mmu.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
  359. }
  360. static bool spte_has_volatile_bits(u64 spte)
  361. {
  362. /*
  363. * Always atomicly update spte if it can be updated
  364. * out of mmu-lock, it can ensure dirty bit is not lost,
  365. * also, it can help us to get a stable is_writable_pte()
  366. * to ensure tlb flush is not missed.
  367. */
  368. if (spte_is_locklessly_modifiable(spte))
  369. return true;
  370. if (!shadow_accessed_mask)
  371. return false;
  372. if (!is_shadow_present_pte(spte))
  373. return false;
  374. if ((spte & shadow_accessed_mask) &&
  375. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  376. return false;
  377. return true;
  378. }
  379. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  380. {
  381. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  382. }
  383. /* Rules for using mmu_spte_set:
  384. * Set the sptep from nonpresent to present.
  385. * Note: the sptep being assigned *must* be either not present
  386. * or in a state where the hardware will not attempt to update
  387. * the spte.
  388. */
  389. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  390. {
  391. WARN_ON(is_shadow_present_pte(*sptep));
  392. __set_spte(sptep, new_spte);
  393. }
  394. /* Rules for using mmu_spte_update:
  395. * Update the state bits, it means the mapped pfn is not changged.
  396. *
  397. * Whenever we overwrite a writable spte with a read-only one we
  398. * should flush remote TLBs. Otherwise rmap_write_protect
  399. * will find a read-only spte, even though the writable spte
  400. * might be cached on a CPU's TLB, the return value indicates this
  401. * case.
  402. */
  403. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  404. {
  405. u64 old_spte = *sptep;
  406. bool ret = false;
  407. WARN_ON(!is_rmap_spte(new_spte));
  408. if (!is_shadow_present_pte(old_spte)) {
  409. mmu_spte_set(sptep, new_spte);
  410. return ret;
  411. }
  412. if (!spte_has_volatile_bits(old_spte))
  413. __update_clear_spte_fast(sptep, new_spte);
  414. else
  415. old_spte = __update_clear_spte_slow(sptep, new_spte);
  416. /*
  417. * For the spte updated out of mmu-lock is safe, since
  418. * we always atomicly update it, see the comments in
  419. * spte_has_volatile_bits().
  420. */
  421. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  422. ret = true;
  423. if (!shadow_accessed_mask)
  424. return ret;
  425. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  426. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  427. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  428. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  429. return ret;
  430. }
  431. /*
  432. * Rules for using mmu_spte_clear_track_bits:
  433. * It sets the sptep from present to nonpresent, and track the
  434. * state bits, it is used to clear the last level sptep.
  435. */
  436. static int mmu_spte_clear_track_bits(u64 *sptep)
  437. {
  438. pfn_t pfn;
  439. u64 old_spte = *sptep;
  440. if (!spte_has_volatile_bits(old_spte))
  441. __update_clear_spte_fast(sptep, 0ull);
  442. else
  443. old_spte = __update_clear_spte_slow(sptep, 0ull);
  444. if (!is_rmap_spte(old_spte))
  445. return 0;
  446. pfn = spte_to_pfn(old_spte);
  447. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  448. kvm_set_pfn_accessed(pfn);
  449. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  450. kvm_set_pfn_dirty(pfn);
  451. return 1;
  452. }
  453. /*
  454. * Rules for using mmu_spte_clear_no_track:
  455. * Directly clear spte without caring the state bits of sptep,
  456. * it is used to set the upper level spte.
  457. */
  458. static void mmu_spte_clear_no_track(u64 *sptep)
  459. {
  460. __update_clear_spte_fast(sptep, 0ull);
  461. }
  462. static u64 mmu_spte_get_lockless(u64 *sptep)
  463. {
  464. return __get_spte_lockless(sptep);
  465. }
  466. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  467. {
  468. /*
  469. * Prevent page table teardown by making any free-er wait during
  470. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  471. */
  472. local_irq_disable();
  473. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  474. /*
  475. * Make sure a following spte read is not reordered ahead of the write
  476. * to vcpu->mode.
  477. */
  478. smp_mb();
  479. }
  480. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  481. {
  482. /*
  483. * Make sure the write to vcpu->mode is not reordered in front of
  484. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  485. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  486. */
  487. smp_mb();
  488. vcpu->mode = OUTSIDE_GUEST_MODE;
  489. local_irq_enable();
  490. }
  491. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  492. struct kmem_cache *base_cache, int min)
  493. {
  494. void *obj;
  495. if (cache->nobjs >= min)
  496. return 0;
  497. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  498. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  499. if (!obj)
  500. return -ENOMEM;
  501. cache->objects[cache->nobjs++] = obj;
  502. }
  503. return 0;
  504. }
  505. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  506. {
  507. return cache->nobjs;
  508. }
  509. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  510. struct kmem_cache *cache)
  511. {
  512. while (mc->nobjs)
  513. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  514. }
  515. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  516. int min)
  517. {
  518. void *page;
  519. if (cache->nobjs >= min)
  520. return 0;
  521. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  522. page = (void *)__get_free_page(GFP_KERNEL);
  523. if (!page)
  524. return -ENOMEM;
  525. cache->objects[cache->nobjs++] = page;
  526. }
  527. return 0;
  528. }
  529. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  530. {
  531. while (mc->nobjs)
  532. free_page((unsigned long)mc->objects[--mc->nobjs]);
  533. }
  534. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  535. {
  536. int r;
  537. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  538. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  539. if (r)
  540. goto out;
  541. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  542. if (r)
  543. goto out;
  544. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  545. mmu_page_header_cache, 4);
  546. out:
  547. return r;
  548. }
  549. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  550. {
  551. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  552. pte_list_desc_cache);
  553. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  554. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  555. mmu_page_header_cache);
  556. }
  557. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  558. {
  559. void *p;
  560. BUG_ON(!mc->nobjs);
  561. p = mc->objects[--mc->nobjs];
  562. return p;
  563. }
  564. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  565. {
  566. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  567. }
  568. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  569. {
  570. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  571. }
  572. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  573. {
  574. if (!sp->role.direct)
  575. return sp->gfns[index];
  576. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  577. }
  578. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  579. {
  580. if (sp->role.direct)
  581. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  582. else
  583. sp->gfns[index] = gfn;
  584. }
  585. /*
  586. * Return the pointer to the large page information for a given gfn,
  587. * handling slots that are not large page aligned.
  588. */
  589. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  590. struct kvm_memory_slot *slot,
  591. int level)
  592. {
  593. unsigned long idx;
  594. idx = gfn_to_index(gfn, slot->base_gfn, level);
  595. return &slot->arch.lpage_info[level - 2][idx];
  596. }
  597. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  598. {
  599. struct kvm_memory_slot *slot;
  600. struct kvm_lpage_info *linfo;
  601. int i;
  602. slot = gfn_to_memslot(kvm, gfn);
  603. for (i = PT_DIRECTORY_LEVEL;
  604. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  605. linfo = lpage_info_slot(gfn, slot, i);
  606. linfo->write_count += 1;
  607. }
  608. kvm->arch.indirect_shadow_pages++;
  609. }
  610. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  611. {
  612. struct kvm_memory_slot *slot;
  613. struct kvm_lpage_info *linfo;
  614. int i;
  615. slot = gfn_to_memslot(kvm, gfn);
  616. for (i = PT_DIRECTORY_LEVEL;
  617. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  618. linfo = lpage_info_slot(gfn, slot, i);
  619. linfo->write_count -= 1;
  620. WARN_ON(linfo->write_count < 0);
  621. }
  622. kvm->arch.indirect_shadow_pages--;
  623. }
  624. static int has_wrprotected_page(struct kvm *kvm,
  625. gfn_t gfn,
  626. int level)
  627. {
  628. struct kvm_memory_slot *slot;
  629. struct kvm_lpage_info *linfo;
  630. slot = gfn_to_memslot(kvm, gfn);
  631. if (slot) {
  632. linfo = lpage_info_slot(gfn, slot, level);
  633. return linfo->write_count;
  634. }
  635. return 1;
  636. }
  637. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  638. {
  639. unsigned long page_size;
  640. int i, ret = 0;
  641. page_size = kvm_host_page_size(kvm, gfn);
  642. for (i = PT_PAGE_TABLE_LEVEL;
  643. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  644. if (page_size >= KVM_HPAGE_SIZE(i))
  645. ret = i;
  646. else
  647. break;
  648. }
  649. return ret;
  650. }
  651. static struct kvm_memory_slot *
  652. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  653. bool no_dirty_log)
  654. {
  655. struct kvm_memory_slot *slot;
  656. slot = gfn_to_memslot(vcpu->kvm, gfn);
  657. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  658. (no_dirty_log && slot->dirty_bitmap))
  659. slot = NULL;
  660. return slot;
  661. }
  662. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  663. {
  664. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  665. }
  666. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  667. {
  668. int host_level, level, max_level;
  669. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  670. if (host_level == PT_PAGE_TABLE_LEVEL)
  671. return host_level;
  672. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  673. kvm_x86_ops->get_lpage_level() : host_level;
  674. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  675. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  676. break;
  677. return level - 1;
  678. }
  679. /*
  680. * Pte mapping structures:
  681. *
  682. * If pte_list bit zero is zero, then pte_list point to the spte.
  683. *
  684. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  685. * pte_list_desc containing more mappings.
  686. *
  687. * Returns the number of pte entries before the spte was added or zero if
  688. * the spte was not added.
  689. *
  690. */
  691. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  692. unsigned long *pte_list)
  693. {
  694. struct pte_list_desc *desc;
  695. int i, count = 0;
  696. if (!*pte_list) {
  697. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  698. *pte_list = (unsigned long)spte;
  699. } else if (!(*pte_list & 1)) {
  700. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  701. desc = mmu_alloc_pte_list_desc(vcpu);
  702. desc->sptes[0] = (u64 *)*pte_list;
  703. desc->sptes[1] = spte;
  704. *pte_list = (unsigned long)desc | 1;
  705. ++count;
  706. } else {
  707. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  708. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  709. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  710. desc = desc->more;
  711. count += PTE_LIST_EXT;
  712. }
  713. if (desc->sptes[PTE_LIST_EXT-1]) {
  714. desc->more = mmu_alloc_pte_list_desc(vcpu);
  715. desc = desc->more;
  716. }
  717. for (i = 0; desc->sptes[i]; ++i)
  718. ++count;
  719. desc->sptes[i] = spte;
  720. }
  721. return count;
  722. }
  723. static void
  724. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  725. int i, struct pte_list_desc *prev_desc)
  726. {
  727. int j;
  728. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  729. ;
  730. desc->sptes[i] = desc->sptes[j];
  731. desc->sptes[j] = NULL;
  732. if (j != 0)
  733. return;
  734. if (!prev_desc && !desc->more)
  735. *pte_list = (unsigned long)desc->sptes[0];
  736. else
  737. if (prev_desc)
  738. prev_desc->more = desc->more;
  739. else
  740. *pte_list = (unsigned long)desc->more | 1;
  741. mmu_free_pte_list_desc(desc);
  742. }
  743. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  744. {
  745. struct pte_list_desc *desc;
  746. struct pte_list_desc *prev_desc;
  747. int i;
  748. if (!*pte_list) {
  749. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  750. BUG();
  751. } else if (!(*pte_list & 1)) {
  752. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  753. if ((u64 *)*pte_list != spte) {
  754. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  755. BUG();
  756. }
  757. *pte_list = 0;
  758. } else {
  759. rmap_printk("pte_list_remove: %p many->many\n", spte);
  760. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  761. prev_desc = NULL;
  762. while (desc) {
  763. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  764. if (desc->sptes[i] == spte) {
  765. pte_list_desc_remove_entry(pte_list,
  766. desc, i,
  767. prev_desc);
  768. return;
  769. }
  770. prev_desc = desc;
  771. desc = desc->more;
  772. }
  773. pr_err("pte_list_remove: %p many->many\n", spte);
  774. BUG();
  775. }
  776. }
  777. typedef void (*pte_list_walk_fn) (u64 *spte);
  778. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  779. {
  780. struct pte_list_desc *desc;
  781. int i;
  782. if (!*pte_list)
  783. return;
  784. if (!(*pte_list & 1))
  785. return fn((u64 *)*pte_list);
  786. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  787. while (desc) {
  788. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  789. fn(desc->sptes[i]);
  790. desc = desc->more;
  791. }
  792. }
  793. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  794. struct kvm_memory_slot *slot)
  795. {
  796. unsigned long idx;
  797. if (likely(level == PT_PAGE_TABLE_LEVEL))
  798. return &slot->rmap[gfn - slot->base_gfn];
  799. idx = gfn_to_index(gfn, slot->base_gfn, level);
  800. return &slot->arch.rmap_pde[level - PT_DIRECTORY_LEVEL][idx];
  801. }
  802. /*
  803. * Take gfn and return the reverse mapping to it.
