks to be mapped.
  488. * @blocks_to_boundary: the offset in the indirect block
  489. *
  490. * return the total number of blocks to be allocate, including the
  491. * direct and indirect blocks.
  492. */
  493. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  494. int blocks_to_boundary)
  495. {
  496. unsigned long count = 0;
  497. /*
  498. * Simple case, [t,d]Indirect block(s) has not allocated yet
  499. * then it's clear blocks on that path have not allocated
  500. */
  501. if (k > 0) {
  502. /* right now we don't handle cross boundary allocation */
  503. if (blks < blocks_to_boundary + 1)
  504. count += blks;
  505. else
  506. count += blocks_to_boundary + 1;
  507. return count;
  508. }
  509. count++;
  510. while (count < blks && count <= blocks_to_boundary &&
  511. le32_to_cpu(*(branch[0].p + count)) == 0) {
  512. count++;
  513. }
  514. return count;
  515. }
  516. /**
  517. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  518. * @handle: handle for this transaction
  519. * @inode: owner
  520. * @goal: preferred place for allocation
  521. * @indirect_blks: the number of blocks need to allocate for indirect
  522. * blocks
  523. * @blks: number of blocks need to allocated for direct blocks
  524. * @new_blocks: on return it will store the new block numbers for
  525. * the indirect blocks(if needed) and the first direct block,
  526. * @err: here we store the error value
  527. *
  528. * return the number of direct blocks allocated
  529. */
  530. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  531. ext3_fsblk_t goal, int indirect_blks, int blks,
  532. ext3_fsblk_t new_blocks[4], int *err)
  533. {
  534. int target, i;
  535. unsigned long count = 0;
  536. int index = 0;
  537. ext3_fsblk_t current_block = 0;
  538. int ret = 0;
  539. /*
  540. * Here we try to allocate the requested multiple blocks at once,
  541. * on a best-effort basis.
  542. * To build a branch, we should allocate blocks for
  543. * the indirect blocks(if not allocated yet), and at least
  544. * the first direct block of this branch. That's the
  545. * minimum number of blocks need to allocate(required)
  546. */
  547. target = blks + indirect_blks;
  548. while (1) {
  549. count = target;
  550. /* allocating blocks for indirect blocks and direct blocks */
  551. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  552. if (*err)
  553. goto failed_out;
  554. target -= count;
  555. /* allocate blocks for indirect blocks */
  556. while (index < indirect_blks && count) {
  557. new_blocks[index++] = current_block++;
  558. count--;
  559. }
  560. if (count > 0)
  561. break;
  562. }
  563. /* save the new block number for the first direct block */
  564. new_blocks[index] = current_block;
  565. /* total number of blocks allocated for direct blocks */
  566. ret = count;
  567. *err = 0;
  568. return ret;
  569. failed_out:
  570. for (i = 0; i <index; i++)
  571. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  572. return ret;
  573. }
  574. /**
  575. * ext3_alloc_branch - allocate and set up a chain of blocks.
  576. * @handle: handle for this transaction
  577. * @inode: owner
  578. * @indirect_blks: number of allocated indirect blocks
  579. * @blks: number of allocated direct blocks
  580. * @goal: preferred place for allocation
  581. * @offsets: offsets (in the blocks) to store the pointers to next.
  582. * @branch: place to store the chain in.
  583. *
  584. * This function allocates blocks, zeroes out all but the last one,
  585. * links them into chain and (if we are synchronous) writes them to disk.
  586. * In other words, it prepares a branch that can be spliced onto the
  587. * inode. It stores the information about that chain in the branch[], in
  588. * the same format as ext3_get_branch() would do. We are calling it after
  589. * we had read the existing part of chain and partial points to the last
  590. * triple of that (one with zero ->key). Upon the exit we have the same
  591. * picture as after the successful ext3_get_block(), except that in one
  592. * place chain is disconnected - *branch->p is still zero (we did not
  593. * set the last link), but branch->key contains the number that should
  594. * be placed into *branch->p to fill that gap.
  595. *
  596. * If allocation fails we free all blocks we've allocated (and forget
  597. * their buffer_heads) and return the error value the from failed
  598. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  599. * as described above and return 0.
  600. */
  601. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  602. int indirect_blks, int *blks, ext3_fsblk_t goal,
  603. int *offsets, Indirect *branch)
  604. {
  605. int blocksize = inode->i_sb->s_blocksize;
  606. int i, n = 0;
  607. int err = 0;
  608. struct buffer_head *bh;
  609. int num;
  610. ext3_fsblk_t new_blocks[4];
  611. ext3_fsblk_t current_block;
  612. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  613. *blks, new_blocks, &err);
  614. if (err)
  615. return err;
  616. branch[0].key = cpu_to_le32(new_blocks[0]);
  617. /*
  618. * metadata blocks and data blocks are allocated.
  619. */
  620. for (n = 1; n <= indirect_blks; n++) {
  621. /*
  622. * Get buffer_head for parent block, zero it out
  623. * and set the pointer to new one, then send
  624. * parent to disk.
  625. */
  626. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  627. branch[n].bh = bh;
  628. lock_buffer(bh);
  629. BUFFER_TRACE(bh, "call get_create_access");
  630. err = ext3_journal_get_create_access(handle, bh);
  631. if (err) {
  632. unlock_buffer(bh);
  633. brelse(bh);
  634. goto failed;
  635. }
  636. memset(bh->b_data, 0, blocksize);
  637. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  638. branch[n].key = cpu_to_le32(new_blocks[n]);
  639. *branch[n].p = branch[n].key;
  640. if ( n == indirect_blks) {
  641. current_block = new_blocks[n];
  642. /*
  643. * End of chain, update the last new metablock of
  644. * the chain to point to the new allocated
  645. * data blocks numbers
  646. */
  647. for (i=1; i < num; i++)
  648. *(branch[n].p + i) = cpu_to_le32(++current_block);
  649. }
  650. BUFFER_TRACE(bh, "marking uptodate");
  651. set_buffer_uptodate(bh);
  652. unlock_buffer(bh);
  653. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  654. err = ext3_journal_dirty_metadata(handle, bh);
  655. if (err)
  656. goto failed;
  657. }
  658. *blks = num;
  659. return err;
  660. failed:
  661. /* Allocation failed, free what we already allocated */
  662. for (i = 1; i <= n ; i++) {
  663. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  664. ext3_journal_forget(handle, branch[i].bh);
  665. }
  666. for (i = 0; i <indirect_blks; i++)
  667. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  668. ext3_free_blocks(handle, inode, new_blocks[i], num);
  669. return err;
  670. }
  671. /**
  672. * ext3_splice_branch - splice the allocated branch onto inode.
  673. * @handle: handle for this transaction
  674. * @inode: owner
  675. * @block: (logical) number of block we are adding
  676. * @where: location of missing link
  677. * @num: number of indirect blocks we are adding
  678. * @blks: number of direct blocks we are adding
  679. *
  680. * This function fills the missing link and does all housekeeping needed in
  681. * inode (->i_blocks, etc.). In case of success we end up with the full
  682. * chain to new block and return 0.
  683. */
  684. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  685. long block, Indirect *where, int num, int blks)
  686. {
  687. int i;
  688. int err = 0;
  689. struct ext3_block_alloc_info *block_i;
  690. ext3_fsblk_t current_block;
  691. struct ext3_inode_info *ei = EXT3_I(inode);
  692. block_i = ei->i_block_alloc_info;
  693. /*
  694. * If we're splicing into a [td]indirect block (as opposed to the
  695. * inode) then we need to get write access to the [td]indirect block
  696. * before the splice.
  697. */
  698. if (where->bh) {
  699. BUFFER_TRACE(where->bh, "get_write_access");
  700. err = ext3_journal_get_write_access(handle, where->bh);
  701. if (err)
  702. goto err_out;
  703. }
  704. /* That's it */
  705. *where->p = where->key;
  706. /*
  707. * Update the host buffer_head or inode to point to more just allocated
  708. * direct blocks blocks
  709. */
  710. if (num == 0 && blks > 1) {
  711. current_block = le32_to_cpu(where->key) + 1;
  712. for (i = 1; i < blks; i++)
  713. *(where->p + i ) = cpu_to_le32(current_block++);
  714. }
  715. /*
  716. * update the most recently allocated logical & physical block
  717. * in i_block_alloc_info, to assist find the proper goal block for next
  718. * allocation
  719. */
  720. if (block_i) {
  721. block_i->last_alloc_logical_block = block + blks - 1;
  722. block_i->last_alloc_physical_block =
  723. le32_to_cpu(where[num].key) + blks - 1;
  724. }
  725. /* We are done with atomic stuff, now do the rest of housekeeping */
  726. inode->i_ctime = CURRENT_TIME_SEC;
  727. ext3_mark_inode_dirty(handle, inode);
  728. /* ext3_mark_inode_dirty already updated i_sync_tid */
  729. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  730. /* had we spliced it onto indirect block? */
  731. if (where->bh) {
  732. /*
  733. * If we spliced it onto an indirect block, we haven't
  734. * altered the inode. Note however that if it is being spliced
  735. * onto an indirect block at the very end of the file (the
  736. * file is growing) then we *will* alter the inode to reflect
  737. * the new i_size. But that is not done here - it is done in
  738. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  739. */
  740. jbd_debug(5, "splicing indirect only\n");
  741. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  742. err = ext3_journal_dirty_metadata(handle, where->bh);
  743. if (err)
  744. goto err_out;
  745. } else {
  746. /*
  747. * OK, we spliced it into the inode itself on a direct block.
  748. * Inode was dirtied above.
  749. */
  750. jbd_debug(5, "splicing direct\n");
  751. }
  752. return err;
  753. err_out:
  754. for (i = 1; i <= num; i++) {
  755. BUFFER_TRACE(where[i].bh, "call journal_forget");
  756. ext3_journal_forget(handle, where[i].bh);
  757. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  758. }
  759. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  760. return err;
  761. }
  762. /*
  763. * Allocation strategy is simple: if we have to allocate something, we will
  764. * have to go the whole way to leaf. So let's do it before attaching anything
  765. * to tree, set linkage between the newborn blocks, write them if sync is
  766. * required, recheck the path, free and repeat if check fails, otherwise
  767. * set the last missing link (that will protect us from any truncate-generated
  768. * removals - all blocks on the path are immune now) and possibly force the
  769. * write on the parent block.
  770. * That has a nice additional property: no special recovery from the failed
  771. * allocations is needed - we simply release blocks and do not touch anything
  772. * reachable from inode.
  773. *
  774. * `handle' can be NULL if create == 0.
  775. *
  776. * The BKL may not be held on entry here. Be sure to take it early.
  777. * return > 0, # of blocks mapped or allocated.
  778. * return = 0, if plain lookup failed.
  779. * return < 0, error case.
  780. */
  781. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  782. sector_t iblock, unsigned long maxblocks,
  783. struct buffer_head *bh_result,
  784. int create)
  785. {
  786. int err = -EIO;
  787. int offsets[4];
  788. Indirect chain[4];
  789. Indirect *partial;
  790. ext3_fsblk_t goal;
  791. int indirect_blks;
  792. int blocks_to_boundary = 0;
  793. int depth;
  794. struct ext3_inode_info *ei = EXT3_I(inode);
  795. int count = 0;
  796. ext3_fsblk_t first_block = 0;
  797. trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  798. J_ASSERT(handle != NULL || create == 0);
  799. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  800. if (depth == 0)
  801. goto out;
  802. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  803. /* Simplest case - block found, no allocation needed */
  804. if (!partial) {
  805. first_block = le32_to_cpu(chain[depth - 1].key);
  806. clear_buffer_new(bh_result);
  807. count++;
  808. /*map more blocks*/
  809. while (count < maxblocks && count <= blocks_to_boundary) {
  810. ext3_fsblk_t blk;
  811. if (!verify_chain(chain, chain + depth - 1)) {
  812. /*
  813. * Indirect block might be removed by
  814. * truncate while we were reading it.
  815. * Handling of that case: forget what we've
  816. * got now. Flag the err as EAGAIN, so it
  817. * will reread.
  818. */
  819. err = -EAGAIN;
  820. count = 0;
  821. break;
  822. }
  823. blk = le32_to_cpu(*(chain[depth-1].p + count));
  824. if (blk == first_block + count)
  825. count++;
  826. else
  827. break;
  828. }
  829. if (err != -EAGAIN)
  830. goto got_it;
  831. }
  832. /* Next simple case - plain lookup or failed read of indirect block */
  833. if (!create || err == -EIO)
  834. goto cleanup;
  835. /*
  836. * Block out ext3_truncate while we alter the tree
  837. */
  838. mutex_lock(&ei->truncate_mutex);
  839. /*
  840. * If the indirect block is missing while we are reading
  841. * the chain(ext3_get_branch() returns -EAGAIN err), or
  842. * if the chain has been changed after we grab the semaphore,
  843. * (either because another process truncated this branch, or
  844. * another get_block allocated this branch) re-grab the chain to see if
  845. * the request block has been allocated or not.
