cgroup.c 153 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657
  1. /*
  2. * Generic process-grouping system.
  3. *
  4. * Based originally on the cpuset system, extracted by Paul Menage
  5. * Copyright (C) 2006 Google, Inc
  6. *
  7. * Notifications support
  8. * Copyright (C) 2009 Nokia Corporation
  9. * Author: Kirill A. Shutemov
  10. *
  11. * Copyright notices from the original cpuset code:
  12. * --------------------------------------------------
  13. * Copyright (C) 2003 BULL SA.
  14. * Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15. *
  16. * Portions derived from Patrick Mochel's sysfs code.
  17. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  18. *
  19. * 2003-10-10 Written by Simon Derr.
  20. * 2003-10-22 Updates by Stephen Hemminger.
  21. * 2004 May-July Rework by Paul Jackson.
  22. * ---------------------------------------------------
  23. *
  24. * This file is subject to the terms and conditions of the GNU General Public
  25. * License. See the file COPYING in the main directory of the Linux
  26. * distribution for more details.
  27. */
  28. #include <linux/cgroup.h>
  29. #include <linux/cred.h>
  30. #include <linux/ctype.h>
  31. #include <linux/errno.h>
  32. #include <linux/init_task.h>
  33. #include <linux/kernel.h>
  34. #include <linux/list.h>
  35. #include <linux/mm.h>
  36. #include <linux/mutex.h>
  37. #include <linux/mount.h>
  38. #include <linux/pagemap.h>
  39. #include <linux/proc_fs.h>
  40. #include <linux/rcupdate.h>
  41. #include <linux/sched.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/slab.h>
  45. #include <linux/magic.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/string.h>
  48. #include <linux/sort.h>
  49. #include <linux/kmod.h>
  50. #include <linux/module.h>
  51. #include <linux/delayacct.h>
  52. #include <linux/cgroupstats.h>
  53. #include <linux/hashtable.h>
  54. #include <linux/namei.h>
  55. #include <linux/pid_namespace.h>
  56. #include <linux/idr.h>
  57. #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  58. #include <linux/eventfd.h>
  59. #include <linux/poll.h>
  60. #include <linux/flex_array.h> /* used in cgroup_attach_task */
  61. #include <linux/kthread.h>
  62. #include <linux/file.h>
  63. #include <linux/atomic.h>
  64. /*
  65. * cgroup_mutex is the master lock. Any modification to cgroup or its
  66. * hierarchy must be performed while holding it.
  67. *
  68. * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
  69. * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
  70. * release_agent_path and so on. Modifying requires both cgroup_mutex and
  71. * cgroup_root_mutex. Readers can acquire either of the two. This is to
  72. * break the following locking order cycle.
  73. *
  74. * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
  75. * B. namespace_sem -> cgroup_mutex
  76. *
  77. * B happens only through cgroup_show_options() and using cgroup_root_mutex
  78. * breaks it.
  79. */
  80. #ifdef CONFIG_PROVE_RCU
  81. DEFINE_MUTEX(cgroup_mutex);
  82. EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
  83. #else
  84. static DEFINE_MUTEX(cgroup_mutex);
  85. #endif
  86. static DEFINE_MUTEX(cgroup_root_mutex);
  87. /*
  88. * cgroup destruction makes heavy use of work items and there can be a lot
  89. * of concurrent destructions. Use a separate workqueue so that cgroup
  90. * destruction work items don't end up filling up max_active of system_wq
  91. * which may lead to deadlock.
  92. */
  93. static struct workqueue_struct *cgroup_destroy_wq;
  94. /*
  95. * Generate an array of cgroup subsystem pointers. At boot time, this is
  96. * populated with the built in subsystems, and modular subsystems are
  97. * registered after that. The mutable section of this array is protected by
  98. * cgroup_mutex.
  99. */
  100. #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
  101. #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
  102. static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
  103. #include <linux/cgroup_subsys.h>
  104. };
  105. /*
  106. * The dummy hierarchy, reserved for the subsystems that are otherwise
  107. * unattached - it never has more than a single cgroup, and all tasks are
  108. * part of that cgroup.
  109. */
  110. static struct cgroupfs_root cgroup_dummy_root;
  111. /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
  112. static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
  113. /*
  114. * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
  115. */
  116. struct cfent {
  117. struct list_head node;
  118. struct dentry *dentry;
  119. struct cftype *type;
  120. struct cgroup_subsys_state *css;
  121. /* file xattrs */
  122. struct simple_xattrs xattrs;
  123. };
  124. /*
  125. * cgroup_event represents events which userspace want to receive.
  126. */
  127. struct cgroup_event {
  128. /*
  129. * css which the event belongs to.
  130. */
  131. struct cgroup_subsys_state *css;
  132. /*
  133. * Control file which the event associated.
  134. */
  135. struct cftype *cft;
  136. /*
  137. * eventfd to signal userspace about the event.
  138. */
  139. struct eventfd_ctx *eventfd;
  140. /*
  141. * Each of these stored in a list by the cgroup.
  142. */
  143. struct list_head list;
  144. /*
  145. * All fields below needed to unregister event when
  146. * userspace closes eventfd.
  147. */
  148. poll_table pt;
  149. wait_queue_head_t *wqh;
  150. wait_queue_t wait;
  151. struct work_struct remove;
  152. };
  153. /* The list of hierarchy roots */
  154. static LIST_HEAD(cgroup_roots);
  155. static int cgroup_root_count;
  156. /*
  157. * Hierarchy ID allocation and mapping. It follows the same exclusion
  158. * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
  159. * writes, either for reads.
  160. */
  161. static DEFINE_IDR(cgroup_hierarchy_idr);
  162. static struct cgroup_name root_cgroup_name = { .name = "/" };
  163. /*
  164. * Assign a monotonically increasing serial number to cgroups. It
  165. * guarantees cgroups with bigger numbers are newer than those with smaller
  166. * numbers. Also, as cgroups are always appended to the parent's
  167. * ->children list, it guarantees that sibling cgroups are always sorted in
  168. * the ascending serial number order on the list. Protected by
  169. * cgroup_mutex.
  170. */
  171. static u64 cgroup_serial_nr_next = 1;
  172. /* This flag indicates whether tasks in the fork and exit paths should
  173. * check for fork/exit handlers to call. This avoids us having to do
  174. * extra work in the fork/exit path if none of the subsystems need to
  175. * be called.
  176. */
  177. static int need_forkexit_callback __read_mostly;
  178. static struct cftype cgroup_base_files[];
  179. static void cgroup_destroy_css_killed(struct cgroup *cgrp);
  180. static int cgroup_destroy_locked(struct cgroup *cgrp);
  181. static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
  182. bool is_add);
  183. static int cgroup_file_release(struct inode *inode, struct file *file);
  184. /**
  185. * cgroup_css - obtain a cgroup's css for the specified subsystem
  186. * @cgrp: the cgroup of interest
  187. * @ss: the subsystem of interest (%NULL returns the dummy_css)
  188. *
  189. * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
  190. * function must be called either under cgroup_mutex or rcu_read_lock() and
  191. * the caller is responsible for pinning the returned css if it wants to
  192. * keep accessing it outside the said locks. This function may return
  193. * %NULL if @cgrp doesn't have @subsys_id enabled.
  194. */
  195. static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
  196. struct cgroup_subsys *ss)
  197. {
  198. if (ss)
  199. return rcu_dereference_check(cgrp->subsys[ss->subsys_id],
  200. lockdep_is_held(&cgroup_mutex));
  201. else
  202. return &cgrp->dummy_css;
  203. }
  204. /* convenient tests for these bits */
  205. static inline bool cgroup_is_dead(const struct cgroup *cgrp)
  206. {
  207. return test_bit(CGRP_DEAD, &cgrp->flags);
  208. }
  209. /**
  210. * cgroup_is_descendant - test ancestry
  211. * @cgrp: the cgroup to be tested
  212. * @ancestor: possible ancestor of @cgrp
  213. *
  214. * Test whether @cgrp is a descendant of @ancestor. It also returns %true
  215. * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
  216. * and @ancestor are accessible.
  217. */
  218. bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
  219. {
  220. while (cgrp) {
  221. if (cgrp == ancestor)
  222. return true;
  223. cgrp = cgrp->parent;
  224. }
  225. return false;
  226. }
  227. EXPORT_SYMBOL_GPL(cgroup_is_descendant);
  228. static int cgroup_is_releasable(const struct cgroup *cgrp)
  229. {
  230. const int bits =
  231. (1 << CGRP_RELEASABLE) |
  232. (1 << CGRP_NOTIFY_ON_RELEASE);
  233. return (cgrp->flags & bits) == bits;
  234. }
  235. static int notify_on_release(const struct cgroup *cgrp)
  236. {
  237. return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  238. }
  239. /**
  240. * for_each_subsys - iterate all loaded cgroup subsystems
  241. * @ss: the iteration cursor
  242. * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
  243. *
  244. * Should be called under cgroup_mutex.
  245. */
  246. #define for_each_subsys(ss, i) \
  247. for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
  248. if (({ lockdep_assert_held(&cgroup_mutex); \
  249. !((ss) = cgroup_subsys[i]); })) { } \
  250. else
  251. /**
  252. * for_each_builtin_subsys - iterate all built-in cgroup subsystems
  253. * @ss: the iteration cursor
  254. * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
  255. *
  256. * Bulit-in subsystems are always present and iteration itself doesn't
  257. * require any synchronization.
  258. */
  259. #define for_each_builtin_subsys(ss, i) \
  260. for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
  261. (((ss) = cgroup_subsys[i]) || true); (i)++)
  262. /* iterate each subsystem attached to a hierarchy */
  263. #define for_each_root_subsys(root, ss) \
  264. list_for_each_entry((ss), &(root)->subsys_list, sibling)
  265. /* iterate across the active hierarchies */
  266. #define for_each_active_root(root) \
  267. list_for_each_entry((root), &cgroup_roots, root_list)
  268. static inline struct cgroup *__d_cgrp(struct dentry *dentry)
  269. {
  270. return dentry->d_fsdata;
  271. }
  272. static inline struct cfent *__d_cfe(struct dentry *dentry)
  273. {
  274. return dentry->d_fsdata;
  275. }
  276. static inline struct cftype *__d_cft(struct dentry *dentry)
  277. {
  278. return __d_cfe(dentry)->type;
  279. }
  280. /**
  281. * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
  282. * @cgrp: the cgroup to be checked for liveness
  283. *
  284. * On success, returns true; the mutex should be later unlocked. On
  285. * failure returns false with no lock held.
  286. */
  287. static bool cgroup_lock_live_group(struct cgroup *cgrp)
  288. {
  289. mutex_lock(&cgroup_mutex);
  290. if (cgroup_is_dead(cgrp)) {
  291. mutex_unlock(&cgroup_mutex);
  292. return false;
  293. }
  294. return true;
  295. }
  296. /* the list of cgroups eligible for automatic release. Protected by
  297. * release_list_lock */
  298. static LIST_HEAD(release_list);
  299. static DEFINE_RAW_SPINLOCK(release_list_lock);
  300. static void cgroup_release_agent(struct work_struct *work);
  301. static DECLARE_WORK(release_agent_work, cgroup_release_agent);
  302. static void check_for_release(struct cgroup *cgrp);
  303. /*
  304. * A cgroup can be associated with multiple css_sets as different tasks may
  305. * belong to different cgroups on different hierarchies. In the other
  306. * direction, a css_set is naturally associated with multiple cgroups.
  307. * This M:N relationship is represented by the following link structure
  308. * which exists for each association and allows traversing the associations
  309. * from both sides.
  310. */
  311. struct cgrp_cset_link {
  312. /* the cgroup and css_set this link associates */
  313. struct cgroup *cgrp;
  314. struct css_set *cset;
  315. /* list of cgrp_cset_links anchored at cgrp->cset_links */
  316. struct list_head cset_link;
  317. /* list of cgrp_cset_links anchored at css_set->cgrp_links */
  318. struct list_head cgrp_link;
  319. };
  320. /* The default css_set - used by init and its children prior to any
  321. * hierarchies being mounted. It contains a pointer to the root state
  322. * for each subsystem. Also used to anchor the list of css_sets. Not
  323. * reference-counted, to improve performance when child cgroups
  324. * haven't been created.
  325. */
  326. static struct css_set init_css_set;
  327. static struct cgrp_cset_link init_cgrp_cset_link;
  328. /*
  329. * css_set_lock protects the list of css_set objects, and the chain of
  330. * tasks off each css_set. Nests outside task->alloc_lock due to
  331. * css_task_iter_start().
  332. */
  333. static DEFINE_RWLOCK(css_set_lock);
  334. static int css_set_count;
  335. /*
  336. * hash table for cgroup groups. This improves the performance to find
  337. * an existing css_set. This hash doesn't (currently) take into
  338. * account cgroups in empty hierarchies.
  339. */
  340. #define CSS_SET_HASH_BITS 7
  341. static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
  342. static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
  343. {
  344. unsigned long key = 0UL;
  345. struct cgroup_subsys *ss;
  346. int i;
  347. for_each_subsys(ss, i)
  348. key += (unsigned long)css[i];
  349. key = (key >> 16) ^ key;
  350. return key;
  351. }
  352. /*
  353. * We don't maintain the lists running through each css_set to its task
  354. * until after the first call to css_task_iter_start(). This reduces the
  355. * fork()/exit() overhead for people who have cgroups compiled into their
  356. * kernel but not actually in use.
  357. */
  358. static int use_task_css_set_links __read_mostly;
  359. static void __put_css_set(struct css_set *cset, int taskexit)
  360. {
  361. struct cgrp_cset_link *link, *tmp_link;
  362. /*
  363. * Ensure that the refcount doesn't hit zero while any readers
  364. * can see it. Similar to atomic_dec_and_lock(), but for an
  365. * rwlock
  366. */
  367. if (atomic_add_unless(&cset->refcount, -1, 1))
  368. return;
  369. write_lock(&css_set_lock);
  370. if (!atomic_dec_and_test(&cset->refcount)) {
  371. write_unlock(&css_set_lock);
  372. return;
  373. }
  374. /* This css_set is dead. unlink it and release cgroup refcounts */
  375. hash_del(&cset->hlist);
  376. css_set_count--;
  377. list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
  378. struct cgroup *cgrp = link->cgrp;
  379. list_del(&link->cset_link);
  380. list_del(&link->cgrp_link);
  381. /* @cgrp can't go away while we're holding css_set_lock */
  382. if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
  383. if (taskexit)
  384. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  385. check_for_release(cgrp);
  386. }
  387. kfree(link);
  388. }
  389. write_unlock(&css_set_lock);
  390. kfree_rcu(cset, rcu_head);
  391. }
  392. /*
  393. * refcounted get/put for css_set objects
  394. */
  395. static inline void get_css_set(struct css_set *cset)
  396. {
  397. atomic_inc(&cset->refcount);
  398. }
  399. static inline void put_css_set(struct css_set *cset)
  400. {
  401. __put_css_set(cset, 0);
  402. }
  403. static inline void put_css_set_taskexit(struct css_set *cset)
  404. {
  405. __put_css_set(cset, 1);
  406. }
  407. /**
  408. * compare_css_sets - helper function for find_existing_css_set().
  409. * @cset: candidate css_set being tested
  410. * @old_cset: existing css_set for a task
  411. * @new_cgrp: cgroup that's being entered by the task
  412. * @template: desired set of css pointers in css_set (pre-calculated)
  413. *
  414. * Returns true if "cset" matches "old_cset" except for the hierarchy
  415. * which "new_cgrp" belongs to, for which it should match "new_cgrp".
  416. */
  417. static bool compare_css_sets(struct css_set *cset,
  418. struct css_set *old_cset,
  419. struct cgroup *new_cgrp,
  420. struct cgroup_subsys_state *template[])
  421. {
  422. struct list_head *l1, *l2;
  423. if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
  424. /* Not all subsystems matched */
  425. return false;
  426. }
  427. /*
  428. * Compare cgroup pointers in order to distinguish between
  429. * different cgroups in heirarchies with no subsystems. We
  430. * could get by with just this check alone (and skip the
  431. * memcmp above) but on most setups the memcmp check will
  432. * avoid the need for this more expensive check on almost all
  433. * candidates.
  434. */
  435. l1 = &cset->cgrp_links;
  436. l2 = &old_cset->cgrp_links;
  437. while (1) {
  438. struct cgrp_cset_link *link1, *link2;
  439. struct cgroup *cgrp1, *cgrp2;
  440. l1 = l1->next;
  441. l2 = l2->next;
  442. /* See if we reached the end - both lists are equal length. */
  443. if (l1 == &cset->cgrp_links) {
  444. BUG_ON(l2 != &old_cset->cgrp_links);
  445. break;
  446. } else {
  447. BUG_ON(l2 == &old_cset->cgrp_links);
  448. }
  449. /* Locate the cgroups associated with these links. */
  450. link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
  451. link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
  452. cgrp1 = link1->cgrp;
  453. cgrp2 = link2->cgrp;
  454. /* Hierarchies should be linked in the same order. */
  455. BUG_ON(cgrp1->root != cgrp2->root);
  456. /*
  457. * If this hierarchy is the hierarchy of the cgroup
  458. * that's changing, then we need to check that this
  459. * css_set points to the new cgroup; if it's any other
  460. * hierarchy, then this css_set should point to the
  461. * same cgroup as the old css_set.
  462. */
  463. if (cgrp1->root == new_cgrp->root) {
  464. if (cgrp1 != new_cgrp)
  465. return false;
  466. } else {
  467. if (cgrp1 != cgrp2)
  468. return false;
  469. }
  470. }
  471. return true;
  472. }
  473. /**
  474. * find_existing_css_set - init css array and find the matching css_set
  475. * @old_cset: the css_set that we're using before the cgroup transition
  476. * @cgrp: the cgroup that we're moving into
  477. * @template: out param for the new set of csses, should be clear on entry
  478. */
  479. static struct css_set *find_existing_css_set(struct css_set *old_cset,
  480. struct cgroup *cgrp,
  481. struct cgroup_subsys_state *template[])
  482. {
  483. struct cgroupfs_root *root = cgrp->root;
  484. struct cgroup_subsys *ss;
  485. struct css_set *cset;
  486. unsigned long key;
  487. int i;
  488. /*
  489. * Build the set of subsystem state objects that we want to see in the
  490. * new css_set. while subsystems can change globally, the entries here
  491. * won't change, so no need for locking.
  492. */
  493. for_each_subsys(ss, i) {
  494. if (root->subsys_mask & (1UL << i)) {
  495. /* Subsystem is in this hierarchy. So we want
  496. * the subsystem state from the new
  497. * cgroup */
  498. template[i] = cgroup_css(cgrp, ss);
  499. } else {
  500. /* Subsystem is not in this hierarchy, so we
  501. * don't want to change the subsystem state */
  502. template[i] = old_cset->subsys[i];
  503. }
  504. }
  505. key = css_set_hash(template);
  506. hash_for_each_possible(css_set_table, cset, hlist, key) {
  507. if (!compare_css_sets(cset, old_cset, cgrp, template))
  508. continue;
  509. /* This css_set matches what we need */
  510. return cset;
  511. }
  512. /* No existing cgroup group matched */
  513. return NULL;
  514. }
  515. static void free_cgrp_cset_links(struct list_head *links_to_free)
  516. {
  517. struct cgrp_cset_link *link, *tmp_link;
  518. list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
  519. list_del(&link->cset_link);
  520. kfree(link);
  521. }
  522. }
  523. /**
  524. * allocate_cgrp_cset_links - allocate cgrp_cset_links
  525. * @count: the number of links to allocate
  526. * @tmp_links: list_head the allocated links are put on
  527. *
  528. * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
  529. * through ->cset_link. Returns 0 on success or -errno.
  530. */
  531. static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
  532. {
  533. struct cgrp_cset_link *link;
  534. int i;
  535. INIT_LIST_HEAD(tmp_links);
  536. for (i = 0; i < count; i++) {
  537. link = kzalloc(sizeof(*link), GFP_KERNEL);
  538. if (!link) {
  539. free_cgrp_cset_links(tmp_links);
  540. return -ENOMEM;
  541. }
  542. list_add(&link->cset_link, tmp_links);
  543. }
  544. return 0;
  545. }
  546. /**
  547. * link_css_set - a helper function to link a css_set to a cgroup
  548. * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
  549. * @cset: the css_set to be linked
  550. * @cgrp: the destination cgroup
  551. */
  552. static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
  553. struct cgroup *cgrp)
  554. {
  555. struct cgrp_cset_link *link;
  556. BUG_ON(list_empty(tmp_links));
  557. link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
  558. link->cset = cset;
  559. link->cgrp = cgrp;
  560. list_move(&link->cset_link, &cgrp->cset_links);
  561. /*
  562. * Always add links to the tail of the list so that the list
  563. * is sorted by order of hierarchy creation
  564. */
  565. list_add_tail(&link->cgrp_link, &cset->cgrp_links);
  566. }
  567. /**
  568. * find_css_set - return a new css_set with one cgroup updated
  569. * @old_cset: the baseline css_set
  570. * @cgrp: the cgroup to be updated
  571. *
  572. * Return a new css_set that's equivalent to @old_cset, but with @cgrp
  573. * substituted into the appropriate hierarchy.
  574. */
  575. static struct css_set *find_css_set(struct css_set *old_cset,
  576. struct cgroup *cgrp)
  577. {
  578. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
  579. struct css_set *cset;
  580. struct list_head tmp_links;
  581. struct cgrp_cset_link *link;
  582. unsigned long key;
  583. lockdep_assert_held(&cgroup_mutex);
  584. /* First see if we already have a cgroup group that matches
  585. * the desired set */
  586. read_lock(&css_set_lock);
  587. cset = find_existing_css_set(old_cset, cgrp, template);
  588. if (cset)
  589. get_css_set(cset);
  590. read_unlock(&css_set_lock);
  591. if (cset)
  592. return cset;
  593. cset = kzalloc(sizeof(*cset), GFP_KERNEL);
  594. if (!cset)
  595. return NULL;
  596. /* Allocate all the cgrp_cset_link objects that we'll need */
  597. if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
  598. kfree(cset);
  599. return NULL;
  600. }
  601. atomic_set(&cset->refcount, 1);
  602. INIT_LIST_HEAD(&cset->cgrp_links);
  603. INIT_LIST_HEAD(&cset->tasks);
  604. INIT_HLIST_NODE(&cset->hlist);
  605. /* Copy the set of subsystem state objects generated in
  606. * find_existing_css_set() */
  607. memcpy(cset->subsys, template, sizeof(cset->subsys));
  608. write_lock(&css_set_lock);
  609. /* Add reference counts and links from the new css_set. */
  610. list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
  611. struct cgroup *c = link->cgrp;
  612. if (c->root == cgrp->root)
  613. c = cgrp;
  614. link_css_set(&tmp_links, cset, c);
  615. }
  616. BUG_ON(!list_empty(&tmp_links));
  617. css_set_count++;
  618. /* Add this cgroup group to the hash table */
  619. key = css_set_hash(cset->subsys);
  620. hash_add(css_set_table, &cset->hlist, key);
  621. write_unlock(&css_set_lock);
  622. return cset;
  623. }
  624. /*
  625. * Return the cgroup for "task" from the given hierarchy. Must be
  626. * called with cgroup_mutex held.
  627. */
  628. static struct cgroup *task_cgroup_from_root(struct task_struct *task,
  629. struct cgroupfs_root *root)
  630. {
  631. struct css_set *cset;
  632. struct cgroup *res = NULL;
  633. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  634. read_lock(&css_set_lock);
  635. /*
  636. * No need to lock the task - since we hold cgroup_mutex the
  637. * task can't change groups, so the only thing that can happen
  638. * is that it exits and its css is set back to init_css_set.
