qlge_main.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <net/ip6_checksum.h>
  42. #include "qlge.h"
  43. char qlge_driver_name[] = DRV_NAME;
  44. const char qlge_driver_version[] = DRV_VERSION;
  45. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  46. MODULE_DESCRIPTION(DRV_STRING " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg =
  50. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  51. /* NETIF_MSG_TIMER | */
  52. NETIF_MSG_IFDOWN |
  53. NETIF_MSG_IFUP |
  54. NETIF_MSG_RX_ERR |
  55. NETIF_MSG_TX_ERR |
  56. /* NETIF_MSG_TX_QUEUED | */
  57. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  58. /* NETIF_MSG_PKTDATA | */
  59. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  60. static int debug = 0x00007fff; /* defaults above */
  61. module_param(debug, int, 0);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. #define MSIX_IRQ 0
  64. #define MSI_IRQ 1
  65. #define LEG_IRQ 2
  66. static int irq_type = MSIX_IRQ;
  67. module_param(irq_type, int, MSIX_IRQ);
  68. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  69. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  70. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  194. if (status)
  195. return status;
  196. status = ql_wait_cfg(qdev, bit);
  197. if (status) {
  198. QPRINTK(qdev, IFUP, ERR,
  199. "Timed out waiting for CFG to come ready.\n");
  200. goto exit;
  201. }
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. mask = CFG_Q_MASK | (bit << 16);
  205. value = bit | (q_id << CFG_Q_SHIFT);
  206. ql_write32(qdev, CFG, (mask | value));
  207. /*
  208. * Wait for the bit to clear after signaling hw.
  209. */
  210. status = ql_wait_cfg(qdev, bit);
  211. exit:
  212. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. switch (type) {
  223. case MAC_ADDR_TYPE_MULTI_MAC:
  224. case MAC_ADDR_TYPE_CAM_MAC:
  225. {
  226. status =
  227. ql_wait_reg_rdy(qdev,
  228. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  229. if (status)
  230. goto exit;
  231. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  232. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  233. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  234. status =
  235. ql_wait_reg_rdy(qdev,
  236. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  237. if (status)
  238. goto exit;
  239. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  265. MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. }
  270. break;
  271. }
  272. case MAC_ADDR_TYPE_VLAN:
  273. case MAC_ADDR_TYPE_MULTI_FLTR:
  274. default:
  275. QPRINTK(qdev, IFUP, CRIT,
  276. "Address type %d not yet supported.\n", type);
  277. status = -EPERM;
  278. }
  279. exit:
  280. return status;
  281. }
  282. /* Set up a MAC, multicast or VLAN address for the
  283. * inbound frame matching.
  284. */
  285. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  286. u16 index)
  287. {
  288. u32 offset = 0;
  289. int status = 0;
  290. switch (type) {
  291. case MAC_ADDR_TYPE_MULTI_MAC:
  292. case MAC_ADDR_TYPE_CAM_MAC:
  293. {
  294. u32 cam_output;
  295. u32 upper = (addr[0] << 8) | addr[1];
  296. u32 lower =
  297. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  298. (addr[5]);
  299. QPRINTK(qdev, IFUP, DEBUG,
  300. "Adding %s address %pM"
  301. " at index %d in the CAM.\n",
  302. ((type ==
  303. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  304. "UNICAST"), addr, index);
  305. status =
  306. ql_wait_reg_rdy(qdev,
  307. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  308. if (status)
  309. goto exit;
  310. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  311. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  312. type); /* type */
  313. ql_write32(qdev, MAC_ADDR_DATA, lower);
  314. status =
  315. ql_wait_reg_rdy(qdev,
  316. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  317. if (status)
  318. goto exit;
  319. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  320. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  321. type); /* type */
  322. ql_write32(qdev, MAC_ADDR_DATA, upper);
  323. status =
  324. ql_wait_reg_rdy(qdev,
  325. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  326. if (status)
  327. goto exit;
  328. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  329. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  330. type); /* type */
  331. /* This field should also include the queue id
  332. and possibly the function id. Right now we hardcode
  333. the route field to NIC core.
  334. */
  335. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  336. cam_output = (CAM_OUT_ROUTE_NIC |
  337. (qdev->
  338. func << CAM_OUT_FUNC_SHIFT) |
  339. (0 << CAM_OUT_CQ_ID_SHIFT));
  340. if (qdev->vlgrp)
  341. cam_output |= CAM_OUT_RV;
  342. /* route to NIC core */
  343. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  344. }
  345. break;
  346. }
  347. case MAC_ADDR_TYPE_VLAN:
  348. {
  349. u32 enable_bit = *((u32 *) &addr[0]);
  350. /* For VLAN, the addr actually holds a bit that
  351. * either enables or disables the vlan id we are
  352. * addressing. It's either MAC_ADDR_E on or off.
  353. * That's bit-27 we're talking about.
  354. */
  355. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  356. (enable_bit ? "Adding" : "Removing"),
  357. index, (enable_bit ? "to" : "from"));
  358. status =
  359. ql_wait_reg_rdy(qdev,
  360. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  361. if (status)
  362. goto exit;
  363. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  364. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  365. type | /* type */
  366. enable_bit); /* enable/disable */
  367. break;
  368. }
  369. case MAC_ADDR_TYPE_MULTI_FLTR:
  370. default:
  371. QPRINTK(qdev, IFUP, CRIT,
  372. "Address type %d not yet supported.\n", type);
  373. status = -EPERM;
  374. }
  375. exit:
  376. return status;
  377. }
  378. /* Set or clear MAC address in hardware. We sometimes
  379. * have to clear it to prevent wrong frame routing
  380. * especially in a bonding environment.
  381. */
  382. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  383. {
  384. int status;
  385. char zero_mac_addr[ETH_ALEN];
  386. char *addr;
  387. if (set) {
  388. addr = &qdev->ndev->dev_addr[0];
  389. QPRINTK(qdev, IFUP, DEBUG,
  390. "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  391. addr[0], addr[1], addr[2], addr[3],
  392. addr[4], addr[5]);
  393. } else {
  394. memset(zero_mac_addr, 0, ETH_ALEN);
  395. addr = &zero_mac_addr[0];
  396. QPRINTK(qdev, IFUP, DEBUG,
  397. "Clearing MAC address on %s\n",
  398. qdev->ndev->name);
  399. }
  400. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  401. if (status)
  402. return status;
  403. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  404. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  405. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  406. if (status)
  407. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  408. "address.\n");
  409. return status;
  410. }
  411. void ql_link_on(struct ql_adapter *qdev)
  412. {
  413. QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
  414. qdev->ndev->name);
  415. netif_carrier_on(qdev->ndev);
  416. ql_set_mac_addr(qdev, 1);
  417. }
  418. void ql_link_off(struct ql_adapter *qdev)
  419. {
  420. QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
  421. qdev->ndev->name);
  422. netif_carrier_off(qdev->ndev);
  423. ql_set_mac_addr(qdev, 0);
  424. }
  425. /* Get a specific frame routing value from the CAM.
  426. * Used for debug and reg dump.
  427. */
  428. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  429. {
  430. int status = 0;
  431. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  432. if (status)
  433. goto exit;
  434. ql_write32(qdev, RT_IDX,
  435. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  436. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  437. if (status)
  438. goto exit;
  439. *value = ql_read32(qdev, RT_DATA);
  440. exit:
  441. return status;
  442. }
  443. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  444. * to route different frame types to various inbound queues. We send broadcast/
  445. * multicast/error frames to the default queue for slow handling,
  446. * and CAM hit/RSS frames to the fast handling queues.
  447. */
  448. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  449. int enable)
  450. {
  451. int status = -EINVAL; /* Return error if no mask match. */
  452. u32 value = 0;
  453. QPRINTK(qdev, IFUP, DEBUG,
  454. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  455. (enable ? "Adding" : "Removing"),
  456. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  457. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  458. ((index ==
  459. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  460. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  461. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  462. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  463. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  464. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  465. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  466. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  467. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  468. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  469. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  470. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  471. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  472. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  473. (enable ? "to" : "from"));
  474. switch (mask) {
  475. case RT_IDX_CAM_HIT:
  476. {
  477. value = RT_IDX_DST_CAM_Q | /* dest */
  478. RT_IDX_TYPE_NICQ | /* type */
  479. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  480. break;
  481. }
  482. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  483. {
  484. value = RT_IDX_DST_DFLT_Q | /* dest */
  485. RT_IDX_TYPE_NICQ | /* type */
  486. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  487. break;
  488. }
  489. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  490. {
  491. value = RT_IDX_DST_DFLT_Q | /* dest */
  492. RT_IDX_TYPE_NICQ | /* type */
  493. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  494. break;
  495. }
  496. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  497. {
  498. value = RT_IDX_DST_DFLT_Q | /* dest */
  499. RT_IDX_TYPE_NICQ | /* type */
  500. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  501. break;
  502. }
  503. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  504. {
  505. value = RT_IDX_DST_CAM_Q | /* dest */
  506. RT_IDX_TYPE_NICQ | /* type */
  507. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  508. break;
  509. }
  510. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  511. {
  512. value = RT_IDX_DST_CAM_Q | /* dest */
  513. RT_IDX_TYPE_NICQ | /* type */
  514. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  515. break;
  516. }
  517. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  518. {
  519. value = RT_IDX_DST_RSS | /* dest */
  520. RT_IDX_TYPE_NICQ | /* type */
  521. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  522. break;
  523. }
  524. case 0: /* Clear the E-bit on an entry. */
  525. {
  526. value = RT_IDX_DST_DFLT_Q | /* dest */
  527. RT_IDX_TYPE_NICQ | /* type */
  528. (index << RT_IDX_IDX_SHIFT);/* index */
  529. break;
  530. }
  531. default:
  532. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  533. mask);
  534. status = -EPERM;
  535. goto exit;
  536. }
  537. if (value) {
  538. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  539. if (status)
  540. goto exit;
  541. value |= (enable ? RT_IDX_E : 0);
  542. ql_write32(qdev, RT_IDX, value);
  543. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  544. }
  545. exit:
  546. return status;
  547. }
  548. static void ql_enable_interrupts(struct ql_adapter *qdev)
  549. {
  550. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  551. }
  552. static void ql_disable_interrupts(struct ql_adapter *qdev)
  553. {
  554. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  555. }
  556. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  557. * Otherwise, we may have multiple outstanding workers and don't want to
  558. * enable until the last one finishes. In this case, the irq_cnt gets
  559. * incremented everytime we queue a worker and decremented everytime
  560. * a worker finishes. Once it hits zero we enable the interrupt.
  561. */
  562. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  563. {
  564. u32 var = 0;
  565. unsigned long hw_flags = 0;
  566. struct intr_context *ctx = qdev->intr_context + intr;
  567. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  568. /* Always enable if we're MSIX multi interrupts and
  569. * it's not the default (zeroeth) interrupt.
  570. */
  571. ql_write32(qdev, INTR_EN,
  572. ctx->intr_en_mask);
  573. var = ql_read32(qdev, STS);
  574. return var;
  575. }
  576. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  577. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  578. ql_write32(qdev, INTR_EN,
  579. ctx->intr_en_mask);
  580. var = ql_read32(qdev, STS);
  581. }
  582. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  583. return var;
  584. }
  585. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  586. {
  587. u32 var = 0;
  588. struct intr_context *ctx;
  589. /* HW disables for us if we're MSIX multi interrupts and
  590. * it's not the default (zeroeth) interrupt.
  591. */
  592. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  593. return 0;
  594. ctx = qdev->intr_context + intr;
  595. spin_lock(&qdev->hw_lock);
  596. if (!atomic_read(&ctx->irq_cnt)) {
  597. ql_write32(qdev, INTR_EN,
  598. ctx->intr_dis_mask);
  599. var = ql_read32(qdev, STS);
  600. }
  601. atomic_inc(&ctx->irq_cnt);
  602. spin_unlock(&qdev->hw_lock);
  603. return var;
  604. }
  605. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  606. {
  607. int i;
  608. for (i = 0; i < qdev->intr_count; i++) {
  609. /* The enable call does a atomic_dec_and_test
  610. * and enables only if the result is zero.
  611. * So we precharge it here.
  612. */
  613. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  614. i == 0))
  615. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  616. ql_enable_completion_interrupt(qdev, i);
  617. }
  618. }
  619. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  620. {
  621. int status, i;
  622. u16 csum = 0;
  623. __le16 *flash = (__le16 *)&qdev->flash;
  624. status = strncmp((char *)&qdev->flash, str, 4);
  625. if (status) {
  626. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  627. return status;
  628. }
  629. for (i = 0; i < size; i++)
  630. csum += le16_to_cpu(*flash++);
  631. if (csum)
  632. QPRINTK(qdev, IFUP, ERR,
  633. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  634. return csum;
  635. }
  636. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  637. {
  638. int status = 0;
  639. /* wait for reg to come ready */
  640. status = ql_wait_reg_rdy(qdev,
  641. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  642. if (status)
  643. goto exit;
  644. /* set up for reg read */
  645. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  646. /* wait for reg to come ready */
  647. status = ql_wait_reg_rdy(qdev,
  648. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  649. if (status)
  650. goto exit;
  651. /* This data is stored on flash as an array of
  652. * __le32. Since ql_read32() returns cpu endian
  653. * we need to swap it back.
  654. */
  655. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  656. exit:
  657. return status;
  658. }
  659. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  660. {
  661. u32 i, size;
  662. int status;
  663. __le32 *p = (__le32 *)&qdev->flash;
  664. u32 offset;
  665. u8 mac_addr[6];
  666. /* Get flash offset for function and adjust
  667. * for dword access.
  668. */
  669. if (!qdev->port)
  670. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  671. else
  672. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  673. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  674. return -ETIMEDOUT;
  675. size = sizeof(struct flash_params_8000) / sizeof(u32);
  676. for (i = 0; i < size; i++, p++) {
  677. status = ql_read_flash_word(qdev, i+offset, p);
  678. if (status) {
  679. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  680. goto exit;
  681. }
  682. }
  683. status = ql_validate_flash(qdev,
  684. sizeof(struct flash_params_8000) / sizeof(u16),
  685. "8000");
  686. if (status) {
  687. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  688. status = -EINVAL;
  689. goto exit;
  690. }
  691. /* Extract either manufacturer or BOFM modified
  692. * MAC address.
  693. */
  694. if (qdev->flash.flash_params_8000.data_type1 == 2)
  695. memcpy(mac_addr,
  696. qdev->flash.flash_params_8000.mac_addr1,
  697. qdev->ndev->addr_len);
  698. else
  699. memcpy(mac_addr,
  700. qdev->flash.flash_params_8000.mac_addr,
  701. qdev->ndev->addr_len);
  702. if (!is_valid_ether_addr(mac_addr)) {
  703. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  704. status = -EINVAL;
  705. goto exit;
  706. }
  707. memcpy(qdev->ndev->dev_addr,
  708. mac_addr,
  709. qdev->ndev->addr_len);
  710. exit:
  711. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  712. return status;
  713. }
  714. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  715. {
  716. int i;
  717. int status;
  718. __le32 *p = (__le32 *)&qdev->flash;
  719. u32 offset = 0;
  720. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  721. /* Second function's parameters follow the first
  722. * function's.
