ctree.c 83 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. inline void btrfs_init_path(struct btrfs_path *p)
  39. {
  40. memset(p, 0, sizeof(*p));
  41. }
  42. struct btrfs_path *btrfs_alloc_path(void)
  43. {
  44. struct btrfs_path *path;
  45. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  46. if (path) {
  47. btrfs_init_path(path);
  48. path->reada = 1;
  49. }
  50. return path;
  51. }
  52. void btrfs_free_path(struct btrfs_path *p)
  53. {
  54. btrfs_release_path(NULL, p);
  55. kmem_cache_free(btrfs_path_cachep, p);
  56. }
  57. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  58. {
  59. int i;
  60. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  61. p->slots[i] = 0;
  62. if (!p->nodes[i])
  63. continue;
  64. if (p->locks[i]) {
  65. btrfs_tree_unlock(p->nodes[i]);
  66. p->locks[i] = 0;
  67. }
  68. free_extent_buffer(p->nodes[i]);
  69. p->nodes[i] = NULL;
  70. }
  71. }
  72. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  73. {
  74. struct extent_buffer *eb;
  75. spin_lock(&root->node_lock);
  76. eb = root->node;
  77. extent_buffer_get(eb);
  78. spin_unlock(&root->node_lock);
  79. return eb;
  80. }
  81. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  82. {
  83. struct extent_buffer *eb;
  84. while(1) {
  85. eb = btrfs_root_node(root);
  86. btrfs_tree_lock(eb);
  87. spin_lock(&root->node_lock);
  88. if (eb == root->node) {
  89. spin_unlock(&root->node_lock);
  90. break;
  91. }
  92. spin_unlock(&root->node_lock);
  93. btrfs_tree_unlock(eb);
  94. free_extent_buffer(eb);
  95. }
  96. return eb;
  97. }
  98. static void add_root_to_dirty_list(struct btrfs_root *root)
  99. {
  100. if (root->track_dirty && list_empty(&root->dirty_list)) {
  101. list_add(&root->dirty_list,
  102. &root->fs_info->dirty_cowonly_roots);
  103. }
  104. }
  105. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  106. struct btrfs_root *root,
  107. struct extent_buffer *buf,
  108. struct extent_buffer **cow_ret, u64 new_root_objectid)
  109. {
  110. struct extent_buffer *cow;
  111. u32 nritems;
  112. int ret = 0;
  113. int level;
  114. struct btrfs_key first_key;
  115. struct btrfs_root *new_root;
  116. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  117. if (!new_root)
  118. return -ENOMEM;
  119. memcpy(new_root, root, sizeof(*new_root));
  120. new_root->root_key.objectid = new_root_objectid;
  121. WARN_ON(root->ref_cows && trans->transid !=
  122. root->fs_info->running_transaction->transid);
  123. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  124. level = btrfs_header_level(buf);
  125. nritems = btrfs_header_nritems(buf);
  126. if (nritems) {
  127. if (level == 0)
  128. btrfs_item_key_to_cpu(buf, &first_key, 0);
  129. else
  130. btrfs_node_key_to_cpu(buf, &first_key, 0);
  131. } else {
  132. first_key.objectid = 0;
  133. }
  134. cow = btrfs_alloc_free_block(trans, new_root, buf->len,
  135. new_root_objectid,
  136. trans->transid, first_key.objectid,
  137. level, buf->start, 0);
  138. if (IS_ERR(cow)) {
  139. kfree(new_root);
  140. return PTR_ERR(cow);
  141. }
  142. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  143. btrfs_set_header_bytenr(cow, cow->start);
  144. btrfs_set_header_generation(cow, trans->transid);
  145. btrfs_set_header_owner(cow, new_root_objectid);
  146. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  147. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  148. ret = btrfs_inc_ref(trans, new_root, buf, 0);
  149. kfree(new_root);
  150. if (ret)
  151. return ret;
  152. btrfs_mark_buffer_dirty(cow);
  153. *cow_ret = cow;
  154. return 0;
  155. }
  156. int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  157. struct btrfs_root *root,
  158. struct extent_buffer *buf,
  159. struct extent_buffer *parent, int parent_slot,
  160. struct extent_buffer **cow_ret,
  161. u64 search_start, u64 empty_size)
  162. {
  163. u64 root_gen;
  164. struct extent_buffer *cow;
  165. u32 nritems;
  166. int ret = 0;
  167. int different_trans = 0;
  168. int level;
  169. int unlock_orig = 0;
  170. struct btrfs_key first_key;
  171. if (*cow_ret == buf)
  172. unlock_orig = 1;
  173. WARN_ON(!btrfs_tree_locked(buf));
  174. if (root->ref_cows) {
  175. root_gen = trans->transid;
  176. } else {
  177. root_gen = 0;
  178. }
  179. WARN_ON(root->ref_cows && trans->transid !=
  180. root->fs_info->running_transaction->transid);
  181. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  182. level = btrfs_header_level(buf);
  183. nritems = btrfs_header_nritems(buf);
  184. if (nritems) {
  185. if (level == 0)
  186. btrfs_item_key_to_cpu(buf, &first_key, 0);
  187. else
  188. btrfs_node_key_to_cpu(buf, &first_key, 0);
  189. } else {
  190. first_key.objectid = 0;
  191. }
  192. cow = btrfs_alloc_free_block(trans, root, buf->len,
  193. root->root_key.objectid,
  194. root_gen, first_key.objectid, level,
  195. search_start, empty_size);
  196. if (IS_ERR(cow))
  197. return PTR_ERR(cow);
  198. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  199. btrfs_set_header_bytenr(cow, cow->start);
  200. btrfs_set_header_generation(cow, trans->transid);
  201. btrfs_set_header_owner(cow, root->root_key.objectid);
  202. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  203. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  204. if (btrfs_header_generation(buf) != trans->transid) {
  205. different_trans = 1;
  206. ret = btrfs_inc_ref(trans, root, buf, 1);
  207. if (ret)
  208. return ret;
  209. } else {
  210. clean_tree_block(trans, root, buf);
  211. }
  212. if (buf == root->node) {
  213. WARN_ON(parent && parent != buf);
  214. root_gen = btrfs_header_generation(buf);
  215. spin_lock(&root->node_lock);
  216. root->node = cow;
  217. extent_buffer_get(cow);
  218. spin_unlock(&root->node_lock);
  219. if (buf != root->commit_root) {
  220. btrfs_free_extent(trans, root, buf->start,
  221. buf->len, root->root_key.objectid,
  222. root_gen, 0, 0, 1);
  223. }
  224. free_extent_buffer(buf);
  225. add_root_to_dirty_list(root);
  226. } else {
  227. root_gen = btrfs_header_generation(parent);
  228. btrfs_set_node_blockptr(parent, parent_slot,
  229. cow->start);
  230. WARN_ON(trans->transid == 0);
  231. btrfs_set_node_ptr_generation(parent, parent_slot,
  232. trans->transid);
  233. btrfs_mark_buffer_dirty(parent);
  234. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  235. btrfs_free_extent(trans, root, buf->start, buf->len,
  236. btrfs_header_owner(parent), root_gen,
  237. 0, 0, 1);
  238. }
  239. if (unlock_orig)
  240. btrfs_tree_unlock(buf);
  241. free_extent_buffer(buf);
  242. btrfs_mark_buffer_dirty(cow);
  243. *cow_ret = cow;
  244. return 0;
  245. }
  246. int btrfs_cow_block(struct btrfs_trans_handle *trans,
  247. struct btrfs_root *root, struct extent_buffer *buf,
  248. struct extent_buffer *parent, int parent_slot,
  249. struct extent_buffer **cow_ret)
  250. {
  251. u64 search_start;
  252. u64 header_trans;
  253. int ret;
  254. if (trans->transaction != root->fs_info->running_transaction) {
  255. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  256. root->fs_info->running_transaction->transid);
  257. WARN_ON(1);
  258. }
  259. if (trans->transid != root->fs_info->generation) {
  260. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  261. root->fs_info->generation);
  262. WARN_ON(1);
  263. }
  264. header_trans = btrfs_header_generation(buf);
  265. spin_lock(&root->fs_info->hash_lock);
  266. if (header_trans == trans->transid &&
  267. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  268. *cow_ret = buf;
  269. spin_unlock(&root->fs_info->hash_lock);
  270. return 0;
  271. }
  272. spin_unlock(&root->fs_info->hash_lock);
  273. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  274. ret = __btrfs_cow_block(trans, root, buf, parent,
  275. parent_slot, cow_ret, search_start, 0);
  276. return ret;
  277. }
  278. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  279. {
  280. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  281. return 1;
  282. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  283. return 1;
  284. return 0;
  285. }
  286. /*
  287. * compare two keys in a memcmp fashion
  288. */
  289. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  290. {
  291. struct btrfs_key k1;
  292. btrfs_disk_key_to_cpu(&k1, disk);
  293. if (k1.objectid > k2->objectid)
  294. return 1;
  295. if (k1.objectid < k2->objectid)
  296. return -1;
  297. if (k1.type > k2->type)
  298. return 1;
  299. if (k1.type < k2->type)
  300. return -1;
  301. if (k1.offset > k2->offset)
  302. return 1;
  303. if (k1.offset < k2->offset)
  304. return -1;
  305. return 0;
  306. }
  307. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  308. struct btrfs_root *root, struct extent_buffer *parent,
  309. int start_slot, int cache_only, u64 *last_ret,
  310. struct btrfs_key *progress)
  311. {
  312. struct extent_buffer *cur;
  313. u64 blocknr;
  314. u64 gen;
  315. u64 search_start = *last_ret;
  316. u64 last_block = 0;
  317. u64 other;
  318. u32 parent_nritems;
  319. int end_slot;
  320. int i;
  321. int err = 0;
  322. int parent_level;
  323. int uptodate;
  324. u32 blocksize;
  325. int progress_passed = 0;
  326. struct btrfs_disk_key disk_key;
  327. parent_level = btrfs_header_level(parent);
  328. if (cache_only && parent_level != 1)
  329. return 0;
  330. if (trans->transaction != root->fs_info->running_transaction) {
  331. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  332. root->fs_info->running_transaction->transid);
  333. WARN_ON(1);
  334. }
  335. if (trans->transid != root->fs_info->generation) {
  336. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  337. root->fs_info->generation);
  338. WARN_ON(1);
  339. }
  340. parent_nritems = btrfs_header_nritems(parent);
  341. blocksize = btrfs_level_size(root, parent_level - 1);
  342. end_slot = parent_nritems;
  343. if (parent_nritems == 1)
  344. return 0;
  345. for (i = start_slot; i < end_slot; i++) {
  346. int close = 1;
  347. if (!parent->map_token) {
  348. map_extent_buffer(parent,
  349. btrfs_node_key_ptr_offset(i),
  350. sizeof(struct btrfs_key_ptr),
  351. &parent->map_token, &parent->kaddr,
  352. &parent->map_start, &parent->map_len,
  353. KM_USER1);
  354. }
  355. btrfs_node_key(parent, &disk_key, i);
  356. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  357. continue;
  358. progress_passed = 1;
  359. blocknr = btrfs_node_blockptr(parent, i);
  360. gen = btrfs_node_ptr_generation(parent, i);
  361. if (last_block == 0)
  362. last_block = blocknr;
  363. if (i > 0) {
  364. other = btrfs_node_blockptr(parent, i - 1);
  365. close = close_blocks(blocknr, other, blocksize);
  366. }
  367. if (!close && i < end_slot - 2) {
  368. other = btrfs_node_blockptr(parent, i + 1);
  369. close = close_blocks(blocknr, other, blocksize);
  370. }
  371. if (close) {
  372. last_block = blocknr;
  373. continue;
  374. }
  375. if (parent->map_token) {
  376. unmap_extent_buffer(parent, parent->map_token,
  377. KM_USER1);
  378. parent->map_token = NULL;
  379. }
  380. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  381. if (cur)
  382. uptodate = btrfs_buffer_uptodate(cur, gen);
  383. else
  384. uptodate = 0;
  385. if (!cur || !uptodate) {
  386. if (cache_only) {
  387. free_extent_buffer(cur);
  388. continue;
  389. }
  390. if (!cur) {
  391. cur = read_tree_block(root, blocknr,
  392. blocksize, gen);
  393. } else if (!uptodate) {
  394. btrfs_read_buffer(cur, gen);
  395. }
  396. }
  397. if (search_start == 0)
  398. search_start = last_block;
  399. btrfs_tree_lock(cur);
  400. err = __btrfs_cow_block(trans, root, cur, parent, i,
  401. &cur, search_start,
  402. min(16 * blocksize,
  403. (end_slot - i) * blocksize));
  404. if (err) {
  405. btrfs_tree_unlock(cur);
  406. free_extent_buffer(cur);
  407. break;
  408. }
  409. search_start = cur->start;
  410. last_block = cur->start;
  411. *last_ret = search_start;
  412. btrfs_tree_unlock(cur);
  413. free_extent_buffer(cur);
  414. }
  415. if (parent->map_token) {
  416. unmap_extent_buffer(parent, parent->map_token,
  417. KM_USER1);
  418. parent->map_token = NULL;
  419. }
  420. return err;
  421. }
  422. /*
  423. * The leaf data grows from end-to-front in the node.