  639. */
  640. cset = task_css_set(task);
  641. if (cset == &init_css_set) {
  642. res = &root->top_cgroup;
  643. } else {
  644. struct cgrp_cset_link *link;
  645. list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
  646. struct cgroup *c = link->cgrp;
  647. if (c->root == root) {
  648. res = c;
  649. break;
  650. }
  651. }
  652. }
  653. read_unlock(&css_set_lock);
  654. BUG_ON(!res);
  655. return res;
  656. }
  657. /*
  658. * There is one global cgroup mutex. We also require taking
  659. * task_lock() when dereferencing a task's cgroup subsys pointers.
  660. * See "The task_lock() exception", at the end of this comment.
  661. *
  662. * A task must hold cgroup_mutex to modify cgroups.
  663. *
  664. * Any task can increment and decrement the count field without lock.
  665. * So in general, code holding cgroup_mutex can't rely on the count
  666. * field not changing. However, if the count goes to zero, then only
  667. * cgroup_attach_task() can increment it again. Because a count of zero
  668. * means that no tasks are currently attached, therefore there is no
  669. * way a task attached to that cgroup can fork (the other way to
  670. * increment the count). So code holding cgroup_mutex can safely
  671. * assume that if the count is zero, it will stay zero. Similarly, if
  672. * a task holds cgroup_mutex on a cgroup with zero count, it
  673. * knows that the cgroup won't be removed, as cgroup_rmdir()
  674. * needs that mutex.
  675. *
  676. * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
  677. * (usually) take cgroup_mutex. These are the two most performance
  678. * critical pieces of code here. The exception occurs on cgroup_exit(),
  679. * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
  680. * is taken, and if the cgroup count is zero, a usermode call made
  681. * to the release agent with the name of the cgroup (path relative to
  682. * the root of cgroup file system) as the argument.
  683. *
  684. * A cgroup can only be deleted if both its 'count' of using tasks
  685. * is zero, and its list of 'children' cgroups is empty. Since all
  686. * tasks in the system use _some_ cgroup, and since there is always at
  687. * least one task in the system (init, pid == 1), therefore, top_cgroup
  688. * always has either children cgroups and/or using tasks. So we don't
  689. * need a special hack to ensure that top_cgroup cannot be deleted.
  690. *
  691. * The task_lock() exception
  692. *
  693. * The need for this exception arises from the action of
  694. * cgroup_attach_task(), which overwrites one task's cgroup pointer with
  695. * another. It does so using cgroup_mutex, however there are
  696. * several performance critical places that need to reference
  697. * task->cgroup without the expense of grabbing a system global
  698. * mutex. Therefore except as noted below, when dereferencing or, as
  699. * in cgroup_attach_task(), modifying a task's cgroup pointer we use
  700. * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  701. * the task_struct routinely used for such matters.
  702. *
  703. * P.S. One more locking exception. RCU is used to guard the
  704. * update of a tasks cgroup pointer by cgroup_attach_task()
  705. */
  706. /*
  707. * A couple of forward declarations required, due to cyclic reference loop:
  708. * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
  709. * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
  710. * -> cgroup_mkdir.
  711. */
  712. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
  713. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
  714. static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
  715. static const struct inode_operations cgroup_dir_inode_operations;
  716. static const struct file_operations proc_cgroupstats_operations;
  717. static struct backing_dev_info cgroup_backing_dev_info = {
  718. .name = "cgroup",
  719. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  720. };
  721. static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
  722. {
  723. struct inode *inode = new_inode(sb);
  724. if (inode) {
  725. inode->i_ino = get_next_ino();
  726. inode->i_mode = mode;
  727. inode->i_uid = current_fsuid();
  728. inode->i_gid = current_fsgid();
  729. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  730. inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
  731. }
  732. return inode;
  733. }
  734. static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
  735. {
  736. struct cgroup_name *name;
  737. name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
  738. if (!name)
  739. return NULL;
  740. strcpy(name->name, dentry->d_name.name);
  741. return name;
  742. }
  743. static void cgroup_free_fn(struct work_struct *work)
  744. {
  745. struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
  746. mutex_lock(&cgroup_mutex);
  747. cgrp->root->number_of_cgroups--;
  748. mutex_unlock(&cgroup_mutex);
  749. /*
  750. * We get a ref to the parent's dentry, and put the ref when
  751. * this cgroup is being freed, so it's guaranteed that the
  752. * parent won't be destroyed before its children.
  753. */
  754. dput(cgrp->parent->dentry);
  755. /*
  756. * Drop the active superblock reference that we took when we
  757. * created the cgroup. This will free cgrp->root, if we are
  758. * holding the last reference to @sb.
  759. */
  760. deactivate_super(cgrp->root->sb);
  761. /*
  762. * if we're getting rid of the cgroup, refcount should ensure
  763. * that there are no pidlists left.
  764. */
  765. BUG_ON(!list_empty(&cgrp->pidlists));
  766. simple_xattrs_free(&cgrp->xattrs);
  767. kfree(rcu_dereference_raw(cgrp->name));
  768. kfree(cgrp);
  769. }
  770. static void cgroup_free_rcu(struct rcu_head *head)
  771. {
  772. struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
  773. INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
  774. queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
  775. }
  776. static void cgroup_diput(struct dentry *dentry, struct inode *inode)
  777. {
  778. /* is dentry a directory ? if so, kfree() associated cgroup */
  779. if (S_ISDIR(inode->i_mode)) {
  780. struct cgroup *cgrp = dentry->d_fsdata;
  781. BUG_ON(!(cgroup_is_dead(cgrp)));
  782. call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
  783. } else {
  784. struct cfent *cfe = __d_cfe(dentry);
  785. struct cgroup *cgrp = dentry->d_parent->d_fsdata;
  786. WARN_ONCE(!list_empty(&cfe->node) &&
  787. cgrp != &cgrp->root->top_cgroup,
  788. "cfe still linked for %s\n", cfe->type->name);
  789. simple_xattrs_free(&cfe->xattrs);
  790. kfree(cfe);
  791. }
  792. iput(inode);
  793. }
  794. static void remove_dir(struct dentry *d)
  795. {
  796. struct dentry *parent = dget(d->d_parent);
  797. d_delete(d);
  798. simple_rmdir(parent->d_inode, d);
  799. dput(parent);
  800. }
  801. static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
  802. {
  803. struct cfent *cfe;
  804. lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
  805. lockdep_assert_held(&cgroup_mutex);
  806. /*
  807. * If we're doing cleanup due to failure of cgroup_create(),
  808. * the corresponding @cfe may not exist.
  809. */
  810. list_for_each_entry(cfe, &cgrp->files, node) {
  811. struct dentry *d = cfe->dentry;
  812. if (cft && cfe->type != cft)
  813. continue;
  814. dget(d);
  815. d_delete(d);
  816. simple_unlink(cgrp->dentry->d_inode, d);
  817. list_del_init(&cfe->node);
  818. dput(d);
  819. break;
  820. }
  821. }
  822. /**
  823. * cgroup_clear_dir - remove subsys files in a cgroup directory
  824. * @cgrp: target cgroup
  825. * @subsys_mask: mask of the subsystem ids whose files should be removed
  826. */
  827. static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
  828. {
  829. struct cgroup_subsys *ss;
  830. int i;
  831. for_each_subsys(ss, i) {
  832. struct cftype_set *set;
  833. if (!test_bit(i, &subsys_mask))
  834. continue;
  835. list_for_each_entry(set, &ss->cftsets, node)
  836. cgroup_addrm_files(cgrp, set->cfts, false);
  837. }
  838. }
  839. /*
  840. * NOTE : the dentry must have been dget()'ed
  841. */
  842. static void cgroup_d_remove_dir(struct dentry *dentry)
  843. {
  844. struct dentry *parent;
  845. parent = dentry->d_parent;
  846. spin_lock(&parent->d_lock);
  847. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  848. list_del_init(&dentry->d_u.d_child);
  849. spin_unlock(&dentry->d_lock);
  850. spin_unlock(&parent->d_lock);
  851. remove_dir(dentry);
  852. }
  853. /*
  854. * Call with cgroup_mutex held. Drops reference counts on modules, including
  855. * any duplicate ones that parse_cgroupfs_options took. If this function
  856. * returns an error, no reference counts are touched.
  857. */
  858. static int rebind_subsystems(struct cgroupfs_root *root,
  859. unsigned long added_mask, unsigned removed_mask)
  860. {
  861. struct cgroup *cgrp = &root->top_cgroup;
  862. struct cgroup_subsys *ss;
  863. unsigned long pinned = 0;
  864. int i, ret;
  865. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  866. BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
  867. /* Check that any added subsystems are currently free */
  868. for_each_subsys(ss, i) {
  869. if (!(added_mask & (1 << i)))
  870. continue;
  871. /* is the subsystem mounted elsewhere? */
  872. if (ss->root != &cgroup_dummy_root) {
  873. ret = -EBUSY;
  874. goto out_put;
  875. }
  876. /* pin the module */
  877. if (!try_module_get(ss->module)) {
  878. ret = -ENOENT;
  879. goto out_put;
  880. }
  881. pinned |= 1 << i;
  882. }
  883. /* subsys could be missing if unloaded between parsing and here */
  884. if (added_mask != pinned) {
  885. ret = -ENOENT;
  886. goto out_put;
  887. }
  888. ret = cgroup_populate_dir(cgrp, added_mask);
  889. if (ret)
  890. goto out_put;
  891. /*
  892. * Nothing can fail from this point on. Remove files for the
  893. * removed subsystems and rebind each subsystem.
  894. */
  895. cgroup_clear_dir(cgrp, removed_mask);
  896. for_each_subsys(ss, i) {
  897. unsigned long bit = 1UL << i;
  898. if (bit & added_mask) {
  899. /* We're binding this subsystem to this hierarchy */
  900. BUG_ON(cgroup_css(cgrp, ss));
  901. BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
  902. BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
  903. rcu_assign_pointer(cgrp->subsys[i],
  904. cgroup_css(cgroup_dummy_top, ss));
  905. cgroup_css(cgrp, ss)->cgroup = cgrp;
  906. list_move(&ss->sibling, &root->subsys_list);
  907. ss->root = root;
  908. if (ss->bind)
  909. ss->bind(cgroup_css(cgrp, ss));
  910. /* refcount was already taken, and we're keeping it */
  911. root->subsys_mask |= bit;
  912. } else if (bit & removed_mask) {
  913. /* We're removing this subsystem */
  914. BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
  915. BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
  916. if (ss->bind)
  917. ss->bind(cgroup_css(cgroup_dummy_top, ss));
  918. cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
  919. RCU_INIT_POINTER(cgrp->subsys[i], NULL);
  920. cgroup_subsys[i]->root = &cgroup_dummy_root;
  921. list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
  922. /* subsystem is now free - drop reference on module */
  923. module_put(ss->module);
  924. root->subsys_mask &= ~bit;
  925. }
  926. }
  927. /*
  928. * Mark @root has finished binding subsystems. @root->subsys_mask
  929. * now matches the bound subsystems.
  930. */
  931. root->flags |= CGRP_ROOT_SUBSYS_BOUND;
  932. return 0;
  933. out_put:
  934. for_each_subsys(ss, i)
  935. if (pinned & (1 << i))
  936. module_put(ss->module);
  937. return ret;
  938. }
  939. static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
  940. {
  941. struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
  942. struct cgroup_subsys *ss;
  943. mutex_lock(&cgroup_root_mutex);
  944. for_each_root_subsys(root, ss)
  945. seq_printf(seq, ",%s", ss->name);
  946. if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
  947. seq_puts(seq, ",sane_behavior");
  948. if (root->flags & CGRP_ROOT_NOPREFIX)
  949. seq_puts(seq, ",noprefix");
  950. if (root->flags & CGRP_ROOT_XATTR)
  951. seq_puts(seq, ",xattr");
  952. if (strlen(root->release_agent_path))
  953. seq_printf(seq, ",release_agent=%s", root->release_agent_path);
  954. if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
  955. seq_puts(seq, ",clone_children");
  956. if (strlen(root->name))
  957. seq_printf(seq, ",name=%s", root->name);
  958. mutex_unlock(&cgroup_root_mutex);
  959. return 0;
  960. }
  961. struct cgroup_sb_opts {
  962. unsigned long subsys_mask;
  963. unsigned long flags;
  964. char *release_agent;
  965. bool cpuset_clone_children;
  966. char *name;
  967. /* User explicitly requested empty subsystem */
  968. bool none;
  969. struct cgroupfs_root *new_root;
  970. };
  971. /*
  972. * Convert a hierarchy specifier into a bitmask of subsystems and
  973. * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
  974. * array. This function takes refcounts on subsystems to be used, unless it
  975. * returns error, in which case no refcounts are taken.
  976. */
  977. static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
  978. {
  979. char *token, *o = data;
  980. bool all_ss = false, one_ss = false;
  981. unsigned long mask = (unsigned long)-1;
  982. struct cgroup_subsys *ss;
  983. int i;
  984. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  985. #ifdef CONFIG_CPUSETS
  986. mask = ~(1UL << cpuset_subsys_id);
  987. #endif
  988. memset(opts, 0, sizeof(*opts));
  989. while ((token = strsep(&o, ",")) != NULL) {
  990. if (!*token)
  991. return -EINVAL;
  992. if (!strcmp(token, "none")) {
  993. /* Explicitly have no subsystems */
  994. opts->none = true;
  995. continue;
  996. }
  997. if (!strcmp(token, "all")) {
  998. /* Mutually exclusive option 'all' + subsystem name */
  999. if (one_ss)
  1000. return -EINVAL;
  1001. all_ss = true;
  1002. continue;
  1003. }
  1004. if (!strcmp(token, "__DEVEL__sane_behavior")) {
  1005. opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
  1006. continue;
  1007. }
  1008. if (!strcmp(token, "noprefix")) {
  1009. opts->flags |= CGRP_ROOT_NOPREFIX;
  1010. continue;
  1011. }
  1012. if (!strcmp(token, "clone_children")) {
  1013. opts->cpuset_clone_children = true;
  1014. continue;
  1015. }
  1016. if (!strcmp(token, "xattr")) {
  1017. opts->flags |= CGRP_ROOT_XATTR;
  1018. continue;
  1019. }
  1020. if (!strncmp(token, "release_agent=", 14)) {
  1021. /* Specifying two release agents is forbidden */
  1022. if (opts->release_agent)
  1023. return -EINVAL;
  1024. opts->release_agent =
  1025. kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
  1026. if (!opts->release_agent)
  1027. return -ENOMEM;
  1028. continue;
  1029. }
  1030. if (!strncmp(token, "name=", 5)) {
  1031. const char *name = token + 5;
  1032. /* Can't specify an empty name */
  1033. if (!strlen(name))
  1034. return -EINVAL;
  1035. /* Must match [\w.-]+ */
  1036. for (i = 0; i < strlen(name); i++) {
  1037. char c = name[i];
  1038. if (isalnum(c))
  1039. continue;
  1040. if ((c == '.') || (c == '-') || (c == '_'))
  1041. continue;
  1042. return -EINVAL;
  1043. }
  1044. /* Specifying two names is forbidden */
  1045. if (opts->name)
  1046. return -EINVAL;
  1047. opts->name = kstrndup(name,
  1048. MAX_CGROUP_ROOT_NAMELEN - 1,
  1049. GFP_KERNEL);
  1050. if (!opts->name)
  1051. return -ENOMEM;
  1052. continue;
  1053. }
  1054. for_each_subsys(ss, i) {
  1055. if (strcmp(token, ss->name))
  1056. continue;
  1057. if (ss->disabled)
  1058. continue;
  1059. /* Mutually exclusive option 'all' + subsystem name */
  1060. if (all_ss)
  1061. return -EINVAL;
  1062. set_bit(i, &opts->subsys_mask);
  1063. one_ss = true;
  1064. break;
  1065. }
  1066. if (i == CGROUP_SUBSYS_COUNT)
  1067. return -ENOENT;
  1068. }
  1069. /*
  1070. * If the 'all' option was specified select all the subsystems,
  1071. * otherwise if 'none', 'name=' and a subsystem name options
  1072. * were not specified, let's default to 'all'
  1073. */
  1074. if (all_ss || (!one_ss && !opts->none && !opts->name))
  1075. for_each_subsys(ss, i)
  1076. if (!ss->disabled)
  1077. set_bit(i, &opts->subsys_mask);
  1078. /* Consistency checks */
  1079. if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
  1080. pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
  1081. if (opts->flags & CGRP_ROOT_NOPREFIX) {
  1082. pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
  1083. return -EINVAL;
  1084. }
  1085. if (opts->cpuset_clone_children) {
  1086. pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
  1087. return -EINVAL;
  1088. }
  1089. }
  1090. /*
  1091. * Option noprefix was introduced just for backward compatibility
  1092. * with the old cpuset, so we allow noprefix only if mounting just
  1093. * the cpuset subsystem.
  1094. */
  1095. if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
  1096. return -EINVAL;
  1097. /* Can't specify "none" and some subsystems */
  1098. if (opts->subsys_mask && opts->none)
  1099. return -EINVAL;
  1100. /*
  1101. * We either have to specify by name or by subsystems. (So all
  1102. * empty hierarchies must have a name).
  1103. */
  1104. if (!opts->subsys_mask && !opts->name)
  1105. return -EINVAL;
  1106. return 0;
  1107. }
  1108. static int cgroup_remount(struct super_block *sb, int *flags, char *data)
  1109. {
  1110. int ret = 0;
  1111. struct cgroupfs_root *root = sb->s_fs_info;
  1112. struct cgroup *cgrp = &root->top_cgroup;
  1113. struct cgroup_sb_opts opts;
  1114. unsigned long added_mask, removed_mask;
  1115. if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
  1116. pr_err("cgroup: sane_behavior: remount is not allowed\n");
  1117. return -EINVAL;
  1118. }
  1119. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  1120. mutex_lock(&cgroup_mutex);
  1121. mutex_lock(&cgroup_root_mutex);
  1122. /* See what subsystems are wanted */
  1123. ret = parse_cgroupfs_options(data, &opts);
  1124. if (ret)
  1125. goto out_unlock;
  1126. if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
  1127. pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
  1128. task_tgid_nr(current), current->comm);
  1129. added_mask = opts.subsys_mask & ~root->subsys_mask;
  1130. removed_mask = root->subsys_mask & ~opts.subsys_mask;
  1131. /* Don't allow flags or name to change at remount */
  1132. if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
  1133. (opts.name && strcmp(opts.name, root->name))) {
  1134. pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
  1135. opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
  1136. root->flags & CGRP_ROOT_OPTION_MASK, root->name);
  1137. ret = -EINVAL;
  1138. goto out_unlock;
  1139. }
  1140. /* remounting is not allowed for populated hierarchies */
  1141. if (root->number_of_cgroups > 1) {
  1142. ret = -EBUSY;
  1143. goto out_unlock;
  1144. }
  1145. ret = rebind_subsystems(root, added_mask, removed_mask);
  1146. if (ret)
  1147. goto out_unlock;
  1148. if (opts.release_agent)
  1149. strcpy(root->release_agent_path, opts.release_agent);
  1150. out_unlock:
  1151. kfree(opts.release_agent);
  1152. kfree(opts.name);
  1153. mutex_unlock(&cgroup_root_mutex);
  1154. mutex_unlock(&cgroup_mutex);
  1155. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  1156. return ret;
  1157. }
  1158. static const struct super_operations cgroup_ops = {
  1159. .statfs = simple_statfs,
  1160. .drop_inode = generic_delete_inode,
  1161. .show_options = cgroup_show_options,
  1162. .remount_fs = cgroup_remount,
  1163. };
  1164. static void init_cgroup_housekeeping(struct cgroup *cgrp)
  1165. {
  1166. INIT_LIST_HEAD(&cgrp->sibling);
  1167. INIT_LIST_HEAD(&cgrp->children);
  1168. INIT_LIST_HEAD(&cgrp->files);
  1169. INIT_LIST_HEAD(&cgrp->cset_links);
  1170. INIT_LIST_HEAD(&cgrp->release_list);
  1171. INIT_LIST_HEAD(&cgrp->pidlists);
  1172. mutex_init(&cgrp->pidlist_mutex);
  1173. cgrp->dummy_css.cgroup = cgrp;
  1174. INIT_LIST_HEAD(&cgrp->event_list);
  1175. spin_lock_init(&cgrp->event_list_lock);
  1176. simple_xattrs_init(&cgrp->xattrs);
  1177. }
  1178. static void init_cgroup_root(struct cgroupfs_root *root)
  1179. {
  1180. struct cgroup *cgrp = &root->top_cgroup;
  1181. INIT_LIST_HEAD(&root->subsys_list);
  1182. INIT_LIST_HEAD(&root->root_list);
  1183. root->number_of_cgroups = 1;
  1184. cgrp->root = root;
  1185. RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
  1186. init_cgroup_housekeeping(cgrp);
  1187. idr_init(&root->cgroup_idr);
  1188. }
  1189. static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
  1190. {
  1191. int id;
  1192. lockdep_assert_held(&cgroup_mutex);
  1193. lockdep_assert_held(&cgroup_root_mutex);
  1194. id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
  1195. GFP_KERNEL);
  1196. if (id < 0)
  1197. return id;
  1198. root->hierarchy_id = id;
  1199. return 0;
  1200. }
  1201. static void cgroup_exit_root_id(struct cgroupfs_root *root)
  1202. {
  1203. lockdep_assert_held(&cgroup_mutex);
  1204. lockdep_assert_held(&cgroup_root_mutex);
  1205. if (root->hierarchy_id) {
  1206. idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
  1207. root->hierarchy_id = 0;
  1208. }
  1209. }
  1210. static int cgroup_test_super(struct super_block *sb, void *data)
  1211. {
  1212. struct cgroup_sb_opts *opts = data;
  1213. struct cgroupfs_root *root = sb->s_fs_info;
  1214. /* If we asked for a name then it must match */
  1215. if (opts->name && strcmp(opts->name, root->name))
  1216. return 0;
  1217. /*
  1218. * If we asked for subsystems (or explicitly for no
  1219. * subsystems) then they must match
  1220. */
  1221. if ((opts->subsys_mask || opts->none)
  1222. && (opts->subsys_mask != root->subsys_mask))
  1223. return 0;
  1224. return 1;
  1225. }
  1226. static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
  1227. {
  1228. struct cgroupfs_root *root;
  1229. if (!opts->subsys_mask && !opts->none)
  1230. return NULL;
  1231. root = kzalloc(sizeof(*root), GFP_KERNEL);
  1232. if (!root)
  1233. return ERR_PTR(-ENOMEM);
  1234. init_cgroup_root(root);
  1235. /*
  1236. * We need to set @root->subsys_mask now so that @root can be
  1237. * matched by cgroup_test_super() before it finishes
  1238. * initialization; otherwise, competing mounts with the same
  1239. * options may try to bind the same subsystems instead of waiting
  1240. * for the first one leading to unexpected mount errors.
  1241. * SUBSYS_BOUND will be set once actual binding is complete.