  846. *
  847. * Since we already block the truncate/other get_block
  848. * at this point, we will have the current copy of the chain when we
  849. * splice the branch into the tree.
  850. */
  851. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  852. while (partial > chain) {
  853. brelse(partial->bh);
  854. partial--;
  855. }
  856. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  857. if (!partial) {
  858. count++;
  859. mutex_unlock(&ei->truncate_mutex);
  860. if (err)
  861. goto cleanup;
  862. clear_buffer_new(bh_result);
  863. goto got_it;
  864. }
  865. }
  866. /*
  867. * Okay, we need to do block allocation. Lazily initialize the block
  868. * allocation info here if necessary
  869. */
  870. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  871. ext3_init_block_alloc_info(inode);
  872. goal = ext3_find_goal(inode, iblock, partial);
  873. /* the number of blocks need to allocate for [d,t]indirect blocks */
  874. indirect_blks = (chain + depth) - partial - 1;
  875. /*
  876. * Next look up the indirect map to count the totoal number of
  877. * direct blocks to allocate for this branch.
  878. */
  879. count = ext3_blks_to_allocate(partial, indirect_blks,
  880. maxblocks, blocks_to_boundary);
  881. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  882. offsets + (partial - chain), partial);
  883. /*
  884. * The ext3_splice_branch call will free and forget any buffers
  885. * on the new chain if there is a failure, but that risks using
  886. * up transaction credits, especially for bitmaps where the
  887. * credits cannot be returned. Can we handle this somehow? We
  888. * may need to return -EAGAIN upwards in the worst case. --sct
  889. */
  890. if (!err)
  891. err = ext3_splice_branch(handle, inode, iblock,
  892. partial, indirect_blks, count);
  893. mutex_unlock(&ei->truncate_mutex);
  894. if (err)
  895. goto cleanup;
  896. set_buffer_new(bh_result);
  897. got_it:
  898. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  899. if (count > blocks_to_boundary)
  900. set_buffer_boundary(bh_result);
  901. err = count;
  902. /* Clean up and exit */
  903. partial = chain + depth - 1; /* the whole chain */
  904. cleanup:
  905. while (partial > chain) {
  906. BUFFER_TRACE(partial->bh, "call brelse");
  907. brelse(partial->bh);
  908. partial--;
  909. }
  910. BUFFER_TRACE(bh_result, "returned");
  911. out:
  912. trace_ext3_get_blocks_exit(inode, iblock,
  913. depth ? le32_to_cpu(chain[depth-1].key) : 0,
  914. count, err);
  915. return err;
  916. }
  917. /* Maximum number of blocks we map for direct IO at once. */
  918. #define DIO_MAX_BLOCKS 4096
  919. /*
  920. * Number of credits we need for writing DIO_MAX_BLOCKS:
  921. * We need sb + group descriptor + bitmap + inode -> 4
  922. * For B blocks with A block pointers per block we need:
  923. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  924. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  925. */
  926. #define DIO_CREDITS 25
  927. static int ext3_get_block(struct inode *inode, sector_t iblock,
  928. struct buffer_head *bh_result, int create)
  929. {
  930. handle_t *handle = ext3_journal_current_handle();
  931. int ret = 0, started = 0;
  932. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  933. if (create && !handle) { /* Direct IO write... */
  934. if (max_blocks > DIO_MAX_BLOCKS)
  935. max_blocks = DIO_MAX_BLOCKS;
  936. handle = ext3_journal_start(inode, DIO_CREDITS +
  937. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  938. if (IS_ERR(handle)) {
  939. ret = PTR_ERR(handle);
  940. goto out;
  941. }
  942. started = 1;
  943. }
  944. ret = ext3_get_blocks_handle(handle, inode, iblock,
  945. max_blocks, bh_result, create);
  946. if (ret > 0) {
  947. bh_result->b_size = (ret << inode->i_blkbits);
  948. ret = 0;
  949. }
  950. if (started)
  951. ext3_journal_stop(handle);
  952. out:
  953. return ret;
  954. }
  955. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  956. u64 start, u64 len)
  957. {
  958. return generic_block_fiemap(inode, fieinfo, start, len,
  959. ext3_get_block);
  960. }
  961. /*
  962. * `handle' can be NULL if create is zero
  963. */
  964. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  965. long block, int create, int *errp)
  966. {
  967. struct buffer_head dummy;
  968. int fatal = 0, err;
  969. J_ASSERT(handle != NULL || create == 0);
  970. dummy.b_state = 0;
  971. dummy.b_blocknr = -1000;
  972. buffer_trace_init(&dummy.b_history);
  973. err = ext3_get_blocks_handle(handle, inode, block, 1,
  974. &dummy, create);
  975. /*
  976. * ext3_get_blocks_handle() returns number of blocks
  977. * mapped. 0 in case of a HOLE.
  978. */
  979. if (err > 0) {
  980. if (err > 1)
  981. WARN_ON(1);
  982. err = 0;
  983. }
  984. *errp = err;
  985. if (!err && buffer_mapped(&dummy)) {
  986. struct buffer_head *bh;
  987. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  988. if (!bh) {
  989. *errp = -EIO;
  990. goto err;
  991. }
  992. if (buffer_new(&dummy)) {
  993. J_ASSERT(create != 0);
  994. J_ASSERT(handle != NULL);
  995. /*
  996. * Now that we do not always journal data, we should
  997. * keep in mind whether this should always journal the
  998. * new buffer as metadata. For now, regular file
  999. * writes use ext3_get_block instead, so it's not a
  1000. * problem.
  1001. */
  1002. lock_buffer(bh);
  1003. BUFFER_TRACE(bh, "call get_create_access");
  1004. fatal = ext3_journal_get_create_access(handle, bh);
  1005. if (!fatal && !buffer_uptodate(bh)) {
  1006. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1007. set_buffer_uptodate(bh);
  1008. }
  1009. unlock_buffer(bh);
  1010. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1011. err = ext3_journal_dirty_metadata(handle, bh);
  1012. if (!fatal)
  1013. fatal = err;
  1014. } else {
  1015. BUFFER_TRACE(bh, "not a new buffer");
  1016. }
  1017. if (fatal) {
  1018. *errp = fatal;
  1019. brelse(bh);
  1020. bh = NULL;
  1021. }
  1022. return bh;
  1023. }
  1024. err:
  1025. return NULL;
  1026. }
  1027. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  1028. int block, int create, int *err)
  1029. {
  1030. struct buffer_head * bh;
  1031. bh = ext3_getblk(handle, inode, block, create, err);
  1032. if (!bh)
  1033. return bh;
  1034. if (buffer_uptodate(bh))
  1035. return bh;
  1036. ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
  1037. wait_on_buffer(bh);
  1038. if (buffer_uptodate(bh))
  1039. return bh;
  1040. put_bh(bh);
  1041. *err = -EIO;
  1042. return NULL;
  1043. }
  1044. static int walk_page_buffers( handle_t *handle,
  1045. struct buffer_head *head,
  1046. unsigned from,
  1047. unsigned to,
  1048. int *partial,
  1049. int (*fn)( handle_t *handle,
  1050. struct buffer_head *bh))
  1051. {
  1052. struct buffer_head *bh;
  1053. unsigned block_start, block_end;
  1054. unsigned blocksize = head->b_size;
  1055. int err, ret = 0;
  1056. struct buffer_head *next;
  1057. for ( bh = head, block_start = 0;
  1058. ret == 0 && (bh != head || !block_start);
  1059. block_start = block_end, bh = next)
  1060. {
  1061. next = bh->b_this_page;
  1062. block_end = block_start + blocksize;
  1063. if (block_end <= from || block_start >= to) {
  1064. if (partial && !buffer_uptodate(bh))
  1065. *partial = 1;
  1066. continue;
  1067. }
  1068. err = (*fn)(handle, bh);
  1069. if (!ret)
  1070. ret = err;
  1071. }
  1072. return ret;
  1073. }
  1074. /*
  1075. * To preserve ordering, it is essential that the hole instantiation and
  1076. * the data write be encapsulated in a single transaction. We cannot
  1077. * close off a transaction and start a new one between the ext3_get_block()
  1078. * and the commit_write(). So doing the journal_start at the start of
  1079. * prepare_write() is the right place.
  1080. *
  1081. * Also, this function can nest inside ext3_writepage() ->
  1082. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1083. * has generated enough buffer credits to do the whole page. So we won't
  1084. * block on the journal in that case, which is good, because the caller may
  1085. * be PF_MEMALLOC.
  1086. *
  1087. * By accident, ext3 can be reentered when a transaction is open via
  1088. * quota file writes. If we were to commit the transaction while thus
  1089. * reentered, there can be a deadlock - we would be holding a quota
  1090. * lock, and the commit would never complete if another thread had a
  1091. * transaction open and was blocking on the quota lock - a ranking
  1092. * violation.
  1093. *
  1094. * So what we do is to rely on the fact that journal_stop/journal_start
  1095. * will _not_ run commit under these circumstances because handle->h_ref
  1096. * is elevated. We'll still have enough credits for the tiny quotafile
  1097. * write.
  1098. */
  1099. static int do_journal_get_write_access(handle_t *handle,
  1100. struct buffer_head *bh)
  1101. {
  1102. int dirty = buffer_dirty(bh);
  1103. int ret;
  1104. if (!buffer_mapped(bh) || buffer_freed(bh))
  1105. return 0;
  1106. /*
  1107. * __block_prepare_write() could have dirtied some buffers. Clean
  1108. * the dirty bit as jbd2_journal_get_write_access() could complain
  1109. * otherwise about fs integrity issues. Setting of the dirty bit
  1110. * by __block_prepare_write() isn't a real problem here as we clear
  1111. * the bit before releasing a page lock and thus writeback cannot
  1112. * ever write the buffer.
  1113. */
  1114. if (dirty)
  1115. clear_buffer_dirty(bh);
  1116. ret = ext3_journal_get_write_access(handle, bh);
  1117. if (!ret && dirty)
  1118. ret = ext3_journal_dirty_metadata(handle, bh);
  1119. return ret;
  1120. }
  1121. /*
  1122. * Truncate blocks that were not used by write. We have to truncate the
  1123. * pagecache as well so that corresponding buffers get properly unmapped.
  1124. */
  1125. static void ext3_truncate_failed_write(struct inode *inode)
  1126. {
  1127. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1128. ext3_truncate(inode);
  1129. }
  1130. /*
  1131. * Truncate blocks that were not used by direct IO write. We have to zero out
  1132. * the last file block as well because direct IO might have written to it.
  1133. */
  1134. static void ext3_truncate_failed_direct_write(struct inode *inode)
  1135. {
  1136. ext3_block_truncate_page(inode, inode->i_size);
  1137. ext3_truncate(inode);
  1138. }
  1139. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1140. loff_t pos, unsigned len, unsigned flags,
  1141. struct page **pagep, void **fsdata)
  1142. {
  1143. struct inode *inode = mapping->host;
  1144. int ret;
  1145. handle_t *handle;
  1146. int retries = 0;
  1147. struct page *page;
  1148. pgoff_t index;
  1149. unsigned from, to;
  1150. /* Reserve one block more for addition to orphan list in case
  1151. * we allocate blocks but write fails for some reason */
  1152. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1153. trace_ext3_write_begin(inode, pos, len, flags);
  1154. index = pos >> PAGE_CACHE_SHIFT;
  1155. from = pos & (PAGE_CACHE_SIZE - 1);
  1156. to = from + len;
  1157. retry:
  1158. page = grab_cache_page_write_begin(mapping, index, flags);
  1159. if (!page)
  1160. return -ENOMEM;
  1161. *pagep = page;
  1162. handle = ext3_journal_start(inode, needed_blocks);
  1163. if (IS_ERR(handle)) {
  1164. unlock_page(page);
  1165. page_cache_release(page);
  1166. ret = PTR_ERR(handle);
  1167. goto out;
  1168. }
  1169. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1170. if (ret)
  1171. goto write_begin_failed;
  1172. if (ext3_should_journal_data(inode)) {
  1173. ret = walk_page_buffers(handle, page_buffers(page),
  1174. from, to, NULL, do_journal_get_write_access);
  1175. }
  1176. write_begin_failed:
  1177. if (ret) {
  1178. /*
  1179. * block_write_begin may have instantiated a few blocks
  1180. * outside i_size. Trim these off again. Don't need
  1181. * i_size_read because we hold i_mutex.
  1182. *
  1183. * Add inode to orphan list in case we crash before truncate
  1184. * finishes. Do this only if ext3_can_truncate() agrees so
  1185. * that orphan processing code is happy.
