swiotlb-xen.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667
  1. /*
  2. * Copyright 2010
  3. * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4. *
  5. * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License v2.0 as published by
  9. * the Free Software Foundation
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * PV guests under Xen are running in an non-contiguous memory architecture.
  17. *
  18. * When PCI pass-through is utilized, this necessitates an IOMMU for
  19. * translating bus (DMA) to virtual and vice-versa and also providing a
  20. * mechanism to have contiguous pages for device drivers operations (say DMA
  21. * operations).
  22. *
  23. * Specifically, under Xen the Linux idea of pages is an illusion. It
  24. * assumes that pages start at zero and go up to the available memory. To
  25. * help with that, the Linux Xen MMU provides a lookup mechanism to
  26. * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27. * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28. * memory is not contiguous. Xen hypervisor stitches memory for guests
  29. * from different pools, which means there is no guarantee that PFN==MFN
  30. * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31. * allocated in descending order (high to low), meaning the guest might
  32. * never get any MFN's under the 4GB mark.
  33. *
  34. */
  35. #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
  36. #include <linux/bootmem.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/export.h>
  39. #include <xen/swiotlb-xen.h>
  40. #include <xen/page.h>
  41. #include <xen/xen-ops.h>
  42. #include <xen/hvc-console.h>
  43. #include <asm/dma-mapping.h>
  44. #include <asm/xen/page-coherent.h>
  45. #include <trace/events/swiotlb.h>
  46. /*
  47. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  48. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  49. * API.
  50. */
  51. #ifndef CONFIG_X86
  52. static unsigned long dma_alloc_coherent_mask(struct device *dev,
  53. gfp_t gfp)
  54. {
  55. unsigned long dma_mask = 0;
  56. dma_mask = dev->coherent_dma_mask;
  57. if (!dma_mask)
  58. dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
  59. return dma_mask;
  60. }
  61. #endif
  62. static char *xen_io_tlb_start, *xen_io_tlb_end;
  63. static unsigned long xen_io_tlb_nslabs;
  64. /*
  65. * Quick lookup value of the bus address of the IOTLB.
  66. */
  67. static u64 start_dma_addr;
  68. static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  69. {
  70. return phys_to_machine(XPADDR(paddr)).maddr;
  71. }
  72. static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  73. {
  74. return machine_to_phys(XMADDR(baddr)).paddr;
  75. }
  76. static inline dma_addr_t xen_virt_to_bus(void *address)
  77. {
  78. return xen_phys_to_bus(virt_to_phys(address));
  79. }
  80. static int check_pages_physically_contiguous(unsigned long pfn,
  81. unsigned int offset,
  82. size_t length)
  83. {
  84. unsigned long next_mfn;
  85. int i;
  86. int nr_pages;
  87. next_mfn = pfn_to_mfn(pfn);
  88. nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  89. for (i = 1; i < nr_pages; i++) {
  90. if (pfn_to_mfn(++pfn) != ++next_mfn)
  91. return 0;
  92. }
  93. return 1;
  94. }
  95. static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
  96. {
  97. unsigned long pfn = PFN_DOWN(p);
  98. unsigned int offset = p & ~PAGE_MASK;
  99. if (offset + size <= PAGE_SIZE)
  100. return 0;
  101. if (check_pages_physically_contiguous(pfn, offset, size))
  102. return 0;
  103. return 1;
  104. }
  105. static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
  106. {
  107. unsigned long mfn = PFN_DOWN(dma_addr);
  108. unsigned long pfn = mfn_to_local_pfn(mfn);
  109. phys_addr_t paddr;
  110. /* If the address is outside our domain, it CAN
  111. * have the same virtual address as another address
  112. * in our domain. Therefore _only_ check address within our domain.