  424. * this returns the address of the start of the last item,
  425. * which is the stop of the leaf data stack
  426. */
  427. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  428. struct extent_buffer *leaf)
  429. {
  430. u32 nr = btrfs_header_nritems(leaf);
  431. if (nr == 0)
  432. return BTRFS_LEAF_DATA_SIZE(root);
  433. return btrfs_item_offset_nr(leaf, nr - 1);
  434. }
  435. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  436. int level)
  437. {
  438. struct extent_buffer *parent = NULL;
  439. struct extent_buffer *node = path->nodes[level];
  440. struct btrfs_disk_key parent_key;
  441. struct btrfs_disk_key node_key;
  442. int parent_slot;
  443. int slot;
  444. struct btrfs_key cpukey;
  445. u32 nritems = btrfs_header_nritems(node);
  446. if (path->nodes[level + 1])
  447. parent = path->nodes[level + 1];
  448. slot = path->slots[level];
  449. BUG_ON(nritems == 0);
  450. if (parent) {
  451. parent_slot = path->slots[level + 1];
  452. btrfs_node_key(parent, &parent_key, parent_slot);
  453. btrfs_node_key(node, &node_key, 0);
  454. BUG_ON(memcmp(&parent_key, &node_key,
  455. sizeof(struct btrfs_disk_key)));
  456. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  457. btrfs_header_bytenr(node));
  458. }
  459. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  460. if (slot != 0) {
  461. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  462. btrfs_node_key(node, &node_key, slot);
  463. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  464. }
  465. if (slot < nritems - 1) {
  466. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  467. btrfs_node_key(node, &node_key, slot);
  468. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  469. }
  470. return 0;
  471. }
  472. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  473. int level)
  474. {
  475. struct extent_buffer *leaf = path->nodes[level];
  476. struct extent_buffer *parent = NULL;
  477. int parent_slot;
  478. struct btrfs_key cpukey;
  479. struct btrfs_disk_key parent_key;
  480. struct btrfs_disk_key leaf_key;
  481. int slot = path->slots[0];
  482. u32 nritems = btrfs_header_nritems(leaf);
  483. if (path->nodes[level + 1])
  484. parent = path->nodes[level + 1];
  485. if (nritems == 0)
  486. return 0;
  487. if (parent) {
  488. parent_slot = path->slots[level + 1];
  489. btrfs_node_key(parent, &parent_key, parent_slot);
  490. btrfs_item_key(leaf, &leaf_key, 0);
  491. BUG_ON(memcmp(&parent_key, &leaf_key,
  492. sizeof(struct btrfs_disk_key)));
  493. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  494. btrfs_header_bytenr(leaf));
  495. }
  496. #if 0
  497. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  498. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  499. btrfs_item_key(leaf, &leaf_key, i);
  500. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  501. btrfs_print_leaf(root, leaf);
  502. printk("slot %d offset bad key\n", i);
  503. BUG_ON(1);
  504. }
  505. if (btrfs_item_offset_nr(leaf, i) !=
  506. btrfs_item_end_nr(leaf, i + 1)) {
  507. btrfs_print_leaf(root, leaf);
  508. printk("slot %d offset bad\n", i);
  509. BUG_ON(1);
  510. }
  511. if (i == 0) {
  512. if (btrfs_item_offset_nr(leaf, i) +
  513. btrfs_item_size_nr(leaf, i) !=
  514. BTRFS_LEAF_DATA_SIZE(root)) {
  515. btrfs_print_leaf(root, leaf);
  516. printk("slot %d first offset bad\n", i);
  517. BUG_ON(1);
  518. }
  519. }
  520. }
  521. if (nritems > 0) {
  522. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  523. btrfs_print_leaf(root, leaf);
  524. printk("slot %d bad size \n", nritems - 1);
  525. BUG_ON(1);
  526. }
  527. }
  528. #endif
  529. if (slot != 0 && slot < nritems - 1) {
  530. btrfs_item_key(leaf, &leaf_key, slot);
  531. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  532. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  533. btrfs_print_leaf(root, leaf);
  534. printk("slot %d offset bad key\n", slot);
  535. BUG_ON(1);
  536. }
  537. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  538. btrfs_item_end_nr(leaf, slot)) {
  539. btrfs_print_leaf(root, leaf);
  540. printk("slot %d offset bad\n", slot);
  541. BUG_ON(1);
  542. }
  543. }
  544. if (slot < nritems - 1) {
  545. btrfs_item_key(leaf, &leaf_key, slot);
  546. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  547. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  548. if (btrfs_item_offset_nr(leaf, slot) !=
  549. btrfs_item_end_nr(leaf, slot + 1)) {
  550. btrfs_print_leaf(root, leaf);
  551. printk("slot %d offset bad\n", slot);
  552. BUG_ON(1);
  553. }
  554. }
  555. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  556. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  557. return 0;
  558. }
  559. static int noinline check_block(struct btrfs_root *root,
  560. struct btrfs_path *path, int level)
  561. {
  562. u64 found_start;
  563. return 0;
  564. if (btrfs_header_level(path->nodes[level]) != level)
  565. printk("warning: bad level %Lu wanted %d found %d\n",
  566. path->nodes[level]->start, level,
  567. btrfs_header_level(path->nodes[level]));
  568. found_start = btrfs_header_bytenr(path->nodes[level]);
  569. if (found_start != path->nodes[level]->start) {
  570. printk("warning: bad bytentr %Lu found %Lu\n",
  571. path->nodes[level]->start, found_start);
  572. }
  573. #if 0
  574. struct extent_buffer *buf = path->nodes[level];
  575. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  576. (unsigned long)btrfs_header_fsid(buf),
  577. BTRFS_FSID_SIZE)) {
  578. printk("warning bad block %Lu\n", buf->start);
  579. return 1;
  580. }
  581. #endif
  582. if (level == 0)
  583. return check_leaf(root, path, level);
  584. return check_node(root, path, level);
  585. }
  586. /*
  587. * search for key in the extent_buffer. The items start at offset p,
  588. * and they are item_size apart. There are 'max' items in p.
  589. *
  590. * the slot in the array is returned via slot, and it points to
  591. * the place where you would insert key if it is not found in
  592. * the array.
  593. *
  594. * slot may point to max if the key is bigger than all of the keys
  595. */
  596. static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
  597. int item_size, struct btrfs_key *key,
  598. int max, int *slot)
  599. {
  600. int low = 0;
  601. int high = max;
  602. int mid;
  603. int ret;
  604. struct btrfs_disk_key *tmp = NULL;
  605. struct btrfs_disk_key unaligned;
  606. unsigned long offset;
  607. char *map_token = NULL;
  608. char *kaddr = NULL;
  609. unsigned long map_start = 0;
  610. unsigned long map_len = 0;
  611. int err;
  612. while(low < high) {
  613. mid = (low + high) / 2;
  614. offset = p + mid * item_size;
  615. if (!map_token || offset < map_start ||
  616. (offset + sizeof(struct btrfs_disk_key)) >
  617. map_start + map_len) {
  618. if (map_token) {
  619. unmap_extent_buffer(eb, map_token, KM_USER0);
  620. map_token = NULL;
  621. }
  622. err = map_extent_buffer(eb, offset,
  623. sizeof(struct btrfs_disk_key),
  624. &map_token, &kaddr,
  625. &map_start, &map_len, KM_USER0);
  626. if (!err) {
  627. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  628. map_start);
  629. } else {
  630. read_extent_buffer(eb, &unaligned,
  631. offset, sizeof(unaligned));
  632. tmp = &unaligned;
  633. }
  634. } else {
  635. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  636. map_start);
  637. }
  638. ret = comp_keys(tmp, key);
  639. if (ret < 0)
  640. low = mid + 1;
  641. else if (ret > 0)
  642. high = mid;
  643. else {
  644. *slot = mid;
  645. if (map_token)
  646. unmap_extent_buffer(eb, map_token, KM_USER0);
  647. return 0;
  648. }
  649. }
  650. *slot = low;
  651. if (map_token)
  652. unmap_extent_buffer(eb, map_token, KM_USER0);
  653. return 1;
  654. }
  655. /*
  656. * simple bin_search frontend that does the right thing for
  657. * leaves vs nodes
  658. */
  659. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  660. int level, int *slot)
  661. {
  662. if (level == 0) {
  663. return generic_bin_search(eb,
  664. offsetof(struct btrfs_leaf, items),
  665. sizeof(struct btrfs_item),
  666. key, btrfs_header_nritems(eb),
  667. slot);
  668. } else {
  669. return generic_bin_search(eb,
  670. offsetof(struct btrfs_node, ptrs),
  671. sizeof(struct btrfs_key_ptr),
  672. key, btrfs_header_nritems(eb),
  673. slot);
  674. }
  675. return -1;
  676. }
  677. static struct extent_buffer *read_node_slot(struct btrfs_root *root,
  678. struct extent_buffer *parent, int slot)
  679. {
  680. int level = btrfs_header_level(parent);
  681. if (slot < 0)
  682. return NULL;
  683. if (slot >= btrfs_header_nritems(parent))
  684. return NULL;
  685. BUG_ON(level == 0);
  686. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  687. btrfs_level_size(root, level - 1),
  688. btrfs_node_ptr_generation(parent, slot));
  689. }
  690. static int balance_level(struct btrfs_trans_handle *trans,
  691. struct btrfs_root *root,
  692. struct btrfs_path *path, int level)
  693. {
  694. struct extent_buffer *right = NULL;
  695. struct extent_buffer *mid;
  696. struct extent_buffer *left = NULL;
  697. struct extent_buffer *parent = NULL;
  698. int ret = 0;
  699. int wret;
  700. int pslot;
  701. int orig_slot = path->slots[level];
  702. int err_on_enospc = 0;
  703. u64 orig_ptr;
  704. if (level == 0)
  705. return 0;
  706. mid = path->nodes[level];
  707. WARN_ON(!path->locks[level]);
  708. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  709. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  710. if (level < BTRFS_MAX_LEVEL - 1)
  711. parent = path->nodes[level + 1];
  712. pslot = path->slots[level + 1];
  713. /*
  714. * deal with the case where there is only one pointer in the root
  715. * by promoting the node below to a root
  716. */
  717. if (!parent) {
  718. struct extent_buffer *child;
  719. if (btrfs_header_nritems(mid) != 1)
  720. return 0;
  721. /* promote the child to a root */
  722. child = read_node_slot(root, mid, 0);
  723. btrfs_tree_lock(child);
  724. BUG_ON(!child);
  725. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  726. BUG_ON(ret);
  727. spin_lock(&root->node_lock);
  728. root->node = child;
  729. spin_unlock(&root->node_lock);
  730. add_root_to_dirty_list(root);
  731. btrfs_tree_unlock(child);
  732. path->locks[level] = 0;
  733. path->nodes[level] = NULL;
  734. clean_tree_block(trans, root, mid);
  735. btrfs_tree_unlock(mid);
  736. /* once for the path */
  737. free_extent_buffer(mid);
  738. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  739. root->root_key.objectid,
  740. btrfs_header_generation(mid), 0, 0, 1);
  741. /* once for the root ptr */
  742. free_extent_buffer(mid);
  743. return ret;
  744. }
  745. if (btrfs_header_nritems(mid) >
  746. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  747. return 0;
  748. if (btrfs_header_nritems(mid) < 2)
  749. err_on_enospc = 1;
  750. left = read_node_slot(root, parent, pslot - 1);
  751. if (left) {
  752. btrfs_tree_lock(left);
  753. wret = btrfs_cow_block(trans, root, left,
  754. parent, pslot - 1, &left);
  755. if (wret) {
  756. ret = wret;
  757. goto enospc;
  758. }
  759. }
  760. right = read_node_slot(root, parent, pslot + 1);
  761. if (right) {
  762. btrfs_tree_lock(right);
  763. wret = btrfs_cow_block(trans, root, right,
  764. parent, pslot + 1, &right);
  765. if (wret) {
  766. ret = wret;
  767. goto enospc;
  768. }
  769. }
  770. /* first, try to make some room in the middle buffer */
  771. if (left) {
  772. orig_slot += btrfs_header_nritems(left);
  773. wret = push_node_left(trans, root, left, mid, 1);
  774. if (wret < 0)
  775. ret = wret;
  776. if (btrfs_header_nritems(mid) < 2)
  777. err_on_enospc = 1;
  778. }
  779. /*
  780. * then try to empty the right most buffer into the middle
  781. */
  782. if (right) {
  783. wret = push_node_left(trans, root, mid, right, 1);
  784. if (wret < 0 && wret != -ENOSPC)
  785. ret = wret;
  786. if (btrfs_header_nritems(right) == 0) {
  787. u64 bytenr = right->start;
  788. u64 generation = btrfs_header_generation(parent);
  789. u32 blocksize = right->len;
  790. clean_tree_block(trans, root, right);
  791. btrfs_tree_unlock(right);
  792. free_extent_buffer(right);
  793. right = NULL;
  794. wret = del_ptr(trans, root, path, level + 1, pslot +
  795. 1);
  796. if (wret)
  797. ret = wret;
  798. wret = btrfs_free_extent(trans, root, bytenr,
  799. blocksize,
  800. btrfs_header_owner(parent),
  801. generation, 0, 0, 1);
  802. if (wret)
  803. ret = wret;
  804. } else {
  805. struct btrfs_disk_key right_key;
  806. btrfs_node_key(right, &right_key, 0);
  807. btrfs_set_node_key(parent, &right_key, pslot + 1);
  808. btrfs_mark_buffer_dirty(parent);
  809. }
  810. }
  811. if (btrfs_header_nritems(mid) == 1) {
  812. /*
  813. * we're not allowed to leave a node with one item in the
  814. * tree during a delete. A deletion from lower in the tree
  815. * could try to delete the only pointer in this node.