  1186. */
  1187. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1188. ext3_orphan_add(handle, inode);
  1189. ext3_journal_stop(handle);
  1190. unlock_page(page);
  1191. page_cache_release(page);
  1192. if (pos + len > inode->i_size)
  1193. ext3_truncate_failed_write(inode);
  1194. }
  1195. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1196. goto retry;
  1197. out:
  1198. return ret;
  1199. }
  1200. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1201. {
  1202. int err = journal_dirty_data(handle, bh);
  1203. if (err)
  1204. ext3_journal_abort_handle(__func__, __func__,
  1205. bh, handle, err);
  1206. return err;
  1207. }
  1208. /* For ordered writepage and write_end functions */
  1209. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1210. {
  1211. /*
  1212. * Write could have mapped the buffer but it didn't copy the data in
  1213. * yet. So avoid filing such buffer into a transaction.
  1214. */
  1215. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1216. return ext3_journal_dirty_data(handle, bh);
  1217. return 0;
  1218. }
  1219. /* For write_end() in data=journal mode */
  1220. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1221. {
  1222. if (!buffer_mapped(bh) || buffer_freed(bh))
  1223. return 0;
  1224. set_buffer_uptodate(bh);
  1225. return ext3_journal_dirty_metadata(handle, bh);
  1226. }
  1227. /*
  1228. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1229. * for the whole page but later we failed to copy the data in. Update inode
  1230. * size according to what we managed to copy. The rest is going to be
  1231. * truncated in write_end function.
  1232. */
  1233. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1234. {
  1235. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1236. if (pos + copied > inode->i_size)
  1237. i_size_write(inode, pos + copied);
  1238. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1239. EXT3_I(inode)->i_disksize = pos + copied;
  1240. mark_inode_dirty(inode);
  1241. }
  1242. }
  1243. /*
  1244. * We need to pick up the new inode size which generic_commit_write gave us
  1245. * `file' can be NULL - eg, when called from page_symlink().
  1246. *
  1247. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1248. * buffers are managed internally.
  1249. */
  1250. static int ext3_ordered_write_end(struct file *file,
  1251. struct address_space *mapping,
  1252. loff_t pos, unsigned len, unsigned copied,
  1253. struct page *page, void *fsdata)
  1254. {
  1255. handle_t *handle = ext3_journal_current_handle();
  1256. struct inode *inode = file->f_mapping->host;
  1257. unsigned from, to;
  1258. int ret = 0, ret2;
  1259. trace_ext3_ordered_write_end(inode, pos, len, copied);
  1260. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1261. from = pos & (PAGE_CACHE_SIZE - 1);
  1262. to = from + copied;
  1263. ret = walk_page_buffers(handle, page_buffers(page),
  1264. from, to, NULL, journal_dirty_data_fn);
  1265. if (ret == 0)
  1266. update_file_sizes(inode, pos, copied);
  1267. /*
  1268. * There may be allocated blocks outside of i_size because
  1269. * we failed to copy some data. Prepare for truncate.
  1270. */
  1271. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1272. ext3_orphan_add(handle, inode);
  1273. ret2 = ext3_journal_stop(handle);
  1274. if (!ret)
  1275. ret = ret2;
  1276. unlock_page(page);
  1277. page_cache_release(page);
  1278. if (pos + len > inode->i_size)
  1279. ext3_truncate_failed_write(inode);
  1280. return ret ? ret : copied;
  1281. }
  1282. static int ext3_writeback_write_end(struct file *file,
  1283. struct address_space *mapping,
  1284. loff_t pos, unsigned len, unsigned copied,
  1285. struct page *page, void *fsdata)
  1286. {
  1287. handle_t *handle = ext3_journal_current_handle();
  1288. struct inode *inode = file->f_mapping->host;
  1289. int ret;
  1290. trace_ext3_writeback_write_end(inode, pos, len, copied);
  1291. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1292. update_file_sizes(inode, pos, copied);
  1293. /*
  1294. * There may be allocated blocks outside of i_size because
  1295. * we failed to copy some data. Prepare for truncate.
  1296. */
  1297. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1298. ext3_orphan_add(handle, inode);
  1299. ret = ext3_journal_stop(handle);
  1300. unlock_page(page);
  1301. page_cache_release(page);
  1302. if (pos + len > inode->i_size)
  1303. ext3_truncate_failed_write(inode);
  1304. return ret ? ret : copied;
  1305. }
  1306. static int ext3_journalled_write_end(struct file *file,
  1307. struct address_space *mapping,
  1308. loff_t pos, unsigned len, unsigned copied,
  1309. struct page *page, void *fsdata)
  1310. {
  1311. handle_t *handle = ext3_journal_current_handle();
  1312. struct inode *inode = mapping->host;
  1313. struct ext3_inode_info *ei = EXT3_I(inode);
  1314. int ret = 0, ret2;
  1315. int partial = 0;
  1316. unsigned from, to;
  1317. trace_ext3_journalled_write_end(inode, pos, len, copied);
  1318. from = pos & (PAGE_CACHE_SIZE - 1);
  1319. to = from + len;
  1320. if (copied < len) {
  1321. if (!PageUptodate(page))
  1322. copied = 0;
  1323. page_zero_new_buffers(page, from + copied, to);
  1324. to = from + copied;
  1325. }
  1326. ret = walk_page_buffers(handle, page_buffers(page), from,
  1327. to, &partial, write_end_fn);
  1328. if (!partial)
  1329. SetPageUptodate(page);
  1330. if (pos + copied > inode->i_size)
  1331. i_size_write(inode, pos + copied);
  1332. /*
  1333. * There may be allocated blocks outside of i_size because
  1334. * we failed to copy some data. Prepare for truncate.
  1335. */
  1336. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1337. ext3_orphan_add(handle, inode);
  1338. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1339. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  1340. if (inode->i_size > ei->i_disksize) {
  1341. ei->i_disksize = inode->i_size;
  1342. ret2 = ext3_mark_inode_dirty(handle, inode);
  1343. if (!ret)
  1344. ret = ret2;
  1345. }
  1346. ret2 = ext3_journal_stop(handle);
  1347. if (!ret)
  1348. ret = ret2;
  1349. unlock_page(page);
  1350. page_cache_release(page);
  1351. if (pos + len > inode->i_size)
  1352. ext3_truncate_failed_write(inode);
  1353. return ret ? ret : copied;
  1354. }
  1355. /*
  1356. * bmap() is special. It gets used by applications such as lilo and by
  1357. * the swapper to find the on-disk block of a specific piece of data.
  1358. *
  1359. * Naturally, this is dangerous if the block concerned is still in the
  1360. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1361. * filesystem and enables swap, then they may get a nasty shock when the
  1362. * data getting swapped to that swapfile suddenly gets overwritten by
  1363. * the original zero's written out previously to the journal and
  1364. * awaiting writeback in the kernel's buffer cache.
  1365. *
  1366. * So, if we see any bmap calls here on a modified, data-journaled file,
  1367. * take extra steps to flush any blocks which might be in the cache.
  1368. */
  1369. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1370. {
  1371. struct inode *inode = mapping->host;
  1372. journal_t *journal;
  1373. int err;
  1374. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1375. /*
  1376. * This is a REALLY heavyweight approach, but the use of
  1377. * bmap on dirty files is expected to be extremely rare:
  1378. * only if we run lilo or swapon on a freshly made file
  1379. * do we expect this to happen.
  1380. *
  1381. * (bmap requires CAP_SYS_RAWIO so this does not
  1382. * represent an unprivileged user DOS attack --- we'd be
  1383. * in trouble if mortal users could trigger this path at
  1384. * will.)
  1385. *
  1386. * NB. EXT3_STATE_JDATA is not set on files other than
  1387. * regular files. If somebody wants to bmap a directory
  1388. * or symlink and gets confused because the buffer
  1389. * hasn't yet been flushed to disk, they deserve
  1390. * everything they get.
  1391. */
  1392. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1393. journal = EXT3_JOURNAL(inode);
  1394. journal_lock_updates(journal);
  1395. err = journal_flush(journal);
  1396. journal_unlock_updates(journal);
  1397. if (err)
  1398. return 0;
  1399. }
  1400. return generic_block_bmap(mapping,block,ext3_get_block);
  1401. }
  1402. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1403. {
  1404. get_bh(bh);
  1405. return 0;
  1406. }
  1407. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1408. {
  1409. put_bh(bh);
  1410. return 0;
  1411. }
  1412. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1413. {
  1414. return !buffer_mapped(bh);
  1415. }
  1416. /*
  1417. * Note that we always start a transaction even if we're not journalling
  1418. * data. This is to preserve ordering: any hole instantiation within
  1419. * __block_write_full_page -> ext3_get_block() should be journalled
  1420. * along with the data so we don't crash and then get metadata which
  1421. * refers to old data.
  1422. *
  1423. * In all journalling modes block_write_full_page() will start the I/O.
  1424. *
  1425. * Problem:
  1426. *
  1427. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1428. * ext3_writepage()
  1429. *
  1430. * Similar for:
  1431. *
  1432. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1433. *
  1434. * Same applies to ext3_get_block(). We will deadlock on various things like
  1435. * lock_journal and i_truncate_mutex.
  1436. *
  1437. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1438. * allocations fail.
  1439. *
  1440. * 16May01: If we're reentered then journal_current_handle() will be
  1441. * non-zero. We simply *return*.
  1442. *
  1443. * 1 July 2001: @@@ FIXME:
  1444. * In journalled data mode, a data buffer may be metadata against the
  1445. * current transaction. But the same file is part of a shared mapping
  1446. * and someone does a writepage() on it.
  1447. *
  1448. * We will move the buffer onto the async_data list, but *after* it has
  1449. * been dirtied. So there's a small window where we have dirty data on
  1450. * BJ_Metadata.
  1451. *
  1452. * Note that this only applies to the last partial page in the file. The
  1453. * bit which block_write_full_page() uses prepare/commit for. (That's
  1454. * broken code anyway: it's wrong for msync()).
  1455. *
  1456. * It's a rare case: affects the final partial page, for journalled data
  1457. * where the file is subject to bith write() and writepage() in the same
  1458. * transction. To fix it we'll need a custom block_write_full_page().
  1459. * We'll probably need that anyway for journalling writepage() output.
  1460. *
  1461. * We don't honour synchronous mounts for writepage(). That would be
  1462. * disastrous. Any write() or metadata operation will sync the fs for
  1463. * us.
  1464. *
  1465. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1466. * we don't need to open a transaction here.
  1467. */
  1468. static int ext3_ordered_writepage(struct page *page,
  1469. struct writeback_control *wbc)
  1470. {
  1471. struct inode *inode = page->mapping->host;
  1472. struct buffer_head *page_bufs;
  1473. handle_t *handle = NULL;
  1474. int ret = 0;
  1475. int err;
  1476. J_ASSERT(PageLocked(page));
  1477. WARN_ON_ONCE(IS_RDONLY(inode));
  1478. /*
  1479. * We give up here if we're reentered, because it might be for a
  1480. * different filesystem.
  1481. */
  1482. if (ext3_journal_current_handle())
  1483. goto out_fail;
  1484. trace_ext3_ordered_writepage(page);
  1485. if (!page_has_buffers(page)) {
  1486. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1487. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1488. page_bufs = page_buffers(page);
  1489. } else {
  1490. page_bufs = page_buffers(page);
  1491. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1492. NULL, buffer_unmapped)) {
  1493. /* Provide NULL get_block() to catch bugs if buffers
  1494. * weren't really mapped */
  1495. return block_write_full_page(page, NULL, wbc);
  1496. }
  1497. }
  1498. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1499. if (IS_ERR(handle)) {
  1500. ret = PTR_ERR(handle);
  1501. goto out_fail;
  1502. }
  1503. walk_page_buffers(handle, page_bufs, 0,
  1504. PAGE_CACHE_SIZE, NULL, bget_one);
  1505. ret = block_write_full_page(page, ext3_get_block, wbc);
  1506. /*
  1507. * The page can become unlocked at any point now, and
  1508. * truncate can then come in and change things. So we
  1509. * can't touch *page from now on. But *page_bufs is
  1510. * safe due to elevated refcount.
  1511. */
  1512. /*
  1513. * And attach them to the current transaction. But only if
  1514. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1515. * and generally junk.