  1242. */
  1243. root->subsys_mask = opts->subsys_mask;
  1244. root->flags = opts->flags;
  1245. if (opts->release_agent)
  1246. strcpy(root->release_agent_path, opts->release_agent);
  1247. if (opts->name)
  1248. strcpy(root->name, opts->name);
  1249. if (opts->cpuset_clone_children)
  1250. set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
  1251. return root;
  1252. }
  1253. static void cgroup_free_root(struct cgroupfs_root *root)
  1254. {
  1255. if (root) {
  1256. /* hierarhcy ID shoulid already have been released */
  1257. WARN_ON_ONCE(root->hierarchy_id);
  1258. idr_destroy(&root->cgroup_idr);
  1259. kfree(root);
  1260. }
  1261. }
  1262. static int cgroup_set_super(struct super_block *sb, void *data)
  1263. {
  1264. int ret;
  1265. struct cgroup_sb_opts *opts = data;
  1266. /* If we don't have a new root, we can't set up a new sb */
  1267. if (!opts->new_root)
  1268. return -EINVAL;
  1269. BUG_ON(!opts->subsys_mask && !opts->none);
  1270. ret = set_anon_super(sb, NULL);
  1271. if (ret)
  1272. return ret;
  1273. sb->s_fs_info = opts->new_root;
  1274. opts->new_root->sb = sb;
  1275. sb->s_blocksize = PAGE_CACHE_SIZE;
  1276. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  1277. sb->s_magic = CGROUP_SUPER_MAGIC;
  1278. sb->s_op = &cgroup_ops;
  1279. return 0;
  1280. }
  1281. static int cgroup_get_rootdir(struct super_block *sb)
  1282. {
  1283. static const struct dentry_operations cgroup_dops = {
  1284. .d_iput = cgroup_diput,
  1285. .d_delete = always_delete_dentry,
  1286. };
  1287. struct inode *inode =
  1288. cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
  1289. if (!inode)
  1290. return -ENOMEM;
  1291. inode->i_fop = &simple_dir_operations;
  1292. inode->i_op = &cgroup_dir_inode_operations;
  1293. /* directories start off with i_nlink == 2 (for "." entry) */
  1294. inc_nlink(inode);
  1295. sb->s_root = d_make_root(inode);
  1296. if (!sb->s_root)
  1297. return -ENOMEM;
  1298. /* for everything else we want ->d_op set */
  1299. sb->s_d_op = &cgroup_dops;
  1300. return 0;
  1301. }
  1302. static struct dentry *cgroup_mount(struct file_system_type *fs_type,
  1303. int flags, const char *unused_dev_name,
  1304. void *data)
  1305. {
  1306. struct cgroup_sb_opts opts;
  1307. struct cgroupfs_root *root;
  1308. int ret = 0;
  1309. struct super_block *sb;
  1310. struct cgroupfs_root *new_root;
  1311. struct list_head tmp_links;
  1312. struct inode *inode;
  1313. const struct cred *cred;
  1314. /* First find the desired set of subsystems */
  1315. mutex_lock(&cgroup_mutex);
  1316. ret = parse_cgroupfs_options(data, &opts);
  1317. mutex_unlock(&cgroup_mutex);
  1318. if (ret)
  1319. goto out_err;
  1320. /*
  1321. * Allocate a new cgroup root. We may not need it if we're
  1322. * reusing an existing hierarchy.
  1323. */
  1324. new_root = cgroup_root_from_opts(&opts);
  1325. if (IS_ERR(new_root)) {
  1326. ret = PTR_ERR(new_root);
  1327. goto out_err;
  1328. }
  1329. opts.new_root = new_root;
  1330. /* Locate an existing or new sb for this hierarchy */
  1331. sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
  1332. if (IS_ERR(sb)) {
  1333. ret = PTR_ERR(sb);
  1334. cgroup_free_root(opts.new_root);
  1335. goto out_err;
  1336. }
  1337. root = sb->s_fs_info;
  1338. BUG_ON(!root);
  1339. if (root == opts.new_root) {
  1340. /* We used the new root structure, so this is a new hierarchy */
  1341. struct cgroup *root_cgrp = &root->top_cgroup;
  1342. struct cgroupfs_root *existing_root;
  1343. int i;
  1344. struct css_set *cset;
  1345. BUG_ON(sb->s_root != NULL);
  1346. ret = cgroup_get_rootdir(sb);
  1347. if (ret)
  1348. goto drop_new_super;
  1349. inode = sb->s_root->d_inode;
  1350. mutex_lock(&inode->i_mutex);
  1351. mutex_lock(&cgroup_mutex);
  1352. mutex_lock(&cgroup_root_mutex);
  1353. root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
  1354. 0, 1, GFP_KERNEL);
  1355. if (root_cgrp->id < 0)
  1356. goto unlock_drop;
  1357. /* Check for name clashes with existing mounts */
  1358. ret = -EBUSY;
  1359. if (strlen(root->name))
  1360. for_each_active_root(existing_root)
  1361. if (!strcmp(existing_root->name, root->name))
  1362. goto unlock_drop;
  1363. /*
  1364. * We're accessing css_set_count without locking
  1365. * css_set_lock here, but that's OK - it can only be
  1366. * increased by someone holding cgroup_lock, and
  1367. * that's us. The worst that can happen is that we
  1368. * have some link structures left over
  1369. */
  1370. ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
  1371. if (ret)
  1372. goto unlock_drop;
  1373. /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
  1374. ret = cgroup_init_root_id(root, 2, 0);
  1375. if (ret)
  1376. goto unlock_drop;
  1377. sb->s_root->d_fsdata = root_cgrp;
  1378. root_cgrp->dentry = sb->s_root;
  1379. /*
  1380. * We're inside get_sb() and will call lookup_one_len() to
  1381. * create the root files, which doesn't work if SELinux is
  1382. * in use. The following cred dancing somehow works around
  1383. * it. See 2ce9738ba ("cgroupfs: use init_cred when
  1384. * populating new cgroupfs mount") for more details.
  1385. */
  1386. cred = override_creds(&init_cred);
  1387. ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
  1388. if (ret)
  1389. goto rm_base_files;
  1390. ret = rebind_subsystems(root, root->subsys_mask, 0);
  1391. if (ret)
  1392. goto rm_base_files;
  1393. revert_creds(cred);
  1394. /*
  1395. * There must be no failure case after here, since rebinding
  1396. * takes care of subsystems' refcounts, which are explicitly
  1397. * dropped in the failure exit path.
  1398. */
  1399. list_add(&root->root_list, &cgroup_roots);
  1400. cgroup_root_count++;
  1401. /* Link the top cgroup in this hierarchy into all
  1402. * the css_set objects */
  1403. write_lock(&css_set_lock);
  1404. hash_for_each(css_set_table, i, cset, hlist)
  1405. link_css_set(&tmp_links, cset, root_cgrp);
  1406. write_unlock(&css_set_lock);
  1407. free_cgrp_cset_links(&tmp_links);
  1408. BUG_ON(!list_empty(&root_cgrp->children));
  1409. BUG_ON(root->number_of_cgroups != 1);
  1410. mutex_unlock(&cgroup_root_mutex);
  1411. mutex_unlock(&cgroup_mutex);
  1412. mutex_unlock(&inode->i_mutex);
  1413. } else {
  1414. /*
  1415. * We re-used an existing hierarchy - the new root (if
  1416. * any) is not needed
  1417. */
  1418. cgroup_free_root(opts.new_root);
  1419. if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
  1420. if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
  1421. pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
  1422. ret = -EINVAL;
  1423. goto drop_new_super;
  1424. } else {
  1425. pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
  1426. }
  1427. }
  1428. }
  1429. kfree(opts.release_agent);
  1430. kfree(opts.name);
  1431. return dget(sb->s_root);
  1432. rm_base_files:
  1433. free_cgrp_cset_links(&tmp_links);
  1434. cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
  1435. revert_creds(cred);
  1436. unlock_drop:
  1437. cgroup_exit_root_id(root);
  1438. mutex_unlock(&cgroup_root_mutex);
  1439. mutex_unlock(&cgroup_mutex);
  1440. mutex_unlock(&inode->i_mutex);
  1441. drop_new_super:
  1442. deactivate_locked_super(sb);
  1443. out_err:
  1444. kfree(opts.release_agent);
  1445. kfree(opts.name);
  1446. return ERR_PTR(ret);
  1447. }
  1448. static void cgroup_kill_sb(struct super_block *sb) {
  1449. struct cgroupfs_root *root = sb->s_fs_info;
  1450. struct cgroup *cgrp = &root->top_cgroup;
  1451. struct cgrp_cset_link *link, *tmp_link;
  1452. int ret;
  1453. BUG_ON(!root);
  1454. BUG_ON(root->number_of_cgroups != 1);
  1455. BUG_ON(!list_empty(&cgrp->children));
  1456. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  1457. mutex_lock(&cgroup_mutex);
  1458. mutex_lock(&cgroup_root_mutex);
  1459. /* Rebind all subsystems back to the default hierarchy */
  1460. if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
  1461. ret = rebind_subsystems(root, 0, root->subsys_mask);
  1462. /* Shouldn't be able to fail ... */
  1463. BUG_ON(ret);
  1464. }
  1465. /*
  1466. * Release all the links from cset_links to this hierarchy's
  1467. * root cgroup
  1468. */
  1469. write_lock(&css_set_lock);
  1470. list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
  1471. list_del(&link->cset_link);
  1472. list_del(&link->cgrp_link);
  1473. kfree(link);
  1474. }
  1475. write_unlock(&css_set_lock);
  1476. if (!list_empty(&root->root_list)) {
  1477. list_del(&root->root_list);
  1478. cgroup_root_count--;
  1479. }
  1480. cgroup_exit_root_id(root);
  1481. mutex_unlock(&cgroup_root_mutex);
  1482. mutex_unlock(&cgroup_mutex);
  1483. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  1484. simple_xattrs_free(&cgrp->xattrs);
  1485. kill_litter_super(sb);
  1486. cgroup_free_root(root);
  1487. }
  1488. static struct file_system_type cgroup_fs_type = {
  1489. .name = "cgroup",
  1490. .mount = cgroup_mount,
  1491. .kill_sb = cgroup_kill_sb,
  1492. };
  1493. static struct kobject *cgroup_kobj;
  1494. /**
  1495. * cgroup_path - generate the path of a cgroup
  1496. * @cgrp: the cgroup in question
  1497. * @buf: the buffer to write the path into
  1498. * @buflen: the length of the buffer
  1499. *
  1500. * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
  1501. *
  1502. * We can't generate cgroup path using dentry->d_name, as accessing
  1503. * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
  1504. * inode's i_mutex, while on the other hand cgroup_path() can be called
  1505. * with some irq-safe spinlocks held.
  1506. */
  1507. int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
  1508. {
  1509. int ret = -ENAMETOOLONG;
  1510. char *start;
  1511. if (!cgrp->parent) {
  1512. if (strlcpy(buf, "/", buflen) >= buflen)
  1513. return -ENAMETOOLONG;
  1514. return 0;
  1515. }
  1516. start = buf + buflen - 1;
  1517. *start = '\0';
  1518. rcu_read_lock();
  1519. do {
  1520. const char *name = cgroup_name(cgrp);
  1521. int len;
  1522. len = strlen(name);
  1523. if ((start -= len) < buf)
  1524. goto out;
  1525. memcpy(start, name, len);
  1526. if (--start < buf)
  1527. goto out;
  1528. *start = '/';
  1529. cgrp = cgrp->parent;
  1530. } while (cgrp->parent);
  1531. ret = 0;
  1532. memmove(buf, start, buf + buflen - start);
  1533. out:
  1534. rcu_read_unlock();
  1535. return ret;
  1536. }
  1537. EXPORT_SYMBOL_GPL(cgroup_path);
  1538. /**
  1539. * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
  1540. * @task: target task
  1541. * @buf: the buffer to write the path into
  1542. * @buflen: the length of the buffer
  1543. *
  1544. * Determine @task's cgroup on the first (the one with the lowest non-zero
  1545. * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
  1546. * function grabs cgroup_mutex and shouldn't be used inside locks used by
  1547. * cgroup controller callbacks.
  1548. *
  1549. * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
  1550. */
  1551. int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
  1552. {
  1553. struct cgroupfs_root *root;
  1554. struct cgroup *cgrp;
  1555. int hierarchy_id = 1, ret = 0;
  1556. if (buflen < 2)
  1557. return -ENAMETOOLONG;
  1558. mutex_lock(&cgroup_mutex);
  1559. root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
  1560. if (root) {
  1561. cgrp = task_cgroup_from_root(task, root);
  1562. ret = cgroup_path(cgrp, buf, buflen);
  1563. } else {
  1564. /* if no hierarchy exists, everyone is in "/" */
  1565. memcpy(buf, "/", 2);
  1566. }
  1567. mutex_unlock(&cgroup_mutex);
  1568. return ret;
  1569. }
  1570. EXPORT_SYMBOL_GPL(task_cgroup_path);
  1571. /*
  1572. * Control Group taskset
  1573. */
  1574. struct task_and_cgroup {
  1575. struct task_struct *task;
  1576. struct cgroup *cgrp;
  1577. struct css_set *cset;
  1578. };
  1579. struct cgroup_taskset {
  1580. struct task_and_cgroup single;
  1581. struct flex_array *tc_array;
  1582. int tc_array_len;
  1583. int idx;
  1584. struct cgroup *cur_cgrp;
  1585. };
  1586. /**
  1587. * cgroup_taskset_first - reset taskset and return the first task
  1588. * @tset: taskset of interest
  1589. *
  1590. * @tset iteration is initialized and the first task is returned.
  1591. */
  1592. struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
  1593. {
  1594. if (tset->tc_array) {
  1595. tset->idx = 0;
  1596. return cgroup_taskset_next(tset);
  1597. } else {
  1598. tset->cur_cgrp = tset->single.cgrp;
  1599. return tset->single.task;
  1600. }
  1601. }
  1602. EXPORT_SYMBOL_GPL(cgroup_taskset_first);
  1603. /**
  1604. * cgroup_taskset_next - iterate to the next task in taskset
  1605. * @tset: taskset of interest
  1606. *
  1607. * Return the next task in @tset. Iteration must have been initialized
  1608. * with cgroup_taskset_first().
  1609. */
  1610. struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
  1611. {
  1612. struct task_and_cgroup *tc;
  1613. if (!tset->tc_array || tset->idx >= tset->tc_array_len)
  1614. return NULL;
  1615. tc = flex_array_get(tset->tc_array, tset->idx++);
  1616. tset->cur_cgrp = tc->cgrp;
  1617. return tc->task;
  1618. }
  1619. EXPORT_SYMBOL_GPL(cgroup_taskset_next);
  1620. /**
  1621. * cgroup_taskset_cur_css - return the matching css for the current task
  1622. * @tset: taskset of interest
  1623. * @subsys_id: the ID of the target subsystem
  1624. *
  1625. * Return the css for the current (last returned) task of @tset for
  1626. * subsystem specified by @subsys_id. This function must be preceded by
  1627. * either cgroup_taskset_first() or cgroup_taskset_next().
  1628. */
  1629. struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
  1630. int subsys_id)
  1631. {
  1632. return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
  1633. }
  1634. EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
  1635. /**
  1636. * cgroup_taskset_size - return the number of tasks in taskset
  1637. * @tset: taskset of interest
  1638. */
  1639. int cgroup_taskset_size(struct cgroup_taskset *tset)
  1640. {
  1641. return tset->tc_array ? tset->tc_array_len : 1;
  1642. }
  1643. EXPORT_SYMBOL_GPL(cgroup_taskset_size);
  1644. /*
  1645. * cgroup_task_migrate - move a task from one cgroup to another.
  1646. *
  1647. * Must be called with cgroup_mutex and threadgroup locked.
  1648. */
  1649. static void cgroup_task_migrate(struct cgroup *old_cgrp,
  1650. struct task_struct *tsk,
  1651. struct css_set *new_cset)
  1652. {
  1653. struct css_set *old_cset;
  1654. /*
  1655. * We are synchronized through threadgroup_lock() against PF_EXITING
  1656. * setting such that we can't race against cgroup_exit() changing the
  1657. * css_set to init_css_set and dropping the old one.
  1658. */
  1659. WARN_ON_ONCE(tsk->flags & PF_EXITING);
  1660. old_cset = task_css_set(tsk);
  1661. task_lock(tsk);
  1662. rcu_assign_pointer(tsk->cgroups, new_cset);
  1663. task_unlock(tsk);
  1664. /* Update the css_set linked lists if we're using them */
  1665. write_lock(&css_set_lock);
  1666. if (!list_empty(&tsk->cg_list))
  1667. list_move(&tsk->cg_list, &new_cset->tasks);
  1668. write_unlock(&css_set_lock);
  1669. /*
  1670. * We just gained a reference on old_cset by taking it from the
  1671. * task. As trading it for new_cset is protected by cgroup_mutex,
  1672. * we're safe to drop it here; it will be freed under RCU.
  1673. */
  1674. set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
  1675. put_css_set(old_cset);
  1676. }
  1677. /**
  1678. * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
  1679. * @cgrp: the cgroup to attach to
  1680. * @tsk: the task or the leader of the threadgroup to be attached
  1681. * @threadgroup: attach the whole threadgroup?
  1682. *
  1683. * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
  1684. * task_lock of @tsk or each thread in the threadgroup individually in turn.
  1685. */
  1686. static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
  1687. bool threadgroup)
  1688. {
  1689. int retval, i, group_size;
  1690. struct cgroup_subsys *ss, *failed_ss = NULL;
  1691. struct cgroupfs_root *root = cgrp->root;
  1692. /* threadgroup list cursor and array */
  1693. struct task_struct *leader = tsk;
  1694. struct task_and_cgroup *tc;
  1695. struct flex_array *group;
  1696. struct cgroup_taskset tset = { };
  1697. /*
  1698. * step 0: in order to do expensive, possibly blocking operations for
  1699. * every thread, we cannot iterate the thread group list, since it needs
  1700. * rcu or tasklist locked. instead, build an array of all threads in the
  1701. * group - group_rwsem prevents new threads from appearing, and if
  1702. * threads exit, this will just be an over-estimate.
  1703. */
  1704. if (threadgroup)
  1705. group_size = get_nr_threads(tsk);
  1706. else
  1707. group_size = 1;
  1708. /* flex_array supports very large thread-groups better than kmalloc. */
  1709. group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
  1710. if (!group)
  1711. return -ENOMEM;
  1712. /* pre-allocate to guarantee space while iterating in rcu read-side. */
  1713. retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
  1714. if (retval)
  1715. goto out_free_group_list;
  1716. i = 0;
  1717. /*
  1718. * Prevent freeing of tasks while we take a snapshot. Tasks that are
  1719. * already PF_EXITING could be freed from underneath us unless we
  1720. * take an rcu_read_lock.
  1721. */
  1722. rcu_read_lock();
  1723. do {
  1724. struct task_and_cgroup ent;
  1725. /* @tsk either already exited or can't exit until the end */
  1726. if (tsk->flags & PF_EXITING)
  1727. goto next;
  1728. /* as per above, nr_threads may decrease, but not increase. */
  1729. BUG_ON(i >= group_size);
  1730. ent.task = tsk;
  1731. ent.cgrp = task_cgroup_from_root(tsk, root);
  1732. /* nothing to do if this task is already in the cgroup */
  1733. if (ent.cgrp == cgrp)
  1734. goto next;
  1735. /*
  1736. * saying GFP_ATOMIC has no effect here because we did prealloc
  1737. * earlier, but it's good form to communicate our expectations.
  1738. */
  1739. retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
  1740. BUG_ON(retval != 0);
  1741. i++;
  1742. next:
  1743. if (!threadgroup)
  1744. break;
  1745. } while_each_thread(leader, tsk);
  1746. rcu_read_unlock();
  1747. /* remember the number of threads in the array for later. */
  1748. group_size = i;
  1749. tset.tc_array = group;
  1750. tset.tc_array_len = group_size;
  1751. /* methods shouldn't be called if no task is actually migrating */
  1752. retval = 0;
  1753. if (!group_size)
  1754. goto out_free_group_list;
  1755. /*
  1756. * step 1: check that we can legitimately attach to the cgroup.
  1757. */
  1758. for_each_root_subsys(root, ss) {
  1759. struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
  1760. if (ss->can_attach) {
  1761. retval = ss->can_attach(css, &tset);
  1762. if (retval) {
  1763. failed_ss = ss;
  1764. goto out_cancel_attach;
  1765. }
  1766. }
  1767. }
  1768. /*
  1769. * step 2: make sure css_sets exist for all threads to be migrated.
  1770. * we use find_css_set, which allocates a new one if necessary.
  1771. */
  1772. for (i = 0; i < group_size; i++) {
  1773. struct css_set *old_cset;
  1774. tc = flex_array_get(group, i);
  1775. old_cset = task_css_set(tc->task);
  1776. tc->cset = find_css_set(old_cset, cgrp);
  1777. if (!tc->cset) {
  1778. retval = -ENOMEM;
  1779. goto out_put_css_set_refs;
  1780. }
  1781. }
  1782. /*
  1783. * step 3: now that we're guaranteed success wrt the css_sets,
  1784. * proceed to move all tasks to the new cgroup. There are no
  1785. * failure cases after here, so this is the commit point.
  1786. */
  1787. for (i = 0; i < group_size; i++) {
  1788. tc = flex_array_get(group, i);
  1789. cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
  1790. }
  1791. /* nothing is sensitive to fork() after this point. */
  1792. /*
  1793. * step 4: do subsystem attach callbacks.
  1794. */
  1795. for_each_root_subsys(root, ss) {
  1796. struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
  1797. if (ss->attach)
  1798. ss->attach(css, &tset);
  1799. }
  1800. /*
  1801. * step 5: success! and cleanup
  1802. */
  1803. retval = 0;
  1804. out_put_css_set_refs:
  1805. if (retval) {
  1806. for (i = 0; i < group_size; i++) {
  1807. tc = flex_array_get(group, i);
  1808. if (!tc->cset)
  1809. break;
  1810. put_css_set(tc->cset);
  1811. }
  1812. }
  1813. out_cancel_attach:
  1814. if (retval) {
  1815. for_each_root_subsys(root, ss) {
  1816. struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
  1817. if (ss == failed_ss)
  1818. break;
  1819. if (ss->cancel_attach)
  1820. ss->cancel_attach(css, &tset);
  1821. }
  1822. }
  1823. out_free_group_list:
  1824. flex_array_free(group);
  1825. return retval;
  1826. }
  1827. /*
  1828. * Find the task_struct of the task to attach by vpid and pass it along to the
  1829. * function to attach either it or all tasks in its threadgroup. Will lock
  1830. * cgroup_mutex and threadgroup; may take task_lock of task.
  1831. */
  1832. static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
  1833. {
  1834. struct task_struct *tsk;
  1835. const struct cred *cred = current_cred(), *tcred;
  1836. int ret;
  1837. if (!cgroup_lock_live_group(cgrp))
  1838. return -ENODEV;
  1839. retry_find_task:
  1840. rcu_read_lock();
  1841. if (pid) {
  1842. tsk = find_task_by_vpid(pid);
  1843. if (!tsk) {
  1844. rcu_read_unlock();
  1845. ret= -ESRCH;
  1846. goto out_unlock_cgroup;
  1847. }
  1848. /*
  1849. * even if we're attaching all tasks in the thread group, we
  1850. * only need to check permissions on one of them.
  1851. */
  1852. tcred = __task_cred(tsk);
  1853. if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
  1854. !uid_eq(cred->euid, tcred->uid) &&
  1855. !uid_eq(cred->euid, tcred->suid)) {
  1856. rcu_read_unlock();
  1857. ret = -EACCES;
  1858. goto out_unlock_cgroup;
  1859. }
  1860. } else
  1861. tsk = current;
  1862. if (threadgroup)
  1863. tsk = tsk->group_leader;
  1864. /*
  1865. * Workqueue threads may acquire PF_NO_SETAFFINITY and become
  1866. * trapped in a cpuset, or RT worker may be born in a cgroup
  1867. * with no rt_runtime allocated. Just say no.
  1868. */
  1869. if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
  1870. ret = -EINVAL;
  1871. rcu_read_unlock();
  1872. goto out_unlock_cgroup;
  1873. }
  1874. get_task_struct(tsk);
  1875. rcu_read_unlock();
  1876. threadgroup_lock(tsk);
  1877. if (threadgroup) {
  1878. if (!thread_group_leader(tsk)) {
  1879. /*
  1880. * a race with de_thread from another thread's exec()
  1881. * may strip us of our leadership, if this happens,
  1882. * there is no choice but to throw this task away and
  1883. * try again; this is
  1884. * "double-double-toil-and-trouble-check locking".