  804. */
  805. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  806. {
  807. struct kvm_memory_slot *slot;
  808. slot = gfn_to_memslot(kvm, gfn);
  809. return __gfn_to_rmap(gfn, level, slot);
  810. }
  811. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  812. {
  813. struct kvm_mmu_memory_cache *cache;
  814. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  815. return mmu_memory_cache_free_objects(cache);
  816. }
  817. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  818. {
  819. struct kvm_mmu_page *sp;
  820. unsigned long *rmapp;
  821. sp = page_header(__pa(spte));
  822. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  823. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  824. return pte_list_add(vcpu, spte, rmapp);
  825. }
  826. static void rmap_remove(struct kvm *kvm, u64 *spte)
  827. {
  828. struct kvm_mmu_page *sp;
  829. gfn_t gfn;
  830. unsigned long *rmapp;
  831. sp = page_header(__pa(spte));
  832. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  833. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  834. pte_list_remove(spte, rmapp);
  835. }
  836. /*
  837. * Used by the following functions to iterate through the sptes linked by a
  838. * rmap. All fields are private and not assumed to be used outside.
  839. */
  840. struct rmap_iterator {
  841. /* private fields */
  842. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  843. int pos; /* index of the sptep */
  844. };
  845. /*
  846. * Iteration must be started by this function. This should also be used after
  847. * removing/dropping sptes from the rmap link because in such cases the
  848. * information in the itererator may not be valid.
  849. *
  850. * Returns sptep if found, NULL otherwise.
  851. */
  852. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  853. {
  854. if (!rmap)
  855. return NULL;
  856. if (!(rmap & 1)) {
  857. iter->desc = NULL;
  858. return (u64 *)rmap;
  859. }
  860. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  861. iter->pos = 0;
  862. return iter->desc->sptes[iter->pos];
  863. }
  864. /*
  865. * Must be used with a valid iterator: e.g. after rmap_get_first().
  866. *
  867. * Returns sptep if found, NULL otherwise.
  868. */
  869. static u64 *rmap_get_next(struct rmap_iterator *iter)
  870. {
  871. if (iter->desc) {
  872. if (iter->pos < PTE_LIST_EXT - 1) {
  873. u64 *sptep;
  874. ++iter->pos;
  875. sptep = iter->desc->sptes[iter->pos];
  876. if (sptep)
  877. return sptep;
  878. }
  879. iter->desc = iter->desc->more;
  880. if (iter->desc) {
  881. iter->pos = 0;
  882. /* desc->sptes[0] cannot be NULL */
  883. return iter->desc->sptes[iter->pos];
  884. }
  885. }
  886. return NULL;
  887. }
  888. static void drop_spte(struct kvm *kvm, u64 *sptep)
  889. {
  890. if (mmu_spte_clear_track_bits(sptep))
  891. rmap_remove(kvm, sptep);
  892. }
  893. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  894. {
  895. if (is_large_pte(*sptep)) {
  896. WARN_ON(page_header(__pa(sptep))->role.level ==
  897. PT_PAGE_TABLE_LEVEL);
  898. drop_spte(kvm, sptep);
  899. --kvm->stat.lpages;
  900. return true;
  901. }
  902. return false;
  903. }
  904. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  905. {
  906. if (__drop_large_spte(vcpu->kvm, sptep))
  907. kvm_flush_remote_tlbs(vcpu->kvm);
  908. }
  909. /*
  910. * Write-protect on the specified @sptep, @pt_protect indicates whether
  911. * spte writ-protection is caused by protecting shadow page table.
  912. * @flush indicates whether tlb need be flushed.
  913. *
  914. * Note: write protection is difference between drity logging and spte
  915. * protection:
  916. * - for dirty logging, the spte can be set to writable at anytime if
  917. * its dirty bitmap is properly set.
  918. * - for spte protection, the spte can be writable only after unsync-ing
  919. * shadow page.
  920. *
  921. * Return true if the spte is dropped.
  922. */
  923. static bool
  924. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  925. {
  926. u64 spte = *sptep;
  927. if (!is_writable_pte(spte) &&
  928. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  929. return false;
  930. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  931. if (__drop_large_spte(kvm, sptep)) {
  932. *flush |= true;
  933. return true;
  934. }
  935. if (pt_protect)
  936. spte &= ~SPTE_MMU_WRITEABLE;
  937. spte = spte & ~PT_WRITABLE_MASK;
  938. *flush |= mmu_spte_update(sptep, spte);
  939. return false;
  940. }
  941. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  942. int level, bool pt_protect)
  943. {
  944. u64 *sptep;
  945. struct rmap_iterator iter;
  946. bool flush = false;
  947. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  948. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  949. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  950. sptep = rmap_get_first(*rmapp, &iter);
  951. continue;
  952. }
  953. sptep = rmap_get_next(&iter);
  954. }
  955. return flush;
  956. }
  957. /**
  958. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  959. * @kvm: kvm instance
  960. * @slot: slot to protect
  961. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  962. * @mask: indicates which pages we should protect
  963. *
  964. * Used when we do not need to care about huge page mappings: e.g. during dirty
  965. * logging we do not have any such mappings.
  966. */
  967. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  968. struct kvm_memory_slot *slot,
  969. gfn_t gfn_offset, unsigned long mask)
  970. {
  971. unsigned long *rmapp;
  972. while (mask) {
  973. rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
  974. __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
  975. /* clear the first set bit */
  976. mask &= mask - 1;
  977. }
  978. }
  979. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  980. {
  981. struct kvm_memory_slot *slot;
  982. unsigned long *rmapp;
  983. int i;
  984. bool write_protected = false;
  985. slot = gfn_to_memslot(kvm, gfn);
  986. for (i = PT_PAGE_TABLE_LEVEL;
  987. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  988. rmapp = __gfn_to_rmap(gfn, i, slot);
  989. write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
  990. }
  991. return write_protected;
  992. }
  993. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  994. struct kvm_memory_slot *slot, unsigned long data)
  995. {
  996. u64 *sptep;
  997. struct rmap_iterator iter;
  998. int need_tlb_flush = 0;
  999. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1000. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1001. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1002. drop_spte(kvm, sptep);
  1003. need_tlb_flush = 1;
  1004. }
  1005. return need_tlb_flush;
  1006. }
  1007. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1008. struct kvm_memory_slot *slot, unsigned long data)
  1009. {
  1010. u64 *sptep;
  1011. struct rmap_iterator iter;
  1012. int need_flush = 0;
  1013. u64 new_spte;
  1014. pte_t *ptep = (pte_t *)data;
  1015. pfn_t new_pfn;
  1016. WARN_ON(pte_huge(*ptep));
  1017. new_pfn = pte_pfn(*ptep);
  1018. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1019. BUG_ON(!is_shadow_present_pte(*sptep));
  1020. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1021. need_flush = 1;
  1022. if (pte_write(*ptep)) {
  1023. drop_spte(kvm, sptep);
  1024. sptep = rmap_get_first(*rmapp, &iter);
  1025. } else {
  1026. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1027. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1028. new_spte &= ~PT_WRITABLE_MASK;
  1029. new_spte &= ~SPTE_HOST_WRITEABLE;
  1030. new_spte &= ~shadow_accessed_mask;
  1031. mmu_spte_clear_track_bits(sptep);
  1032. mmu_spte_set(sptep, new_spte);
  1033. sptep = rmap_get_next(&iter);
  1034. }
  1035. }
  1036. if (need_flush)
  1037. kvm_flush_remote_tlbs(kvm);
  1038. return 0;
  1039. }
  1040. static int kvm_handle_hva_range(struct kvm *kvm,
  1041. unsigned long start,
  1042. unsigned long end,
  1043. unsigned long data,
  1044. int (*handler)(struct kvm *kvm,
  1045. unsigned long *rmapp,
  1046. struct kvm_memory_slot *slot,
  1047. unsigned long data))
  1048. {
  1049. int j;
  1050. int ret = 0;
  1051. struct kvm_memslots *slots;
  1052. struct kvm_memory_slot *memslot;
  1053. slots = kvm_memslots(kvm);
  1054. kvm_for_each_memslot(memslot, slots) {
  1055. unsigned long hva_start, hva_end;
  1056. gfn_t gfn_start, gfn_end;
  1057. hva_start = max(start, memslot->userspace_addr);
  1058. hva_end = min(end, memslot->userspace_addr +
  1059. (memslot->npages << PAGE_SHIFT));
  1060. if (hva_start >= hva_end)
  1061. continue;
  1062. /*
  1063. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1064. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1065. */
  1066. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1067. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1068. for (j = PT_PAGE_TABLE_LEVEL;
  1069. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1070. unsigned long idx, idx_end;
  1071. unsigned long *rmapp;
  1072. /*
  1073. * {idx(page_j) | page_j intersects with
  1074. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1075. */
  1076. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1077. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1078. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1079. for (; idx <= idx_end; ++idx)
  1080. ret |= handler(kvm, rmapp++, memslot, data);
  1081. }
  1082. }
  1083. return ret;
  1084. }
  1085. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1086. unsigned long data,
  1087. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1088. struct kvm_memory_slot *slot,
  1089. unsigned long data))
  1090. {
  1091. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1092. }
  1093. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1094. {
  1095. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1096. }
  1097. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1098. {
  1099. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1100. }
  1101. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1102. {
  1103. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1104. }
  1105. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1106. struct kvm_memory_slot *slot, unsigned long data)
  1107. {
  1108. u64 *sptep;
  1109. struct rmap_iterator uninitialized_var(iter);
  1110. int young = 0;
  1111. /*
  1112. * In case of absence of EPT Access and Dirty Bits supports,
  1113. * emulate the accessed bit for EPT, by checking if this page has
  1114. * an EPT mapping, and clearing it if it does. On the next access,
  1115. * a new EPT mapping will be established.
  1116. * This has some overhead, but not as much as the cost of swapping
  1117. * out actively used pages or breaking up actively used hugepages.
  1118. */
  1119. if (!shadow_accessed_mask) {
  1120. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1121. goto out;
  1122. }
  1123. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1124. sptep = rmap_get_next(&iter)) {
  1125. BUG_ON(!is_shadow_present_pte(*sptep));
  1126. if (*sptep & shadow_accessed_mask) {
  1127. young = 1;
  1128. clear_bit((ffs(shadow_accessed_mask) - 1),
  1129. (unsigned long *)sptep);
  1130. }
  1131. }
  1132. out:
  1133. /* @data has hva passed to kvm_age_hva(). */
  1134. trace_kvm_age_page(data, slot, young);
  1135. return young;
  1136. }
  1137. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1138. struct kvm_memory_slot *slot, unsigned long data)
  1139. {
  1140. u64 *sptep;
  1141. struct rmap_iterator iter;
  1142. int young = 0;
  1143. /*
  1144. * If there's no access bit in the secondary pte set by the
  1145. * hardware it's up to gup-fast/gup to set the access bit in
  1146. * the primary pte or in the page structure.
  1147. */
  1148. if (!shadow_accessed_mask)
  1149. goto out;
  1150. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1151. sptep = rmap_get_next(&iter)) {
  1152. BUG_ON(!is_shadow_present_pte(*sptep));
  1153. if (*sptep & shadow_accessed_mask) {
  1154. young = 1;
  1155. break;
  1156. }
  1157. }
  1158. out:
  1159. return young;
  1160. }
  1161. #define RMAP_RECYCLE_THRESHOLD 1000
  1162. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1163. {
  1164. unsigned long *rmapp;
  1165. struct kvm_mmu_page *sp;
  1166. sp = page_header(__pa(spte));
  1167. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1168. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1169. kvm_flush_remote_tlbs(vcpu->kvm);
  1170. }
  1171. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1172. {
  1173. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1174. }
  1175. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1176. {
  1177. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1178. }
  1179. #ifdef MMU_DEBUG
  1180. static int is_empty_shadow_page(u64 *spt)
  1181. {
  1182. u64 *pos;
  1183. u64 *end;
  1184. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1185. if (is_shadow_present_pte(*pos)) {
  1186. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1187. pos, *pos);
  1188. return 0;
  1189. }
  1190. return 1;
  1191. }
  1192. #endif
  1193. /*
  1194. * This value is the sum of all of the kvm instances's
  1195. * kvm->arch.n_used_mmu_pages values. We need a global,
  1196. * aggregate version in order to make the slab shrinker
  1197. * faster
  1198. */
  1199. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1200. {
  1201. kvm->arch.n_used_mmu_pages += nr;
  1202. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1203. }
  1204. /*
  1205. * Remove the sp from shadow page cache, after call it,
  1206. * we can not find this sp from the cache, and the shadow
  1207. * page table is still valid.