  723. */
  724. if (qdev->port)
  725. offset = size;
  726. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  727. return -ETIMEDOUT;
  728. for (i = 0; i < size; i++, p++) {
  729. status = ql_read_flash_word(qdev, i+offset, p);
  730. if (status) {
  731. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  732. goto exit;
  733. }
  734. }
  735. status = ql_validate_flash(qdev,
  736. sizeof(struct flash_params_8012) / sizeof(u16),
  737. "8012");
  738. if (status) {
  739. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  740. status = -EINVAL;
  741. goto exit;
  742. }
  743. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  744. status = -EINVAL;
  745. goto exit;
  746. }
  747. memcpy(qdev->ndev->dev_addr,
  748. qdev->flash.flash_params_8012.mac_addr,
  749. qdev->ndev->addr_len);
  750. exit:
  751. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  752. return status;
  753. }
  754. /* xgmac register are located behind the xgmac_addr and xgmac_data
  755. * register pair. Each read/write requires us to wait for the ready
  756. * bit before reading/writing the data.
  757. */
  758. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  759. {
  760. int status;
  761. /* wait for reg to come ready */
  762. status = ql_wait_reg_rdy(qdev,
  763. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  764. if (status)
  765. return status;
  766. /* write the data to the data reg */
  767. ql_write32(qdev, XGMAC_DATA, data);
  768. /* trigger the write */
  769. ql_write32(qdev, XGMAC_ADDR, reg);
  770. return status;
  771. }
  772. /* xgmac register are located behind the xgmac_addr and xgmac_data
  773. * register pair. Each read/write requires us to wait for the ready
  774. * bit before reading/writing the data.
  775. */
  776. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  777. {
  778. int status = 0;
  779. /* wait for reg to come ready */
  780. status = ql_wait_reg_rdy(qdev,
  781. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  782. if (status)
  783. goto exit;
  784. /* set up for reg read */
  785. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  786. /* wait for reg to come ready */
  787. status = ql_wait_reg_rdy(qdev,
  788. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  789. if (status)
  790. goto exit;
  791. /* get the data */
  792. *data = ql_read32(qdev, XGMAC_DATA);
  793. exit:
  794. return status;
  795. }
  796. /* This is used for reading the 64-bit statistics regs. */
  797. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  798. {
  799. int status = 0;
  800. u32 hi = 0;
  801. u32 lo = 0;
  802. status = ql_read_xgmac_reg(qdev, reg, &lo);
  803. if (status)
  804. goto exit;
  805. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  806. if (status)
  807. goto exit;
  808. *data = (u64) lo | ((u64) hi << 32);
  809. exit:
  810. return status;
  811. }
  812. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  813. {
  814. int status;
  815. /*
  816. * Get MPI firmware version for driver banner
  817. * and ethool info.
  818. */
  819. status = ql_mb_about_fw(qdev);
  820. if (status)
  821. goto exit;
  822. status = ql_mb_get_fw_state(qdev);
  823. if (status)
  824. goto exit;
  825. /* Wake up a worker to get/set the TX/RX frame sizes. */
  826. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  827. exit:
  828. return status;
  829. }
  830. /* Take the MAC Core out of reset.
  831. * Enable statistics counting.
  832. * Take the transmitter/receiver out of reset.
  833. * This functionality may be done in the MPI firmware at a
  834. * later date.
  835. */
  836. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  837. {
  838. int status = 0;
  839. u32 data;
  840. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  841. /* Another function has the semaphore, so
  842. * wait for the port init bit to come ready.
  843. */
  844. QPRINTK(qdev, LINK, INFO,
  845. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  846. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  847. if (status) {
  848. QPRINTK(qdev, LINK, CRIT,
  849. "Port initialize timed out.\n");
  850. }
  851. return status;
  852. }
  853. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  854. /* Set the core reset. */
  855. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  856. if (status)
  857. goto end;
  858. data |= GLOBAL_CFG_RESET;
  859. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  860. if (status)
  861. goto end;
  862. /* Clear the core reset and turn on jumbo for receiver. */
  863. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  864. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  865. data |= GLOBAL_CFG_TX_STAT_EN;
  866. data |= GLOBAL_CFG_RX_STAT_EN;
  867. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  868. if (status)
  869. goto end;
  870. /* Enable transmitter, and clear it's reset. */
  871. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  872. if (status)
  873. goto end;
  874. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  875. data |= TX_CFG_EN; /* Enable the transmitter. */
  876. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  877. if (status)
  878. goto end;
  879. /* Enable receiver and clear it's reset. */
  880. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  881. if (status)
  882. goto end;
  883. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  884. data |= RX_CFG_EN; /* Enable the receiver. */
  885. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  886. if (status)
  887. goto end;
  888. /* Turn on jumbo. */
  889. status =
  890. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  891. if (status)
  892. goto end;
  893. status =
  894. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  895. if (status)
  896. goto end;
  897. /* Signal to the world that the port is enabled. */
  898. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  899. end:
  900. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  901. return status;
  902. }
  903. /* Get the next large buffer. */
  904. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  905. {
  906. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  907. rx_ring->lbq_curr_idx++;
  908. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  909. rx_ring->lbq_curr_idx = 0;
  910. rx_ring->lbq_free_cnt++;
  911. return lbq_desc;
  912. }
  913. /* Get the next small buffer. */
  914. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  915. {
  916. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  917. rx_ring->sbq_curr_idx++;
  918. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  919. rx_ring->sbq_curr_idx = 0;
  920. rx_ring->sbq_free_cnt++;
  921. return sbq_desc;
  922. }
  923. /* Update an rx ring index. */
  924. static void ql_update_cq(struct rx_ring *rx_ring)
  925. {
  926. rx_ring->cnsmr_idx++;
  927. rx_ring->curr_entry++;
  928. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  929. rx_ring->cnsmr_idx = 0;
  930. rx_ring->curr_entry = rx_ring->cq_base;
  931. }
  932. }
  933. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  934. {
  935. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  936. }
  937. /* Process (refill) a large buffer queue. */
  938. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  939. {
  940. u32 clean_idx = rx_ring->lbq_clean_idx;
  941. u32 start_idx = clean_idx;
  942. struct bq_desc *lbq_desc;
  943. u64 map;
  944. int i;
  945. while (rx_ring->lbq_free_cnt > 16) {
  946. for (i = 0; i < 16; i++) {
  947. QPRINTK(qdev, RX_STATUS, DEBUG,
  948. "lbq: try cleaning clean_idx = %d.\n",
  949. clean_idx);
  950. lbq_desc = &rx_ring->lbq[clean_idx];
  951. if (lbq_desc->p.lbq_page == NULL) {
  952. QPRINTK(qdev, RX_STATUS, DEBUG,
  953. "lbq: getting new page for index %d.\n",
  954. lbq_desc->index);
  955. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  956. if (lbq_desc->p.lbq_page == NULL) {
  957. rx_ring->lbq_clean_idx = clean_idx;
  958. QPRINTK(qdev, RX_STATUS, ERR,
  959. "Couldn't get a page.\n");
  960. return;
  961. }
  962. map = pci_map_page(qdev->pdev,
  963. lbq_desc->p.lbq_page,
  964. 0, PAGE_SIZE,
  965. PCI_DMA_FROMDEVICE);
  966. if (pci_dma_mapping_error(qdev->pdev, map)) {
  967. rx_ring->lbq_clean_idx = clean_idx;
  968. put_page(lbq_desc->p.lbq_page);
  969. lbq_desc->p.lbq_page = NULL;
  970. QPRINTK(qdev, RX_STATUS, ERR,
  971. "PCI mapping failed.\n");
  972. return;
  973. }
  974. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  975. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  976. *lbq_desc->addr = cpu_to_le64(map);
  977. }
  978. clean_idx++;
  979. if (clean_idx == rx_ring->lbq_len)
  980. clean_idx = 0;
  981. }
  982. rx_ring->lbq_clean_idx = clean_idx;
  983. rx_ring->lbq_prod_idx += 16;
  984. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  985. rx_ring->lbq_prod_idx = 0;
  986. rx_ring->lbq_free_cnt -= 16;
  987. }
  988. if (start_idx != clean_idx) {
  989. QPRINTK(qdev, RX_STATUS, DEBUG,
  990. "lbq: updating prod idx = %d.\n",
  991. rx_ring->lbq_prod_idx);
  992. ql_write_db_reg(rx_ring->lbq_prod_idx,
  993. rx_ring->lbq_prod_idx_db_reg);
  994. }
  995. }
  996. /* Process (refill) a small buffer queue. */
  997. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  998. {
  999. u32 clean_idx = rx_ring->sbq_clean_idx;
  1000. u32 start_idx = clean_idx;
  1001. struct bq_desc *sbq_desc;
  1002. u64 map;
  1003. int i;
  1004. while (rx_ring->sbq_free_cnt > 16) {
  1005. for (i = 0; i < 16; i++) {
  1006. sbq_desc = &rx_ring->sbq[clean_idx];
  1007. QPRINTK(qdev, RX_STATUS, DEBUG,
  1008. "sbq: try cleaning clean_idx = %d.\n",
  1009. clean_idx);
  1010. if (sbq_desc->p.skb == NULL) {
  1011. QPRINTK(qdev, RX_STATUS, DEBUG,
  1012. "sbq: getting new skb for index %d.\n",
  1013. sbq_desc->index);
  1014. sbq_desc->p.skb =
  1015. netdev_alloc_skb(qdev->ndev,
  1016. rx_ring->sbq_buf_size);
  1017. if (sbq_desc->p.skb == NULL) {
  1018. QPRINTK(qdev, PROBE, ERR,
  1019. "Couldn't get an skb.\n");
  1020. rx_ring->sbq_clean_idx = clean_idx;
  1021. return;
  1022. }
  1023. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1024. map = pci_map_single(qdev->pdev,
  1025. sbq_desc->p.skb->data,
  1026. rx_ring->sbq_buf_size /
  1027. 2, PCI_DMA_FROMDEVICE);
  1028. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1029. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1030. rx_ring->sbq_clean_idx = clean_idx;
  1031. dev_kfree_skb_any(sbq_desc->p.skb);
  1032. sbq_desc->p.skb = NULL;
  1033. return;
  1034. }
  1035. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1036. pci_unmap_len_set(sbq_desc, maplen,
  1037. rx_ring->sbq_buf_size / 2);
  1038. *sbq_desc->addr = cpu_to_le64(map);
  1039. }
  1040. clean_idx++;
  1041. if (clean_idx == rx_ring->sbq_len)
  1042. clean_idx = 0;
  1043. }
  1044. rx_ring->sbq_clean_idx = clean_idx;
  1045. rx_ring->sbq_prod_idx += 16;
  1046. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1047. rx_ring->sbq_prod_idx = 0;
  1048. rx_ring->sbq_free_cnt -= 16;
  1049. }
  1050. if (start_idx != clean_idx) {
  1051. QPRINTK(qdev, RX_STATUS, DEBUG,
  1052. "sbq: updating prod idx = %d.\n",
  1053. rx_ring->sbq_prod_idx);
  1054. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1055. rx_ring->sbq_prod_idx_db_reg);
  1056. }
  1057. }
  1058. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1059. struct rx_ring *rx_ring)
  1060. {
  1061. ql_update_sbq(qdev, rx_ring);
  1062. ql_update_lbq(qdev, rx_ring);
  1063. }
  1064. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1065. * fails at some stage, or from the interrupt when a tx completes.
  1066. */
  1067. static void ql_unmap_send(struct ql_adapter *qdev,
  1068. struct tx_ring_desc *tx_ring_desc, int mapped)
  1069. {
  1070. int i;
  1071. for (i = 0; i < mapped; i++) {
  1072. if (i == 0 || (i == 7 && mapped > 7)) {
  1073. /*
  1074. * Unmap the skb->data area, or the
  1075. * external sglist (AKA the Outbound
  1076. * Address List (OAL)).
  1077. * If its the zeroeth element, then it's
  1078. * the skb->data area. If it's the 7th
  1079. * element and there is more than 6 frags,
  1080. * then its an OAL.
  1081. */
  1082. if (i == 7) {
  1083. QPRINTK(qdev, TX_DONE, DEBUG,
  1084. "unmapping OAL area.\n");
  1085. }
  1086. pci_unmap_single(qdev->pdev,
  1087. pci_unmap_addr(&tx_ring_desc->map[i],
  1088. mapaddr),
  1089. pci_unmap_len(&tx_ring_desc->map[i],
  1090. maplen),
  1091. PCI_DMA_TODEVICE);
  1092. } else {
  1093. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1094. i);
  1095. pci_unmap_page(qdev->pdev,
  1096. pci_unmap_addr(&tx_ring_desc->map[i],
  1097. mapaddr),
  1098. pci_unmap_len(&tx_ring_desc->map[i],
  1099. maplen), PCI_DMA_TODEVICE);
  1100. }
  1101. }
  1102. }
  1103. /* Map the buffers for this transmit. This will return
  1104. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1105. */
  1106. static int ql_map_send(struct ql_adapter *qdev,
  1107. struct ob_mac_iocb_req *mac_iocb_ptr,
  1108. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1109. {
  1110. int len = skb_headlen(skb);
  1111. dma_addr_t map;
  1112. int frag_idx, err, map_idx = 0;
  1113. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1114. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1115. if (frag_cnt) {
  1116. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1117. }
  1118. /*
  1119. * Map the skb buffer first.
  1120. */
  1121. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1122. err = pci_dma_mapping_error(qdev->pdev, map);
  1123. if (err) {
  1124. QPRINTK(qdev, TX_QUEUED, ERR,
  1125. "PCI mapping failed with error: %d\n", err);
  1126. return NETDEV_TX_BUSY;
  1127. }
  1128. tbd->len = cpu_to_le32(len);
  1129. tbd->addr = cpu_to_le64(map);
  1130. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1131. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1132. map_idx++;
  1133. /*
  1134. * This loop fills the remainder of the 8 address descriptors
  1135. * in the IOCB. If there are more than 7 fragments, then the
  1136. * eighth address desc will point to an external list (OAL).
  1137. * When this happens, the remainder of the frags will be stored
  1138. * in this list.
  1139. */
  1140. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1141. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1142. tbd++;
  1143. if (frag_idx == 6 && frag_cnt > 7) {
  1144. /* Let's tack on an sglist.