  1516. */
  1517. if (ret == 0) {
  1518. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1519. NULL, journal_dirty_data_fn);
  1520. if (!ret)
  1521. ret = err;
  1522. }
  1523. walk_page_buffers(handle, page_bufs, 0,
  1524. PAGE_CACHE_SIZE, NULL, bput_one);
  1525. err = ext3_journal_stop(handle);
  1526. if (!ret)
  1527. ret = err;
  1528. return ret;
  1529. out_fail:
  1530. redirty_page_for_writepage(wbc, page);
  1531. unlock_page(page);
  1532. return ret;
  1533. }
  1534. static int ext3_writeback_writepage(struct page *page,
  1535. struct writeback_control *wbc)
  1536. {
  1537. struct inode *inode = page->mapping->host;
  1538. handle_t *handle = NULL;
  1539. int ret = 0;
  1540. int err;
  1541. J_ASSERT(PageLocked(page));
  1542. WARN_ON_ONCE(IS_RDONLY(inode));
  1543. if (ext3_journal_current_handle())
  1544. goto out_fail;
  1545. trace_ext3_writeback_writepage(page);
  1546. if (page_has_buffers(page)) {
  1547. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1548. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1549. /* Provide NULL get_block() to catch bugs if buffers
  1550. * weren't really mapped */
  1551. return block_write_full_page(page, NULL, wbc);
  1552. }
  1553. }
  1554. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1555. if (IS_ERR(handle)) {
  1556. ret = PTR_ERR(handle);
  1557. goto out_fail;
  1558. }
  1559. ret = block_write_full_page(page, ext3_get_block, wbc);
  1560. err = ext3_journal_stop(handle);
  1561. if (!ret)
  1562. ret = err;
  1563. return ret;
  1564. out_fail:
  1565. redirty_page_for_writepage(wbc, page);
  1566. unlock_page(page);
  1567. return ret;
  1568. }
  1569. static int ext3_journalled_writepage(struct page *page,
  1570. struct writeback_control *wbc)
  1571. {
  1572. struct inode *inode = page->mapping->host;
  1573. handle_t *handle = NULL;
  1574. int ret = 0;
  1575. int err;
  1576. J_ASSERT(PageLocked(page));
  1577. WARN_ON_ONCE(IS_RDONLY(inode));
  1578. if (ext3_journal_current_handle())
  1579. goto no_write;
  1580. trace_ext3_journalled_writepage(page);
  1581. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1582. if (IS_ERR(handle)) {
  1583. ret = PTR_ERR(handle);
  1584. goto no_write;
  1585. }
  1586. if (!page_has_buffers(page) || PageChecked(page)) {
  1587. /*
  1588. * It's mmapped pagecache. Add buffers and journal it. There
  1589. * doesn't seem much point in redirtying the page here.
  1590. */
  1591. ClearPageChecked(page);
  1592. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1593. ext3_get_block);
  1594. if (ret != 0) {
  1595. ext3_journal_stop(handle);
  1596. goto out_unlock;
  1597. }
  1598. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1599. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1600. err = walk_page_buffers(handle, page_buffers(page), 0,
  1601. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1602. if (ret == 0)
  1603. ret = err;
  1604. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1605. atomic_set(&EXT3_I(inode)->i_datasync_tid,
  1606. handle->h_transaction->t_tid);
  1607. unlock_page(page);
  1608. } else {
  1609. /*
  1610. * It may be a page full of checkpoint-mode buffers. We don't
  1611. * really know unless we go poke around in the buffer_heads.
  1612. * But block_write_full_page will do the right thing.
  1613. */
  1614. ret = block_write_full_page(page, ext3_get_block, wbc);
  1615. }
  1616. err = ext3_journal_stop(handle);
  1617. if (!ret)
  1618. ret = err;
  1619. out:
  1620. return ret;
  1621. no_write:
  1622. redirty_page_for_writepage(wbc, page);
  1623. out_unlock:
  1624. unlock_page(page);
  1625. goto out;
  1626. }
  1627. static int ext3_readpage(struct file *file, struct page *page)
  1628. {
  1629. trace_ext3_readpage(page);
  1630. return mpage_readpage(page, ext3_get_block);
  1631. }
  1632. static int
  1633. ext3_readpages(struct file *file, struct address_space *mapping,
  1634. struct list_head *pages, unsigned nr_pages)
  1635. {
  1636. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1637. }
  1638. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1639. {
  1640. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1641. trace_ext3_invalidatepage(page, offset);
  1642. /*
  1643. * If it's a full truncate we just forget about the pending dirtying
  1644. */
  1645. if (offset == 0)
  1646. ClearPageChecked(page);
  1647. journal_invalidatepage(journal, page, offset);
  1648. }
  1649. static int ext3_releasepage(struct page *page, gfp_t wait)
  1650. {
  1651. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1652. trace_ext3_releasepage(page);
  1653. WARN_ON(PageChecked(page));
  1654. if (!page_has_buffers(page))
  1655. return 0;
  1656. return journal_try_to_free_buffers(journal, page, wait);
  1657. }
  1658. /*
  1659. * If the O_DIRECT write will extend the file then add this inode to the
  1660. * orphan list. So recovery will truncate it back to the original size
  1661. * if the machine crashes during the write.
  1662. *
  1663. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1664. * crashes then stale disk data _may_ be exposed inside the file. But current
  1665. * VFS code falls back into buffered path in that case so we are safe.
  1666. */
  1667. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1668. const struct iovec *iov, loff_t offset,
  1669. unsigned long nr_segs)
  1670. {
  1671. struct file *file = iocb->ki_filp;
  1672. struct inode *inode = file->f_mapping->host;
  1673. struct ext3_inode_info *ei = EXT3_I(inode);
  1674. handle_t *handle;
  1675. ssize_t ret;
  1676. int orphan = 0;
  1677. size_t count = iov_length(iov, nr_segs);
  1678. int retries = 0;
  1679. trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  1680. if (rw == WRITE) {
  1681. loff_t final_size = offset + count;
  1682. if (final_size > inode->i_size) {
  1683. /* Credits for sb + inode write */
  1684. handle = ext3_journal_start(inode, 2);
  1685. if (IS_ERR(handle)) {
  1686. ret = PTR_ERR(handle);
  1687. goto out;
  1688. }
  1689. ret = ext3_orphan_add(handle, inode);
  1690. if (ret) {
  1691. ext3_journal_stop(handle);
  1692. goto out;
  1693. }
  1694. orphan = 1;
  1695. ei->i_disksize = inode->i_size;
  1696. ext3_journal_stop(handle);
  1697. }
  1698. }
  1699. retry:
  1700. ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  1701. ext3_get_block);
  1702. /*
  1703. * In case of error extending write may have instantiated a few
  1704. * blocks outside i_size. Trim these off again.
  1705. */
  1706. if (unlikely((rw & WRITE) && ret < 0)) {
  1707. loff_t isize = i_size_read(inode);
  1708. loff_t end = offset + iov_length(iov, nr_segs);
  1709. if (end > isize)
  1710. ext3_truncate_failed_direct_write(inode);
  1711. }
  1712. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1713. goto retry;
  1714. if (orphan) {
  1715. int err;
  1716. /* Credits for sb + inode write */
  1717. handle = ext3_journal_start(inode, 2);
  1718. if (IS_ERR(handle)) {
  1719. /* This is really bad luck. We've written the data
  1720. * but cannot extend i_size. Truncate allocated blocks
  1721. * and pretend the write failed... */
  1722. ext3_truncate_failed_direct_write(inode);
  1723. ret = PTR_ERR(handle);
  1724. goto out;
  1725. }
  1726. if (inode->i_nlink)
  1727. ext3_orphan_del(handle, inode);
  1728. if (ret > 0) {
  1729. loff_t end = offset + ret;
  1730. if (end > inode->i_size) {
  1731. ei->i_disksize = end;
  1732. i_size_write(inode, end);
  1733. /*
  1734. * We're going to return a positive `ret'
  1735. * here due to non-zero-length I/O, so there's
  1736. * no way of reporting error returns from
  1737. * ext3_mark_inode_dirty() to userspace. So
  1738. * ignore it.
  1739. */
  1740. ext3_mark_inode_dirty(handle, inode);
  1741. }
  1742. }
  1743. err = ext3_journal_stop(handle);
  1744. if (ret == 0)
  1745. ret = err;
  1746. }
  1747. out:
  1748. trace_ext3_direct_IO_exit(inode, offset,
  1749. iov_length(iov, nr_segs), rw, ret);
  1750. return ret;
  1751. }
  1752. /*
  1753. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1754. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1755. * much here because ->set_page_dirty is called under VFS locks. The page is
  1756. * not necessarily locked.
  1757. *
  1758. * We cannot just dirty the page and leave attached buffers clean, because the
  1759. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1760. * or jbddirty because all the journalling code will explode.
  1761. *
  1762. * So what we do is to mark the page "pending dirty" and next time writepage
  1763. * is called, propagate that into the buffers appropriately.
  1764. */
  1765. static int ext3_journalled_set_page_dirty(struct page *page)
  1766. {
  1767. SetPageChecked(page);
  1768. return __set_page_dirty_nobuffers(page);
  1769. }
  1770. static const struct address_space_operations ext3_ordered_aops = {
  1771. .readpage = ext3_readpage,
  1772. .readpages = ext3_readpages,
  1773. .writepage = ext3_ordered_writepage,
  1774. .write_begin = ext3_write_begin,
  1775. .write_end = ext3_ordered_write_end,
  1776. .bmap = ext3_bmap,
  1777. .invalidatepage = ext3_invalidatepage,
  1778. .releasepage = ext3_releasepage,
  1779. .direct_IO = ext3_direct_IO,
  1780. .migratepage = buffer_migrate_page,
  1781. .is_partially_uptodate = block_is_partially_uptodate,
  1782. .error_remove_page = generic_error_remove_page,
  1783. };
  1784. static const struct address_space_operations ext3_writeback_aops = {
  1785. .readpage = ext3_readpage,
  1786. .readpages = ext3_readpages,
  1787. .writepage = ext3_writeback_writepage,
  1788. .write_begin = ext3_write_begin,
  1789. .write_end = ext3_writeback_write_end,
  1790. .bmap = ext3_bmap,
  1791. .invalidatepage = ext3_invalidatepage,
  1792. .releasepage = ext3_releasepage,
  1793. .direct_IO = ext3_direct_IO,
  1794. .migratepage = buffer_migrate_page,
  1795. .is_partially_uptodate = block_is_partially_uptodate,
  1796. .error_remove_page = generic_error_remove_page,
  1797. };
  1798. static const struct address_space_operations ext3_journalled_aops = {
  1799. .readpage = ext3_readpage,
  1800. .readpages = ext3_readpages,
  1801. .writepage = ext3_journalled_writepage,
  1802. .write_begin = ext3_write_begin,
  1803. .write_end = ext3_journalled_write_end,
  1804. .set_page_dirty = ext3_journalled_set_page_dirty,
  1805. .bmap = ext3_bmap,
  1806. .invalidatepage = ext3_invalidatepage,
  1807. .releasepage = ext3_releasepage,
  1808. .is_partially_uptodate = block_is_partially_uptodate,
  1809. .error_remove_page = generic_error_remove_page,
  1810. };
  1811. void ext3_set_aops(struct inode *inode)
  1812. {
  1813. if (ext3_should_order_data(inode))
  1814. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1815. else if (ext3_should_writeback_data(inode))
  1816. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1817. else
  1818. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1819. }
  1820. /*
  1821. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1822. * up to the end of the block which corresponds to `from'.
  1823. * This required during truncate. We need to physically zero the tail end
  1824. * of that block so it doesn't yield old data if the file is later grown.
  1825. */
  1826. static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  1827. {
  1828. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1829. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  1830. unsigned blocksize, iblock, length, pos;
  1831. struct page *page;
  1832. handle_t *handle = NULL;
  1833. struct buffer_head *bh;
  1834. int err = 0;
  1835. /* Truncated on block boundary - nothing to do */
  1836. blocksize = inode->i_sb->s_blocksize;
  1837. if ((from & (blocksize - 1)) == 0)
  1838. return 0;
  1839. page = grab_cache_page(inode->i_mapping, index);
  1840. if (!page)
  1841. return -ENOMEM;
  1842. length = blocksize - (offset & (blocksize - 1));
  1843. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1844. if (!page_has_buffers(page))
  1845. create_empty_buffers(page, blocksize, 0);
  1846. /* Find the buffer that contains "offset" */
  1847. bh = page_buffers(page);
  1848. pos = blocksize;
  1849. while (offset >= pos) {
  1850. bh = bh->b_this_page;
  1851. iblock++;
  1852. pos += blocksize;
  1853. }
  1854. err = 0;
  1855. if (buffer_freed(bh)) {
  1856. BUFFER_TRACE(bh, "freed: skip");
  1857. goto unlock;
  1858. }
  1859. if (!buffer_mapped(bh)) {
  1860. BUFFER_TRACE(bh, "unmapped");
  1861. ext3_get_block(inode, iblock, bh, 0);
  1862. /* unmapped? It's a hole - nothing to do */
  1863. if (!buffer_mapped(bh)) {
  1864. BUFFER_TRACE(bh, "still unmapped");
  1865. goto unlock;
  1866. }
  1867. }
  1868. /* Ok, it's mapped. Make sure it's up-to-date */
  1869. if (PageUptodate(page))
  1870. set_buffer_uptodate(bh);
  1871. if (!buffer_uptodate(bh)) {
  1872. err = -EIO;
  1873. ll_rw_block(READ, 1, &bh);
  1874. wait_on_buffer(bh);
  1875. /* Uhhuh. Read error. Complain and punt. */
  1876. if (!buffer_uptodate(bh))
  1877. goto unlock;
  1878. }
  1879. /* data=writeback mode doesn't need transaction to zero-out data */
  1880. if (!ext3_should_writeback_data(inode)) {
  1881. /* We journal at most one block */
  1882. handle = ext3_journal_start(inode, 1);
  1883. if (IS_ERR(handle)) {
  1884. clear_highpage(page);
  1885. flush_dcache_page(page);
  1886. err = PTR_ERR(handle);
  1887. goto unlock;
  1888. }
  1889. }
  1890. if (ext3_should_journal_data(inode)) {
  1891. BUFFER_TRACE(bh, "get write access");
  1892. err = ext3_journal_get_write_access(handle, bh);
  1893. if (err)
  1894. goto stop;
  1895. }
  1896. zero_user(page, offset, length);
  1897. BUFFER_TRACE(bh, "zeroed end of block");
  1898. err = 0;
  1899. if (ext3_should_journal_data(inode)) {
  1900. err = ext3_journal_dirty_metadata(handle, bh);
  1901. } else {
  1902. if (ext3_should_order_data(inode))
  1903. err = ext3_journal_dirty_data(handle, bh);
  1904. mark_buffer_dirty(bh);
  1905. }
  1906. stop:
  1907. if (handle)
  1908. ext3_journal_stop(handle);
  1909. unlock:
  1910. unlock_page(page);
  1911. page_cache_release(page);
  1912. return err;
  1913. }
  1914. /*
  1915. * Probably it should be a library function... search for first non-zero word
  1916. * or memcmp with zero_page, whatever is better for particular architecture.
