cpuset.c 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. #include <linux/wait.h>
  61. /*
  62. * Tracks how many cpusets are currently defined in system.
  63. * When there is only one cpuset (the root cpuset) we can
  64. * short circuit some hooks.
  65. */
  66. int number_of_cpusets __read_mostly;
  67. /* See "Frequency meter" comments, below. */
  68. struct fmeter {
  69. int cnt; /* unprocessed events count */
  70. int val; /* most recent output value */
  71. time_t time; /* clock (secs) when val computed */
  72. spinlock_t lock; /* guards read or write of above */
  73. };
  74. struct cpuset {
  75. struct cgroup_subsys_state css;
  76. unsigned long flags; /* "unsigned long" so bitops work */
  77. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  78. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  79. /*
  80. * This is old Memory Nodes tasks took on.
  81. *
  82. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  83. * - A new cpuset's old_mems_allowed is initialized when some
  84. * task is moved into it.
  85. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  86. * cpuset.mems_allowed and have tasks' nodemask updated, and
  87. * then old_mems_allowed is updated to mems_allowed.
  88. */
  89. nodemask_t old_mems_allowed;
  90. struct fmeter fmeter; /* memory_pressure filter */
  91. /*
  92. * Tasks are being attached to this cpuset. Used to prevent
  93. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  94. */
  95. int attach_in_progress;
  96. /* partition number for rebuild_sched_domains() */
  97. int pn;
  98. /* for custom sched domain */
  99. int relax_domain_level;
  100. };
  101. static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
  102. {
  103. return css ? container_of(css, struct cpuset, css) : NULL;
  104. }
  105. /* Retrieve the cpuset for a task */
  106. static inline struct cpuset *task_cs(struct task_struct *task)
  107. {
  108. return css_cs(task_css(task, cpuset_subsys_id));
  109. }
  110. static inline struct cpuset *parent_cs(struct cpuset *cs)
  111. {
  112. return css_cs(css_parent(&cs->css));
  113. }
  114. #ifdef CONFIG_NUMA
  115. static inline bool task_has_mempolicy(struct task_struct *task)
  116. {
  117. return task->mempolicy;
  118. }
  119. #else
  120. static inline bool task_has_mempolicy(struct task_struct *task)
  121. {
  122. return false;
  123. }
  124. #endif
  125. /* bits in struct cpuset flags field */
  126. typedef enum {
  127. CS_ONLINE,
  128. CS_CPU_EXCLUSIVE,
  129. CS_MEM_EXCLUSIVE,
  130. CS_MEM_HARDWALL,
  131. CS_MEMORY_MIGRATE,
  132. CS_SCHED_LOAD_BALANCE,
  133. CS_SPREAD_PAGE,
  134. CS_SPREAD_SLAB,
  135. } cpuset_flagbits_t;
  136. /* convenient tests for these bits */
  137. static inline bool is_cpuset_online(const struct cpuset *cs)
  138. {
  139. return test_bit(CS_ONLINE, &cs->flags);
  140. }
  141. static inline int is_cpu_exclusive(const struct cpuset *cs)
  142. {
  143. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  144. }
  145. static inline int is_mem_exclusive(const struct cpuset *cs)
  146. {
  147. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  148. }
  149. static inline int is_mem_hardwall(const struct cpuset *cs)
  150. {
  151. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  152. }
  153. static inline int is_sched_load_balance(const struct cpuset *cs)
  154. {
  155. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  156. }
  157. static inline int is_memory_migrate(const struct cpuset *cs)
  158. {
  159. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  160. }
  161. static inline int is_spread_page(const struct cpuset *cs)
  162. {
  163. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  164. }
  165. static inline int is_spread_slab(const struct cpuset *cs)
  166. {
  167. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  168. }
  169. static struct cpuset top_cpuset = {
  170. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  171. (1 << CS_MEM_EXCLUSIVE)),
  172. };
  173. /**
  174. * cpuset_for_each_child - traverse online children of a cpuset
  175. * @child_cs: loop cursor pointing to the current child
  176. * @pos_css: used for iteration
  177. * @parent_cs: target cpuset to walk children of
  178. *
  179. * Walk @child_cs through the online children of @parent_cs. Must be used
  180. * with RCU read locked.
  181. */
  182. #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
  183. css_for_each_child((pos_css), &(parent_cs)->css) \
  184. if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
  185. /**
  186. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  187. * @des_cs: loop cursor pointing to the current descendant
  188. * @pos_css: used for iteration
  189. * @root_cs: target cpuset to walk ancestor of
  190. *
  191. * Walk @des_cs through the online descendants of @root_cs. Must be used
  192. * with RCU read locked. The caller may modify @pos_css by calling
  193. * css_rightmost_descendant() to skip subtree. @root_cs is included in the
  194. * iteration and the first node to be visited.
  195. */
  196. #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
  197. css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
  198. if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
  199. /*
  200. * There are two global mutexes guarding cpuset structures - cpuset_mutex
  201. * and callback_mutex. The latter may nest inside the former. We also
  202. * require taking task_lock() when dereferencing a task's cpuset pointer.
  203. * See "The task_lock() exception", at the end of this comment.
  204. *
  205. * A task must hold both mutexes to modify cpusets. If a task holds
  206. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  207. * is the only task able to also acquire callback_mutex and be able to
  208. * modify cpusets. It can perform various checks on the cpuset structure
  209. * first, knowing nothing will change. It can also allocate memory while
  210. * just holding cpuset_mutex. While it is performing these checks, various
  211. * callback routines can briefly acquire callback_mutex to query cpusets.
  212. * Once it is ready to make the changes, it takes callback_mutex, blocking
  213. * everyone else.
  214. *
  215. * Calls to the kernel memory allocator can not be made while holding
  216. * callback_mutex, as that would risk double tripping on callback_mutex
  217. * from one of the callbacks into the cpuset code from within
  218. * __alloc_pages().
  219. *
  220. * If a task is only holding callback_mutex, then it has read-only
  221. * access to cpusets.
  222. *
  223. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  224. * by other task, we use alloc_lock in the task_struct fields to protect
  225. * them.
  226. *
  227. * The cpuset_common_file_read() handlers only hold callback_mutex across
  228. * small pieces of code, such as when reading out possibly multi-word
  229. * cpumasks and nodemasks.
  230. *
  231. * Accessing a task's cpuset should be done in accordance with the
  232. * guidelines for accessing subsystem state in kernel/cgroup.c
  233. */
  234. static DEFINE_MUTEX(cpuset_mutex);
  235. static DEFINE_MUTEX(callback_mutex);
  236. /*
  237. * CPU / memory hotplug is handled asynchronously.
  238. */
  239. static void cpuset_hotplug_workfn(struct work_struct *work);
  240. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  241. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  242. /*
  243. * This is ugly, but preserves the userspace API for existing cpuset
  244. * users. If someone tries to mount the "cpuset" filesystem, we
  245. * silently switch it to mount "cgroup" instead
  246. */
  247. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  248. int flags, const char *unused_dev_name, void *data)
  249. {
  250. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  251. struct dentry *ret = ERR_PTR(-ENODEV);
  252. if (cgroup_fs) {
  253. char mountopts[] =
  254. "cpuset,noprefix,"
  255. "release_agent=/sbin/cpuset_release_agent";
  256. ret = cgroup_fs->mount(cgroup_fs, flags,
  257. unused_dev_name, mountopts);
  258. put_filesystem(cgroup_fs);
  259. }
  260. return ret;
  261. }
  262. static struct file_system_type cpuset_fs_type = {
  263. .name = "cpuset",
  264. .mount = cpuset_mount,
  265. };
  266. /*
  267. * Return in pmask the portion of a cpusets's cpus_allowed that
  268. * are online. If none are online, walk up the cpuset hierarchy
  269. * until we find one that does have some online cpus. The top
  270. * cpuset always has some cpus online.
  271. *
  272. * One way or another, we guarantee to return some non-empty subset
  273. * of cpu_online_mask.
  274. *
  275. * Call with callback_mutex held.
  276. */
  277. static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
  278. {
  279. while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  280. cs = parent_cs(cs);
  281. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  282. }
  283. /*
  284. * Return in *pmask the portion of a cpusets's mems_allowed that
  285. * are online, with memory. If none are online with memory, walk
  286. * up the cpuset hierarchy until we find one that does have some
  287. * online mems. The top cpuset always has some mems online.
  288. *
  289. * One way or another, we guarantee to return some non-empty subset
  290. * of node_states[N_MEMORY].
  291. *
  292. * Call with callback_mutex held.
  293. */
  294. static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
  295. {
  296. while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
  297. cs = parent_cs(cs);
  298. nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
  299. }
  300. /*
  301. * update task's spread flag if cpuset's page/slab spread flag is set
  302. *
  303. * Called with callback_mutex/cpuset_mutex held
  304. */
  305. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  306. struct task_struct *tsk)
  307. {
  308. if (is_spread_page(cs))
  309. tsk->flags |= PF_SPREAD_PAGE;
  310. else
  311. tsk->flags &= ~PF_SPREAD_PAGE;
  312. if (is_spread_slab(cs))
  313. tsk->flags |= PF_SPREAD_SLAB;
  314. else
  315. tsk->flags &= ~PF_SPREAD_SLAB;
  316. }
  317. /*
  318. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  319. *
  320. * One cpuset is a subset of another if all its allowed CPUs and
  321. * Memory Nodes are a subset of the other, and its exclusive flags
  322. * are only set if the other's are set. Call holding cpuset_mutex.
  323. */
  324. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  325. {
  326. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  327. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  328. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  329. is_mem_exclusive(p) <= is_mem_exclusive(q);
  330. }
  331. /**
  332. * alloc_trial_cpuset - allocate a trial cpuset
  333. * @cs: the cpuset that the trial cpuset duplicates
  334. */
  335. static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
  336. {
  337. struct cpuset *trial;
  338. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  339. if (!trial)
  340. return NULL;
  341. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  342. kfree(trial);
  343. return NULL;
  344. }
  345. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  346. return trial;
  347. }
  348. /**
  349. * free_trial_cpuset - free the trial cpuset
  350. * @trial: the trial cpuset to be freed
  351. */
  352. static void free_trial_cpuset(struct cpuset *trial)
  353. {
  354. free_cpumask_var(trial->cpus_allowed);
  355. kfree(trial);
  356. }
  357. /*
  358. * validate_change() - Used to validate that any proposed cpuset change
  359. * follows the structural rules for cpusets.