  1885. */
  1886. threadgroup_unlock(tsk);
  1887. put_task_struct(tsk);
  1888. goto retry_find_task;
  1889. }
  1890. }
  1891. ret = cgroup_attach_task(cgrp, tsk, threadgroup);
  1892. threadgroup_unlock(tsk);
  1893. put_task_struct(tsk);
  1894. out_unlock_cgroup:
  1895. mutex_unlock(&cgroup_mutex);
  1896. return ret;
  1897. }
  1898. /**
  1899. * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  1900. * @from: attach to all cgroups of a given task
  1901. * @tsk: the task to be attached
  1902. */
  1903. int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  1904. {
  1905. struct cgroupfs_root *root;
  1906. int retval = 0;
  1907. mutex_lock(&cgroup_mutex);
  1908. for_each_active_root(root) {
  1909. struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
  1910. retval = cgroup_attach_task(from_cgrp, tsk, false);
  1911. if (retval)
  1912. break;
  1913. }
  1914. mutex_unlock(&cgroup_mutex);
  1915. return retval;
  1916. }
  1917. EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  1918. static int cgroup_tasks_write(struct cgroup_subsys_state *css,
  1919. struct cftype *cft, u64 pid)
  1920. {
  1921. return attach_task_by_pid(css->cgroup, pid, false);
  1922. }
  1923. static int cgroup_procs_write(struct cgroup_subsys_state *css,
  1924. struct cftype *cft, u64 tgid)
  1925. {
  1926. return attach_task_by_pid(css->cgroup, tgid, true);
  1927. }
  1928. static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
  1929. struct cftype *cft, const char *buffer)
  1930. {
  1931. BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
  1932. if (strlen(buffer) >= PATH_MAX)
  1933. return -EINVAL;
  1934. if (!cgroup_lock_live_group(css->cgroup))
  1935. return -ENODEV;
  1936. mutex_lock(&cgroup_root_mutex);
  1937. strcpy(css->cgroup->root->release_agent_path, buffer);
  1938. mutex_unlock(&cgroup_root_mutex);
  1939. mutex_unlock(&cgroup_mutex);
  1940. return 0;
  1941. }
  1942. static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
  1943. struct cftype *cft, struct seq_file *seq)
  1944. {
  1945. struct cgroup *cgrp = css->cgroup;
  1946. if (!cgroup_lock_live_group(cgrp))
  1947. return -ENODEV;
  1948. seq_puts(seq, cgrp->root->release_agent_path);
  1949. seq_putc(seq, '\n');
  1950. mutex_unlock(&cgroup_mutex);
  1951. return 0;
  1952. }
  1953. static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
  1954. struct cftype *cft, struct seq_file *seq)
  1955. {
  1956. seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
  1957. return 0;
  1958. }
  1959. /* A buffer size big enough for numbers or short strings */
  1960. #define CGROUP_LOCAL_BUFFER_SIZE 64
  1961. static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
  1962. struct cftype *cft, struct file *file,
  1963. const char __user *userbuf, size_t nbytes,
  1964. loff_t *unused_ppos)
  1965. {
  1966. char buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1967. int retval = 0;
  1968. char *end;
  1969. if (!nbytes)
  1970. return -EINVAL;
  1971. if (nbytes >= sizeof(buffer))
  1972. return -E2BIG;
  1973. if (copy_from_user(buffer, userbuf, nbytes))
  1974. return -EFAULT;
  1975. buffer[nbytes] = 0; /* nul-terminate */
  1976. if (cft->write_u64) {
  1977. u64 val = simple_strtoull(strstrip(buffer), &end, 0);
  1978. if (*end)
  1979. return -EINVAL;
  1980. retval = cft->write_u64(css, cft, val);
  1981. } else {
  1982. s64 val = simple_strtoll(strstrip(buffer), &end, 0);
  1983. if (*end)
  1984. return -EINVAL;
  1985. retval = cft->write_s64(css, cft, val);
  1986. }
  1987. if (!retval)
  1988. retval = nbytes;
  1989. return retval;
  1990. }
  1991. static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
  1992. struct cftype *cft, struct file *file,
  1993. const char __user *userbuf, size_t nbytes,
  1994. loff_t *unused_ppos)
  1995. {
  1996. char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1997. int retval = 0;
  1998. size_t max_bytes = cft->max_write_len;
  1999. char *buffer = local_buffer;
  2000. if (!max_bytes)
  2001. max_bytes = sizeof(local_buffer) - 1;
  2002. if (nbytes >= max_bytes)
  2003. return -E2BIG;
  2004. /* Allocate a dynamic buffer if we need one */
  2005. if (nbytes >= sizeof(local_buffer)) {
  2006. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  2007. if (buffer == NULL)
  2008. return -ENOMEM;
  2009. }
  2010. if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
  2011. retval = -EFAULT;
  2012. goto out;
  2013. }
  2014. buffer[nbytes] = 0; /* nul-terminate */
  2015. retval = cft->write_string(css, cft, strstrip(buffer));
  2016. if (!retval)
  2017. retval = nbytes;
  2018. out:
  2019. if (buffer != local_buffer)
  2020. kfree(buffer);
  2021. return retval;
  2022. }
  2023. static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
  2024. size_t nbytes, loff_t *ppos)
  2025. {
  2026. struct cfent *cfe = __d_cfe(file->f_dentry);
  2027. struct cftype *cft = __d_cft(file->f_dentry);
  2028. struct cgroup_subsys_state *css = cfe->css;
  2029. if (cft->write)
  2030. return cft->write(css, cft, file, buf, nbytes, ppos);
  2031. if (cft->write_u64 || cft->write_s64)
  2032. return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
  2033. if (cft->write_string)
  2034. return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
  2035. if (cft->trigger) {
  2036. int ret = cft->trigger(css, (unsigned int)cft->private);
  2037. return ret ? ret : nbytes;
  2038. }
  2039. return -EINVAL;
  2040. }
  2041. static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
  2042. struct cftype *cft, struct file *file,
  2043. char __user *buf, size_t nbytes, loff_t *ppos)
  2044. {
  2045. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2046. u64 val = cft->read_u64(css, cft);
  2047. int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
  2048. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2049. }
  2050. static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
  2051. struct cftype *cft, struct file *file,
  2052. char __user *buf, size_t nbytes, loff_t *ppos)
  2053. {
  2054. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2055. s64 val = cft->read_s64(css, cft);
  2056. int len = sprintf(tmp, "%lld\n", (long long) val);
  2057. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2058. }
  2059. static ssize_t cgroup_file_read(struct file *file, char __user *buf,
  2060. size_t nbytes, loff_t *ppos)
  2061. {
  2062. struct cfent *cfe = __d_cfe(file->f_dentry);
  2063. struct cftype *cft = __d_cft(file->f_dentry);
  2064. struct cgroup_subsys_state *css = cfe->css;
  2065. if (cft->read)
  2066. return cft->read(css, cft, file, buf, nbytes, ppos);
  2067. if (cft->read_u64)
  2068. return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
  2069. if (cft->read_s64)
  2070. return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
  2071. return -EINVAL;
  2072. }
  2073. /*
  2074. * seqfile ops/methods for returning structured data. Currently just
  2075. * supports string->u64 maps, but can be extended in future.
  2076. */
  2077. static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
  2078. {
  2079. struct seq_file *sf = cb->state;
  2080. return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
  2081. }
  2082. static int cgroup_seqfile_show(struct seq_file *m, void *arg)
  2083. {
  2084. struct cfent *cfe = m->private;
  2085. struct cftype *cft = cfe->type;
  2086. struct cgroup_subsys_state *css = cfe->css;
  2087. if (cft->read_map) {
  2088. struct cgroup_map_cb cb = {
  2089. .fill = cgroup_map_add,
  2090. .state = m,
  2091. };
  2092. return cft->read_map(css, cft, &cb);
  2093. }
  2094. return cft->read_seq_string(css, cft, m);
  2095. }
  2096. static const struct file_operations cgroup_seqfile_operations = {
  2097. .read = seq_read,
  2098. .write = cgroup_file_write,
  2099. .llseek = seq_lseek,
  2100. .release = cgroup_file_release,
  2101. };
  2102. static int cgroup_file_open(struct inode *inode, struct file *file)
  2103. {
  2104. struct cfent *cfe = __d_cfe(file->f_dentry);
  2105. struct cftype *cft = __d_cft(file->f_dentry);
  2106. struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
  2107. struct cgroup_subsys_state *css;
  2108. int err;
  2109. err = generic_file_open(inode, file);
  2110. if (err)
  2111. return err;
  2112. /*
  2113. * If the file belongs to a subsystem, pin the css. Will be
  2114. * unpinned either on open failure or release. This ensures that
  2115. * @css stays alive for all file operations.
  2116. */
  2117. rcu_read_lock();
  2118. css = cgroup_css(cgrp, cft->ss);
  2119. if (cft->ss && !css_tryget(css))
  2120. css = NULL;
  2121. rcu_read_unlock();
  2122. if (!css)
  2123. return -ENODEV;
  2124. /*
  2125. * @cfe->css is used by read/write/close to determine the
  2126. * associated css. @file->private_data would be a better place but
  2127. * that's already used by seqfile. Multiple accessors may use it
  2128. * simultaneously which is okay as the association never changes.
  2129. */
  2130. WARN_ON_ONCE(cfe->css && cfe->css != css);
  2131. cfe->css = css;
  2132. if (cft->read_map || cft->read_seq_string) {
  2133. file->f_op = &cgroup_seqfile_operations;
  2134. err = single_open(file, cgroup_seqfile_show, cfe);
  2135. } else if (cft->open) {
  2136. err = cft->open(inode, file);
  2137. }
  2138. if (css->ss && err)
  2139. css_put(css);
  2140. return err;
  2141. }
  2142. static int cgroup_file_release(struct inode *inode, struct file *file)
  2143. {
  2144. struct cfent *cfe = __d_cfe(file->f_dentry);
  2145. struct cftype *cft = __d_cft(file->f_dentry);
  2146. struct cgroup_subsys_state *css = cfe->css;
  2147. int ret = 0;
  2148. if (cft->release)
  2149. ret = cft->release(inode, file);
  2150. if (css->ss)
  2151. css_put(css);
  2152. if (file->f_op == &cgroup_seqfile_operations)
  2153. single_release(inode, file);
  2154. return ret;
  2155. }
  2156. /*
  2157. * cgroup_rename - Only allow simple rename of directories in place.
  2158. */
  2159. static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
  2160. struct inode *new_dir, struct dentry *new_dentry)
  2161. {
  2162. int ret;
  2163. struct cgroup_name *name, *old_name;
  2164. struct cgroup *cgrp;
  2165. /*
  2166. * It's convinient to use parent dir's i_mutex to protected
  2167. * cgrp->name.
  2168. */
  2169. lockdep_assert_held(&old_dir->i_mutex);
  2170. if (!S_ISDIR(old_dentry->d_inode->i_mode))
  2171. return -ENOTDIR;
  2172. if (new_dentry->d_inode)
  2173. return -EEXIST;
  2174. if (old_dir != new_dir)
  2175. return -EIO;
  2176. cgrp = __d_cgrp(old_dentry);
  2177. /*
  2178. * This isn't a proper migration and its usefulness is very
  2179. * limited. Disallow if sane_behavior.
  2180. */
  2181. if (cgroup_sane_behavior(cgrp))
  2182. return -EPERM;
  2183. name = cgroup_alloc_name(new_dentry);
  2184. if (!name)
  2185. return -ENOMEM;
  2186. ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
  2187. if (ret) {
  2188. kfree(name);
  2189. return ret;
  2190. }
  2191. old_name = rcu_dereference_protected(cgrp->name, true);
  2192. rcu_assign_pointer(cgrp->name, name);
  2193. kfree_rcu(old_name, rcu_head);
  2194. return 0;
  2195. }
  2196. static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
  2197. {
  2198. if (S_ISDIR(dentry->d_inode->i_mode))
  2199. return &__d_cgrp(dentry)->xattrs;
  2200. else
  2201. return &__d_cfe(dentry)->xattrs;
  2202. }
  2203. static inline int xattr_enabled(struct dentry *dentry)
  2204. {
  2205. struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
  2206. return root->flags & CGRP_ROOT_XATTR;
  2207. }
  2208. static bool is_valid_xattr(const char *name)
  2209. {
  2210. if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
  2211. !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
  2212. return true;
  2213. return false;
  2214. }
  2215. static int cgroup_setxattr(struct dentry *dentry, const char *name,
  2216. const void *val, size_t size, int flags)
  2217. {
  2218. if (!xattr_enabled(dentry))
  2219. return -EOPNOTSUPP;
  2220. if (!is_valid_xattr(name))
  2221. return -EINVAL;
  2222. return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
  2223. }
  2224. static int cgroup_removexattr(struct dentry *dentry, const char *name)
  2225. {
  2226. if (!xattr_enabled(dentry))
  2227. return -EOPNOTSUPP;
  2228. if (!is_valid_xattr(name))
  2229. return -EINVAL;
  2230. return simple_xattr_remove(__d_xattrs(dentry), name);
  2231. }
  2232. static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
  2233. void *buf, size_t size)
  2234. {
  2235. if (!xattr_enabled(dentry))
  2236. return -EOPNOTSUPP;
  2237. if (!is_valid_xattr(name))
  2238. return -EINVAL;
  2239. return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
  2240. }
  2241. static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
  2242. {
  2243. if (!xattr_enabled(dentry))
  2244. return -EOPNOTSUPP;
  2245. return simple_xattr_list(__d_xattrs(dentry), buf, size);
  2246. }
  2247. static const struct file_operations cgroup_file_operations = {
  2248. .read = cgroup_file_read,
  2249. .write = cgroup_file_write,
  2250. .llseek = generic_file_llseek,
  2251. .open = cgroup_file_open,
  2252. .release = cgroup_file_release,
  2253. };
  2254. static const struct inode_operations cgroup_file_inode_operations = {
  2255. .setxattr = cgroup_setxattr,
  2256. .getxattr = cgroup_getxattr,
  2257. .listxattr = cgroup_listxattr,
  2258. .removexattr = cgroup_removexattr,
  2259. };
  2260. static const struct inode_operations cgroup_dir_inode_operations = {
  2261. .lookup = simple_lookup,
  2262. .mkdir = cgroup_mkdir,
  2263. .rmdir = cgroup_rmdir,
  2264. .rename = cgroup_rename,
  2265. .setxattr = cgroup_setxattr,
  2266. .getxattr = cgroup_getxattr,
  2267. .listxattr = cgroup_listxattr,
  2268. .removexattr = cgroup_removexattr,
  2269. };
  2270. /*
  2271. * Check if a file is a control file
  2272. */
  2273. static inline struct cftype *__file_cft(struct file *file)
  2274. {
  2275. if (file_inode(file)->i_fop != &cgroup_file_operations)
  2276. return ERR_PTR(-EINVAL);
  2277. return __d_cft(file->f_dentry);
  2278. }
  2279. static int cgroup_create_file(struct dentry *dentry, umode_t mode,
  2280. struct super_block *sb)
  2281. {
  2282. struct inode *inode;
  2283. if (!dentry)
  2284. return -ENOENT;
  2285. if (dentry->d_inode)
  2286. return -EEXIST;
  2287. inode = cgroup_new_inode(mode, sb);
  2288. if (!inode)
  2289. return -ENOMEM;
  2290. if (S_ISDIR(mode)) {
  2291. inode->i_op = &cgroup_dir_inode_operations;
  2292. inode->i_fop = &simple_dir_operations;
  2293. /* start off with i_nlink == 2 (for "." entry) */
  2294. inc_nlink(inode);
  2295. inc_nlink(dentry->d_parent->d_inode);
  2296. /*
  2297. * Control reaches here with cgroup_mutex held.
  2298. * @inode->i_mutex should nest outside cgroup_mutex but we
  2299. * want to populate it immediately without releasing
  2300. * cgroup_mutex. As @inode isn't visible to anyone else
  2301. * yet, trylock will always succeed without affecting
  2302. * lockdep checks.
  2303. */
  2304. WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
  2305. } else if (S_ISREG(mode)) {
  2306. inode->i_size = 0;
  2307. inode->i_fop = &cgroup_file_operations;
  2308. inode->i_op = &cgroup_file_inode_operations;
  2309. }
  2310. d_instantiate(dentry, inode);
  2311. dget(dentry); /* Extra count - pin the dentry in core */
  2312. return 0;
  2313. }
  2314. /**
  2315. * cgroup_file_mode - deduce file mode of a control file
  2316. * @cft: the control file in question
  2317. *
  2318. * returns cft->mode if ->mode is not 0
  2319. * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
  2320. * returns S_IRUGO if it has only a read handler
  2321. * returns S_IWUSR if it has only a write hander
  2322. */
  2323. static umode_t cgroup_file_mode(const struct cftype *cft)
  2324. {
  2325. umode_t mode = 0;
  2326. if (cft->mode)
  2327. return cft->mode;
  2328. if (cft->read || cft->read_u64 || cft->read_s64 ||
  2329. cft->read_map || cft->read_seq_string)
  2330. mode |= S_IRUGO;
  2331. if (cft->write || cft->write_u64 || cft->write_s64 ||
  2332. cft->write_string || cft->trigger)
  2333. mode |= S_IWUSR;
  2334. return mode;
  2335. }
  2336. static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
  2337. {
  2338. struct dentry *dir = cgrp->dentry;
  2339. struct cgroup *parent = __d_cgrp(dir);
  2340. struct dentry *dentry;
  2341. struct cfent *cfe;
  2342. int error;
  2343. umode_t mode;
  2344. char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
  2345. if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
  2346. !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
  2347. strcpy(name, cft->ss->name);
  2348. strcat(name, ".");
  2349. }
  2350. strcat(name, cft->name);
  2351. BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
  2352. cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
  2353. if (!cfe)
  2354. return -ENOMEM;
  2355. dentry = lookup_one_len(name, dir, strlen(name));
  2356. if (IS_ERR(dentry)) {
  2357. error = PTR_ERR(dentry);
  2358. goto out;
  2359. }
  2360. cfe->type = (void *)cft;
  2361. cfe->dentry = dentry;
  2362. dentry->d_fsdata = cfe;
  2363. simple_xattrs_init(&cfe->xattrs);
  2364. mode = cgroup_file_mode(cft);
  2365. error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
  2366. if (!error) {
  2367. list_add_tail(&cfe->node, &parent->files);
  2368. cfe = NULL;
  2369. }
  2370. dput(dentry);
  2371. out:
  2372. kfree(cfe);
  2373. return error;
  2374. }
  2375. /**
  2376. * cgroup_addrm_files - add or remove files to a cgroup directory
  2377. * @cgrp: the target cgroup
  2378. * @cfts: array of cftypes to be added
  2379. * @is_add: whether to add or remove
  2380. *
  2381. * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
  2382. * For removals, this function never fails. If addition fails, this
  2383. * function doesn't remove files already added. The caller is responsible
  2384. * for cleaning up.
  2385. */
  2386. static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
  2387. bool is_add)
  2388. {
  2389. struct cftype *cft;
  2390. int ret;
  2391. lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
  2392. lockdep_assert_held(&cgroup_mutex);
  2393. for (cft = cfts; cft->name[0] != '\0'; cft++) {
  2394. /* does cft->flags tell us to skip this file on @cgrp? */
  2395. if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
  2396. continue;
  2397. if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
  2398. continue;
  2399. if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
  2400. continue;
  2401. if (is_add) {
  2402. ret = cgroup_add_file(cgrp, cft);
  2403. if (ret) {
  2404. pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
  2405. cft->name, ret);
  2406. return ret;
  2407. }
  2408. } else {
  2409. cgroup_rm_file(cgrp, cft);
  2410. }
  2411. }
  2412. return 0;
  2413. }
  2414. static void cgroup_cfts_prepare(void)
  2415. __acquires(&cgroup_mutex)
  2416. {
  2417. /*
  2418. * Thanks to the entanglement with vfs inode locking, we can't walk
  2419. * the existing cgroups under cgroup_mutex and create files.
  2420. * Instead, we use css_for_each_descendant_pre() and drop RCU read
  2421. * lock before calling cgroup_addrm_files().
  2422. */
  2423. mutex_lock(&cgroup_mutex);
  2424. }
  2425. static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
  2426. __releases(&cgroup_mutex)
  2427. {
  2428. LIST_HEAD(pending);
  2429. struct cgroup_subsys *ss = cfts[0].ss;
  2430. struct cgroup *root = &ss->root->top_cgroup;
  2431. struct super_block *sb = ss->root->sb;
  2432. struct dentry *prev = NULL;
  2433. struct inode *inode;
  2434. struct cgroup_subsys_state *css;
  2435. u64 update_before;
  2436. int ret = 0;
  2437. /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
  2438. if (!cfts || ss->root == &cgroup_dummy_root ||
  2439. !atomic_inc_not_zero(&sb->s_active)) {
  2440. mutex_unlock(&cgroup_mutex);
  2441. return 0;
  2442. }
  2443. /*
  2444. * All cgroups which are created after we drop cgroup_mutex will
  2445. * have the updated set of files, so we only need to update the
  2446. * cgroups created before the current @cgroup_serial_nr_next.
  2447. */
  2448. update_before = cgroup_serial_nr_next;
  2449. mutex_unlock(&cgroup_mutex);
  2450. /* add/rm files for all cgroups created before */
  2451. rcu_read_lock();
  2452. css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
  2453. struct cgroup *cgrp = css->cgroup;
  2454. if (cgroup_is_dead(cgrp))
  2455. continue;
  2456. inode = cgrp->dentry->d_inode;
  2457. dget(cgrp->dentry);
  2458. rcu_read_unlock();
  2459. dput(prev);
  2460. prev = cgrp->dentry;
  2461. mutex_lock(&inode->i_mutex);
  2462. mutex_lock(&cgroup_mutex);
  2463. if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
  2464. ret = cgroup_addrm_files(cgrp, cfts, is_add);
  2465. mutex_unlock(&cgroup_mutex);
  2466. mutex_unlock(&inode->i_mutex);
  2467. rcu_read_lock();
  2468. if (ret)
  2469. break;
  2470. }
  2471. rcu_read_unlock();
  2472. dput(prev);
  2473. deactivate_super(sb);
  2474. return ret;
  2475. }
  2476. /**
  2477. * cgroup_add_cftypes - add an array of cftypes to a subsystem
  2478. * @ss: target cgroup subsystem
  2479. * @cfts: zero-length name terminated array of cftypes
  2480. *
  2481. * Register @cfts to @ss. Files described by @cfts are created for all
  2482. * existing cgroups to which @ss is attached and all future cgroups will
  2483. * have them too. This function can be called anytime whether @ss is
  2484. * attached or not.
  2485. *
  2486. * Returns 0 on successful registration, -errno on failure. Note that this
  2487. * function currently returns 0 as long as @cfts registration is successful
  2488. * even if some file creation attempts on existing cgroups fail.
  2489. */
  2490. int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
  2491. {
  2492. struct cftype_set *set;
  2493. struct cftype *cft;
  2494. int ret;
  2495. set = kzalloc(sizeof(*set), GFP_KERNEL);
  2496. if (!set)
  2497. return -ENOMEM;
  2498. for (cft = cfts; cft->name[0] != '\0'; cft++)
  2499. cft->ss = ss;
  2500. cgroup_cfts_prepare();
  2501. set->cfts = cfts;
  2502. list_add_tail(&set->node, &ss->cftsets);
  2503. ret = cgroup_cfts_commit(cfts, true);
  2504. if (ret)
  2505. cgroup_rm_cftypes(cfts);
  2506. return ret;
  2507. }
  2508. EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
  2509. /**
  2510. * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
  2511. * @cfts: zero-length name terminated array of cftypes
  2512. *
  2513. * Unregister @cfts. Files described by @cfts are removed from all
  2514. * existing cgroups and all future cgroups won't have them either. This
  2515. * function can be called anytime whether @cfts' subsys is attached or not.