  816. * So, pull some keys from the left.
  817. * There has to be a left pointer at this point because
  818. * otherwise we would have pulled some pointers from the
  819. * right
  820. */
  821. BUG_ON(!left);
  822. wret = balance_node_right(trans, root, mid, left);
  823. if (wret < 0) {
  824. ret = wret;
  825. goto enospc;
  826. }
  827. if (wret == 1) {
  828. wret = push_node_left(trans, root, left, mid, 1);
  829. if (wret < 0)
  830. ret = wret;
  831. }
  832. BUG_ON(wret == 1);
  833. }
  834. if (btrfs_header_nritems(mid) == 0) {
  835. /* we've managed to empty the middle node, drop it */
  836. u64 root_gen = btrfs_header_generation(parent);
  837. u64 bytenr = mid->start;
  838. u32 blocksize = mid->len;
  839. clean_tree_block(trans, root, mid);
  840. btrfs_tree_unlock(mid);
  841. free_extent_buffer(mid);
  842. mid = NULL;
  843. wret = del_ptr(trans, root, path, level + 1, pslot);
  844. if (wret)
  845. ret = wret;
  846. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  847. btrfs_header_owner(parent),
  848. root_gen, 0, 0, 1);
  849. if (wret)
  850. ret = wret;
  851. } else {
  852. /* update the parent key to reflect our changes */
  853. struct btrfs_disk_key mid_key;
  854. btrfs_node_key(mid, &mid_key, 0);
  855. btrfs_set_node_key(parent, &mid_key, pslot);
  856. btrfs_mark_buffer_dirty(parent);
  857. }
  858. /* update the path */
  859. if (left) {
  860. if (btrfs_header_nritems(left) > orig_slot) {
  861. extent_buffer_get(left);
  862. /* left was locked after cow */
  863. path->nodes[level] = left;
  864. path->slots[level + 1] -= 1;
  865. path->slots[level] = orig_slot;
  866. if (mid) {
  867. btrfs_tree_unlock(mid);
  868. free_extent_buffer(mid);
  869. }
  870. } else {
  871. orig_slot -= btrfs_header_nritems(left);
  872. path->slots[level] = orig_slot;
  873. }
  874. }
  875. /* double check we haven't messed things up */
  876. check_block(root, path, level);
  877. if (orig_ptr !=
  878. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  879. BUG();
  880. enospc:
  881. if (right) {
  882. btrfs_tree_unlock(right);
  883. free_extent_buffer(right);
  884. }
  885. if (left) {
  886. if (path->nodes[level] != left)
  887. btrfs_tree_unlock(left);
  888. free_extent_buffer(left);
  889. }
  890. return ret;
  891. }
  892. /* returns zero if the push worked, non-zero otherwise */
  893. static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
  894. struct btrfs_root *root,
  895. struct btrfs_path *path, int level)
  896. {
  897. struct extent_buffer *right = NULL;
  898. struct extent_buffer *mid;
  899. struct extent_buffer *left = NULL;
  900. struct extent_buffer *parent = NULL;
  901. int ret = 0;
  902. int wret;
  903. int pslot;
  904. int orig_slot = path->slots[level];
  905. u64 orig_ptr;
  906. if (level == 0)
  907. return 1;
  908. mid = path->nodes[level];
  909. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  910. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  911. if (level < BTRFS_MAX_LEVEL - 1)
  912. parent = path->nodes[level + 1];
  913. pslot = path->slots[level + 1];
  914. if (!parent)
  915. return 1;
  916. left = read_node_slot(root, parent, pslot - 1);
  917. /* first, try to make some room in the middle buffer */
  918. if (left) {
  919. u32 left_nr;
  920. btrfs_tree_lock(left);
  921. left_nr = btrfs_header_nritems(left);
  922. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  923. wret = 1;
  924. } else {
  925. ret = btrfs_cow_block(trans, root, left, parent,
  926. pslot - 1, &left);
  927. if (ret)
  928. wret = 1;
  929. else {
  930. wret = push_node_left(trans, root,
  931. left, mid, 0);
  932. }
  933. }
  934. if (wret < 0)
  935. ret = wret;
  936. if (wret == 0) {
  937. struct btrfs_disk_key disk_key;
  938. orig_slot += left_nr;
  939. btrfs_node_key(mid, &disk_key, 0);
  940. btrfs_set_node_key(parent, &disk_key, pslot);
  941. btrfs_mark_buffer_dirty(parent);
  942. if (btrfs_header_nritems(left) > orig_slot) {
  943. path->nodes[level] = left;
  944. path->slots[level + 1] -= 1;
  945. path->slots[level] = orig_slot;
  946. btrfs_tree_unlock(mid);
  947. free_extent_buffer(mid);
  948. } else {
  949. orig_slot -=
  950. btrfs_header_nritems(left);
  951. path->slots[level] = orig_slot;
  952. btrfs_tree_unlock(left);
  953. free_extent_buffer(left);
  954. }
  955. return 0;
  956. }
  957. btrfs_tree_unlock(left);
  958. free_extent_buffer(left);
  959. }
  960. right = read_node_slot(root, parent, pslot + 1);
  961. /*
  962. * then try to empty the right most buffer into the middle
  963. */
  964. if (right) {
  965. u32 right_nr;
  966. btrfs_tree_lock(right);
  967. right_nr = btrfs_header_nritems(right);
  968. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  969. wret = 1;
  970. } else {
  971. ret = btrfs_cow_block(trans, root, right,
  972. parent, pslot + 1,
  973. &right);
  974. if (ret)
  975. wret = 1;
  976. else {
  977. wret = balance_node_right(trans, root,
  978. right, mid);
  979. }
  980. }
  981. if (wret < 0)
  982. ret = wret;
  983. if (wret == 0) {
  984. struct btrfs_disk_key disk_key;
  985. btrfs_node_key(right, &disk_key, 0);
  986. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  987. btrfs_mark_buffer_dirty(parent);
  988. if (btrfs_header_nritems(mid) <= orig_slot) {
  989. path->nodes[level] = right;
  990. path->slots[level + 1] += 1;
  991. path->slots[level] = orig_slot -
  992. btrfs_header_nritems(mid);
  993. btrfs_tree_unlock(mid);
  994. free_extent_buffer(mid);
  995. } else {
  996. btrfs_tree_unlock(right);
  997. free_extent_buffer(right);
  998. }
  999. return 0;
  1000. }
  1001. btrfs_tree_unlock(right);
  1002. free_extent_buffer(right);
  1003. }
  1004. return 1;
  1005. }
  1006. /*
  1007. * readahead one full node of leaves
  1008. */
  1009. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  1010. int level, int slot, u64 objectid)
  1011. {
  1012. struct extent_buffer *node;
  1013. struct btrfs_disk_key disk_key;
  1014. u32 nritems;
  1015. u64 search;
  1016. u64 lowest_read;
  1017. u64 highest_read;
  1018. u64 nread = 0;
  1019. int direction = path->reada;
  1020. struct extent_buffer *eb;
  1021. u32 nr;
  1022. u32 blocksize;
  1023. u32 nscan = 0;
  1024. if (level != 1)
  1025. return;
  1026. if (!path->nodes[level])
  1027. return;
  1028. node = path->nodes[level];
  1029. search = btrfs_node_blockptr(node, slot);
  1030. blocksize = btrfs_level_size(root, level - 1);
  1031. eb = btrfs_find_tree_block(root, search, blocksize);
  1032. if (eb) {
  1033. free_extent_buffer(eb);
  1034. return;
  1035. }
  1036. highest_read = search;
  1037. lowest_read = search;
  1038. nritems = btrfs_header_nritems(node);
  1039. nr = slot;
  1040. while(1) {
  1041. if (direction < 0) {
  1042. if (nr == 0)
  1043. break;
  1044. nr--;
  1045. } else if (direction > 0) {
  1046. nr++;
  1047. if (nr >= nritems)
  1048. break;
  1049. }
  1050. if (path->reada < 0 && objectid) {
  1051. btrfs_node_key(node, &disk_key, nr);
  1052. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1053. break;
  1054. }
  1055. search = btrfs_node_blockptr(node, nr);
  1056. if ((search >= lowest_read && search <= highest_read) ||
  1057. (search < lowest_read && lowest_read - search <= 32768) ||
  1058. (search > highest_read && search - highest_read <= 32768)) {
  1059. readahead_tree_block(root, search, blocksize,
  1060. btrfs_node_ptr_generation(node, nr));
  1061. nread += blocksize;
  1062. }
  1063. nscan++;
  1064. if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
  1065. break;
  1066. if(nread > (1024 * 1024) || nscan > 128)
  1067. break;
  1068. if (search < lowest_read)
  1069. lowest_read = search;
  1070. if (search > highest_read)
  1071. highest_read = search;
  1072. }
  1073. }
  1074. static void unlock_up(struct btrfs_path *path, int level, int lowest_unlock)
  1075. {
  1076. int i;
  1077. int skip_level = level;
  1078. int no_skips = 0;
  1079. struct extent_buffer *t;
  1080. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1081. if (!path->nodes[i])
  1082. break;
  1083. if (!path->locks[i])
  1084. break;
  1085. if (!no_skips && path->slots[i] == 0) {
  1086. skip_level = i + 1;
  1087. continue;
  1088. }
  1089. if (!no_skips && path->keep_locks) {
  1090. u32 nritems;
  1091. t = path->nodes[i];
  1092. nritems = btrfs_header_nritems(t);
  1093. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1094. skip_level = i + 1;
  1095. continue;
  1096. }
  1097. }
  1098. if (skip_level < i && i >= lowest_unlock)
  1099. no_skips = 1;
  1100. t = path->nodes[i];
  1101. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1102. btrfs_tree_unlock(t);
  1103. path->locks[i] = 0;
  1104. }
  1105. }
  1106. }
  1107. /*
  1108. * look for key in the tree. path is filled in with nodes along the way
  1109. * if key is found, we return zero and you can find the item in the leaf
  1110. * level of the path (level 0)
  1111. *
  1112. * If the key isn't found, the path points to the slot where it should
  1113. * be inserted, and 1 is returned. If there are other errors during the
  1114. * search a negative error number is returned.
  1115. *
  1116. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1117. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1118. * possible)
  1119. */
  1120. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1121. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1122. ins_len, int cow)
  1123. {
  1124. struct extent_buffer *b;
  1125. struct extent_buffer *tmp;
  1126. int slot;
  1127. int ret;
  1128. int level;
  1129. int should_reada = p->reada;
  1130. int lowest_unlock = 1;
  1131. int blocksize;
  1132. u8 lowest_level = 0;
  1133. u64 blocknr;
  1134. u64 gen;
  1135. lowest_level = p->lowest_level;
  1136. WARN_ON(lowest_level && ins_len);
  1137. WARN_ON(p->nodes[0] != NULL);
  1138. WARN_ON(cow && root == root->fs_info->extent_root &&
  1139. !mutex_is_locked(&root->fs_info->alloc_mutex));
  1140. if (ins_len < 0)
  1141. lowest_unlock = 2;
  1142. again:
  1143. if (p->skip_locking)
  1144. b = btrfs_root_node(root);
  1145. else
  1146. b = btrfs_lock_root_node(root);
  1147. while (b) {
  1148. level = btrfs_header_level(b);
  1149. if (cow) {
  1150. int wret;
  1151. wret = btrfs_cow_block(trans, root, b,
  1152. p->nodes[level + 1],
  1153. p->slots[level + 1],
  1154. &b);
  1155. if (wret) {
  1156. free_extent_buffer(b);
  1157. return wret;
  1158. }
  1159. }
  1160. BUG_ON(!cow && ins_len);
  1161. if (level != btrfs_header_level(b))
  1162. WARN_ON(1);
  1163. level = btrfs_header_level(b);
  1164. p->nodes[level] = b;
  1165. if (!p->skip_locking)
  1166. p->locks[level] = 1;
  1167. ret = check_block(root, p, level);
  1168. if (ret)
  1169. return -1;
  1170. ret = bin_search(b, key, level, &slot);
  1171. if (level != 0) {
  1172. if (ret && slot > 0)
  1173. slot -= 1;
  1174. p->slots[level] = slot;
  1175. if (ins_len > 0 && btrfs_header_nritems(b) >=
  1176. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1177. int sret = split_node(trans, root, p, level);
  1178. BUG_ON(sret > 0);
  1179. if (sret)
  1180. return sret;
  1181. b = p->nodes[level];
  1182. slot = p->slots[level];
  1183. } else if (ins_len < 0) {
  1184. int sret = balance_level(trans, root, p,
  1185. level);
  1186. if (sret)
  1187. return sret;
  1188. b = p->nodes[level];
  1189. if (!b) {
  1190. btrfs_release_path(NULL, p);
  1191. goto again;
  1192. }
  1193. slot = p->slots[level];
  1194. BUG_ON(btrfs_header_nritems(b) == 1);
  1195. }
  1196. unlock_up(p, level, lowest_unlock);
  1197. /* this is only true while dropping a snapshot */
  1198. if (level == lowest_level) {
  1199. break;
  1200. }
  1201. blocknr = btrfs_node_blockptr(b, slot);
  1202. gen = btrfs_node_ptr_generation(b, slot);
  1203. blocksize = btrfs_level_size(root, level - 1);
  1204. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1205. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1206. b = tmp;
  1207. } else {
  1208. /*
  1209. * reduce lock contention at high levels
  1210. * of the btree by dropping locks before
  1211. * we read.