  360. *
  361. * If we replaced the flag and mask values of the current cpuset
  362. * (cur) with those values in the trial cpuset (trial), would
  363. * our various subset and exclusive rules still be valid? Presumes
  364. * cpuset_mutex held.
  365. *
  366. * 'cur' is the address of an actual, in-use cpuset. Operations
  367. * such as list traversal that depend on the actual address of the
  368. * cpuset in the list must use cur below, not trial.
  369. *
  370. * 'trial' is the address of bulk structure copy of cur, with
  371. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  372. * or flags changed to new, trial values.
  373. *
  374. * Return 0 if valid, -errno if not.
  375. */
  376. static int validate_change(struct cpuset *cur, struct cpuset *trial)
  377. {
  378. struct cgroup_subsys_state *css;
  379. struct cpuset *c, *par;
  380. int ret;
  381. rcu_read_lock();
  382. /* Each of our child cpusets must be a subset of us */
  383. ret = -EBUSY;
  384. cpuset_for_each_child(c, css, cur)
  385. if (!is_cpuset_subset(c, trial))
  386. goto out;
  387. /* Remaining checks don't apply to root cpuset */
  388. ret = 0;
  389. if (cur == &top_cpuset)
  390. goto out;
  391. par = parent_cs(cur);
  392. /* We must be a subset of our parent cpuset */
  393. ret = -EACCES;
  394. if (!is_cpuset_subset(trial, par))
  395. goto out;
  396. /*
  397. * If either I or some sibling (!= me) is exclusive, we can't
  398. * overlap
  399. */
  400. ret = -EINVAL;
  401. cpuset_for_each_child(c, css, par) {
  402. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  403. c != cur &&
  404. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  405. goto out;
  406. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  407. c != cur &&
  408. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  409. goto out;
  410. }
  411. /*
  412. * Cpusets with tasks - existing or newly being attached - can't
  413. * be changed to have empty cpus_allowed or mems_allowed.
  414. */
  415. ret = -ENOSPC;
  416. if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress)) {
  417. if (!cpumask_empty(cur->cpus_allowed) &&
  418. cpumask_empty(trial->cpus_allowed))
  419. goto out;
  420. if (!nodes_empty(cur->mems_allowed) &&
  421. nodes_empty(trial->mems_allowed))
  422. goto out;
  423. }
  424. ret = 0;
  425. out:
  426. rcu_read_unlock();
  427. return ret;
  428. }
  429. #ifdef CONFIG_SMP
  430. /*
  431. * Helper routine for generate_sched_domains().
  432. * Do cpusets a, b have overlapping cpus_allowed masks?
  433. */
  434. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  435. {
  436. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  437. }
  438. static void
  439. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  440. {
  441. if (dattr->relax_domain_level < c->relax_domain_level)
  442. dattr->relax_domain_level = c->relax_domain_level;
  443. return;
  444. }
  445. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  446. struct cpuset *root_cs)
  447. {
  448. struct cpuset *cp;
  449. struct cgroup_subsys_state *pos_css;
  450. rcu_read_lock();
  451. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  452. if (cp == root_cs)
  453. continue;
  454. /* skip the whole subtree if @cp doesn't have any CPU */
  455. if (cpumask_empty(cp->cpus_allowed)) {
  456. pos_css = css_rightmost_descendant(pos_css);
  457. continue;
  458. }
  459. if (is_sched_load_balance(cp))
  460. update_domain_attr(dattr, cp);
  461. }
  462. rcu_read_unlock();
  463. }
  464. /*
  465. * generate_sched_domains()
  466. *
  467. * This function builds a partial partition of the systems CPUs
  468. * A 'partial partition' is a set of non-overlapping subsets whose
  469. * union is a subset of that set.
  470. * The output of this function needs to be passed to kernel/sched/core.c
  471. * partition_sched_domains() routine, which will rebuild the scheduler's
  472. * load balancing domains (sched domains) as specified by that partial
  473. * partition.
  474. *
  475. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  476. * for a background explanation of this.
  477. *
  478. * Does not return errors, on the theory that the callers of this
  479. * routine would rather not worry about failures to rebuild sched
  480. * domains when operating in the severe memory shortage situations
  481. * that could cause allocation failures below.
  482. *
  483. * Must be called with cpuset_mutex held.
  484. *
  485. * The three key local variables below are:
  486. * q - a linked-list queue of cpuset pointers, used to implement a
  487. * top-down scan of all cpusets. This scan loads a pointer
  488. * to each cpuset marked is_sched_load_balance into the
  489. * array 'csa'. For our purposes, rebuilding the schedulers
  490. * sched domains, we can ignore !is_sched_load_balance cpusets.
  491. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  492. * that need to be load balanced, for convenient iterative
  493. * access by the subsequent code that finds the best partition,
  494. * i.e the set of domains (subsets) of CPUs such that the
  495. * cpus_allowed of every cpuset marked is_sched_load_balance
  496. * is a subset of one of these domains, while there are as
  497. * many such domains as possible, each as small as possible.
  498. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  499. * the kernel/sched/core.c routine partition_sched_domains() in a
  500. * convenient format, that can be easily compared to the prior
  501. * value to determine what partition elements (sched domains)
  502. * were changed (added or removed.)
  503. *
  504. * Finding the best partition (set of domains):
  505. * The triple nested loops below over i, j, k scan over the
  506. * load balanced cpusets (using the array of cpuset pointers in
  507. * csa[]) looking for pairs of cpusets that have overlapping
  508. * cpus_allowed, but which don't have the same 'pn' partition
  509. * number and gives them in the same partition number. It keeps
  510. * looping on the 'restart' label until it can no longer find
  511. * any such pairs.
  512. *
  513. * The union of the cpus_allowed masks from the set of
  514. * all cpusets having the same 'pn' value then form the one
  515. * element of the partition (one sched domain) to be passed to
  516. * partition_sched_domains().
  517. */
  518. static int generate_sched_domains(cpumask_var_t **domains,
  519. struct sched_domain_attr **attributes)
  520. {
  521. struct cpuset *cp; /* scans q */
  522. struct cpuset **csa; /* array of all cpuset ptrs */
  523. int csn; /* how many cpuset ptrs in csa so far */
  524. int i, j, k; /* indices for partition finding loops */
  525. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  526. struct sched_domain_attr *dattr; /* attributes for custom domains */
  527. int ndoms = 0; /* number of sched domains in result */
  528. int nslot; /* next empty doms[] struct cpumask slot */
  529. struct cgroup_subsys_state *pos_css;
  530. doms = NULL;
  531. dattr = NULL;
  532. csa = NULL;
  533. /* Special case for the 99% of systems with one, full, sched domain */
  534. if (is_sched_load_balance(&top_cpuset)) {
  535. ndoms = 1;
  536. doms = alloc_sched_domains(ndoms);
  537. if (!doms)
  538. goto done;
  539. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  540. if (dattr) {
  541. *dattr = SD_ATTR_INIT;
  542. update_domain_attr_tree(dattr, &top_cpuset);
  543. }
  544. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  545. goto done;
  546. }
  547. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  548. if (!csa)
  549. goto done;
  550. csn = 0;
  551. rcu_read_lock();
  552. cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
  553. if (cp == &top_cpuset)
  554. continue;
  555. /*
  556. * Continue traversing beyond @cp iff @cp has some CPUs and
  557. * isn't load balancing. The former is obvious. The
  558. * latter: All child cpusets contain a subset of the
  559. * parent's cpus, so just skip them, and then we call
  560. * update_domain_attr_tree() to calc relax_domain_level of
  561. * the corresponding sched domain.
  562. */
  563. if (!cpumask_empty(cp->cpus_allowed) &&
  564. !is_sched_load_balance(cp))
  565. continue;
  566. if (is_sched_load_balance(cp))
  567. csa[csn++] = cp;
  568. /* skip @cp's subtree */
  569. pos_css = css_rightmost_descendant(pos_css);
  570. }
  571. rcu_read_unlock();
  572. for (i = 0; i < csn; i++)
  573. csa[i]->pn = i;
  574. ndoms = csn;
  575. restart:
  576. /* Find the best partition (set of sched domains) */
  577. for (i = 0; i < csn; i++) {
  578. struct cpuset *a = csa[i];
  579. int apn = a->pn;
  580. for (j = 0; j < csn; j++) {
  581. struct cpuset *b = csa[j];
  582. int bpn = b->pn;
  583. if (apn != bpn && cpusets_overlap(a, b)) {
  584. for (k = 0; k < csn; k++) {
  585. struct cpuset *c = csa[k];
  586. if (c->pn == bpn)
  587. c->pn = apn;
  588. }
  589. ndoms--; /* one less element */
  590. goto restart;
  591. }
  592. }
  593. }
  594. /*
  595. * Now we know how many domains to create.
  596. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  597. */
  598. doms = alloc_sched_domains(ndoms);
  599. if (!doms)
  600. goto done;
  601. /*
  602. * The rest of the code, including the scheduler, can deal with
  603. * dattr==NULL case. No need to abort if alloc fails.
  604. */
  605. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  606. for (nslot = 0, i = 0; i < csn; i++) {
  607. struct cpuset *a = csa[i];
  608. struct cpumask *dp;
  609. int apn = a->pn;
  610. if (apn < 0) {
  611. /* Skip completed partitions */
  612. continue;
  613. }
  614. dp = doms[nslot];
  615. if (nslot == ndoms) {
  616. static int warnings = 10;
  617. if (warnings) {
  618. printk(KERN_WARNING
  619. "rebuild_sched_domains confused:"
  620. " nslot %d, ndoms %d, csn %d, i %d,"
  621. " apn %d\n",
  622. nslot, ndoms, csn, i, apn);
  623. warnings--;
  624. }
  625. continue;
  626. }
  627. cpumask_clear(dp);
  628. if (dattr)
  629. *(dattr + nslot) = SD_ATTR_INIT;
  630. for (j = i; j < csn; j++) {
  631. struct cpuset *b = csa[j];
  632. if (apn == b->pn) {
  633. cpumask_or(dp, dp, b->cpus_allowed);
  634. if (dattr)
  635. update_domain_attr_tree(dattr + nslot, b);
  636. /* Done with this partition */
  637. b->pn = -1;
  638. }
  639. }
  640. nslot++;
  641. }
  642. BUG_ON(nslot != ndoms);
  643. done:
  644. kfree(csa);
  645. /*
  646. * Fallback to the default domain if kmalloc() failed.