  2516. *
  2517. * Returns 0 on successful unregistration, -ENOENT if @cfts is not
  2518. * registered.
  2519. */
  2520. int cgroup_rm_cftypes(struct cftype *cfts)
  2521. {
  2522. struct cftype_set *set;
  2523. if (!cfts || !cfts[0].ss)
  2524. return -ENOENT;
  2525. cgroup_cfts_prepare();
  2526. list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
  2527. if (set->cfts == cfts) {
  2528. list_del(&set->node);
  2529. kfree(set);
  2530. cgroup_cfts_commit(cfts, false);
  2531. return 0;
  2532. }
  2533. }
  2534. cgroup_cfts_commit(NULL, false);
  2535. return -ENOENT;
  2536. }
  2537. /**
  2538. * cgroup_task_count - count the number of tasks in a cgroup.
  2539. * @cgrp: the cgroup in question
  2540. *
  2541. * Return the number of tasks in the cgroup.
  2542. */
  2543. int cgroup_task_count(const struct cgroup *cgrp)
  2544. {
  2545. int count = 0;
  2546. struct cgrp_cset_link *link;
  2547. read_lock(&css_set_lock);
  2548. list_for_each_entry(link, &cgrp->cset_links, cset_link)
  2549. count += atomic_read(&link->cset->refcount);
  2550. read_unlock(&css_set_lock);
  2551. return count;
  2552. }
  2553. /*
  2554. * To reduce the fork() overhead for systems that are not actually using
  2555. * their cgroups capability, we don't maintain the lists running through
  2556. * each css_set to its tasks until we see the list actually used - in other
  2557. * words after the first call to css_task_iter_start().
  2558. */
  2559. static void cgroup_enable_task_cg_lists(void)
  2560. {
  2561. struct task_struct *p, *g;
  2562. write_lock(&css_set_lock);
  2563. use_task_css_set_links = 1;
  2564. /*
  2565. * We need tasklist_lock because RCU is not safe against
  2566. * while_each_thread(). Besides, a forking task that has passed
  2567. * cgroup_post_fork() without seeing use_task_css_set_links = 1
  2568. * is not guaranteed to have its child immediately visible in the
  2569. * tasklist if we walk through it with RCU.
  2570. */
  2571. read_lock(&tasklist_lock);
  2572. do_each_thread(g, p) {
  2573. task_lock(p);
  2574. /*
  2575. * We should check if the process is exiting, otherwise
  2576. * it will race with cgroup_exit() in that the list
  2577. * entry won't be deleted though the process has exited.
  2578. */
  2579. if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
  2580. list_add(&p->cg_list, &task_css_set(p)->tasks);
  2581. task_unlock(p);
  2582. } while_each_thread(g, p);
  2583. read_unlock(&tasklist_lock);
  2584. write_unlock(&css_set_lock);
  2585. }
  2586. /**
  2587. * css_next_child - find the next child of a given css
  2588. * @pos_css: the current position (%NULL to initiate traversal)
  2589. * @parent_css: css whose children to walk
  2590. *
  2591. * This function returns the next child of @parent_css and should be called
  2592. * under RCU read lock. The only requirement is that @parent_css and
  2593. * @pos_css are accessible. The next sibling is guaranteed to be returned
  2594. * regardless of their states.
  2595. */
  2596. struct cgroup_subsys_state *
  2597. css_next_child(struct cgroup_subsys_state *pos_css,
  2598. struct cgroup_subsys_state *parent_css)
  2599. {
  2600. struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
  2601. struct cgroup *cgrp = parent_css->cgroup;
  2602. struct cgroup *next;
  2603. WARN_ON_ONCE(!rcu_read_lock_held());
  2604. /*
  2605. * @pos could already have been removed. Once a cgroup is removed,
  2606. * its ->sibling.next is no longer updated when its next sibling
  2607. * changes. As CGRP_DEAD assertion is serialized and happens
  2608. * before the cgroup is taken off the ->sibling list, if we see it
  2609. * unasserted, it's guaranteed that the next sibling hasn't
  2610. * finished its grace period even if it's already removed, and thus
  2611. * safe to dereference from this RCU critical section. If
  2612. * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
  2613. * to be visible as %true here.
  2614. *
  2615. * If @pos is dead, its next pointer can't be dereferenced;
  2616. * however, as each cgroup is given a monotonically increasing
  2617. * unique serial number and always appended to the sibling list,
  2618. * the next one can be found by walking the parent's children until
  2619. * we see a cgroup with higher serial number than @pos's. While
  2620. * this path can be slower, it's taken only when either the current
  2621. * cgroup is removed or iteration and removal race.
  2622. */
  2623. if (!pos) {
  2624. next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
  2625. } else if (likely(!cgroup_is_dead(pos))) {
  2626. next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
  2627. } else {
  2628. list_for_each_entry_rcu(next, &cgrp->children, sibling)
  2629. if (next->serial_nr > pos->serial_nr)
  2630. break;
  2631. }
  2632. if (&next->sibling == &cgrp->children)
  2633. return NULL;
  2634. return cgroup_css(next, parent_css->ss);
  2635. }
  2636. EXPORT_SYMBOL_GPL(css_next_child);
  2637. /**
  2638. * css_next_descendant_pre - find the next descendant for pre-order walk
  2639. * @pos: the current position (%NULL to initiate traversal)
  2640. * @root: css whose descendants to walk
  2641. *
  2642. * To be used by css_for_each_descendant_pre(). Find the next descendant
  2643. * to visit for pre-order traversal of @root's descendants. @root is
  2644. * included in the iteration and the first node to be visited.
  2645. *
  2646. * While this function requires RCU read locking, it doesn't require the
  2647. * whole traversal to be contained in a single RCU critical section. This
  2648. * function will return the correct next descendant as long as both @pos
  2649. * and @root are accessible and @pos is a descendant of @root.
  2650. */
  2651. struct cgroup_subsys_state *
  2652. css_next_descendant_pre(struct cgroup_subsys_state *pos,
  2653. struct cgroup_subsys_state *root)
  2654. {
  2655. struct cgroup_subsys_state *next;
  2656. WARN_ON_ONCE(!rcu_read_lock_held());
  2657. /* if first iteration, visit @root */
  2658. if (!pos)
  2659. return root;
  2660. /* visit the first child if exists */
  2661. next = css_next_child(NULL, pos);
  2662. if (next)
  2663. return next;
  2664. /* no child, visit my or the closest ancestor's next sibling */
  2665. while (pos != root) {
  2666. next = css_next_child(pos, css_parent(pos));
  2667. if (next)
  2668. return next;
  2669. pos = css_parent(pos);
  2670. }
  2671. return NULL;
  2672. }
  2673. EXPORT_SYMBOL_GPL(css_next_descendant_pre);
  2674. /**
  2675. * css_rightmost_descendant - return the rightmost descendant of a css
  2676. * @pos: css of interest
  2677. *
  2678. * Return the rightmost descendant of @pos. If there's no descendant, @pos
  2679. * is returned. This can be used during pre-order traversal to skip
  2680. * subtree of @pos.
  2681. *
  2682. * While this function requires RCU read locking, it doesn't require the
  2683. * whole traversal to be contained in a single RCU critical section. This
  2684. * function will return the correct rightmost descendant as long as @pos is
  2685. * accessible.
  2686. */
  2687. struct cgroup_subsys_state *
  2688. css_rightmost_descendant(struct cgroup_subsys_state *pos)
  2689. {
  2690. struct cgroup_subsys_state *last, *tmp;
  2691. WARN_ON_ONCE(!rcu_read_lock_held());
  2692. do {
  2693. last = pos;
  2694. /* ->prev isn't RCU safe, walk ->next till the end */
  2695. pos = NULL;
  2696. css_for_each_child(tmp, last)
  2697. pos = tmp;
  2698. } while (pos);
  2699. return last;
  2700. }
  2701. EXPORT_SYMBOL_GPL(css_rightmost_descendant);
  2702. static struct cgroup_subsys_state *
  2703. css_leftmost_descendant(struct cgroup_subsys_state *pos)
  2704. {
  2705. struct cgroup_subsys_state *last;
  2706. do {
  2707. last = pos;
  2708. pos = css_next_child(NULL, pos);
  2709. } while (pos);
  2710. return last;
  2711. }
  2712. /**
  2713. * css_next_descendant_post - find the next descendant for post-order walk
  2714. * @pos: the current position (%NULL to initiate traversal)
  2715. * @root: css whose descendants to walk
  2716. *
  2717. * To be used by css_for_each_descendant_post(). Find the next descendant
  2718. * to visit for post-order traversal of @root's descendants. @root is
  2719. * included in the iteration and the last node to be visited.
  2720. *
  2721. * While this function requires RCU read locking, it doesn't require the
  2722. * whole traversal to be contained in a single RCU critical section. This
  2723. * function will return the correct next descendant as long as both @pos
  2724. * and @cgroup are accessible and @pos is a descendant of @cgroup.
  2725. */
  2726. struct cgroup_subsys_state *
  2727. css_next_descendant_post(struct cgroup_subsys_state *pos,
  2728. struct cgroup_subsys_state *root)
  2729. {
  2730. struct cgroup_subsys_state *next;
  2731. WARN_ON_ONCE(!rcu_read_lock_held());
  2732. /* if first iteration, visit leftmost descendant which may be @root */
  2733. if (!pos)
  2734. return css_leftmost_descendant(root);
  2735. /* if we visited @root, we're done */
  2736. if (pos == root)
  2737. return NULL;
  2738. /* if there's an unvisited sibling, visit its leftmost descendant */
  2739. next = css_next_child(pos, css_parent(pos));
  2740. if (next)
  2741. return css_leftmost_descendant(next);
  2742. /* no sibling left, visit parent */
  2743. return css_parent(pos);
  2744. }
  2745. EXPORT_SYMBOL_GPL(css_next_descendant_post);
  2746. /**
  2747. * css_advance_task_iter - advance a task itererator to the next css_set
  2748. * @it: the iterator to advance
  2749. *
  2750. * Advance @it to the next css_set to walk.
  2751. */
  2752. static void css_advance_task_iter(struct css_task_iter *it)
  2753. {
  2754. struct list_head *l = it->cset_link;
  2755. struct cgrp_cset_link *link;
  2756. struct css_set *cset;
  2757. /* Advance to the next non-empty css_set */
  2758. do {
  2759. l = l->next;
  2760. if (l == &it->origin_css->cgroup->cset_links) {
  2761. it->cset_link = NULL;
  2762. return;
  2763. }
  2764. link = list_entry(l, struct cgrp_cset_link, cset_link);
  2765. cset = link->cset;
  2766. } while (list_empty(&cset->tasks));
  2767. it->cset_link = l;
  2768. it->task = cset->tasks.next;
  2769. }
  2770. /**
  2771. * css_task_iter_start - initiate task iteration
  2772. * @css: the css to walk tasks of
  2773. * @it: the task iterator to use
  2774. *
  2775. * Initiate iteration through the tasks of @css. The caller can call
  2776. * css_task_iter_next() to walk through the tasks until the function
  2777. * returns NULL. On completion of iteration, css_task_iter_end() must be
  2778. * called.
  2779. *
  2780. * Note that this function acquires a lock which is released when the
  2781. * iteration finishes. The caller can't sleep while iteration is in
  2782. * progress.
  2783. */
  2784. void css_task_iter_start(struct cgroup_subsys_state *css,
  2785. struct css_task_iter *it)
  2786. __acquires(css_set_lock)
  2787. {
  2788. /*
  2789. * The first time anyone tries to iterate across a css, we need to
  2790. * enable the list linking each css_set to its tasks, and fix up
  2791. * all existing tasks.
  2792. */
  2793. if (!use_task_css_set_links)
  2794. cgroup_enable_task_cg_lists();
  2795. read_lock(&css_set_lock);
  2796. it->origin_css = css;
  2797. it->cset_link = &css->cgroup->cset_links;
  2798. css_advance_task_iter(it);
  2799. }
  2800. /**
  2801. * css_task_iter_next - return the next task for the iterator
  2802. * @it: the task iterator being iterated
  2803. *
  2804. * The "next" function for task iteration. @it should have been
  2805. * initialized via css_task_iter_start(). Returns NULL when the iteration
  2806. * reaches the end.
  2807. */
  2808. struct task_struct *css_task_iter_next(struct css_task_iter *it)
  2809. {
  2810. struct task_struct *res;
  2811. struct list_head *l = it->task;
  2812. struct cgrp_cset_link *link;
  2813. /* If the iterator cg is NULL, we have no tasks */
  2814. if (!it->cset_link)
  2815. return NULL;
  2816. res = list_entry(l, struct task_struct, cg_list);
  2817. /* Advance iterator to find next entry */
  2818. l = l->next;
  2819. link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
  2820. if (l == &link->cset->tasks) {
  2821. /*
  2822. * We reached the end of this task list - move on to the
  2823. * next cgrp_cset_link.
  2824. */
  2825. css_advance_task_iter(it);
  2826. } else {
  2827. it->task = l;
  2828. }
  2829. return res;
  2830. }
  2831. /**
  2832. * css_task_iter_end - finish task iteration
  2833. * @it: the task iterator to finish
  2834. *
  2835. * Finish task iteration started by css_task_iter_start().
  2836. */
  2837. void css_task_iter_end(struct css_task_iter *it)
  2838. __releases(css_set_lock)
  2839. {
  2840. read_unlock(&css_set_lock);
  2841. }
  2842. static inline int started_after_time(struct task_struct *t1,
  2843. struct timespec *time,
  2844. struct task_struct *t2)
  2845. {
  2846. int start_diff = timespec_compare(&t1->start_time, time);
  2847. if (start_diff > 0) {
  2848. return 1;
  2849. } else if (start_diff < 0) {
  2850. return 0;
  2851. } else {
  2852. /*
  2853. * Arbitrarily, if two processes started at the same
  2854. * time, we'll say that the lower pointer value
  2855. * started first. Note that t2 may have exited by now
  2856. * so this may not be a valid pointer any longer, but
  2857. * that's fine - it still serves to distinguish
  2858. * between two tasks started (effectively) simultaneously.
  2859. */
  2860. return t1 > t2;
  2861. }
  2862. }
  2863. /*
  2864. * This function is a callback from heap_insert() and is used to order
  2865. * the heap.
  2866. * In this case we order the heap in descending task start time.
  2867. */
  2868. static inline int started_after(void *p1, void *p2)
  2869. {
  2870. struct task_struct *t1 = p1;
  2871. struct task_struct *t2 = p2;
  2872. return started_after_time(t1, &t2->start_time, t2);
  2873. }
  2874. /**
  2875. * css_scan_tasks - iterate though all the tasks in a css
  2876. * @css: the css to iterate tasks of
  2877. * @test: optional test callback
  2878. * @process: process callback
  2879. * @data: data passed to @test and @process
  2880. * @heap: optional pre-allocated heap used for task iteration
  2881. *
  2882. * Iterate through all the tasks in @css, calling @test for each, and if it
  2883. * returns %true, call @process for it also.
  2884. *
  2885. * @test may be NULL, meaning always true (select all tasks), which
  2886. * effectively duplicates css_task_iter_{start,next,end}() but does not
  2887. * lock css_set_lock for the call to @process.
  2888. *
  2889. * It is guaranteed that @process will act on every task that is a member
  2890. * of @css for the duration of this call. This function may or may not
  2891. * call @process for tasks that exit or move to a different css during the
  2892. * call, or are forked or move into the css during the call.
  2893. *
  2894. * Note that @test may be called with locks held, and may in some
  2895. * situations be called multiple times for the same task, so it should be
  2896. * cheap.
  2897. *
  2898. * If @heap is non-NULL, a heap has been pre-allocated and will be used for
  2899. * heap operations (and its "gt" member will be overwritten), else a
  2900. * temporary heap will be used (allocation of which may cause this function
  2901. * to fail).
  2902. */
  2903. int css_scan_tasks(struct cgroup_subsys_state *css,
  2904. bool (*test)(struct task_struct *, void *),
  2905. void (*process)(struct task_struct *, void *),
  2906. void *data, struct ptr_heap *heap)
  2907. {
  2908. int retval, i;
  2909. struct css_task_iter it;
  2910. struct task_struct *p, *dropped;
  2911. /* Never dereference latest_task, since it's not refcounted */
  2912. struct task_struct *latest_task = NULL;
  2913. struct ptr_heap tmp_heap;
  2914. struct timespec latest_time = { 0, 0 };
  2915. if (heap) {
  2916. /* The caller supplied our heap and pre-allocated its memory */
  2917. heap->gt = &started_after;
  2918. } else {
  2919. /* We need to allocate our own heap memory */
  2920. heap = &tmp_heap;
  2921. retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  2922. if (retval)
  2923. /* cannot allocate the heap */
  2924. return retval;
  2925. }
  2926. again:
  2927. /*
  2928. * Scan tasks in the css, using the @test callback to determine
  2929. * which are of interest, and invoking @process callback on the
  2930. * ones which need an update. Since we don't want to hold any
  2931. * locks during the task updates, gather tasks to be processed in a
  2932. * heap structure. The heap is sorted by descending task start
  2933. * time. If the statically-sized heap fills up, we overflow tasks
  2934. * that started later, and in future iterations only consider tasks
  2935. * that started after the latest task in the previous pass. This
  2936. * guarantees forward progress and that we don't miss any tasks.
  2937. */
  2938. heap->size = 0;
  2939. css_task_iter_start(css, &it);
  2940. while ((p = css_task_iter_next(&it))) {
  2941. /*
  2942. * Only affect tasks that qualify per the caller's callback,
  2943. * if he provided one
  2944. */
  2945. if (test && !test(p, data))
  2946. continue;
  2947. /*
  2948. * Only process tasks that started after the last task
  2949. * we processed
  2950. */
  2951. if (!started_after_time(p, &latest_time, latest_task))
  2952. continue;
  2953. dropped = heap_insert(heap, p);
  2954. if (dropped == NULL) {
  2955. /*
  2956. * The new task was inserted; the heap wasn't
  2957. * previously full
  2958. */
  2959. get_task_struct(p);
  2960. } else if (dropped != p) {
  2961. /*
  2962. * The new task was inserted, and pushed out a
  2963. * different task
  2964. */
  2965. get_task_struct(p);
  2966. put_task_struct(dropped);
  2967. }
  2968. /*
  2969. * Else the new task was newer than anything already in
  2970. * the heap and wasn't inserted
  2971. */
  2972. }
  2973. css_task_iter_end(&it);
  2974. if (heap->size) {
  2975. for (i = 0; i < heap->size; i++) {
  2976. struct task_struct *q = heap->ptrs[i];
  2977. if (i == 0) {
  2978. latest_time = q->start_time;
  2979. latest_task = q;
  2980. }
  2981. /* Process the task per the caller's callback */
  2982. process(q, data);
  2983. put_task_struct(q);
  2984. }
  2985. /*
  2986. * If we had to process any tasks at all, scan again
  2987. * in case some of them were in the middle of forking
  2988. * children that didn't get processed.
  2989. * Not the most efficient way to do it, but it avoids
  2990. * having to take callback_mutex in the fork path
  2991. */
  2992. goto again;
  2993. }
  2994. if (heap == &tmp_heap)
  2995. heap_free(&tmp_heap);
  2996. return 0;
  2997. }
  2998. static void cgroup_transfer_one_task(struct task_struct *task, void *data)
  2999. {
  3000. struct cgroup *new_cgroup = data;
  3001. mutex_lock(&cgroup_mutex);
  3002. cgroup_attach_task(new_cgroup, task, false);
  3003. mutex_unlock(&cgroup_mutex);
  3004. }
  3005. /**
  3006. * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
  3007. * @to: cgroup to which the tasks will be moved
  3008. * @from: cgroup in which the tasks currently reside
  3009. */
  3010. int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  3011. {
  3012. return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
  3013. to, NULL);
  3014. }
  3015. /*
  3016. * Stuff for reading the 'tasks'/'procs' files.
  3017. *
  3018. * Reading this file can return large amounts of data if a cgroup has
  3019. * *lots* of attached tasks. So it may need several calls to read(),
  3020. * but we cannot guarantee that the information we produce is correct
  3021. * unless we produce it entirely atomically.
  3022. *
  3023. */
  3024. /* which pidlist file are we talking about? */
  3025. enum cgroup_filetype {
  3026. CGROUP_FILE_PROCS,
  3027. CGROUP_FILE_TASKS,
  3028. };
  3029. /*
  3030. * A pidlist is a list of pids that virtually represents the contents of one
  3031. * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
  3032. * a pair (one each for procs, tasks) for each pid namespace that's relevant
  3033. * to the cgroup.
  3034. */
  3035. struct cgroup_pidlist {
  3036. /*
  3037. * used to find which pidlist is wanted. doesn't change as long as
  3038. * this particular list stays in the list.
  3039. */
  3040. struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
  3041. /* array of xids */
  3042. pid_t *list;
  3043. /* how many elements the above list has */
  3044. int length;
  3045. /* how many files are using the current array */
  3046. int use_count;
  3047. /* each of these stored in a list by its cgroup */
  3048. struct list_head links;
  3049. /* pointer to the cgroup we belong to, for list removal purposes */
  3050. struct cgroup *owner;
  3051. /* protects the other fields */
  3052. struct rw_semaphore rwsem;
  3053. };
  3054. /*
  3055. * The following two functions "fix" the issue where there are more pids
  3056. * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
  3057. * TODO: replace with a kernel-wide solution to this problem
  3058. */
  3059. #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
  3060. static void *pidlist_allocate(int count)
  3061. {
  3062. if (PIDLIST_TOO_LARGE(count))
  3063. return vmalloc(count * sizeof(pid_t));
  3064. else
  3065. return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
  3066. }
  3067. static void pidlist_free(void *p)
  3068. {
  3069. if (is_vmalloc_addr(p))
  3070. vfree(p);
  3071. else
  3072. kfree(p);
  3073. }
  3074. /*
  3075. * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
  3076. * Returns the number of unique elements.
  3077. */
  3078. static int pidlist_uniq(pid_t *list, int length)
  3079. {
  3080. int src, dest = 1;
  3081. /*
  3082. * we presume the 0th element is unique, so i starts at 1. trivial
  3083. * edge cases first; no work needs to be done for either
  3084. */
  3085. if (length == 0 || length == 1)
  3086. return length;
  3087. /* src and dest walk down the list; dest counts unique elements */
  3088. for (src = 1; src < length; src++) {
  3089. /* find next unique element */
  3090. while (list[src] == list[src-1]) {
  3091. src++;
  3092. if (src == length)
  3093. goto after;
  3094. }
  3095. /* dest always points to where the next unique element goes */
  3096. list[dest] = list[src];
  3097. dest++;
  3098. }
  3099. after:
  3100. return dest;
  3101. }
  3102. static int cmppid(const void *a, const void *b)
  3103. {
  3104. return *(pid_t *)a - *(pid_t *)b;
  3105. }
  3106. /*
  3107. * find the appropriate pidlist for our purpose (given procs vs tasks)
  3108. * returns with the lock on that pidlist already held, and takes care
  3109. * of the use count, or returns NULL with no locks held if we're out of
  3110. * memory.