  1212. */
  1213. if (level > 1) {
  1214. btrfs_release_path(NULL, p);
  1215. if (tmp)
  1216. free_extent_buffer(tmp);
  1217. if (should_reada)
  1218. reada_for_search(root, p,
  1219. level, slot,
  1220. key->objectid);
  1221. tmp = read_tree_block(root, blocknr,
  1222. blocksize, gen);
  1223. if (tmp)
  1224. free_extent_buffer(tmp);
  1225. goto again;
  1226. } else {
  1227. if (tmp)
  1228. free_extent_buffer(tmp);
  1229. if (should_reada)
  1230. reada_for_search(root, p,
  1231. level, slot,
  1232. key->objectid);
  1233. b = read_node_slot(root, b, slot);
  1234. }
  1235. }
  1236. if (!p->skip_locking)
  1237. btrfs_tree_lock(b);
  1238. } else {
  1239. p->slots[level] = slot;
  1240. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  1241. sizeof(struct btrfs_item) + ins_len) {
  1242. int sret = split_leaf(trans, root, key,
  1243. p, ins_len, ret == 0);
  1244. BUG_ON(sret > 0);
  1245. if (sret)
  1246. return sret;
  1247. }
  1248. unlock_up(p, level, lowest_unlock);
  1249. return ret;
  1250. }
  1251. }
  1252. return 1;
  1253. }
  1254. /*
  1255. * adjust the pointers going up the tree, starting at level
  1256. * making sure the right key of each node is points to 'key'.
  1257. * This is used after shifting pointers to the left, so it stops
  1258. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1259. * higher levels
  1260. *
  1261. * If this fails to write a tree block, it returns -1, but continues
  1262. * fixing up the blocks in ram so the tree is consistent.
  1263. */
  1264. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1265. struct btrfs_root *root, struct btrfs_path *path,
  1266. struct btrfs_disk_key *key, int level)
  1267. {
  1268. int i;
  1269. int ret = 0;
  1270. struct extent_buffer *t;
  1271. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1272. int tslot = path->slots[i];
  1273. if (!path->nodes[i])
  1274. break;
  1275. t = path->nodes[i];
  1276. btrfs_set_node_key(t, key, tslot);
  1277. btrfs_mark_buffer_dirty(path->nodes[i]);
  1278. if (tslot != 0)
  1279. break;
  1280. }
  1281. return ret;
  1282. }
  1283. /*
  1284. * try to push data from one node into the next node left in the
  1285. * tree.
  1286. *
  1287. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1288. * error, and > 0 if there was no room in the left hand block.
  1289. */
  1290. static int push_node_left(struct btrfs_trans_handle *trans,
  1291. struct btrfs_root *root, struct extent_buffer *dst,
  1292. struct extent_buffer *src, int empty)
  1293. {
  1294. int push_items = 0;
  1295. int src_nritems;
  1296. int dst_nritems;
  1297. int ret = 0;
  1298. src_nritems = btrfs_header_nritems(src);
  1299. dst_nritems = btrfs_header_nritems(dst);
  1300. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1301. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1302. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1303. if (!empty && src_nritems <= 8)
  1304. return 1;
  1305. if (push_items <= 0) {
  1306. return 1;
  1307. }
  1308. if (empty) {
  1309. push_items = min(src_nritems, push_items);
  1310. if (push_items < src_nritems) {
  1311. /* leave at least 8 pointers in the node if
  1312. * we aren't going to empty it
  1313. */
  1314. if (src_nritems - push_items < 8) {
  1315. if (push_items <= 8)
  1316. return 1;
  1317. push_items -= 8;
  1318. }
  1319. }
  1320. } else
  1321. push_items = min(src_nritems - 8, push_items);
  1322. copy_extent_buffer(dst, src,
  1323. btrfs_node_key_ptr_offset(dst_nritems),
  1324. btrfs_node_key_ptr_offset(0),
  1325. push_items * sizeof(struct btrfs_key_ptr));
  1326. if (push_items < src_nritems) {
  1327. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1328. btrfs_node_key_ptr_offset(push_items),
  1329. (src_nritems - push_items) *
  1330. sizeof(struct btrfs_key_ptr));
  1331. }
  1332. btrfs_set_header_nritems(src, src_nritems - push_items);
  1333. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1334. btrfs_mark_buffer_dirty(src);
  1335. btrfs_mark_buffer_dirty(dst);
  1336. return ret;
  1337. }
  1338. /*
  1339. * try to push data from one node into the next node right in the
  1340. * tree.
  1341. *
  1342. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1343. * error, and > 0 if there was no room in the right hand block.
  1344. *
  1345. * this will only push up to 1/2 the contents of the left node over
  1346. */
  1347. static int balance_node_right(struct btrfs_trans_handle *trans,
  1348. struct btrfs_root *root,
  1349. struct extent_buffer *dst,
  1350. struct extent_buffer *src)
  1351. {
  1352. int push_items = 0;
  1353. int max_push;
  1354. int src_nritems;
  1355. int dst_nritems;
  1356. int ret = 0;
  1357. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1358. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1359. src_nritems = btrfs_header_nritems(src);
  1360. dst_nritems = btrfs_header_nritems(dst);
  1361. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1362. if (push_items <= 0) {
  1363. return 1;
  1364. }
  1365. if (src_nritems < 4) {
  1366. return 1;
  1367. }
  1368. max_push = src_nritems / 2 + 1;
  1369. /* don't try to empty the node */
  1370. if (max_push >= src_nritems) {
  1371. return 1;
  1372. }
  1373. if (max_push < push_items)
  1374. push_items = max_push;
  1375. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1376. btrfs_node_key_ptr_offset(0),
  1377. (dst_nritems) *
  1378. sizeof(struct btrfs_key_ptr));
  1379. copy_extent_buffer(dst, src,
  1380. btrfs_node_key_ptr_offset(0),
  1381. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1382. push_items * sizeof(struct btrfs_key_ptr));
  1383. btrfs_set_header_nritems(src, src_nritems - push_items);
  1384. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1385. btrfs_mark_buffer_dirty(src);
  1386. btrfs_mark_buffer_dirty(dst);
  1387. return ret;
  1388. }
  1389. /*
  1390. * helper function to insert a new root level in the tree.
  1391. * A new node is allocated, and a single item is inserted to
  1392. * point to the existing root
  1393. *
  1394. * returns zero on success or < 0 on failure.
  1395. */
  1396. static int noinline insert_new_root(struct btrfs_trans_handle *trans,
  1397. struct btrfs_root *root,
  1398. struct btrfs_path *path, int level)
  1399. {
  1400. u64 root_gen;
  1401. u64 lower_gen;
  1402. struct extent_buffer *lower;
  1403. struct extent_buffer *c;
  1404. struct extent_buffer *old;
  1405. struct btrfs_disk_key lower_key;
  1406. BUG_ON(path->nodes[level]);
  1407. BUG_ON(path->nodes[level-1] != root->node);
  1408. if (root->ref_cows)
  1409. root_gen = trans->transid;
  1410. else
  1411. root_gen = 0;
  1412. lower = path->nodes[level-1];
  1413. if (level == 1)
  1414. btrfs_item_key(lower, &lower_key, 0);
  1415. else
  1416. btrfs_node_key(lower, &lower_key, 0);
  1417. c = btrfs_alloc_free_block(trans, root, root->nodesize,
  1418. root->root_key.objectid,
  1419. root_gen, lower_key.objectid, level,
  1420. root->node->start, 0);
  1421. if (IS_ERR(c))
  1422. return PTR_ERR(c);
  1423. memset_extent_buffer(c, 0, 0, root->nodesize);
  1424. btrfs_set_header_nritems(c, 1);
  1425. btrfs_set_header_level(c, level);
  1426. btrfs_set_header_bytenr(c, c->start);
  1427. btrfs_set_header_generation(c, trans->transid);
  1428. btrfs_set_header_owner(c, root->root_key.objectid);
  1429. write_extent_buffer(c, root->fs_info->fsid,
  1430. (unsigned long)btrfs_header_fsid(c),
  1431. BTRFS_FSID_SIZE);
  1432. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1433. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1434. BTRFS_UUID_SIZE);
  1435. btrfs_set_node_key(c, &lower_key, 0);
  1436. btrfs_set_node_blockptr(c, 0, lower->start);
  1437. lower_gen = btrfs_header_generation(lower);
  1438. WARN_ON(lower_gen == 0);
  1439. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1440. btrfs_mark_buffer_dirty(c);
  1441. spin_lock(&root->node_lock);
  1442. old = root->node;
  1443. root->node = c;
  1444. spin_unlock(&root->node_lock);
  1445. /* the super has an extra ref to root->node */
  1446. free_extent_buffer(old);
  1447. add_root_to_dirty_list(root);
  1448. extent_buffer_get(c);
  1449. path->nodes[level] = c;
  1450. path->locks[level] = 1;
  1451. path->slots[level] = 0;
  1452. if (root->ref_cows && lower_gen != trans->transid) {
  1453. struct btrfs_path *back_path = btrfs_alloc_path();
  1454. int ret;
  1455. mutex_lock(&root->fs_info->alloc_mutex);
  1456. ret = btrfs_insert_extent_backref(trans,
  1457. root->fs_info->extent_root,
  1458. path, lower->start,
  1459. root->root_key.objectid,
  1460. trans->transid, 0, 0);
  1461. BUG_ON(ret);
  1462. mutex_unlock(&root->fs_info->alloc_mutex);
  1463. btrfs_free_path(back_path);
  1464. }
  1465. return 0;
  1466. }
  1467. /*
  1468. * worker function to insert a single pointer in a node.
  1469. * the node should have enough room for the pointer already
  1470. *
  1471. * slot and level indicate where you want the key to go, and
  1472. * blocknr is the block the key points to.
  1473. *
  1474. * returns zero on success and < 0 on any error
  1475. */
  1476. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1477. *root, struct btrfs_path *path, struct btrfs_disk_key
  1478. *key, u64 bytenr, int slot, int level)
  1479. {
  1480. struct extent_buffer *lower;
  1481. int nritems;
  1482. BUG_ON(!path->nodes[level]);
  1483. lower = path->nodes[level];
  1484. nritems = btrfs_header_nritems(lower);
  1485. if (slot > nritems)
  1486. BUG();
  1487. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1488. BUG();
  1489. if (slot != nritems) {
  1490. memmove_extent_buffer(lower,
  1491. btrfs_node_key_ptr_offset(slot + 1),
  1492. btrfs_node_key_ptr_offset(slot),
  1493. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1494. }
  1495. btrfs_set_node_key(lower, key, slot);
  1496. btrfs_set_node_blockptr(lower, slot, bytenr);
  1497. WARN_ON(trans->transid == 0);
  1498. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1499. btrfs_set_header_nritems(lower, nritems + 1);
  1500. btrfs_mark_buffer_dirty(lower);
  1501. return 0;
  1502. }
  1503. /*
  1504. * split the node at the specified level in path in two.
  1505. * The path is corrected to point to the appropriate node after the split
  1506. *
  1507. * Before splitting this tries to make some room in the node by pushing
  1508. * left and right, if either one works, it returns right away.