  1917. * Linus?
  1918. */
  1919. static inline int all_zeroes(__le32 *p, __le32 *q)
  1920. {
  1921. while (p < q)
  1922. if (*p++)
  1923. return 0;
  1924. return 1;
  1925. }
  1926. /**
  1927. * ext3_find_shared - find the indirect blocks for partial truncation.
  1928. * @inode: inode in question
  1929. * @depth: depth of the affected branch
  1930. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1931. * @chain: place to store the pointers to partial indirect blocks
  1932. * @top: place to the (detached) top of branch
  1933. *
  1934. * This is a helper function used by ext3_truncate().
  1935. *
  1936. * When we do truncate() we may have to clean the ends of several
  1937. * indirect blocks but leave the blocks themselves alive. Block is
  1938. * partially truncated if some data below the new i_size is referred
  1939. * from it (and it is on the path to the first completely truncated
  1940. * data block, indeed). We have to free the top of that path along
  1941. * with everything to the right of the path. Since no allocation
  1942. * past the truncation point is possible until ext3_truncate()
  1943. * finishes, we may safely do the latter, but top of branch may
  1944. * require special attention - pageout below the truncation point
  1945. * might try to populate it.
  1946. *
  1947. * We atomically detach the top of branch from the tree, store the
  1948. * block number of its root in *@top, pointers to buffer_heads of
  1949. * partially truncated blocks - in @chain[].bh and pointers to
  1950. * their last elements that should not be removed - in
  1951. * @chain[].p. Return value is the pointer to last filled element
  1952. * of @chain.
  1953. *
  1954. * The work left to caller to do the actual freeing of subtrees:
  1955. * a) free the subtree starting from *@top
  1956. * b) free the subtrees whose roots are stored in
  1957. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1958. * c) free the subtrees growing from the inode past the @chain[0].
  1959. * (no partially truncated stuff there). */
  1960. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1961. int offsets[4], Indirect chain[4], __le32 *top)
  1962. {
  1963. Indirect *partial, *p;
  1964. int k, err;
  1965. *top = 0;
  1966. /* Make k index the deepest non-null offset + 1 */
  1967. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1968. ;
  1969. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1970. /* Writer: pointers */
  1971. if (!partial)
  1972. partial = chain + k-1;
  1973. /*
  1974. * If the branch acquired continuation since we've looked at it -
  1975. * fine, it should all survive and (new) top doesn't belong to us.
  1976. */
  1977. if (!partial->key && *partial->p)
  1978. /* Writer: end */
  1979. goto no_top;
  1980. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1981. ;
  1982. /*
  1983. * OK, we've found the last block that must survive. The rest of our
  1984. * branch should be detached before unlocking. However, if that rest
  1985. * of branch is all ours and does not grow immediately from the inode
  1986. * it's easier to cheat and just decrement partial->p.
  1987. */
  1988. if (p == chain + k - 1 && p > chain) {
  1989. p->p--;
  1990. } else {
  1991. *top = *p->p;
  1992. /* Nope, don't do this in ext3. Must leave the tree intact */
  1993. #if 0
  1994. *p->p = 0;
  1995. #endif
  1996. }
  1997. /* Writer: end */
  1998. while(partial > p) {
  1999. brelse(partial->bh);
  2000. partial--;
  2001. }
  2002. no_top:
  2003. return partial;
  2004. }
  2005. /*
  2006. * Zero a number of block pointers in either an inode or an indirect block.
  2007. * If we restart the transaction we must again get write access to the
  2008. * indirect block for further modification.
  2009. *
  2010. * We release `count' blocks on disk, but (last - first) may be greater
  2011. * than `count' because there can be holes in there.
  2012. */
  2013. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  2014. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  2015. unsigned long count, __le32 *first, __le32 *last)
  2016. {
  2017. __le32 *p;
  2018. if (try_to_extend_transaction(handle, inode)) {
  2019. if (bh) {
  2020. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2021. if (ext3_journal_dirty_metadata(handle, bh))
  2022. return;
  2023. }
  2024. ext3_mark_inode_dirty(handle, inode);
  2025. truncate_restart_transaction(handle, inode);
  2026. if (bh) {
  2027. BUFFER_TRACE(bh, "retaking write access");
  2028. if (ext3_journal_get_write_access(handle, bh))
  2029. return;
  2030. }
  2031. }
  2032. /*
  2033. * Any buffers which are on the journal will be in memory. We find
  2034. * them on the hash table so journal_revoke() will run journal_forget()
  2035. * on them. We've already detached each block from the file, so
  2036. * bforget() in journal_forget() should be safe.
  2037. *
  2038. * AKPM: turn on bforget in journal_forget()!!!
  2039. */
  2040. for (p = first; p < last; p++) {
  2041. u32 nr = le32_to_cpu(*p);
  2042. if (nr) {
  2043. struct buffer_head *bh;
  2044. *p = 0;
  2045. bh = sb_find_get_block(inode->i_sb, nr);
  2046. ext3_forget(handle, 0, inode, bh, nr);
  2047. }
  2048. }
  2049. ext3_free_blocks(handle, inode, block_to_free, count);
  2050. }
  2051. /**
  2052. * ext3_free_data - free a list of data blocks
  2053. * @handle: handle for this transaction
  2054. * @inode: inode we are dealing with
  2055. * @this_bh: indirect buffer_head which contains *@first and *@last
  2056. * @first: array of block numbers
  2057. * @last: points immediately past the end of array
  2058. *
  2059. * We are freeing all blocks referred from that array (numbers are stored as
  2060. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  2061. *
  2062. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2063. * blocks are contiguous then releasing them at one time will only affect one
  2064. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2065. * actually use a lot of journal space.
  2066. *
  2067. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2068. * block pointers.
  2069. */
  2070. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2071. struct buffer_head *this_bh,
  2072. __le32 *first, __le32 *last)
  2073. {
  2074. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2075. unsigned long count = 0; /* Number of blocks in the run */
  2076. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2077. corresponding to
  2078. block_to_free */
  2079. ext3_fsblk_t nr; /* Current block # */
  2080. __le32 *p; /* Pointer into inode/ind
  2081. for current block */
  2082. int err;
  2083. if (this_bh) { /* For indirect block */
  2084. BUFFER_TRACE(this_bh, "get_write_access");
  2085. err = ext3_journal_get_write_access(handle, this_bh);
  2086. /* Important: if we can't update the indirect pointers
  2087. * to the blocks, we can't free them. */
  2088. if (err)
  2089. return;
  2090. }
  2091. for (p = first; p < last; p++) {
  2092. nr = le32_to_cpu(*p);
  2093. if (nr) {
  2094. /* accumulate blocks to free if they're contiguous */
  2095. if (count == 0) {
  2096. block_to_free = nr;
  2097. block_to_free_p = p;
  2098. count = 1;
  2099. } else if (nr == block_to_free + count) {
  2100. count++;
  2101. } else {
  2102. ext3_clear_blocks(handle, inode, this_bh,
  2103. block_to_free,
  2104. count, block_to_free_p, p);
  2105. block_to_free = nr;
  2106. block_to_free_p = p;
  2107. count = 1;
  2108. }
  2109. }
  2110. }
  2111. if (count > 0)
  2112. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2113. count, block_to_free_p, p);
  2114. if (this_bh) {
  2115. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2116. /*
  2117. * The buffer head should have an attached journal head at this
  2118. * point. However, if the data is corrupted and an indirect
  2119. * block pointed to itself, it would have been detached when
  2120. * the block was cleared. Check for this instead of OOPSing.
  2121. */
  2122. if (bh2jh(this_bh))
  2123. ext3_journal_dirty_metadata(handle, this_bh);
  2124. else
  2125. ext3_error(inode->i_sb, "ext3_free_data",
  2126. "circular indirect block detected, "
  2127. "inode=%lu, block=%llu",
  2128. inode->i_ino,
  2129. (unsigned long long)this_bh->b_blocknr);
  2130. }
  2131. }
  2132. /**
  2133. * ext3_free_branches - free an array of branches
  2134. * @handle: JBD handle for this transaction
  2135. * @inode: inode we are dealing with
  2136. * @parent_bh: the buffer_head which contains *@first and *@last
  2137. * @first: array of block numbers
  2138. * @last: pointer immediately past the end of array
  2139. * @depth: depth of the branches to free
  2140. *
  2141. * We are freeing all blocks referred from these branches (numbers are
  2142. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2143. * appropriately.
  2144. */
  2145. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2146. struct buffer_head *parent_bh,
  2147. __le32 *first, __le32 *last, int depth)
  2148. {
  2149. ext3_fsblk_t nr;
  2150. __le32 *p;
  2151. if (is_handle_aborted(handle))
  2152. return;
  2153. if (depth--) {
  2154. struct buffer_head *bh;
  2155. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2156. p = last;
  2157. while (--p >= first) {
  2158. nr = le32_to_cpu(*p);
  2159. if (!nr)
  2160. continue; /* A hole */
  2161. /* Go read the buffer for the next level down */
  2162. bh = sb_bread(inode->i_sb, nr);
  2163. /*
  2164. * A read failure? Report error and clear slot
  2165. * (should be rare).
  2166. */
  2167. if (!bh) {
  2168. ext3_error(inode->i_sb, "ext3_free_branches",
  2169. "Read failure, inode=%lu, block="E3FSBLK,
  2170. inode->i_ino, nr);
  2171. continue;
  2172. }
  2173. /* This zaps the entire block. Bottom up. */
  2174. BUFFER_TRACE(bh, "free child branches");
  2175. ext3_free_branches(handle, inode, bh,
  2176. (__le32*)bh->b_data,
  2177. (__le32*)bh->b_data + addr_per_block,
  2178. depth);
  2179. /*
  2180. * Everything below this this pointer has been
  2181. * released. Now let this top-of-subtree go.
  2182. *
  2183. * We want the freeing of this indirect block to be
  2184. * atomic in the journal with the updating of the
  2185. * bitmap block which owns it. So make some room in
  2186. * the journal.
  2187. *
  2188. * We zero the parent pointer *after* freeing its
  2189. * pointee in the bitmaps, so if extend_transaction()
  2190. * for some reason fails to put the bitmap changes and
  2191. * the release into the same transaction, recovery
  2192. * will merely complain about releasing a free block,
  2193. * rather than leaking blocks.
  2194. */
  2195. if (is_handle_aborted(handle))
  2196. return;
  2197. if (try_to_extend_transaction(handle, inode)) {
  2198. ext3_mark_inode_dirty(handle, inode);
  2199. truncate_restart_transaction(handle, inode);
  2200. }
  2201. /*
  2202. * We've probably journalled the indirect block several
  2203. * times during the truncate. But it's no longer
  2204. * needed and we now drop it from the transaction via
  2205. * journal_revoke().
  2206. *
  2207. * That's easy if it's exclusively part of this
  2208. * transaction. But if it's part of the committing
  2209. * transaction then journal_forget() will simply
  2210. * brelse() it. That means that if the underlying
  2211. * block is reallocated in ext3_get_block(),
  2212. * unmap_underlying_metadata() will find this block
  2213. * and will try to get rid of it. damn, damn. Thus
  2214. * we don't allow a block to be reallocated until
  2215. * a transaction freeing it has fully committed.
