messenger.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* static tag bytes (protocol control messages) */
  29. static char tag_msg = CEPH_MSGR_TAG_MSG;
  30. static char tag_ack = CEPH_MSGR_TAG_ACK;
  31. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  32. #ifdef CONFIG_LOCKDEP
  33. static struct lock_class_key socket_class;
  34. #endif
  35. static void queue_con(struct ceph_connection *con);
  36. static void con_work(struct work_struct *);
  37. static void ceph_fault(struct ceph_connection *con);
  38. /*
  39. * Nicely render a sockaddr as a string. An array of formatted
  40. * strings is used, to approximate reentrancy.
  41. */
  42. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  43. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  44. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  45. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  46. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  47. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  48. static struct page *zero_page; /* used in certain error cases */
  49. static void *zero_page_address; /* kernel virtual addr of zero_page */
  50. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  51. {
  52. int i;
  53. char *s;
  54. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  55. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  56. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  57. s = addr_str[i];
  58. switch (ss->ss_family) {
  59. case AF_INET:
  60. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  61. ntohs(in4->sin_port));
  62. break;
  63. case AF_INET6:
  64. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  65. ntohs(in6->sin6_port));
  66. break;
  67. default:
  68. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  69. ss->ss_family);
  70. }
  71. return s;
  72. }
  73. EXPORT_SYMBOL(ceph_pr_addr);
  74. static void encode_my_addr(struct ceph_messenger *msgr)
  75. {
  76. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  77. ceph_encode_addr(&msgr->my_enc_addr);
  78. }
  79. /*
  80. * work queue for all reading and writing to/from the socket.
  81. */
  82. static struct workqueue_struct *ceph_msgr_wq;
  83. void _ceph_msgr_exit(void)
  84. {
  85. if (ceph_msgr_wq) {
  86. destroy_workqueue(ceph_msgr_wq);
  87. ceph_msgr_wq = NULL;
  88. }
  89. BUG_ON(zero_page_address == NULL);
  90. zero_page_address = NULL;
  91. BUG_ON(zero_page == NULL);
  92. kunmap(zero_page);
  93. page_cache_release(zero_page);
  94. zero_page = NULL;
  95. }
  96. int ceph_msgr_init(void)
  97. {
  98. BUG_ON(zero_page != NULL);
  99. zero_page = ZERO_PAGE(0);
  100. page_cache_get(zero_page);
  101. BUG_ON(zero_page_address != NULL);
  102. zero_page_address = kmap(zero_page);
  103. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  104. if (ceph_msgr_wq)
  105. return 0;
  106. pr_err("msgr_init failed to create workqueue\n");
  107. _ceph_msgr_exit();
  108. return -ENOMEM;
  109. }
  110. EXPORT_SYMBOL(ceph_msgr_init);
  111. void ceph_msgr_exit(void)
  112. {
  113. BUG_ON(ceph_msgr_wq == NULL);
  114. _ceph_msgr_exit();
  115. }
  116. EXPORT_SYMBOL(ceph_msgr_exit);
  117. void ceph_msgr_flush(void)
  118. {
  119. flush_workqueue(ceph_msgr_wq);
  120. }
  121. EXPORT_SYMBOL(ceph_msgr_flush);
  122. /*
  123. * socket callback functions
  124. */
  125. /* data available on socket, or listen socket received a connect */
  126. static void ceph_data_ready(struct sock *sk, int count_unused)
  127. {
  128. struct ceph_connection *con = sk->sk_user_data;
  129. if (sk->sk_state != TCP_CLOSE_WAIT) {
  130. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  131. con, con->state);
  132. queue_con(con);
  133. }
  134. }
  135. /* socket has buffer space for writing */
  136. static void ceph_write_space(struct sock *sk)
  137. {
  138. struct ceph_connection *con = sk->sk_user_data;
  139. /* only queue to workqueue if there is data we want to write,
  140. * and there is sufficient space in the socket buffer to accept
  141. * more data. clear SOCK_NOSPACE so that ceph_write_space()
  142. * doesn't get called again until try_write() fills the socket
  143. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  144. * and net/core/stream.c:sk_stream_write_space().
  145. */
  146. if (test_bit(WRITE_PENDING, &con->state)) {
  147. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  148. dout("ceph_write_space %p queueing write work\n", con);
  149. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  150. queue_con(con);
  151. }
  152. } else {
  153. dout("ceph_write_space %p nothing to write\n", con);
  154. }
  155. }
  156. /* socket's state has changed */
  157. static void ceph_state_change(struct sock *sk)
  158. {
  159. struct ceph_connection *con = sk->sk_user_data;
  160. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  161. con, con->state, sk->sk_state);
  162. if (test_bit(CLOSED, &con->state))
  163. return;
  164. switch (sk->sk_state) {
  165. case TCP_CLOSE:
  166. dout("ceph_state_change TCP_CLOSE\n");
  167. case TCP_CLOSE_WAIT:
  168. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  169. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  170. if (test_bit(CONNECTING, &con->state))
  171. con->error_msg = "connection failed";
  172. else
  173. con->error_msg = "socket closed";
  174. queue_con(con);
  175. }
  176. break;
  177. case TCP_ESTABLISHED:
  178. dout("ceph_state_change TCP_ESTABLISHED\n");
  179. queue_con(con);
  180. break;
  181. default: /* Everything else is uninteresting */
  182. break;
  183. }
  184. }
  185. /*
  186. * set up socket callbacks
  187. */
  188. static void set_sock_callbacks(struct socket *sock,
  189. struct ceph_connection *con)
  190. {
  191. struct sock *sk = sock->sk;
  192. sk->sk_user_data = con;
  193. sk->sk_data_ready = ceph_data_ready;
  194. sk->sk_write_space = ceph_write_space;
  195. sk->sk_state_change = ceph_state_change;
  196. }
  197. /*
  198. * socket helpers
  199. */
  200. /*
  201. * initiate connection to a remote socket.