  1145. * Our control block will now
  1146. * look like this:
  1147. * iocb->seg[0] = skb->data
  1148. * iocb->seg[1] = frag[0]
  1149. * iocb->seg[2] = frag[1]
  1150. * iocb->seg[3] = frag[2]
  1151. * iocb->seg[4] = frag[3]
  1152. * iocb->seg[5] = frag[4]
  1153. * iocb->seg[6] = frag[5]
  1154. * iocb->seg[7] = ptr to OAL (external sglist)
  1155. * oal->seg[0] = frag[6]
  1156. * oal->seg[1] = frag[7]
  1157. * oal->seg[2] = frag[8]
  1158. * oal->seg[3] = frag[9]
  1159. * oal->seg[4] = frag[10]
  1160. * etc...
  1161. */
  1162. /* Tack on the OAL in the eighth segment of IOCB. */
  1163. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1164. sizeof(struct oal),
  1165. PCI_DMA_TODEVICE);
  1166. err = pci_dma_mapping_error(qdev->pdev, map);
  1167. if (err) {
  1168. QPRINTK(qdev, TX_QUEUED, ERR,
  1169. "PCI mapping outbound address list with error: %d\n",
  1170. err);
  1171. goto map_error;
  1172. }
  1173. tbd->addr = cpu_to_le64(map);
  1174. /*
  1175. * The length is the number of fragments
  1176. * that remain to be mapped times the length
  1177. * of our sglist (OAL).
  1178. */
  1179. tbd->len =
  1180. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1181. (frag_cnt - frag_idx)) | TX_DESC_C);
  1182. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1183. map);
  1184. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1185. sizeof(struct oal));
  1186. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1187. map_idx++;
  1188. }
  1189. map =
  1190. pci_map_page(qdev->pdev, frag->page,
  1191. frag->page_offset, frag->size,
  1192. PCI_DMA_TODEVICE);
  1193. err = pci_dma_mapping_error(qdev->pdev, map);
  1194. if (err) {
  1195. QPRINTK(qdev, TX_QUEUED, ERR,
  1196. "PCI mapping frags failed with error: %d.\n",
  1197. err);
  1198. goto map_error;
  1199. }
  1200. tbd->addr = cpu_to_le64(map);
  1201. tbd->len = cpu_to_le32(frag->size);
  1202. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1203. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1204. frag->size);
  1205. }
  1206. /* Save the number of segments we've mapped. */
  1207. tx_ring_desc->map_cnt = map_idx;
  1208. /* Terminate the last segment. */
  1209. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1210. return NETDEV_TX_OK;
  1211. map_error:
  1212. /*
  1213. * If the first frag mapping failed, then i will be zero.
  1214. * This causes the unmap of the skb->data area. Otherwise
  1215. * we pass in the number of frags that mapped successfully
  1216. * so they can be umapped.
  1217. */
  1218. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1219. return NETDEV_TX_BUSY;
  1220. }
  1221. static void ql_realign_skb(struct sk_buff *skb, int len)
  1222. {
  1223. void *temp_addr = skb->data;
  1224. /* Undo the skb_reserve(skb,32) we did before
  1225. * giving to hardware, and realign data on
  1226. * a 2-byte boundary.
  1227. */
  1228. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1229. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1230. skb_copy_to_linear_data(skb, temp_addr,
  1231. (unsigned int)len);
  1232. }
  1233. /*
  1234. * This function builds an skb for the given inbound
  1235. * completion. It will be rewritten for readability in the near
  1236. * future, but for not it works well.
  1237. */
  1238. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1239. struct rx_ring *rx_ring,
  1240. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1241. {
  1242. struct bq_desc *lbq_desc;
  1243. struct bq_desc *sbq_desc;
  1244. struct sk_buff *skb = NULL;
  1245. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1246. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1247. /*
  1248. * Handle the header buffer if present.
  1249. */
  1250. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1251. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1252. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1253. /*
  1254. * Headers fit nicely into a small buffer.
  1255. */
  1256. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1257. pci_unmap_single(qdev->pdev,
  1258. pci_unmap_addr(sbq_desc, mapaddr),
  1259. pci_unmap_len(sbq_desc, maplen),
  1260. PCI_DMA_FROMDEVICE);
  1261. skb = sbq_desc->p.skb;
  1262. ql_realign_skb(skb, hdr_len);
  1263. skb_put(skb, hdr_len);
  1264. sbq_desc->p.skb = NULL;
  1265. }
  1266. /*
  1267. * Handle the data buffer(s).
  1268. */
  1269. if (unlikely(!length)) { /* Is there data too? */
  1270. QPRINTK(qdev, RX_STATUS, DEBUG,
  1271. "No Data buffer in this packet.\n");
  1272. return skb;
  1273. }
  1274. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1275. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1276. QPRINTK(qdev, RX_STATUS, DEBUG,
  1277. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1278. /*
  1279. * Data is less than small buffer size so it's
  1280. * stuffed in a small buffer.
  1281. * For this case we append the data
  1282. * from the "data" small buffer to the "header" small
  1283. * buffer.
  1284. */
  1285. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1286. pci_dma_sync_single_for_cpu(qdev->pdev,
  1287. pci_unmap_addr
  1288. (sbq_desc, mapaddr),
  1289. pci_unmap_len
  1290. (sbq_desc, maplen),
  1291. PCI_DMA_FROMDEVICE);
  1292. memcpy(skb_put(skb, length),
  1293. sbq_desc->p.skb->data, length);
  1294. pci_dma_sync_single_for_device(qdev->pdev,
  1295. pci_unmap_addr
  1296. (sbq_desc,
  1297. mapaddr),
  1298. pci_unmap_len
  1299. (sbq_desc,
  1300. maplen),
  1301. PCI_DMA_FROMDEVICE);
  1302. } else {
  1303. QPRINTK(qdev, RX_STATUS, DEBUG,
  1304. "%d bytes in a single small buffer.\n", length);
  1305. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1306. skb = sbq_desc->p.skb;
  1307. ql_realign_skb(skb, length);
  1308. skb_put(skb, length);
  1309. pci_unmap_single(qdev->pdev,
  1310. pci_unmap_addr(sbq_desc,
  1311. mapaddr),
  1312. pci_unmap_len(sbq_desc,
  1313. maplen),
  1314. PCI_DMA_FROMDEVICE);
  1315. sbq_desc->p.skb = NULL;
  1316. }
  1317. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1318. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1319. QPRINTK(qdev, RX_STATUS, DEBUG,
  1320. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1321. /*
  1322. * The data is in a single large buffer. We
  1323. * chain it to the header buffer's skb and let
  1324. * it rip.
  1325. */
  1326. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1327. pci_unmap_page(qdev->pdev,
  1328. pci_unmap_addr(lbq_desc,
  1329. mapaddr),
  1330. pci_unmap_len(lbq_desc, maplen),
  1331. PCI_DMA_FROMDEVICE);
  1332. QPRINTK(qdev, RX_STATUS, DEBUG,
  1333. "Chaining page to skb.\n");
  1334. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1335. 0, length);
  1336. skb->len += length;
  1337. skb->data_len += length;
  1338. skb->truesize += length;
  1339. lbq_desc->p.lbq_page = NULL;
  1340. } else {
  1341. /*
  1342. * The headers and data are in a single large buffer. We
  1343. * copy it to a new skb and let it go. This can happen with
  1344. * jumbo mtu on a non-TCP/UDP frame.
  1345. */
  1346. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1347. skb = netdev_alloc_skb(qdev->ndev, length);
  1348. if (skb == NULL) {
  1349. QPRINTK(qdev, PROBE, DEBUG,
  1350. "No skb available, drop the packet.\n");
  1351. return NULL;
  1352. }
  1353. pci_unmap_page(qdev->pdev,
  1354. pci_unmap_addr(lbq_desc,
  1355. mapaddr),
  1356. pci_unmap_len(lbq_desc, maplen),
  1357. PCI_DMA_FROMDEVICE);
  1358. skb_reserve(skb, NET_IP_ALIGN);
  1359. QPRINTK(qdev, RX_STATUS, DEBUG,
  1360. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1361. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1362. 0, length);
  1363. skb->len += length;
  1364. skb->data_len += length;
  1365. skb->truesize += length;
  1366. length -= length;
  1367. lbq_desc->p.lbq_page = NULL;
  1368. __pskb_pull_tail(skb,
  1369. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1370. VLAN_ETH_HLEN : ETH_HLEN);
  1371. }
  1372. } else {
  1373. /*
  1374. * The data is in a chain of large buffers
  1375. * pointed to by a small buffer. We loop
  1376. * thru and chain them to the our small header
  1377. * buffer's skb.
  1378. * frags: There are 18 max frags and our small
  1379. * buffer will hold 32 of them. The thing is,
  1380. * we'll use 3 max for our 9000 byte jumbo
  1381. * frames. If the MTU goes up we could
  1382. * eventually be in trouble.
  1383. */
  1384. int size, offset, i = 0;
  1385. __le64 *bq, bq_array[8];
  1386. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1387. pci_unmap_single(qdev->pdev,
  1388. pci_unmap_addr(sbq_desc, mapaddr),
  1389. pci_unmap_len(sbq_desc, maplen),
  1390. PCI_DMA_FROMDEVICE);
  1391. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1392. /*
  1393. * This is an non TCP/UDP IP frame, so
  1394. * the headers aren't split into a small
  1395. * buffer. We have to use the small buffer
  1396. * that contains our sg list as our skb to
  1397. * send upstairs. Copy the sg list here to
  1398. * a local buffer and use it to find the
  1399. * pages to chain.
  1400. */
  1401. QPRINTK(qdev, RX_STATUS, DEBUG,
  1402. "%d bytes of headers & data in chain of large.\n", length);
  1403. skb = sbq_desc->p.skb;
  1404. bq = &bq_array[0];
  1405. memcpy(bq, skb->data, sizeof(bq_array));
  1406. sbq_desc->p.skb = NULL;
  1407. skb_reserve(skb, NET_IP_ALIGN);
  1408. } else {
  1409. QPRINTK(qdev, RX_STATUS, DEBUG,
  1410. "Headers in small, %d bytes of data in chain of large.\n", length);
  1411. bq = (__le64 *)sbq_desc->p.skb->data;
  1412. }
  1413. while (length > 0) {
  1414. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1415. pci_unmap_page(qdev->pdev,
  1416. pci_unmap_addr(lbq_desc,
  1417. mapaddr),
  1418. pci_unmap_len(lbq_desc,
  1419. maplen),
  1420. PCI_DMA_FROMDEVICE);
  1421. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1422. offset = 0;
  1423. QPRINTK(qdev, RX_STATUS, DEBUG,
  1424. "Adding page %d to skb for %d bytes.\n",
  1425. i, size);
  1426. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1427. offset, size);
  1428. skb->len += size;
  1429. skb->data_len += size;
  1430. skb->truesize += size;
  1431. length -= size;
  1432. lbq_desc->p.lbq_page = NULL;
  1433. bq++;
  1434. i++;
  1435. }
  1436. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1437. VLAN_ETH_HLEN : ETH_HLEN);
  1438. }
  1439. return skb;
  1440. }
  1441. /* Process an inbound completion from an rx ring. */
  1442. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1443. struct rx_ring *rx_ring,
  1444. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1445. {
  1446. struct net_device *ndev = qdev->ndev;
  1447. struct sk_buff *skb = NULL;
  1448. u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
  1449. IB_MAC_IOCB_RSP_VLAN_MASK)
  1450. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1451. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1452. if (unlikely(!skb)) {
  1453. QPRINTK(qdev, RX_STATUS, DEBUG,
  1454. "No skb available, drop packet.\n");
  1455. return;
  1456. }
  1457. /* Frame error, so drop the packet. */
  1458. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1459. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1460. ib_mac_rsp->flags2);
  1461. dev_kfree_skb_any(skb);
  1462. return;
  1463. }
  1464. /* The max framesize filter on this chip is set higher than
  1465. * MTU since FCoE uses 2k frames.
  1466. */
  1467. if (skb->len > ndev->mtu + ETH_HLEN) {
  1468. dev_kfree_skb_any(skb);
  1469. return;
  1470. }
  1471. prefetch(skb->data);
  1472. skb->dev = ndev;
  1473. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1474. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1475. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1476. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1477. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1478. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1479. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1480. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1481. }
  1482. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1483. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1484. }
  1485. skb->protocol = eth_type_trans(skb, ndev);
  1486. skb->ip_summed = CHECKSUM_NONE;
  1487. /* If rx checksum is on, and there are no
  1488. * csum or frame errors.