  2216. *
  2217. * We also have to make sure journal replay after a
  2218. * crash does not overwrite non-journaled data blocks
  2219. * with old metadata when the block got reallocated for
  2220. * data. Thus we have to store a revoke record for a
  2221. * block in the same transaction in which we free the
  2222. * block.
  2223. */
  2224. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2225. ext3_free_blocks(handle, inode, nr, 1);
  2226. if (parent_bh) {
  2227. /*
  2228. * The block which we have just freed is
  2229. * pointed to by an indirect block: journal it
  2230. */
  2231. BUFFER_TRACE(parent_bh, "get_write_access");
  2232. if (!ext3_journal_get_write_access(handle,
  2233. parent_bh)){
  2234. *p = 0;
  2235. BUFFER_TRACE(parent_bh,
  2236. "call ext3_journal_dirty_metadata");
  2237. ext3_journal_dirty_metadata(handle,
  2238. parent_bh);
  2239. }
  2240. }
  2241. }
  2242. } else {
  2243. /* We have reached the bottom of the tree. */
  2244. BUFFER_TRACE(parent_bh, "free data blocks");
  2245. ext3_free_data(handle, inode, parent_bh, first, last);
  2246. }
  2247. }
  2248. int ext3_can_truncate(struct inode *inode)
  2249. {
  2250. if (S_ISREG(inode->i_mode))
  2251. return 1;
  2252. if (S_ISDIR(inode->i_mode))
  2253. return 1;
  2254. if (S_ISLNK(inode->i_mode))
  2255. return !ext3_inode_is_fast_symlink(inode);
  2256. return 0;
  2257. }
  2258. /*
  2259. * ext3_truncate()
  2260. *
  2261. * We block out ext3_get_block() block instantiations across the entire
  2262. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2263. * simultaneously on behalf of the same inode.
  2264. *
  2265. * As we work through the truncate and commmit bits of it to the journal there
  2266. * is one core, guiding principle: the file's tree must always be consistent on
  2267. * disk. We must be able to restart the truncate after a crash.
  2268. *
  2269. * The file's tree may be transiently inconsistent in memory (although it
  2270. * probably isn't), but whenever we close off and commit a journal transaction,
  2271. * the contents of (the filesystem + the journal) must be consistent and
  2272. * restartable. It's pretty simple, really: bottom up, right to left (although
  2273. * left-to-right works OK too).
  2274. *
  2275. * Note that at recovery time, journal replay occurs *before* the restart of
  2276. * truncate against the orphan inode list.
  2277. *
  2278. * The committed inode has the new, desired i_size (which is the same as
  2279. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2280. * that this inode's truncate did not complete and it will again call
  2281. * ext3_truncate() to have another go. So there will be instantiated blocks
  2282. * to the right of the truncation point in a crashed ext3 filesystem. But
  2283. * that's fine - as long as they are linked from the inode, the post-crash
  2284. * ext3_truncate() run will find them and release them.
  2285. */
  2286. void ext3_truncate(struct inode *inode)
  2287. {
  2288. handle_t *handle;
  2289. struct ext3_inode_info *ei = EXT3_I(inode);
  2290. __le32 *i_data = ei->i_data;
  2291. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2292. int offsets[4];
  2293. Indirect chain[4];
  2294. Indirect *partial;
  2295. __le32 nr = 0;
  2296. int n;
  2297. long last_block;
  2298. unsigned blocksize = inode->i_sb->s_blocksize;
  2299. trace_ext3_truncate_enter(inode);
  2300. if (!ext3_can_truncate(inode))
  2301. goto out_notrans;
  2302. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2303. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2304. handle = start_transaction(inode);
  2305. if (IS_ERR(handle))
  2306. goto out_notrans;
  2307. last_block = (inode->i_size + blocksize-1)
  2308. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2309. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2310. if (n == 0)
  2311. goto out_stop; /* error */
  2312. /*
  2313. * OK. This truncate is going to happen. We add the inode to the
  2314. * orphan list, so that if this truncate spans multiple transactions,
  2315. * and we crash, we will resume the truncate when the filesystem
  2316. * recovers. It also marks the inode dirty, to catch the new size.
  2317. *
  2318. * Implication: the file must always be in a sane, consistent
  2319. * truncatable state while each transaction commits.
  2320. */
  2321. if (ext3_orphan_add(handle, inode))
  2322. goto out_stop;
  2323. /*
  2324. * The orphan list entry will now protect us from any crash which
  2325. * occurs before the truncate completes, so it is now safe to propagate
  2326. * the new, shorter inode size (held for now in i_size) into the
  2327. * on-disk inode. We do this via i_disksize, which is the value which
  2328. * ext3 *really* writes onto the disk inode.
  2329. */
  2330. ei->i_disksize = inode->i_size;
  2331. /*
  2332. * From here we block out all ext3_get_block() callers who want to
  2333. * modify the block allocation tree.
  2334. */
  2335. mutex_lock(&ei->truncate_mutex);
  2336. if (n == 1) { /* direct blocks */
  2337. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2338. i_data + EXT3_NDIR_BLOCKS);
  2339. goto do_indirects;
  2340. }
  2341. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2342. /* Kill the top of shared branch (not detached) */
  2343. if (nr) {
  2344. if (partial == chain) {
  2345. /* Shared branch grows from the inode */
  2346. ext3_free_branches(handle, inode, NULL,
  2347. &nr, &nr+1, (chain+n-1) - partial);
  2348. *partial->p = 0;
  2349. /*
  2350. * We mark the inode dirty prior to restart,
  2351. * and prior to stop. No need for it here.
  2352. */
  2353. } else {
  2354. /* Shared branch grows from an indirect block */
  2355. ext3_free_branches(handle, inode, partial->bh,
  2356. partial->p,
  2357. partial->p+1, (chain+n-1) - partial);
  2358. }
  2359. }
  2360. /* Clear the ends of indirect blocks on the shared branch */
  2361. while (partial > chain) {
  2362. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2363. (__le32*)partial->bh->b_data+addr_per_block,
  2364. (chain+n-1) - partial);
  2365. BUFFER_TRACE(partial->bh, "call brelse");
  2366. brelse (partial->bh);
  2367. partial--;
  2368. }
  2369. do_indirects:
  2370. /* Kill the remaining (whole) subtrees */
  2371. switch (offsets[0]) {
  2372. default:
  2373. nr = i_data[EXT3_IND_BLOCK];
  2374. if (nr) {
  2375. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2376. i_data[EXT3_IND_BLOCK] = 0;
  2377. }
  2378. case EXT3_IND_BLOCK:
  2379. nr = i_data[EXT3_DIND_BLOCK];
  2380. if (nr) {
  2381. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2382. i_data[EXT3_DIND_BLOCK] = 0;
  2383. }
  2384. case EXT3_DIND_BLOCK:
  2385. nr = i_data[EXT3_TIND_BLOCK];
  2386. if (nr) {
  2387. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2388. i_data[EXT3_TIND_BLOCK] = 0;
  2389. }
  2390. case EXT3_TIND_BLOCK:
  2391. ;
  2392. }
  2393. ext3_discard_reservation(inode);
  2394. mutex_unlock(&ei->truncate_mutex);
  2395. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2396. ext3_mark_inode_dirty(handle, inode);
  2397. /*
  2398. * In a multi-transaction truncate, we only make the final transaction
  2399. * synchronous
  2400. */
  2401. if (IS_SYNC(inode))
  2402. handle->h_sync = 1;
  2403. out_stop:
  2404. /*
  2405. * If this was a simple ftruncate(), and the file will remain alive
  2406. * then we need to clear up the orphan record which we created above.
  2407. * However, if this was a real unlink then we were called by
  2408. * ext3_evict_inode(), and we allow that function to clean up the
  2409. * orphan info for us.
  2410. */
  2411. if (inode->i_nlink)
  2412. ext3_orphan_del(handle, inode);
  2413. ext3_journal_stop(handle);
  2414. trace_ext3_truncate_exit(inode);
  2415. return;
  2416. out_notrans:
  2417. /*
  2418. * Delete the inode from orphan list so that it doesn't stay there
  2419. * forever and trigger assertion on umount.
  2420. */
  2421. if (inode->i_nlink)
  2422. ext3_orphan_del(NULL, inode);
  2423. trace_ext3_truncate_exit(inode);
  2424. }
  2425. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2426. unsigned long ino, struct ext3_iloc *iloc)
  2427. {
  2428. unsigned long block_group;
  2429. unsigned long offset;
  2430. ext3_fsblk_t block;
  2431. struct ext3_group_desc *gdp;
  2432. if (!ext3_valid_inum(sb, ino)) {
  2433. /*
  2434. * This error is already checked for in namei.c unless we are
  2435. * looking at an NFS filehandle, in which case no error
  2436. * report is needed
  2437. */
  2438. return 0;
  2439. }
  2440. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2441. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2442. if (!gdp)
  2443. return 0;
  2444. /*
  2445. * Figure out the offset within the block group inode table
  2446. */
  2447. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2448. EXT3_INODE_SIZE(sb);
  2449. block = le32_to_cpu(gdp->bg_inode_table) +
  2450. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2451. iloc->block_group = block_group;
  2452. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2453. return block;
  2454. }
  2455. /*
  2456. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2457. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2458. * data in memory that is needed to recreate the on-disk version of this
  2459. * inode.
  2460. */
  2461. static int __ext3_get_inode_loc(struct inode *inode,
  2462. struct ext3_iloc *iloc, int in_mem)
  2463. {
  2464. ext3_fsblk_t block;
  2465. struct buffer_head *bh;
  2466. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2467. if (!block)
  2468. return -EIO;
  2469. bh = sb_getblk(inode->i_sb, block);
  2470. if (!bh) {
  2471. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2472. "unable to read inode block - "
  2473. "inode=%lu, block="E3FSBLK,
  2474. inode->i_ino, block);
  2475. return -EIO;
  2476. }
  2477. if (!buffer_uptodate(bh)) {
  2478. lock_buffer(bh);
  2479. /*
  2480. * If the buffer has the write error flag, we have failed
  2481. * to write out another inode in the same block. In this
  2482. * case, we don't have to read the block because we may
  2483. * read the old inode data successfully.
  2484. */
  2485. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2486. set_buffer_uptodate(bh);
  2487. if (buffer_uptodate(bh)) {
  2488. /* someone brought it uptodate while we waited */
  2489. unlock_buffer(bh);
  2490. goto has_buffer;
  2491. }
  2492. /*
  2493. * If we have all information of the inode in memory and this
  2494. * is the only valid inode in the block, we need not read the
  2495. * block.
  2496. */
  2497. if (in_mem) {
  2498. struct buffer_head *bitmap_bh;
  2499. struct ext3_group_desc *desc;
  2500. int inodes_per_buffer;
  2501. int inode_offset, i;
  2502. int block_group;
  2503. int start;
  2504. block_group = (inode->i_ino - 1) /
  2505. EXT3_INODES_PER_GROUP(inode->i_sb);
  2506. inodes_per_buffer = bh->b_size /
  2507. EXT3_INODE_SIZE(inode->i_sb);
  2508. inode_offset = ((inode->i_ino - 1) %
  2509. EXT3_INODES_PER_GROUP(inode->i_sb));
  2510. start = inode_offset & ~(inodes_per_buffer - 1);
  2511. /* Is the inode bitmap in cache? */
  2512. desc = ext3_get_group_desc(inode->i_sb,
  2513. block_group, NULL);
  2514. if (!desc)
  2515. goto make_io;
  2516. bitmap_bh = sb_getblk(inode->i_sb,
  2517. le32_to_cpu(desc->bg_inode_bitmap));
  2518. if (!bitmap_bh)
  2519. goto make_io;
  2520. /*
  2521. * If the inode bitmap isn't in cache then the
  2522. * optimisation may end up performing two reads instead
  2523. * of one, so skip it.
  2524. */
  2525. if (!buffer_uptodate(bitmap_bh)) {
  2526. brelse(bitmap_bh);
  2527. goto make_io;
  2528. }
  2529. for (i = start; i < start + inodes_per_buffer; i++) {
  2530. if (i == inode_offset)
  2531. continue;
  2532. if (ext3_test_bit(i, bitmap_bh->b_data))
  2533. break;
  2534. }
  2535. brelse(bitmap_bh);
  2536. if (i == start + inodes_per_buffer) {
  2537. /* all other inodes are free, so skip I/O */
  2538. memset(bh->b_data, 0, bh->b_size);
  2539. set_buffer_uptodate(bh);
  2540. unlock_buffer(bh);
  2541. goto has_buffer;
  2542. }
  2543. }
  2544. make_io:
  2545. /*
  2546. * There are other valid inodes in the buffer, this inode
  2547. * has in-inode xattrs, or we don't have this inode in memory.