  647. * See comments in partition_sched_domains().
  648. */
  649. if (doms == NULL)
  650. ndoms = 1;
  651. *domains = doms;
  652. *attributes = dattr;
  653. return ndoms;
  654. }
  655. /*
  656. * Rebuild scheduler domains.
  657. *
  658. * If the flag 'sched_load_balance' of any cpuset with non-empty
  659. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  660. * which has that flag enabled, or if any cpuset with a non-empty
  661. * 'cpus' is removed, then call this routine to rebuild the
  662. * scheduler's dynamic sched domains.
  663. *
  664. * Call with cpuset_mutex held. Takes get_online_cpus().
  665. */
  666. static void rebuild_sched_domains_locked(void)
  667. {
  668. struct sched_domain_attr *attr;
  669. cpumask_var_t *doms;
  670. int ndoms;
  671. lockdep_assert_held(&cpuset_mutex);
  672. get_online_cpus();
  673. /*
  674. * We have raced with CPU hotplug. Don't do anything to avoid
  675. * passing doms with offlined cpu to partition_sched_domains().
  676. * Anyways, hotplug work item will rebuild sched domains.
  677. */
  678. if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
  679. goto out;
  680. /* Generate domain masks and attrs */
  681. ndoms = generate_sched_domains(&doms, &attr);
  682. /* Have scheduler rebuild the domains */
  683. partition_sched_domains(ndoms, doms, attr);
  684. out:
  685. put_online_cpus();
  686. }
  687. #else /* !CONFIG_SMP */
  688. static void rebuild_sched_domains_locked(void)
  689. {
  690. }
  691. #endif /* CONFIG_SMP */
  692. void rebuild_sched_domains(void)
  693. {
  694. mutex_lock(&cpuset_mutex);
  695. rebuild_sched_domains_locked();
  696. mutex_unlock(&cpuset_mutex);
  697. }
  698. /*
  699. * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
  700. * @cs: the cpuset in interest
  701. *
  702. * A cpuset's effective cpumask is the cpumask of the nearest ancestor
  703. * with non-empty cpus. We use effective cpumask whenever:
  704. * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
  705. * if the cpuset they reside in has no cpus)
  706. * - we want to retrieve task_cs(tsk)'s cpus_allowed.
  707. *
  708. * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
  709. * exception. See comments there.
  710. */
  711. static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
  712. {
  713. while (cpumask_empty(cs->cpus_allowed))
  714. cs = parent_cs(cs);
  715. return cs;
  716. }
  717. /*
  718. * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
  719. * @cs: the cpuset in interest
  720. *
  721. * A cpuset's effective nodemask is the nodemask of the nearest ancestor
  722. * with non-empty memss. We use effective nodemask whenever:
  723. * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
  724. * if the cpuset they reside in has no mems)
  725. * - we want to retrieve task_cs(tsk)'s mems_allowed.
  726. *
  727. * Called with cpuset_mutex held.
  728. */
  729. static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
  730. {
  731. while (nodes_empty(cs->mems_allowed))
  732. cs = parent_cs(cs);
  733. return cs;
  734. }
  735. /**
  736. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  737. * @tsk: task to test
  738. * @data: cpuset to @tsk belongs to
  739. *
  740. * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
  741. * mask needs to be changed.
  742. *
  743. * We don't need to re-check for the cgroup/cpuset membership, since we're
  744. * holding cpuset_mutex at this point.
  745. */
  746. static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
  747. {
  748. struct cpuset *cs = data;
  749. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  750. set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
  751. }
  752. /**
  753. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  754. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  755. * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
  756. *
  757. * Called with cpuset_mutex held
  758. *
  759. * The css_scan_tasks() function will scan all the tasks in a cgroup,
  760. * calling callback functions for each.
  761. *
  762. * No return value. It's guaranteed that css_scan_tasks() always returns 0
  763. * if @heap != NULL.
  764. */
  765. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  766. {
  767. css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
  768. }
  769. /*
  770. * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
  771. * @root_cs: the root cpuset of the hierarchy
  772. * @update_root: update root cpuset or not?
  773. * @heap: the heap used by css_scan_tasks()
  774. *
  775. * This will update cpumasks of tasks in @root_cs and all other empty cpusets
  776. * which take on cpumask of @root_cs.
  777. *
  778. * Called with cpuset_mutex held
  779. */
  780. static void update_tasks_cpumask_hier(struct cpuset *root_cs,
  781. bool update_root, struct ptr_heap *heap)
  782. {
  783. struct cpuset *cp;
  784. struct cgroup_subsys_state *pos_css;
  785. rcu_read_lock();
  786. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  787. if (cp == root_cs) {
  788. if (!update_root)
  789. continue;
  790. } else {
  791. /* skip the whole subtree if @cp have some CPU */
  792. if (!cpumask_empty(cp->cpus_allowed)) {
  793. pos_css = css_rightmost_descendant(pos_css);
  794. continue;
  795. }
  796. }
  797. if (!css_tryget(&cp->css))
  798. continue;
  799. rcu_read_unlock();
  800. update_tasks_cpumask(cp, heap);
  801. rcu_read_lock();
  802. css_put(&cp->css);
  803. }
  804. rcu_read_unlock();
  805. }
  806. /**
  807. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  808. * @cs: the cpuset to consider
  809. * @buf: buffer of cpu numbers written to this cpuset
  810. */
  811. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  812. const char *buf)
  813. {
  814. struct ptr_heap heap;
  815. int retval;
  816. int is_load_balanced;
  817. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  818. if (cs == &top_cpuset)
  819. return -EACCES;
  820. /*
  821. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  822. * Since cpulist_parse() fails on an empty mask, we special case
  823. * that parsing. The validate_change() call ensures that cpusets
  824. * with tasks have cpus.
  825. */
  826. if (!*buf) {
  827. cpumask_clear(trialcs->cpus_allowed);
  828. } else {
  829. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  830. if (retval < 0)
  831. return retval;
  832. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  833. return -EINVAL;
  834. }
  835. /* Nothing to do if the cpus didn't change */
  836. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  837. return 0;
  838. retval = validate_change(cs, trialcs);
  839. if (retval < 0)
  840. return retval;
  841. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  842. if (retval)
  843. return retval;
  844. is_load_balanced = is_sched_load_balance(trialcs);
  845. mutex_lock(&callback_mutex);
  846. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  847. mutex_unlock(&callback_mutex);
  848. update_tasks_cpumask_hier(cs, true, &heap);
  849. heap_free(&heap);
  850. if (is_load_balanced)
  851. rebuild_sched_domains_locked();
  852. return 0;
  853. }
  854. /*
  855. * cpuset_migrate_mm
  856. *
  857. * Migrate memory region from one set of nodes to another.
  858. *
  859. * Temporarilly set tasks mems_allowed to target nodes of migration,
  860. * so that the migration code can allocate pages on these nodes.
  861. *
  862. * Call holding cpuset_mutex, so current's cpuset won't change
  863. * during this call, as manage_mutex holds off any cpuset_attach()
  864. * calls. Therefore we don't need to take task_lock around the
  865. * call to guarantee_online_mems(), as we know no one is changing
  866. * our task's cpuset.
  867. *
  868. * While the mm_struct we are migrating is typically from some
  869. * other task, the task_struct mems_allowed that we are hacking
  870. * is for our current task, which must allocate new pages for that
  871. * migrating memory region.
  872. */
  873. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  874. const nodemask_t *to)
  875. {
  876. struct task_struct *tsk = current;
  877. struct cpuset *mems_cs;
  878. tsk->mems_allowed = *to;
  879. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  880. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  881. guarantee_online_mems(mems_cs, &tsk->mems_allowed);
  882. }
  883. /*
  884. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  885. * @tsk: the task to change
  886. * @newmems: new nodes that the task will be set
  887. *
  888. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  889. * we structure updates as setting all new allowed nodes, then clearing newly
  890. * disallowed ones.
  891. */
  892. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  893. nodemask_t *newmems)
  894. {
  895. bool need_loop;
  896. /*
  897. * Allow tasks that have access to memory reserves because they have
  898. * been OOM killed to get memory anywhere.
  899. */
  900. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  901. return;
  902. if (current->flags & PF_EXITING) /* Let dying task have memory */
  903. return;
  904. task_lock(tsk);
  905. /*
  906. * Determine if a loop is necessary if another thread is doing
  907. * get_mems_allowed(). If at least one node remains unchanged and
  908. * tsk does not have a mempolicy, then an empty nodemask will not be
  909. * possible when mems_allowed is larger than a word.
  910. */
  911. need_loop = task_has_mempolicy(tsk) ||
  912. !nodes_intersects(*newmems, tsk->mems_allowed);
  913. if (need_loop) {
  914. local_irq_disable();
  915. write_seqcount_begin(&tsk->mems_allowed_seq);
  916. }
  917. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  918. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  919. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  920. tsk->mems_allowed = *newmems;
  921. if (need_loop) {
  922. write_seqcount_end(&tsk->mems_allowed_seq);
  923. local_irq_enable();
  924. }
  925. task_unlock(tsk);
  926. }
  927. struct cpuset_change_nodemask_arg {
  928. struct cpuset *cs;
  929. nodemask_t *newmems;
  930. };
  931. /*
  932. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  933. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  934. * memory_migrate flag is set. Called with cpuset_mutex held.
  935. */
  936. static void cpuset_change_nodemask(struct task_struct *p, void *data)
  937. {
  938. struct cpuset_change_nodemask_arg *arg = data;
  939. struct cpuset *cs = arg->cs;
  940. struct mm_struct *mm;
  941. int migrate;
  942. cpuset_change_task_nodemask(p, arg->newmems);
  943. mm = get_task_mm(p);
  944. if (!mm)
  945. return;
  946. migrate = is_memory_migrate(cs);
  947. mpol_rebind_mm(mm, &cs->mems_allowed);
  948. if (migrate)
  949. cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
  950. mmput(mm);
  951. }
  952. static void *cpuset_being_rebound;
  953. /**
  954. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  955. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  956. * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
  957. *
  958. * Called with cpuset_mutex held. No return value. It's guaranteed that
  959. * css_scan_tasks() always returns 0 if @heap != NULL.