  1489. */
  1490. if (qdev->rx_csum &&
  1491. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1492. /* TCP frame. */
  1493. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1494. QPRINTK(qdev, RX_STATUS, DEBUG,
  1495. "TCP checksum done!\n");
  1496. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1497. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1498. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1499. /* Unfragmented ipv4 UDP frame. */
  1500. struct iphdr *iph = (struct iphdr *) skb->data;
  1501. if (!(iph->frag_off &
  1502. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1503. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1504. QPRINTK(qdev, RX_STATUS, DEBUG,
  1505. "TCP checksum done!\n");
  1506. }
  1507. }
  1508. }
  1509. ndev->stats.rx_packets++;
  1510. ndev->stats.rx_bytes += skb->len;
  1511. skb_record_rx_queue(skb, rx_ring->cq_id);
  1512. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1513. if (qdev->vlgrp &&
  1514. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1515. (vlan_id != 0))
  1516. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1517. vlan_id, skb);
  1518. else
  1519. napi_gro_receive(&rx_ring->napi, skb);
  1520. } else {
  1521. if (qdev->vlgrp &&
  1522. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1523. (vlan_id != 0))
  1524. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1525. else
  1526. netif_receive_skb(skb);
  1527. }
  1528. }
  1529. /* Process an outbound completion from an rx ring. */
  1530. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1531. struct ob_mac_iocb_rsp *mac_rsp)
  1532. {
  1533. struct net_device *ndev = qdev->ndev;
  1534. struct tx_ring *tx_ring;
  1535. struct tx_ring_desc *tx_ring_desc;
  1536. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1537. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1538. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1539. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1540. ndev->stats.tx_bytes += (tx_ring_desc->skb)->len;
  1541. ndev->stats.tx_packets++;
  1542. dev_kfree_skb(tx_ring_desc->skb);
  1543. tx_ring_desc->skb = NULL;
  1544. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1545. OB_MAC_IOCB_RSP_S |
  1546. OB_MAC_IOCB_RSP_L |
  1547. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1548. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1549. QPRINTK(qdev, TX_DONE, WARNING,
  1550. "Total descriptor length did not match transfer length.\n");
  1551. }
  1552. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1553. QPRINTK(qdev, TX_DONE, WARNING,
  1554. "Frame too short to be legal, not sent.\n");
  1555. }
  1556. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1557. QPRINTK(qdev, TX_DONE, WARNING,
  1558. "Frame too long, but sent anyway.\n");
  1559. }
  1560. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1561. QPRINTK(qdev, TX_DONE, WARNING,
  1562. "PCI backplane error. Frame not sent.\n");
  1563. }
  1564. }
  1565. atomic_inc(&tx_ring->tx_count);
  1566. }
  1567. /* Fire up a handler to reset the MPI processor. */
  1568. void ql_queue_fw_error(struct ql_adapter *qdev)
  1569. {
  1570. ql_link_off(qdev);
  1571. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1572. }
  1573. void ql_queue_asic_error(struct ql_adapter *qdev)
  1574. {
  1575. ql_link_off(qdev);
  1576. ql_disable_interrupts(qdev);
  1577. /* Clear adapter up bit to signal the recovery
  1578. * process that it shouldn't kill the reset worker
  1579. * thread
  1580. */
  1581. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1582. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1583. }
  1584. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1585. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1586. {
  1587. switch (ib_ae_rsp->event) {
  1588. case MGMT_ERR_EVENT:
  1589. QPRINTK(qdev, RX_ERR, ERR,
  1590. "Management Processor Fatal Error.\n");
  1591. ql_queue_fw_error(qdev);
  1592. return;
  1593. case CAM_LOOKUP_ERR_EVENT:
  1594. QPRINTK(qdev, LINK, ERR,
  1595. "Multiple CAM hits lookup occurred.\n");
  1596. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1597. ql_queue_asic_error(qdev);
  1598. return;
  1599. case SOFT_ECC_ERROR_EVENT:
  1600. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1601. ql_queue_asic_error(qdev);
  1602. break;
  1603. case PCI_ERR_ANON_BUF_RD:
  1604. QPRINTK(qdev, RX_ERR, ERR,
  1605. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1606. ib_ae_rsp->q_id);
  1607. ql_queue_asic_error(qdev);
  1608. break;
  1609. default:
  1610. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1611. ib_ae_rsp->event);
  1612. ql_queue_asic_error(qdev);
  1613. break;
  1614. }
  1615. }
  1616. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1617. {
  1618. struct ql_adapter *qdev = rx_ring->qdev;
  1619. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1620. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1621. int count = 0;
  1622. struct tx_ring *tx_ring;
  1623. /* While there are entries in the completion queue. */
  1624. while (prod != rx_ring->cnsmr_idx) {
  1625. QPRINTK(qdev, RX_STATUS, DEBUG,
  1626. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1627. prod, rx_ring->cnsmr_idx);
  1628. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1629. rmb();
  1630. switch (net_rsp->opcode) {
  1631. case OPCODE_OB_MAC_TSO_IOCB:
  1632. case OPCODE_OB_MAC_IOCB:
  1633. ql_process_mac_tx_intr(qdev, net_rsp);
  1634. break;
  1635. default:
  1636. QPRINTK(qdev, RX_STATUS, DEBUG,
  1637. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1638. net_rsp->opcode);
  1639. }
  1640. count++;
  1641. ql_update_cq(rx_ring);
  1642. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1643. }
  1644. ql_write_cq_idx(rx_ring);
  1645. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1646. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1647. net_rsp != NULL) {
  1648. if (atomic_read(&tx_ring->queue_stopped) &&
  1649. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1650. /*
  1651. * The queue got stopped because the tx_ring was full.
  1652. * Wake it up, because it's now at least 25% empty.
  1653. */
  1654. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1655. }
  1656. return count;
  1657. }
  1658. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1659. {
  1660. struct ql_adapter *qdev = rx_ring->qdev;
  1661. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1662. struct ql_net_rsp_iocb *net_rsp;
  1663. int count = 0;
  1664. /* While there are entries in the completion queue. */
  1665. while (prod != rx_ring->cnsmr_idx) {
  1666. QPRINTK(qdev, RX_STATUS, DEBUG,
  1667. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1668. prod, rx_ring->cnsmr_idx);
  1669. net_rsp = rx_ring->curr_entry;
  1670. rmb();
  1671. switch (net_rsp->opcode) {
  1672. case OPCODE_IB_MAC_IOCB:
  1673. ql_process_mac_rx_intr(qdev, rx_ring,
  1674. (struct ib_mac_iocb_rsp *)
  1675. net_rsp);
  1676. break;
  1677. case OPCODE_IB_AE_IOCB:
  1678. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1679. net_rsp);
  1680. break;
  1681. default:
  1682. {
  1683. QPRINTK(qdev, RX_STATUS, DEBUG,
  1684. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1685. net_rsp->opcode);
  1686. }
  1687. }
  1688. count++;
  1689. ql_update_cq(rx_ring);
  1690. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1691. if (count == budget)
  1692. break;
  1693. }
  1694. ql_update_buffer_queues(qdev, rx_ring);
  1695. ql_write_cq_idx(rx_ring);
  1696. return count;
  1697. }
  1698. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1699. {
  1700. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1701. struct ql_adapter *qdev = rx_ring->qdev;
  1702. struct rx_ring *trx_ring;
  1703. int i, work_done = 0;
  1704. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  1705. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1706. rx_ring->cq_id);
  1707. /* Service the TX rings first. They start
  1708. * right after the RSS rings. */
  1709. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  1710. trx_ring = &qdev->rx_ring[i];
  1711. /* If this TX completion ring belongs to this vector and
  1712. * it's not empty then service it.
  1713. */
  1714. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  1715. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  1716. trx_ring->cnsmr_idx)) {
  1717. QPRINTK(qdev, INTR, DEBUG,
  1718. "%s: Servicing TX completion ring %d.\n",
  1719. __func__, trx_ring->cq_id);
  1720. ql_clean_outbound_rx_ring(trx_ring);
  1721. }
  1722. }
  1723. /*
  1724. * Now service the RSS ring if it's active.
  1725. */
  1726. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1727. rx_ring->cnsmr_idx) {
  1728. QPRINTK(qdev, INTR, DEBUG,
  1729. "%s: Servicing RX completion ring %d.\n",
  1730. __func__, rx_ring->cq_id);
  1731. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1732. }
  1733. if (work_done < budget) {
  1734. napi_complete(napi);
  1735. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1736. }
  1737. return work_done;
  1738. }
  1739. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1740. {
  1741. struct ql_adapter *qdev = netdev_priv(ndev);
  1742. qdev->vlgrp = grp;
  1743. if (grp) {
  1744. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1745. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1746. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1747. } else {
  1748. QPRINTK(qdev, IFUP, DEBUG,
  1749. "Turning off VLAN in NIC_RCV_CFG.\n");
  1750. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1751. }
  1752. }
  1753. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1754. {
  1755. struct ql_adapter *qdev = netdev_priv(ndev);
  1756. u32 enable_bit = MAC_ADDR_E;
  1757. int status;
  1758. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1759. if (status)
  1760. return;
  1761. if (ql_set_mac_addr_reg
  1762. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1763. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1764. }
  1765. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1766. }
  1767. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1768. {
  1769. struct ql_adapter *qdev = netdev_priv(ndev);
  1770. u32 enable_bit = 0;
  1771. int status;
  1772. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1773. if (status)
  1774. return;
  1775. if (ql_set_mac_addr_reg
  1776. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1777. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1778. }
  1779. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1780. }
  1781. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1782. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1783. {
  1784. struct rx_ring *rx_ring = dev_id;
  1785. napi_schedule(&rx_ring->napi);
  1786. return IRQ_HANDLED;
  1787. }
  1788. /* This handles a fatal error, MPI activity, and the default
  1789. * rx_ring in an MSI-X multiple vector environment.
  1790. * In MSI/Legacy environment it also process the rest of
  1791. * the rx_rings.
  1792. */
  1793. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1794. {
  1795. struct rx_ring *rx_ring = dev_id;
  1796. struct ql_adapter *qdev = rx_ring->qdev;
  1797. struct intr_context *intr_context = &qdev->intr_context[0];
  1798. u32 var;
  1799. int work_done = 0;
  1800. spin_lock(&qdev->hw_lock);
  1801. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1802. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1803. spin_unlock(&qdev->hw_lock);
  1804. return IRQ_NONE;
  1805. }
  1806. spin_unlock(&qdev->hw_lock);
  1807. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1808. /*
  1809. * Check for fatal error.
  1810. */
  1811. if (var & STS_FE) {
  1812. ql_queue_asic_error(qdev);
  1813. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1814. var = ql_read32(qdev, ERR_STS);
  1815. QPRINTK(qdev, INTR, ERR,
  1816. "Resetting chip. Error Status Register = 0x%x\n", var);
  1817. return IRQ_HANDLED;
  1818. }
  1819. /*
  1820. * Check MPI processor activity.
  1821. */
  1822. if ((var & STS_PI) &&
  1823. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  1824. /*
  1825. * We've got an async event or mailbox completion.
  1826. * Handle it and clear the source of the interrupt.
  1827. */
  1828. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1829. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1830. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  1831. queue_delayed_work_on(smp_processor_id(),
  1832. qdev->workqueue, &qdev->mpi_work, 0);
  1833. work_done++;
  1834. }
  1835. /*
  1836. * Get the bit-mask that shows the active queues for this
  1837. * pass. Compare it to the queues that this irq services
  1838. * and call napi if there's a match.
  1839. */
  1840. var = ql_read32(qdev, ISR1);
  1841. if (var & intr_context->irq_mask) {
  1842. QPRINTK(qdev, INTR, INFO,
  1843. "Waking handler for rx_ring[0].\n");
  1844. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1845. napi_schedule(&rx_ring->napi);
  1846. work_done++;
  1847. }
  1848. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1849. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1850. }
  1851. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1852. {
  1853. if (skb_is_gso(skb)) {
  1854. int err;
  1855. if (skb_header_cloned(skb)) {
  1856. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1857. if (err)
  1858. return err;
  1859. }
  1860. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1861. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1862. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1863. mac_iocb_ptr->total_hdrs_len =
  1864. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1865. mac_iocb_ptr->net_trans_offset =
  1866. cpu_to_le16(skb_network_offset(skb) |
  1867. skb_transport_offset(skb)
  1868. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1869. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1870. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1871. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1872. struct iphdr *iph = ip_hdr(skb);
  1873. iph->check = 0;
  1874. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1875. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1876. iph->daddr, 0,
  1877. IPPROTO_TCP,
  1878. 0);
  1879. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1880. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1881. tcp_hdr(skb)->check =
  1882. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1883. &ipv6_hdr(skb)->daddr,
  1884. 0, IPPROTO_TCP, 0);
  1885. }
  1886. return 1;
  1887. }
  1888. return 0;
  1889. }
  1890. static void ql_hw_csum_setup(struct sk_buff *skb,
  1891. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1892. {
  1893. int len;
  1894. struct iphdr *iph = ip_hdr(skb);
  1895. __sum16 *check;
  1896. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1897. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1898. mac_iocb_ptr->net_trans_offset =
  1899. cpu_to_le16(skb_network_offset(skb) |
  1900. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1901. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1902. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1903. if (likely(iph->protocol == IPPROTO_TCP)) {
  1904. check = &(tcp_hdr(skb)->check);
  1905. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1906. mac_iocb_ptr->total_hdrs_len =
  1907. cpu_to_le16(skb_transport_offset(skb) +
  1908. (tcp_hdr(skb)->doff << 2));
  1909. } else {
  1910. check = &(udp_hdr(skb)->check);
  1911. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1912. mac_iocb_ptr->total_hdrs_len =
  1913. cpu_to_le16(skb_transport_offset(skb) +
  1914. sizeof(struct udphdr));
  1915. }
  1916. *check = ~csum_tcpudp_magic(iph->saddr,
  1917. iph->daddr, len, iph->protocol, 0);
  1918. }
  1919. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1920. {
  1921. struct tx_ring_desc *tx_ring_desc;
  1922. struct ob_mac_iocb_req *mac_iocb_ptr;
  1923. struct ql_adapter *qdev = netdev_priv(ndev);
  1924. int tso;
  1925. struct tx_ring *tx_ring;
  1926. u32 tx_ring_idx = (u32) skb->queue_mapping;
  1927. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1928. if (skb_padto(skb, ETH_ZLEN))
  1929. return NETDEV_TX_OK;
  1930. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1931. QPRINTK(qdev, TX_QUEUED, INFO,
  1932. "%s: shutting down tx queue %d du to lack of resources.\n",
  1933. __func__, tx_ring_idx);
  1934. netif_stop_subqueue(ndev, tx_ring->wq_id);
  1935. atomic_inc(&tx_ring->queue_stopped);
  1936. return NETDEV_TX_BUSY;
  1937. }
  1938. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1939. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1940. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  1941. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1942. mac_iocb_ptr->tid = tx_ring_desc->index;
  1943. /* We use the upper 32-bits to store the tx queue for this IO.
  1944. * When we get the completion we can use it to establish the context.