  202. */
  203. static int ceph_tcp_connect(struct ceph_connection *con)
  204. {
  205. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  206. struct socket *sock;
  207. int ret;
  208. BUG_ON(con->sock);
  209. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  210. IPPROTO_TCP, &sock);
  211. if (ret)
  212. return ret;
  213. sock->sk->sk_allocation = GFP_NOFS;
  214. #ifdef CONFIG_LOCKDEP
  215. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  216. #endif
  217. set_sock_callbacks(sock, con);
  218. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  219. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  220. O_NONBLOCK);
  221. if (ret == -EINPROGRESS) {
  222. dout("connect %s EINPROGRESS sk_state = %u\n",
  223. ceph_pr_addr(&con->peer_addr.in_addr),
  224. sock->sk->sk_state);
  225. } else if (ret < 0) {
  226. pr_err("connect %s error %d\n",
  227. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  228. sock_release(sock);
  229. con->error_msg = "connect error";
  230. return ret;
  231. }
  232. con->sock = sock;
  233. return 0;
  234. }
  235. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  236. {
  237. struct kvec iov = {buf, len};
  238. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  239. int r;
  240. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  241. if (r == -EAGAIN)
  242. r = 0;
  243. return r;
  244. }
  245. /*
  246. * write something. @more is true if caller will be sending more data
  247. * shortly.
  248. */
  249. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  250. size_t kvlen, size_t len, int more)
  251. {
  252. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  253. int r;
  254. if (more)
  255. msg.msg_flags |= MSG_MORE;
  256. else
  257. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  258. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  259. if (r == -EAGAIN)
  260. r = 0;
  261. return r;
  262. }
  263. /*
  264. * Shutdown/close the socket for the given connection.
  265. */
  266. static int con_close_socket(struct ceph_connection *con)
  267. {
  268. int rc;
  269. dout("con_close_socket on %p sock %p\n", con, con->sock);
  270. if (!con->sock)
  271. return 0;
  272. set_bit(SOCK_CLOSED, &con->state);
  273. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  274. sock_release(con->sock);
  275. con->sock = NULL;
  276. clear_bit(SOCK_CLOSED, &con->state);
  277. return rc;
  278. }
  279. /*
  280. * Reset a connection. Discard all incoming and outgoing messages
  281. * and clear *_seq state.
  282. */
  283. static void ceph_msg_remove(struct ceph_msg *msg)
  284. {
  285. list_del_init(&msg->list_head);
  286. ceph_msg_put(msg);
  287. }
  288. static void ceph_msg_remove_list(struct list_head *head)
  289. {
  290. while (!list_empty(head)) {
  291. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  292. list_head);
  293. ceph_msg_remove(msg);
  294. }
  295. }
  296. static void reset_connection(struct ceph_connection *con)
  297. {
  298. /* reset connection, out_queue, msg_ and connect_seq */
  299. /* discard existing out_queue and msg_seq */
  300. ceph_msg_remove_list(&con->out_queue);
  301. ceph_msg_remove_list(&con->out_sent);
  302. if (con->in_msg) {
  303. ceph_msg_put(con->in_msg);
  304. con->in_msg = NULL;
  305. }
  306. con->connect_seq = 0;
  307. con->out_seq = 0;
  308. if (con->out_msg) {
  309. ceph_msg_put(con->out_msg);
  310. con->out_msg = NULL;
  311. }
  312. con->in_seq = 0;
  313. con->in_seq_acked = 0;
  314. }
  315. /*
  316. * mark a peer down. drop any open connections.
  317. */
  318. void ceph_con_close(struct ceph_connection *con)
  319. {
  320. dout("con_close %p peer %s\n", con,
  321. ceph_pr_addr(&con->peer_addr.in_addr));
  322. set_bit(CLOSED, &con->state); /* in case there's queued work */
  323. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  324. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  325. clear_bit(KEEPALIVE_PENDING, &con->state);
  326. clear_bit(WRITE_PENDING, &con->state);
  327. mutex_lock(&con->mutex);
  328. reset_connection(con);
  329. con->peer_global_seq = 0;
  330. cancel_delayed_work(&con->work);
  331. mutex_unlock(&con->mutex);
  332. queue_con(con);
  333. }
  334. EXPORT_SYMBOL(ceph_con_close);
  335. /*
  336. * Reopen a closed connection, with a new peer address.