  1208. * It should be under the protection of mmu lock.
  1209. */
  1210. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1211. {
  1212. ASSERT(is_empty_shadow_page(sp->spt));
  1213. hlist_del(&sp->hash_link);
  1214. if (!sp->role.direct)
  1215. free_page((unsigned long)sp->gfns);
  1216. }
  1217. /*
  1218. * Free the shadow page table and the sp, we can do it
  1219. * out of the protection of mmu lock.
  1220. */
  1221. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1222. {
  1223. list_del(&sp->link);
  1224. free_page((unsigned long)sp->spt);
  1225. kmem_cache_free(mmu_page_header_cache, sp);
  1226. }
  1227. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1228. {
  1229. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1230. }
  1231. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1232. struct kvm_mmu_page *sp, u64 *parent_pte)
  1233. {
  1234. if (!parent_pte)
  1235. return;
  1236. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1237. }
  1238. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1239. u64 *parent_pte)
  1240. {
  1241. pte_list_remove(parent_pte, &sp->parent_ptes);
  1242. }
  1243. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1244. u64 *parent_pte)
  1245. {
  1246. mmu_page_remove_parent_pte(sp, parent_pte);
  1247. mmu_spte_clear_no_track(parent_pte);
  1248. }
  1249. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1250. u64 *parent_pte, int direct)
  1251. {
  1252. struct kvm_mmu_page *sp;
  1253. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1254. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1255. if (!direct)
  1256. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1257. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1258. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1259. bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
  1260. sp->parent_ptes = 0;
  1261. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1262. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1263. return sp;
  1264. }
  1265. static void mark_unsync(u64 *spte);
  1266. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1267. {
  1268. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1269. }
  1270. static void mark_unsync(u64 *spte)
  1271. {
  1272. struct kvm_mmu_page *sp;
  1273. unsigned int index;
  1274. sp = page_header(__pa(spte));
  1275. index = spte - sp->spt;
  1276. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1277. return;
  1278. if (sp->unsync_children++)
  1279. return;
  1280. kvm_mmu_mark_parents_unsync(sp);
  1281. }
  1282. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1283. struct kvm_mmu_page *sp)
  1284. {
  1285. return 1;
  1286. }
  1287. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1288. {
  1289. }
  1290. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1291. struct kvm_mmu_page *sp, u64 *spte,
  1292. const void *pte)
  1293. {
  1294. WARN_ON(1);
  1295. }
  1296. #define KVM_PAGE_ARRAY_NR 16
  1297. struct kvm_mmu_pages {
  1298. struct mmu_page_and_offset {
  1299. struct kvm_mmu_page *sp;
  1300. unsigned int idx;
  1301. } page[KVM_PAGE_ARRAY_NR];
  1302. unsigned int nr;
  1303. };
  1304. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1305. int idx)
  1306. {
  1307. int i;
  1308. if (sp->unsync)
  1309. for (i=0; i < pvec->nr; i++)
  1310. if (pvec->page[i].sp == sp)
  1311. return 0;
  1312. pvec->page[pvec->nr].sp = sp;
  1313. pvec->page[pvec->nr].idx = idx;
  1314. pvec->nr++;
  1315. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1316. }
  1317. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1318. struct kvm_mmu_pages *pvec)
  1319. {
  1320. int i, ret, nr_unsync_leaf = 0;
  1321. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1322. struct kvm_mmu_page *child;
  1323. u64 ent = sp->spt[i];
  1324. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1325. goto clear_child_bitmap;
  1326. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1327. if (child->unsync_children) {
  1328. if (mmu_pages_add(pvec, child, i))
  1329. return -ENOSPC;
  1330. ret = __mmu_unsync_walk(child, pvec);
  1331. if (!ret)
  1332. goto clear_child_bitmap;
  1333. else if (ret > 0)
  1334. nr_unsync_leaf += ret;
  1335. else
  1336. return ret;
  1337. } else if (child->unsync) {
  1338. nr_unsync_leaf++;
  1339. if (mmu_pages_add(pvec, child, i))
  1340. return -ENOSPC;
  1341. } else
  1342. goto clear_child_bitmap;
  1343. continue;
  1344. clear_child_bitmap:
  1345. __clear_bit(i, sp->unsync_child_bitmap);
  1346. sp->unsync_children--;
  1347. WARN_ON((int)sp->unsync_children < 0);
  1348. }
  1349. return nr_unsync_leaf;
  1350. }
  1351. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1352. struct kvm_mmu_pages *pvec)
  1353. {
  1354. if (!sp->unsync_children)
  1355. return 0;
  1356. mmu_pages_add(pvec, sp, 0);
  1357. return __mmu_unsync_walk(sp, pvec);
  1358. }
  1359. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1360. {
  1361. WARN_ON(!sp->unsync);
  1362. trace_kvm_mmu_sync_page(sp);
  1363. sp->unsync = 0;
  1364. --kvm->stat.mmu_unsync;
  1365. }
  1366. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1367. struct list_head *invalid_list);
  1368. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1369. struct list_head *invalid_list);
  1370. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1371. hlist_for_each_entry(sp, pos, \
  1372. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1373. if ((sp)->gfn != (gfn)) {} else
  1374. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1375. hlist_for_each_entry(sp, pos, \
  1376. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1377. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1378. (sp)->role.invalid) {} else
  1379. /* @sp->gfn should be write-protected at the call site */
  1380. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1381. struct list_head *invalid_list, bool clear_unsync)
  1382. {
  1383. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1384. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1385. return 1;
  1386. }
  1387. if (clear_unsync)
  1388. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1389. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1390. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1391. return 1;
  1392. }
  1393. kvm_mmu_flush_tlb(vcpu);
  1394. return 0;
  1395. }
  1396. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1397. struct kvm_mmu_page *sp)
  1398. {
  1399. LIST_HEAD(invalid_list);
  1400. int ret;
  1401. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1402. if (ret)
  1403. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1404. return ret;
  1405. }
  1406. #ifdef CONFIG_KVM_MMU_AUDIT
  1407. #include "mmu_audit.c"
  1408. #else
  1409. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1410. static void mmu_audit_disable(void) { }
  1411. #endif
  1412. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1413. struct list_head *invalid_list)
  1414. {
  1415. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1416. }
  1417. /* @gfn should be write-protected at the call site */
  1418. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1419. {
  1420. struct kvm_mmu_page *s;
  1421. struct hlist_node *node;
  1422. LIST_HEAD(invalid_list);
  1423. bool flush = false;
  1424. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1425. if (!s->unsync)
  1426. continue;
  1427. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1428. kvm_unlink_unsync_page(vcpu->kvm, s);
  1429. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1430. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1431. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1432. continue;
  1433. }
  1434. flush = true;
  1435. }
  1436. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1437. if (flush)
  1438. kvm_mmu_flush_tlb(vcpu);
  1439. }
  1440. struct mmu_page_path {
  1441. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1442. unsigned int idx[PT64_ROOT_LEVEL-1];
  1443. };
  1444. #define for_each_sp(pvec, sp, parents, i) \
  1445. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1446. sp = pvec.page[i].sp; \
  1447. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1448. i = mmu_pages_next(&pvec, &parents, i))
  1449. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1450. struct mmu_page_path *parents,
  1451. int i)
  1452. {
  1453. int n;
  1454. for (n = i+1; n < pvec->nr; n++) {
  1455. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1456. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1457. parents->idx[0] = pvec->page[n].idx;
  1458. return n;
  1459. }
  1460. parents->parent[sp->role.level-2] = sp;
  1461. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1462. }
  1463. return n;
  1464. }
  1465. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1466. {
  1467. struct kvm_mmu_page *sp;
  1468. unsigned int level = 0;
  1469. do {
  1470. unsigned int idx = parents->idx[level];
  1471. sp = parents->parent[level];
  1472. if (!sp)
  1473. return;
  1474. --sp->unsync_children;
  1475. WARN_ON((int)sp->unsync_children < 0);
  1476. __clear_bit(idx, sp->unsync_child_bitmap);
  1477. level++;
  1478. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1479. }
  1480. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1481. struct mmu_page_path *parents,
  1482. struct kvm_mmu_pages *pvec)
  1483. {
  1484. parents->parent[parent->role.level-1] = NULL;
  1485. pvec->nr = 0;
  1486. }
  1487. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1488. struct kvm_mmu_page *parent)
  1489. {
  1490. int i;
  1491. struct kvm_mmu_page *sp;
  1492. struct mmu_page_path parents;
  1493. struct kvm_mmu_pages pages;
  1494. LIST_HEAD(invalid_list);
  1495. kvm_mmu_pages_init(parent, &parents, &pages);
  1496. while (mmu_unsync_walk(parent, &pages)) {
  1497. bool protected = false;
  1498. for_each_sp(pages, sp, parents, i)
  1499. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1500. if (protected)
  1501. kvm_flush_remote_tlbs(vcpu->kvm);
  1502. for_each_sp(pages, sp, parents, i) {
  1503. kvm_sync_page(vcpu, sp, &invalid_list);
  1504. mmu_pages_clear_parents(&parents);
  1505. }
  1506. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1507. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1508. kvm_mmu_pages_init(parent, &parents, &pages);
  1509. }
  1510. }
  1511. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1512. {
  1513. int i;
  1514. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1515. sp->spt[i] = 0ull;
  1516. }
  1517. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1518. {
  1519. sp->write_flooding_count = 0;
  1520. }
  1521. static void clear_sp_write_flooding_count(u64 *spte)
  1522. {
  1523. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1524. __clear_sp_write_flooding_count(sp);
  1525. }
  1526. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1527. gfn_t gfn,
  1528. gva_t gaddr,
  1529. unsigned level,
  1530. int direct,
  1531. unsigned access,
  1532. u64 *parent_pte)
  1533. {
  1534. union kvm_mmu_page_role role;
  1535. unsigned quadrant;
  1536. struct kvm_mmu_page *sp;
  1537. struct hlist_node *node;
  1538. bool need_sync = false;
  1539. role = vcpu->arch.mmu.base_role;
  1540. role.level = level;
  1541. role.direct = direct;
  1542. if (role.direct)
  1543. role.cr4_pae = 0;
  1544. role.access = access;
  1545. if (!vcpu->arch.mmu.direct_map
  1546. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1547. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1548. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1549. role.quadrant = quadrant;
  1550. }
  1551. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1552. if (!need_sync && sp->unsync)
  1553. need_sync = true;
  1554. if (sp->role.word != role.word)
  1555. continue;
  1556. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1557. break;
  1558. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1559. if (sp->unsync_children) {
  1560. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1561. kvm_mmu_mark_parents_unsync(sp);
  1562. } else if (sp->unsync)
  1563. kvm_mmu_mark_parents_unsync(sp);
  1564. __clear_sp_write_flooding_count(sp);
  1565. trace_kvm_mmu_get_page(sp, false);
  1566. return sp;
  1567. }
  1568. ++vcpu->kvm->stat.mmu_cache_miss;
  1569. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1570. if (!sp)
  1571. return sp;
  1572. sp->gfn = gfn;
  1573. sp->role = role;
  1574. hlist_add_head(&sp->hash_link,
  1575. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1576. if (!direct) {
  1577. if (rmap_write_protect(vcpu->kvm, gfn))
  1578. kvm_flush_remote_tlbs(vcpu->kvm);
  1579. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1580. kvm_sync_pages(vcpu, gfn);
  1581. account_shadowed(vcpu->kvm, gfn);
  1582. }
  1583. init_shadow_page_table(sp);
  1584. trace_kvm_mmu_get_page(sp, true);
  1585. return sp;
  1586. }
  1587. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1588. struct kvm_vcpu *vcpu, u64 addr)
  1589. {
  1590. iterator->addr = addr;
  1591. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1592. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1593. if (iterator->level == PT64_ROOT_LEVEL &&
  1594. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1595. !vcpu->arch.mmu.direct_map)
  1596. --iterator->level;
  1597. if (iterator->level == PT32E_ROOT_LEVEL) {
  1598. iterator->shadow_addr
  1599. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1600. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1601. --iterator->level;
  1602. if (!iterator->shadow_addr)
  1603. iterator->level = 0;
  1604. }
  1605. }
  1606. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1607. {
  1608. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1609. return false;
  1610. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1611. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1612. return true;
  1613. }
  1614. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1615. u64 spte)
  1616. {
  1617. if (is_last_spte(spte, iterator->level)) {
  1618. iterator->level = 0;
  1619. return;
  1620. }
  1621. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1622. --iterator->level;
  1623. }
  1624. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1625. {
  1626. return __shadow_walk_next(iterator, *iterator->sptep);
  1627. }
  1628. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1629. {
  1630. u64 spte;
  1631. spte = __pa(sp->spt)
  1632. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1633. | PT_WRITABLE_MASK | PT_USER_MASK;
  1634. mmu_spte_set(sptep, spte);
  1635. }
  1636. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1637. unsigned direct_access)
  1638. {
  1639. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1640. struct kvm_mmu_page *child;
  1641. /*
  1642. * For the direct sp, if the guest pte's dirty bit
  1643. * changed form clean to dirty, it will corrupt the
  1644. * sp's access: allow writable in the read-only sp,
  1645. * so we should update the spte at this point to get
  1646. * a new sp with the correct access.