  960. */
  961. static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
  962. {
  963. static nodemask_t newmems; /* protected by cpuset_mutex */
  964. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  965. struct cpuset_change_nodemask_arg arg = { .cs = cs,
  966. .newmems = &newmems };
  967. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  968. guarantee_online_mems(mems_cs, &newmems);
  969. /*
  970. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  971. * take while holding tasklist_lock. Forks can happen - the
  972. * mpol_dup() cpuset_being_rebound check will catch such forks,
  973. * and rebind their vma mempolicies too. Because we still hold
  974. * the global cpuset_mutex, we know that no other rebind effort
  975. * will be contending for the global variable cpuset_being_rebound.
  976. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  977. * is idempotent. Also migrate pages in each mm to new nodes.
  978. */
  979. css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
  980. /*
  981. * All the tasks' nodemasks have been updated, update
  982. * cs->old_mems_allowed.
  983. */
  984. cs->old_mems_allowed = newmems;
  985. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  986. cpuset_being_rebound = NULL;
  987. }
  988. /*
  989. * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
  990. * @cs: the root cpuset of the hierarchy
  991. * @update_root: update the root cpuset or not?
  992. * @heap: the heap used by css_scan_tasks()
  993. *
  994. * This will update nodemasks of tasks in @root_cs and all other empty cpusets
  995. * which take on nodemask of @root_cs.
  996. *
  997. * Called with cpuset_mutex held
  998. */
  999. static void update_tasks_nodemask_hier(struct cpuset *root_cs,
  1000. bool update_root, struct ptr_heap *heap)
  1001. {
  1002. struct cpuset *cp;
  1003. struct cgroup_subsys_state *pos_css;
  1004. rcu_read_lock();
  1005. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  1006. if (cp == root_cs) {
  1007. if (!update_root)
  1008. continue;
  1009. } else {
  1010. /* skip the whole subtree if @cp have some CPU */
  1011. if (!nodes_empty(cp->mems_allowed)) {
  1012. pos_css = css_rightmost_descendant(pos_css);
  1013. continue;
  1014. }
  1015. }
  1016. if (!css_tryget(&cp->css))
  1017. continue;
  1018. rcu_read_unlock();
  1019. update_tasks_nodemask(cp, heap);
  1020. rcu_read_lock();
  1021. css_put(&cp->css);
  1022. }
  1023. rcu_read_unlock();
  1024. }
  1025. /*
  1026. * Handle user request to change the 'mems' memory placement
  1027. * of a cpuset. Needs to validate the request, update the
  1028. * cpusets mems_allowed, and for each task in the cpuset,
  1029. * update mems_allowed and rebind task's mempolicy and any vma
  1030. * mempolicies and if the cpuset is marked 'memory_migrate',
  1031. * migrate the tasks pages to the new memory.
  1032. *
  1033. * Call with cpuset_mutex held. May take callback_mutex during call.
  1034. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1035. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1036. * their mempolicies to the cpusets new mems_allowed.
  1037. */
  1038. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1039. const char *buf)
  1040. {
  1041. int retval;
  1042. struct ptr_heap heap;
  1043. /*
  1044. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  1045. * it's read-only
  1046. */
  1047. if (cs == &top_cpuset) {
  1048. retval = -EACCES;
  1049. goto done;
  1050. }
  1051. /*
  1052. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1053. * Since nodelist_parse() fails on an empty mask, we special case
  1054. * that parsing. The validate_change() call ensures that cpusets
  1055. * with tasks have memory.
  1056. */
  1057. if (!*buf) {
  1058. nodes_clear(trialcs->mems_allowed);
  1059. } else {
  1060. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1061. if (retval < 0)
  1062. goto done;
  1063. if (!nodes_subset(trialcs->mems_allowed,
  1064. node_states[N_MEMORY])) {
  1065. retval = -EINVAL;
  1066. goto done;
  1067. }
  1068. }
  1069. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1070. retval = 0; /* Too easy - nothing to do */
  1071. goto done;
  1072. }
  1073. retval = validate_change(cs, trialcs);
  1074. if (retval < 0)
  1075. goto done;
  1076. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1077. if (retval < 0)
  1078. goto done;
  1079. mutex_lock(&callback_mutex);
  1080. cs->mems_allowed = trialcs->mems_allowed;
  1081. mutex_unlock(&callback_mutex);
  1082. update_tasks_nodemask_hier(cs, true, &heap);
  1083. heap_free(&heap);
  1084. done:
  1085. return retval;
  1086. }
  1087. int current_cpuset_is_being_rebound(void)
  1088. {
  1089. return task_cs(current) == cpuset_being_rebound;
  1090. }
  1091. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1092. {
  1093. #ifdef CONFIG_SMP
  1094. if (val < -1 || val >= sched_domain_level_max)
  1095. return -EINVAL;
  1096. #endif
  1097. if (val != cs->relax_domain_level) {
  1098. cs->relax_domain_level = val;
  1099. if (!cpumask_empty(cs->cpus_allowed) &&
  1100. is_sched_load_balance(cs))
  1101. rebuild_sched_domains_locked();
  1102. }
  1103. return 0;
  1104. }
  1105. /**
  1106. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1107. * @tsk: task to be updated
  1108. * @data: cpuset to @tsk belongs to
  1109. *
  1110. * Called by css_scan_tasks() for each task in a cgroup.
  1111. *
  1112. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1113. * holding cpuset_mutex at this point.
  1114. */
  1115. static void cpuset_change_flag(struct task_struct *tsk, void *data)
  1116. {
  1117. struct cpuset *cs = data;
  1118. cpuset_update_task_spread_flag(cs, tsk);
  1119. }
  1120. /**
  1121. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1122. * @cs: the cpuset in which each task's spread flags needs to be changed
  1123. * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
  1124. *
  1125. * Called with cpuset_mutex held
  1126. *
  1127. * The css_scan_tasks() function will scan all the tasks in a cgroup,
  1128. * calling callback functions for each.
  1129. *
  1130. * No return value. It's guaranteed that css_scan_tasks() always returns 0
  1131. * if @heap != NULL.
  1132. */
  1133. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1134. {
  1135. css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
  1136. }
  1137. /*
  1138. * update_flag - read a 0 or a 1 in a file and update associated flag
  1139. * bit: the bit to update (see cpuset_flagbits_t)
  1140. * cs: the cpuset to update
  1141. * turning_on: whether the flag is being set or cleared
  1142. *
  1143. * Call with cpuset_mutex held.
  1144. */
  1145. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1146. int turning_on)
  1147. {
  1148. struct cpuset *trialcs;
  1149. int balance_flag_changed;
  1150. int spread_flag_changed;
  1151. struct ptr_heap heap;
  1152. int err;
  1153. trialcs = alloc_trial_cpuset(cs);
  1154. if (!trialcs)
  1155. return -ENOMEM;
  1156. if (turning_on)
  1157. set_bit(bit, &trialcs->flags);
  1158. else
  1159. clear_bit(bit, &trialcs->flags);
  1160. err = validate_change(cs, trialcs);
  1161. if (err < 0)
  1162. goto out;
  1163. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1164. if (err < 0)
  1165. goto out;
  1166. balance_flag_changed = (is_sched_load_balance(cs) !=
  1167. is_sched_load_balance(trialcs));
  1168. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1169. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1170. mutex_lock(&callback_mutex);
  1171. cs->flags = trialcs->flags;
  1172. mutex_unlock(&callback_mutex);
  1173. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1174. rebuild_sched_domains_locked();
  1175. if (spread_flag_changed)
  1176. update_tasks_flags(cs, &heap);
  1177. heap_free(&heap);
  1178. out:
  1179. free_trial_cpuset(trialcs);
  1180. return err;
  1181. }
  1182. /*
  1183. * Frequency meter - How fast is some event occurring?
  1184. *
  1185. * These routines manage a digitally filtered, constant time based,
  1186. * event frequency meter. There are four routines:
  1187. * fmeter_init() - initialize a frequency meter.
  1188. * fmeter_markevent() - called each time the event happens.
  1189. * fmeter_getrate() - returns the recent rate of such events.
  1190. * fmeter_update() - internal routine used to update fmeter.
  1191. *
  1192. * A common data structure is passed to each of these routines,
  1193. * which is used to keep track of the state required to manage the
  1194. * frequency meter and its digital filter.
  1195. *
  1196. * The filter works on the number of events marked per unit time.
  1197. * The filter is single-pole low-pass recursive (IIR). The time unit
  1198. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1199. * simulate 3 decimal digits of precision (multiplied by 1000).
  1200. *
  1201. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1202. * has a half-life of 10 seconds, meaning that if the events quit
  1203. * happening, then the rate returned from the fmeter_getrate()
  1204. * will be cut in half each 10 seconds, until it converges to zero.
  1205. *
  1206. * It is not worth doing a real infinitely recursive filter. If more
  1207. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1208. * just compute FM_MAXTICKS ticks worth, by which point the level
  1209. * will be stable.
  1210. *
  1211. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1212. * arithmetic overflow in the fmeter_update() routine.
  1213. *
  1214. * Given the simple 32 bit integer arithmetic used, this meter works
  1215. * best for reporting rates between one per millisecond (msec) and
  1216. * one per 32 (approx) seconds. At constant rates faster than one
  1217. * per msec it maxes out at values just under 1,000,000. At constant
  1218. * rates between one per msec, and one per second it will stabilize
  1219. * to a value N*1000, where N is the rate of events per second.
  1220. * At constant rates between one per second and one per 32 seconds,
  1221. * it will be choppy, moving up on the seconds that have an event,
  1222. * and then decaying until the next event. At rates slower than
  1223. * about one in 32 seconds, it decays all the way back to zero between
  1224. * each event.