  337. */
  338. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  339. {
  340. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  341. set_bit(OPENING, &con->state);
  342. clear_bit(CLOSED, &con->state);
  343. memcpy(&con->peer_addr, addr, sizeof(*addr));
  344. con->delay = 0; /* reset backoff memory */
  345. queue_con(con);
  346. }
  347. EXPORT_SYMBOL(ceph_con_open);
  348. /*
  349. * return true if this connection ever successfully opened
  350. */
  351. bool ceph_con_opened(struct ceph_connection *con)
  352. {
  353. return con->connect_seq > 0;
  354. }
  355. /*
  356. * generic get/put
  357. */
  358. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  359. {
  360. int nref = __atomic_add_unless(&con->nref, 1, 0);
  361. dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
  362. return nref ? con : NULL;
  363. }
  364. void ceph_con_put(struct ceph_connection *con)
  365. {
  366. int nref = atomic_dec_return(&con->nref);
  367. BUG_ON(nref < 0);
  368. if (nref == 0) {
  369. BUG_ON(con->sock);
  370. kfree(con);
  371. }
  372. dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
  373. }
  374. /*
  375. * initialize a new connection.
  376. */
  377. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  378. {
  379. dout("con_init %p\n", con);
  380. memset(con, 0, sizeof(*con));
  381. atomic_set(&con->nref, 1);
  382. con->msgr = msgr;
  383. mutex_init(&con->mutex);
  384. INIT_LIST_HEAD(&con->out_queue);
  385. INIT_LIST_HEAD(&con->out_sent);
  386. INIT_DELAYED_WORK(&con->work, con_work);
  387. }
  388. EXPORT_SYMBOL(ceph_con_init);
  389. /*
  390. * We maintain a global counter to order connection attempts. Get
  391. * a unique seq greater than @gt.
  392. */
  393. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  394. {
  395. u32 ret;
  396. spin_lock(&msgr->global_seq_lock);
  397. if (msgr->global_seq < gt)
  398. msgr->global_seq = gt;
  399. ret = ++msgr->global_seq;
  400. spin_unlock(&msgr->global_seq_lock);
  401. return ret;
  402. }
  403. static void ceph_con_out_kvec_reset(struct ceph_connection *con)
  404. {
  405. con->out_kvec_left = 0;
  406. con->out_kvec_bytes = 0;
  407. con->out_kvec_cur = &con->out_kvec[0];
  408. }
  409. static void ceph_con_out_kvec_add(struct ceph_connection *con,
  410. size_t size, void *data)
  411. {
  412. int index;
  413. index = con->out_kvec_left;
  414. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  415. con->out_kvec[index].iov_len = size;
  416. con->out_kvec[index].iov_base = data;
  417. con->out_kvec_left++;
  418. con->out_kvec_bytes += size;
  419. }
  420. /*
  421. * Prepare footer for currently outgoing message, and finish things
  422. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  423. */
  424. static void prepare_write_message_footer(struct ceph_connection *con)
  425. {
  426. struct ceph_msg *m = con->out_msg;
  427. int v = con->out_kvec_left;
  428. dout("prepare_write_message_footer %p\n", con);
  429. con->out_kvec_is_msg = true;
  430. con->out_kvec[v].iov_base = &m->footer;
  431. con->out_kvec[v].iov_len = sizeof(m->footer);
  432. con->out_kvec_bytes += sizeof(m->footer);
  433. con->out_kvec_left++;
  434. con->out_more = m->more_to_follow;
  435. con->out_msg_done = true;
  436. }
  437. /*
  438. * Prepare headers for the next outgoing message.
  439. */
  440. static void prepare_write_message(struct ceph_connection *con)
  441. {
  442. struct ceph_msg *m;
  443. ceph_con_out_kvec_reset(con);
  444. con->out_kvec_is_msg = true;
  445. con->out_msg_done = false;
  446. /* Sneak an ack in there first? If we can get it into the same
  447. * TCP packet that's a good thing. */
  448. if (con->in_seq > con->in_seq_acked) {
  449. con->in_seq_acked = con->in_seq;
  450. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  451. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  452. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  453. &con->out_temp_ack);
  454. }
  455. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  456. con->out_msg = m;
  457. /* put message on sent list */
  458. ceph_msg_get(m);
  459. list_move_tail(&m->list_head, &con->out_sent);
  460. /*
  461. * only assign outgoing seq # if we haven't sent this message
  462. * yet. if it is requeued, resend with it's original seq.
  463. */
  464. if (m->needs_out_seq) {
  465. m->hdr.seq = cpu_to_le64(++con->out_seq);
  466. m->needs_out_seq = false;
  467. }
  468. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  469. m, con->out_seq, le16_to_cpu(m->hdr.type),
  470. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  471. le32_to_cpu(m->hdr.data_len),
  472. m->nr_pages);
  473. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  474. /* tag + hdr + front + middle */
  475. ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  476. ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  477. ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  478. if (m->middle)
  479. ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
  480. m->middle->vec.iov_base);
  481. /* fill in crc (except data pages), footer */
  482. con->out_msg->hdr.crc =
  483. cpu_to_le32(crc32c(0, &m->hdr,
  484. sizeof(m->hdr) - sizeof(m->hdr.crc)));
  485. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  486. con->out_msg->footer.front_crc =
  487. cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
  488. if (m->middle)
  489. con->out_msg->footer.middle_crc =
  490. cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
  491. m->middle->vec.iov_len));
  492. else
  493. con->out_msg->footer.middle_crc = 0;
  494. con->out_msg->footer.data_crc = 0;
  495. dout("prepare_write_message front_crc %u data_crc %u\n",
  496. le32_to_cpu(con->out_msg->footer.front_crc),
  497. le32_to_cpu(con->out_msg->footer.middle_crc));
  498. /* is there a data payload? */
  499. if (le32_to_cpu(m->hdr.data_len) > 0) {
  500. /* initialize page iterator */
  501. con->out_msg_pos.page = 0;
  502. if (m->pages)
  503. con->out_msg_pos.page_pos = m->page_alignment;
  504. else
  505. con->out_msg_pos.page_pos = 0;
  506. con->out_msg_pos.data_pos = 0;
  507. con->out_msg_pos.did_page_crc = false;
  508. con->out_more = 1; /* data + footer will follow */
  509. } else {
  510. /* no, queue up footer too and be done */
  511. prepare_write_message_footer(con);
  512. }
  513. set_bit(WRITE_PENDING, &con->state);
  514. }
  515. /*
  516. * Prepare an ack.