  1647. */
  1648. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1649. if (child->role.access == direct_access)
  1650. return;
  1651. drop_parent_pte(child, sptep);
  1652. kvm_flush_remote_tlbs(vcpu->kvm);
  1653. }
  1654. }
  1655. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1656. u64 *spte)
  1657. {
  1658. u64 pte;
  1659. struct kvm_mmu_page *child;
  1660. pte = *spte;
  1661. if (is_shadow_present_pte(pte)) {
  1662. if (is_last_spte(pte, sp->role.level)) {
  1663. drop_spte(kvm, spte);
  1664. if (is_large_pte(pte))
  1665. --kvm->stat.lpages;
  1666. } else {
  1667. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1668. drop_parent_pte(child, spte);
  1669. }
  1670. return true;
  1671. }
  1672. if (is_mmio_spte(pte))
  1673. mmu_spte_clear_no_track(spte);
  1674. return false;
  1675. }
  1676. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1677. struct kvm_mmu_page *sp)
  1678. {
  1679. unsigned i;
  1680. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1681. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1682. }
  1683. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1684. {
  1685. mmu_page_remove_parent_pte(sp, parent_pte);
  1686. }
  1687. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1688. {
  1689. u64 *sptep;
  1690. struct rmap_iterator iter;
  1691. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1692. drop_parent_pte(sp, sptep);
  1693. }
  1694. static int mmu_zap_unsync_children(struct kvm *kvm,
  1695. struct kvm_mmu_page *parent,
  1696. struct list_head *invalid_list)
  1697. {
  1698. int i, zapped = 0;
  1699. struct mmu_page_path parents;
  1700. struct kvm_mmu_pages pages;
  1701. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1702. return 0;
  1703. kvm_mmu_pages_init(parent, &parents, &pages);
  1704. while (mmu_unsync_walk(parent, &pages)) {
  1705. struct kvm_mmu_page *sp;
  1706. for_each_sp(pages, sp, parents, i) {
  1707. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1708. mmu_pages_clear_parents(&parents);
  1709. zapped++;
  1710. }
  1711. kvm_mmu_pages_init(parent, &parents, &pages);
  1712. }
  1713. return zapped;
  1714. }
  1715. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1716. struct list_head *invalid_list)
  1717. {
  1718. int ret;
  1719. trace_kvm_mmu_prepare_zap_page(sp);
  1720. ++kvm->stat.mmu_shadow_zapped;
  1721. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1722. kvm_mmu_page_unlink_children(kvm, sp);
  1723. kvm_mmu_unlink_parents(kvm, sp);
  1724. if (!sp->role.invalid && !sp->role.direct)
  1725. unaccount_shadowed(kvm, sp->gfn);
  1726. if (sp->unsync)
  1727. kvm_unlink_unsync_page(kvm, sp);
  1728. if (!sp->root_count) {
  1729. /* Count self */
  1730. ret++;
  1731. list_move(&sp->link, invalid_list);
  1732. kvm_mod_used_mmu_pages(kvm, -1);
  1733. } else {
  1734. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1735. kvm_reload_remote_mmus(kvm);
  1736. }
  1737. sp->role.invalid = 1;
  1738. return ret;
  1739. }
  1740. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1741. struct list_head *invalid_list)
  1742. {
  1743. struct kvm_mmu_page *sp;
  1744. if (list_empty(invalid_list))
  1745. return;
  1746. /*
  1747. * wmb: make sure everyone sees our modifications to the page tables
  1748. * rmb: make sure we see changes to vcpu->mode
  1749. */
  1750. smp_mb();
  1751. /*
  1752. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1753. * page table walks.
  1754. */
  1755. kvm_flush_remote_tlbs(kvm);
  1756. do {
  1757. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1758. WARN_ON(!sp->role.invalid || sp->root_count);
  1759. kvm_mmu_isolate_page(sp);
  1760. kvm_mmu_free_page(sp);
  1761. } while (!list_empty(invalid_list));
  1762. }
  1763. /*
  1764. * Changing the number of mmu pages allocated to the vm
  1765. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1766. */
  1767. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1768. {
  1769. LIST_HEAD(invalid_list);
  1770. /*
  1771. * If we set the number of mmu pages to be smaller be than the
  1772. * number of actived pages , we must to free some mmu pages before we
  1773. * change the value
  1774. */
  1775. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1776. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1777. !list_empty(&kvm->arch.active_mmu_pages)) {
  1778. struct kvm_mmu_page *page;
  1779. page = container_of(kvm->arch.active_mmu_pages.prev,
  1780. struct kvm_mmu_page, link);
  1781. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1782. }
  1783. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1784. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1785. }
  1786. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1787. }
  1788. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1789. {
  1790. struct kvm_mmu_page *sp;
  1791. struct hlist_node *node;
  1792. LIST_HEAD(invalid_list);
  1793. int r;
  1794. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1795. r = 0;
  1796. spin_lock(&kvm->mmu_lock);
  1797. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1798. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1799. sp->role.word);
  1800. r = 1;
  1801. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1802. }
  1803. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1804. spin_unlock(&kvm->mmu_lock);
  1805. return r;
  1806. }
  1807. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1808. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1809. {
  1810. int slot = memslot_id(kvm, gfn);
  1811. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1812. __set_bit(slot, sp->slot_bitmap);
  1813. }
  1814. /*
  1815. * The function is based on mtrr_type_lookup() in
  1816. * arch/x86/kernel/cpu/mtrr/generic.c
  1817. */
  1818. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1819. u64 start, u64 end)
  1820. {
  1821. int i;
  1822. u64 base, mask;
  1823. u8 prev_match, curr_match;
  1824. int num_var_ranges = KVM_NR_VAR_MTRR;
  1825. if (!mtrr_state->enabled)
  1826. return 0xFF;
  1827. /* Make end inclusive end, instead of exclusive */
  1828. end--;
  1829. /* Look in fixed ranges. Just return the type as per start */
  1830. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1831. int idx;
  1832. if (start < 0x80000) {
  1833. idx = 0;
  1834. idx += (start >> 16);
  1835. return mtrr_state->fixed_ranges[idx];
  1836. } else if (start < 0xC0000) {
  1837. idx = 1 * 8;
  1838. idx += ((start - 0x80000) >> 14);
  1839. return mtrr_state->fixed_ranges[idx];
  1840. } else if (start < 0x1000000) {
  1841. idx = 3 * 8;
  1842. idx += ((start - 0xC0000) >> 12);
  1843. return mtrr_state->fixed_ranges[idx];
  1844. }
  1845. }
  1846. /*
  1847. * Look in variable ranges
  1848. * Look of multiple ranges matching this address and pick type
  1849. * as per MTRR precedence
  1850. */
  1851. if (!(mtrr_state->enabled & 2))
  1852. return mtrr_state->def_type;
  1853. prev_match = 0xFF;
  1854. for (i = 0; i < num_var_ranges; ++i) {
  1855. unsigned short start_state, end_state;
  1856. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1857. continue;
  1858. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1859. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1860. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1861. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1862. start_state = ((start & mask) == (base & mask));
  1863. end_state = ((end & mask) == (base & mask));
  1864. if (start_state != end_state)
  1865. return 0xFE;
  1866. if ((start & mask) != (base & mask))
  1867. continue;
  1868. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1869. if (prev_match == 0xFF) {
  1870. prev_match = curr_match;
  1871. continue;
  1872. }
  1873. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1874. curr_match == MTRR_TYPE_UNCACHABLE)
  1875. return MTRR_TYPE_UNCACHABLE;
  1876. if ((prev_match == MTRR_TYPE_WRBACK &&
  1877. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1878. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1879. curr_match == MTRR_TYPE_WRBACK)) {
  1880. prev_match = MTRR_TYPE_WRTHROUGH;
  1881. curr_match = MTRR_TYPE_WRTHROUGH;
  1882. }
  1883. if (prev_match != curr_match)
  1884. return MTRR_TYPE_UNCACHABLE;
  1885. }
  1886. if (prev_match != 0xFF)
  1887. return prev_match;
  1888. return mtrr_state->def_type;
  1889. }
  1890. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1891. {
  1892. u8 mtrr;
  1893. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1894. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1895. if (mtrr == 0xfe || mtrr == 0xff)
  1896. mtrr = MTRR_TYPE_WRBACK;
  1897. return mtrr;
  1898. }
  1899. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1900. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1901. {
  1902. trace_kvm_mmu_unsync_page(sp);
  1903. ++vcpu->kvm->stat.mmu_unsync;
  1904. sp->unsync = 1;
  1905. kvm_mmu_mark_parents_unsync(sp);
  1906. }
  1907. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1908. {
  1909. struct kvm_mmu_page *s;
  1910. struct hlist_node *node;
  1911. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1912. if (s->unsync)
  1913. continue;
  1914. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1915. __kvm_unsync_page(vcpu, s);
  1916. }
  1917. }
  1918. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1919. bool can_unsync)
  1920. {
  1921. struct kvm_mmu_page *s;
  1922. struct hlist_node *node;
  1923. bool need_unsync = false;
  1924. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1925. if (!can_unsync)
  1926. return 1;
  1927. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1928. return 1;
  1929. if (!need_unsync && !s->unsync) {
  1930. need_unsync = true;
  1931. }
  1932. }
  1933. if (need_unsync)
  1934. kvm_unsync_pages(vcpu, gfn);
  1935. return 0;
  1936. }
  1937. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1938. unsigned pte_access, int user_fault,
  1939. int write_fault, int level,
  1940. gfn_t gfn, pfn_t pfn, bool speculative,
  1941. bool can_unsync, bool host_writable)
  1942. {
  1943. u64 spte;
  1944. int ret = 0;
  1945. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1946. return 0;
  1947. spte = PT_PRESENT_MASK;
  1948. if (!speculative)
  1949. spte |= shadow_accessed_mask;
  1950. if (pte_access & ACC_EXEC_MASK)
  1951. spte |= shadow_x_mask;
  1952. else
  1953. spte |= shadow_nx_mask;
  1954. if (pte_access & ACC_USER_MASK)
  1955. spte |= shadow_user_mask;
  1956. if (level > PT_PAGE_TABLE_LEVEL)
  1957. spte |= PT_PAGE_SIZE_MASK;
  1958. if (tdp_enabled)
  1959. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1960. kvm_is_mmio_pfn(pfn));
  1961. if (host_writable)
  1962. spte |= SPTE_HOST_WRITEABLE;
  1963. else
  1964. pte_access &= ~ACC_WRITE_MASK;
  1965. spte |= (u64)pfn << PAGE_SHIFT;
  1966. if ((pte_access & ACC_WRITE_MASK)
  1967. || (!vcpu->arch.mmu.direct_map && write_fault
  1968. && !is_write_protection(vcpu) && !user_fault)) {
  1969. if (level > PT_PAGE_TABLE_LEVEL &&
  1970. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1971. ret = 1;
  1972. drop_spte(vcpu->kvm, sptep);
  1973. goto done;
  1974. }
  1975. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1976. if (!vcpu->arch.mmu.direct_map
  1977. && !(pte_access & ACC_WRITE_MASK)) {
  1978. spte &= ~PT_USER_MASK;
  1979. /*
  1980. * If we converted a user page to a kernel page,
  1981. * so that the kernel can write to it when cr0.wp=0,
  1982. * then we should prevent the kernel from executing it
  1983. * if SMEP is enabled.
  1984. */
  1985. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1986. spte |= PT64_NX_MASK;
  1987. }
  1988. /*
  1989. * Optimization: for pte sync, if spte was writable the hash
  1990. * lookup is unnecessary (and expensive). Write protection
  1991. * is responsibility of mmu_get_page / kvm_sync_page.
  1992. * Same reasoning can be applied to dirty page accounting.