  3111. */
  3112. static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
  3113. enum cgroup_filetype type)
  3114. {
  3115. struct cgroup_pidlist *l;
  3116. /* don't need task_nsproxy() if we're looking at ourself */
  3117. struct pid_namespace *ns = task_active_pid_ns(current);
  3118. /*
  3119. * We can't drop the pidlist_mutex before taking the l->rwsem in case
  3120. * the last ref-holder is trying to remove l from the list at the same
  3121. * time. Holding the pidlist_mutex precludes somebody taking whichever
  3122. * list we find out from under us - compare release_pid_array().
  3123. */
  3124. mutex_lock(&cgrp->pidlist_mutex);
  3125. list_for_each_entry(l, &cgrp->pidlists, links) {
  3126. if (l->key.type == type && l->key.ns == ns) {
  3127. /* make sure l doesn't vanish out from under us */
  3128. down_write(&l->rwsem);
  3129. mutex_unlock(&cgrp->pidlist_mutex);
  3130. return l;
  3131. }
  3132. }
  3133. /* entry not found; create a new one */
  3134. l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
  3135. if (!l) {
  3136. mutex_unlock(&cgrp->pidlist_mutex);
  3137. return l;
  3138. }
  3139. init_rwsem(&l->rwsem);
  3140. down_write(&l->rwsem);
  3141. l->key.type = type;
  3142. l->key.ns = get_pid_ns(ns);
  3143. l->owner = cgrp;
  3144. list_add(&l->links, &cgrp->pidlists);
  3145. mutex_unlock(&cgrp->pidlist_mutex);
  3146. return l;
  3147. }
  3148. /*
  3149. * Load a cgroup's pidarray with either procs' tgids or tasks' pids
  3150. */
  3151. static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
  3152. struct cgroup_pidlist **lp)
  3153. {
  3154. pid_t *array;
  3155. int length;
  3156. int pid, n = 0; /* used for populating the array */
  3157. struct css_task_iter it;
  3158. struct task_struct *tsk;
  3159. struct cgroup_pidlist *l;
  3160. /*
  3161. * If cgroup gets more users after we read count, we won't have
  3162. * enough space - tough. This race is indistinguishable to the
  3163. * caller from the case that the additional cgroup users didn't
  3164. * show up until sometime later on.
  3165. */
  3166. length = cgroup_task_count(cgrp);
  3167. array = pidlist_allocate(length);
  3168. if (!array)
  3169. return -ENOMEM;
  3170. /* now, populate the array */
  3171. css_task_iter_start(&cgrp->dummy_css, &it);
  3172. while ((tsk = css_task_iter_next(&it))) {
  3173. if (unlikely(n == length))
  3174. break;
  3175. /* get tgid or pid for procs or tasks file respectively */
  3176. if (type == CGROUP_FILE_PROCS)
  3177. pid = task_tgid_vnr(tsk);
  3178. else
  3179. pid = task_pid_vnr(tsk);
  3180. if (pid > 0) /* make sure to only use valid results */
  3181. array[n++] = pid;
  3182. }
  3183. css_task_iter_end(&it);
  3184. length = n;
  3185. /* now sort & (if procs) strip out duplicates */
  3186. sort(array, length, sizeof(pid_t), cmppid, NULL);
  3187. if (type == CGROUP_FILE_PROCS)
  3188. length = pidlist_uniq(array, length);
  3189. l = cgroup_pidlist_find(cgrp, type);
  3190. if (!l) {
  3191. pidlist_free(array);
  3192. return -ENOMEM;
  3193. }
  3194. /* store array, freeing old if necessary - lock already held */
  3195. pidlist_free(l->list);
  3196. l->list = array;
  3197. l->length = length;
  3198. l->use_count++;
  3199. up_write(&l->rwsem);
  3200. *lp = l;
  3201. return 0;
  3202. }
  3203. /**
  3204. * cgroupstats_build - build and fill cgroupstats
  3205. * @stats: cgroupstats to fill information into
  3206. * @dentry: A dentry entry belonging to the cgroup for which stats have
  3207. * been requested.
  3208. *
  3209. * Build and fill cgroupstats so that taskstats can export it to user
  3210. * space.
  3211. */
  3212. int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
  3213. {
  3214. int ret = -EINVAL;
  3215. struct cgroup *cgrp;
  3216. struct css_task_iter it;
  3217. struct task_struct *tsk;
  3218. /*
  3219. * Validate dentry by checking the superblock operations,
  3220. * and make sure it's a directory.
  3221. */
  3222. if (dentry->d_sb->s_op != &cgroup_ops ||
  3223. !S_ISDIR(dentry->d_inode->i_mode))
  3224. goto err;
  3225. ret = 0;
  3226. cgrp = dentry->d_fsdata;
  3227. css_task_iter_start(&cgrp->dummy_css, &it);
  3228. while ((tsk = css_task_iter_next(&it))) {
  3229. switch (tsk->state) {
  3230. case TASK_RUNNING:
  3231. stats->nr_running++;
  3232. break;
  3233. case TASK_INTERRUPTIBLE:
  3234. stats->nr_sleeping++;
  3235. break;
  3236. case TASK_UNINTERRUPTIBLE:
  3237. stats->nr_uninterruptible++;
  3238. break;
  3239. case TASK_STOPPED:
  3240. stats->nr_stopped++;
  3241. break;
  3242. default:
  3243. if (delayacct_is_task_waiting_on_io(tsk))
  3244. stats->nr_io_wait++;
  3245. break;
  3246. }
  3247. }
  3248. css_task_iter_end(&it);
  3249. err:
  3250. return ret;
  3251. }
  3252. /*
  3253. * seq_file methods for the tasks/procs files. The seq_file position is the
  3254. * next pid to display; the seq_file iterator is a pointer to the pid
  3255. * in the cgroup->l->list array.
  3256. */
  3257. static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
  3258. {
  3259. /*
  3260. * Initially we receive a position value that corresponds to
  3261. * one more than the last pid shown (or 0 on the first call or
  3262. * after a seek to the start). Use a binary-search to find the
  3263. * next pid to display, if any
  3264. */
  3265. struct cgroup_pidlist *l = s->private;
  3266. int index = 0, pid = *pos;
  3267. int *iter;
  3268. down_read(&l->rwsem);
  3269. if (pid) {
  3270. int end = l->length;
  3271. while (index < end) {
  3272. int mid = (index + end) / 2;
  3273. if (l->list[mid] == pid) {
  3274. index = mid;
  3275. break;
  3276. } else if (l->list[mid] <= pid)
  3277. index = mid + 1;
  3278. else
  3279. end = mid;
  3280. }
  3281. }
  3282. /* If we're off the end of the array, we're done */
  3283. if (index >= l->length)
  3284. return NULL;
  3285. /* Update the abstract position to be the actual pid that we found */
  3286. iter = l->list + index;
  3287. *pos = *iter;
  3288. return iter;
  3289. }
  3290. static void cgroup_pidlist_stop(struct seq_file *s, void *v)
  3291. {
  3292. struct cgroup_pidlist *l = s->private;
  3293. up_read(&l->rwsem);
  3294. }
  3295. static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
  3296. {
  3297. struct cgroup_pidlist *l = s->private;
  3298. pid_t *p = v;
  3299. pid_t *end = l->list + l->length;
  3300. /*
  3301. * Advance to the next pid in the array. If this goes off the
  3302. * end, we're done
  3303. */
  3304. p++;
  3305. if (p >= end) {
  3306. return NULL;
  3307. } else {
  3308. *pos = *p;
  3309. return p;
  3310. }
  3311. }
  3312. static int cgroup_pidlist_show(struct seq_file *s, void *v)
  3313. {
  3314. return seq_printf(s, "%d\n", *(int *)v);
  3315. }
  3316. /*
  3317. * seq_operations functions for iterating on pidlists through seq_file -
  3318. * independent of whether it's tasks or procs
  3319. */
  3320. static const struct seq_operations cgroup_pidlist_seq_operations = {
  3321. .start = cgroup_pidlist_start,
  3322. .stop = cgroup_pidlist_stop,
  3323. .next = cgroup_pidlist_next,
  3324. .show = cgroup_pidlist_show,
  3325. };
  3326. static void cgroup_release_pid_array(struct cgroup_pidlist *l)
  3327. {
  3328. /*
  3329. * the case where we're the last user of this particular pidlist will
  3330. * have us remove it from the cgroup's list, which entails taking the
  3331. * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
  3332. * pidlist_mutex, we have to take pidlist_mutex first.
  3333. */
  3334. mutex_lock(&l->owner->pidlist_mutex);
  3335. down_write(&l->rwsem);
  3336. BUG_ON(!l->use_count);
  3337. if (!--l->use_count) {
  3338. /* we're the last user if refcount is 0; remove and free */
  3339. list_del(&l->links);
  3340. mutex_unlock(&l->owner->pidlist_mutex);
  3341. pidlist_free(l->list);
  3342. put_pid_ns(l->key.ns);
  3343. up_write(&l->rwsem);
  3344. kfree(l);
  3345. return;
  3346. }
  3347. mutex_unlock(&l->owner->pidlist_mutex);
  3348. up_write(&l->rwsem);
  3349. }
  3350. static int cgroup_pidlist_release(struct inode *inode, struct file *file)
  3351. {
  3352. struct cgroup_pidlist *l;
  3353. if (!(file->f_mode & FMODE_READ))
  3354. return 0;
  3355. /*
  3356. * the seq_file will only be initialized if the file was opened for
  3357. * reading; hence we check if it's not null only in that case.
  3358. */
  3359. l = ((struct seq_file *)file->private_data)->private;
  3360. cgroup_release_pid_array(l);
  3361. return seq_release(inode, file);
  3362. }
  3363. static const struct file_operations cgroup_pidlist_operations = {
  3364. .read = seq_read,
  3365. .llseek = seq_lseek,
  3366. .write = cgroup_file_write,
  3367. .release = cgroup_pidlist_release,
  3368. };
  3369. /*
  3370. * The following functions handle opens on a file that displays a pidlist
  3371. * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
  3372. * in the cgroup.
  3373. */
  3374. /* helper function for the two below it */
  3375. static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
  3376. {
  3377. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  3378. struct cgroup_pidlist *l;
  3379. int retval;
  3380. /* Nothing to do for write-only files */
  3381. if (!(file->f_mode & FMODE_READ))
  3382. return 0;
  3383. /* have the array populated */
  3384. retval = pidlist_array_load(cgrp, type, &l);
  3385. if (retval)
  3386. return retval;
  3387. /* configure file information */
  3388. file->f_op = &cgroup_pidlist_operations;
  3389. retval = seq_open(file, &cgroup_pidlist_seq_operations);
  3390. if (retval) {
  3391. cgroup_release_pid_array(l);
  3392. return retval;
  3393. }
  3394. ((struct seq_file *)file->private_data)->private = l;
  3395. return 0;
  3396. }
  3397. static int cgroup_tasks_open(struct inode *unused, struct file *file)
  3398. {
  3399. return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
  3400. }
  3401. static int cgroup_procs_open(struct inode *unused, struct file *file)
  3402. {
  3403. return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
  3404. }
  3405. static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
  3406. struct cftype *cft)
  3407. {
  3408. return notify_on_release(css->cgroup);
  3409. }
  3410. static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
  3411. struct cftype *cft, u64 val)
  3412. {
  3413. clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
  3414. if (val)
  3415. set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
  3416. else
  3417. clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
  3418. return 0;
  3419. }
  3420. /*
  3421. * When dput() is called asynchronously, if umount has been done and
  3422. * then deactivate_super() in cgroup_free_fn() kills the superblock,
  3423. * there's a small window that vfs will see the root dentry with non-zero
  3424. * refcnt and trigger BUG().
  3425. *
  3426. * That's why we hold a reference before dput() and drop it right after.
  3427. */
  3428. static void cgroup_dput(struct cgroup *cgrp)
  3429. {
  3430. struct super_block *sb = cgrp->root->sb;
  3431. atomic_inc(&sb->s_active);
  3432. dput(cgrp->dentry);
  3433. deactivate_super(sb);
  3434. }
  3435. /*
  3436. * Unregister event and free resources.
  3437. *
  3438. * Gets called from workqueue.
  3439. */
  3440. static void cgroup_event_remove(struct work_struct *work)
  3441. {
  3442. struct cgroup_event *event = container_of(work, struct cgroup_event,
  3443. remove);
  3444. struct cgroup_subsys_state *css = event->css;
  3445. remove_wait_queue(event->wqh, &event->wait);
  3446. event->cft->unregister_event(css, event->cft, event->eventfd);
  3447. /* Notify userspace the event is going away. */
  3448. eventfd_signal(event->eventfd, 1);
  3449. eventfd_ctx_put(event->eventfd);
  3450. kfree(event);
  3451. css_put(css);
  3452. }
  3453. /*
  3454. * Gets called on POLLHUP on eventfd when user closes it.
  3455. *
  3456. * Called with wqh->lock held and interrupts disabled.
  3457. */
  3458. static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
  3459. int sync, void *key)
  3460. {
  3461. struct cgroup_event *event = container_of(wait,
  3462. struct cgroup_event, wait);
  3463. struct cgroup *cgrp = event->css->cgroup;
  3464. unsigned long flags = (unsigned long)key;
  3465. if (flags & POLLHUP) {
  3466. /*
  3467. * If the event has been detached at cgroup removal, we
  3468. * can simply return knowing the other side will cleanup
  3469. * for us.
  3470. *
  3471. * We can't race against event freeing since the other
  3472. * side will require wqh->lock via remove_wait_queue(),
  3473. * which we hold.
  3474. */
  3475. spin_lock(&cgrp->event_list_lock);
  3476. if (!list_empty(&event->list)) {
  3477. list_del_init(&event->list);
  3478. /*
  3479. * We are in atomic context, but cgroup_event_remove()
  3480. * may sleep, so we have to call it in workqueue.
  3481. */
  3482. schedule_work(&event->remove);
  3483. }
  3484. spin_unlock(&cgrp->event_list_lock);
  3485. }
  3486. return 0;
  3487. }
  3488. static void cgroup_event_ptable_queue_proc(struct file *file,
  3489. wait_queue_head_t *wqh, poll_table *pt)
  3490. {
  3491. struct cgroup_event *event = container_of(pt,
  3492. struct cgroup_event, pt);
  3493. event->wqh = wqh;
  3494. add_wait_queue(wqh, &event->wait);
  3495. }
  3496. /*
  3497. * Parse input and register new cgroup event handler.
  3498. *
  3499. * Input must be in format '<event_fd> <control_fd> <args>'.
  3500. * Interpretation of args is defined by control file implementation.
  3501. */
  3502. static int cgroup_write_event_control(struct cgroup_subsys_state *dummy_css,
  3503. struct cftype *cft, const char *buffer)
  3504. {
  3505. struct cgroup *cgrp = dummy_css->cgroup;
  3506. struct cgroup_event *event;
  3507. struct cgroup_subsys_state *cfile_css;
  3508. unsigned int efd, cfd;
  3509. struct fd efile;
  3510. struct fd cfile;
  3511. char *endp;
  3512. int ret;
  3513. efd = simple_strtoul(buffer, &endp, 10);
  3514. if (*endp != ' ')
  3515. return -EINVAL;
  3516. buffer = endp + 1;
  3517. cfd = simple_strtoul(buffer, &endp, 10);
  3518. if ((*endp != ' ') && (*endp != '\0'))
  3519. return -EINVAL;
  3520. buffer = endp + 1;
  3521. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3522. if (!event)
  3523. return -ENOMEM;
  3524. INIT_LIST_HEAD(&event->list);
  3525. init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
  3526. init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
  3527. INIT_WORK(&event->remove, cgroup_event_remove);
  3528. efile = fdget(efd);
  3529. if (!efile.file) {
  3530. ret = -EBADF;
  3531. goto out_kfree;
  3532. }
  3533. event->eventfd = eventfd_ctx_fileget(efile.file);
  3534. if (IS_ERR(event->eventfd)) {
  3535. ret = PTR_ERR(event->eventfd);
  3536. goto out_put_efile;
  3537. }
  3538. cfile = fdget(cfd);
  3539. if (!cfile.file) {
  3540. ret = -EBADF;
  3541. goto out_put_eventfd;
  3542. }
  3543. /* the process need read permission on control file */
  3544. /* AV: shouldn't we check that it's been opened for read instead? */
  3545. ret = inode_permission(file_inode(cfile.file), MAY_READ);
  3546. if (ret < 0)
  3547. goto out_put_cfile;
  3548. event->cft = __file_cft(cfile.file);
  3549. if (IS_ERR(event->cft)) {
  3550. ret = PTR_ERR(event->cft);
  3551. goto out_put_cfile;
  3552. }
  3553. if (!event->cft->ss) {
  3554. ret = -EBADF;
  3555. goto out_put_cfile;
  3556. }
  3557. /*
  3558. * Determine the css of @cfile, verify it belongs to the same
  3559. * cgroup as cgroup.event_control, and associate @event with it.
  3560. * Remaining events are automatically removed on cgroup destruction
  3561. * but the removal is asynchronous, so take an extra ref.
  3562. */
  3563. rcu_read_lock();
  3564. ret = -EINVAL;
  3565. event->css = cgroup_css(cgrp, event->cft->ss);
  3566. cfile_css = css_from_dir(cfile.file->f_dentry->d_parent, event->cft->ss);
  3567. if (event->css && event->css == cfile_css && css_tryget(event->css))
  3568. ret = 0;
  3569. rcu_read_unlock();
  3570. if (ret)
  3571. goto out_put_cfile;
  3572. if (!event->cft->register_event || !event->cft->unregister_event) {
  3573. ret = -EINVAL;
  3574. goto out_put_css;
  3575. }
  3576. ret = event->cft->register_event(event->css, event->cft,
  3577. event->eventfd, buffer);
  3578. if (ret)
  3579. goto out_put_css;
  3580. efile.file->f_op->poll(efile.file, &event->pt);
  3581. spin_lock(&cgrp->event_list_lock);
  3582. list_add(&event->list, &cgrp->event_list);
  3583. spin_unlock(&cgrp->event_list_lock);
  3584. fdput(cfile);
  3585. fdput(efile);
  3586. return 0;
  3587. out_put_css:
  3588. css_put(event->css);
  3589. out_put_cfile:
  3590. fdput(cfile);
  3591. out_put_eventfd:
  3592. eventfd_ctx_put(event->eventfd);
  3593. out_put_efile:
  3594. fdput(efile);
  3595. out_kfree:
  3596. kfree(event);
  3597. return ret;
  3598. }
  3599. static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
  3600. struct cftype *cft)
  3601. {
  3602. return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
  3603. }
  3604. static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
  3605. struct cftype *cft, u64 val)
  3606. {
  3607. if (val)
  3608. set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
  3609. else
  3610. clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
  3611. return 0;
  3612. }
  3613. static struct cftype cgroup_base_files[] = {
  3614. {
  3615. .name = "cgroup.procs",
  3616. .open = cgroup_procs_open,
  3617. .write_u64 = cgroup_procs_write,
  3618. .release = cgroup_pidlist_release,
  3619. .mode = S_IRUGO | S_IWUSR,
  3620. },
  3621. {
  3622. .name = "cgroup.event_control",
  3623. .write_string = cgroup_write_event_control,
  3624. .mode = S_IWUGO,
  3625. },
  3626. {
  3627. .name = "cgroup.clone_children",
  3628. .flags = CFTYPE_INSANE,
  3629. .read_u64 = cgroup_clone_children_read,
  3630. .write_u64 = cgroup_clone_children_write,
  3631. },
  3632. {
  3633. .name = "cgroup.sane_behavior",
  3634. .flags = CFTYPE_ONLY_ON_ROOT,
  3635. .read_seq_string = cgroup_sane_behavior_show,
  3636. },
  3637. /*
  3638. * Historical crazy stuff. These don't have "cgroup." prefix and
  3639. * don't exist if sane_behavior. If you're depending on these, be
  3640. * prepared to be burned.
  3641. */
  3642. {
  3643. .name = "tasks",
  3644. .flags = CFTYPE_INSANE, /* use "procs" instead */
  3645. .open = cgroup_tasks_open,
  3646. .write_u64 = cgroup_tasks_write,
  3647. .release = cgroup_pidlist_release,
  3648. .mode = S_IRUGO | S_IWUSR,
  3649. },
  3650. {
  3651. .name = "notify_on_release",
  3652. .flags = CFTYPE_INSANE,
  3653. .read_u64 = cgroup_read_notify_on_release,
  3654. .write_u64 = cgroup_write_notify_on_release,
  3655. },
  3656. {
  3657. .name = "release_agent",
  3658. .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
  3659. .read_seq_string = cgroup_release_agent_show,
  3660. .write_string = cgroup_release_agent_write,
  3661. .max_write_len = PATH_MAX,
  3662. },
  3663. { } /* terminate */
  3664. };
  3665. /**
  3666. * cgroup_populate_dir - create subsys files in a cgroup directory
  3667. * @cgrp: target cgroup
  3668. * @subsys_mask: mask of the subsystem ids whose files should be added
  3669. *
  3670. * On failure, no file is added.
  3671. */
  3672. static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
  3673. {
  3674. struct cgroup_subsys *ss;
  3675. int i, ret = 0;
  3676. /* process cftsets of each subsystem */
  3677. for_each_subsys(ss, i) {
  3678. struct cftype_set *set;
  3679. if (!test_bit(i, &subsys_mask))
  3680. continue;
  3681. list_for_each_entry(set, &ss->cftsets, node) {
  3682. ret = cgroup_addrm_files(cgrp, set->cfts, true);
  3683. if (ret < 0)
  3684. goto err;
  3685. }
  3686. }
  3687. return 0;
  3688. err:
  3689. cgroup_clear_dir(cgrp, subsys_mask);
  3690. return ret;
  3691. }
  3692. /*
  3693. * css destruction is four-stage process.
  3694. *
  3695. * 1. Destruction starts. Killing of the percpu_ref is initiated.
  3696. * Implemented in kill_css().
  3697. *
  3698. * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
  3699. * and thus css_tryget() is guaranteed to fail, the css can be offlined
  3700. * by invoking offline_css(). After offlining, the base ref is put.
  3701. * Implemented in css_killed_work_fn().
  3702. *
  3703. * 3. When the percpu_ref reaches zero, the only possible remaining
  3704. * accessors are inside RCU read sections. css_release() schedules the
  3705. * RCU callback.
  3706. *
  3707. * 4. After the grace period, the css can be freed. Implemented in
  3708. * css_free_work_fn().
  3709. *
  3710. * It is actually hairier because both step 2 and 4 require process context
  3711. * and thus involve punting to css->destroy_work adding two additional
  3712. * steps to the already complex sequence.
  3713. */
  3714. static void css_free_work_fn(struct work_struct *work)
  3715. {
  3716. struct cgroup_subsys_state *css =
  3717. container_of(work, struct cgroup_subsys_state, destroy_work);
  3718. struct cgroup *cgrp = css->cgroup;
  3719. if (css->parent)
  3720. css_put(css->parent);
  3721. css->ss->css_free(css);
  3722. cgroup_dput(cgrp);
  3723. }
  3724. static void css_free_rcu_fn(struct rcu_head *rcu_head)
  3725. {
  3726. struct cgroup_subsys_state *css =
  3727. container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
  3728. /*
  3729. * css holds an extra ref to @cgrp->dentry which is put on the last
  3730. * css_put(). dput() requires process context which we don't have.