  517. */
  518. static void prepare_write_ack(struct ceph_connection *con)
  519. {
  520. dout("prepare_write_ack %p %llu -> %llu\n", con,
  521. con->in_seq_acked, con->in_seq);
  522. con->in_seq_acked = con->in_seq;
  523. ceph_con_out_kvec_reset(con);
  524. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  525. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  526. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  527. &con->out_temp_ack);
  528. con->out_more = 1; /* more will follow.. eventually.. */
  529. set_bit(WRITE_PENDING, &con->state);
  530. }
  531. /*
  532. * Prepare to write keepalive byte.
  533. */
  534. static void prepare_write_keepalive(struct ceph_connection *con)
  535. {
  536. dout("prepare_write_keepalive %p\n", con);
  537. ceph_con_out_kvec_reset(con);
  538. ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  539. set_bit(WRITE_PENDING, &con->state);
  540. }
  541. /*
  542. * Connection negotiation.
  543. */
  544. static int prepare_connect_authorizer(struct ceph_connection *con)
  545. {
  546. void *auth_buf;
  547. int auth_len = 0;
  548. int auth_protocol = 0;
  549. mutex_unlock(&con->mutex);
  550. if (con->ops->get_authorizer)
  551. con->ops->get_authorizer(con, &auth_buf, &auth_len,
  552. &auth_protocol, &con->auth_reply_buf,
  553. &con->auth_reply_buf_len,
  554. con->auth_retry);
  555. mutex_lock(&con->mutex);
  556. if (test_bit(CLOSED, &con->state) ||
  557. test_bit(OPENING, &con->state))
  558. return -EAGAIN;
  559. con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
  560. con->out_connect.authorizer_len = cpu_to_le32(auth_len);
  561. if (auth_len)
  562. ceph_con_out_kvec_add(con, auth_len, auth_buf);
  563. return 0;
  564. }
  565. /*
  566. * We connected to a peer and are saying hello.
  567. */
  568. static void prepare_write_banner(struct ceph_messenger *msgr,
  569. struct ceph_connection *con)
  570. {
  571. ceph_con_out_kvec_reset(con);
  572. ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  573. ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
  574. &msgr->my_enc_addr);
  575. con->out_more = 0;
  576. set_bit(WRITE_PENDING, &con->state);
  577. }
  578. static int prepare_write_connect(struct ceph_messenger *msgr,
  579. struct ceph_connection *con,
  580. int include_banner)
  581. {
  582. unsigned global_seq = get_global_seq(con->msgr, 0);
  583. int proto;
  584. switch (con->peer_name.type) {
  585. case CEPH_ENTITY_TYPE_MON:
  586. proto = CEPH_MONC_PROTOCOL;
  587. break;
  588. case CEPH_ENTITY_TYPE_OSD:
  589. proto = CEPH_OSDC_PROTOCOL;
  590. break;
  591. case CEPH_ENTITY_TYPE_MDS:
  592. proto = CEPH_MDSC_PROTOCOL;
  593. break;
  594. default:
  595. BUG();
  596. }
  597. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  598. con->connect_seq, global_seq, proto);
  599. con->out_connect.features = cpu_to_le64(msgr->supported_features);
  600. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  601. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  602. con->out_connect.global_seq = cpu_to_le32(global_seq);
  603. con->out_connect.protocol_version = cpu_to_le32(proto);
  604. con->out_connect.flags = 0;
  605. if (include_banner)
  606. prepare_write_banner(msgr, con);
  607. else
  608. ceph_con_out_kvec_reset(con);
  609. ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
  610. con->out_more = 0;
  611. set_bit(WRITE_PENDING, &con->state);
  612. return prepare_connect_authorizer(con);
  613. }
  614. /*
  615. * write as much of pending kvecs to the socket as we can.
  616. * 1 -> done
  617. * 0 -> socket full, but more to do
  618. * <0 -> error
  619. */
  620. static int write_partial_kvec(struct ceph_connection *con)
  621. {
  622. int ret;
  623. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  624. while (con->out_kvec_bytes > 0) {
  625. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  626. con->out_kvec_left, con->out_kvec_bytes,
  627. con->out_more);
  628. if (ret <= 0)
  629. goto out;
  630. con->out_kvec_bytes -= ret;
  631. if (con->out_kvec_bytes == 0)
  632. break; /* done */
  633. while (ret > 0) {
  634. if (ret >= con->out_kvec_cur->iov_len) {
  635. ret -= con->out_kvec_cur->iov_len;
  636. con->out_kvec_cur++;
  637. con->out_kvec_left--;
  638. } else {
  639. con->out_kvec_cur->iov_len -= ret;
  640. con->out_kvec_cur->iov_base += ret;
  641. ret = 0;
  642. break;
  643. }
  644. }
  645. }
  646. con->out_kvec_left = 0;
  647. con->out_kvec_is_msg = false;
  648. ret = 1;
  649. out:
  650. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  651. con->out_kvec_bytes, con->out_kvec_left, ret);
  652. return ret; /* done! */
  653. }
  654. #ifdef CONFIG_BLOCK
  655. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  656. {
  657. if (!bio) {
  658. *iter = NULL;
  659. *seg = 0;
  660. return;
  661. }
  662. *iter = bio;
  663. *seg = bio->bi_idx;
  664. }
  665. static void iter_bio_next(struct bio **bio_iter, int *seg)
  666. {
  667. if (*bio_iter == NULL)
  668. return;
  669. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  670. (*seg)++;
  671. if (*seg == (*bio_iter)->bi_vcnt)
  672. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  673. }
  674. #endif
  675. /*
  676. * Write as much message data payload as we can. If we finish, queue
  677. * up the footer.