  1993. */
  1994. if (!can_unsync && is_writable_pte(*sptep))
  1995. goto set_pte;
  1996. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1997. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1998. __func__, gfn);
  1999. ret = 1;
  2000. pte_access &= ~ACC_WRITE_MASK;
  2001. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2002. }
  2003. }
  2004. if (pte_access & ACC_WRITE_MASK)
  2005. mark_page_dirty(vcpu->kvm, gfn);
  2006. set_pte:
  2007. if (mmu_spte_update(sptep, spte))
  2008. kvm_flush_remote_tlbs(vcpu->kvm);
  2009. done:
  2010. return ret;
  2011. }
  2012. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2013. unsigned pt_access, unsigned pte_access,
  2014. int user_fault, int write_fault,
  2015. int *emulate, int level, gfn_t gfn,
  2016. pfn_t pfn, bool speculative,
  2017. bool host_writable)
  2018. {
  2019. int was_rmapped = 0;
  2020. int rmap_count;
  2021. pgprintk("%s: spte %llx access %x write_fault %d"
  2022. " user_fault %d gfn %llx\n",
  2023. __func__, *sptep, pt_access,
  2024. write_fault, user_fault, gfn);
  2025. if (is_rmap_spte(*sptep)) {
  2026. /*
  2027. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2028. * the parent of the now unreachable PTE.
  2029. */
  2030. if (level > PT_PAGE_TABLE_LEVEL &&
  2031. !is_large_pte(*sptep)) {
  2032. struct kvm_mmu_page *child;
  2033. u64 pte = *sptep;
  2034. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2035. drop_parent_pte(child, sptep);
  2036. kvm_flush_remote_tlbs(vcpu->kvm);
  2037. } else if (pfn != spte_to_pfn(*sptep)) {
  2038. pgprintk("hfn old %llx new %llx\n",
  2039. spte_to_pfn(*sptep), pfn);
  2040. drop_spte(vcpu->kvm, sptep);
  2041. kvm_flush_remote_tlbs(vcpu->kvm);
  2042. } else
  2043. was_rmapped = 1;
  2044. }
  2045. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  2046. level, gfn, pfn, speculative, true,
  2047. host_writable)) {
  2048. if (write_fault)
  2049. *emulate = 1;
  2050. kvm_mmu_flush_tlb(vcpu);
  2051. }
  2052. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2053. *emulate = 1;
  2054. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2055. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2056. is_large_pte(*sptep)? "2MB" : "4kB",
  2057. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2058. *sptep, sptep);
  2059. if (!was_rmapped && is_large_pte(*sptep))
  2060. ++vcpu->kvm->stat.lpages;
  2061. if (is_shadow_present_pte(*sptep)) {
  2062. page_header_update_slot(vcpu->kvm, sptep, gfn);
  2063. if (!was_rmapped) {
  2064. rmap_count = rmap_add(vcpu, sptep, gfn);
  2065. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2066. rmap_recycle(vcpu, sptep, gfn);
  2067. }
  2068. }
  2069. kvm_release_pfn_clean(pfn);
  2070. }
  2071. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2072. {
  2073. mmu_free_roots(vcpu);
  2074. }
  2075. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2076. bool no_dirty_log)
  2077. {
  2078. struct kvm_memory_slot *slot;
  2079. unsigned long hva;
  2080. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2081. if (!slot) {
  2082. get_page(fault_page);
  2083. return page_to_pfn(fault_page);
  2084. }
  2085. hva = gfn_to_hva_memslot(slot, gfn);
  2086. return hva_to_pfn_atomic(vcpu->kvm, hva);
  2087. }
  2088. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2089. struct kvm_mmu_page *sp,
  2090. u64 *start, u64 *end)
  2091. {
  2092. struct page *pages[PTE_PREFETCH_NUM];
  2093. unsigned access = sp->role.access;
  2094. int i, ret;
  2095. gfn_t gfn;
  2096. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2097. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2098. return -1;
  2099. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2100. if (ret <= 0)
  2101. return -1;
  2102. for (i = 0; i < ret; i++, gfn++, start++)
  2103. mmu_set_spte(vcpu, start, ACC_ALL,
  2104. access, 0, 0, NULL,
  2105. sp->role.level, gfn,
  2106. page_to_pfn(pages[i]), true, true);
  2107. return 0;
  2108. }
  2109. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2110. struct kvm_mmu_page *sp, u64 *sptep)
  2111. {
  2112. u64 *spte, *start = NULL;
  2113. int i;
  2114. WARN_ON(!sp->role.direct);
  2115. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2116. spte = sp->spt + i;
  2117. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2118. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2119. if (!start)
  2120. continue;
  2121. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2122. break;
  2123. start = NULL;
  2124. } else if (!start)
  2125. start = spte;
  2126. }
  2127. }
  2128. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2129. {
  2130. struct kvm_mmu_page *sp;
  2131. /*
  2132. * Since it's no accessed bit on EPT, it's no way to
  2133. * distinguish between actually accessed translations
  2134. * and prefetched, so disable pte prefetch if EPT is
  2135. * enabled.
  2136. */
  2137. if (!shadow_accessed_mask)
  2138. return;
  2139. sp = page_header(__pa(sptep));
  2140. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2141. return;
  2142. __direct_pte_prefetch(vcpu, sp, sptep);
  2143. }
  2144. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2145. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2146. bool prefault)
  2147. {
  2148. struct kvm_shadow_walk_iterator iterator;
  2149. struct kvm_mmu_page *sp;
  2150. int emulate = 0;
  2151. gfn_t pseudo_gfn;
  2152. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2153. if (iterator.level == level) {
  2154. unsigned pte_access = ACC_ALL;
  2155. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2156. 0, write, &emulate,
  2157. level, gfn, pfn, prefault, map_writable);
  2158. direct_pte_prefetch(vcpu, iterator.sptep);
  2159. ++vcpu->stat.pf_fixed;
  2160. break;
  2161. }
  2162. if (!is_shadow_present_pte(*iterator.sptep)) {
  2163. u64 base_addr = iterator.addr;
  2164. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2165. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2166. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2167. iterator.level - 1,
  2168. 1, ACC_ALL, iterator.sptep);
  2169. if (!sp) {
  2170. pgprintk("nonpaging_map: ENOMEM\n");
  2171. kvm_release_pfn_clean(pfn);
  2172. return -ENOMEM;
  2173. }
  2174. mmu_spte_set(iterator.sptep,
  2175. __pa(sp->spt)
  2176. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2177. | shadow_user_mask | shadow_x_mask
  2178. | shadow_accessed_mask);
  2179. }
  2180. }
  2181. return emulate;
  2182. }
  2183. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2184. {
  2185. siginfo_t info;
  2186. info.si_signo = SIGBUS;
  2187. info.si_errno = 0;
  2188. info.si_code = BUS_MCEERR_AR;
  2189. info.si_addr = (void __user *)address;
  2190. info.si_addr_lsb = PAGE_SHIFT;
  2191. send_sig_info(SIGBUS, &info, tsk);
  2192. }
  2193. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2194. {
  2195. kvm_release_pfn_clean(pfn);
  2196. if (is_hwpoison_pfn(pfn)) {
  2197. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2198. return 0;
  2199. }
  2200. return -EFAULT;
  2201. }
  2202. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2203. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2204. {
  2205. pfn_t pfn = *pfnp;
  2206. gfn_t gfn = *gfnp;
  2207. int level = *levelp;
  2208. /*
  2209. * Check if it's a transparent hugepage. If this would be an
  2210. * hugetlbfs page, level wouldn't be set to
  2211. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2212. * here.
  2213. */
  2214. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2215. level == PT_PAGE_TABLE_LEVEL &&
  2216. PageTransCompound(pfn_to_page(pfn)) &&
  2217. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2218. unsigned long mask;
  2219. /*
  2220. * mmu_notifier_retry was successful and we hold the
  2221. * mmu_lock here, so the pmd can't become splitting
  2222. * from under us, and in turn
  2223. * __split_huge_page_refcount() can't run from under
  2224. * us and we can safely transfer the refcount from
  2225. * PG_tail to PG_head as we switch the pfn to tail to
  2226. * head.
  2227. */
  2228. *levelp = level = PT_DIRECTORY_LEVEL;
  2229. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2230. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2231. if (pfn & mask) {
  2232. gfn &= ~mask;
  2233. *gfnp = gfn;
  2234. kvm_release_pfn_clean(pfn);
  2235. pfn &= ~mask;
  2236. kvm_get_pfn(pfn);
  2237. *pfnp = pfn;
  2238. }
  2239. }
  2240. }
  2241. static bool mmu_invalid_pfn(pfn_t pfn)
  2242. {
  2243. return unlikely(is_invalid_pfn(pfn));
  2244. }
  2245. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2246. pfn_t pfn, unsigned access, int *ret_val)
  2247. {
  2248. bool ret = true;
  2249. /* The pfn is invalid, report the error! */
  2250. if (unlikely(is_invalid_pfn(pfn))) {
  2251. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2252. goto exit;
  2253. }
  2254. if (unlikely(is_noslot_pfn(pfn)))
  2255. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2256. ret = false;
  2257. exit:
  2258. return ret;
  2259. }
  2260. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2261. {
  2262. /*
  2263. * #PF can be fast only if the shadow page table is present and it
  2264. * is caused by write-protect, that means we just need change the
  2265. * W bit of the spte which can be done out of mmu-lock.
  2266. */
  2267. if (!(error_code & PFERR_PRESENT_MASK) ||
  2268. !(error_code & PFERR_WRITE_MASK))
  2269. return false;
  2270. return true;
  2271. }
  2272. static bool
  2273. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2274. {
  2275. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2276. gfn_t gfn;
  2277. WARN_ON(!sp->role.direct);
  2278. /*
  2279. * The gfn of direct spte is stable since it is calculated
  2280. * by sp->gfn.
  2281. */
  2282. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2283. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2284. mark_page_dirty(vcpu->kvm, gfn);
  2285. return true;
  2286. }
  2287. /*
  2288. * Return value:
  2289. * - true: let the vcpu to access on the same address again.
  2290. * - false: let the real page fault path to fix it.
  2291. */
  2292. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2293. u32 error_code)
  2294. {
  2295. struct kvm_shadow_walk_iterator iterator;
  2296. bool ret = false;
  2297. u64 spte = 0ull;
  2298. if (!page_fault_can_be_fast(vcpu, error_code))
  2299. return false;
  2300. walk_shadow_page_lockless_begin(vcpu);
  2301. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2302. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2303. break;
  2304. /*
  2305. * If the mapping has been changed, let the vcpu fault on the
  2306. * same address again.
  2307. */
  2308. if (!is_rmap_spte(spte)) {
  2309. ret = true;
  2310. goto exit;
  2311. }
  2312. if (!is_last_spte(spte, level))
  2313. goto exit;
  2314. /*
  2315. * Check if it is a spurious fault caused by TLB lazily flushed.
  2316. *
  2317. * Need not check the access of upper level table entries since
  2318. * they are always ACC_ALL.
  2319. */
  2320. if (is_writable_pte(spte)) {
  2321. ret = true;
  2322. goto exit;
  2323. }
  2324. /*
  2325. * Currently, to simplify the code, only the spte write-protected
  2326. * by dirty-log can be fast fixed.
  2327. */
  2328. if (!spte_is_locklessly_modifiable(spte))
  2329. goto exit;
  2330. /*
  2331. * Currently, fast page fault only works for direct mapping since
  2332. * the gfn is not stable for indirect shadow page.
  2333. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2334. */
  2335. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2336. exit:
  2337. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2338. spte, ret);
  2339. walk_shadow_page_lockless_end(vcpu);
  2340. return ret;
  2341. }
  2342. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2343. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2344. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2345. gfn_t gfn, bool prefault)
  2346. {
  2347. int r;
  2348. int level;
  2349. int force_pt_level;
  2350. pfn_t pfn;
  2351. unsigned long mmu_seq;
  2352. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2353. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2354. if (likely(!force_pt_level)) {
  2355. level = mapping_level(vcpu, gfn);
  2356. /*
  2357. * This path builds a PAE pagetable - so we can map
  2358. * 2mb pages at maximum. Therefore check if the level
  2359. * is larger than that.