  1225. */
  1226. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1227. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1228. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1229. #define FM_SCALE 1000 /* faux fixed point scale */
  1230. /* Initialize a frequency meter */
  1231. static void fmeter_init(struct fmeter *fmp)
  1232. {
  1233. fmp->cnt = 0;
  1234. fmp->val = 0;
  1235. fmp->time = 0;
  1236. spin_lock_init(&fmp->lock);
  1237. }
  1238. /* Internal meter update - process cnt events and update value */
  1239. static void fmeter_update(struct fmeter *fmp)
  1240. {
  1241. time_t now = get_seconds();
  1242. time_t ticks = now - fmp->time;
  1243. if (ticks == 0)
  1244. return;
  1245. ticks = min(FM_MAXTICKS, ticks);
  1246. while (ticks-- > 0)
  1247. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1248. fmp->time = now;
  1249. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1250. fmp->cnt = 0;
  1251. }
  1252. /* Process any previous ticks, then bump cnt by one (times scale). */
  1253. static void fmeter_markevent(struct fmeter *fmp)
  1254. {
  1255. spin_lock(&fmp->lock);
  1256. fmeter_update(fmp);
  1257. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1258. spin_unlock(&fmp->lock);
  1259. }
  1260. /* Process any previous ticks, then return current value. */
  1261. static int fmeter_getrate(struct fmeter *fmp)
  1262. {
  1263. int val;
  1264. spin_lock(&fmp->lock);
  1265. fmeter_update(fmp);
  1266. val = fmp->val;
  1267. spin_unlock(&fmp->lock);
  1268. return val;
  1269. }
  1270. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1271. static int cpuset_can_attach(struct cgroup_subsys_state *css,
  1272. struct cgroup_taskset *tset)
  1273. {
  1274. struct cpuset *cs = css_cs(css);
  1275. struct task_struct *task;
  1276. int ret;
  1277. mutex_lock(&cpuset_mutex);
  1278. /*
  1279. * We allow to move tasks into an empty cpuset if sane_behavior
  1280. * flag is set.
  1281. */
  1282. ret = -ENOSPC;
  1283. if (!cgroup_sane_behavior(css->cgroup) &&
  1284. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1285. goto out_unlock;
  1286. cgroup_taskset_for_each(task, css, tset) {
  1287. /*
  1288. * Kthreads which disallow setaffinity shouldn't be moved
  1289. * to a new cpuset; we don't want to change their cpu
  1290. * affinity and isolating such threads by their set of
  1291. * allowed nodes is unnecessary. Thus, cpusets are not
  1292. * applicable for such threads. This prevents checking for
  1293. * success of set_cpus_allowed_ptr() on all attached tasks
  1294. * before cpus_allowed may be changed.
  1295. */
  1296. ret = -EINVAL;
  1297. if (task->flags & PF_NO_SETAFFINITY)
  1298. goto out_unlock;
  1299. ret = security_task_setscheduler(task);
  1300. if (ret)
  1301. goto out_unlock;
  1302. }
  1303. /*
  1304. * Mark attach is in progress. This makes validate_change() fail
  1305. * changes which zero cpus/mems_allowed.
  1306. */
  1307. cs->attach_in_progress++;
  1308. ret = 0;
  1309. out_unlock:
  1310. mutex_unlock(&cpuset_mutex);
  1311. return ret;
  1312. }
  1313. static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
  1314. struct cgroup_taskset *tset)
  1315. {
  1316. mutex_lock(&cpuset_mutex);
  1317. css_cs(css)->attach_in_progress--;
  1318. mutex_unlock(&cpuset_mutex);
  1319. }
  1320. /*
  1321. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1322. * but we can't allocate it dynamically there. Define it global and
  1323. * allocate from cpuset_init().
  1324. */
  1325. static cpumask_var_t cpus_attach;
  1326. static void cpuset_attach(struct cgroup_subsys_state *css,
  1327. struct cgroup_taskset *tset)
  1328. {
  1329. /* static buf protected by cpuset_mutex */
  1330. static nodemask_t cpuset_attach_nodemask_to;
  1331. struct mm_struct *mm;
  1332. struct task_struct *task;
  1333. struct task_struct *leader = cgroup_taskset_first(tset);
  1334. struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
  1335. cpuset_subsys_id);
  1336. struct cpuset *cs = css_cs(css);
  1337. struct cpuset *oldcs = css_cs(oldcss);
  1338. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  1339. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  1340. mutex_lock(&cpuset_mutex);
  1341. /* prepare for attach */
  1342. if (cs == &top_cpuset)
  1343. cpumask_copy(cpus_attach, cpu_possible_mask);
  1344. else
  1345. guarantee_online_cpus(cpus_cs, cpus_attach);
  1346. guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
  1347. cgroup_taskset_for_each(task, css, tset) {
  1348. /*
  1349. * can_attach beforehand should guarantee that this doesn't
  1350. * fail. TODO: have a better way to handle failure here
  1351. */
  1352. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1353. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1354. cpuset_update_task_spread_flag(cs, task);
  1355. }
  1356. /*
  1357. * Change mm, possibly for multiple threads in a threadgroup. This is
  1358. * expensive and may sleep.
  1359. */
  1360. cpuset_attach_nodemask_to = cs->mems_allowed;
  1361. mm = get_task_mm(leader);
  1362. if (mm) {
  1363. struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
  1364. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1365. /*
  1366. * old_mems_allowed is the same with mems_allowed here, except
  1367. * if this task is being moved automatically due to hotplug.
  1368. * In that case @mems_allowed has been updated and is empty,
  1369. * so @old_mems_allowed is the right nodesets that we migrate
  1370. * mm from.
  1371. */
  1372. if (is_memory_migrate(cs)) {
  1373. cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
  1374. &cpuset_attach_nodemask_to);
  1375. }
  1376. mmput(mm);
  1377. }
  1378. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1379. cs->attach_in_progress--;
  1380. if (!cs->attach_in_progress)
  1381. wake_up(&cpuset_attach_wq);
  1382. mutex_unlock(&cpuset_mutex);
  1383. }
  1384. /* The various types of files and directories in a cpuset file system */
  1385. typedef enum {
  1386. FILE_MEMORY_MIGRATE,
  1387. FILE_CPULIST,
  1388. FILE_MEMLIST,
  1389. FILE_CPU_EXCLUSIVE,
  1390. FILE_MEM_EXCLUSIVE,
  1391. FILE_MEM_HARDWALL,
  1392. FILE_SCHED_LOAD_BALANCE,
  1393. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1394. FILE_MEMORY_PRESSURE_ENABLED,
  1395. FILE_MEMORY_PRESSURE,
  1396. FILE_SPREAD_PAGE,
  1397. FILE_SPREAD_SLAB,
  1398. } cpuset_filetype_t;
  1399. static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
  1400. u64 val)
  1401. {
  1402. struct cpuset *cs = css_cs(css);
  1403. cpuset_filetype_t type = cft->private;
  1404. int retval = 0;
  1405. mutex_lock(&cpuset_mutex);
  1406. if (!is_cpuset_online(cs)) {
  1407. retval = -ENODEV;
  1408. goto out_unlock;
  1409. }
  1410. switch (type) {
  1411. case FILE_CPU_EXCLUSIVE:
  1412. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1413. break;
  1414. case FILE_MEM_EXCLUSIVE:
  1415. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1416. break;
  1417. case FILE_MEM_HARDWALL:
  1418. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1419. break;
  1420. case FILE_SCHED_LOAD_BALANCE:
  1421. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1422. break;
  1423. case FILE_MEMORY_MIGRATE:
  1424. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1425. break;
  1426. case FILE_MEMORY_PRESSURE_ENABLED:
  1427. cpuset_memory_pressure_enabled = !!val;
  1428. break;
  1429. case FILE_MEMORY_PRESSURE:
  1430. retval = -EACCES;
  1431. break;
  1432. case FILE_SPREAD_PAGE:
  1433. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1434. break;
  1435. case FILE_SPREAD_SLAB:
  1436. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1437. break;
  1438. default:
  1439. retval = -EINVAL;
  1440. break;
  1441. }
  1442. out_unlock:
  1443. mutex_unlock(&cpuset_mutex);
  1444. return retval;
  1445. }
  1446. static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
  1447. s64 val)
  1448. {
  1449. struct cpuset *cs = css_cs(css);
  1450. cpuset_filetype_t type = cft->private;
  1451. int retval = -ENODEV;
  1452. mutex_lock(&cpuset_mutex);
  1453. if (!is_cpuset_online(cs))
  1454. goto out_unlock;
  1455. switch (type) {
  1456. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1457. retval = update_relax_domain_level(cs, val);
  1458. break;
  1459. default:
  1460. retval = -EINVAL;
  1461. break;
  1462. }
  1463. out_unlock:
  1464. mutex_unlock(&cpuset_mutex);
  1465. return retval;
  1466. }
  1467. /*
  1468. * Common handling for a write to a "cpus" or "mems" file.
  1469. */
  1470. static int cpuset_write_resmask(struct cgroup_subsys_state *css,
  1471. struct cftype *cft, const char *buf)
  1472. {
  1473. struct cpuset *cs = css_cs(css);
  1474. struct cpuset *trialcs;
  1475. int retval = -ENODEV;
  1476. /*
  1477. * CPU or memory hotunplug may leave @cs w/o any execution
  1478. * resources, in which case the hotplug code asynchronously updates
  1479. * configuration and transfers all tasks to the nearest ancestor
  1480. * which can execute.
  1481. *
  1482. * As writes to "cpus" or "mems" may restore @cs's execution
  1483. * resources, wait for the previously scheduled operations before
  1484. * proceeding, so that we don't end up keep removing tasks added
  1485. * after execution capability is restored.
  1486. */
  1487. flush_work(&cpuset_hotplug_work);
  1488. mutex_lock(&cpuset_mutex);
  1489. if (!is_cpuset_online(cs))
  1490. goto out_unlock;
  1491. trialcs = alloc_trial_cpuset(cs);
  1492. if (!trialcs) {
  1493. retval = -ENOMEM;
  1494. goto out_unlock;
  1495. }
  1496. switch (cft->private) {
  1497. case FILE_CPULIST:
  1498. retval = update_cpumask(cs, trialcs, buf);
  1499. break;
  1500. case FILE_MEMLIST:
  1501. retval = update_nodemask(cs, trialcs, buf);
  1502. break;
  1503. default:
  1504. retval = -EINVAL;
  1505. break;
  1506. }
  1507. free_trial_cpuset(trialcs);
  1508. out_unlock:
  1509. mutex_unlock(&cpuset_mutex);
  1510. return retval;
  1511. }
  1512. /*
  1513. * These ascii lists should be read in a single call, by using a user
  1514. * buffer large enough to hold the entire map. If read in smaller
  1515. * chunks, there is no guarantee of atomicity. Since the display format
  1516. * used, list of ranges of sequential numbers, is variable length,
  1517. * and since these maps can change value dynamically, one could read
  1518. * gibberish by doing partial reads while a list was changing.
  1519. * A single large read to a buffer that crosses a page boundary is
  1520. * ok, because the result being copied to user land is not recomputed
  1521. * across a page fault.