  113. */
  114. if (pfn_valid(pfn)) {
  115. paddr = PFN_PHYS(pfn);
  116. return paddr >= virt_to_phys(xen_io_tlb_start) &&
  117. paddr < virt_to_phys(xen_io_tlb_end);
  118. }
  119. return 0;
  120. }
  121. static int max_dma_bits = 32;
  122. static int
  123. xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
  124. {
  125. int i, rc;
  126. int dma_bits;
  127. dma_addr_t dma_handle;
  128. phys_addr_t p = virt_to_phys(buf);
  129. dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
  130. i = 0;
  131. do {
  132. int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
  133. do {
  134. rc = xen_create_contiguous_region(
  135. p + (i << IO_TLB_SHIFT),
  136. get_order(slabs << IO_TLB_SHIFT),
  137. dma_bits, &dma_handle);
  138. } while (rc && dma_bits++ < max_dma_bits);
  139. if (rc)
  140. return rc;
  141. i += slabs;
  142. } while (i < nslabs);
  143. return 0;
  144. }
  145. static unsigned long xen_set_nslabs(unsigned long nr_tbl)
  146. {
  147. if (!nr_tbl) {
  148. xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
  149. xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
  150. } else
  151. xen_io_tlb_nslabs = nr_tbl;
  152. return xen_io_tlb_nslabs << IO_TLB_SHIFT;
  153. }
  154. enum xen_swiotlb_err {
  155. XEN_SWIOTLB_UNKNOWN = 0,
  156. XEN_SWIOTLB_ENOMEM,
  157. XEN_SWIOTLB_EFIXUP
  158. };
  159. static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
  160. {
  161. switch (err) {
  162. case XEN_SWIOTLB_ENOMEM:
  163. return "Cannot allocate Xen-SWIOTLB buffer\n";
  164. case XEN_SWIOTLB_EFIXUP:
  165. return "Failed to get contiguous memory for DMA from Xen!\n"\
  166. "You either: don't have the permissions, do not have"\
  167. " enough free memory under 4GB, or the hypervisor memory"\
  168. " is too fragmented!";
  169. default:
  170. break;
  171. }
  172. return "";
  173. }
  174. int __ref xen_swiotlb_init(int verbose, bool early)
  175. {
  176. unsigned long bytes, order;
  177. int rc = -ENOMEM;
  178. enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
  179. unsigned int repeat = 3;
  180. xen_io_tlb_nslabs = swiotlb_nr_tbl();
  181. retry:
  182. bytes = xen_set_nslabs(xen_io_tlb_nslabs);
  183. order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
  184. /*
  185. * Get IO TLB memory from any location.
  186. */
  187. if (early)
  188. xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
  189. else {
  190. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  191. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  192. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  193. xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
  194. if (xen_io_tlb_start)
  195. break;
  196. order--;
  197. }
  198. if (order != get_order(bytes)) {
  199. pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
  200. (PAGE_SIZE << order) >> 20);
  201. xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
  202. bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
  203. }
  204. }
  205. if (!xen_io_tlb_start) {
  206. m_ret = XEN_SWIOTLB_ENOMEM;
  207. goto error;
  208. }
  209. xen_io_tlb_end = xen_io_tlb_start + bytes;
  210. /*
  211. * And replace that memory with pages under 4GB.