  2360. */
  2361. if (level > PT_DIRECTORY_LEVEL)
  2362. level = PT_DIRECTORY_LEVEL;
  2363. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2364. } else
  2365. level = PT_PAGE_TABLE_LEVEL;
  2366. if (fast_page_fault(vcpu, v, level, error_code))
  2367. return 0;
  2368. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2369. smp_rmb();
  2370. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2371. return 0;
  2372. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2373. return r;
  2374. spin_lock(&vcpu->kvm->mmu_lock);
  2375. if (mmu_notifier_retry(vcpu, mmu_seq))
  2376. goto out_unlock;
  2377. kvm_mmu_free_some_pages(vcpu);
  2378. if (likely(!force_pt_level))
  2379. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2380. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2381. prefault);
  2382. spin_unlock(&vcpu->kvm->mmu_lock);
  2383. return r;
  2384. out_unlock:
  2385. spin_unlock(&vcpu->kvm->mmu_lock);
  2386. kvm_release_pfn_clean(pfn);
  2387. return 0;
  2388. }
  2389. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2390. {
  2391. int i;
  2392. struct kvm_mmu_page *sp;
  2393. LIST_HEAD(invalid_list);
  2394. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2395. return;
  2396. spin_lock(&vcpu->kvm->mmu_lock);
  2397. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2398. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2399. vcpu->arch.mmu.direct_map)) {
  2400. hpa_t root = vcpu->arch.mmu.root_hpa;
  2401. sp = page_header(root);
  2402. --sp->root_count;
  2403. if (!sp->root_count && sp->role.invalid) {
  2404. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2405. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2406. }
  2407. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2408. spin_unlock(&vcpu->kvm->mmu_lock);
  2409. return;
  2410. }
  2411. for (i = 0; i < 4; ++i) {
  2412. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2413. if (root) {
  2414. root &= PT64_BASE_ADDR_MASK;
  2415. sp = page_header(root);
  2416. --sp->root_count;
  2417. if (!sp->root_count && sp->role.invalid)
  2418. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2419. &invalid_list);
  2420. }
  2421. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2422. }
  2423. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2424. spin_unlock(&vcpu->kvm->mmu_lock);
  2425. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2426. }
  2427. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2428. {
  2429. int ret = 0;
  2430. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2431. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2432. ret = 1;
  2433. }
  2434. return ret;
  2435. }
  2436. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2437. {
  2438. struct kvm_mmu_page *sp;
  2439. unsigned i;
  2440. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2441. spin_lock(&vcpu->kvm->mmu_lock);
  2442. kvm_mmu_free_some_pages(vcpu);
  2443. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2444. 1, ACC_ALL, NULL);
  2445. ++sp->root_count;
  2446. spin_unlock(&vcpu->kvm->mmu_lock);
  2447. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2448. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2449. for (i = 0; i < 4; ++i) {
  2450. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2451. ASSERT(!VALID_PAGE(root));
  2452. spin_lock(&vcpu->kvm->mmu_lock);
  2453. kvm_mmu_free_some_pages(vcpu);
  2454. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2455. i << 30,
  2456. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2457. NULL);
  2458. root = __pa(sp->spt);
  2459. ++sp->root_count;
  2460. spin_unlock(&vcpu->kvm->mmu_lock);
  2461. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2462. }
  2463. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2464. } else
  2465. BUG();
  2466. return 0;
  2467. }
  2468. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2469. {
  2470. struct kvm_mmu_page *sp;
  2471. u64 pdptr, pm_mask;
  2472. gfn_t root_gfn;
  2473. int i;
  2474. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2475. if (mmu_check_root(vcpu, root_gfn))
  2476. return 1;
  2477. /*
  2478. * Do we shadow a long mode page table? If so we need to
  2479. * write-protect the guests page table root.
  2480. */
  2481. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2482. hpa_t root = vcpu->arch.mmu.root_hpa;
  2483. ASSERT(!VALID_PAGE(root));
  2484. spin_lock(&vcpu->kvm->mmu_lock);
  2485. kvm_mmu_free_some_pages(vcpu);
  2486. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2487. 0, ACC_ALL, NULL);
  2488. root = __pa(sp->spt);
  2489. ++sp->root_count;
  2490. spin_unlock(&vcpu->kvm->mmu_lock);
  2491. vcpu->arch.mmu.root_hpa = root;
  2492. return 0;
  2493. }
  2494. /*
  2495. * We shadow a 32 bit page table. This may be a legacy 2-level
  2496. * or a PAE 3-level page table. In either case we need to be aware that
  2497. * the shadow page table may be a PAE or a long mode page table.
  2498. */
  2499. pm_mask = PT_PRESENT_MASK;
  2500. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2501. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2502. for (i = 0; i < 4; ++i) {
  2503. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2504. ASSERT(!VALID_PAGE(root));
  2505. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2506. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2507. if (!is_present_gpte(pdptr)) {
  2508. vcpu->arch.mmu.pae_root[i] = 0;
  2509. continue;
  2510. }
  2511. root_gfn = pdptr >> PAGE_SHIFT;
  2512. if (mmu_check_root(vcpu, root_gfn))
  2513. return 1;
  2514. }
  2515. spin_lock(&vcpu->kvm->mmu_lock);
  2516. kvm_mmu_free_some_pages(vcpu);
  2517. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2518. PT32_ROOT_LEVEL, 0,
  2519. ACC_ALL, NULL);
  2520. root = __pa(sp->spt);
  2521. ++sp->root_count;
  2522. spin_unlock(&vcpu->kvm->mmu_lock);
  2523. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2524. }
  2525. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2526. /*
  2527. * If we shadow a 32 bit page table with a long mode page
  2528. * table we enter this path.
  2529. */
  2530. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2531. if (vcpu->arch.mmu.lm_root == NULL) {
  2532. /*
  2533. * The additional page necessary for this is only
  2534. * allocated on demand.
  2535. */
  2536. u64 *lm_root;
  2537. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2538. if (lm_root == NULL)
  2539. return 1;
  2540. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2541. vcpu->arch.mmu.lm_root = lm_root;
  2542. }
  2543. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2544. }
  2545. return 0;
  2546. }
  2547. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2548. {
  2549. if (vcpu->arch.mmu.direct_map)
  2550. return mmu_alloc_direct_roots(vcpu);
  2551. else
  2552. return mmu_alloc_shadow_roots(vcpu);
  2553. }
  2554. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2555. {
  2556. int i;
  2557. struct kvm_mmu_page *sp;
  2558. if (vcpu->arch.mmu.direct_map)
  2559. return;
  2560. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2561. return;
  2562. vcpu_clear_mmio_info(vcpu, ~0ul);
  2563. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2564. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2565. hpa_t root = vcpu->arch.mmu.root_hpa;
  2566. sp = page_header(root);
  2567. mmu_sync_children(vcpu, sp);
  2568. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2569. return;
  2570. }
  2571. for (i = 0; i < 4; ++i) {
  2572. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2573. if (root && VALID_PAGE(root)) {
  2574. root &= PT64_BASE_ADDR_MASK;
  2575. sp = page_header(root);
  2576. mmu_sync_children(vcpu, sp);
  2577. }
  2578. }
  2579. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2580. }
  2581. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2582. {
  2583. spin_lock(&vcpu->kvm->mmu_lock);
  2584. mmu_sync_roots(vcpu);
  2585. spin_unlock(&vcpu->kvm->mmu_lock);
  2586. }
  2587. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2588. u32 access, struct x86_exception *exception)
  2589. {
  2590. if (exception)
  2591. exception->error_code = 0;
  2592. return vaddr;
  2593. }
  2594. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2595. u32 access,
  2596. struct x86_exception *exception)
  2597. {
  2598. if (exception)
  2599. exception->error_code = 0;
  2600. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2601. }
  2602. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2603. {
  2604. if (direct)
  2605. return vcpu_match_mmio_gpa(vcpu, addr);
  2606. return vcpu_match_mmio_gva(vcpu, addr);
  2607. }
  2608. /*
  2609. * On direct hosts, the last spte is only allows two states
  2610. * for mmio page fault:
  2611. * - It is the mmio spte
  2612. * - It is zapped or it is being zapped.
  2613. *
  2614. * This function completely checks the spte when the last spte
  2615. * is not the mmio spte.
  2616. */
  2617. static bool check_direct_spte_mmio_pf(u64 spte)
  2618. {
  2619. return __check_direct_spte_mmio_pf(spte);
  2620. }
  2621. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2622. {
  2623. struct kvm_shadow_walk_iterator iterator;
  2624. u64 spte = 0ull;
  2625. walk_shadow_page_lockless_begin(vcpu);
  2626. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2627. if (!is_shadow_present_pte(spte))
  2628. break;
  2629. walk_shadow_page_lockless_end(vcpu);
  2630. return spte;
  2631. }
  2632. /*
  2633. * If it is a real mmio page fault, return 1 and emulat the instruction
  2634. * directly, return 0 to let CPU fault again on the address, -1 is
  2635. * returned if bug is detected.
  2636. */
  2637. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2638. {
  2639. u64 spte;
  2640. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2641. return 1;
  2642. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2643. if (is_mmio_spte(spte)) {
  2644. gfn_t gfn = get_mmio_spte_gfn(spte);
  2645. unsigned access = get_mmio_spte_access(spte);
  2646. if (direct)
  2647. addr = 0;
  2648. trace_handle_mmio_page_fault(addr, gfn, access);
  2649. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2650. return 1;
  2651. }
  2652. /*
  2653. * It's ok if the gva is remapped by other cpus on shadow guest,
  2654. * it's a BUG if the gfn is not a mmio page.
  2655. */
  2656. if (direct && !check_direct_spte_mmio_pf(spte))
  2657. return -1;
  2658. /*
  2659. * If the page table is zapped by other cpus, let CPU fault again on
  2660. * the address.