  1509. *
  1510. * returns 0 on success and < 0 on failure
  1511. */
  1512. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1513. *root, struct btrfs_path *path, int level)
  1514. {
  1515. u64 root_gen;
  1516. struct extent_buffer *c;
  1517. struct extent_buffer *split;
  1518. struct btrfs_disk_key disk_key;
  1519. int mid;
  1520. int ret;
  1521. int wret;
  1522. u32 c_nritems;
  1523. c = path->nodes[level];
  1524. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1525. if (c == root->node) {
  1526. /* trying to split the root, lets make a new one */
  1527. ret = insert_new_root(trans, root, path, level + 1);
  1528. if (ret)
  1529. return ret;
  1530. } else {
  1531. ret = push_nodes_for_insert(trans, root, path, level);
  1532. c = path->nodes[level];
  1533. if (!ret && btrfs_header_nritems(c) <
  1534. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1535. return 0;
  1536. if (ret < 0)
  1537. return ret;
  1538. }
  1539. c_nritems = btrfs_header_nritems(c);
  1540. if (root->ref_cows)
  1541. root_gen = trans->transid;
  1542. else
  1543. root_gen = 0;
  1544. btrfs_node_key(c, &disk_key, 0);
  1545. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1546. root->root_key.objectid,
  1547. root_gen,
  1548. btrfs_disk_key_objectid(&disk_key),
  1549. level, c->start, 0);
  1550. if (IS_ERR(split))
  1551. return PTR_ERR(split);
  1552. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1553. btrfs_set_header_level(split, btrfs_header_level(c));
  1554. btrfs_set_header_bytenr(split, split->start);
  1555. btrfs_set_header_generation(split, trans->transid);
  1556. btrfs_set_header_owner(split, root->root_key.objectid);
  1557. btrfs_set_header_flags(split, 0);
  1558. write_extent_buffer(split, root->fs_info->fsid,
  1559. (unsigned long)btrfs_header_fsid(split),
  1560. BTRFS_FSID_SIZE);
  1561. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1562. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1563. BTRFS_UUID_SIZE);
  1564. mid = (c_nritems + 1) / 2;
  1565. copy_extent_buffer(split, c,
  1566. btrfs_node_key_ptr_offset(0),
  1567. btrfs_node_key_ptr_offset(mid),
  1568. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1569. btrfs_set_header_nritems(split, c_nritems - mid);
  1570. btrfs_set_header_nritems(c, mid);
  1571. ret = 0;
  1572. btrfs_mark_buffer_dirty(c);
  1573. btrfs_mark_buffer_dirty(split);
  1574. btrfs_node_key(split, &disk_key, 0);
  1575. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1576. path->slots[level + 1] + 1,
  1577. level + 1);
  1578. if (wret)
  1579. ret = wret;
  1580. if (path->slots[level] >= mid) {
  1581. path->slots[level] -= mid;
  1582. btrfs_tree_unlock(c);
  1583. free_extent_buffer(c);
  1584. path->nodes[level] = split;
  1585. path->slots[level + 1] += 1;
  1586. } else {
  1587. btrfs_tree_unlock(split);
  1588. free_extent_buffer(split);
  1589. }
  1590. return ret;
  1591. }
  1592. /*
  1593. * how many bytes are required to store the items in a leaf. start
  1594. * and nr indicate which items in the leaf to check. This totals up the
  1595. * space used both by the item structs and the item data
  1596. */
  1597. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1598. {
  1599. int data_len;
  1600. int nritems = btrfs_header_nritems(l);
  1601. int end = min(nritems, start + nr) - 1;
  1602. if (!nr)
  1603. return 0;
  1604. data_len = btrfs_item_end_nr(l, start);
  1605. data_len = data_len - btrfs_item_offset_nr(l, end);
  1606. data_len += sizeof(struct btrfs_item) * nr;
  1607. WARN_ON(data_len < 0);
  1608. return data_len;
  1609. }
  1610. /*
  1611. * The space between the end of the leaf items and
  1612. * the start of the leaf data. IOW, how much room
  1613. * the leaf has left for both items and data
  1614. */
  1615. int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
  1616. {
  1617. int nritems = btrfs_header_nritems(leaf);
  1618. int ret;
  1619. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1620. if (ret < 0) {
  1621. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1622. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1623. leaf_space_used(leaf, 0, nritems), nritems);
  1624. }
  1625. return ret;
  1626. }
  1627. /*
  1628. * push some data in the path leaf to the right, trying to free up at
  1629. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1630. *
  1631. * returns 1 if the push failed because the other node didn't have enough
  1632. * room, 0 if everything worked out and < 0 if there were major errors.
  1633. */
  1634. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1635. *root, struct btrfs_path *path, int data_size,
  1636. int empty)
  1637. {
  1638. struct extent_buffer *left = path->nodes[0];
  1639. struct extent_buffer *right;
  1640. struct extent_buffer *upper;
  1641. struct btrfs_disk_key disk_key;
  1642. int slot;
  1643. u32 i;
  1644. int free_space;
  1645. int push_space = 0;
  1646. int push_items = 0;
  1647. struct btrfs_item *item;
  1648. u32 left_nritems;
  1649. u32 nr;
  1650. u32 right_nritems;
  1651. u32 data_end;
  1652. u32 this_item_size;
  1653. int ret;
  1654. slot = path->slots[1];
  1655. if (!path->nodes[1]) {
  1656. return 1;
  1657. }
  1658. upper = path->nodes[1];
  1659. if (slot >= btrfs_header_nritems(upper) - 1)
  1660. return 1;
  1661. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  1662. right = read_node_slot(root, upper, slot + 1);
  1663. btrfs_tree_lock(right);
  1664. free_space = btrfs_leaf_free_space(root, right);
  1665. if (free_space < data_size + sizeof(struct btrfs_item))
  1666. goto out_unlock;
  1667. /* cow and double check */
  1668. ret = btrfs_cow_block(trans, root, right, upper,
  1669. slot + 1, &right);
  1670. if (ret)
  1671. goto out_unlock;
  1672. free_space = btrfs_leaf_free_space(root, right);
  1673. if (free_space < data_size + sizeof(struct btrfs_item))
  1674. goto out_unlock;
  1675. left_nritems = btrfs_header_nritems(left);
  1676. if (left_nritems == 0)
  1677. goto out_unlock;
  1678. if (empty)
  1679. nr = 0;
  1680. else
  1681. nr = 1;
  1682. i = left_nritems - 1;
  1683. while (i >= nr) {
  1684. item = btrfs_item_nr(left, i);
  1685. if (path->slots[0] == i)
  1686. push_space += data_size + sizeof(*item);
  1687. if (!left->map_token) {
  1688. map_extent_buffer(left, (unsigned long)item,
  1689. sizeof(struct btrfs_item),
  1690. &left->map_token, &left->kaddr,
  1691. &left->map_start, &left->map_len,
  1692. KM_USER1);
  1693. }
  1694. this_item_size = btrfs_item_size(left, item);
  1695. if (this_item_size + sizeof(*item) + push_space > free_space)
  1696. break;
  1697. push_items++;
  1698. push_space += this_item_size + sizeof(*item);
  1699. if (i == 0)
  1700. break;
  1701. i--;
  1702. }
  1703. if (left->map_token) {
  1704. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1705. left->map_token = NULL;
  1706. }
  1707. if (push_items == 0)
  1708. goto out_unlock;
  1709. if (!empty && push_items == left_nritems)
  1710. WARN_ON(1);
  1711. /* push left to right */
  1712. right_nritems = btrfs_header_nritems(right);
  1713. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  1714. push_space -= leaf_data_end(root, left);
  1715. /* make room in the right data area */
  1716. data_end = leaf_data_end(root, right);
  1717. memmove_extent_buffer(right,
  1718. btrfs_leaf_data(right) + data_end - push_space,
  1719. btrfs_leaf_data(right) + data_end,
  1720. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  1721. /* copy from the left data area */
  1722. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  1723. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1724. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1725. push_space);
  1726. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  1727. btrfs_item_nr_offset(0),
  1728. right_nritems * sizeof(struct btrfs_item));
  1729. /* copy the items from left to right */
  1730. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  1731. btrfs_item_nr_offset(left_nritems - push_items),
  1732. push_items * sizeof(struct btrfs_item));
  1733. /* update the item pointers */
  1734. right_nritems += push_items;
  1735. btrfs_set_header_nritems(right, right_nritems);
  1736. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1737. for (i = 0; i < right_nritems; i++) {
  1738. item = btrfs_item_nr(right, i);
  1739. if (!right->map_token) {
  1740. map_extent_buffer(right, (unsigned long)item,
  1741. sizeof(struct btrfs_item),
  1742. &right->map_token, &right->kaddr,
  1743. &right->map_start, &right->map_len,
  1744. KM_USER1);
  1745. }
  1746. push_space -= btrfs_item_size(right, item);
  1747. btrfs_set_item_offset(right, item, push_space);
  1748. }
  1749. if (right->map_token) {
  1750. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1751. right->map_token = NULL;
  1752. }
  1753. left_nritems -= push_items;
  1754. btrfs_set_header_nritems(left, left_nritems);
  1755. if (left_nritems)
  1756. btrfs_mark_buffer_dirty(left);
  1757. btrfs_mark_buffer_dirty(right);
  1758. btrfs_item_key(right, &disk_key, 0);
  1759. btrfs_set_node_key(upper, &disk_key, slot + 1);
  1760. btrfs_mark_buffer_dirty(upper);
  1761. /* then fixup the leaf pointer in the path */
  1762. if (path->slots[0] >= left_nritems) {
  1763. path->slots[0] -= left_nritems;
  1764. if (btrfs_header_nritems(path->nodes[0]) == 0)
  1765. clean_tree_block(trans, root, path->nodes[0]);
  1766. btrfs_tree_unlock(path->nodes[0]);
  1767. free_extent_buffer(path->nodes[0]);
  1768. path->nodes[0] = right;
  1769. path->slots[1] += 1;
  1770. } else {
  1771. btrfs_tree_unlock(right);
  1772. free_extent_buffer(right);
  1773. }
  1774. return 0;
  1775. out_unlock:
  1776. btrfs_tree_unlock(right);
  1777. free_extent_buffer(right);
  1778. return 1;
  1779. }
  1780. /*
  1781. * push some data in the path leaf to the left, trying to free up at
  1782. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1783. */
  1784. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1785. *root, struct btrfs_path *path, int data_size,
  1786. int empty)
  1787. {
  1788. struct btrfs_disk_key disk_key;
  1789. struct extent_buffer *right = path->nodes[0];
  1790. struct extent_buffer *left;
  1791. int slot;
  1792. int i;
  1793. int free_space;
  1794. int push_space = 0;
  1795. int push_items = 0;
  1796. struct btrfs_item *item;
  1797. u32 old_left_nritems;
  1798. u32 right_nritems;
  1799. u32 nr;
  1800. int ret = 0;
  1801. int wret;
  1802. u32 this_item_size;
  1803. u32 old_left_item_size;
  1804. slot = path->slots[1];
  1805. if (slot == 0)
  1806. return 1;
  1807. if (!path->nodes[1])
  1808. return 1;
  1809. right_nritems = btrfs_header_nritems(right);
  1810. if (right_nritems == 0) {
  1811. return 1;
  1812. }
  1813. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  1814. left = read_node_slot(root, path->nodes[1], slot - 1);
  1815. btrfs_tree_lock(left);
  1816. free_space = btrfs_leaf_free_space(root, left);
  1817. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1818. ret = 1;
  1819. goto out;
  1820. }
  1821. /* cow and double check */
  1822. ret = btrfs_cow_block(trans, root, left,
  1823. path->nodes[1], slot - 1, &left);
  1824. if (ret) {
  1825. /* we hit -ENOSPC, but it isn't fatal here */
  1826. ret = 1;
  1827. goto out;
  1828. }
  1829. free_space = btrfs_leaf_free_space(root, left);
  1830. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1831. ret = 1;
  1832. goto out;
  1833. }
  1834. if (empty)
  1835. nr = right_nritems;
  1836. else
  1837. nr = right_nritems - 1;
  1838. for (i = 0; i < nr; i++) {
  1839. item = btrfs_item_nr(right, i);
  1840. if (!right->map_token) {
  1841. map_extent_buffer(right, (unsigned long)item,
  1842. sizeof(struct btrfs_item),
  1843. &right->map_token, &right->kaddr,
  1844. &right->map_start, &right->map_len,
  1845. KM_USER1);
  1846. }
  1847. if (path->slots[0] == i)
  1848. push_space += data_size + sizeof(*item);
  1849. this_item_size = btrfs_item_size(right, item);
  1850. if (this_item_size + sizeof(*item) + push_space > free_space)
  1851. break;
  1852. push_items++;
  1853. push_space += this_item_size + sizeof(*item);
  1854. }
  1855. if (right->map_token) {
  1856. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1857. right->map_token = NULL;
  1858. }
  1859. if (push_items == 0) {
  1860. ret = 1;
  1861. goto out;
  1862. }
  1863. if (!empty && push_items == btrfs_header_nritems(right))
  1864. WARN_ON(1);
  1865. /* push data from right to left */
  1866. copy_extent_buffer(left, right,
  1867. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  1868. btrfs_item_nr_offset(0),
  1869. push_items * sizeof(struct btrfs_item));
  1870. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1871. btrfs_item_offset_nr(right, push_items -1);
  1872. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  1873. leaf_data_end(root, left) - push_space,
  1874. btrfs_leaf_data(right) +
  1875. btrfs_item_offset_nr(right, push_items - 1),
  1876. push_space);
  1877. old_left_nritems = btrfs_header_nritems(left);
  1878. BUG_ON(old_left_nritems < 0);
  1879. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  1880. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1881. u32 ioff;
  1882. item = btrfs_item_nr(left, i);
  1883. if (!left->map_token) {
  1884. map_extent_buffer(left, (unsigned long)item,
  1885. sizeof(struct btrfs_item),
  1886. &left->map_token, &left->kaddr,
  1887. &left->map_start, &left->map_len,
  1888. KM_USER1);
  1889. }
  1890. ioff = btrfs_item_offset(left, item);
  1891. btrfs_set_item_offset(left, item,
  1892. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  1893. }
  1894. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  1895. if (left->map_token) {
  1896. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1897. left->map_token = NULL;
  1898. }
  1899. /* fixup right node */
  1900. if (push_items > right_nritems) {
  1901. printk("push items %d nr %u\n", push_items, right_nritems);
  1902. WARN_ON(1);
  1903. }
  1904. if (push_items < right_nritems) {
  1905. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  1906. leaf_data_end(root, right);
  1907. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  1908. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1909. btrfs_leaf_data(right) +
  1910. leaf_data_end(root, right), push_space);
  1911. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  1912. btrfs_item_nr_offset(push_items),
  1913. (btrfs_header_nritems(right) - push_items) *
  1914. sizeof(struct btrfs_item));
  1915. }
  1916. right_nritems -= push_items;
  1917. btrfs_set_header_nritems(right, right_nritems);
  1918. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1919. for (i = 0; i < right_nritems; i++) {
  1920. item = btrfs_item_nr(right, i);
  1921. if (!right->map_token) {
  1922. map_extent_buffer(right, (unsigned long)item,
  1923. sizeof(struct btrfs_item),
  1924. &right->map_token, &right->kaddr,
  1925. &right->map_start, &right->map_len,
  1926. KM_USER1);
  1927. }
  1928. push_space = push_space - btrfs_item_size(right, item);
  1929. btrfs_set_item_offset(right, item, push_space);
  1930. }
  1931. if (right->map_token) {
  1932. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1933. right->map_token = NULL;
  1934. }
  1935. btrfs_mark_buffer_dirty(left);
  1936. if (right_nritems)
  1937. btrfs_mark_buffer_dirty(right);
  1938. btrfs_item_key(right, &disk_key, 0);
  1939. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1940. if (wret)
  1941. ret = wret;
  1942. /* then fixup the leaf pointer in the path */
  1943. if (path->slots[0] < push_items) {
  1944. path->slots[0] += old_left_nritems;
  1945. if (btrfs_header_nritems(path->nodes[0]) == 0)
  1946. clean_tree_block(trans, root, path->nodes[0]);
  1947. btrfs_tree_unlock(path->nodes[0]);
  1948. free_extent_buffer(path->nodes[0]);
  1949. path->nodes[0] = left;
  1950. path->slots[1] -= 1;
  1951. } else {
  1952. btrfs_tree_unlock(left);
  1953. free_extent_buffer(left);
  1954. path->slots[0] -= push_items;
  1955. }
  1956. BUG_ON(path->slots[0] < 0);
  1957. return ret;
  1958. out:
  1959. btrfs_tree_unlock(left);
  1960. free_extent_buffer(left);
  1961. return ret;
  1962. }
  1963. /*
  1964. * split the path's leaf in two, making sure there is at least data_size
  1965. * available for the resulting leaf level of the path.