  1945. */
  1946. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1947. tx_ring_desc->skb = skb;
  1948. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1949. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1950. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1951. vlan_tx_tag_get(skb));
  1952. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1953. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1954. }
  1955. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1956. if (tso < 0) {
  1957. dev_kfree_skb_any(skb);
  1958. return NETDEV_TX_OK;
  1959. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1960. ql_hw_csum_setup(skb,
  1961. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1962. }
  1963. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1964. NETDEV_TX_OK) {
  1965. QPRINTK(qdev, TX_QUEUED, ERR,
  1966. "Could not map the segments.\n");
  1967. return NETDEV_TX_BUSY;
  1968. }
  1969. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1970. tx_ring->prod_idx++;
  1971. if (tx_ring->prod_idx == tx_ring->wq_len)
  1972. tx_ring->prod_idx = 0;
  1973. wmb();
  1974. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1975. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1976. tx_ring->prod_idx, skb->len);
  1977. atomic_dec(&tx_ring->tx_count);
  1978. return NETDEV_TX_OK;
  1979. }
  1980. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1981. {
  1982. if (qdev->rx_ring_shadow_reg_area) {
  1983. pci_free_consistent(qdev->pdev,
  1984. PAGE_SIZE,
  1985. qdev->rx_ring_shadow_reg_area,
  1986. qdev->rx_ring_shadow_reg_dma);
  1987. qdev->rx_ring_shadow_reg_area = NULL;
  1988. }
  1989. if (qdev->tx_ring_shadow_reg_area) {
  1990. pci_free_consistent(qdev->pdev,
  1991. PAGE_SIZE,
  1992. qdev->tx_ring_shadow_reg_area,
  1993. qdev->tx_ring_shadow_reg_dma);
  1994. qdev->tx_ring_shadow_reg_area = NULL;
  1995. }
  1996. }
  1997. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1998. {
  1999. qdev->rx_ring_shadow_reg_area =
  2000. pci_alloc_consistent(qdev->pdev,
  2001. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2002. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2003. QPRINTK(qdev, IFUP, ERR,
  2004. "Allocation of RX shadow space failed.\n");
  2005. return -ENOMEM;
  2006. }
  2007. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2008. qdev->tx_ring_shadow_reg_area =
  2009. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2010. &qdev->tx_ring_shadow_reg_dma);
  2011. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2012. QPRINTK(qdev, IFUP, ERR,
  2013. "Allocation of TX shadow space failed.\n");
  2014. goto err_wqp_sh_area;
  2015. }
  2016. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2017. return 0;
  2018. err_wqp_sh_area:
  2019. pci_free_consistent(qdev->pdev,
  2020. PAGE_SIZE,
  2021. qdev->rx_ring_shadow_reg_area,
  2022. qdev->rx_ring_shadow_reg_dma);
  2023. return -ENOMEM;
  2024. }
  2025. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2026. {
  2027. struct tx_ring_desc *tx_ring_desc;
  2028. int i;
  2029. struct ob_mac_iocb_req *mac_iocb_ptr;
  2030. mac_iocb_ptr = tx_ring->wq_base;
  2031. tx_ring_desc = tx_ring->q;
  2032. for (i = 0; i < tx_ring->wq_len; i++) {
  2033. tx_ring_desc->index = i;
  2034. tx_ring_desc->skb = NULL;
  2035. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2036. mac_iocb_ptr++;
  2037. tx_ring_desc++;
  2038. }
  2039. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2040. atomic_set(&tx_ring->queue_stopped, 0);
  2041. }
  2042. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2043. struct tx_ring *tx_ring)
  2044. {
  2045. if (tx_ring->wq_base) {
  2046. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2047. tx_ring->wq_base, tx_ring->wq_base_dma);
  2048. tx_ring->wq_base = NULL;
  2049. }
  2050. kfree(tx_ring->q);
  2051. tx_ring->q = NULL;
  2052. }
  2053. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2054. struct tx_ring *tx_ring)
  2055. {
  2056. tx_ring->wq_base =
  2057. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2058. &tx_ring->wq_base_dma);
  2059. if ((tx_ring->wq_base == NULL)
  2060. || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2061. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2062. return -ENOMEM;
  2063. }
  2064. tx_ring->q =
  2065. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2066. if (tx_ring->q == NULL)
  2067. goto err;
  2068. return 0;
  2069. err:
  2070. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2071. tx_ring->wq_base, tx_ring->wq_base_dma);
  2072. return -ENOMEM;
  2073. }
  2074. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2075. {
  2076. int i;
  2077. struct bq_desc *lbq_desc;
  2078. for (i = 0; i < rx_ring->lbq_len; i++) {
  2079. lbq_desc = &rx_ring->lbq[i];
  2080. if (lbq_desc->p.lbq_page) {
  2081. pci_unmap_page(qdev->pdev,
  2082. pci_unmap_addr(lbq_desc, mapaddr),
  2083. pci_unmap_len(lbq_desc, maplen),
  2084. PCI_DMA_FROMDEVICE);
  2085. put_page(lbq_desc->p.lbq_page);
  2086. lbq_desc->p.lbq_page = NULL;
  2087. }
  2088. }
  2089. }
  2090. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2091. {
  2092. int i;
  2093. struct bq_desc *sbq_desc;
  2094. for (i = 0; i < rx_ring->sbq_len; i++) {
  2095. sbq_desc = &rx_ring->sbq[i];
  2096. if (sbq_desc == NULL) {
  2097. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2098. return;
  2099. }
  2100. if (sbq_desc->p.skb) {
  2101. pci_unmap_single(qdev->pdev,
  2102. pci_unmap_addr(sbq_desc, mapaddr),
  2103. pci_unmap_len(sbq_desc, maplen),
  2104. PCI_DMA_FROMDEVICE);
  2105. dev_kfree_skb(sbq_desc->p.skb);
  2106. sbq_desc->p.skb = NULL;
  2107. }
  2108. }
  2109. }
  2110. /* Free all large and small rx buffers associated
  2111. * with the completion queues for this device.
  2112. */
  2113. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2114. {
  2115. int i;
  2116. struct rx_ring *rx_ring;
  2117. for (i = 0; i < qdev->rx_ring_count; i++) {
  2118. rx_ring = &qdev->rx_ring[i];
  2119. if (rx_ring->lbq)
  2120. ql_free_lbq_buffers(qdev, rx_ring);
  2121. if (rx_ring->sbq)
  2122. ql_free_sbq_buffers(qdev, rx_ring);
  2123. }
  2124. }
  2125. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2126. {
  2127. struct rx_ring *rx_ring;
  2128. int i;
  2129. for (i = 0; i < qdev->rx_ring_count; i++) {
  2130. rx_ring = &qdev->rx_ring[i];
  2131. if (rx_ring->type != TX_Q)
  2132. ql_update_buffer_queues(qdev, rx_ring);
  2133. }
  2134. }
  2135. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2136. struct rx_ring *rx_ring)
  2137. {
  2138. int i;
  2139. struct bq_desc *lbq_desc;
  2140. __le64 *bq = rx_ring->lbq_base;
  2141. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2142. for (i = 0; i < rx_ring->lbq_len; i++) {
  2143. lbq_desc = &rx_ring->lbq[i];
  2144. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2145. lbq_desc->index = i;
  2146. lbq_desc->addr = bq;
  2147. bq++;
  2148. }
  2149. }
  2150. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2151. struct rx_ring *rx_ring)
  2152. {
  2153. int i;
  2154. struct bq_desc *sbq_desc;
  2155. __le64 *bq = rx_ring->sbq_base;
  2156. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2157. for (i = 0; i < rx_ring->sbq_len; i++) {
  2158. sbq_desc = &rx_ring->sbq[i];
  2159. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2160. sbq_desc->index = i;
  2161. sbq_desc->addr = bq;
  2162. bq++;
  2163. }
  2164. }
  2165. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2166. struct rx_ring *rx_ring)
  2167. {
  2168. /* Free the small buffer queue. */
  2169. if (rx_ring->sbq_base) {
  2170. pci_free_consistent(qdev->pdev,
  2171. rx_ring->sbq_size,
  2172. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2173. rx_ring->sbq_base = NULL;
  2174. }
  2175. /* Free the small buffer queue control blocks. */
  2176. kfree(rx_ring->sbq);
  2177. rx_ring->sbq = NULL;
  2178. /* Free the large buffer queue. */
  2179. if (rx_ring->lbq_base) {
  2180. pci_free_consistent(qdev->pdev,
  2181. rx_ring->lbq_size,
  2182. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2183. rx_ring->lbq_base = NULL;
  2184. }
  2185. /* Free the large buffer queue control blocks. */
  2186. kfree(rx_ring->lbq);
  2187. rx_ring->lbq = NULL;
  2188. /* Free the rx queue. */
  2189. if (rx_ring->cq_base) {
  2190. pci_free_consistent(qdev->pdev,
  2191. rx_ring->cq_size,
  2192. rx_ring->cq_base, rx_ring->cq_base_dma);
  2193. rx_ring->cq_base = NULL;
  2194. }
  2195. }
  2196. /* Allocate queues and buffers for this completions queue based
  2197. * on the values in the parameter structure. */
  2198. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2199. struct rx_ring *rx_ring)
  2200. {
  2201. /*
  2202. * Allocate the completion queue for this rx_ring.
  2203. */
  2204. rx_ring->cq_base =
  2205. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2206. &rx_ring->cq_base_dma);
  2207. if (rx_ring->cq_base == NULL) {
  2208. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2209. return -ENOMEM;
  2210. }
  2211. if (rx_ring->sbq_len) {
  2212. /*
  2213. * Allocate small buffer queue.
  2214. */
  2215. rx_ring->sbq_base =
  2216. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2217. &rx_ring->sbq_base_dma);
  2218. if (rx_ring->sbq_base == NULL) {
  2219. QPRINTK(qdev, IFUP, ERR,
  2220. "Small buffer queue allocation failed.\n");
  2221. goto err_mem;
  2222. }
  2223. /*
  2224. * Allocate small buffer queue control blocks.
  2225. */
  2226. rx_ring->sbq =
  2227. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2228. GFP_KERNEL);
  2229. if (rx_ring->sbq == NULL) {
  2230. QPRINTK(qdev, IFUP, ERR,
  2231. "Small buffer queue control block allocation failed.\n");
  2232. goto err_mem;
  2233. }
  2234. ql_init_sbq_ring(qdev, rx_ring);
  2235. }
  2236. if (rx_ring->lbq_len) {
  2237. /*
  2238. * Allocate large buffer queue.
  2239. */
  2240. rx_ring->lbq_base =
  2241. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2242. &rx_ring->lbq_base_dma);
  2243. if (rx_ring->lbq_base == NULL) {
  2244. QPRINTK(qdev, IFUP, ERR,
  2245. "Large buffer queue allocation failed.\n");
  2246. goto err_mem;
  2247. }
  2248. /*
  2249. * Allocate large buffer queue control blocks.
  2250. */
  2251. rx_ring->lbq =
  2252. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2253. GFP_KERNEL);
  2254. if (rx_ring->lbq == NULL) {
  2255. QPRINTK(qdev, IFUP, ERR,
  2256. "Large buffer queue control block allocation failed.\n");
  2257. goto err_mem;
  2258. }
  2259. ql_init_lbq_ring(qdev, rx_ring);
  2260. }
  2261. return 0;
  2262. err_mem:
  2263. ql_free_rx_resources(qdev, rx_ring);
  2264. return -ENOMEM;
  2265. }
  2266. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2267. {
  2268. struct tx_ring *tx_ring;
  2269. struct tx_ring_desc *tx_ring_desc;
  2270. int i, j;
  2271. /*
  2272. * Loop through all queues and free
  2273. * any resources.
  2274. */
  2275. for (j = 0; j < qdev->tx_ring_count; j++) {
  2276. tx_ring = &qdev->tx_ring[j];
  2277. for (i = 0; i < tx_ring->wq_len; i++) {
  2278. tx_ring_desc = &tx_ring->q[i];
  2279. if (tx_ring_desc && tx_ring_desc->skb) {
  2280. QPRINTK(qdev, IFDOWN, ERR,
  2281. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2282. tx_ring_desc->skb, j,
  2283. tx_ring_desc->index);
  2284. ql_unmap_send(qdev, tx_ring_desc,
  2285. tx_ring_desc->map_cnt);
  2286. dev_kfree_skb(tx_ring_desc->skb);
  2287. tx_ring_desc->skb = NULL;
  2288. }
  2289. }
  2290. }
  2291. }
  2292. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2293. {
  2294. int i;
  2295. for (i = 0; i < qdev->tx_ring_count; i++)
  2296. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2297. for (i = 0; i < qdev->rx_ring_count; i++)
  2298. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2299. ql_free_shadow_space(qdev);
  2300. }
  2301. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2302. {
  2303. int i;
  2304. /* Allocate space for our shadow registers and such. */
  2305. if (ql_alloc_shadow_space(qdev))
  2306. return -ENOMEM;
  2307. for (i = 0; i < qdev->rx_ring_count; i++) {
  2308. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2309. QPRINTK(qdev, IFUP, ERR,
  2310. "RX resource allocation failed.\n");
  2311. goto err_mem;
  2312. }
  2313. }
  2314. /* Allocate tx queue resources */
  2315. for (i = 0; i < qdev->tx_ring_count; i++) {
  2316. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2317. QPRINTK(qdev, IFUP, ERR,
  2318. "TX resource allocation failed.\n");
  2319. goto err_mem;
  2320. }
  2321. }
  2322. return 0;
  2323. err_mem:
  2324. ql_free_mem_resources(qdev);
  2325. return -ENOMEM;
  2326. }
  2327. /* Set up the rx ring control block and pass it to the chip.
  2328. * The control block is defined as
  2329. * "Completion Queue Initialization Control Block", or cqicb.
  2330. */
  2331. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2332. {
  2333. struct cqicb *cqicb = &rx_ring->cqicb;
  2334. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2335. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2336. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2337. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2338. void __iomem *doorbell_area =
  2339. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2340. int err = 0;
  2341. u16 bq_len;
  2342. u64 tmp;
  2343. __le64 *base_indirect_ptr;
  2344. int page_entries;
  2345. /* Set up the shadow registers for this ring. */
  2346. rx_ring->prod_idx_sh_reg = shadow_reg;
  2347. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2348. shadow_reg += sizeof(u64);
  2349. shadow_reg_dma += sizeof(u64);
  2350. rx_ring->lbq_base_indirect = shadow_reg;
  2351. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2352. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2353. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2354. rx_ring->sbq_base_indirect = shadow_reg;
  2355. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2356. /* PCI doorbell mem area + 0x00 for consumer index register */
  2357. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2358. rx_ring->cnsmr_idx = 0;
  2359. rx_ring->curr_entry = rx_ring->cq_base;
  2360. /* PCI doorbell mem area + 0x04 for valid register */
  2361. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2362. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2363. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2364. /* PCI doorbell mem area + 0x1c */
  2365. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2366. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2367. cqicb->msix_vect = rx_ring->irq;
  2368. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2369. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2370. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2371. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2372. /*
  2373. * Set up the control block load flags.
  2374. */
  2375. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2376. FLAGS_LV | /* Load MSI-X vector */
  2377. FLAGS_LI; /* Load irq delay values */
  2378. if (rx_ring->lbq_len) {
  2379. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2380. tmp = (u64)rx_ring->lbq_base_dma;
  2381. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2382. page_entries = 0;
  2383. do {
  2384. *base_indirect_ptr = cpu_to_le64(tmp);
  2385. tmp += DB_PAGE_SIZE;
  2386. base_indirect_ptr++;
  2387. page_entries++;
  2388. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2389. cqicb->lbq_addr =
  2390. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2391. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2392. (u16) rx_ring->lbq_buf_size;
  2393. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2394. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2395. (u16) rx_ring->lbq_len;
  2396. cqicb->lbq_len = cpu_to_le16(bq_len);
  2397. rx_ring->lbq_prod_idx = 0;
  2398. rx_ring->lbq_curr_idx = 0;
  2399. rx_ring->lbq_clean_idx = 0;
  2400. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2401. }
  2402. if (rx_ring->sbq_len) {
  2403. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2404. tmp = (u64)rx_ring->sbq_base_dma;
  2405. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2406. page_entries = 0;
  2407. do {
  2408. *base_indirect_ptr = cpu_to_le64(tmp);
  2409. tmp += DB_PAGE_SIZE;
  2410. base_indirect_ptr++;
  2411. page_entries++;
  2412. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2413. cqicb->sbq_addr =
  2414. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2415. cqicb->sbq_buf_size =
  2416. cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
  2417. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2418. (u16) rx_ring->sbq_len;
  2419. cqicb->sbq_len = cpu_to_le16(bq_len);
  2420. rx_ring->sbq_prod_idx = 0;
  2421. rx_ring->sbq_curr_idx = 0;
  2422. rx_ring->sbq_clean_idx = 0;
  2423. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2424. }
  2425. switch (rx_ring->type) {
  2426. case TX_Q:
  2427. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2428. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2429. break;
  2430. case RX_Q:
  2431. /* Inbound completion handling rx_rings run in
  2432. * separate NAPI contexts.