  212. */
  213. rc = xen_swiotlb_fixup(xen_io_tlb_start,
  214. bytes,
  215. xen_io_tlb_nslabs);
  216. if (rc) {
  217. if (early)
  218. free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
  219. else {
  220. free_pages((unsigned long)xen_io_tlb_start, order);
  221. xen_io_tlb_start = NULL;
  222. }
  223. m_ret = XEN_SWIOTLB_EFIXUP;
  224. goto error;
  225. }
  226. start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
  227. if (early) {
  228. if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
  229. verbose))
  230. panic("Cannot allocate SWIOTLB buffer");
  231. rc = 0;
  232. } else
  233. rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
  234. return rc;
  235. error:
  236. if (repeat--) {
  237. xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
  238. (xen_io_tlb_nslabs >> 1));
  239. pr_info("Lowering to %luMB\n",
  240. (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
  241. goto retry;
  242. }
  243. pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
  244. if (early)
  245. panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
  246. else
  247. free_pages((unsigned long)xen_io_tlb_start, order);
  248. return rc;
  249. }
  250. void *
  251. xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  252. dma_addr_t *dma_handle, gfp_t flags,
  253. struct dma_attrs *attrs)
  254. {
  255. void *ret;
  256. int order = get_order(size);
  257. u64 dma_mask = DMA_BIT_MASK(32);
  258. phys_addr_t phys;
  259. dma_addr_t dev_addr;
  260. /*
  261. * Ignore region specifiers - the kernel's ideas of
  262. * pseudo-phys memory layout has nothing to do with the
  263. * machine physical layout. We can't allocate highmem
  264. * because we can't return a pointer to it.
  265. */
  266. flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
  267. if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
  268. return ret;
  269. /* On ARM this function returns an ioremap'ped virtual address for
  270. * which virt_to_phys doesn't return the corresponding physical
  271. * address. In fact on ARM virt_to_phys only works for kernel direct
  272. * mapped RAM memory. Also see comment below.
  273. */
  274. ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
  275. if (!ret)
  276. return ret;
  277. if (hwdev && hwdev->coherent_dma_mask)
  278. dma_mask = dma_alloc_coherent_mask(hwdev, flags);
  279. /* At this point dma_handle is the physical address, next we are
  280. * going to set it to the machine address.
  281. * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
  282. * to *dma_handle. */
  283. phys = *dma_handle;
  284. dev_addr = xen_phys_to_bus(phys);
  285. if (((dev_addr + size - 1 <= dma_mask)) &&
  286. !range_straddles_page_boundary(phys, size))
  287. *dma_handle = dev_addr;
  288. else {
  289. if (xen_create_contiguous_region(phys, order,
  290. fls64(dma_mask), dma_handle) != 0) {
  291. xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
  292. return NULL;
  293. }
  294. }
  295. memset(ret, 0, size);
  296. return ret;
  297. }
  298. EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
  299. void
  300. xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  301. dma_addr_t dev_addr, struct dma_attrs *attrs)
  302. {
  303. int order = get_order(size);
  304. phys_addr_t phys;
  305. u64 dma_mask = DMA_BIT_MASK(32);
  306. if (dma_release_from_coherent(hwdev, order, vaddr))
  307. return;
  308. if (hwdev && hwdev->coherent_dma_mask)
  309. dma_mask = hwdev->coherent_dma_mask;
  310. /* do not use virt_to_phys because on ARM it doesn't return you the
  311. * physical address */
  312. phys = xen_bus_to_phys(dev_addr);
  313. if (((dev_addr + size - 1 > dma_mask)) ||
  314. range_straddles_page_boundary(phys, size))
  315. xen_destroy_contiguous_region(phys, order);
  316. xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
  317. }
  318. EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
  319. /*
  320. * Map a single buffer of the indicated size for DMA in streaming mode. The
  321. * physical address to use is returned.
  322. *
  323. * Once the device is given the dma address, the device owns this memory until
  324. * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
  325. */
  326. dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
  327. unsigned long offset, size_t size,
  328. enum dma_data_direction dir,
  329. struct dma_attrs *attrs)
  330. {
  331. phys_addr_t map, phys = page_to_phys(page) + offset;
  332. dma_addr_t dev_addr = xen_phys_to_bus(phys);
  333. BUG_ON(dir == DMA_NONE);
  334. /*
  335. * If the address happens to be in the device's DMA window,
  336. * we can safely return the device addr and not worry about bounce
  337. * buffering it.