  678. * 1 -> done, footer is now queued in out_kvec[].
  679. * 0 -> socket full, but more to do
  680. * <0 -> error
  681. */
  682. static int write_partial_msg_pages(struct ceph_connection *con)
  683. {
  684. struct ceph_msg *msg = con->out_msg;
  685. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  686. size_t len;
  687. bool do_crc = con->msgr->nocrc;
  688. int ret;
  689. int total_max_write;
  690. int in_trail = 0;
  691. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  692. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  693. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  694. con->out_msg_pos.page_pos);
  695. #ifdef CONFIG_BLOCK
  696. if (msg->bio && !msg->bio_iter)
  697. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  698. #endif
  699. while (data_len > con->out_msg_pos.data_pos) {
  700. struct page *page = NULL;
  701. void *kaddr = NULL;
  702. int max_write = PAGE_SIZE;
  703. int page_shift = 0;
  704. total_max_write = data_len - trail_len -
  705. con->out_msg_pos.data_pos;
  706. /*
  707. * if we are calculating the data crc (the default), we need
  708. * to map the page. if our pages[] has been revoked, use the
  709. * zero page.
  710. */
  711. /* have we reached the trail part of the data? */
  712. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  713. in_trail = 1;
  714. total_max_write = data_len - con->out_msg_pos.data_pos;
  715. page = list_first_entry(&msg->trail->head,
  716. struct page, lru);
  717. if (do_crc)
  718. kaddr = kmap(page);
  719. max_write = PAGE_SIZE;
  720. } else if (msg->pages) {
  721. page = msg->pages[con->out_msg_pos.page];
  722. if (do_crc)
  723. kaddr = kmap(page);
  724. } else if (msg->pagelist) {
  725. page = list_first_entry(&msg->pagelist->head,
  726. struct page, lru);
  727. if (do_crc)
  728. kaddr = kmap(page);
  729. #ifdef CONFIG_BLOCK
  730. } else if (msg->bio) {
  731. struct bio_vec *bv;
  732. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  733. page = bv->bv_page;
  734. page_shift = bv->bv_offset;
  735. if (do_crc)
  736. kaddr = kmap(page) + page_shift;
  737. max_write = bv->bv_len;
  738. #endif
  739. } else {
  740. page = zero_page;
  741. if (do_crc)
  742. kaddr = zero_page_address;
  743. }
  744. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  745. total_max_write);
  746. if (do_crc && !con->out_msg_pos.did_page_crc) {
  747. void *base = kaddr + con->out_msg_pos.page_pos;
  748. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  749. BUG_ON(kaddr == NULL);
  750. con->out_msg->footer.data_crc =
  751. cpu_to_le32(crc32c(tmpcrc, base, len));
  752. con->out_msg_pos.did_page_crc = true;
  753. }
  754. ret = kernel_sendpage(con->sock, page,
  755. con->out_msg_pos.page_pos + page_shift,
  756. len,
  757. MSG_DONTWAIT | MSG_NOSIGNAL |
  758. MSG_MORE);
  759. if (do_crc &&
  760. (msg->pages || msg->pagelist || msg->bio || in_trail))
  761. kunmap(page);
  762. if (ret == -EAGAIN)
  763. ret = 0;
  764. if (ret <= 0)
  765. goto out;
  766. con->out_msg_pos.data_pos += ret;
  767. con->out_msg_pos.page_pos += ret;
  768. if (ret == len) {
  769. con->out_msg_pos.page_pos = 0;
  770. con->out_msg_pos.page++;
  771. con->out_msg_pos.did_page_crc = false;
  772. if (in_trail)
  773. list_move_tail(&page->lru,
  774. &msg->trail->head);
  775. else if (msg->pagelist)
  776. list_move_tail(&page->lru,
  777. &msg->pagelist->head);
  778. #ifdef CONFIG_BLOCK
  779. else if (msg->bio)
  780. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  781. #endif
  782. }
  783. }
  784. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  785. /* prepare and queue up footer, too */
  786. if (!do_crc)
  787. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  788. ceph_con_out_kvec_reset(con);
  789. prepare_write_message_footer(con);
  790. ret = 1;
  791. out:
  792. return ret;
  793. }
  794. /*
  795. * write some zeros
  796. */
  797. static int write_partial_skip(struct ceph_connection *con)
  798. {
  799. int ret;
  800. while (con->out_skip > 0) {
  801. struct kvec iov = {
  802. .iov_base = zero_page_address,
  803. .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
  804. };
  805. ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
  806. if (ret <= 0)
  807. goto out;
  808. con->out_skip -= ret;
  809. }
  810. ret = 1;
  811. out:
  812. return ret;
  813. }
  814. /*
  815. * Prepare to read connection handshake, or an ack.