  2433. */
  2434. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2435. 64);
  2436. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2437. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2438. break;
  2439. default:
  2440. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2441. rx_ring->type);
  2442. }
  2443. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2444. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2445. CFG_LCQ, rx_ring->cq_id);
  2446. if (err) {
  2447. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2448. return err;
  2449. }
  2450. return err;
  2451. }
  2452. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2453. {
  2454. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2455. void __iomem *doorbell_area =
  2456. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2457. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2458. (tx_ring->wq_id * sizeof(u64));
  2459. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2460. (tx_ring->wq_id * sizeof(u64));
  2461. int err = 0;
  2462. /*
  2463. * Assign doorbell registers for this tx_ring.
  2464. */
  2465. /* TX PCI doorbell mem area for tx producer index */
  2466. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2467. tx_ring->prod_idx = 0;
  2468. /* TX PCI doorbell mem area + 0x04 */
  2469. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2470. /*
  2471. * Assign shadow registers for this tx_ring.
  2472. */
  2473. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2474. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2475. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2476. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2477. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2478. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2479. wqicb->rid = 0;
  2480. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2481. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2482. ql_init_tx_ring(qdev, tx_ring);
  2483. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2484. (u16) tx_ring->wq_id);
  2485. if (err) {
  2486. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2487. return err;
  2488. }
  2489. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2490. return err;
  2491. }
  2492. static void ql_disable_msix(struct ql_adapter *qdev)
  2493. {
  2494. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2495. pci_disable_msix(qdev->pdev);
  2496. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2497. kfree(qdev->msi_x_entry);
  2498. qdev->msi_x_entry = NULL;
  2499. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2500. pci_disable_msi(qdev->pdev);
  2501. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2502. }
  2503. }
  2504. /* We start by trying to get the number of vectors
  2505. * stored in qdev->intr_count. If we don't get that
  2506. * many then we reduce the count and try again.
  2507. */
  2508. static void ql_enable_msix(struct ql_adapter *qdev)
  2509. {
  2510. int i, err;
  2511. /* Get the MSIX vectors. */
  2512. if (irq_type == MSIX_IRQ) {
  2513. /* Try to alloc space for the msix struct,
  2514. * if it fails then go to MSI/legacy.
  2515. */
  2516. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2517. sizeof(struct msix_entry),
  2518. GFP_KERNEL);
  2519. if (!qdev->msi_x_entry) {
  2520. irq_type = MSI_IRQ;
  2521. goto msi;
  2522. }
  2523. for (i = 0; i < qdev->intr_count; i++)
  2524. qdev->msi_x_entry[i].entry = i;
  2525. /* Loop to get our vectors. We start with
  2526. * what we want and settle for what we get.
  2527. */
  2528. do {
  2529. err = pci_enable_msix(qdev->pdev,
  2530. qdev->msi_x_entry, qdev->intr_count);
  2531. if (err > 0)
  2532. qdev->intr_count = err;
  2533. } while (err > 0);
  2534. if (err < 0) {
  2535. kfree(qdev->msi_x_entry);
  2536. qdev->msi_x_entry = NULL;
  2537. QPRINTK(qdev, IFUP, WARNING,
  2538. "MSI-X Enable failed, trying MSI.\n");
  2539. qdev->intr_count = 1;
  2540. irq_type = MSI_IRQ;
  2541. } else if (err == 0) {
  2542. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2543. QPRINTK(qdev, IFUP, INFO,
  2544. "MSI-X Enabled, got %d vectors.\n",
  2545. qdev->intr_count);
  2546. return;
  2547. }
  2548. }
  2549. msi:
  2550. qdev->intr_count = 1;
  2551. if (irq_type == MSI_IRQ) {
  2552. if (!pci_enable_msi(qdev->pdev)) {
  2553. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2554. QPRINTK(qdev, IFUP, INFO,
  2555. "Running with MSI interrupts.\n");
  2556. return;
  2557. }
  2558. }
  2559. irq_type = LEG_IRQ;
  2560. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2561. }
  2562. /* Each vector services 1 RSS ring and and 1 or more
  2563. * TX completion rings. This function loops through
  2564. * the TX completion rings and assigns the vector that
  2565. * will service it. An example would be if there are
  2566. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2567. * This would mean that vector 0 would service RSS ring 0
  2568. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2569. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2570. */
  2571. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2572. {
  2573. int i, j, vect;
  2574. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2575. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2576. /* Assign irq vectors to TX rx_rings.*/
  2577. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2578. i < qdev->rx_ring_count; i++) {
  2579. if (j == tx_rings_per_vector) {
  2580. vect++;
  2581. j = 0;
  2582. }
  2583. qdev->rx_ring[i].irq = vect;
  2584. j++;
  2585. }
  2586. } else {
  2587. /* For single vector all rings have an irq
  2588. * of zero.
  2589. */
  2590. for (i = 0; i < qdev->rx_ring_count; i++)
  2591. qdev->rx_ring[i].irq = 0;
  2592. }
  2593. }
  2594. /* Set the interrupt mask for this vector. Each vector
  2595. * will service 1 RSS ring and 1 or more TX completion
  2596. * rings. This function sets up a bit mask per vector
  2597. * that indicates which rings it services.
  2598. */
  2599. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2600. {
  2601. int j, vect = ctx->intr;
  2602. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2603. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2604. /* Add the RSS ring serviced by this vector
  2605. * to the mask.
  2606. */
  2607. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  2608. /* Add the TX ring(s) serviced by this vector
  2609. * to the mask. */
  2610. for (j = 0; j < tx_rings_per_vector; j++) {
  2611. ctx->irq_mask |=
  2612. (1 << qdev->rx_ring[qdev->rss_ring_count +
  2613. (vect * tx_rings_per_vector) + j].cq_id);
  2614. }
  2615. } else {
  2616. /* For single vector we just shift each queue's
  2617. * ID into the mask.
  2618. */
  2619. for (j = 0; j < qdev->rx_ring_count; j++)
  2620. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  2621. }
  2622. }
  2623. /*
  2624. * Here we build the intr_context structures based on
  2625. * our rx_ring count and intr vector count.
  2626. * The intr_context structure is used to hook each vector
  2627. * to possibly different handlers.
  2628. */
  2629. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2630. {
  2631. int i = 0;
  2632. struct intr_context *intr_context = &qdev->intr_context[0];
  2633. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2634. /* Each rx_ring has it's
  2635. * own intr_context since we have separate
  2636. * vectors for each queue.
  2637. */
  2638. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2639. qdev->rx_ring[i].irq = i;
  2640. intr_context->intr = i;
  2641. intr_context->qdev = qdev;
  2642. /* Set up this vector's bit-mask that indicates
  2643. * which queues it services.
  2644. */
  2645. ql_set_irq_mask(qdev, intr_context);
  2646. /*
  2647. * We set up each vectors enable/disable/read bits so
  2648. * there's no bit/mask calculations in the critical path.
  2649. */
  2650. intr_context->intr_en_mask =
  2651. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2652. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2653. | i;
  2654. intr_context->intr_dis_mask =
  2655. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2656. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2657. INTR_EN_IHD | i;
  2658. intr_context->intr_read_mask =
  2659. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2660. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2661. i;
  2662. if (i == 0) {
  2663. /* The first vector/queue handles
  2664. * broadcast/multicast, fatal errors,
  2665. * and firmware events. This in addition
  2666. * to normal inbound NAPI processing.
  2667. */
  2668. intr_context->handler = qlge_isr;
  2669. sprintf(intr_context->name, "%s-rx-%d",
  2670. qdev->ndev->name, i);
  2671. } else {
  2672. /*
  2673. * Inbound queues handle unicast frames only.
  2674. */
  2675. intr_context->handler = qlge_msix_rx_isr;
  2676. sprintf(intr_context->name, "%s-rx-%d",
  2677. qdev->ndev->name, i);
  2678. }
  2679. }
  2680. } else {
  2681. /*
  2682. * All rx_rings use the same intr_context since
  2683. * there is only one vector.
  2684. */
  2685. intr_context->intr = 0;
  2686. intr_context->qdev = qdev;
  2687. /*
  2688. * We set up each vectors enable/disable/read bits so
  2689. * there's no bit/mask calculations in the critical path.
  2690. */
  2691. intr_context->intr_en_mask =
  2692. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2693. intr_context->intr_dis_mask =
  2694. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2695. INTR_EN_TYPE_DISABLE;
  2696. intr_context->intr_read_mask =
  2697. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2698. /*
  2699. * Single interrupt means one handler for all rings.
  2700. */
  2701. intr_context->handler = qlge_isr;
  2702. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2703. /* Set up this vector's bit-mask that indicates
  2704. * which queues it services. In this case there is
  2705. * a single vector so it will service all RSS and
  2706. * TX completion rings.
  2707. */
  2708. ql_set_irq_mask(qdev, intr_context);
  2709. }
  2710. /* Tell the TX completion rings which MSIx vector
  2711. * they will be using.
  2712. */
  2713. ql_set_tx_vect(qdev);
  2714. }
  2715. static void ql_free_irq(struct ql_adapter *qdev)
  2716. {
  2717. int i;
  2718. struct intr_context *intr_context = &qdev->intr_context[0];
  2719. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2720. if (intr_context->hooked) {
  2721. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2722. free_irq(qdev->msi_x_entry[i].vector,
  2723. &qdev->rx_ring[i]);
  2724. QPRINTK(qdev, IFDOWN, DEBUG,
  2725. "freeing msix interrupt %d.\n", i);
  2726. } else {
  2727. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2728. QPRINTK(qdev, IFDOWN, DEBUG,
  2729. "freeing msi interrupt %d.\n", i);
  2730. }
  2731. }
  2732. }
  2733. ql_disable_msix(qdev);
  2734. }
  2735. static int ql_request_irq(struct ql_adapter *qdev)
  2736. {
  2737. int i;
  2738. int status = 0;
  2739. struct pci_dev *pdev = qdev->pdev;
  2740. struct intr_context *intr_context = &qdev->intr_context[0];
  2741. ql_resolve_queues_to_irqs(qdev);
  2742. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2743. atomic_set(&intr_context->irq_cnt, 0);
  2744. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2745. status = request_irq(qdev->msi_x_entry[i].vector,
  2746. intr_context->handler,
  2747. 0,
  2748. intr_context->name,
  2749. &qdev->rx_ring[i]);
  2750. if (status) {
  2751. QPRINTK(qdev, IFUP, ERR,
  2752. "Failed request for MSIX interrupt %d.\n",
  2753. i);
  2754. goto err_irq;
  2755. } else {
  2756. QPRINTK(qdev, IFUP, DEBUG,
  2757. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2758. i,
  2759. qdev->rx_ring[i].type ==
  2760. DEFAULT_Q ? "DEFAULT_Q" : "",
  2761. qdev->rx_ring[i].type ==
  2762. TX_Q ? "TX_Q" : "",
  2763. qdev->rx_ring[i].type ==
  2764. RX_Q ? "RX_Q" : "", intr_context->name);
  2765. }
  2766. } else {
  2767. QPRINTK(qdev, IFUP, DEBUG,
  2768. "trying msi or legacy interrupts.\n");
  2769. QPRINTK(qdev, IFUP, DEBUG,
  2770. "%s: irq = %d.\n", __func__, pdev->irq);
  2771. QPRINTK(qdev, IFUP, DEBUG,
  2772. "%s: context->name = %s.\n", __func__,
  2773. intr_context->name);
  2774. QPRINTK(qdev, IFUP, DEBUG,
  2775. "%s: dev_id = 0x%p.\n", __func__,
  2776. &qdev->rx_ring[0]);
  2777. status =
  2778. request_irq(pdev->irq, qlge_isr,
  2779. test_bit(QL_MSI_ENABLED,
  2780. &qdev->
  2781. flags) ? 0 : IRQF_SHARED,
  2782. intr_context->name, &qdev->rx_ring[0]);
  2783. if (status)
  2784. goto err_irq;
  2785. QPRINTK(qdev, IFUP, ERR,
  2786. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2787. i,
  2788. qdev->rx_ring[0].type ==
  2789. DEFAULT_Q ? "DEFAULT_Q" : "",
  2790. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2791. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2792. intr_context->name);
  2793. }
  2794. intr_context->hooked = 1;
  2795. }
  2796. return status;
  2797. err_irq:
  2798. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2799. ql_free_irq(qdev);
  2800. return status;
  2801. }
  2802. static int ql_start_rss(struct ql_adapter *qdev)
  2803. {
  2804. struct ricb *ricb = &qdev->ricb;
  2805. int status = 0;
  2806. int i;
  2807. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2808. memset((void *)ricb, 0, sizeof(*ricb));
  2809. ricb->base_cq = RSS_L4K;
  2810. ricb->flags =
  2811. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2812. RSS_RT6);
  2813. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2814. /*
  2815. * Fill out the Indirection Table.
  2816. */
  2817. for (i = 0; i < 256; i++)
  2818. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2819. /*
  2820. * Random values for the IPv6 and IPv4 Hash Keys.
  2821. */
  2822. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2823. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2824. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2825. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  2826. if (status) {
  2827. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2828. return status;
  2829. }
  2830. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2831. return status;
  2832. }
  2833. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  2834. {
  2835. int i, status = 0;
  2836. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2837. if (status)
  2838. return status;
  2839. /* Clear all the entries in the routing table. */
  2840. for (i = 0; i < 16; i++) {
  2841. status = ql_set_routing_reg(qdev, i, 0, 0);
  2842. if (status) {
  2843. QPRINTK(qdev, IFUP, ERR,
  2844. "Failed to init routing register for CAM "
  2845. "packets.\n");
  2846. break;
  2847. }
  2848. }
  2849. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2850. return status;
  2851. }
  2852. /* Initialize the frame-to-queue routing. */
  2853. static int ql_route_initialize(struct ql_adapter *qdev)
  2854. {
  2855. int status = 0;
  2856. /* Clear all the entries in the routing table. */
  2857. status = ql_clear_routing_entries(qdev);
  2858. if (status)
  2859. return status;
  2860. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2861. if (status)
  2862. return status;
  2863. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2864. if (status) {
  2865. QPRINTK(qdev, IFUP, ERR,
  2866. "Failed to init routing register for error packets.\n");
  2867. goto exit;
  2868. }
  2869. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2870. if (status) {
  2871. QPRINTK(qdev, IFUP, ERR,
  2872. "Failed to init routing register for broadcast packets.\n");
  2873. goto exit;
  2874. }
  2875. /* If we have more than one inbound queue, then turn on RSS in the
  2876. * routing block.