  1966. *
  1967. * returns 0 if all went well and < 0 on failure.
  1968. */
  1969. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1970. *root, struct btrfs_key *ins_key,
  1971. struct btrfs_path *path, int data_size, int extend)
  1972. {
  1973. u64 root_gen;
  1974. struct extent_buffer *l;
  1975. u32 nritems;
  1976. int mid;
  1977. int slot;
  1978. struct extent_buffer *right;
  1979. int space_needed = data_size + sizeof(struct btrfs_item);
  1980. int data_copy_size;
  1981. int rt_data_off;
  1982. int i;
  1983. int ret = 0;
  1984. int wret;
  1985. int double_split;
  1986. int num_doubles = 0;
  1987. struct btrfs_disk_key disk_key;
  1988. if (extend)
  1989. space_needed = data_size;
  1990. if (root->ref_cows)
  1991. root_gen = trans->transid;
  1992. else
  1993. root_gen = 0;
  1994. /* first try to make some room by pushing left and right */
  1995. if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
  1996. wret = push_leaf_right(trans, root, path, data_size, 0);
  1997. if (wret < 0) {
  1998. return wret;
  1999. }
  2000. if (wret) {
  2001. wret = push_leaf_left(trans, root, path, data_size, 0);
  2002. if (wret < 0)
  2003. return wret;
  2004. }
  2005. l = path->nodes[0];
  2006. /* did the pushes work? */
  2007. if (btrfs_leaf_free_space(root, l) >= space_needed)
  2008. return 0;
  2009. }
  2010. if (!path->nodes[1]) {
  2011. ret = insert_new_root(trans, root, path, 1);
  2012. if (ret)
  2013. return ret;
  2014. }
  2015. again:
  2016. double_split = 0;
  2017. l = path->nodes[0];
  2018. slot = path->slots[0];
  2019. nritems = btrfs_header_nritems(l);
  2020. mid = (nritems + 1)/ 2;
  2021. btrfs_item_key(l, &disk_key, 0);
  2022. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2023. root->root_key.objectid,
  2024. root_gen, disk_key.objectid, 0,
  2025. l->start, 0);
  2026. if (IS_ERR(right)) {
  2027. BUG_ON(1);
  2028. return PTR_ERR(right);
  2029. }
  2030. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2031. btrfs_set_header_bytenr(right, right->start);
  2032. btrfs_set_header_generation(right, trans->transid);
  2033. btrfs_set_header_owner(right, root->root_key.objectid);
  2034. btrfs_set_header_level(right, 0);
  2035. write_extent_buffer(right, root->fs_info->fsid,
  2036. (unsigned long)btrfs_header_fsid(right),
  2037. BTRFS_FSID_SIZE);
  2038. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2039. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2040. BTRFS_UUID_SIZE);
  2041. if (mid <= slot) {
  2042. if (nritems == 1 ||
  2043. leaf_space_used(l, mid, nritems - mid) + space_needed >
  2044. BTRFS_LEAF_DATA_SIZE(root)) {
  2045. if (slot >= nritems) {
  2046. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2047. btrfs_set_header_nritems(right, 0);
  2048. wret = insert_ptr(trans, root, path,
  2049. &disk_key, right->start,
  2050. path->slots[1] + 1, 1);
  2051. if (wret)
  2052. ret = wret;
  2053. btrfs_tree_unlock(path->nodes[0]);
  2054. free_extent_buffer(path->nodes[0]);
  2055. path->nodes[0] = right;
  2056. path->slots[0] = 0;
  2057. path->slots[1] += 1;
  2058. btrfs_mark_buffer_dirty(right);
  2059. return ret;
  2060. }
  2061. mid = slot;
  2062. if (mid != nritems &&
  2063. leaf_space_used(l, mid, nritems - mid) +
  2064. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2065. double_split = 1;
  2066. }
  2067. }
  2068. } else {
  2069. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  2070. BTRFS_LEAF_DATA_SIZE(root)) {
  2071. if (!extend && slot == 0) {
  2072. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2073. btrfs_set_header_nritems(right, 0);
  2074. wret = insert_ptr(trans, root, path,
  2075. &disk_key,
  2076. right->start,
  2077. path->slots[1], 1);
  2078. if (wret)
  2079. ret = wret;
  2080. btrfs_tree_unlock(path->nodes[0]);
  2081. free_extent_buffer(path->nodes[0]);
  2082. path->nodes[0] = right;
  2083. path->slots[0] = 0;
  2084. if (path->slots[1] == 0) {
  2085. wret = fixup_low_keys(trans, root,
  2086. path, &disk_key, 1);
  2087. if (wret)
  2088. ret = wret;
  2089. }
  2090. btrfs_mark_buffer_dirty(right);
  2091. return ret;
  2092. } else if (extend && slot == 0) {
  2093. mid = 1;
  2094. } else {
  2095. mid = slot;
  2096. if (mid != nritems &&
  2097. leaf_space_used(l, mid, nritems - mid) +
  2098. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2099. double_split = 1;
  2100. }
  2101. }
  2102. }
  2103. }
  2104. nritems = nritems - mid;
  2105. btrfs_set_header_nritems(right, nritems);
  2106. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2107. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2108. btrfs_item_nr_offset(mid),
  2109. nritems * sizeof(struct btrfs_item));
  2110. copy_extent_buffer(right, l,
  2111. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2112. data_copy_size, btrfs_leaf_data(l) +
  2113. leaf_data_end(root, l), data_copy_size);
  2114. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2115. btrfs_item_end_nr(l, mid);
  2116. for (i = 0; i < nritems; i++) {
  2117. struct btrfs_item *item = btrfs_item_nr(right, i);
  2118. u32 ioff;
  2119. if (!right->map_token) {
  2120. map_extent_buffer(right, (unsigned long)item,
  2121. sizeof(struct btrfs_item),
  2122. &right->map_token, &right->kaddr,
  2123. &right->map_start, &right->map_len,
  2124. KM_USER1);
  2125. }
  2126. ioff = btrfs_item_offset(right, item);
  2127. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2128. }
  2129. if (right->map_token) {
  2130. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2131. right->map_token = NULL;
  2132. }
  2133. btrfs_set_header_nritems(l, mid);
  2134. ret = 0;
  2135. btrfs_item_key(right, &disk_key, 0);
  2136. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2137. path->slots[1] + 1, 1);
  2138. if (wret)
  2139. ret = wret;
  2140. btrfs_mark_buffer_dirty(right);
  2141. btrfs_mark_buffer_dirty(l);
  2142. BUG_ON(path->slots[0] != slot);
  2143. if (mid <= slot) {
  2144. btrfs_tree_unlock(path->nodes[0]);
  2145. free_extent_buffer(path->nodes[0]);
  2146. path->nodes[0] = right;
  2147. path->slots[0] -= mid;
  2148. path->slots[1] += 1;
  2149. } else {
  2150. btrfs_tree_unlock(right);
  2151. free_extent_buffer(right);
  2152. }
  2153. BUG_ON(path->slots[0] < 0);
  2154. if (double_split) {
  2155. BUG_ON(num_doubles != 0);
  2156. num_doubles++;
  2157. goto again;
  2158. }
  2159. return ret;
  2160. }
  2161. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2162. struct btrfs_root *root,
  2163. struct btrfs_path *path,
  2164. u32 new_size, int from_end)
  2165. {
  2166. int ret = 0;
  2167. int slot;
  2168. int slot_orig;
  2169. struct extent_buffer *leaf;
  2170. struct btrfs_item *item;
  2171. u32 nritems;
  2172. unsigned int data_end;
  2173. unsigned int old_data_start;
  2174. unsigned int old_size;
  2175. unsigned int size_diff;
  2176. int i;
  2177. slot_orig = path->slots[0];
  2178. leaf = path->nodes[0];
  2179. slot = path->slots[0];
  2180. old_size = btrfs_item_size_nr(leaf, slot);
  2181. if (old_size == new_size)
  2182. return 0;
  2183. nritems = btrfs_header_nritems(leaf);
  2184. data_end = leaf_data_end(root, leaf);
  2185. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2186. size_diff = old_size - new_size;
  2187. BUG_ON(slot < 0);
  2188. BUG_ON(slot >= nritems);
  2189. /*
  2190. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2191. */
  2192. /* first correct the data pointers */
  2193. for (i = slot; i < nritems; i++) {
  2194. u32 ioff;
  2195. item = btrfs_item_nr(leaf, i);
  2196. if (!leaf->map_token) {
  2197. map_extent_buffer(leaf, (unsigned long)item,
  2198. sizeof(struct btrfs_item),
  2199. &leaf->map_token, &leaf->kaddr,
  2200. &leaf->map_start, &leaf->map_len,
  2201. KM_USER1);
  2202. }
  2203. ioff = btrfs_item_offset(leaf, item);
  2204. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2205. }
  2206. if (leaf->map_token) {
  2207. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2208. leaf->map_token = NULL;
  2209. }
  2210. /* shift the data */
  2211. if (from_end) {
  2212. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2213. data_end + size_diff, btrfs_leaf_data(leaf) +
  2214. data_end, old_data_start + new_size - data_end);
  2215. } else {
  2216. struct btrfs_disk_key disk_key;
  2217. u64 offset;
  2218. btrfs_item_key(leaf, &disk_key, slot);
  2219. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2220. unsigned long ptr;
  2221. struct btrfs_file_extent_item *fi;
  2222. fi = btrfs_item_ptr(leaf, slot,
  2223. struct btrfs_file_extent_item);
  2224. fi = (struct btrfs_file_extent_item *)(
  2225. (unsigned long)fi - size_diff);
  2226. if (btrfs_file_extent_type(leaf, fi) ==
  2227. BTRFS_FILE_EXTENT_INLINE) {
  2228. ptr = btrfs_item_ptr_offset(leaf, slot);
  2229. memmove_extent_buffer(leaf, ptr,
  2230. (unsigned long)fi,
  2231. offsetof(struct btrfs_file_extent_item,
  2232. disk_bytenr));
  2233. }
  2234. }
  2235. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2236. data_end + size_diff, btrfs_leaf_data(leaf) +
  2237. data_end, old_data_start - data_end);
  2238. offset = btrfs_disk_key_offset(&disk_key);
  2239. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2240. btrfs_set_item_key(leaf, &disk_key, slot);
  2241. if (slot == 0)
  2242. fixup_low_keys(trans, root, path, &disk_key, 1);
  2243. }
  2244. item = btrfs_item_nr(leaf, slot);
  2245. btrfs_set_item_size(leaf, item, new_size);
  2246. btrfs_mark_buffer_dirty(leaf);
  2247. ret = 0;
  2248. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2249. btrfs_print_leaf(root, leaf);
  2250. BUG();
  2251. }
  2252. return ret;
  2253. }
  2254. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2255. struct btrfs_root *root, struct btrfs_path *path,
  2256. u32 data_size)
  2257. {
  2258. int ret = 0;
  2259. int slot;
  2260. int slot_orig;
  2261. struct extent_buffer *leaf;
  2262. struct btrfs_item *item;
  2263. u32 nritems;
  2264. unsigned int data_end;
  2265. unsigned int old_data;
  2266. unsigned int old_size;
  2267. int i;
  2268. slot_orig = path->slots[0];
  2269. leaf = path->nodes[0];
  2270. nritems = btrfs_header_nritems(leaf);
  2271. data_end = leaf_data_end(root, leaf);