  338. */
  339. if (dma_capable(dev, dev_addr, size) &&
  340. !range_straddles_page_boundary(phys, size) && !swiotlb_force) {
  341. /* we are not interested in the dma_addr returned by
  342. * xen_dma_map_page, only in the potential cache flushes executed
  343. * by the function. */
  344. xen_dma_map_page(dev, page, offset, size, dir, attrs);
  345. return dev_addr;
  346. }
  347. /*
  348. * Oh well, have to allocate and map a bounce buffer.
  349. */
  350. trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
  351. map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
  352. if (map == SWIOTLB_MAP_ERROR)
  353. return DMA_ERROR_CODE;
  354. xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
  355. map & ~PAGE_MASK, size, dir, attrs);
  356. dev_addr = xen_phys_to_bus(map);
  357. /*
  358. * Ensure that the address returned is DMA'ble
  359. */
  360. if (!dma_capable(dev, dev_addr, size)) {
  361. swiotlb_tbl_unmap_single(dev, map, size, dir);
  362. dev_addr = 0;
  363. }
  364. return dev_addr;
  365. }
  366. EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
  367. /*
  368. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  369. * match what was provided for in a previous xen_swiotlb_map_page call. All
  370. * other usages are undefined.
  371. *
  372. * After this call, reads by the cpu to the buffer are guaranteed to see
  373. * whatever the device wrote there.
  374. */
  375. static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  376. size_t size, enum dma_data_direction dir,
  377. struct dma_attrs *attrs)
  378. {
  379. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  380. BUG_ON(dir == DMA_NONE);
  381. xen_dma_unmap_page(hwdev, paddr, size, dir, attrs);
  382. /* NOTE: We use dev_addr here, not paddr! */
  383. if (is_xen_swiotlb_buffer(dev_addr)) {
  384. swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
  385. return;
  386. }
  387. if (dir != DMA_FROM_DEVICE)
  388. return;
  389. /*
  390. * phys_to_virt doesn't work with hihgmem page but we could
  391. * call dma_mark_clean() with hihgmem page here. However, we
  392. * are fine since dma_mark_clean() is null on POWERPC. We can
  393. * make dma_mark_clean() take a physical address if necessary.
  394. */
  395. dma_mark_clean(phys_to_virt(paddr), size);
  396. }
  397. void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  398. size_t size, enum dma_data_direction dir,
  399. struct dma_attrs *attrs)
  400. {
  401. xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
  402. }
  403. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
  404. /*
  405. * Make physical memory consistent for a single streaming mode DMA translation
  406. * after a transfer.
  407. *
  408. * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
  409. * using the cpu, yet do not wish to teardown the dma mapping, you must
  410. * call this function before doing so. At the next point you give the dma
  411. * address back to the card, you must first perform a
  412. * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
  413. */
  414. static void
  415. xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  416. size_t size, enum dma_data_direction dir,
  417. enum dma_sync_target target)
  418. {
  419. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  420. BUG_ON(dir == DMA_NONE);
  421. if (target == SYNC_FOR_CPU)
  422. xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
  423. /* NOTE: We use dev_addr here, not paddr! */
  424. if (is_xen_swiotlb_buffer(dev_addr))
  425. swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
  426. if (target == SYNC_FOR_DEVICE)
  427. xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
  428. if (dir != DMA_FROM_DEVICE)
  429. return;
  430. dma_mark_clean(phys_to_virt(paddr), size);
  431. }
  432. void
  433. xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  434. size_t size, enum dma_data_direction dir)
  435. {
  436. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  437. }
  438. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
  439. void
  440. xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  441. size_t size, enum dma_data_direction dir)
  442. {
  443. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  444. }
  445. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
  446. /*
  447. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  448. * This is the scatter-gather version of the above xen_swiotlb_map_page
  449. * interface. Here the scatter gather list elements are each tagged with the
  450. * appropriate dma address and length. They are obtained via
  451. * sg_dma_{address,length}(SG).
  452. *
  453. * NOTE: An implementation may be able to use a smaller number of
  454. * DMA address/length pairs than there are SG table elements.