  816. */
  817. static void prepare_read_banner(struct ceph_connection *con)
  818. {
  819. dout("prepare_read_banner %p\n", con);
  820. con->in_base_pos = 0;
  821. }
  822. static void prepare_read_connect(struct ceph_connection *con)
  823. {
  824. dout("prepare_read_connect %p\n", con);
  825. con->in_base_pos = 0;
  826. }
  827. static void prepare_read_ack(struct ceph_connection *con)
  828. {
  829. dout("prepare_read_ack %p\n", con);
  830. con->in_base_pos = 0;
  831. }
  832. static void prepare_read_tag(struct ceph_connection *con)
  833. {
  834. dout("prepare_read_tag %p\n", con);
  835. con->in_base_pos = 0;
  836. con->in_tag = CEPH_MSGR_TAG_READY;
  837. }
  838. /*
  839. * Prepare to read a message.
  840. */
  841. static int prepare_read_message(struct ceph_connection *con)
  842. {
  843. dout("prepare_read_message %p\n", con);
  844. BUG_ON(con->in_msg != NULL);
  845. con->in_base_pos = 0;
  846. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  847. return 0;
  848. }
  849. static int read_partial(struct ceph_connection *con,
  850. int *to, int size, void *object)
  851. {
  852. *to += size;
  853. while (con->in_base_pos < *to) {
  854. int left = *to - con->in_base_pos;
  855. int have = size - left;
  856. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  857. if (ret <= 0)
  858. return ret;
  859. con->in_base_pos += ret;
  860. }
  861. return 1;
  862. }
  863. /*
  864. * Read all or part of the connect-side handshake on a new connection
  865. */
  866. static int read_partial_banner(struct ceph_connection *con)
  867. {
  868. int ret, to = 0;
  869. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  870. /* peer's banner */
  871. ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
  872. if (ret <= 0)
  873. goto out;
  874. ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
  875. &con->actual_peer_addr);
  876. if (ret <= 0)
  877. goto out;
  878. ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
  879. &con->peer_addr_for_me);
  880. if (ret <= 0)
  881. goto out;
  882. out:
  883. return ret;
  884. }
  885. static int read_partial_connect(struct ceph_connection *con)
  886. {
  887. int ret, to = 0;
  888. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  889. ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
  890. if (ret <= 0)
  891. goto out;
  892. ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
  893. con->auth_reply_buf);
  894. if (ret <= 0)
  895. goto out;
  896. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  897. con, (int)con->in_reply.tag,
  898. le32_to_cpu(con->in_reply.connect_seq),
  899. le32_to_cpu(con->in_reply.global_seq));
  900. out:
  901. return ret;
  902. }
  903. /*
  904. * Verify the hello banner looks okay.
  905. */
  906. static int verify_hello(struct ceph_connection *con)
  907. {
  908. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  909. pr_err("connect to %s got bad banner\n",
  910. ceph_pr_addr(&con->peer_addr.in_addr));
  911. con->error_msg = "protocol error, bad banner";
  912. return -1;
  913. }
  914. return 0;
  915. }
  916. static bool addr_is_blank(struct sockaddr_storage *ss)
  917. {
  918. switch (ss->ss_family) {
  919. case AF_INET:
  920. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  921. case AF_INET6:
  922. return
  923. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  924. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  925. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  926. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  927. }
  928. return false;
  929. }
  930. static int addr_port(struct sockaddr_storage *ss)
  931. {
  932. switch (ss->ss_family) {
  933. case AF_INET:
  934. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  935. case AF_INET6:
  936. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  937. }
  938. return 0;
  939. }
  940. static void addr_set_port(struct sockaddr_storage *ss, int p)
  941. {
  942. switch (ss->ss_family) {
  943. case AF_INET:
  944. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  945. break;
  946. case AF_INET6:
  947. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  948. break;
  949. }
  950. }
  951. /*
  952. * Unlike other *_pton function semantics, zero indicates success.
  953. */
  954. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  955. char delim, const char **ipend)
  956. {
  957. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  958. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  959. memset(ss, 0, sizeof(*ss));
  960. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  961. ss->ss_family = AF_INET;
  962. return 0;
  963. }
  964. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  965. ss->ss_family = AF_INET6;
  966. return 0;
  967. }
  968. return -EINVAL;
  969. }
  970. /*
  971. * Extract hostname string and resolve using kernel DNS facility.
  972. */
  973. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  974. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  975. struct sockaddr_storage *ss, char delim, const char **ipend)
  976. {
  977. const char *end, *delim_p;
  978. char *colon_p, *ip_addr = NULL;
  979. int ip_len, ret;
  980. /*
  981. * The end of the hostname occurs immediately preceding the delimiter or
  982. * the port marker (':') where the delimiter takes precedence.