  3731. */
  3732. INIT_WORK(&css->destroy_work, css_free_work_fn);
  3733. queue_work(cgroup_destroy_wq, &css->destroy_work);
  3734. }
  3735. static void css_release(struct percpu_ref *ref)
  3736. {
  3737. struct cgroup_subsys_state *css =
  3738. container_of(ref, struct cgroup_subsys_state, refcnt);
  3739. call_rcu(&css->rcu_head, css_free_rcu_fn);
  3740. }
  3741. static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
  3742. struct cgroup *cgrp)
  3743. {
  3744. css->cgroup = cgrp;
  3745. css->ss = ss;
  3746. css->flags = 0;
  3747. if (cgrp->parent)
  3748. css->parent = cgroup_css(cgrp->parent, ss);
  3749. else
  3750. css->flags |= CSS_ROOT;
  3751. BUG_ON(cgroup_css(cgrp, ss));
  3752. }
  3753. /* invoke ->css_online() on a new CSS and mark it online if successful */
  3754. static int online_css(struct cgroup_subsys_state *css)
  3755. {
  3756. struct cgroup_subsys *ss = css->ss;
  3757. int ret = 0;
  3758. lockdep_assert_held(&cgroup_mutex);
  3759. if (ss->css_online)
  3760. ret = ss->css_online(css);
  3761. if (!ret) {
  3762. css->flags |= CSS_ONLINE;
  3763. css->cgroup->nr_css++;
  3764. rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
  3765. }
  3766. return ret;
  3767. }
  3768. /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
  3769. static void offline_css(struct cgroup_subsys_state *css)
  3770. {
  3771. struct cgroup_subsys *ss = css->ss;
  3772. lockdep_assert_held(&cgroup_mutex);
  3773. if (!(css->flags & CSS_ONLINE))
  3774. return;
  3775. if (ss->css_offline)
  3776. ss->css_offline(css);
  3777. css->flags &= ~CSS_ONLINE;
  3778. css->cgroup->nr_css--;
  3779. RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
  3780. }
  3781. /*
  3782. * cgroup_create - create a cgroup
  3783. * @parent: cgroup that will be parent of the new cgroup
  3784. * @dentry: dentry of the new cgroup
  3785. * @mode: mode to set on new inode
  3786. *
  3787. * Must be called with the mutex on the parent inode held
  3788. */
  3789. static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
  3790. umode_t mode)
  3791. {
  3792. struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
  3793. struct cgroup *cgrp;
  3794. struct cgroup_name *name;
  3795. struct cgroupfs_root *root = parent->root;
  3796. int err = 0;
  3797. struct cgroup_subsys *ss;
  3798. struct super_block *sb = root->sb;
  3799. /* allocate the cgroup and its ID, 0 is reserved for the root */
  3800. cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
  3801. if (!cgrp)
  3802. return -ENOMEM;
  3803. name = cgroup_alloc_name(dentry);
  3804. if (!name)
  3805. goto err_free_cgrp;
  3806. rcu_assign_pointer(cgrp->name, name);
  3807. /*
  3808. * Temporarily set the pointer to NULL, so idr_find() won't return
  3809. * a half-baked cgroup.
  3810. */
  3811. cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
  3812. if (cgrp->id < 0)
  3813. goto err_free_name;
  3814. /*
  3815. * Only live parents can have children. Note that the liveliness
  3816. * check isn't strictly necessary because cgroup_mkdir() and
  3817. * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
  3818. * anyway so that locking is contained inside cgroup proper and we
  3819. * don't get nasty surprises if we ever grow another caller.
  3820. */
  3821. if (!cgroup_lock_live_group(parent)) {
  3822. err = -ENODEV;
  3823. goto err_free_id;
  3824. }
  3825. /* Grab a reference on the superblock so the hierarchy doesn't
  3826. * get deleted on unmount if there are child cgroups. This
  3827. * can be done outside cgroup_mutex, since the sb can't
  3828. * disappear while someone has an open control file on the
  3829. * fs */
  3830. atomic_inc(&sb->s_active);
  3831. init_cgroup_housekeeping(cgrp);
  3832. dentry->d_fsdata = cgrp;
  3833. cgrp->dentry = dentry;
  3834. cgrp->parent = parent;
  3835. cgrp->dummy_css.parent = &parent->dummy_css;
  3836. cgrp->root = parent->root;
  3837. if (notify_on_release(parent))
  3838. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3839. if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
  3840. set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  3841. for_each_root_subsys(root, ss) {
  3842. struct cgroup_subsys_state *css;
  3843. css = ss->css_alloc(cgroup_css(parent, ss));
  3844. if (IS_ERR(css)) {
  3845. err = PTR_ERR(css);
  3846. goto err_free_all;
  3847. }
  3848. css_ar[ss->subsys_id] = css;
  3849. err = percpu_ref_init(&css->refcnt, css_release);
  3850. if (err)
  3851. goto err_free_all;
  3852. init_css(css, ss, cgrp);
  3853. }
  3854. /*
  3855. * Create directory. cgroup_create_file() returns with the new
  3856. * directory locked on success so that it can be populated without
  3857. * dropping cgroup_mutex.
  3858. */
  3859. err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
  3860. if (err < 0)
  3861. goto err_free_all;
  3862. lockdep_assert_held(&dentry->d_inode->i_mutex);
  3863. cgrp->serial_nr = cgroup_serial_nr_next++;
  3864. /* allocation complete, commit to creation */
  3865. list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
  3866. root->number_of_cgroups++;
  3867. /* each css holds a ref to the cgroup's dentry and the parent css */
  3868. for_each_root_subsys(root, ss) {
  3869. struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
  3870. dget(dentry);
  3871. css_get(css->parent);
  3872. }
  3873. /* hold a ref to the parent's dentry */
  3874. dget(parent->dentry);
  3875. /* creation succeeded, notify subsystems */
  3876. for_each_root_subsys(root, ss) {
  3877. struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
  3878. err = online_css(css);
  3879. if (err)
  3880. goto err_destroy;
  3881. if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
  3882. parent->parent) {
  3883. pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
  3884. current->comm, current->pid, ss->name);
  3885. if (!strcmp(ss->name, "memory"))
  3886. pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
  3887. ss->warned_broken_hierarchy = true;
  3888. }
  3889. }
  3890. idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
  3891. err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
  3892. if (err)
  3893. goto err_destroy;
  3894. err = cgroup_populate_dir(cgrp, root->subsys_mask);
  3895. if (err)
  3896. goto err_destroy;
  3897. mutex_unlock(&cgroup_mutex);
  3898. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  3899. return 0;
  3900. err_free_all:
  3901. for_each_root_subsys(root, ss) {
  3902. struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
  3903. if (css) {
  3904. percpu_ref_cancel_init(&css->refcnt);
  3905. ss->css_free(css);
  3906. }
  3907. }
  3908. mutex_unlock(&cgroup_mutex);
  3909. /* Release the reference count that we took on the superblock */
  3910. deactivate_super(sb);
  3911. err_free_id:
  3912. idr_remove(&root->cgroup_idr, cgrp->id);
  3913. err_free_name:
  3914. kfree(rcu_dereference_raw(cgrp->name));
  3915. err_free_cgrp:
  3916. kfree(cgrp);
  3917. return err;
  3918. err_destroy:
  3919. cgroup_destroy_locked(cgrp);
  3920. mutex_unlock(&cgroup_mutex);
  3921. mutex_unlock(&dentry->d_inode->i_mutex);
  3922. return err;
  3923. }
  3924. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  3925. {
  3926. struct cgroup *c_parent = dentry->d_parent->d_fsdata;
  3927. /* the vfs holds inode->i_mutex already */
  3928. return cgroup_create(c_parent, dentry, mode | S_IFDIR);
  3929. }
  3930. /*
  3931. * This is called when the refcnt of a css is confirmed to be killed.
  3932. * css_tryget() is now guaranteed to fail.
  3933. */
  3934. static void css_killed_work_fn(struct work_struct *work)
  3935. {
  3936. struct cgroup_subsys_state *css =
  3937. container_of(work, struct cgroup_subsys_state, destroy_work);
  3938. struct cgroup *cgrp = css->cgroup;
  3939. mutex_lock(&cgroup_mutex);
  3940. /*
  3941. * css_tryget() is guaranteed to fail now. Tell subsystems to
  3942. * initate destruction.
  3943. */
  3944. offline_css(css);
  3945. /*
  3946. * If @cgrp is marked dead, it's waiting for refs of all css's to
  3947. * be disabled before proceeding to the second phase of cgroup
  3948. * destruction. If we are the last one, kick it off.
  3949. */
  3950. if (!cgrp->nr_css && cgroup_is_dead(cgrp))
  3951. cgroup_destroy_css_killed(cgrp);
  3952. mutex_unlock(&cgroup_mutex);
  3953. /*
  3954. * Put the css refs from kill_css(). Each css holds an extra
  3955. * reference to the cgroup's dentry and cgroup removal proceeds
  3956. * regardless of css refs. On the last put of each css, whenever
  3957. * that may be, the extra dentry ref is put so that dentry
  3958. * destruction happens only after all css's are released.
  3959. */
  3960. css_put(css);
  3961. }
  3962. /* css kill confirmation processing requires process context, bounce */
  3963. static void css_killed_ref_fn(struct percpu_ref *ref)
  3964. {
  3965. struct cgroup_subsys_state *css =
  3966. container_of(ref, struct cgroup_subsys_state, refcnt);
  3967. INIT_WORK(&css->destroy_work, css_killed_work_fn);
  3968. queue_work(cgroup_destroy_wq, &css->destroy_work);
  3969. }
  3970. /**
  3971. * kill_css - destroy a css
  3972. * @css: css to destroy
  3973. *
  3974. * This function initiates destruction of @css by removing cgroup interface
  3975. * files and putting its base reference. ->css_offline() will be invoked
  3976. * asynchronously once css_tryget() is guaranteed to fail and when the
  3977. * reference count reaches zero, @css will be released.
  3978. */
  3979. static void kill_css(struct cgroup_subsys_state *css)
  3980. {
  3981. cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);
  3982. /*
  3983. * Killing would put the base ref, but we need to keep it alive
  3984. * until after ->css_offline().
  3985. */
  3986. css_get(css);
  3987. /*
  3988. * cgroup core guarantees that, by the time ->css_offline() is
  3989. * invoked, no new css reference will be given out via
  3990. * css_tryget(). We can't simply call percpu_ref_kill() and
  3991. * proceed to offlining css's because percpu_ref_kill() doesn't
  3992. * guarantee that the ref is seen as killed on all CPUs on return.
  3993. *
  3994. * Use percpu_ref_kill_and_confirm() to get notifications as each
  3995. * css is confirmed to be seen as killed on all CPUs.
  3996. */
  3997. percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
  3998. }
  3999. /**
  4000. * cgroup_destroy_locked - the first stage of cgroup destruction
  4001. * @cgrp: cgroup to be destroyed
  4002. *
  4003. * css's make use of percpu refcnts whose killing latency shouldn't be
  4004. * exposed to userland and are RCU protected. Also, cgroup core needs to
  4005. * guarantee that css_tryget() won't succeed by the time ->css_offline() is
  4006. * invoked. To satisfy all the requirements, destruction is implemented in
  4007. * the following two steps.
  4008. *
  4009. * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
  4010. * userland visible parts and start killing the percpu refcnts of
  4011. * css's. Set up so that the next stage will be kicked off once all
  4012. * the percpu refcnts are confirmed to be killed.
  4013. *
  4014. * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
  4015. * rest of destruction. Once all cgroup references are gone, the
  4016. * cgroup is RCU-freed.
  4017. *
  4018. * This function implements s1. After this step, @cgrp is gone as far as
  4019. * the userland is concerned and a new cgroup with the same name may be
  4020. * created. As cgroup doesn't care about the names internally, this
  4021. * doesn't cause any problem.
  4022. */
  4023. static int cgroup_destroy_locked(struct cgroup *cgrp)
  4024. __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
  4025. {
  4026. struct dentry *d = cgrp->dentry;
  4027. struct cgroup_event *event, *tmp;
  4028. struct cgroup_subsys *ss;
  4029. struct cgroup *child;
  4030. bool empty;
  4031. lockdep_assert_held(&d->d_inode->i_mutex);
  4032. lockdep_assert_held(&cgroup_mutex);
  4033. /*
  4034. * css_set_lock synchronizes access to ->cset_links and prevents
  4035. * @cgrp from being removed while __put_css_set() is in progress.
  4036. */
  4037. read_lock(&css_set_lock);
  4038. empty = list_empty(&cgrp->cset_links);
  4039. read_unlock(&css_set_lock);
  4040. if (!empty)
  4041. return -EBUSY;
  4042. /*
  4043. * Make sure there's no live children. We can't test ->children
  4044. * emptiness as dead children linger on it while being destroyed;
  4045. * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
  4046. */
  4047. empty = true;
  4048. rcu_read_lock();
  4049. list_for_each_entry_rcu(child, &cgrp->children, sibling) {
  4050. empty = cgroup_is_dead(child);
  4051. if (!empty)
  4052. break;
  4053. }
  4054. rcu_read_unlock();
  4055. if (!empty)
  4056. return -EBUSY;
  4057. /*
  4058. * Initiate massacre of all css's. cgroup_destroy_css_killed()
  4059. * will be invoked to perform the rest of destruction once the
  4060. * percpu refs of all css's are confirmed to be killed.
  4061. */
  4062. for_each_root_subsys(cgrp->root, ss)
  4063. kill_css(cgroup_css(cgrp, ss));
  4064. /*
  4065. * Mark @cgrp dead. This prevents further task migration and child
  4066. * creation by disabling cgroup_lock_live_group(). Note that
  4067. * CGRP_DEAD assertion is depended upon by css_next_child() to
  4068. * resume iteration after dropping RCU read lock. See
  4069. * css_next_child() for details.
  4070. */
  4071. set_bit(CGRP_DEAD, &cgrp->flags);
  4072. /* CGRP_DEAD is set, remove from ->release_list for the last time */
  4073. raw_spin_lock(&release_list_lock);
  4074. if (!list_empty(&cgrp->release_list))
  4075. list_del_init(&cgrp->release_list);
  4076. raw_spin_unlock(&release_list_lock);
  4077. /*
  4078. * If @cgrp has css's attached, the second stage of cgroup
  4079. * destruction is kicked off from css_killed_work_fn() after the
  4080. * refs of all attached css's are killed. If @cgrp doesn't have
  4081. * any css, we kick it off here.
  4082. */
  4083. if (!cgrp->nr_css)
  4084. cgroup_destroy_css_killed(cgrp);
  4085. /*
  4086. * Clear the base files and remove @cgrp directory. The removal
  4087. * puts the base ref but we aren't quite done with @cgrp yet, so
  4088. * hold onto it.
  4089. */
  4090. cgroup_addrm_files(cgrp, cgroup_base_files, false);
  4091. dget(d);
  4092. cgroup_d_remove_dir(d);
  4093. /*
  4094. * Unregister events and notify userspace.
  4095. * Notify userspace about cgroup removing only after rmdir of cgroup
  4096. * directory to avoid race between userspace and kernelspace.
  4097. */
  4098. spin_lock(&cgrp->event_list_lock);
  4099. list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
  4100. list_del_init(&event->list);
  4101. schedule_work(&event->remove);
  4102. }
  4103. spin_unlock(&cgrp->event_list_lock);
  4104. return 0;
  4105. };
  4106. /**
  4107. * cgroup_destroy_css_killed - the second step of cgroup destruction
  4108. * @work: cgroup->destroy_free_work
  4109. *
  4110. * This function is invoked from a work item for a cgroup which is being
  4111. * destroyed after all css's are offlined and performs the rest of
  4112. * destruction. This is the second step of destruction described in the
  4113. * comment above cgroup_destroy_locked().
  4114. */
  4115. static void cgroup_destroy_css_killed(struct cgroup *cgrp)
  4116. {
  4117. struct cgroup *parent = cgrp->parent;
  4118. struct dentry *d = cgrp->dentry;
  4119. lockdep_assert_held(&cgroup_mutex);
  4120. /* delete this cgroup from parent->children */
  4121. list_del_rcu(&cgrp->sibling);
  4122. /*
  4123. * We should remove the cgroup object from idr before its grace
  4124. * period starts, so we won't be looking up a cgroup while the
  4125. * cgroup is being freed.
  4126. */
  4127. idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
  4128. cgrp->id = -1;
  4129. dput(d);
  4130. set_bit(CGRP_RELEASABLE, &parent->flags);
  4131. check_for_release(parent);
  4132. }
  4133. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
  4134. {
  4135. int ret;
  4136. mutex_lock(&cgroup_mutex);
  4137. ret = cgroup_destroy_locked(dentry->d_fsdata);
  4138. mutex_unlock(&cgroup_mutex);
  4139. return ret;
  4140. }
  4141. static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
  4142. {
  4143. INIT_LIST_HEAD(&ss->cftsets);
  4144. /*
  4145. * base_cftset is embedded in subsys itself, no need to worry about
  4146. * deregistration.
  4147. */
  4148. if (ss->base_cftypes) {
  4149. struct cftype *cft;
  4150. for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
  4151. cft->ss = ss;
  4152. ss->base_cftset.cfts = ss->base_cftypes;
  4153. list_add_tail(&ss->base_cftset.node, &ss->cftsets);
  4154. }
  4155. }
  4156. static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
  4157. {
  4158. struct cgroup_subsys_state *css;
  4159. printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
  4160. mutex_lock(&cgroup_mutex);
  4161. /* init base cftset */
  4162. cgroup_init_cftsets(ss);
  4163. /* Create the top cgroup state for this subsystem */
  4164. list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
  4165. ss->root = &cgroup_dummy_root;
  4166. css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
  4167. /* We don't handle early failures gracefully */
  4168. BUG_ON(IS_ERR(css));
  4169. init_css(css, ss, cgroup_dummy_top);
  4170. /* Update the init_css_set to contain a subsys
  4171. * pointer to this state - since the subsystem is
  4172. * newly registered, all tasks and hence the
  4173. * init_css_set is in the subsystem's top cgroup. */
  4174. init_css_set.subsys[ss->subsys_id] = css;
  4175. need_forkexit_callback |= ss->fork || ss->exit;
  4176. /* At system boot, before all subsystems have been
  4177. * registered, no tasks have been forked, so we don't
  4178. * need to invoke fork callbacks here. */
  4179. BUG_ON(!list_empty(&init_task.tasks));
  4180. BUG_ON(online_css(css));
  4181. mutex_unlock(&cgroup_mutex);
  4182. /* this function shouldn't be used with modular subsystems, since they
  4183. * need to register a subsys_id, among other things */
  4184. BUG_ON(ss->module);
  4185. }
  4186. /**
  4187. * cgroup_load_subsys: load and register a modular subsystem at runtime
  4188. * @ss: the subsystem to load
  4189. *
  4190. * This function should be called in a modular subsystem's initcall. If the
  4191. * subsystem is built as a module, it will be assigned a new subsys_id and set
  4192. * up for use. If the subsystem is built-in anyway, work is delegated to the
  4193. * simpler cgroup_init_subsys.
  4194. */
  4195. int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
  4196. {
  4197. struct cgroup_subsys_state *css;
  4198. int i, ret;
  4199. struct hlist_node *tmp;
  4200. struct css_set *cset;
  4201. unsigned long key;
  4202. /* check name and function validity */
  4203. if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
  4204. ss->css_alloc == NULL || ss->css_free == NULL)
  4205. return -EINVAL;
  4206. /*
  4207. * we don't support callbacks in modular subsystems. this check is
  4208. * before the ss->module check for consistency; a subsystem that could
  4209. * be a module should still have no callbacks even if the user isn't
  4210. * compiling it as one.
  4211. */
  4212. if (ss->fork || ss->exit)
  4213. return -EINVAL;
  4214. /*
  4215. * an optionally modular subsystem is built-in: we want to do nothing,
  4216. * since cgroup_init_subsys will have already taken care of it.
  4217. */
  4218. if (ss->module == NULL) {
  4219. /* a sanity check */
  4220. BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
  4221. return 0;
  4222. }
  4223. /* init base cftset */
  4224. cgroup_init_cftsets(ss);
  4225. mutex_lock(&cgroup_mutex);
  4226. cgroup_subsys[ss->subsys_id] = ss;
  4227. /*
  4228. * no ss->css_alloc seems to need anything important in the ss
  4229. * struct, so this can happen first (i.e. before the dummy root
  4230. * attachment).
  4231. */
  4232. css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
  4233. if (IS_ERR(css)) {
  4234. /* failure case - need to deassign the cgroup_subsys[] slot. */
  4235. cgroup_subsys[ss->subsys_id] = NULL;
  4236. mutex_unlock(&cgroup_mutex);
  4237. return PTR_ERR(css);
  4238. }
  4239. list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
  4240. ss->root = &cgroup_dummy_root;
  4241. /* our new subsystem will be attached to the dummy hierarchy. */
  4242. init_css(css, ss, cgroup_dummy_top);
  4243. /*
  4244. * Now we need to entangle the css into the existing css_sets. unlike
  4245. * in cgroup_init_subsys, there are now multiple css_sets, so each one
  4246. * will need a new pointer to it; done by iterating the css_set_table.
  4247. * furthermore, modifying the existing css_sets will corrupt the hash
  4248. * table state, so each changed css_set will need its hash recomputed.
  4249. * this is all done under the css_set_lock.
  4250. */
  4251. write_lock(&css_set_lock);
  4252. hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
  4253. /* skip entries that we already rehashed */
  4254. if (cset->subsys[ss->subsys_id])
  4255. continue;
  4256. /* remove existing entry */
  4257. hash_del(&cset->hlist);
  4258. /* set new value */
  4259. cset->subsys[ss->subsys_id] = css;
  4260. /* recompute hash and restore entry */
  4261. key = css_set_hash(cset->subsys);
  4262. hash_add(css_set_table, &cset->hlist, key);
  4263. }
  4264. write_unlock(&css_set_lock);
  4265. ret = online_css(css);
  4266. if (ret)
  4267. goto err_unload;
  4268. /* success! */
  4269. mutex_unlock(&cgroup_mutex);
  4270. return 0;
  4271. err_unload:
  4272. mutex_unlock(&cgroup_mutex);
  4273. /* @ss can't be mounted here as try_module_get() would fail */
  4274. cgroup_unload_subsys(ss);
  4275. return ret;
  4276. }
  4277. EXPORT_SYMBOL_GPL(cgroup_load_subsys);
  4278. /**
  4279. * cgroup_unload_subsys: unload a modular subsystem
  4280. * @ss: the subsystem to unload
  4281. *
  4282. * This function should be called in a modular subsystem's exitcall. When this
  4283. * function is invoked, the refcount on the subsystem's module will be 0, so
  4284. * the subsystem will not be attached to any hierarchy.
  4285. */
  4286. void cgroup_unload_subsys(struct cgroup_subsys *ss)
  4287. {
  4288. struct cgrp_cset_link *link;
  4289. BUG_ON(ss->module == NULL);
  4290. /*
  4291. * we shouldn't be called if the subsystem is in use, and the use of
  4292. * try_module_get() in rebind_subsystems() should ensure that it
  4293. * doesn't start being used while we're killing it off.
  4294. */
  4295. BUG_ON(ss->root != &cgroup_dummy_root);
  4296. mutex_lock(&cgroup_mutex);
  4297. offline_css(cgroup_css(cgroup_dummy_top, ss));
  4298. /* deassign the subsys_id */
  4299. cgroup_subsys[ss->subsys_id] = NULL;
  4300. /* remove subsystem from the dummy root's list of subsystems */
  4301. list_del_init(&ss->sibling);
  4302. /*
  4303. * disentangle the css from all css_sets attached to the dummy
  4304. * top. as in loading, we need to pay our respects to the hashtable
  4305. * gods.
  4306. */
  4307. write_lock(&css_set_lock);
  4308. list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
  4309. struct css_set *cset = link->cset;
  4310. unsigned long key;
  4311. hash_del(&cset->hlist);
  4312. cset->subsys[ss->subsys_id] = NULL;
  4313. key = css_set_hash(cset->subsys);
  4314. hash_add(css_set_table, &cset->hlist, key);
  4315. }
  4316. write_unlock(&css_set_lock);
  4317. /*
  4318. * remove subsystem's css from the cgroup_dummy_top and free it -
  4319. * need to free before marking as null because ss->css_free needs
  4320. * the cgrp->subsys pointer to find their state.