  455. * (for example via virtual mapping capabilities)
  456. * The routine returns the number of addr/length pairs actually
  457. * used, at most nents.
  458. *
  459. * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
  460. * same here.
  461. */
  462. int
  463. xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  464. int nelems, enum dma_data_direction dir,
  465. struct dma_attrs *attrs)
  466. {
  467. struct scatterlist *sg;
  468. int i;
  469. BUG_ON(dir == DMA_NONE);
  470. for_each_sg(sgl, sg, nelems, i) {
  471. phys_addr_t paddr = sg_phys(sg);
  472. dma_addr_t dev_addr = xen_phys_to_bus(paddr);
  473. if (swiotlb_force ||
  474. !dma_capable(hwdev, dev_addr, sg->length) ||
  475. range_straddles_page_boundary(paddr, sg->length)) {
  476. phys_addr_t map = swiotlb_tbl_map_single(hwdev,
  477. start_dma_addr,
  478. sg_phys(sg),
  479. sg->length,
  480. dir);
  481. if (map == SWIOTLB_MAP_ERROR) {
  482. dev_warn(hwdev, "swiotlb buffer is full\n");
  483. /* Don't panic here, we expect map_sg users
  484. to do proper error handling. */
  485. xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  486. attrs);
  487. sg_dma_len(sgl) = 0;
  488. return 0;
  489. }
  490. xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
  491. map & ~PAGE_MASK,
  492. sg->length,
  493. dir,
  494. attrs);
  495. sg->dma_address = xen_phys_to_bus(map);
  496. } else {
  497. /* we are not interested in the dma_addr returned by
  498. * xen_dma_map_page, only in the potential cache flushes executed
  499. * by the function. */
  500. xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
  501. paddr & ~PAGE_MASK,
  502. sg->length,
  503. dir,
  504. attrs);
  505. sg->dma_address = dev_addr;
  506. }
  507. sg_dma_len(sg) = sg->length;
  508. }
  509. return nelems;
  510. }
  511. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
  512. /*
  513. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  514. * concerning calls here are the same as for swiotlb_unmap_page() above.
  515. */
  516. void
  517. xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  518. int nelems, enum dma_data_direction dir,
  519. struct dma_attrs *attrs)
  520. {
  521. struct scatterlist *sg;
  522. int i;
  523. BUG_ON(dir == DMA_NONE);
  524. for_each_sg(sgl, sg, nelems, i)
  525. xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
  526. }
  527. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
  528. /*
  529. * Make physical memory consistent for a set of streaming mode DMA translations
  530. * after a transfer.
  531. *
  532. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  533. * and usage.
  534. */
  535. static void
  536. xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  537. int nelems, enum dma_data_direction dir,
  538. enum dma_sync_target target)
  539. {
  540. struct scatterlist *sg;
  541. int i;
  542. for_each_sg(sgl, sg, nelems, i)
  543. xen_swiotlb_sync_single(hwdev, sg->dma_address,
  544. sg_dma_len(sg), dir, target);
  545. }
  546. void
  547. xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  548. int nelems, enum dma_data_direction dir)
  549. {
  550. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  551. }
  552. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
  553. void
  554. xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  555. int nelems, enum dma_data_direction dir)
  556. {
  557. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  558. }
  559. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
  560. int
  561. xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  562. {
  563. return !dma_addr;
  564. }
  565. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
  566. /*
  567. * Return whether the given device DMA address mask can be supported
  568. * properly. For example, if your device can only drive the low 24-bits
  569. * during bus mastering, then you would pass 0x00ffffff as the mask to
  570. * this function.
  571. */
  572. int
  573. xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
  574. {
  575. return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
  576. }
  577. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
  578. int
  579. xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
  580. {
  581. if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
  582. return -EIO;
  583. *dev->dma_mask = dma_mask;
  584. return 0;
  585. }
  586. EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);