  2548. * Read the block from disk.
  2549. */
  2550. trace_ext3_load_inode(inode);
  2551. get_bh(bh);
  2552. bh->b_end_io = end_buffer_read_sync;
  2553. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  2554. wait_on_buffer(bh);
  2555. if (!buffer_uptodate(bh)) {
  2556. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2557. "unable to read inode block - "
  2558. "inode=%lu, block="E3FSBLK,
  2559. inode->i_ino, block);
  2560. brelse(bh);
  2561. return -EIO;
  2562. }
  2563. }
  2564. has_buffer:
  2565. iloc->bh = bh;
  2566. return 0;
  2567. }
  2568. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2569. {
  2570. /* We have all inode data except xattrs in memory here. */
  2571. return __ext3_get_inode_loc(inode, iloc,
  2572. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2573. }
  2574. void ext3_set_inode_flags(struct inode *inode)
  2575. {
  2576. unsigned int flags = EXT3_I(inode)->i_flags;
  2577. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2578. if (flags & EXT3_SYNC_FL)
  2579. inode->i_flags |= S_SYNC;
  2580. if (flags & EXT3_APPEND_FL)
  2581. inode->i_flags |= S_APPEND;
  2582. if (flags & EXT3_IMMUTABLE_FL)
  2583. inode->i_flags |= S_IMMUTABLE;
  2584. if (flags & EXT3_NOATIME_FL)
  2585. inode->i_flags |= S_NOATIME;
  2586. if (flags & EXT3_DIRSYNC_FL)
  2587. inode->i_flags |= S_DIRSYNC;
  2588. }
  2589. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2590. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2591. {
  2592. unsigned int flags = ei->vfs_inode.i_flags;
  2593. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2594. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2595. if (flags & S_SYNC)
  2596. ei->i_flags |= EXT3_SYNC_FL;
  2597. if (flags & S_APPEND)
  2598. ei->i_flags |= EXT3_APPEND_FL;
  2599. if (flags & S_IMMUTABLE)
  2600. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2601. if (flags & S_NOATIME)
  2602. ei->i_flags |= EXT3_NOATIME_FL;
  2603. if (flags & S_DIRSYNC)
  2604. ei->i_flags |= EXT3_DIRSYNC_FL;
  2605. }
  2606. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2607. {
  2608. struct ext3_iloc iloc;
  2609. struct ext3_inode *raw_inode;
  2610. struct ext3_inode_info *ei;
  2611. struct buffer_head *bh;
  2612. struct inode *inode;
  2613. journal_t *journal = EXT3_SB(sb)->s_journal;
  2614. transaction_t *transaction;
  2615. long ret;
  2616. int block;
  2617. inode = iget_locked(sb, ino);
  2618. if (!inode)
  2619. return ERR_PTR(-ENOMEM);
  2620. if (!(inode->i_state & I_NEW))
  2621. return inode;
  2622. ei = EXT3_I(inode);
  2623. ei->i_block_alloc_info = NULL;
  2624. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2625. if (ret < 0)
  2626. goto bad_inode;
  2627. bh = iloc.bh;
  2628. raw_inode = ext3_raw_inode(&iloc);
  2629. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2630. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2631. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2632. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2633. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2634. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2635. }
  2636. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  2637. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2638. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2639. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2640. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2641. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2642. ei->i_state_flags = 0;
  2643. ei->i_dir_start_lookup = 0;
  2644. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2645. /* We now have enough fields to check if the inode was active or not.
  2646. * This is needed because nfsd might try to access dead inodes
  2647. * the test is that same one that e2fsck uses
  2648. * NeilBrown 1999oct15
  2649. */
  2650. if (inode->i_nlink == 0) {
  2651. if (inode->i_mode == 0 ||
  2652. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2653. /* this inode is deleted */
  2654. brelse (bh);
  2655. ret = -ESTALE;
  2656. goto bad_inode;
  2657. }
  2658. /* The only unlinked inodes we let through here have
  2659. * valid i_mode and are being read by the orphan
  2660. * recovery code: that's fine, we're about to complete
  2661. * the process of deleting those. */
  2662. }
  2663. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2664. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2665. #ifdef EXT3_FRAGMENTS
  2666. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2667. ei->i_frag_no = raw_inode->i_frag;
  2668. ei->i_frag_size = raw_inode->i_fsize;
  2669. #endif
  2670. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2671. if (!S_ISREG(inode->i_mode)) {
  2672. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2673. } else {
  2674. inode->i_size |=
  2675. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2676. }
  2677. ei->i_disksize = inode->i_size;
  2678. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2679. ei->i_block_group = iloc.block_group;
  2680. /*
  2681. * NOTE! The in-memory inode i_data array is in little-endian order
  2682. * even on big-endian machines: we do NOT byteswap the block numbers!
  2683. */
  2684. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2685. ei->i_data[block] = raw_inode->i_block[block];
  2686. INIT_LIST_HEAD(&ei->i_orphan);
  2687. /*
  2688. * Set transaction id's of transactions that have to be committed
  2689. * to finish f[data]sync. We set them to currently running transaction
  2690. * as we cannot be sure that the inode or some of its metadata isn't
  2691. * part of the transaction - the inode could have been reclaimed and
  2692. * now it is reread from disk.
  2693. */
  2694. if (journal) {
  2695. tid_t tid;
  2696. spin_lock(&journal->j_state_lock);
  2697. if (journal->j_running_transaction)
  2698. transaction = journal->j_running_transaction;
  2699. else
  2700. transaction = journal->j_committing_transaction;
  2701. if (transaction)
  2702. tid = transaction->t_tid;
  2703. else
  2704. tid = journal->j_commit_sequence;
  2705. spin_unlock(&journal->j_state_lock);
  2706. atomic_set(&ei->i_sync_tid, tid);
  2707. atomic_set(&ei->i_datasync_tid, tid);
  2708. }
  2709. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2710. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2711. /*
  2712. * When mke2fs creates big inodes it does not zero out
  2713. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2714. * so ignore those first few inodes.
  2715. */
  2716. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2717. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2718. EXT3_INODE_SIZE(inode->i_sb)) {
  2719. brelse (bh);
  2720. ret = -EIO;
  2721. goto bad_inode;
  2722. }
  2723. if (ei->i_extra_isize == 0) {
  2724. /* The extra space is currently unused. Use it. */
  2725. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2726. EXT3_GOOD_OLD_INODE_SIZE;
  2727. } else {
  2728. __le32 *magic = (void *)raw_inode +
  2729. EXT3_GOOD_OLD_INODE_SIZE +
  2730. ei->i_extra_isize;
  2731. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2732. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2733. }
  2734. } else
  2735. ei->i_extra_isize = 0;
  2736. if (S_ISREG(inode->i_mode)) {
  2737. inode->i_op = &ext3_file_inode_operations;
  2738. inode->i_fop = &ext3_file_operations;
  2739. ext3_set_aops(inode);
  2740. } else if (S_ISDIR(inode->i_mode)) {
  2741. inode->i_op = &ext3_dir_inode_operations;
  2742. inode->i_fop = &ext3_dir_operations;
  2743. } else if (S_ISLNK(inode->i_mode)) {
  2744. if (ext3_inode_is_fast_symlink(inode)) {
  2745. inode->i_op = &ext3_fast_symlink_inode_operations;
  2746. nd_terminate_link(ei->i_data, inode->i_size,
  2747. sizeof(ei->i_data) - 1);
  2748. } else {
  2749. inode->i_op = &ext3_symlink_inode_operations;
  2750. ext3_set_aops(inode);
  2751. }
  2752. } else {
  2753. inode->i_op = &ext3_special_inode_operations;
  2754. if (raw_inode->i_block[0])
  2755. init_special_inode(inode, inode->i_mode,
  2756. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2757. else
  2758. init_special_inode(inode, inode->i_mode,
  2759. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2760. }
  2761. brelse (iloc.bh);
  2762. ext3_set_inode_flags(inode);
  2763. unlock_new_inode(inode);
  2764. return inode;
  2765. bad_inode:
  2766. iget_failed(inode);
  2767. return ERR_PTR(ret);
  2768. }
  2769. /*
  2770. * Post the struct inode info into an on-disk inode location in the
  2771. * buffer-cache. This gobbles the caller's reference to the
  2772. * buffer_head in the inode location struct.
  2773. *
  2774. * The caller must have write access to iloc->bh.
  2775. */
  2776. static int ext3_do_update_inode(handle_t *handle,
  2777. struct inode *inode,
  2778. struct ext3_iloc *iloc)
  2779. {
  2780. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2781. struct ext3_inode_info *ei = EXT3_I(inode);
  2782. struct buffer_head *bh = iloc->bh;
  2783. int err = 0, rc, block;
  2784. again:
  2785. /* we can't allow multiple procs in here at once, its a bit racey */
  2786. lock_buffer(bh);
  2787. /* For fields not not tracking in the in-memory inode,
  2788. * initialise them to zero for new inodes. */
  2789. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2790. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2791. ext3_get_inode_flags(ei);
  2792. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2793. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2794. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2795. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2796. /*
  2797. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2798. * re-used with the upper 16 bits of the uid/gid intact
  2799. */
  2800. if(!ei->i_dtime) {
  2801. raw_inode->i_uid_high =
  2802. cpu_to_le16(high_16_bits(inode->i_uid));
  2803. raw_inode->i_gid_high =
  2804. cpu_to_le16(high_16_bits(inode->i_gid));
  2805. } else {
  2806. raw_inode->i_uid_high = 0;
  2807. raw_inode->i_gid_high = 0;
  2808. }
  2809. } else {
  2810. raw_inode->i_uid_low =
  2811. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2812. raw_inode->i_gid_low =
  2813. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2814. raw_inode->i_uid_high = 0;
  2815. raw_inode->i_gid_high = 0;
  2816. }
  2817. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2818. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2819. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2820. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2821. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2822. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2823. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2824. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2825. #ifdef EXT3_FRAGMENTS
  2826. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2827. raw_inode->i_frag = ei->i_frag_no;
  2828. raw_inode->i_fsize = ei->i_frag_size;
  2829. #endif
  2830. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2831. if (!S_ISREG(inode->i_mode)) {
  2832. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2833. } else {
  2834. raw_inode->i_size_high =
  2835. cpu_to_le32(ei->i_disksize >> 32);
  2836. if (ei->i_disksize > 0x7fffffffULL) {
  2837. struct super_block *sb = inode->i_sb;
  2838. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2839. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2840. EXT3_SB(sb)->s_es->s_rev_level ==
  2841. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2842. /* If this is the first large file
  2843. * created, add a flag to the superblock.
  2844. */
  2845. unlock_buffer(bh);
  2846. err = ext3_journal_get_write_access(handle,
  2847. EXT3_SB(sb)->s_sbh);
  2848. if (err)
  2849. goto out_brelse;
  2850. ext3_update_dynamic_rev(sb);
  2851. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2852. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2853. handle->h_sync = 1;
  2854. err = ext3_journal_dirty_metadata(handle,
  2855. EXT3_SB(sb)->s_sbh);
  2856. /* get our lock and start over */
  2857. goto again;
  2858. }
  2859. }
  2860. }
  2861. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2862. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2863. if (old_valid_dev(inode->i_rdev)) {
  2864. raw_inode->i_block[0] =
  2865. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2866. raw_inode->i_block[1] = 0;
  2867. } else {
  2868. raw_inode->i_block[0] = 0;
  2869. raw_inode->i_block[1] =
  2870. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2871. raw_inode->i_block[2] = 0;
  2872. }
  2873. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2874. raw_inode->i_block[block] = ei->i_data[block];
  2875. if (ei->i_extra_isize)
  2876. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2877. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2878. unlock_buffer(bh);
  2879. rc = ext3_journal_dirty_metadata(handle, bh);
  2880. if (!err)
  2881. err = rc;
  2882. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2883. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2884. out_brelse:
  2885. brelse (bh);
  2886. ext3_std_error(inode->i_sb, err);
  2887. return err;
  2888. }
  2889. /*
  2890. * ext3_write_inode()
  2891. *
  2892. * We are called from a few places:
  2893. *
  2894. * - Within generic_file_write() for O_SYNC files.
  2895. * Here, there will be no transaction running. We wait for any running
  2896. * trasnaction to commit.
  2897. *
  2898. * - Within sys_sync(), kupdate and such.
  2899. * We wait on commit, if tol to.
  2900. *
  2901. * - Within prune_icache() (PF_MEMALLOC == true)
  2902. * Here we simply return. We can't afford to block kswapd on the
  2903. * journal commit.
  2904. *
  2905. * In all cases it is actually safe for us to return without doing anything,
  2906. * because the inode has been copied into a raw inode buffer in
  2907. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2908. * knfsd.
  2909. *
  2910. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2911. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2912. * which we are interested.