  2877. */
  2878. if (qdev->rss_ring_count > 1) {
  2879. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2880. RT_IDX_RSS_MATCH, 1);
  2881. if (status) {
  2882. QPRINTK(qdev, IFUP, ERR,
  2883. "Failed to init routing register for MATCH RSS packets.\n");
  2884. goto exit;
  2885. }
  2886. }
  2887. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2888. RT_IDX_CAM_HIT, 1);
  2889. if (status)
  2890. QPRINTK(qdev, IFUP, ERR,
  2891. "Failed to init routing register for CAM packets.\n");
  2892. exit:
  2893. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2894. return status;
  2895. }
  2896. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2897. {
  2898. int status, set;
  2899. /* If check if the link is up and use to
  2900. * determine if we are setting or clearing
  2901. * the MAC address in the CAM.
  2902. */
  2903. set = ql_read32(qdev, STS);
  2904. set &= qdev->port_link_up;
  2905. status = ql_set_mac_addr(qdev, set);
  2906. if (status) {
  2907. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2908. return status;
  2909. }
  2910. status = ql_route_initialize(qdev);
  2911. if (status)
  2912. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2913. return status;
  2914. }
  2915. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2916. {
  2917. u32 value, mask;
  2918. int i;
  2919. int status = 0;
  2920. /*
  2921. * Set up the System register to halt on errors.
  2922. */
  2923. value = SYS_EFE | SYS_FAE;
  2924. mask = value << 16;
  2925. ql_write32(qdev, SYS, mask | value);
  2926. /* Set the default queue, and VLAN behavior. */
  2927. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  2928. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  2929. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2930. /* Set the MPI interrupt to enabled. */
  2931. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2932. /* Enable the function, set pagesize, enable error checking. */
  2933. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2934. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2935. /* Set/clear header splitting. */
  2936. mask = FSC_VM_PAGESIZE_MASK |
  2937. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2938. ql_write32(qdev, FSC, mask | value);
  2939. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2940. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2941. /* Start up the rx queues. */
  2942. for (i = 0; i < qdev->rx_ring_count; i++) {
  2943. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2944. if (status) {
  2945. QPRINTK(qdev, IFUP, ERR,
  2946. "Failed to start rx ring[%d].\n", i);
  2947. return status;
  2948. }
  2949. }
  2950. /* If there is more than one inbound completion queue
  2951. * then download a RICB to configure RSS.
  2952. */
  2953. if (qdev->rss_ring_count > 1) {
  2954. status = ql_start_rss(qdev);
  2955. if (status) {
  2956. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2957. return status;
  2958. }
  2959. }
  2960. /* Start up the tx queues. */
  2961. for (i = 0; i < qdev->tx_ring_count; i++) {
  2962. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2963. if (status) {
  2964. QPRINTK(qdev, IFUP, ERR,
  2965. "Failed to start tx ring[%d].\n", i);
  2966. return status;
  2967. }
  2968. }
  2969. /* Initialize the port and set the max framesize. */
  2970. status = qdev->nic_ops->port_initialize(qdev);
  2971. if (status) {
  2972. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2973. return status;
  2974. }
  2975. /* Set up the MAC address and frame routing filter. */
  2976. status = ql_cam_route_initialize(qdev);
  2977. if (status) {
  2978. QPRINTK(qdev, IFUP, ERR,
  2979. "Failed to init CAM/Routing tables.\n");
  2980. return status;
  2981. }
  2982. /* Start NAPI for the RSS queues. */
  2983. for (i = 0; i < qdev->rss_ring_count; i++) {
  2984. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  2985. i);
  2986. napi_enable(&qdev->rx_ring[i].napi);
  2987. }
  2988. return status;
  2989. }
  2990. /* Issue soft reset to chip. */
  2991. static int ql_adapter_reset(struct ql_adapter *qdev)
  2992. {
  2993. u32 value;
  2994. int status = 0;
  2995. unsigned long end_jiffies;
  2996. /* Clear all the entries in the routing table. */
  2997. status = ql_clear_routing_entries(qdev);
  2998. if (status) {
  2999. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  3000. return status;
  3001. }
  3002. end_jiffies = jiffies +
  3003. max((unsigned long)1, usecs_to_jiffies(30));
  3004. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3005. do {
  3006. value = ql_read32(qdev, RST_FO);
  3007. if ((value & RST_FO_FR) == 0)
  3008. break;
  3009. cpu_relax();
  3010. } while (time_before(jiffies, end_jiffies));
  3011. if (value & RST_FO_FR) {
  3012. QPRINTK(qdev, IFDOWN, ERR,
  3013. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3014. status = -ETIMEDOUT;
  3015. }
  3016. return status;
  3017. }
  3018. static void ql_display_dev_info(struct net_device *ndev)
  3019. {
  3020. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3021. QPRINTK(qdev, PROBE, INFO,
  3022. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3023. "XG Roll = %d, XG Rev = %d.\n",
  3024. qdev->func,
  3025. qdev->port,
  3026. qdev->chip_rev_id & 0x0000000f,
  3027. qdev->chip_rev_id >> 4 & 0x0000000f,
  3028. qdev->chip_rev_id >> 8 & 0x0000000f,
  3029. qdev->chip_rev_id >> 12 & 0x0000000f);
  3030. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  3031. }
  3032. static int ql_adapter_down(struct ql_adapter *qdev)
  3033. {
  3034. int i, status = 0;
  3035. ql_link_off(qdev);
  3036. /* Don't kill the reset worker thread if we
  3037. * are in the process of recovery.
  3038. */
  3039. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3040. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3041. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3042. cancel_delayed_work_sync(&qdev->mpi_work);
  3043. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3044. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3045. for (i = 0; i < qdev->rss_ring_count; i++)
  3046. napi_disable(&qdev->rx_ring[i].napi);
  3047. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3048. ql_disable_interrupts(qdev);
  3049. ql_tx_ring_clean(qdev);
  3050. /* Call netif_napi_del() from common point.
  3051. */
  3052. for (i = 0; i < qdev->rss_ring_count; i++)
  3053. netif_napi_del(&qdev->rx_ring[i].napi);
  3054. ql_free_rx_buffers(qdev);
  3055. status = ql_adapter_reset(qdev);
  3056. if (status)
  3057. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3058. qdev->func);
  3059. return status;
  3060. }
  3061. static int ql_adapter_up(struct ql_adapter *qdev)
  3062. {
  3063. int err = 0;
  3064. err = ql_adapter_initialize(qdev);
  3065. if (err) {
  3066. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3067. goto err_init;
  3068. }
  3069. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3070. ql_alloc_rx_buffers(qdev);
  3071. /* If the port is initialized and the
  3072. * link is up the turn on the carrier.
  3073. */
  3074. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3075. (ql_read32(qdev, STS) & qdev->port_link_up))
  3076. ql_link_on(qdev);
  3077. ql_enable_interrupts(qdev);
  3078. ql_enable_all_completion_interrupts(qdev);
  3079. netif_tx_start_all_queues(qdev->ndev);
  3080. return 0;
  3081. err_init:
  3082. ql_adapter_reset(qdev);
  3083. return err;
  3084. }
  3085. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3086. {
  3087. ql_free_mem_resources(qdev);
  3088. ql_free_irq(qdev);
  3089. }
  3090. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3091. {
  3092. int status = 0;
  3093. if (ql_alloc_mem_resources(qdev)) {
  3094. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3095. return -ENOMEM;
  3096. }
  3097. status = ql_request_irq(qdev);
  3098. return status;
  3099. }
  3100. static int qlge_close(struct net_device *ndev)
  3101. {
  3102. struct ql_adapter *qdev = netdev_priv(ndev);
  3103. /*
  3104. * Wait for device to recover from a reset.
  3105. * (Rarely happens, but possible.)
  3106. */
  3107. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3108. msleep(1);
  3109. ql_adapter_down(qdev);
  3110. ql_release_adapter_resources(qdev);
  3111. return 0;
  3112. }
  3113. static int ql_configure_rings(struct ql_adapter *qdev)
  3114. {
  3115. int i;
  3116. struct rx_ring *rx_ring;
  3117. struct tx_ring *tx_ring;
  3118. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3119. /* In a perfect world we have one RSS ring for each CPU
  3120. * and each has it's own vector. To do that we ask for
  3121. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3122. * vector count to what we actually get. We then
  3123. * allocate an RSS ring for each.
  3124. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3125. */
  3126. qdev->intr_count = cpu_cnt;
  3127. ql_enable_msix(qdev);
  3128. /* Adjust the RSS ring count to the actual vector count. */
  3129. qdev->rss_ring_count = qdev->intr_count;
  3130. qdev->tx_ring_count = cpu_cnt;
  3131. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3132. for (i = 0; i < qdev->tx_ring_count; i++) {
  3133. tx_ring = &qdev->tx_ring[i];
  3134. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3135. tx_ring->qdev = qdev;
  3136. tx_ring->wq_id = i;
  3137. tx_ring->wq_len = qdev->tx_ring_size;
  3138. tx_ring->wq_size =
  3139. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3140. /*
  3141. * The completion queue ID for the tx rings start
  3142. * immediately after the rss rings.
  3143. */
  3144. tx_ring->cq_id = qdev->rss_ring_count + i;
  3145. }
  3146. for (i = 0; i < qdev->rx_ring_count; i++) {
  3147. rx_ring = &qdev->rx_ring[i];
  3148. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3149. rx_ring->qdev = qdev;
  3150. rx_ring->cq_id = i;
  3151. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3152. if (i < qdev->rss_ring_count) {
  3153. /*
  3154. * Inbound (RSS) queues.
  3155. */
  3156. rx_ring->cq_len = qdev->rx_ring_size;
  3157. rx_ring->cq_size =
  3158. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3159. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3160. rx_ring->lbq_size =
  3161. rx_ring->lbq_len * sizeof(__le64);
  3162. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3163. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3164. rx_ring->sbq_size =
  3165. rx_ring->sbq_len * sizeof(__le64);
  3166. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3167. rx_ring->type = RX_Q;
  3168. } else {
  3169. /*
  3170. * Outbound queue handles outbound completions only.
  3171. */
  3172. /* outbound cq is same size as tx_ring it services. */
  3173. rx_ring->cq_len = qdev->tx_ring_size;
  3174. rx_ring->cq_size =
  3175. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3176. rx_ring->lbq_len = 0;
  3177. rx_ring->lbq_size = 0;
  3178. rx_ring->lbq_buf_size = 0;
  3179. rx_ring->sbq_len = 0;
  3180. rx_ring->sbq_size = 0;
  3181. rx_ring->sbq_buf_size = 0;
  3182. rx_ring->type = TX_Q;
  3183. }
  3184. }
  3185. return 0;
  3186. }
  3187. static int qlge_open(struct net_device *ndev)
  3188. {
  3189. int err = 0;
  3190. struct ql_adapter *qdev = netdev_priv(ndev);
  3191. err = ql_configure_rings(qdev);
  3192. if (err)
  3193. return err;
  3194. err = ql_get_adapter_resources(qdev);
  3195. if (err)
  3196. goto error_up;
  3197. err = ql_adapter_up(qdev);
  3198. if (err)
  3199. goto error_up;
  3200. return err;
  3201. error_up:
  3202. ql_release_adapter_resources(qdev);
  3203. return err;
  3204. }
  3205. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3206. {
  3207. struct ql_adapter *qdev = netdev_priv(ndev);
  3208. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3209. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3210. queue_delayed_work(qdev->workqueue,
  3211. &qdev->mpi_port_cfg_work, 0);
  3212. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3213. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3214. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3215. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3216. return 0;
  3217. } else
  3218. return -EINVAL;
  3219. ndev->mtu = new_mtu;
  3220. return 0;
  3221. }
  3222. static struct net_device_stats *qlge_get_stats(struct net_device
  3223. *ndev)
  3224. {
  3225. return &ndev->stats;
  3226. }
  3227. static void qlge_set_multicast_list(struct net_device *ndev)
  3228. {
  3229. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3230. struct dev_mc_list *mc_ptr;
  3231. int i, status;
  3232. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3233. if (status)
  3234. return;
  3235. /*
  3236. * Set or clear promiscuous mode if a
  3237. * transition is taking place.
  3238. */
  3239. if (ndev->flags & IFF_PROMISC) {
  3240. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3241. if (ql_set_routing_reg
  3242. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3243. QPRINTK(qdev, HW, ERR,
  3244. "Failed to set promiscous mode.\n");
  3245. } else {
  3246. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3247. }
  3248. }
  3249. } else {
  3250. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3251. if (ql_set_routing_reg
  3252. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3253. QPRINTK(qdev, HW, ERR,
  3254. "Failed to clear promiscous mode.\n");
  3255. } else {
  3256. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3257. }
  3258. }
  3259. }
  3260. /*
  3261. * Set or clear all multicast mode if a
  3262. * transition is taking place.
  3263. */
  3264. if ((ndev->flags & IFF_ALLMULTI) ||
  3265. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3266. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3267. if (ql_set_routing_reg
  3268. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3269. QPRINTK(qdev, HW, ERR,
  3270. "Failed to set all-multi mode.\n");
  3271. } else {
  3272. set_bit(QL_ALLMULTI, &qdev->flags);
  3273. }
  3274. }
  3275. } else {
  3276. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3277. if (ql_set_routing_reg
  3278. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3279. QPRINTK(qdev, HW, ERR,
  3280. "Failed to clear all-multi mode.\n");
  3281. } else {
  3282. clear_bit(QL_ALLMULTI, &qdev->flags);
  3283. }
  3284. }
  3285. }
  3286. if (ndev->mc_count) {
  3287. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3288. if (status)
  3289. goto exit;
  3290. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3291. i++, mc_ptr = mc_ptr->next)
  3292. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3293. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3294. QPRINTK(qdev, HW, ERR,
  3295. "Failed to loadmulticast address.\n");
  3296. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3297. goto exit;
  3298. }
  3299. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3300. if (ql_set_routing_reg
  3301. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3302. QPRINTK(qdev, HW, ERR,
  3303. "Failed to set multicast match mode.\n");
  3304. } else {
  3305. set_bit(QL_ALLMULTI, &qdev->flags);
  3306. }
  3307. }
  3308. exit:
  3309. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3310. }
  3311. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3312. {
  3313. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3314. struct sockaddr *addr = p;
  3315. int status;
  3316. if (netif_running(ndev))
  3317. return -EBUSY;
  3318. if (!is_valid_ether_addr(addr->sa_data))
  3319. return -EADDRNOTAVAIL;
  3320. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3321. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3322. if (status)
  3323. return status;
  3324. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3325. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3326. if (status)
  3327. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3328. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3329. return status;
  3330. }
  3331. static void qlge_tx_timeout(struct net_device *ndev)
  3332. {
  3333. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3334. ql_queue_asic_error(qdev);
  3335. }
  3336. static void ql_asic_reset_work(struct work_struct *work)
  3337. {
  3338. struct ql_adapter *qdev =
  3339. container_of(work, struct ql_adapter, asic_reset_work.work);
  3340. int status;
  3341. rtnl_lock();
  3342. status = ql_adapter_down(qdev);
  3343. if (status)
  3344. goto error;
  3345. status = ql_adapter_up(qdev);
  3346. if (status)
  3347. goto error;
  3348. rtnl_unlock();
  3349. return;
  3350. error:
  3351. QPRINTK(qdev, IFUP, ALERT,
  3352. "Driver up/down cycle failed, closing device\n");
  3353. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3354. dev_close(qdev->ndev);
  3355. rtnl_unlock();
  3356. }
  3357. static struct nic_operations qla8012_nic_ops = {
  3358. .get_flash = ql_get_8012_flash_params,
  3359. .port_initialize = ql_8012_port_initialize,
  3360. };
  3361. static struct nic_operations qla8000_nic_ops = {
  3362. .get_flash = ql_get_8000_flash_params,
  3363. .port_initialize = ql_8000_port_initialize,
  3364. };
  3365. /* Find the pcie function number for the other NIC
  3366. * on this chip. Since both NIC functions share a
  3367. * common firmware we have the lowest enabled function
  3368. * do any common work. Examples would be resetting
  3369. * after a fatal firmware error, or doing a firmware
  3370. * coredump.