  1522. */
  1523. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1524. {
  1525. size_t count;
  1526. mutex_lock(&callback_mutex);
  1527. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1528. mutex_unlock(&callback_mutex);
  1529. return count;
  1530. }
  1531. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1532. {
  1533. size_t count;
  1534. mutex_lock(&callback_mutex);
  1535. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1536. mutex_unlock(&callback_mutex);
  1537. return count;
  1538. }
  1539. static ssize_t cpuset_common_file_read(struct cgroup_subsys_state *css,
  1540. struct cftype *cft, struct file *file,
  1541. char __user *buf, size_t nbytes,
  1542. loff_t *ppos)
  1543. {
  1544. struct cpuset *cs = css_cs(css);
  1545. cpuset_filetype_t type = cft->private;
  1546. char *page;
  1547. ssize_t retval = 0;
  1548. char *s;
  1549. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1550. return -ENOMEM;
  1551. s = page;
  1552. switch (type) {
  1553. case FILE_CPULIST:
  1554. s += cpuset_sprintf_cpulist(s, cs);
  1555. break;
  1556. case FILE_MEMLIST:
  1557. s += cpuset_sprintf_memlist(s, cs);
  1558. break;
  1559. default:
  1560. retval = -EINVAL;
  1561. goto out;
  1562. }
  1563. *s++ = '\n';
  1564. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1565. out:
  1566. free_page((unsigned long)page);
  1567. return retval;
  1568. }
  1569. static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
  1570. {
  1571. struct cpuset *cs = css_cs(css);
  1572. cpuset_filetype_t type = cft->private;
  1573. switch (type) {
  1574. case FILE_CPU_EXCLUSIVE:
  1575. return is_cpu_exclusive(cs);
  1576. case FILE_MEM_EXCLUSIVE:
  1577. return is_mem_exclusive(cs);
  1578. case FILE_MEM_HARDWALL:
  1579. return is_mem_hardwall(cs);
  1580. case FILE_SCHED_LOAD_BALANCE:
  1581. return is_sched_load_balance(cs);
  1582. case FILE_MEMORY_MIGRATE:
  1583. return is_memory_migrate(cs);
  1584. case FILE_MEMORY_PRESSURE_ENABLED:
  1585. return cpuset_memory_pressure_enabled;
  1586. case FILE_MEMORY_PRESSURE:
  1587. return fmeter_getrate(&cs->fmeter);
  1588. case FILE_SPREAD_PAGE:
  1589. return is_spread_page(cs);
  1590. case FILE_SPREAD_SLAB:
  1591. return is_spread_slab(cs);
  1592. default:
  1593. BUG();
  1594. }
  1595. /* Unreachable but makes gcc happy */
  1596. return 0;
  1597. }
  1598. static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
  1599. {
  1600. struct cpuset *cs = css_cs(css);
  1601. cpuset_filetype_t type = cft->private;
  1602. switch (type) {
  1603. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1604. return cs->relax_domain_level;
  1605. default:
  1606. BUG();
  1607. }
  1608. /* Unrechable but makes gcc happy */
  1609. return 0;
  1610. }
  1611. /*
  1612. * for the common functions, 'private' gives the type of file
  1613. */
  1614. static struct cftype files[] = {
  1615. {
  1616. .name = "cpus",
  1617. .read = cpuset_common_file_read,
  1618. .write_string = cpuset_write_resmask,
  1619. .max_write_len = (100U + 6 * NR_CPUS),
  1620. .private = FILE_CPULIST,
  1621. },
  1622. {
  1623. .name = "mems",
  1624. .read = cpuset_common_file_read,
  1625. .write_string = cpuset_write_resmask,
  1626. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1627. .private = FILE_MEMLIST,
  1628. },
  1629. {
  1630. .name = "cpu_exclusive",
  1631. .read_u64 = cpuset_read_u64,
  1632. .write_u64 = cpuset_write_u64,
  1633. .private = FILE_CPU_EXCLUSIVE,
  1634. },
  1635. {
  1636. .name = "mem_exclusive",
  1637. .read_u64 = cpuset_read_u64,
  1638. .write_u64 = cpuset_write_u64,
  1639. .private = FILE_MEM_EXCLUSIVE,
  1640. },
  1641. {
  1642. .name = "mem_hardwall",
  1643. .read_u64 = cpuset_read_u64,
  1644. .write_u64 = cpuset_write_u64,
  1645. .private = FILE_MEM_HARDWALL,
  1646. },
  1647. {
  1648. .name = "sched_load_balance",
  1649. .read_u64 = cpuset_read_u64,
  1650. .write_u64 = cpuset_write_u64,
  1651. .private = FILE_SCHED_LOAD_BALANCE,
  1652. },
  1653. {
  1654. .name = "sched_relax_domain_level",
  1655. .read_s64 = cpuset_read_s64,
  1656. .write_s64 = cpuset_write_s64,
  1657. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1658. },
  1659. {
  1660. .name = "memory_migrate",
  1661. .read_u64 = cpuset_read_u64,
  1662. .write_u64 = cpuset_write_u64,
  1663. .private = FILE_MEMORY_MIGRATE,
  1664. },
  1665. {
  1666. .name = "memory_pressure",
  1667. .read_u64 = cpuset_read_u64,
  1668. .write_u64 = cpuset_write_u64,
  1669. .private = FILE_MEMORY_PRESSURE,
  1670. .mode = S_IRUGO,
  1671. },
  1672. {
  1673. .name = "memory_spread_page",
  1674. .read_u64 = cpuset_read_u64,
  1675. .write_u64 = cpuset_write_u64,
  1676. .private = FILE_SPREAD_PAGE,
  1677. },
  1678. {
  1679. .name = "memory_spread_slab",
  1680. .read_u64 = cpuset_read_u64,
  1681. .write_u64 = cpuset_write_u64,
  1682. .private = FILE_SPREAD_SLAB,
  1683. },
  1684. {
  1685. .name = "memory_pressure_enabled",
  1686. .flags = CFTYPE_ONLY_ON_ROOT,
  1687. .read_u64 = cpuset_read_u64,
  1688. .write_u64 = cpuset_write_u64,
  1689. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1690. },
  1691. { } /* terminate */
  1692. };
  1693. /*
  1694. * cpuset_css_alloc - allocate a cpuset css
  1695. * cgrp: control group that the new cpuset will be part of
  1696. */
  1697. static struct cgroup_subsys_state *
  1698. cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
  1699. {
  1700. struct cpuset *cs;
  1701. if (!parent_css)
  1702. return &top_cpuset.css;
  1703. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1704. if (!cs)
  1705. return ERR_PTR(-ENOMEM);
  1706. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1707. kfree(cs);
  1708. return ERR_PTR(-ENOMEM);
  1709. }
  1710. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1711. cpumask_clear(cs->cpus_allowed);
  1712. nodes_clear(cs->mems_allowed);
  1713. fmeter_init(&cs->fmeter);
  1714. cs->relax_domain_level = -1;
  1715. return &cs->css;
  1716. }
  1717. static int cpuset_css_online(struct cgroup_subsys_state *css)
  1718. {
  1719. struct cpuset *cs = css_cs(css);
  1720. struct cpuset *parent = parent_cs(cs);
  1721. struct cpuset *tmp_cs;
  1722. struct cgroup_subsys_state *pos_css;
  1723. if (!parent)
  1724. return 0;
  1725. mutex_lock(&cpuset_mutex);
  1726. set_bit(CS_ONLINE, &cs->flags);
  1727. if (is_spread_page(parent))
  1728. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1729. if (is_spread_slab(parent))
  1730. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1731. number_of_cpusets++;
  1732. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
  1733. goto out_unlock;
  1734. /*
  1735. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1736. * set. This flag handling is implemented in cgroup core for
  1737. * histrical reasons - the flag may be specified during mount.
  1738. *
  1739. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1740. * refuse to clone the configuration - thereby refusing the task to
  1741. * be entered, and as a result refusing the sys_unshare() or
  1742. * clone() which initiated it. If this becomes a problem for some
  1743. * users who wish to allow that scenario, then this could be
  1744. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1745. * (and likewise for mems) to the new cgroup.
  1746. */
  1747. rcu_read_lock();
  1748. cpuset_for_each_child(tmp_cs, pos_css, parent) {
  1749. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1750. rcu_read_unlock();
  1751. goto out_unlock;
  1752. }
  1753. }
  1754. rcu_read_unlock();
  1755. mutex_lock(&callback_mutex);
  1756. cs->mems_allowed = parent->mems_allowed;
  1757. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1758. mutex_unlock(&callback_mutex);
  1759. out_unlock:
  1760. mutex_unlock(&cpuset_mutex);
  1761. return 0;
  1762. }
  1763. /*
  1764. * If the cpuset being removed has its flag 'sched_load_balance'
  1765. * enabled, then simulate turning sched_load_balance off, which
  1766. * will call rebuild_sched_domains_locked().
  1767. */
  1768. static void cpuset_css_offline(struct cgroup_subsys_state *css)
  1769. {
  1770. struct cpuset *cs = css_cs(css);
  1771. mutex_lock(&cpuset_mutex);
  1772. if (is_sched_load_balance(cs))
  1773. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1774. number_of_cpusets--;
  1775. clear_bit(CS_ONLINE, &cs->flags);
  1776. mutex_unlock(&cpuset_mutex);
  1777. }
  1778. static void cpuset_css_free(struct cgroup_subsys_state *css)
  1779. {
  1780. struct cpuset *cs = css_cs(css);
  1781. free_cpumask_var(cs->cpus_allowed);
  1782. kfree(cs);
  1783. }
  1784. struct cgroup_subsys cpuset_subsys = {
  1785. .name = "cpuset",
  1786. .css_alloc = cpuset_css_alloc,
  1787. .css_online = cpuset_css_online,
  1788. .css_offline = cpuset_css_offline,
  1789. .css_free = cpuset_css_free,
  1790. .can_attach = cpuset_can_attach,
  1791. .cancel_attach = cpuset_cancel_attach,
  1792. .attach = cpuset_attach,
  1793. .subsys_id = cpuset_subsys_id,
  1794. .base_cftypes = files,
  1795. .early_init = 1,
  1796. };
  1797. /**
  1798. * cpuset_init - initialize cpusets at system boot
  1799. *
  1800. * Description: Initialize top_cpuset and the cpuset internal file system,
  1801. **/
  1802. int __init cpuset_init(void)
  1803. {
  1804. int err = 0;
  1805. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1806. BUG();
  1807. cpumask_setall(top_cpuset.cpus_allowed);
  1808. nodes_setall(top_cpuset.mems_allowed);
  1809. fmeter_init(&top_cpuset.fmeter);
  1810. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1811. top_cpuset.relax_domain_level = -1;
  1812. err = register_filesystem(&cpuset_fs_type);
  1813. if (err < 0)
  1814. return err;
  1815. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1816. BUG();
  1817. number_of_cpusets = 1;
  1818. return 0;
  1819. }
  1820. /*
  1821. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1822. * or memory nodes, we need to walk over the cpuset hierarchy,
  1823. * removing that CPU or node from all cpusets. If this removes the
  1824. * last CPU or node from a cpuset, then move the tasks in the empty
  1825. * cpuset to its next-highest non-empty parent.