  2913. *
  2914. * It would be a bug for them to not do this. The code:
  2915. *
  2916. * mark_inode_dirty(inode)
  2917. * stuff();
  2918. * inode->i_size = expr;
  2919. *
  2920. * is in error because a kswapd-driven write_inode() could occur while
  2921. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2922. * will no longer be on the superblock's dirty inode list.
  2923. */
  2924. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2925. {
  2926. if (current->flags & PF_MEMALLOC)
  2927. return 0;
  2928. if (ext3_journal_current_handle()) {
  2929. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2930. dump_stack();
  2931. return -EIO;
  2932. }
  2933. if (wbc->sync_mode != WB_SYNC_ALL)
  2934. return 0;
  2935. return ext3_force_commit(inode->i_sb);
  2936. }
  2937. /*
  2938. * ext3_setattr()
  2939. *
  2940. * Called from notify_change.
  2941. *
  2942. * We want to trap VFS attempts to truncate the file as soon as
  2943. * possible. In particular, we want to make sure that when the VFS
  2944. * shrinks i_size, we put the inode on the orphan list and modify
  2945. * i_disksize immediately, so that during the subsequent flushing of
  2946. * dirty pages and freeing of disk blocks, we can guarantee that any
  2947. * commit will leave the blocks being flushed in an unused state on
  2948. * disk. (On recovery, the inode will get truncated and the blocks will
  2949. * be freed, so we have a strong guarantee that no future commit will
  2950. * leave these blocks visible to the user.)
  2951. *
  2952. * Called with inode->sem down.
  2953. */
  2954. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2955. {
  2956. struct inode *inode = dentry->d_inode;
  2957. int error, rc = 0;
  2958. const unsigned int ia_valid = attr->ia_valid;
  2959. error = inode_change_ok(inode, attr);
  2960. if (error)
  2961. return error;
  2962. if (is_quota_modification(inode, attr))
  2963. dquot_initialize(inode);
  2964. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2965. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2966. handle_t *handle;
  2967. /* (user+group)*(old+new) structure, inode write (sb,
  2968. * inode block, ? - but truncate inode update has it) */
  2969. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2970. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2971. if (IS_ERR(handle)) {
  2972. error = PTR_ERR(handle);
  2973. goto err_out;
  2974. }
  2975. error = dquot_transfer(inode, attr);
  2976. if (error) {
  2977. ext3_journal_stop(handle);
  2978. return error;
  2979. }
  2980. /* Update corresponding info in inode so that everything is in
  2981. * one transaction */
  2982. if (attr->ia_valid & ATTR_UID)
  2983. inode->i_uid = attr->ia_uid;
  2984. if (attr->ia_valid & ATTR_GID)
  2985. inode->i_gid = attr->ia_gid;
  2986. error = ext3_mark_inode_dirty(handle, inode);
  2987. ext3_journal_stop(handle);
  2988. }
  2989. if (attr->ia_valid & ATTR_SIZE)
  2990. inode_dio_wait(inode);
  2991. if (S_ISREG(inode->i_mode) &&
  2992. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2993. handle_t *handle;
  2994. handle = ext3_journal_start(inode, 3);
  2995. if (IS_ERR(handle)) {
  2996. error = PTR_ERR(handle);
  2997. goto err_out;
  2998. }
  2999. error = ext3_orphan_add(handle, inode);
  3000. if (error) {
  3001. ext3_journal_stop(handle);
  3002. goto err_out;
  3003. }
  3004. EXT3_I(inode)->i_disksize = attr->ia_size;
  3005. error = ext3_mark_inode_dirty(handle, inode);
  3006. ext3_journal_stop(handle);
  3007. if (error) {
  3008. /* Some hard fs error must have happened. Bail out. */
  3009. ext3_orphan_del(NULL, inode);
  3010. goto err_out;
  3011. }
  3012. rc = ext3_block_truncate_page(inode, attr->ia_size);
  3013. if (rc) {
  3014. /* Cleanup orphan list and exit */
  3015. handle = ext3_journal_start(inode, 3);
  3016. if (IS_ERR(handle)) {
  3017. ext3_orphan_del(NULL, inode);
  3018. goto err_out;
  3019. }
  3020. ext3_orphan_del(handle, inode);
  3021. ext3_journal_stop(handle);
  3022. goto err_out;
  3023. }
  3024. }
  3025. if ((attr->ia_valid & ATTR_SIZE) &&
  3026. attr->ia_size != i_size_read(inode)) {
  3027. truncate_setsize(inode, attr->ia_size);
  3028. ext3_truncate(inode);
  3029. }
  3030. setattr_copy(inode, attr);
  3031. mark_inode_dirty(inode);
  3032. if (ia_valid & ATTR_MODE)
  3033. rc = ext3_acl_chmod(inode);
  3034. err_out:
  3035. ext3_std_error(inode->i_sb, error);
  3036. if (!error)
  3037. error = rc;
  3038. return error;
  3039. }
  3040. /*
  3041. * How many blocks doth make a writepage()?
  3042. *
  3043. * With N blocks per page, it may be:
  3044. * N data blocks
  3045. * 2 indirect block
  3046. * 2 dindirect
  3047. * 1 tindirect
  3048. * N+5 bitmap blocks (from the above)
  3049. * N+5 group descriptor summary blocks
  3050. * 1 inode block
  3051. * 1 superblock.
  3052. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  3053. *
  3054. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  3055. *
  3056. * With ordered or writeback data it's the same, less the N data blocks.
  3057. *
  3058. * If the inode's direct blocks can hold an integral number of pages then a
  3059. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3060. * and dindirect block, and the "5" above becomes "3".
  3061. *
  3062. * This still overestimates under most circumstances. If we were to pass the
  3063. * start and end offsets in here as well we could do block_to_path() on each
  3064. * block and work out the exact number of indirects which are touched. Pah.
  3065. */
  3066. static int ext3_writepage_trans_blocks(struct inode *inode)
  3067. {
  3068. int bpp = ext3_journal_blocks_per_page(inode);
  3069. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3070. int ret;
  3071. if (ext3_should_journal_data(inode))
  3072. ret = 3 * (bpp + indirects) + 2;
  3073. else
  3074. ret = 2 * (bpp + indirects) + indirects + 2;
  3075. #ifdef CONFIG_QUOTA
  3076. /* We know that structure was already allocated during dquot_initialize so
  3077. * we will be updating only the data blocks + inodes */
  3078. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3079. #endif
  3080. return ret;
  3081. }
  3082. /*
  3083. * The caller must have previously called ext3_reserve_inode_write().
  3084. * Give this, we know that the caller already has write access to iloc->bh.
  3085. */
  3086. int ext3_mark_iloc_dirty(handle_t *handle,
  3087. struct inode *inode, struct ext3_iloc *iloc)
  3088. {
  3089. int err = 0;
  3090. /* the do_update_inode consumes one bh->b_count */
  3091. get_bh(iloc->bh);
  3092. /* ext3_do_update_inode() does journal_dirty_metadata */
  3093. err = ext3_do_update_inode(handle, inode, iloc);
  3094. put_bh(iloc->bh);
  3095. return err;
  3096. }
  3097. /*
  3098. * On success, We end up with an outstanding reference count against
  3099. * iloc->bh. This _must_ be cleaned up later.
  3100. */
  3101. int
  3102. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3103. struct ext3_iloc *iloc)
  3104. {
  3105. int err = 0;
  3106. if (handle) {
  3107. err = ext3_get_inode_loc(inode, iloc);
  3108. if (!err) {
  3109. BUFFER_TRACE(iloc->bh, "get_write_access");
  3110. err = ext3_journal_get_write_access(handle, iloc->bh);
  3111. if (err) {
  3112. brelse(iloc->bh);
  3113. iloc->bh = NULL;
  3114. }
  3115. }
  3116. }
  3117. ext3_std_error(inode->i_sb, err);
  3118. return err;
  3119. }
  3120. /*
  3121. * What we do here is to mark the in-core inode as clean with respect to inode
  3122. * dirtiness (it may still be data-dirty).
  3123. * This means that the in-core inode may be reaped by prune_icache
  3124. * without having to perform any I/O. This is a very good thing,
  3125. * because *any* task may call prune_icache - even ones which
  3126. * have a transaction open against a different journal.
  3127. *
  3128. * Is this cheating? Not really. Sure, we haven't written the
  3129. * inode out, but prune_icache isn't a user-visible syncing function.
  3130. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3131. * we start and wait on commits.
  3132. *
  3133. * Is this efficient/effective? Well, we're being nice to the system
  3134. * by cleaning up our inodes proactively so they can be reaped
  3135. * without I/O. But we are potentially leaving up to five seconds'
  3136. * worth of inodes floating about which prune_icache wants us to
  3137. * write out. One way to fix that would be to get prune_icache()
  3138. * to do a write_super() to free up some memory. It has the desired
  3139. * effect.
  3140. */
  3141. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3142. {
  3143. struct ext3_iloc iloc;
  3144. int err;
  3145. might_sleep();
  3146. trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  3147. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3148. if (!err)
  3149. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3150. return err;
  3151. }
  3152. /*
  3153. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3154. *
  3155. * We're really interested in the case where a file is being extended.
  3156. * i_size has been changed by generic_commit_write() and we thus need
  3157. * to include the updated inode in the current transaction.
  3158. *
  3159. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3160. * are allocated to the file.
  3161. *
  3162. * If the inode is marked synchronous, we don't honour that here - doing
  3163. * so would cause a commit on atime updates, which we don't bother doing.
  3164. * We handle synchronous inodes at the highest possible level.
  3165. */
  3166. void ext3_dirty_inode(struct inode *inode, int flags)
  3167. {
  3168. handle_t *current_handle = ext3_journal_current_handle();
  3169. handle_t *handle;
  3170. handle = ext3_journal_start(inode, 2);
  3171. if (IS_ERR(handle))
  3172. goto out;
  3173. if (current_handle &&
  3174. current_handle->h_transaction != handle->h_transaction) {
  3175. /* This task has a transaction open against a different fs */
  3176. printk(KERN_EMERG "%s: transactions do not match!\n",
  3177. __func__);
  3178. } else {
  3179. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3180. current_handle);
  3181. ext3_mark_inode_dirty(handle, inode);
  3182. }
  3183. ext3_journal_stop(handle);
  3184. out:
  3185. return;
  3186. }
  3187. #if 0
  3188. /*
  3189. * Bind an inode's backing buffer_head into this transaction, to prevent
  3190. * it from being flushed to disk early. Unlike
  3191. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3192. * returns no iloc structure, so the caller needs to repeat the iloc
  3193. * lookup to mark the inode dirty later.
  3194. */
  3195. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3196. {
  3197. struct ext3_iloc iloc;
  3198. int err = 0;
  3199. if (handle) {
  3200. err = ext3_get_inode_loc(inode, &iloc);
  3201. if (!err) {
  3202. BUFFER_TRACE(iloc.bh, "get_write_access");
  3203. err = journal_get_write_access(handle, iloc.bh);
  3204. if (!err)
  3205. err = ext3_journal_dirty_metadata(handle,
  3206. iloc.bh);
  3207. brelse(iloc.bh);
  3208. }
  3209. }
  3210. ext3_std_error(inode->i_sb, err);
  3211. return err;
  3212. }
  3213. #endif
  3214. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3215. {
  3216. journal_t *journal;
  3217. handle_t *handle;
  3218. int err;
  3219. /*
  3220. * We have to be very careful here: changing a data block's
  3221. * journaling status dynamically is dangerous. If we write a
  3222. * data block to the journal, change the status and then delete
  3223. * that block, we risk forgetting to revoke the old log record
  3224. * from the journal and so a subsequent replay can corrupt data.
  3225. * So, first we make sure that the journal is empty and that
  3226. * nobody is changing anything.
  3227. */
  3228. journal = EXT3_JOURNAL(inode);
  3229. if (is_journal_aborted(journal))
  3230. return -EROFS;
  3231. journal_lock_updates(journal);
  3232. journal_flush(journal);
  3233. /*
  3234. * OK, there are no updates running now, and all cached data is
  3235. * synced to disk. We are now in a completely consistent state
  3236. * which doesn't have anything in the journal, and we know that
  3237. * no filesystem updates are running, so it is safe to modify
  3238. * the inode's in-core data-journaling state flag now.
  3239. */
  3240. if (val)
  3241. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3242. else
  3243. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3244. ext3_set_aops(inode);
  3245. journal_unlock_updates(journal);
  3246. /* Finally we can mark the inode as dirty. */
  3247. handle = ext3_journal_start(inode, 1);
  3248. if (IS_ERR(handle))
  3249. return PTR_ERR(handle);
  3250. err = ext3_mark_inode_dirty(handle, inode);
  3251. handle->h_sync = 1;
  3252. ext3_journal_stop(handle);
  3253. ext3_std_error(inode->i_sb, err);
  3254. return err;
  3255. }