  2272. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2273. btrfs_print_leaf(root, leaf);
  2274. BUG();
  2275. }
  2276. slot = path->slots[0];
  2277. old_data = btrfs_item_end_nr(leaf, slot);
  2278. BUG_ON(slot < 0);
  2279. if (slot >= nritems) {
  2280. btrfs_print_leaf(root, leaf);
  2281. printk("slot %d too large, nritems %d\n", slot, nritems);
  2282. BUG_ON(1);
  2283. }
  2284. /*
  2285. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2286. */
  2287. /* first correct the data pointers */
  2288. for (i = slot; i < nritems; i++) {
  2289. u32 ioff;
  2290. item = btrfs_item_nr(leaf, i);
  2291. if (!leaf->map_token) {
  2292. map_extent_buffer(leaf, (unsigned long)item,
  2293. sizeof(struct btrfs_item),
  2294. &leaf->map_token, &leaf->kaddr,
  2295. &leaf->map_start, &leaf->map_len,
  2296. KM_USER1);
  2297. }
  2298. ioff = btrfs_item_offset(leaf, item);
  2299. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2300. }
  2301. if (leaf->map_token) {
  2302. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2303. leaf->map_token = NULL;
  2304. }
  2305. /* shift the data */
  2306. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2307. data_end - data_size, btrfs_leaf_data(leaf) +
  2308. data_end, old_data - data_end);
  2309. data_end = old_data;
  2310. old_size = btrfs_item_size_nr(leaf, slot);
  2311. item = btrfs_item_nr(leaf, slot);
  2312. btrfs_set_item_size(leaf, item, old_size + data_size);
  2313. btrfs_mark_buffer_dirty(leaf);
  2314. ret = 0;
  2315. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2316. btrfs_print_leaf(root, leaf);
  2317. BUG();
  2318. }
  2319. return ret;
  2320. }
  2321. /*
  2322. * Given a key and some data, insert an item into the tree.
  2323. * This does all the path init required, making room in the tree if needed.
  2324. */
  2325. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  2326. struct btrfs_root *root,
  2327. struct btrfs_path *path,
  2328. struct btrfs_key *cpu_key, u32 *data_size,
  2329. int nr)
  2330. {
  2331. struct extent_buffer *leaf;
  2332. struct btrfs_item *item;
  2333. int ret = 0;
  2334. int slot;
  2335. int slot_orig;
  2336. int i;
  2337. u32 nritems;
  2338. u32 total_size = 0;
  2339. u32 total_data = 0;
  2340. unsigned int data_end;
  2341. struct btrfs_disk_key disk_key;
  2342. for (i = 0; i < nr; i++) {
  2343. total_data += data_size[i];
  2344. }
  2345. total_size = total_data + (nr * sizeof(struct btrfs_item));
  2346. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2347. if (ret == 0) {
  2348. return -EEXIST;
  2349. }
  2350. if (ret < 0)
  2351. goto out;
  2352. slot_orig = path->slots[0];
  2353. leaf = path->nodes[0];
  2354. nritems = btrfs_header_nritems(leaf);
  2355. data_end = leaf_data_end(root, leaf);
  2356. if (btrfs_leaf_free_space(root, leaf) <
  2357. sizeof(struct btrfs_item) + total_size) {
  2358. btrfs_print_leaf(root, leaf);
  2359. printk("not enough freespace need %u have %d\n",
  2360. total_size, btrfs_leaf_free_space(root, leaf));
  2361. BUG();
  2362. }
  2363. slot = path->slots[0];
  2364. BUG_ON(slot < 0);
  2365. if (slot != nritems) {
  2366. int i;
  2367. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2368. if (old_data < data_end) {
  2369. btrfs_print_leaf(root, leaf);
  2370. printk("slot %d old_data %d data_end %d\n",
  2371. slot, old_data, data_end);
  2372. BUG_ON(1);
  2373. }
  2374. /*
  2375. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2376. */
  2377. /* first correct the data pointers */
  2378. WARN_ON(leaf->map_token);
  2379. for (i = slot; i < nritems; i++) {
  2380. u32 ioff;
  2381. item = btrfs_item_nr(leaf, i);
  2382. if (!leaf->map_token) {
  2383. map_extent_buffer(leaf, (unsigned long)item,
  2384. sizeof(struct btrfs_item),
  2385. &leaf->map_token, &leaf->kaddr,
  2386. &leaf->map_start, &leaf->map_len,
  2387. KM_USER1);
  2388. }
  2389. ioff = btrfs_item_offset(leaf, item);
  2390. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2391. }
  2392. if (leaf->map_token) {
  2393. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2394. leaf->map_token = NULL;
  2395. }
  2396. /* shift the items */
  2397. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2398. btrfs_item_nr_offset(slot),
  2399. (nritems - slot) * sizeof(struct btrfs_item));
  2400. /* shift the data */
  2401. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2402. data_end - total_data, btrfs_leaf_data(leaf) +
  2403. data_end, old_data - data_end);
  2404. data_end = old_data;
  2405. }
  2406. /* setup the item for the new data */
  2407. for (i = 0; i < nr; i++) {
  2408. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2409. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2410. item = btrfs_item_nr(leaf, slot + i);
  2411. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2412. data_end -= data_size[i];
  2413. btrfs_set_item_size(leaf, item, data_size[i]);
  2414. }
  2415. btrfs_set_header_nritems(leaf, nritems + nr);
  2416. btrfs_mark_buffer_dirty(leaf);
  2417. ret = 0;
  2418. if (slot == 0) {
  2419. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2420. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2421. }
  2422. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2423. btrfs_print_leaf(root, leaf);
  2424. BUG();
  2425. }
  2426. out:
  2427. return ret;
  2428. }
  2429. /*
  2430. * Given a key and some data, insert an item into the tree.
  2431. * This does all the path init required, making room in the tree if needed.
  2432. */
  2433. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  2434. *root, struct btrfs_key *cpu_key, void *data, u32
  2435. data_size)
  2436. {
  2437. int ret = 0;
  2438. struct btrfs_path *path;
  2439. struct extent_buffer *leaf;
  2440. unsigned long ptr;
  2441. path = btrfs_alloc_path();
  2442. BUG_ON(!path);
  2443. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  2444. if (!ret) {
  2445. leaf = path->nodes[0];
  2446. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2447. write_extent_buffer(leaf, data, ptr, data_size);
  2448. btrfs_mark_buffer_dirty(leaf);
  2449. }
  2450. btrfs_free_path(path);
  2451. return ret;
  2452. }
  2453. /*
  2454. * delete the pointer from a given node.
  2455. *
  2456. * If the delete empties a node, the node is removed from the tree,
  2457. * continuing all the way the root if required. The root is converted into
  2458. * a leaf if all the nodes are emptied.
  2459. */
  2460. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2461. struct btrfs_path *path, int level, int slot)
  2462. {
  2463. struct extent_buffer *parent = path->nodes[level];
  2464. u32 nritems;
  2465. int ret = 0;
  2466. int wret;
  2467. nritems = btrfs_header_nritems(parent);
  2468. if (slot != nritems -1) {
  2469. memmove_extent_buffer(parent,
  2470. btrfs_node_key_ptr_offset(slot),
  2471. btrfs_node_key_ptr_offset(slot + 1),
  2472. sizeof(struct btrfs_key_ptr) *
  2473. (nritems - slot - 1));
  2474. }
  2475. nritems--;
  2476. btrfs_set_header_nritems(parent, nritems);
  2477. if (nritems == 0 && parent == root->node) {
  2478. BUG_ON(btrfs_header_level(root->node) != 1);
  2479. /* just turn the root into a leaf and break */
  2480. btrfs_set_header_level(root->node, 0);
  2481. } else if (slot == 0) {
  2482. struct btrfs_disk_key disk_key;
  2483. btrfs_node_key(parent, &disk_key, 0);
  2484. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  2485. if (wret)
  2486. ret = wret;
  2487. }
  2488. btrfs_mark_buffer_dirty(parent);
  2489. return ret;
  2490. }
  2491. /*
  2492. * delete the item at the leaf level in path. If that empties
  2493. * the leaf, remove it from the tree
  2494. */
  2495. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2496. struct btrfs_path *path, int slot, int nr)
  2497. {
  2498. struct extent_buffer *leaf;
  2499. struct btrfs_item *item;
  2500. int last_off;
  2501. int dsize = 0;
  2502. int ret = 0;
  2503. int wret;
  2504. int i;
  2505. u32 nritems;
  2506. leaf = path->nodes[0];
  2507. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  2508. for (i = 0; i < nr; i++)
  2509. dsize += btrfs_item_size_nr(leaf, slot + i);
  2510. nritems = btrfs_header_nritems(leaf);
  2511. if (slot + nr != nritems) {
  2512. int i;
  2513. int data_end = leaf_data_end(root, leaf);
  2514. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2515. data_end + dsize,
  2516. btrfs_leaf_data(leaf) + data_end,
  2517. last_off - data_end);
  2518. for (i = slot + nr; i < nritems; i++) {
  2519. u32 ioff;
  2520. item = btrfs_item_nr(leaf, i);
  2521. if (!leaf->map_token) {
  2522. map_extent_buffer(leaf, (unsigned long)item,
  2523. sizeof(struct btrfs_item),
  2524. &leaf->map_token, &leaf->kaddr,
  2525. &leaf->map_start, &leaf->map_len,
  2526. KM_USER1);
  2527. }
  2528. ioff = btrfs_item_offset(leaf, item);
  2529. btrfs_set_item_offset(leaf, item, ioff + dsize);
  2530. }
  2531. if (leaf->map_token) {
  2532. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2533. leaf->map_token = NULL;
  2534. }
  2535. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  2536. btrfs_item_nr_offset(slot + nr),
  2537. sizeof(struct btrfs_item) *
  2538. (nritems - slot - nr));
  2539. }
  2540. btrfs_set_header_nritems(leaf, nritems - nr);
  2541. nritems -= nr;
  2542. /* delete the leaf if we've emptied it */
  2543. if (nritems == 0) {
  2544. if (leaf == root->node) {
  2545. btrfs_set_header_level(leaf, 0);
  2546. } else {
  2547. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  2548. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  2549. if (wret)
  2550. ret = wret;
  2551. wret = btrfs_free_extent(trans, root,
  2552. leaf->start, leaf->len,
  2553. btrfs_header_owner(path->nodes[1]),
  2554. root_gen, 0, 0, 1);
  2555. if (wret)
  2556. ret = wret;
  2557. }
  2558. } else {
  2559. int used = leaf_space_used(leaf, 0, nritems);
  2560. if (slot == 0) {
  2561. struct btrfs_disk_key disk_key;
  2562. btrfs_item_key(leaf, &disk_key, 0);
  2563. wret = fixup_low_keys(trans, root, path,
  2564. &disk_key, 1);
  2565. if (wret)
  2566. ret = wret;
  2567. }
  2568. /* delete the leaf if it is mostly empty */
  2569. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  2570. /* push_leaf_left fixes the path.