  983. */
  984. delim_p = memchr(name, delim, namelen);
  985. colon_p = memchr(name, ':', namelen);
  986. if (delim_p && colon_p)
  987. end = delim_p < colon_p ? delim_p : colon_p;
  988. else if (!delim_p && colon_p)
  989. end = colon_p;
  990. else {
  991. end = delim_p;
  992. if (!end) /* case: hostname:/ */
  993. end = name + namelen;
  994. }
  995. if (end <= name)
  996. return -EINVAL;
  997. /* do dns_resolve upcall */
  998. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  999. if (ip_len > 0)
  1000. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1001. else
  1002. ret = -ESRCH;
  1003. kfree(ip_addr);
  1004. *ipend = end;
  1005. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1006. ret, ret ? "failed" : ceph_pr_addr(ss));
  1007. return ret;
  1008. }
  1009. #else
  1010. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1011. struct sockaddr_storage *ss, char delim, const char **ipend)
  1012. {
  1013. return -EINVAL;
  1014. }
  1015. #endif
  1016. /*
  1017. * Parse a server name (IP or hostname). If a valid IP address is not found
  1018. * then try to extract a hostname to resolve using userspace DNS upcall.
  1019. */
  1020. static int ceph_parse_server_name(const char *name, size_t namelen,
  1021. struct sockaddr_storage *ss, char delim, const char **ipend)
  1022. {
  1023. int ret;
  1024. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1025. if (ret)
  1026. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1027. return ret;
  1028. }
  1029. /*
  1030. * Parse an ip[:port] list into an addr array. Use the default
  1031. * monitor port if a port isn't specified.
  1032. */
  1033. int ceph_parse_ips(const char *c, const char *end,
  1034. struct ceph_entity_addr *addr,
  1035. int max_count, int *count)
  1036. {
  1037. int i, ret = -EINVAL;
  1038. const char *p = c;
  1039. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1040. for (i = 0; i < max_count; i++) {
  1041. const char *ipend;
  1042. struct sockaddr_storage *ss = &addr[i].in_addr;
  1043. int port;
  1044. char delim = ',';
  1045. if (*p == '[') {
  1046. delim = ']';
  1047. p++;
  1048. }
  1049. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1050. if (ret)
  1051. goto bad;
  1052. ret = -EINVAL;
  1053. p = ipend;
  1054. if (delim == ']') {
  1055. if (*p != ']') {
  1056. dout("missing matching ']'\n");
  1057. goto bad;
  1058. }
  1059. p++;
  1060. }
  1061. /* port? */
  1062. if (p < end && *p == ':') {
  1063. port = 0;
  1064. p++;
  1065. while (p < end && *p >= '0' && *p <= '9') {
  1066. port = (port * 10) + (*p - '0');
  1067. p++;
  1068. }
  1069. if (port > 65535 || port == 0)
  1070. goto bad;
  1071. } else {
  1072. port = CEPH_MON_PORT;
  1073. }
  1074. addr_set_port(ss, port);
  1075. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1076. if (p == end)
  1077. break;
  1078. if (*p != ',')
  1079. goto bad;
  1080. p++;
  1081. }
  1082. if (p != end)
  1083. goto bad;
  1084. if (count)
  1085. *count = i + 1;
  1086. return 0;
  1087. bad:
  1088. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1089. return ret;
  1090. }
  1091. EXPORT_SYMBOL(ceph_parse_ips);
  1092. static int process_banner(struct ceph_connection *con)
  1093. {
  1094. dout("process_banner on %p\n", con);
  1095. if (verify_hello(con) < 0)
  1096. return -1;
  1097. ceph_decode_addr(&con->actual_peer_addr);
  1098. ceph_decode_addr(&con->peer_addr_for_me);
  1099. /*
  1100. * Make sure the other end is who we wanted. note that the other
  1101. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1102. * them the benefit of the doubt.
  1103. */
  1104. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1105. sizeof(con->peer_addr)) != 0 &&
  1106. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1107. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1108. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1109. ceph_pr_addr(&con->peer_addr.in_addr),
  1110. (int)le32_to_cpu(con->peer_addr.nonce),
  1111. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1112. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1113. con->error_msg = "wrong peer at address";
  1114. return -1;
  1115. }
  1116. /*
  1117. * did we learn our address?
  1118. */
  1119. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1120. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1121. memcpy(&con->msgr->inst.addr.in_addr,
  1122. &con->peer_addr_for_me.in_addr,
  1123. sizeof(con->peer_addr_for_me.in_addr));
  1124. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1125. encode_my_addr(con->msgr);
  1126. dout("process_banner learned my addr is %s\n",
  1127. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1128. }
  1129. set_bit(NEGOTIATING, &con->state);
  1130. prepare_read_connect(con);
  1131. return 0;
  1132. }
  1133. static void fail_protocol(struct ceph_connection *con)
  1134. {
  1135. reset_connection(con);
  1136. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1137. mutex_unlock(&con->mutex);
  1138. if (con->ops->bad_proto)
  1139. con->ops->bad_proto(con);
  1140. mutex_lock(&con->mutex);
  1141. }
  1142. static int process_connect(struct ceph_connection *con)
  1143. {
  1144. u64 sup_feat = con->msgr->supported_features;
  1145. u64 req_feat = con->msgr->required_features;
  1146. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1147. int ret;
  1148. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1149. switch (con->in_reply.tag) {
  1150. case CEPH_MSGR_TAG_FEATURES:
  1151. pr_err("%s%lld %s feature set mismatch,"
  1152. " my %llx < server's %llx, missing %llx\n",
  1153. ENTITY_NAME(con->peer_name),
  1154. ceph_pr_addr(&con->peer_addr.in_addr),
  1155. sup_feat, server_feat, server_feat & ~sup_feat);
  1156. con->error_msg = "missing required protocol features";
  1157. fail_protocol(con);
  1158. return -1;
  1159. case CEPH_MSGR_TAG_BADPROTOVER:
  1160. pr_err("%s%lld %s protocol version mismatch,"
  1161. " my %d != server's %d\n",
  1162. ENTITY_NAME(con->peer_name),
  1163. ceph_pr_addr(&con->peer_addr.in_addr),
  1164. le32_to_cpu(con->out_connect.protocol_version),
  1165. le32_to_cpu(con->in_reply.protocol_version));
  1166. con->error_msg = "protocol version mismatch";
  1167. fail_protocol(con);
  1168. return -1;
  1169. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1170. con->auth_retry++;
  1171. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1172. con->auth_retry);
  1173. if (con->auth_retry == 2) {
  1174. con->error_msg = "connect authorization failure";
  1175. return -1;
  1176. }
  1177. con->auth_retry = 1;
  1178. ret = prepare_write_connect(con->msgr, con, 0);
  1179. if (ret < 0)
  1180. return ret;
  1181. prepare_read_connect(con);
  1182. break;
  1183. case CEPH_MSGR_TAG_RESETSESSION:
  1184. /*
  1185. * If we connected with a large connect_seq but the peer
  1186. * has no record of a session with us (no connection, or
  1187. * connect_seq == 0), they will send RESETSESION to indicate
  1188. * that they must have reset their session, and may have
  1189. * dropped messages.