  2661. */
  2662. return 0;
  2663. }
  2664. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2665. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2666. u32 error_code, bool direct)
  2667. {
  2668. int ret;
  2669. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2670. WARN_ON(ret < 0);
  2671. return ret;
  2672. }
  2673. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2674. u32 error_code, bool prefault)
  2675. {
  2676. gfn_t gfn;
  2677. int r;
  2678. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2679. if (unlikely(error_code & PFERR_RSVD_MASK))
  2680. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2681. r = mmu_topup_memory_caches(vcpu);
  2682. if (r)
  2683. return r;
  2684. ASSERT(vcpu);
  2685. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2686. gfn = gva >> PAGE_SHIFT;
  2687. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2688. error_code, gfn, prefault);
  2689. }
  2690. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2691. {
  2692. struct kvm_arch_async_pf arch;
  2693. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2694. arch.gfn = gfn;
  2695. arch.direct_map = vcpu->arch.mmu.direct_map;
  2696. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2697. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2698. }
  2699. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2700. {
  2701. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2702. kvm_event_needs_reinjection(vcpu)))
  2703. return false;
  2704. return kvm_x86_ops->interrupt_allowed(vcpu);
  2705. }
  2706. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2707. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2708. {
  2709. bool async;
  2710. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2711. if (!async)
  2712. return false; /* *pfn has correct page already */
  2713. put_page(pfn_to_page(*pfn));
  2714. if (!prefault && can_do_async_pf(vcpu)) {
  2715. trace_kvm_try_async_get_page(gva, gfn);
  2716. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2717. trace_kvm_async_pf_doublefault(gva, gfn);
  2718. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2719. return true;
  2720. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2721. return true;
  2722. }
  2723. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2724. return false;
  2725. }
  2726. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2727. bool prefault)
  2728. {
  2729. pfn_t pfn;
  2730. int r;
  2731. int level;
  2732. int force_pt_level;
  2733. gfn_t gfn = gpa >> PAGE_SHIFT;
  2734. unsigned long mmu_seq;
  2735. int write = error_code & PFERR_WRITE_MASK;
  2736. bool map_writable;
  2737. ASSERT(vcpu);
  2738. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2739. if (unlikely(error_code & PFERR_RSVD_MASK))
  2740. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2741. r = mmu_topup_memory_caches(vcpu);
  2742. if (r)
  2743. return r;
  2744. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2745. if (likely(!force_pt_level)) {
  2746. level = mapping_level(vcpu, gfn);
  2747. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2748. } else
  2749. level = PT_PAGE_TABLE_LEVEL;
  2750. if (fast_page_fault(vcpu, gpa, level, error_code))
  2751. return 0;
  2752. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2753. smp_rmb();
  2754. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2755. return 0;
  2756. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2757. return r;
  2758. spin_lock(&vcpu->kvm->mmu_lock);
  2759. if (mmu_notifier_retry(vcpu, mmu_seq))
  2760. goto out_unlock;
  2761. kvm_mmu_free_some_pages(vcpu);
  2762. if (likely(!force_pt_level))
  2763. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2764. r = __direct_map(vcpu, gpa, write, map_writable,
  2765. level, gfn, pfn, prefault);
  2766. spin_unlock(&vcpu->kvm->mmu_lock);
  2767. return r;
  2768. out_unlock:
  2769. spin_unlock(&vcpu->kvm->mmu_lock);
  2770. kvm_release_pfn_clean(pfn);
  2771. return 0;
  2772. }
  2773. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2774. {
  2775. mmu_free_roots(vcpu);
  2776. }
  2777. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2778. struct kvm_mmu *context)
  2779. {
  2780. context->new_cr3 = nonpaging_new_cr3;
  2781. context->page_fault = nonpaging_page_fault;
  2782. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2783. context->free = nonpaging_free;
  2784. context->sync_page = nonpaging_sync_page;
  2785. context->invlpg = nonpaging_invlpg;
  2786. context->update_pte = nonpaging_update_pte;
  2787. context->root_level = 0;
  2788. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2789. context->root_hpa = INVALID_PAGE;
  2790. context->direct_map = true;
  2791. context->nx = false;
  2792. return 0;
  2793. }
  2794. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2795. {
  2796. ++vcpu->stat.tlb_flush;
  2797. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2798. }
  2799. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2800. {
  2801. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2802. mmu_free_roots(vcpu);
  2803. }
  2804. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2805. {
  2806. return kvm_read_cr3(vcpu);
  2807. }
  2808. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2809. struct x86_exception *fault)
  2810. {
  2811. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2812. }
  2813. static void paging_free(struct kvm_vcpu *vcpu)
  2814. {
  2815. nonpaging_free(vcpu);
  2816. }
  2817. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2818. {
  2819. int bit7;
  2820. bit7 = (gpte >> 7) & 1;
  2821. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2822. }
  2823. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2824. int *nr_present)
  2825. {
  2826. if (unlikely(is_mmio_spte(*sptep))) {
  2827. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2828. mmu_spte_clear_no_track(sptep);
  2829. return true;
  2830. }
  2831. (*nr_present)++;
  2832. mark_mmio_spte(sptep, gfn, access);
  2833. return true;
  2834. }
  2835. return false;
  2836. }
  2837. #define PTTYPE 64
  2838. #include "paging_tmpl.h"
  2839. #undef PTTYPE
  2840. #define PTTYPE 32
  2841. #include "paging_tmpl.h"
  2842. #undef PTTYPE
  2843. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2844. struct kvm_mmu *context)
  2845. {
  2846. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2847. u64 exb_bit_rsvd = 0;
  2848. if (!context->nx)
  2849. exb_bit_rsvd = rsvd_bits(63, 63);
  2850. switch (context->root_level) {
  2851. case PT32_ROOT_LEVEL:
  2852. /* no rsvd bits for 2 level 4K page table entries */
  2853. context->rsvd_bits_mask[0][1] = 0;
  2854. context->rsvd_bits_mask[0][0] = 0;
  2855. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2856. if (!is_pse(vcpu)) {
  2857. context->rsvd_bits_mask[1][1] = 0;
  2858. break;
  2859. }
  2860. if (is_cpuid_PSE36())
  2861. /* 36bits PSE 4MB page */
  2862. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2863. else
  2864. /* 32 bits PSE 4MB page */
  2865. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2866. break;
  2867. case PT32E_ROOT_LEVEL:
  2868. context->rsvd_bits_mask[0][2] =
  2869. rsvd_bits(maxphyaddr, 63) |
  2870. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2871. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2872. rsvd_bits(maxphyaddr, 62); /* PDE */
  2873. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2874. rsvd_bits(maxphyaddr, 62); /* PTE */
  2875. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2876. rsvd_bits(maxphyaddr, 62) |
  2877. rsvd_bits(13, 20); /* large page */
  2878. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2879. break;
  2880. case PT64_ROOT_LEVEL:
  2881. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2882. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2883. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2884. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2885. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2886. rsvd_bits(maxphyaddr, 51);
  2887. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2888. rsvd_bits(maxphyaddr, 51);
  2889. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2890. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2891. rsvd_bits(maxphyaddr, 51) |
  2892. rsvd_bits(13, 29);
  2893. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2894. rsvd_bits(maxphyaddr, 51) |
  2895. rsvd_bits(13, 20); /* large page */
  2896. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2897. break;
  2898. }
  2899. }
  2900. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2901. struct kvm_mmu *context,
  2902. int level)
  2903. {
  2904. context->nx = is_nx(vcpu);
  2905. context->root_level = level;
  2906. reset_rsvds_bits_mask(vcpu, context);
  2907. ASSERT(is_pae(vcpu));
  2908. context->new_cr3 = paging_new_cr3;
  2909. context->page_fault = paging64_page_fault;
  2910. context->gva_to_gpa = paging64_gva_to_gpa;
  2911. context->sync_page = paging64_sync_page;
  2912. context->invlpg = paging64_invlpg;
  2913. context->update_pte = paging64_update_pte;
  2914. context->free = paging_free;
  2915. context->shadow_root_level = level;
  2916. context->root_hpa = INVALID_PAGE;
  2917. context->direct_map = false;
  2918. return 0;
  2919. }
  2920. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2921. struct kvm_mmu *context)
  2922. {
  2923. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2924. }
  2925. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2926. struct kvm_mmu *context)
  2927. {
  2928. context->nx = false;
  2929. context->root_level = PT32_ROOT_LEVEL;
  2930. reset_rsvds_bits_mask(vcpu, context);
  2931. context->new_cr3 = paging_new_cr3;
  2932. context->page_fault = paging32_page_fault;
  2933. context->gva_to_gpa = paging32_gva_to_gpa;
  2934. context->free = paging_free;
  2935. context->sync_page = paging32_sync_page;
  2936. context->invlpg = paging32_invlpg;
  2937. context->update_pte = paging32_update_pte;
  2938. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2939. context->root_hpa = INVALID_PAGE;
  2940. context->direct_map = false;
  2941. return 0;
  2942. }
  2943. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2944. struct kvm_mmu *context)
  2945. {
  2946. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2947. }
  2948. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2949. {
  2950. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2951. context->base_role.word = 0;
  2952. context->new_cr3 = nonpaging_new_cr3;
  2953. context->page_fault = tdp_page_fault;
  2954. context->free = nonpaging_free;
  2955. context->sync_page = nonpaging_sync_page;
  2956. context->invlpg = nonpaging_invlpg;
  2957. context->update_pte = nonpaging_update_pte;
  2958. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2959. context->root_hpa = INVALID_PAGE;
  2960. context->direct_map = true;
  2961. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2962. context->get_cr3 = get_cr3;
  2963. context->get_pdptr = kvm_pdptr_read;
  2964. context->inject_page_fault = kvm_inject_page_fault;
  2965. if (!is_paging(vcpu)) {
  2966. context->nx = false;
  2967. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2968. context->root_level = 0;
  2969. } else if (is_long_mode(vcpu)) {
  2970. context->nx = is_nx(vcpu);
  2971. context->root_level = PT64_ROOT_LEVEL;
  2972. reset_rsvds_bits_mask(vcpu, context);
  2973. context->gva_to_gpa = paging64_gva_to_gpa;
  2974. } else if (is_pae(vcpu)) {
  2975. context->nx = is_nx(vcpu);
  2976. context->root_level = PT32E_ROOT_LEVEL;
  2977. reset_rsvds_bits_mask(vcpu, context);
  2978. context->gva_to_gpa = paging64_gva_to_gpa;
  2979. } else {
  2980. context->nx = false;
  2981. context->root_level = PT32_ROOT_LEVEL;
  2982. reset_rsvds_bits_mask(vcpu, context);
  2983. context->gva_to_gpa = paging32_gva_to_gpa;
  2984. }
  2985. return 0;
  2986. }
  2987. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2988. {
  2989. int r;
  2990. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2991. ASSERT(vcpu);
  2992. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2993. if (!is_paging(vcpu))
  2994. r = nonpaging_init_context(vcpu, context);
  2995. else if (is_long_mode(vcpu))
  2996. r = paging64_init_context(vcpu, context);
  2997. else if (is_pae(vcpu))
  2998. r = paging32E_init_context(vcpu, context);
  2999. else
  3000. r = paging32_init_context(vcpu, context);
  3001. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3002. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3003. vcpu->arch.mmu.base_role.smep_andnot_wp
  3004. = smep && !is_write_protection(vcpu);
  3005. return r;
  3006. }
  3007. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3008. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3009. {
  3010. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3011. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3012. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3013. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3014. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3015. return r;
  3016. }
  3017. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3018. {
  3019. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3020. g_context->get_cr3 = get_cr3;
  3021. g_context->get_pdptr = kvm_pdptr_read;
  3022. g_context->inject_page_fault = kvm_inject_page_fault;
  3023. /*
  3024. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3025. * translation of l2_gpa to l1_gpa addresses is done using the
  3026. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3027. * functions between mmu and nested_mmu are swapped.
  3028. */
  3029. if (!is_paging(vcpu)) {
  3030. g_context->nx = false;
  3031. g_context->root_level = 0;
  3032. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3033. } else if (is_long_mode(vcpu)) {
  3034. g_context->nx = is_nx(vcpu);
  3035. g_context->root_level = PT64_ROOT_LEVEL;
  3036. reset_rsvds_bits_mask(vcpu, g_context);
  3037. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3038. } else if (is_pae(vcpu)) {
  3039. g_context->nx = is_nx(vcpu);
  3040. g_context->root_level = PT32E_ROOT_LEVEL;
  3041. reset_rsvds_bits_mask(vcpu, g_context);
  3042. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3043. } else {
  3044. g_context->nx = false;
  3045. g_context->root_level = PT32_ROOT_LEVEL;
  3046. reset_rsvds_bits_mask(vcpu, g_context);
  3047. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3048. }
  3049. return 0;
  3050. }
  3051. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3052. {
  3053. if (mmu_is_nested(vcpu))
  3054. return init_kvm_nested_mmu(vcpu);
  3055. else if (tdp_enabled)
  3056. return init_kvm_tdp_mmu(vcpu);
  3057. else
  3058. return init_kvm_softmmu(vcpu);
  3059. }
  3060. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3061. {
  3062. ASSERT(vcpu);
  3063. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3064. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3065. vcpu->arch.mmu.free(vcpu);
  3066. }
  3067. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3068. {
  3069. destroy_kvm_mmu(vcpu);
  3070. return init_kvm_mmu(vcpu);
  3071. }
  3072. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3073. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3074. {
  3075. int r;
  3076. r = mmu_topup_memory_caches(vcpu);
  3077. if (r)
  3078. goto out;
  3079. r = mmu_alloc_roots(vcpu);
  3080. spin_lock(&vcpu->kvm->mmu_lock);
  3081. mmu_sync_roots(vcpu);
  3082. spin_unlock(&vcpu->kvm->mmu_lock);
  3083. if (r)
  3084. goto out;
  3085. /* set_cr3() should ensure TLB has been flushed */
  3086. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3087. out:
  3088. return r;
  3089. }
  3090. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3091. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3092. {
  3093. mmu_free_roots(vcpu);
  3094. }
  3095. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3096. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3097. struct kvm_mmu_page *sp, u64 *spte,
  3098. const void *new)
  3099. {
  3100. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3101. ++vcpu->kvm->stat.mmu_pde_zapped;
  3102. return;
  3103. }
  3104. ++vcpu->kvm->stat.mmu_pte_updated;
  3105. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3106. }
  3107. static bool need_remote_flush(u64 old, u64 new)
  3108. {
  3109. if (!is_shadow_present_pte(old))
  3110. return false;
  3111. if (!is_shadow_present_pte(new))
  3112. return true;
  3113. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3114. return true;
  3115. old ^= PT64_NX_MASK;
  3116. new ^= PT64_NX_MASK;
  3117. return (old & ~new & PT64_PERM_MASK) != 0;
  3118. }
  3119. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3120. bool remote_flush, bool local_flush)
  3121. {
  3122. if (zap_page)
  3123. return;
  3124. if (remote_flush)
  3125. kvm_flush_remote_tlbs(vcpu->kvm);
  3126. else if (local_flush)
  3127. kvm_mmu_flush_tlb(vcpu);
  3128. }
  3129. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3130. const u8 *new, int *bytes)
  3131. {
  3132. u64 gentry;
  3133. int r;
  3134. /*
  3135. * Assume that the pte write on a page table of the same type
  3136. * as the current vcpu paging mode since we update the sptes only
  3137. * when they have the same mode.
  3138. */
  3139. if (is_pae(vcpu) && *bytes == 4) {
  3140. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3141. *gpa &= ~(gpa_t)7;
  3142. *bytes = 8;
  3143. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
  3144. if (r)
  3145. gentry = 0;
  3146. new = (const u8 *)&gentry;
  3147. }
  3148. switch (*bytes) {
  3149. case 4:
  3150. gentry = *(const u32 *)new;
  3151. break;
  3152. case 8:
  3153. gentry = *(const u64 *)new;
  3154. break;
  3155. default:
  3156. gentry = 0;
  3157. break;
  3158. }
  3159. return gentry;
  3160. }
  3161. /*
  3162. * If we're seeing too many writes to a page, it may no longer be a page table,
  3163. * or we may be forking, in which case it is better to unmap the page.