  2571. * make sure the path still points to our leaf
  2572. * for possible call to del_ptr below
  2573. */
  2574. slot = path->slots[1];
  2575. extent_buffer_get(leaf);
  2576. wret = push_leaf_left(trans, root, path, 1, 1);
  2577. if (wret < 0 && wret != -ENOSPC)
  2578. ret = wret;
  2579. if (path->nodes[0] == leaf &&
  2580. btrfs_header_nritems(leaf)) {
  2581. wret = push_leaf_right(trans, root, path, 1, 1);
  2582. if (wret < 0 && wret != -ENOSPC)
  2583. ret = wret;
  2584. }
  2585. if (btrfs_header_nritems(leaf) == 0) {
  2586. u64 root_gen;
  2587. u64 bytenr = leaf->start;
  2588. u32 blocksize = leaf->len;
  2589. root_gen = btrfs_header_generation(
  2590. path->nodes[1]);
  2591. wret = del_ptr(trans, root, path, 1, slot);
  2592. if (wret)
  2593. ret = wret;
  2594. free_extent_buffer(leaf);
  2595. wret = btrfs_free_extent(trans, root, bytenr,
  2596. blocksize,
  2597. btrfs_header_owner(path->nodes[1]),
  2598. root_gen, 0, 0, 1);
  2599. if (wret)
  2600. ret = wret;
  2601. } else {
  2602. /* if we're still in the path, make sure
  2603. * we're dirty. Otherwise, one of the
  2604. * push_leaf functions must have already
  2605. * dirtied this buffer
  2606. */
  2607. if (path->nodes[0] == leaf)
  2608. btrfs_mark_buffer_dirty(leaf);
  2609. free_extent_buffer(leaf);
  2610. }
  2611. } else {
  2612. btrfs_mark_buffer_dirty(leaf);
  2613. }
  2614. }
  2615. return ret;
  2616. }
  2617. /*
  2618. * search the tree again to find a leaf with lesser keys
  2619. * returns 0 if it found something or 1 if there are no lesser leaves.
  2620. * returns < 0 on io errors.
  2621. */
  2622. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2623. {
  2624. struct btrfs_key key;
  2625. struct btrfs_disk_key found_key;
  2626. int ret;
  2627. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  2628. if (key.offset > 0)
  2629. key.offset--;
  2630. else if (key.type > 0)
  2631. key.type--;
  2632. else if (key.objectid > 0)
  2633. key.objectid--;
  2634. else
  2635. return 1;
  2636. btrfs_release_path(root, path);
  2637. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2638. if (ret < 0)
  2639. return ret;
  2640. btrfs_item_key(path->nodes[0], &found_key, 0);
  2641. ret = comp_keys(&found_key, &key);
  2642. if (ret < 0)
  2643. return 0;
  2644. return 1;
  2645. }
  2646. /*
  2647. * A helper function to walk down the tree starting at min_key, and looking
  2648. * for nodes or leaves that are either in cache or have a minimum
  2649. * transaction id. This is used by the btree defrag code, but could
  2650. * also be used to search for blocks that have changed since a given
  2651. * transaction id.
  2652. *
  2653. * This does not cow, but it does stuff the starting key it finds back
  2654. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  2655. * key and get a writable path.
  2656. *
  2657. * This does lock as it descends, and path->keep_locks should be set
  2658. * to 1 by the caller.
  2659. *
  2660. * This honors path->lowest_level to prevent descent past a given level
  2661. * of the tree.
  2662. *
  2663. * returns zero if something useful was found, < 0 on error and 1 if there
  2664. * was nothing in the tree that matched the search criteria.
  2665. */
  2666. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  2667. struct btrfs_path *path, int cache_only,
  2668. u64 min_trans)
  2669. {
  2670. struct extent_buffer *cur;
  2671. struct btrfs_key found_key;
  2672. int slot;
  2673. int sret;
  2674. u32 nritems;
  2675. int level;
  2676. int ret = 1;
  2677. again:
  2678. cur = btrfs_lock_root_node(root);
  2679. level = btrfs_header_level(cur);
  2680. path->nodes[level] = cur;
  2681. path->locks[level] = 1;
  2682. if (btrfs_header_generation(cur) < min_trans) {
  2683. ret = 1;
  2684. goto out;
  2685. }
  2686. while(1) {
  2687. nritems = btrfs_header_nritems(cur);
  2688. level = btrfs_header_level(cur);
  2689. sret = bin_search(cur, min_key, level, &slot);
  2690. /* at level = 0, we're done, setup the path and exit */
  2691. if (level == 0) {
  2692. ret = 0;
  2693. path->slots[level] = slot;
  2694. btrfs_item_key_to_cpu(cur, &found_key, slot);
  2695. goto out;
  2696. }
  2697. if (sret && slot > 0)
  2698. slot--;
  2699. /*
  2700. * check this node pointer against the cache_only and
  2701. * min_trans parameters. If it isn't in cache or is too
  2702. * old, skip to the next one.
  2703. */
  2704. while(slot < nritems) {
  2705. u64 blockptr;
  2706. u64 gen;
  2707. struct extent_buffer *tmp;
  2708. blockptr = btrfs_node_blockptr(cur, slot);
  2709. gen = btrfs_node_ptr_generation(cur, slot);
  2710. if (gen < min_trans) {
  2711. slot++;
  2712. continue;
  2713. }
  2714. if (!cache_only)
  2715. break;
  2716. tmp = btrfs_find_tree_block(root, blockptr,
  2717. btrfs_level_size(root, level - 1));
  2718. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  2719. free_extent_buffer(tmp);
  2720. break;
  2721. }
  2722. if (tmp)
  2723. free_extent_buffer(tmp);
  2724. slot++;
  2725. }
  2726. /*
  2727. * we didn't find a candidate key in this node, walk forward
  2728. * and find another one
  2729. */
  2730. if (slot >= nritems) {
  2731. ret = btrfs_find_next_key(root, path, min_key, level,
  2732. cache_only, min_trans);
  2733. if (ret == 0) {
  2734. btrfs_release_path(root, path);
  2735. goto again;
  2736. } else {
  2737. goto out;
  2738. }
  2739. }
  2740. /* save our key for returning back */
  2741. btrfs_node_key_to_cpu(cur, &found_key, slot);
  2742. path->slots[level] = slot;
  2743. if (level == path->lowest_level) {
  2744. ret = 0;
  2745. unlock_up(path, level, 1);
  2746. goto out;
  2747. }
  2748. cur = read_node_slot(root, cur, slot);
  2749. btrfs_tree_lock(cur);
  2750. path->locks[level - 1] = 1;
  2751. path->nodes[level - 1] = cur;
  2752. unlock_up(path, level, 1);
  2753. }
  2754. out:
  2755. if (ret == 0)
  2756. memcpy(min_key, &found_key, sizeof(found_key));
  2757. return ret;
  2758. }
  2759. /*
  2760. * this is similar to btrfs_next_leaf, but does not try to preserve
  2761. * and fixup the path. It looks for and returns the next key in the
  2762. * tree based on the current path and the cache_only and min_trans
  2763. * parameters.
  2764. *
  2765. * 0 is returned if another key is found, < 0 if there are any errors
  2766. * and 1 is returned if there are no higher keys in the tree
  2767. *
  2768. * path->keep_locks should be set to 1 on the search made before
  2769. * calling this function.
  2770. */
  2771. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  2772. struct btrfs_key *key, int lowest_level,
  2773. int cache_only, u64 min_trans)
  2774. {
  2775. int level = lowest_level;
  2776. int slot;
  2777. struct extent_buffer *c;
  2778. while(level < BTRFS_MAX_LEVEL) {
  2779. if (!path->nodes[level])
  2780. return 1;
  2781. slot = path->slots[level] + 1;
  2782. c = path->nodes[level];
  2783. next:
  2784. if (slot >= btrfs_header_nritems(c)) {
  2785. level++;
  2786. if (level == BTRFS_MAX_LEVEL) {
  2787. return 1;
  2788. }
  2789. continue;
  2790. }
  2791. if (level == 0)
  2792. btrfs_item_key_to_cpu(c, key, slot);
  2793. else {
  2794. u64 blockptr = btrfs_node_blockptr(c, slot);
  2795. u64 gen = btrfs_node_ptr_generation(c, slot);
  2796. if (cache_only) {
  2797. struct extent_buffer *cur;
  2798. cur = btrfs_find_tree_block(root, blockptr,
  2799. btrfs_level_size(root, level - 1));
  2800. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  2801. slot++;
  2802. if (cur)
  2803. free_extent_buffer(cur);
  2804. goto next;
  2805. }
  2806. free_extent_buffer(cur);
  2807. }
  2808. if (gen < min_trans) {
  2809. slot++;
  2810. goto next;
  2811. }
  2812. btrfs_node_key_to_cpu(c, key, slot);
  2813. }
  2814. return 0;
  2815. }
  2816. return 1;
  2817. }
  2818. /*
  2819. * search the tree again to find a leaf with greater keys
  2820. * returns 0 if it found something or 1 if there are no greater leaves.
  2821. * returns < 0 on io errors.
  2822. */
  2823. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2824. {
  2825. int slot;
  2826. int level = 1;
  2827. struct extent_buffer *c;
  2828. struct extent_buffer *next = NULL;
  2829. struct btrfs_key key;
  2830. u32 nritems;
  2831. int ret;
  2832. nritems = btrfs_header_nritems(path->nodes[0]);
  2833. if (nritems == 0) {
  2834. return 1;
  2835. }
  2836. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  2837. btrfs_release_path(root, path);
  2838. path->keep_locks = 1;
  2839. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2840. path->keep_locks = 0;
  2841. if (ret < 0)
  2842. return ret;
  2843. nritems = btrfs_header_nritems(path->nodes[0]);
  2844. /*
  2845. * by releasing the path above we dropped all our locks. A balance
  2846. * could have added more items next to the key that used to be
  2847. * at the very end of the block. So, check again here and
  2848. * advance the path if there are now more items available.
  2849. */
  2850. if (nritems > 0 && path->slots[0] < nritems - 1) {
  2851. path->slots[0]++;
  2852. goto done;
  2853. }
  2854. while(level < BTRFS_MAX_LEVEL) {
  2855. if (!path->nodes[level])
  2856. return 1;
  2857. slot = path->slots[level] + 1;
  2858. c = path->nodes[level];
  2859. if (slot >= btrfs_header_nritems(c)) {
  2860. level++;
  2861. if (level == BTRFS_MAX_LEVEL) {
  2862. return 1;
  2863. }
  2864. continue;
  2865. }
  2866. if (next) {
  2867. btrfs_tree_unlock(next);
  2868. free_extent_buffer(next);
  2869. }
  2870. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  2871. path->reada)
  2872. reada_for_search(root, path, level, slot, 0);
  2873. next = read_node_slot(root, c, slot);
  2874. if (!path->skip_locking) {
  2875. WARN_ON(!btrfs_tree_locked(c));
  2876. btrfs_tree_lock(next);
  2877. }
  2878. break;
  2879. }
  2880. path->slots[level] = slot;
  2881. while(1) {
  2882. level--;
  2883. c = path->nodes[level];
  2884. if (path->locks[level])
  2885. btrfs_tree_unlock(c);
  2886. free_extent_buffer(c);
  2887. path->nodes[level] = next;
  2888. path->slots[level] = 0;
  2889. if (!path->skip_locking)
  2890. path->locks[level] = 1;
  2891. if (!level)
  2892. break;
  2893. if (level == 1 && path->locks[1] && path->reada)
  2894. reada_for_search(root, path, level, slot, 0);
  2895. next = read_node_slot(root, next, 0);
  2896. if (!path->skip_locking) {
  2897. WARN_ON(!btrfs_tree_locked(path->nodes[level]));
  2898. btrfs_tree_lock(next);
  2899. }
  2900. }
  2901. done:
  2902. unlock_up(path, 0, 1);
  2903. return 0;
  2904. }
  2905. /*
  2906. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  2907. * searching until it gets past min_objectid or finds an item of 'type'
  2908. *
  2909. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  2910. */
  2911. int btrfs_previous_item(struct btrfs_root *root,
  2912. struct btrfs_path *path, u64 min_objectid,
  2913. int type)
  2914. {
  2915. struct btrfs_key found_key;
  2916. struct extent_buffer *leaf;
  2917. int ret;
  2918. while(1) {
  2919. if (path->slots[0] == 0) {
  2920. ret = btrfs_prev_leaf(root, path);
  2921. if (ret != 0)
  2922. return ret;
  2923. } else {
  2924. path->slots[0]--;
  2925. }
  2926. leaf = path->nodes[0];
  2927. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  2928. if (found_key.type == type)
  2929. return 0;
  2930. }
  2931. return 1;
  2932. }