  1826. */
  1827. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1828. {
  1829. struct cpuset *parent;
  1830. /*
  1831. * Find its next-highest non-empty parent, (top cpuset
  1832. * has online cpus, so can't be empty).
  1833. */
  1834. parent = parent_cs(cs);
  1835. while (cpumask_empty(parent->cpus_allowed) ||
  1836. nodes_empty(parent->mems_allowed))
  1837. parent = parent_cs(parent);
  1838. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1839. rcu_read_lock();
  1840. printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
  1841. cgroup_name(cs->css.cgroup));
  1842. rcu_read_unlock();
  1843. }
  1844. }
  1845. /**
  1846. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1847. * @cs: cpuset in interest
  1848. *
  1849. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1850. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1851. * all its tasks are moved to the nearest ancestor with both resources.
  1852. */
  1853. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1854. {
  1855. static cpumask_t off_cpus;
  1856. static nodemask_t off_mems;
  1857. bool is_empty;
  1858. bool sane = cgroup_sane_behavior(cs->css.cgroup);
  1859. retry:
  1860. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1861. mutex_lock(&cpuset_mutex);
  1862. /*
  1863. * We have raced with task attaching. We wait until attaching
  1864. * is finished, so we won't attach a task to an empty cpuset.
  1865. */
  1866. if (cs->attach_in_progress) {
  1867. mutex_unlock(&cpuset_mutex);
  1868. goto retry;
  1869. }
  1870. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1871. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1872. mutex_lock(&callback_mutex);
  1873. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1874. mutex_unlock(&callback_mutex);
  1875. /*
  1876. * If sane_behavior flag is set, we need to update tasks' cpumask
  1877. * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
  1878. * call update_tasks_cpumask() if the cpuset becomes empty, as
  1879. * the tasks in it will be migrated to an ancestor.
  1880. */
  1881. if ((sane && cpumask_empty(cs->cpus_allowed)) ||
  1882. (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
  1883. update_tasks_cpumask(cs, NULL);
  1884. mutex_lock(&callback_mutex);
  1885. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1886. mutex_unlock(&callback_mutex);
  1887. /*
  1888. * If sane_behavior flag is set, we need to update tasks' nodemask
  1889. * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
  1890. * call update_tasks_nodemask() if the cpuset becomes empty, as
  1891. * the tasks in it will be migratd to an ancestor.
  1892. */
  1893. if ((sane && nodes_empty(cs->mems_allowed)) ||
  1894. (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
  1895. update_tasks_nodemask(cs, NULL);
  1896. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1897. nodes_empty(cs->mems_allowed);
  1898. mutex_unlock(&cpuset_mutex);
  1899. /*
  1900. * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
  1901. *
  1902. * Otherwise move tasks to the nearest ancestor with execution
  1903. * resources. This is full cgroup operation which will
  1904. * also call back into cpuset. Should be done outside any lock.
  1905. */
  1906. if (!sane && is_empty)
  1907. remove_tasks_in_empty_cpuset(cs);
  1908. }
  1909. /**
  1910. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1911. *
  1912. * This function is called after either CPU or memory configuration has
  1913. * changed and updates cpuset accordingly. The top_cpuset is always
  1914. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1915. * order to make cpusets transparent (of no affect) on systems that are
  1916. * actively using CPU hotplug but making no active use of cpusets.
  1917. *
  1918. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1919. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1920. * all descendants.
  1921. *
  1922. * Note that CPU offlining during suspend is ignored. We don't modify
  1923. * cpusets across suspend/resume cycles at all.
  1924. */
  1925. static void cpuset_hotplug_workfn(struct work_struct *work)
  1926. {
  1927. static cpumask_t new_cpus;
  1928. static nodemask_t new_mems;
  1929. bool cpus_updated, mems_updated;
  1930. mutex_lock(&cpuset_mutex);
  1931. /* fetch the available cpus/mems and find out which changed how */
  1932. cpumask_copy(&new_cpus, cpu_active_mask);
  1933. new_mems = node_states[N_MEMORY];
  1934. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1935. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1936. /* synchronize cpus_allowed to cpu_active_mask */
  1937. if (cpus_updated) {
  1938. mutex_lock(&callback_mutex);
  1939. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1940. mutex_unlock(&callback_mutex);
  1941. /* we don't mess with cpumasks of tasks in top_cpuset */
  1942. }
  1943. /* synchronize mems_allowed to N_MEMORY */
  1944. if (mems_updated) {
  1945. mutex_lock(&callback_mutex);
  1946. top_cpuset.mems_allowed = new_mems;
  1947. mutex_unlock(&callback_mutex);
  1948. update_tasks_nodemask(&top_cpuset, NULL);
  1949. }
  1950. mutex_unlock(&cpuset_mutex);
  1951. /* if cpus or mems changed, we need to propagate to descendants */
  1952. if (cpus_updated || mems_updated) {
  1953. struct cpuset *cs;
  1954. struct cgroup_subsys_state *pos_css;
  1955. rcu_read_lock();
  1956. cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
  1957. if (cs == &top_cpuset || !css_tryget(&cs->css))
  1958. continue;
  1959. rcu_read_unlock();
  1960. cpuset_hotplug_update_tasks(cs);
  1961. rcu_read_lock();
  1962. css_put(&cs->css);
  1963. }
  1964. rcu_read_unlock();
  1965. }
  1966. /* rebuild sched domains if cpus_allowed has changed */
  1967. if (cpus_updated)
  1968. rebuild_sched_domains();
  1969. }
  1970. void cpuset_update_active_cpus(bool cpu_online)
  1971. {
  1972. /*
  1973. * We're inside cpu hotplug critical region which usually nests
  1974. * inside cgroup synchronization. Bounce actual hotplug processing
  1975. * to a work item to avoid reverse locking order.
  1976. *
  1977. * We still need to do partition_sched_domains() synchronously;
  1978. * otherwise, the scheduler will get confused and put tasks to the
  1979. * dead CPU. Fall back to the default single domain.
  1980. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1981. */
  1982. partition_sched_domains(1, NULL, NULL);
  1983. schedule_work(&cpuset_hotplug_work);
  1984. }
  1985. /*
  1986. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1987. * Call this routine anytime after node_states[N_MEMORY] changes.
  1988. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1989. */
  1990. static int cpuset_track_online_nodes(struct notifier_block *self,
  1991. unsigned long action, void *arg)
  1992. {
  1993. schedule_work(&cpuset_hotplug_work);
  1994. return NOTIFY_OK;
  1995. }
  1996. static struct notifier_block cpuset_track_online_nodes_nb = {
  1997. .notifier_call = cpuset_track_online_nodes,
  1998. .priority = 10, /* ??! */
  1999. };
  2000. /**
  2001. * cpuset_init_smp - initialize cpus_allowed
  2002. *
  2003. * Description: Finish top cpuset after cpu, node maps are initialized
  2004. */
  2005. void __init cpuset_init_smp(void)
  2006. {
  2007. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  2008. top_cpuset.mems_allowed = node_states[N_MEMORY];
  2009. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  2010. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  2011. }
  2012. /**
  2013. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  2014. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  2015. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  2016. *
  2017. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  2018. * attached to the specified @tsk. Guaranteed to return some non-empty
  2019. * subset of cpu_online_mask, even if this means going outside the
  2020. * tasks cpuset.
  2021. **/
  2022. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2023. {
  2024. struct cpuset *cpus_cs;
  2025. mutex_lock(&callback_mutex);
  2026. task_lock(tsk);
  2027. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2028. guarantee_online_cpus(cpus_cs, pmask);
  2029. task_unlock(tsk);
  2030. mutex_unlock(&callback_mutex);
  2031. }
  2032. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2033. {
  2034. struct cpuset *cpus_cs;
  2035. rcu_read_lock();
  2036. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2037. do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
  2038. rcu_read_unlock();
  2039. /*
  2040. * We own tsk->cpus_allowed, nobody can change it under us.
  2041. *
  2042. * But we used cs && cs->cpus_allowed lockless and thus can
  2043. * race with cgroup_attach_task() or update_cpumask() and get
  2044. * the wrong tsk->cpus_allowed. However, both cases imply the
  2045. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2046. * which takes task_rq_lock().
  2047. *
  2048. * If we are called after it dropped the lock we must see all
  2049. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2050. * set any mask even if it is not right from task_cs() pov,
  2051. * the pending set_cpus_allowed_ptr() will fix things.
  2052. *
  2053. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2054. * if required.
  2055. */
  2056. }
  2057. void cpuset_init_current_mems_allowed(void)
  2058. {
  2059. nodes_setall(current->mems_allowed);
  2060. }
  2061. /**
  2062. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2063. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2064. *
  2065. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2066. * attached to the specified @tsk. Guaranteed to return some non-empty
  2067. * subset of node_states[N_MEMORY], even if this means going outside the
  2068. * tasks cpuset.
  2069. **/
  2070. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2071. {
  2072. struct cpuset *mems_cs;
  2073. nodemask_t mask;
  2074. mutex_lock(&callback_mutex);
  2075. task_lock(tsk);
  2076. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  2077. guarantee_online_mems(mems_cs, &mask);
  2078. task_unlock(tsk);
  2079. mutex_unlock(&callback_mutex);
  2080. return mask;
  2081. }
  2082. /**
  2083. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2084. * @nodemask: the nodemask to be checked
  2085. *
  2086. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2087. */
  2088. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2089. {
  2090. return nodes_intersects(*nodemask, current->mems_allowed);
  2091. }
  2092. /*
  2093. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2094. * mem_hardwall ancestor to the specified cpuset. Call holding
  2095. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2096. * (an unusual configuration), then returns the root cpuset.