  3371. */
  3372. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3373. {
  3374. int status = 0;
  3375. u32 temp;
  3376. u32 nic_func1, nic_func2;
  3377. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3378. &temp);
  3379. if (status)
  3380. return status;
  3381. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3382. MPI_TEST_NIC_FUNC_MASK);
  3383. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3384. MPI_TEST_NIC_FUNC_MASK);
  3385. if (qdev->func == nic_func1)
  3386. qdev->alt_func = nic_func2;
  3387. else if (qdev->func == nic_func2)
  3388. qdev->alt_func = nic_func1;
  3389. else
  3390. status = -EIO;
  3391. return status;
  3392. }
  3393. static int ql_get_board_info(struct ql_adapter *qdev)
  3394. {
  3395. int status;
  3396. qdev->func =
  3397. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3398. if (qdev->func > 3)
  3399. return -EIO;
  3400. status = ql_get_alt_pcie_func(qdev);
  3401. if (status)
  3402. return status;
  3403. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3404. if (qdev->port) {
  3405. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3406. qdev->port_link_up = STS_PL1;
  3407. qdev->port_init = STS_PI1;
  3408. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3409. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3410. } else {
  3411. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3412. qdev->port_link_up = STS_PL0;
  3413. qdev->port_init = STS_PI0;
  3414. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3415. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3416. }
  3417. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3418. qdev->device_id = qdev->pdev->device;
  3419. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3420. qdev->nic_ops = &qla8012_nic_ops;
  3421. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3422. qdev->nic_ops = &qla8000_nic_ops;
  3423. return status;
  3424. }
  3425. static void ql_release_all(struct pci_dev *pdev)
  3426. {
  3427. struct net_device *ndev = pci_get_drvdata(pdev);
  3428. struct ql_adapter *qdev = netdev_priv(ndev);
  3429. if (qdev->workqueue) {
  3430. destroy_workqueue(qdev->workqueue);
  3431. qdev->workqueue = NULL;
  3432. }
  3433. if (qdev->reg_base)
  3434. iounmap(qdev->reg_base);
  3435. if (qdev->doorbell_area)
  3436. iounmap(qdev->doorbell_area);
  3437. pci_release_regions(pdev);
  3438. pci_set_drvdata(pdev, NULL);
  3439. }
  3440. static int __devinit ql_init_device(struct pci_dev *pdev,
  3441. struct net_device *ndev, int cards_found)
  3442. {
  3443. struct ql_adapter *qdev = netdev_priv(ndev);
  3444. int pos, err = 0;
  3445. u16 val16;
  3446. memset((void *)qdev, 0, sizeof(*qdev));
  3447. err = pci_enable_device(pdev);
  3448. if (err) {
  3449. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3450. return err;
  3451. }
  3452. qdev->ndev = ndev;
  3453. qdev->pdev = pdev;
  3454. pci_set_drvdata(pdev, ndev);
  3455. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3456. if (pos <= 0) {
  3457. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3458. "aborting.\n");
  3459. return pos;
  3460. } else {
  3461. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3462. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3463. val16 |= (PCI_EXP_DEVCTL_CERE |
  3464. PCI_EXP_DEVCTL_NFERE |
  3465. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3466. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3467. }
  3468. err = pci_request_regions(pdev, DRV_NAME);
  3469. if (err) {
  3470. dev_err(&pdev->dev, "PCI region request failed.\n");
  3471. return err;
  3472. }
  3473. pci_set_master(pdev);
  3474. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3475. set_bit(QL_DMA64, &qdev->flags);
  3476. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3477. } else {
  3478. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3479. if (!err)
  3480. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3481. }
  3482. if (err) {
  3483. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3484. goto err_out;
  3485. }
  3486. qdev->reg_base =
  3487. ioremap_nocache(pci_resource_start(pdev, 1),
  3488. pci_resource_len(pdev, 1));
  3489. if (!qdev->reg_base) {
  3490. dev_err(&pdev->dev, "Register mapping failed.\n");
  3491. err = -ENOMEM;
  3492. goto err_out;
  3493. }
  3494. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3495. qdev->doorbell_area =
  3496. ioremap_nocache(pci_resource_start(pdev, 3),
  3497. pci_resource_len(pdev, 3));
  3498. if (!qdev->doorbell_area) {
  3499. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3500. err = -ENOMEM;
  3501. goto err_out;
  3502. }
  3503. err = ql_get_board_info(qdev);
  3504. if (err) {
  3505. dev_err(&pdev->dev, "Register access failed.\n");
  3506. err = -EIO;
  3507. goto err_out;
  3508. }
  3509. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3510. spin_lock_init(&qdev->hw_lock);
  3511. spin_lock_init(&qdev->stats_lock);
  3512. /* make sure the EEPROM is good */
  3513. err = qdev->nic_ops->get_flash(qdev);
  3514. if (err) {
  3515. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3516. goto err_out;
  3517. }
  3518. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3519. /* Set up the default ring sizes. */
  3520. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3521. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3522. /* Set up the coalescing parameters. */
  3523. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3524. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3525. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3526. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3527. /*
  3528. * Set up the operating parameters.
  3529. */
  3530. qdev->rx_csum = 1;
  3531. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3532. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3533. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3534. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3535. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3536. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3537. init_completion(&qdev->ide_completion);
  3538. if (!cards_found) {
  3539. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3540. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3541. DRV_NAME, DRV_VERSION);
  3542. }
  3543. return 0;
  3544. err_out:
  3545. ql_release_all(pdev);
  3546. pci_disable_device(pdev);
  3547. return err;
  3548. }
  3549. static const struct net_device_ops qlge_netdev_ops = {
  3550. .ndo_open = qlge_open,
  3551. .ndo_stop = qlge_close,
  3552. .ndo_start_xmit = qlge_send,
  3553. .ndo_change_mtu = qlge_change_mtu,
  3554. .ndo_get_stats = qlge_get_stats,
  3555. .ndo_set_multicast_list = qlge_set_multicast_list,
  3556. .ndo_set_mac_address = qlge_set_mac_address,
  3557. .ndo_validate_addr = eth_validate_addr,
  3558. .ndo_tx_timeout = qlge_tx_timeout,
  3559. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3560. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3561. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3562. };
  3563. static int __devinit qlge_probe(struct pci_dev *pdev,
  3564. const struct pci_device_id *pci_entry)
  3565. {
  3566. struct net_device *ndev = NULL;
  3567. struct ql_adapter *qdev = NULL;
  3568. static int cards_found = 0;
  3569. int err = 0;
  3570. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  3571. min(MAX_CPUS, (int)num_online_cpus()));
  3572. if (!ndev)
  3573. return -ENOMEM;
  3574. err = ql_init_device(pdev, ndev, cards_found);
  3575. if (err < 0) {
  3576. free_netdev(ndev);
  3577. return err;
  3578. }
  3579. qdev = netdev_priv(ndev);
  3580. SET_NETDEV_DEV(ndev, &pdev->dev);
  3581. ndev->features = (0
  3582. | NETIF_F_IP_CSUM
  3583. | NETIF_F_SG
  3584. | NETIF_F_TSO
  3585. | NETIF_F_TSO6
  3586. | NETIF_F_TSO_ECN
  3587. | NETIF_F_HW_VLAN_TX
  3588. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3589. ndev->features |= NETIF_F_GRO;
  3590. if (test_bit(QL_DMA64, &qdev->flags))
  3591. ndev->features |= NETIF_F_HIGHDMA;
  3592. /*
  3593. * Set up net_device structure.
  3594. */
  3595. ndev->tx_queue_len = qdev->tx_ring_size;
  3596. ndev->irq = pdev->irq;
  3597. ndev->netdev_ops = &qlge_netdev_ops;
  3598. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3599. ndev->watchdog_timeo = 10 * HZ;
  3600. err = register_netdev(ndev);
  3601. if (err) {
  3602. dev_err(&pdev->dev, "net device registration failed.\n");
  3603. ql_release_all(pdev);
  3604. pci_disable_device(pdev);
  3605. return err;
  3606. }
  3607. ql_link_off(qdev);
  3608. ql_display_dev_info(ndev);
  3609. cards_found++;
  3610. return 0;
  3611. }
  3612. static void __devexit qlge_remove(struct pci_dev *pdev)
  3613. {
  3614. struct net_device *ndev = pci_get_drvdata(pdev);
  3615. unregister_netdev(ndev);
  3616. ql_release_all(pdev);
  3617. pci_disable_device(pdev);
  3618. free_netdev(ndev);
  3619. }
  3620. /*
  3621. * This callback is called by the PCI subsystem whenever
  3622. * a PCI bus error is detected.
  3623. */
  3624. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3625. enum pci_channel_state state)
  3626. {
  3627. struct net_device *ndev = pci_get_drvdata(pdev);
  3628. struct ql_adapter *qdev = netdev_priv(ndev);
  3629. netif_device_detach(ndev);
  3630. if (state == pci_channel_io_perm_failure)
  3631. return PCI_ERS_RESULT_DISCONNECT;
  3632. if (netif_running(ndev))
  3633. ql_adapter_down(qdev);
  3634. pci_disable_device(pdev);
  3635. /* Request a slot reset. */
  3636. return PCI_ERS_RESULT_NEED_RESET;
  3637. }
  3638. /*
  3639. * This callback is called after the PCI buss has been reset.
  3640. * Basically, this tries to restart the card from scratch.
  3641. * This is a shortened version of the device probe/discovery code,
  3642. * it resembles the first-half of the () routine.
  3643. */
  3644. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3645. {
  3646. struct net_device *ndev = pci_get_drvdata(pdev);
  3647. struct ql_adapter *qdev = netdev_priv(ndev);
  3648. if (pci_enable_device(pdev)) {
  3649. QPRINTK(qdev, IFUP, ERR,
  3650. "Cannot re-enable PCI device after reset.\n");
  3651. return PCI_ERS_RESULT_DISCONNECT;
  3652. }
  3653. pci_set_master(pdev);
  3654. netif_carrier_off(ndev);
  3655. ql_adapter_reset(qdev);
  3656. /* Make sure the EEPROM is good */
  3657. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3658. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3659. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3660. return PCI_ERS_RESULT_DISCONNECT;
  3661. }
  3662. return PCI_ERS_RESULT_RECOVERED;
  3663. }
  3664. static void qlge_io_resume(struct pci_dev *pdev)
  3665. {
  3666. struct net_device *ndev = pci_get_drvdata(pdev);
  3667. struct ql_adapter *qdev = netdev_priv(ndev);
  3668. pci_set_master(pdev);
  3669. if (netif_running(ndev)) {
  3670. if (ql_adapter_up(qdev)) {
  3671. QPRINTK(qdev, IFUP, ERR,
  3672. "Device initialization failed after reset.\n");
  3673. return;
  3674. }
  3675. }
  3676. netif_device_attach(ndev);
  3677. }
  3678. static struct pci_error_handlers qlge_err_handler = {
  3679. .error_detected = qlge_io_error_detected,
  3680. .slot_reset = qlge_io_slot_reset,
  3681. .resume = qlge_io_resume,
  3682. };
  3683. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3684. {
  3685. struct net_device *ndev = pci_get_drvdata(pdev);
  3686. struct ql_adapter *qdev = netdev_priv(ndev);
  3687. int err;
  3688. netif_device_detach(ndev);
  3689. if (netif_running(ndev)) {
  3690. err = ql_adapter_down(qdev);
  3691. if (!err)
  3692. return err;
  3693. }
  3694. err = pci_save_state(pdev);
  3695. if (err)
  3696. return err;
  3697. pci_disable_device(pdev);
  3698. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3699. return 0;
  3700. }
  3701. #ifdef CONFIG_PM
  3702. static int qlge_resume(struct pci_dev *pdev)
  3703. {
  3704. struct net_device *ndev = pci_get_drvdata(pdev);
  3705. struct ql_adapter *qdev = netdev_priv(ndev);
  3706. int err;
  3707. pci_set_power_state(pdev, PCI_D0);
  3708. pci_restore_state(pdev);
  3709. err = pci_enable_device(pdev);
  3710. if (err) {
  3711. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3712. return err;
  3713. }
  3714. pci_set_master(pdev);
  3715. pci_enable_wake(pdev, PCI_D3hot, 0);
  3716. pci_enable_wake(pdev, PCI_D3cold, 0);
  3717. if (netif_running(ndev)) {
  3718. err = ql_adapter_up(qdev);
  3719. if (err)
  3720. return err;
  3721. }
  3722. netif_device_attach(ndev);
  3723. return 0;
  3724. }
  3725. #endif /* CONFIG_PM */
  3726. static void qlge_shutdown(struct pci_dev *pdev)
  3727. {
  3728. qlge_suspend(pdev, PMSG_SUSPEND);
  3729. }
  3730. static struct pci_driver qlge_driver = {
  3731. .name = DRV_NAME,
  3732. .id_table = qlge_pci_tbl,
  3733. .probe = qlge_probe,
  3734. .remove = __devexit_p(qlge_remove),
  3735. #ifdef CONFIG_PM
  3736. .suspend = qlge_suspend,
  3737. .resume = qlge_resume,
  3738. #endif
  3739. .shutdown = qlge_shutdown,
  3740. .err_handler = &qlge_err_handler
  3741. };
  3742. static int __init qlge_init_module(void)
  3743. {
  3744. return pci_register_driver(&qlge_driver);
  3745. }
  3746. static void __exit qlge_exit(void)
  3747. {
  3748. pci_unregister_driver(&qlge_driver);
  3749. }
  3750. module_init(qlge_init_module);
  3751. module_exit(qlge_exit);