  4321. */
  4322. ss->css_free(cgroup_css(cgroup_dummy_top, ss));
  4323. RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
  4324. mutex_unlock(&cgroup_mutex);
  4325. }
  4326. EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
  4327. /**
  4328. * cgroup_init_early - cgroup initialization at system boot
  4329. *
  4330. * Initialize cgroups at system boot, and initialize any
  4331. * subsystems that request early init.
  4332. */
  4333. int __init cgroup_init_early(void)
  4334. {
  4335. struct cgroup_subsys *ss;
  4336. int i;
  4337. atomic_set(&init_css_set.refcount, 1);
  4338. INIT_LIST_HEAD(&init_css_set.cgrp_links);
  4339. INIT_LIST_HEAD(&init_css_set.tasks);
  4340. INIT_HLIST_NODE(&init_css_set.hlist);
  4341. css_set_count = 1;
  4342. init_cgroup_root(&cgroup_dummy_root);
  4343. cgroup_root_count = 1;
  4344. RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
  4345. init_cgrp_cset_link.cset = &init_css_set;
  4346. init_cgrp_cset_link.cgrp = cgroup_dummy_top;
  4347. list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
  4348. list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
  4349. /* at bootup time, we don't worry about modular subsystems */
  4350. for_each_builtin_subsys(ss, i) {
  4351. BUG_ON(!ss->name);
  4352. BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
  4353. BUG_ON(!ss->css_alloc);
  4354. BUG_ON(!ss->css_free);
  4355. if (ss->subsys_id != i) {
  4356. printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
  4357. ss->name, ss->subsys_id);
  4358. BUG();
  4359. }
  4360. if (ss->early_init)
  4361. cgroup_init_subsys(ss);
  4362. }
  4363. return 0;
  4364. }
  4365. /**
  4366. * cgroup_init - cgroup initialization
  4367. *
  4368. * Register cgroup filesystem and /proc file, and initialize
  4369. * any subsystems that didn't request early init.
  4370. */
  4371. int __init cgroup_init(void)
  4372. {
  4373. struct cgroup_subsys *ss;
  4374. unsigned long key;
  4375. int i, err;
  4376. err = bdi_init(&cgroup_backing_dev_info);
  4377. if (err)
  4378. return err;
  4379. for_each_builtin_subsys(ss, i) {
  4380. if (!ss->early_init)
  4381. cgroup_init_subsys(ss);
  4382. }
  4383. /* allocate id for the dummy hierarchy */
  4384. mutex_lock(&cgroup_mutex);
  4385. mutex_lock(&cgroup_root_mutex);
  4386. /* Add init_css_set to the hash table */
  4387. key = css_set_hash(init_css_set.subsys);
  4388. hash_add(css_set_table, &init_css_set.hlist, key);
  4389. BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
  4390. err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
  4391. 0, 1, GFP_KERNEL);
  4392. BUG_ON(err < 0);
  4393. mutex_unlock(&cgroup_root_mutex);
  4394. mutex_unlock(&cgroup_mutex);
  4395. cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
  4396. if (!cgroup_kobj) {
  4397. err = -ENOMEM;
  4398. goto out;
  4399. }
  4400. err = register_filesystem(&cgroup_fs_type);
  4401. if (err < 0) {
  4402. kobject_put(cgroup_kobj);
  4403. goto out;
  4404. }
  4405. proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
  4406. out:
  4407. if (err)
  4408. bdi_destroy(&cgroup_backing_dev_info);
  4409. return err;
  4410. }
  4411. static int __init cgroup_wq_init(void)
  4412. {
  4413. /*
  4414. * There isn't much point in executing destruction path in
  4415. * parallel. Good chunk is serialized with cgroup_mutex anyway.
  4416. * Use 1 for @max_active.
  4417. *
  4418. * We would prefer to do this in cgroup_init() above, but that
  4419. * is called before init_workqueues(): so leave this until after.
  4420. */
  4421. cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
  4422. BUG_ON(!cgroup_destroy_wq);
  4423. return 0;
  4424. }
  4425. core_initcall(cgroup_wq_init);
  4426. /*
  4427. * proc_cgroup_show()
  4428. * - Print task's cgroup paths into seq_file, one line for each hierarchy
  4429. * - Used for /proc/<pid>/cgroup.
  4430. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
  4431. * doesn't really matter if tsk->cgroup changes after we read it,
  4432. * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
  4433. * anyway. No need to check that tsk->cgroup != NULL, thanks to
  4434. * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
  4435. * cgroup to top_cgroup.
  4436. */
  4437. /* TODO: Use a proper seq_file iterator */
  4438. int proc_cgroup_show(struct seq_file *m, void *v)
  4439. {
  4440. struct pid *pid;
  4441. struct task_struct *tsk;
  4442. char *buf;
  4443. int retval;
  4444. struct cgroupfs_root *root;
  4445. retval = -ENOMEM;
  4446. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4447. if (!buf)
  4448. goto out;
  4449. retval = -ESRCH;
  4450. pid = m->private;
  4451. tsk = get_pid_task(pid, PIDTYPE_PID);
  4452. if (!tsk)
  4453. goto out_free;
  4454. retval = 0;
  4455. mutex_lock(&cgroup_mutex);
  4456. for_each_active_root(root) {
  4457. struct cgroup_subsys *ss;
  4458. struct cgroup *cgrp;
  4459. int count = 0;
  4460. seq_printf(m, "%d:", root->hierarchy_id);
  4461. for_each_root_subsys(root, ss)
  4462. seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
  4463. if (strlen(root->name))
  4464. seq_printf(m, "%sname=%s", count ? "," : "",
  4465. root->name);
  4466. seq_putc(m, ':');
  4467. cgrp = task_cgroup_from_root(tsk, root);
  4468. retval = cgroup_path(cgrp, buf, PAGE_SIZE);
  4469. if (retval < 0)
  4470. goto out_unlock;
  4471. seq_puts(m, buf);
  4472. seq_putc(m, '\n');
  4473. }
  4474. out_unlock:
  4475. mutex_unlock(&cgroup_mutex);
  4476. put_task_struct(tsk);
  4477. out_free:
  4478. kfree(buf);
  4479. out:
  4480. return retval;
  4481. }
  4482. /* Display information about each subsystem and each hierarchy */
  4483. static int proc_cgroupstats_show(struct seq_file *m, void *v)
  4484. {
  4485. struct cgroup_subsys *ss;
  4486. int i;
  4487. seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
  4488. /*
  4489. * ideally we don't want subsystems moving around while we do this.
  4490. * cgroup_mutex is also necessary to guarantee an atomic snapshot of
  4491. * subsys/hierarchy state.
  4492. */
  4493. mutex_lock(&cgroup_mutex);
  4494. for_each_subsys(ss, i)
  4495. seq_printf(m, "%s\t%d\t%d\t%d\n",
  4496. ss->name, ss->root->hierarchy_id,
  4497. ss->root->number_of_cgroups, !ss->disabled);
  4498. mutex_unlock(&cgroup_mutex);
  4499. return 0;
  4500. }
  4501. static int cgroupstats_open(struct inode *inode, struct file *file)
  4502. {
  4503. return single_open(file, proc_cgroupstats_show, NULL);
  4504. }
  4505. static const struct file_operations proc_cgroupstats_operations = {
  4506. .open = cgroupstats_open,
  4507. .read = seq_read,
  4508. .llseek = seq_lseek,
  4509. .release = single_release,
  4510. };
  4511. /**
  4512. * cgroup_fork - attach newly forked task to its parents cgroup.
  4513. * @child: pointer to task_struct of forking parent process.
  4514. *
  4515. * Description: A task inherits its parent's cgroup at fork().
  4516. *
  4517. * A pointer to the shared css_set was automatically copied in
  4518. * fork.c by dup_task_struct(). However, we ignore that copy, since
  4519. * it was not made under the protection of RCU or cgroup_mutex, so
  4520. * might no longer be a valid cgroup pointer. cgroup_attach_task() might
  4521. * have already changed current->cgroups, allowing the previously
  4522. * referenced cgroup group to be removed and freed.
  4523. *
  4524. * At the point that cgroup_fork() is called, 'current' is the parent
  4525. * task, and the passed argument 'child' points to the child task.
  4526. */
  4527. void cgroup_fork(struct task_struct *child)
  4528. {
  4529. task_lock(current);
  4530. get_css_set(task_css_set(current));
  4531. child->cgroups = current->cgroups;
  4532. task_unlock(current);
  4533. INIT_LIST_HEAD(&child->cg_list);
  4534. }
  4535. /**
  4536. * cgroup_post_fork - called on a new task after adding it to the task list
  4537. * @child: the task in question
  4538. *
  4539. * Adds the task to the list running through its css_set if necessary and
  4540. * call the subsystem fork() callbacks. Has to be after the task is
  4541. * visible on the task list in case we race with the first call to
  4542. * cgroup_task_iter_start() - to guarantee that the new task ends up on its
  4543. * list.
  4544. */
  4545. void cgroup_post_fork(struct task_struct *child)
  4546. {
  4547. struct cgroup_subsys *ss;
  4548. int i;
  4549. /*
  4550. * use_task_css_set_links is set to 1 before we walk the tasklist
  4551. * under the tasklist_lock and we read it here after we added the child
  4552. * to the tasklist under the tasklist_lock as well. If the child wasn't
  4553. * yet in the tasklist when we walked through it from
  4554. * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
  4555. * should be visible now due to the paired locking and barriers implied
  4556. * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
  4557. * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
  4558. * lock on fork.
  4559. */
  4560. if (use_task_css_set_links) {
  4561. write_lock(&css_set_lock);
  4562. task_lock(child);
  4563. if (list_empty(&child->cg_list))
  4564. list_add(&child->cg_list, &task_css_set(child)->tasks);
  4565. task_unlock(child);
  4566. write_unlock(&css_set_lock);
  4567. }
  4568. /*
  4569. * Call ss->fork(). This must happen after @child is linked on
  4570. * css_set; otherwise, @child might change state between ->fork()
  4571. * and addition to css_set.
  4572. */
  4573. if (need_forkexit_callback) {
  4574. /*
  4575. * fork/exit callbacks are supported only for builtin
  4576. * subsystems, and the builtin section of the subsys
  4577. * array is immutable, so we don't need to lock the
  4578. * subsys array here. On the other hand, modular section
  4579. * of the array can be freed at module unload, so we
  4580. * can't touch that.
  4581. */
  4582. for_each_builtin_subsys(ss, i)
  4583. if (ss->fork)
  4584. ss->fork(child);
  4585. }
  4586. }
  4587. /**
  4588. * cgroup_exit - detach cgroup from exiting task
  4589. * @tsk: pointer to task_struct of exiting process
  4590. * @run_callback: run exit callbacks?
  4591. *
  4592. * Description: Detach cgroup from @tsk and release it.
  4593. *
  4594. * Note that cgroups marked notify_on_release force every task in
  4595. * them to take the global cgroup_mutex mutex when exiting.
  4596. * This could impact scaling on very large systems. Be reluctant to
  4597. * use notify_on_release cgroups where very high task exit scaling
  4598. * is required on large systems.
  4599. *
  4600. * the_top_cgroup_hack:
  4601. *
  4602. * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
  4603. *
  4604. * We call cgroup_exit() while the task is still competent to
  4605. * handle notify_on_release(), then leave the task attached to the
  4606. * root cgroup in each hierarchy for the remainder of its exit.
  4607. *
  4608. * To do this properly, we would increment the reference count on
  4609. * top_cgroup, and near the very end of the kernel/exit.c do_exit()
  4610. * code we would add a second cgroup function call, to drop that
  4611. * reference. This would just create an unnecessary hot spot on
  4612. * the top_cgroup reference count, to no avail.
  4613. *
  4614. * Normally, holding a reference to a cgroup without bumping its
  4615. * count is unsafe. The cgroup could go away, or someone could
  4616. * attach us to a different cgroup, decrementing the count on
  4617. * the first cgroup that we never incremented. But in this case,
  4618. * top_cgroup isn't going away, and either task has PF_EXITING set,
  4619. * which wards off any cgroup_attach_task() attempts, or task is a failed
  4620. * fork, never visible to cgroup_attach_task.
  4621. */
  4622. void cgroup_exit(struct task_struct *tsk, int run_callbacks)
  4623. {
  4624. struct cgroup_subsys *ss;
  4625. struct css_set *cset;
  4626. int i;
  4627. /*
  4628. * Unlink from the css_set task list if necessary.
  4629. * Optimistically check cg_list before taking
  4630. * css_set_lock
  4631. */
  4632. if (!list_empty(&tsk->cg_list)) {
  4633. write_lock(&css_set_lock);
  4634. if (!list_empty(&tsk->cg_list))
  4635. list_del_init(&tsk->cg_list);
  4636. write_unlock(&css_set_lock);
  4637. }
  4638. /* Reassign the task to the init_css_set. */
  4639. task_lock(tsk);
  4640. cset = task_css_set(tsk);
  4641. RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
  4642. if (run_callbacks && need_forkexit_callback) {
  4643. /*
  4644. * fork/exit callbacks are supported only for builtin
  4645. * subsystems, see cgroup_post_fork() for details.
  4646. */
  4647. for_each_builtin_subsys(ss, i) {
  4648. if (ss->exit) {
  4649. struct cgroup_subsys_state *old_css = cset->subsys[i];
  4650. struct cgroup_subsys_state *css = task_css(tsk, i);
  4651. ss->exit(css, old_css, tsk);
  4652. }
  4653. }
  4654. }
  4655. task_unlock(tsk);
  4656. put_css_set_taskexit(cset);
  4657. }
  4658. static void check_for_release(struct cgroup *cgrp)
  4659. {
  4660. if (cgroup_is_releasable(cgrp) &&
  4661. list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
  4662. /*
  4663. * Control Group is currently removeable. If it's not
  4664. * already queued for a userspace notification, queue
  4665. * it now
  4666. */
  4667. int need_schedule_work = 0;
  4668. raw_spin_lock(&release_list_lock);
  4669. if (!cgroup_is_dead(cgrp) &&
  4670. list_empty(&cgrp->release_list)) {
  4671. list_add(&cgrp->release_list, &release_list);
  4672. need_schedule_work = 1;
  4673. }
  4674. raw_spin_unlock(&release_list_lock);
  4675. if (need_schedule_work)
  4676. schedule_work(&release_agent_work);
  4677. }
  4678. }
  4679. /*
  4680. * Notify userspace when a cgroup is released, by running the
  4681. * configured release agent with the name of the cgroup (path
  4682. * relative to the root of cgroup file system) as the argument.
  4683. *
  4684. * Most likely, this user command will try to rmdir this cgroup.
  4685. *
  4686. * This races with the possibility that some other task will be
  4687. * attached to this cgroup before it is removed, or that some other
  4688. * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
  4689. * The presumed 'rmdir' will fail quietly if this cgroup is no longer
  4690. * unused, and this cgroup will be reprieved from its death sentence,
  4691. * to continue to serve a useful existence. Next time it's released,
  4692. * we will get notified again, if it still has 'notify_on_release' set.
  4693. *
  4694. * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
  4695. * means only wait until the task is successfully execve()'d. The
  4696. * separate release agent task is forked by call_usermodehelper(),
  4697. * then control in this thread returns here, without waiting for the
  4698. * release agent task. We don't bother to wait because the caller of
  4699. * this routine has no use for the exit status of the release agent
  4700. * task, so no sense holding our caller up for that.
  4701. */
  4702. static void cgroup_release_agent(struct work_struct *work)
  4703. {
  4704. BUG_ON(work != &release_agent_work);
  4705. mutex_lock(&cgroup_mutex);
  4706. raw_spin_lock(&release_list_lock);
  4707. while (!list_empty(&release_list)) {
  4708. char *argv[3], *envp[3];
  4709. int i;
  4710. char *pathbuf = NULL, *agentbuf = NULL;
  4711. struct cgroup *cgrp = list_entry(release_list.next,
  4712. struct cgroup,
  4713. release_list);
  4714. list_del_init(&cgrp->release_list);
  4715. raw_spin_unlock(&release_list_lock);
  4716. pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4717. if (!pathbuf)
  4718. goto continue_free;
  4719. if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
  4720. goto continue_free;
  4721. agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
  4722. if (!agentbuf)
  4723. goto continue_free;
  4724. i = 0;
  4725. argv[i++] = agentbuf;
  4726. argv[i++] = pathbuf;
  4727. argv[i] = NULL;
  4728. i = 0;
  4729. /* minimal command environment */
  4730. envp[i++] = "HOME=/";
  4731. envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
  4732. envp[i] = NULL;
  4733. /* Drop the lock while we invoke the usermode helper,
  4734. * since the exec could involve hitting disk and hence
  4735. * be a slow process */
  4736. mutex_unlock(&cgroup_mutex);
  4737. call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
  4738. mutex_lock(&cgroup_mutex);
  4739. continue_free:
  4740. kfree(pathbuf);
  4741. kfree(agentbuf);
  4742. raw_spin_lock(&release_list_lock);
  4743. }
  4744. raw_spin_unlock(&release_list_lock);
  4745. mutex_unlock(&cgroup_mutex);
  4746. }
  4747. static int __init cgroup_disable(char *str)
  4748. {
  4749. struct cgroup_subsys *ss;
  4750. char *token;
  4751. int i;
  4752. while ((token = strsep(&str, ",")) != NULL) {
  4753. if (!*token)
  4754. continue;
  4755. /*
  4756. * cgroup_disable, being at boot time, can't know about
  4757. * module subsystems, so we don't worry about them.
  4758. */
  4759. for_each_builtin_subsys(ss, i) {
  4760. if (!strcmp(token, ss->name)) {
  4761. ss->disabled = 1;
  4762. printk(KERN_INFO "Disabling %s control group"
  4763. " subsystem\n", ss->name);
  4764. break;
  4765. }
  4766. }
  4767. }
  4768. return 1;
  4769. }
  4770. __setup("cgroup_disable=", cgroup_disable);
  4771. /**
  4772. * css_from_dir - get corresponding css from the dentry of a cgroup dir
  4773. * @dentry: directory dentry of interest
  4774. * @ss: subsystem of interest
  4775. *
  4776. * Must be called under RCU read lock. The caller is responsible for
  4777. * pinning the returned css if it needs to be accessed outside the RCU
  4778. * critical section.
  4779. */
  4780. struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
  4781. struct cgroup_subsys *ss)
  4782. {
  4783. struct cgroup *cgrp;
  4784. WARN_ON_ONCE(!rcu_read_lock_held());
  4785. /* is @dentry a cgroup dir? */
  4786. if (!dentry->d_inode ||
  4787. dentry->d_inode->i_op != &cgroup_dir_inode_operations)
  4788. return ERR_PTR(-EBADF);
  4789. cgrp = __d_cgrp(dentry);
  4790. return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT);
  4791. }
  4792. /**
  4793. * css_from_id - lookup css by id
  4794. * @id: the cgroup id
  4795. * @ss: cgroup subsys to be looked into
  4796. *
  4797. * Returns the css if there's valid one with @id, otherwise returns NULL.
  4798. * Should be called under rcu_read_lock().
  4799. */
  4800. struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
  4801. {
  4802. struct cgroup *cgrp;
  4803. rcu_lockdep_assert(rcu_read_lock_held() ||
  4804. lockdep_is_held(&cgroup_mutex),
  4805. "css_from_id() needs proper protection");
  4806. cgrp = idr_find(&ss->root->cgroup_idr, id);
  4807. if (cgrp)
  4808. return cgroup_css(cgrp, ss);
  4809. return NULL;
  4810. }
  4811. #ifdef CONFIG_CGROUP_DEBUG
  4812. static struct cgroup_subsys_state *
  4813. debug_css_alloc(struct cgroup_subsys_state *parent_css)
  4814. {
  4815. struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
  4816. if (!css)
  4817. return ERR_PTR(-ENOMEM);
  4818. return css;
  4819. }
  4820. static void debug_css_free(struct cgroup_subsys_state *css)
  4821. {
  4822. kfree(css);
  4823. }
  4824. static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
  4825. struct cftype *cft)
  4826. {
  4827. return cgroup_task_count(css->cgroup);
  4828. }
  4829. static u64 current_css_set_read(struct cgroup_subsys_state *css,
  4830. struct cftype *cft)
  4831. {
  4832. return (u64)(unsigned long)current->cgroups;
  4833. }
  4834. static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
  4835. struct cftype *cft)
  4836. {
  4837. u64 count;
  4838. rcu_read_lock();
  4839. count = atomic_read(&task_css_set(current)->refcount);
  4840. rcu_read_unlock();
  4841. return count;
  4842. }
  4843. static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
  4844. struct cftype *cft,
  4845. struct seq_file *seq)
  4846. {
  4847. struct cgrp_cset_link *link;
  4848. struct css_set *cset;
  4849. read_lock(&css_set_lock);
  4850. rcu_read_lock();
  4851. cset = rcu_dereference(current->cgroups);
  4852. list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
  4853. struct cgroup *c = link->cgrp;
  4854. const char *name;
  4855. if (c->dentry)
  4856. name = c->dentry->d_name.name;
  4857. else
  4858. name = "?";
  4859. seq_printf(seq, "Root %d group %s\n",
  4860. c->root->hierarchy_id, name);
  4861. }
  4862. rcu_read_unlock();
  4863. read_unlock(&css_set_lock);
  4864. return 0;
  4865. }
  4866. #define MAX_TASKS_SHOWN_PER_CSS 25
  4867. static int cgroup_css_links_read(struct cgroup_subsys_state *css,
  4868. struct cftype *cft, struct seq_file *seq)
  4869. {
  4870. struct cgrp_cset_link *link;
  4871. read_lock(&css_set_lock);
  4872. list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
  4873. struct css_set *cset = link->cset;
  4874. struct task_struct *task;
  4875. int count = 0;
  4876. seq_printf(seq, "css_set %p\n", cset);
  4877. list_for_each_entry(task, &cset->tasks, cg_list) {
  4878. if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
  4879. seq_puts(seq, " ...\n");
  4880. break;
  4881. } else {
  4882. seq_printf(seq, " task %d\n",
  4883. task_pid_vnr(task));
  4884. }
  4885. }
  4886. }
  4887. read_unlock(&css_set_lock);
  4888. return 0;
  4889. }
  4890. static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
  4891. {
  4892. return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
  4893. }
  4894. static struct cftype debug_files[] = {
  4895. {
  4896. .name = "taskcount",
  4897. .read_u64 = debug_taskcount_read,
  4898. },
  4899. {
  4900. .name = "current_css_set",
  4901. .read_u64 = current_css_set_read,
  4902. },
  4903. {
  4904. .name = "current_css_set_refcount",
  4905. .read_u64 = current_css_set_refcount_read,
  4906. },
  4907. {
  4908. .name = "current_css_set_cg_links",
  4909. .read_seq_string = current_css_set_cg_links_read,
  4910. },
  4911. {
  4912. .name = "cgroup_css_links",
  4913. .read_seq_string = cgroup_css_links_read,
  4914. },
  4915. {
  4916. .name = "releasable",
  4917. .read_u64 = releasable_read,
  4918. },
  4919. { } /* terminate */
  4920. };
  4921. struct cgroup_subsys debug_subsys = {
  4922. .name = "debug",
  4923. .css_alloc = debug_css_alloc,
  4924. .css_free = debug_css_free,
  4925. .subsys_id = debug_subsys_id,
  4926. .base_cftypes = debug_files,
  4927. };
  4928. #endif /* CONFIG_CGROUP_DEBUG */