  2097. */
  2098. static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
  2099. {
  2100. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2101. cs = parent_cs(cs);
  2102. return cs;
  2103. }
  2104. /**
  2105. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2106. * @node: is this an allowed node?
  2107. * @gfp_mask: memory allocation flags
  2108. *
  2109. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2110. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2111. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2112. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2113. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2114. * flag, yes.
  2115. * Otherwise, no.
  2116. *
  2117. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2118. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2119. * might sleep, and might allow a node from an enclosing cpuset.
  2120. *
  2121. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2122. * cpusets, and never sleeps.
  2123. *
  2124. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2125. * by forcibly using a zonelist starting at a specified node, and by
  2126. * (in get_page_from_freelist()) refusing to consider the zones for
  2127. * any node on the zonelist except the first. By the time any such
  2128. * calls get to this routine, we should just shut up and say 'yes'.
  2129. *
  2130. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2131. * and do not allow allocations outside the current tasks cpuset
  2132. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2133. * GFP_KERNEL allocations are not so marked, so can escape to the
  2134. * nearest enclosing hardwalled ancestor cpuset.
  2135. *
  2136. * Scanning up parent cpusets requires callback_mutex. The
  2137. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2138. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2139. * current tasks mems_allowed came up empty on the first pass over
  2140. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2141. * cpuset are short of memory, might require taking the callback_mutex
  2142. * mutex.
  2143. *
  2144. * The first call here from mm/page_alloc:get_page_from_freelist()
  2145. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2146. * so no allocation on a node outside the cpuset is allowed (unless
  2147. * in interrupt, of course).
  2148. *
  2149. * The second pass through get_page_from_freelist() doesn't even call
  2150. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2151. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2152. * in alloc_flags. That logic and the checks below have the combined
  2153. * affect that:
  2154. * in_interrupt - any node ok (current task context irrelevant)
  2155. * GFP_ATOMIC - any node ok
  2156. * TIF_MEMDIE - any node ok
  2157. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2158. * GFP_USER - only nodes in current tasks mems allowed ok.
  2159. *
  2160. * Rule:
  2161. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2162. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2163. * the code that might scan up ancestor cpusets and sleep.
  2164. */
  2165. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2166. {
  2167. struct cpuset *cs; /* current cpuset ancestors */
  2168. int allowed; /* is allocation in zone z allowed? */
  2169. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2170. return 1;
  2171. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2172. if (node_isset(node, current->mems_allowed))
  2173. return 1;
  2174. /*
  2175. * Allow tasks that have access to memory reserves because they have
  2176. * been OOM killed to get memory anywhere.
  2177. */
  2178. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2179. return 1;
  2180. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2181. return 0;
  2182. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2183. return 1;
  2184. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2185. mutex_lock(&callback_mutex);
  2186. task_lock(current);
  2187. cs = nearest_hardwall_ancestor(task_cs(current));
  2188. task_unlock(current);
  2189. allowed = node_isset(node, cs->mems_allowed);
  2190. mutex_unlock(&callback_mutex);
  2191. return allowed;
  2192. }
  2193. /*
  2194. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2195. * @node: is this an allowed node?
  2196. * @gfp_mask: memory allocation flags
  2197. *
  2198. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2199. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2200. * yes. If the task has been OOM killed and has access to memory reserves as
  2201. * specified by the TIF_MEMDIE flag, yes.
  2202. * Otherwise, no.
  2203. *
  2204. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2205. * by forcibly using a zonelist starting at a specified node, and by
  2206. * (in get_page_from_freelist()) refusing to consider the zones for
  2207. * any node on the zonelist except the first. By the time any such
  2208. * calls get to this routine, we should just shut up and say 'yes'.
  2209. *
  2210. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2211. * this variant requires that the node be in the current task's
  2212. * mems_allowed or that we're in interrupt. It does not scan up the
  2213. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2214. * It never sleeps.
  2215. */
  2216. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2217. {
  2218. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2219. return 1;
  2220. if (node_isset(node, current->mems_allowed))
  2221. return 1;
  2222. /*
  2223. * Allow tasks that have access to memory reserves because they have
  2224. * been OOM killed to get memory anywhere.
  2225. */
  2226. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2227. return 1;
  2228. return 0;
  2229. }
  2230. /**
  2231. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2232. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2233. *
  2234. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2235. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2236. * and if the memory allocation used cpuset_mem_spread_node()
  2237. * to determine on which node to start looking, as it will for
  2238. * certain page cache or slab cache pages such as used for file
  2239. * system buffers and inode caches, then instead of starting on the
  2240. * local node to look for a free page, rather spread the starting
  2241. * node around the tasks mems_allowed nodes.
  2242. *
  2243. * We don't have to worry about the returned node being offline
  2244. * because "it can't happen", and even if it did, it would be ok.
  2245. *
  2246. * The routines calling guarantee_online_mems() are careful to
  2247. * only set nodes in task->mems_allowed that are online. So it
  2248. * should not be possible for the following code to return an
  2249. * offline node. But if it did, that would be ok, as this routine
  2250. * is not returning the node where the allocation must be, only
  2251. * the node where the search should start. The zonelist passed to
  2252. * __alloc_pages() will include all nodes. If the slab allocator
  2253. * is passed an offline node, it will fall back to the local node.
  2254. * See kmem_cache_alloc_node().
  2255. */
  2256. static int cpuset_spread_node(int *rotor)
  2257. {
  2258. int node;
  2259. node = next_node(*rotor, current->mems_allowed);
  2260. if (node == MAX_NUMNODES)
  2261. node = first_node(current->mems_allowed);
  2262. *rotor = node;
  2263. return node;
  2264. }
  2265. int cpuset_mem_spread_node(void)
  2266. {
  2267. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2268. current->cpuset_mem_spread_rotor =
  2269. node_random(&current->mems_allowed);
  2270. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2271. }
  2272. int cpuset_slab_spread_node(void)
  2273. {
  2274. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2275. current->cpuset_slab_spread_rotor =
  2276. node_random(&current->mems_allowed);
  2277. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2278. }
  2279. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2280. /**
  2281. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2282. * @tsk1: pointer to task_struct of some task.
  2283. * @tsk2: pointer to task_struct of some other task.
  2284. *
  2285. * Description: Return true if @tsk1's mems_allowed intersects the
  2286. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2287. * one of the task's memory usage might impact the memory available
  2288. * to the other.
  2289. **/
  2290. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2291. const struct task_struct *tsk2)
  2292. {
  2293. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2294. }
  2295. #define CPUSET_NODELIST_LEN (256)
  2296. /**
  2297. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2298. * @task: pointer to task_struct of some task.
  2299. *
  2300. * Description: Prints @task's name, cpuset name, and cached copy of its
  2301. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2302. * dereferencing task_cs(task).
  2303. */
  2304. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2305. {
  2306. /* Statically allocated to prevent using excess stack. */
  2307. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  2308. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  2309. struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
  2310. rcu_read_lock();
  2311. spin_lock(&cpuset_buffer_lock);
  2312. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2313. tsk->mems_allowed);
  2314. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2315. tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
  2316. spin_unlock(&cpuset_buffer_lock);
  2317. rcu_read_unlock();
  2318. }
  2319. /*
  2320. * Collection of memory_pressure is suppressed unless
  2321. * this flag is enabled by writing "1" to the special
  2322. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2323. */
  2324. int cpuset_memory_pressure_enabled __read_mostly;
  2325. /**
  2326. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2327. *
  2328. * Keep a running average of the rate of synchronous (direct)
  2329. * page reclaim efforts initiated by tasks in each cpuset.
  2330. *
  2331. * This represents the rate at which some task in the cpuset
  2332. * ran low on memory on all nodes it was allowed to use, and
  2333. * had to enter the kernels page reclaim code in an effort to
  2334. * create more free memory by tossing clean pages or swapping
  2335. * or writing dirty pages.
  2336. *
  2337. * Display to user space in the per-cpuset read-only file
  2338. * "memory_pressure". Value displayed is an integer
  2339. * representing the recent rate of entry into the synchronous
  2340. * (direct) page reclaim by any task attached to the cpuset.
  2341. **/
  2342. void __cpuset_memory_pressure_bump(void)
  2343. {
  2344. task_lock(current);
  2345. fmeter_markevent(&task_cs(current)->fmeter);
  2346. task_unlock(current);
  2347. }
  2348. #ifdef CONFIG_PROC_PID_CPUSET
  2349. /*
  2350. * proc_cpuset_show()
  2351. * - Print tasks cpuset path into seq_file.
  2352. * - Used for /proc/<pid>/cpuset.
  2353. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2354. * doesn't really matter if tsk->cpuset changes after we read it,
  2355. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2356. * anyway.
  2357. */
  2358. int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2359. {
  2360. struct pid *pid;
  2361. struct task_struct *tsk;
  2362. char *buf;
  2363. struct cgroup_subsys_state *css;
  2364. int retval;
  2365. retval = -ENOMEM;
  2366. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2367. if (!buf)
  2368. goto out;
  2369. retval = -ESRCH;
  2370. pid = m->private;
  2371. tsk = get_pid_task(pid, PIDTYPE_PID);
  2372. if (!tsk)
  2373. goto out_free;
  2374. rcu_read_lock();
  2375. css = task_css(tsk, cpuset_subsys_id);
  2376. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2377. rcu_read_unlock();
  2378. if (retval < 0)
  2379. goto out_put_task;
  2380. seq_puts(m, buf);
  2381. seq_putc(m, '\n');
  2382. out_put_task:
  2383. put_task_struct(tsk);
  2384. out_free:
  2385. kfree(buf);
  2386. out:
  2387. return retval;
  2388. }
  2389. #endif /* CONFIG_PROC_PID_CPUSET */
  2390. /* Display task mems_allowed in /proc/<pid>/status file. */
  2391. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2392. {
  2393. seq_printf(m, "Mems_allowed:\t");
  2394. seq_nodemask(m, &task->mems_allowed);
  2395. seq_printf(m, "\n");
  2396. seq_printf(m, "Mems_allowed_list:\t");
  2397. seq_nodemask_list(m, &task->mems_allowed);
  2398. seq_printf(m, "\n");
  2399. }