  3164. */
  3165. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3166. {
  3167. /*
  3168. * Skip write-flooding detected for the sp whose level is 1, because
  3169. * it can become unsync, then the guest page is not write-protected.
  3170. */
  3171. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3172. return false;
  3173. return ++sp->write_flooding_count >= 3;
  3174. }
  3175. /*
  3176. * Misaligned accesses are too much trouble to fix up; also, they usually
  3177. * indicate a page is not used as a page table.
  3178. */
  3179. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3180. int bytes)
  3181. {
  3182. unsigned offset, pte_size, misaligned;
  3183. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3184. gpa, bytes, sp->role.word);
  3185. offset = offset_in_page(gpa);
  3186. pte_size = sp->role.cr4_pae ? 8 : 4;
  3187. /*
  3188. * Sometimes, the OS only writes the last one bytes to update status
  3189. * bits, for example, in linux, andb instruction is used in clear_bit().
  3190. */
  3191. if (!(offset & (pte_size - 1)) && bytes == 1)
  3192. return false;
  3193. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3194. misaligned |= bytes < 4;
  3195. return misaligned;
  3196. }
  3197. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3198. {
  3199. unsigned page_offset, quadrant;
  3200. u64 *spte;
  3201. int level;
  3202. page_offset = offset_in_page(gpa);
  3203. level = sp->role.level;
  3204. *nspte = 1;
  3205. if (!sp->role.cr4_pae) {
  3206. page_offset <<= 1; /* 32->64 */
  3207. /*
  3208. * A 32-bit pde maps 4MB while the shadow pdes map
  3209. * only 2MB. So we need to double the offset again
  3210. * and zap two pdes instead of one.
  3211. */
  3212. if (level == PT32_ROOT_LEVEL) {
  3213. page_offset &= ~7; /* kill rounding error */
  3214. page_offset <<= 1;
  3215. *nspte = 2;
  3216. }
  3217. quadrant = page_offset >> PAGE_SHIFT;
  3218. page_offset &= ~PAGE_MASK;
  3219. if (quadrant != sp->role.quadrant)
  3220. return NULL;
  3221. }
  3222. spte = &sp->spt[page_offset / sizeof(*spte)];
  3223. return spte;
  3224. }
  3225. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3226. const u8 *new, int bytes)
  3227. {
  3228. gfn_t gfn = gpa >> PAGE_SHIFT;
  3229. union kvm_mmu_page_role mask = { .word = 0 };
  3230. struct kvm_mmu_page *sp;
  3231. struct hlist_node *node;
  3232. LIST_HEAD(invalid_list);
  3233. u64 entry, gentry, *spte;
  3234. int npte;
  3235. bool remote_flush, local_flush, zap_page;
  3236. /*
  3237. * If we don't have indirect shadow pages, it means no page is
  3238. * write-protected, so we can exit simply.
  3239. */
  3240. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3241. return;
  3242. zap_page = remote_flush = local_flush = false;
  3243. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3244. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3245. /*
  3246. * No need to care whether allocation memory is successful
  3247. * or not since pte prefetch is skiped if it does not have
  3248. * enough objects in the cache.
  3249. */
  3250. mmu_topup_memory_caches(vcpu);
  3251. spin_lock(&vcpu->kvm->mmu_lock);
  3252. ++vcpu->kvm->stat.mmu_pte_write;
  3253. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3254. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3255. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3256. if (detect_write_misaligned(sp, gpa, bytes) ||
  3257. detect_write_flooding(sp)) {
  3258. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3259. &invalid_list);
  3260. ++vcpu->kvm->stat.mmu_flooded;
  3261. continue;
  3262. }
  3263. spte = get_written_sptes(sp, gpa, &npte);
  3264. if (!spte)
  3265. continue;
  3266. local_flush = true;
  3267. while (npte--) {
  3268. entry = *spte;
  3269. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3270. if (gentry &&
  3271. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3272. & mask.word) && rmap_can_add(vcpu))
  3273. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3274. if (!remote_flush && need_remote_flush(entry, *spte))
  3275. remote_flush = true;
  3276. ++spte;
  3277. }
  3278. }
  3279. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3280. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3281. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3282. spin_unlock(&vcpu->kvm->mmu_lock);
  3283. }
  3284. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3285. {
  3286. gpa_t gpa;
  3287. int r;
  3288. if (vcpu->arch.mmu.direct_map)
  3289. return 0;
  3290. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3291. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3292. return r;
  3293. }
  3294. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3295. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3296. {
  3297. LIST_HEAD(invalid_list);
  3298. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3299. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3300. struct kvm_mmu_page *sp;
  3301. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3302. struct kvm_mmu_page, link);
  3303. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3304. ++vcpu->kvm->stat.mmu_recycled;
  3305. }
  3306. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3307. }
  3308. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3309. {
  3310. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3311. return vcpu_match_mmio_gpa(vcpu, addr);
  3312. return vcpu_match_mmio_gva(vcpu, addr);
  3313. }
  3314. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3315. void *insn, int insn_len)
  3316. {
  3317. int r, emulation_type = EMULTYPE_RETRY;
  3318. enum emulation_result er;
  3319. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3320. if (r < 0)
  3321. goto out;
  3322. if (!r) {
  3323. r = 1;
  3324. goto out;
  3325. }
  3326. if (is_mmio_page_fault(vcpu, cr2))
  3327. emulation_type = 0;
  3328. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3329. switch (er) {
  3330. case EMULATE_DONE:
  3331. return 1;
  3332. case EMULATE_DO_MMIO:
  3333. ++vcpu->stat.mmio_exits;
  3334. /* fall through */
  3335. case EMULATE_FAIL:
  3336. return 0;
  3337. default:
  3338. BUG();
  3339. }
  3340. out:
  3341. return r;
  3342. }
  3343. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3344. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3345. {
  3346. vcpu->arch.mmu.invlpg(vcpu, gva);
  3347. kvm_mmu_flush_tlb(vcpu);
  3348. ++vcpu->stat.invlpg;
  3349. }
  3350. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3351. void kvm_enable_tdp(void)
  3352. {
  3353. tdp_enabled = true;
  3354. }
  3355. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3356. void kvm_disable_tdp(void)
  3357. {
  3358. tdp_enabled = false;
  3359. }
  3360. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3361. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3362. {
  3363. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3364. if (vcpu->arch.mmu.lm_root != NULL)
  3365. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3366. }
  3367. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3368. {
  3369. struct page *page;
  3370. int i;
  3371. ASSERT(vcpu);
  3372. /*
  3373. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3374. * Therefore we need to allocate shadow page tables in the first
  3375. * 4GB of memory, which happens to fit the DMA32 zone.
  3376. */
  3377. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3378. if (!page)
  3379. return -ENOMEM;
  3380. vcpu->arch.mmu.pae_root = page_address(page);
  3381. for (i = 0; i < 4; ++i)
  3382. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3383. return 0;
  3384. }
  3385. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3386. {
  3387. ASSERT(vcpu);
  3388. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3389. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3390. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3391. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3392. return alloc_mmu_pages(vcpu);
  3393. }
  3394. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3395. {
  3396. ASSERT(vcpu);
  3397. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3398. return init_kvm_mmu(vcpu);
  3399. }
  3400. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3401. {
  3402. struct kvm_mmu_page *sp;
  3403. bool flush = false;
  3404. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3405. int i;
  3406. u64 *pt;
  3407. if (!test_bit(slot, sp->slot_bitmap))
  3408. continue;
  3409. pt = sp->spt;
  3410. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3411. if (!is_shadow_present_pte(pt[i]) ||
  3412. !is_last_spte(pt[i], sp->role.level))
  3413. continue;
  3414. spte_write_protect(kvm, &pt[i], &flush, false);
  3415. }
  3416. }
  3417. kvm_flush_remote_tlbs(kvm);
  3418. }
  3419. void kvm_mmu_zap_all(struct kvm *kvm)
  3420. {
  3421. struct kvm_mmu_page *sp, *node;
  3422. LIST_HEAD(invalid_list);
  3423. spin_lock(&kvm->mmu_lock);
  3424. restart:
  3425. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3426. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3427. goto restart;
  3428. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3429. spin_unlock(&kvm->mmu_lock);
  3430. }
  3431. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3432. struct list_head *invalid_list)
  3433. {
  3434. struct kvm_mmu_page *page;
  3435. page = container_of(kvm->arch.active_mmu_pages.prev,
  3436. struct kvm_mmu_page, link);
  3437. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3438. }
  3439. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3440. {
  3441. struct kvm *kvm;
  3442. int nr_to_scan = sc->nr_to_scan;
  3443. if (nr_to_scan == 0)
  3444. goto out;
  3445. raw_spin_lock(&kvm_lock);
  3446. list_for_each_entry(kvm, &vm_list, vm_list) {
  3447. int idx;
  3448. LIST_HEAD(invalid_list);
  3449. /*
  3450. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3451. * here. We may skip a VM instance errorneosly, but we do not
  3452. * want to shrink a VM that only started to populate its MMU
  3453. * anyway.
  3454. */
  3455. if (kvm->arch.n_used_mmu_pages > 0) {
  3456. if (!nr_to_scan--)
  3457. break;
  3458. continue;
  3459. }
  3460. idx = srcu_read_lock(&kvm->srcu);
  3461. spin_lock(&kvm->mmu_lock);
  3462. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3463. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3464. spin_unlock(&kvm->mmu_lock);
  3465. srcu_read_unlock(&kvm->srcu, idx);
  3466. list_move_tail(&kvm->vm_list, &vm_list);
  3467. break;
  3468. }
  3469. raw_spin_unlock(&kvm_lock);
  3470. out:
  3471. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3472. }
  3473. static struct shrinker mmu_shrinker = {
  3474. .shrink = mmu_shrink,
  3475. .seeks = DEFAULT_SEEKS * 10,
  3476. };
  3477. static void mmu_destroy_caches(void)
  3478. {
  3479. if (pte_list_desc_cache)
  3480. kmem_cache_destroy(pte_list_desc_cache);
  3481. if (mmu_page_header_cache)
  3482. kmem_cache_destroy(mmu_page_header_cache);
  3483. }
  3484. int kvm_mmu_module_init(void)
  3485. {
  3486. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3487. sizeof(struct pte_list_desc),
  3488. 0, 0, NULL);
  3489. if (!pte_list_desc_cache)
  3490. goto nomem;
  3491. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3492. sizeof(struct kvm_mmu_page),
  3493. 0, 0, NULL);
  3494. if (!mmu_page_header_cache)
  3495. goto nomem;
  3496. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3497. goto nomem;
  3498. register_shrinker(&mmu_shrinker);
  3499. return 0;
  3500. nomem:
  3501. mmu_destroy_caches();
  3502. return -ENOMEM;
  3503. }
  3504. /*
  3505. * Caculate mmu pages needed for kvm.
  3506. */
  3507. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3508. {
  3509. unsigned int nr_mmu_pages;
  3510. unsigned int nr_pages = 0;
  3511. struct kvm_memslots *slots;
  3512. struct kvm_memory_slot *memslot;
  3513. slots = kvm_memslots(kvm);
  3514. kvm_for_each_memslot(memslot, slots)
  3515. nr_pages += memslot->npages;
  3516. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3517. nr_mmu_pages = max(nr_mmu_pages,
  3518. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3519. return nr_mmu_pages;
  3520. }
  3521. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3522. {
  3523. struct kvm_shadow_walk_iterator iterator;
  3524. u64 spte;
  3525. int nr_sptes = 0;
  3526. walk_shadow_page_lockless_begin(vcpu);
  3527. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3528. sptes[iterator.level-1] = spte;
  3529. nr_sptes++;
  3530. if (!is_shadow_present_pte(spte))
  3531. break;
  3532. }
  3533. walk_shadow_page_lockless_end(vcpu);
  3534. return nr_sptes;
  3535. }
  3536. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3537. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3538. {
  3539. ASSERT(vcpu);
  3540. destroy_kvm_mmu(vcpu);
  3541. free_mmu_pages(vcpu);
  3542. mmu_free_memory_caches(vcpu);
  3543. }
  3544. void kvm_mmu_module_exit(void)
  3545. {
  3546. mmu_destroy_caches();
  3547. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3548. unregister_shrinker(&mmu_shrinker);
  3549. mmu_audit_disable();
  3550. }