  1190. */
  1191. dout("process_connect got RESET peer seq %u\n",
  1192. le32_to_cpu(con->in_connect.connect_seq));
  1193. pr_err("%s%lld %s connection reset\n",
  1194. ENTITY_NAME(con->peer_name),
  1195. ceph_pr_addr(&con->peer_addr.in_addr));
  1196. reset_connection(con);
  1197. prepare_write_connect(con->msgr, con, 0);
  1198. prepare_read_connect(con);
  1199. /* Tell ceph about it. */
  1200. mutex_unlock(&con->mutex);
  1201. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1202. if (con->ops->peer_reset)
  1203. con->ops->peer_reset(con);
  1204. mutex_lock(&con->mutex);
  1205. if (test_bit(CLOSED, &con->state) ||
  1206. test_bit(OPENING, &con->state))
  1207. return -EAGAIN;
  1208. break;
  1209. case CEPH_MSGR_TAG_RETRY_SESSION:
  1210. /*
  1211. * If we sent a smaller connect_seq than the peer has, try
  1212. * again with a larger value.
  1213. */
  1214. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1215. le32_to_cpu(con->out_connect.connect_seq),
  1216. le32_to_cpu(con->in_connect.connect_seq));
  1217. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1218. prepare_write_connect(con->msgr, con, 0);
  1219. prepare_read_connect(con);
  1220. break;
  1221. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1222. /*
  1223. * If we sent a smaller global_seq than the peer has, try
  1224. * again with a larger value.
  1225. */
  1226. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1227. con->peer_global_seq,
  1228. le32_to_cpu(con->in_connect.global_seq));
  1229. get_global_seq(con->msgr,
  1230. le32_to_cpu(con->in_connect.global_seq));
  1231. prepare_write_connect(con->msgr, con, 0);
  1232. prepare_read_connect(con);
  1233. break;
  1234. case CEPH_MSGR_TAG_READY:
  1235. if (req_feat & ~server_feat) {
  1236. pr_err("%s%lld %s protocol feature mismatch,"
  1237. " my required %llx > server's %llx, need %llx\n",
  1238. ENTITY_NAME(con->peer_name),
  1239. ceph_pr_addr(&con->peer_addr.in_addr),
  1240. req_feat, server_feat, req_feat & ~server_feat);
  1241. con->error_msg = "missing required protocol features";
  1242. fail_protocol(con);
  1243. return -1;
  1244. }
  1245. clear_bit(CONNECTING, &con->state);
  1246. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1247. con->connect_seq++;
  1248. con->peer_features = server_feat;
  1249. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1250. con->peer_global_seq,
  1251. le32_to_cpu(con->in_reply.connect_seq),
  1252. con->connect_seq);
  1253. WARN_ON(con->connect_seq !=
  1254. le32_to_cpu(con->in_reply.connect_seq));
  1255. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1256. set_bit(LOSSYTX, &con->state);
  1257. prepare_read_tag(con);
  1258. break;
  1259. case CEPH_MSGR_TAG_WAIT:
  1260. /*
  1261. * If there is a connection race (we are opening
  1262. * connections to each other), one of us may just have
  1263. * to WAIT. This shouldn't happen if we are the
  1264. * client.
  1265. */
  1266. pr_err("process_connect got WAIT as client\n");
  1267. con->error_msg = "protocol error, got WAIT as client";
  1268. return -1;
  1269. default:
  1270. pr_err("connect protocol error, will retry\n");
  1271. con->error_msg = "protocol error, garbage tag during connect";
  1272. return -1;
  1273. }
  1274. return 0;
  1275. }
  1276. /*
  1277. * read (part of) an ack
  1278. */
  1279. static int read_partial_ack(struct ceph_connection *con)
  1280. {
  1281. int to = 0;
  1282. return read_partial(con, &to, sizeof(con->in_temp_ack),
  1283. &con->in_temp_ack);
  1284. }
  1285. /*
  1286. * We can finally discard anything that's been acked.
  1287. */
  1288. static void process_ack(struct ceph_connection *con)
  1289. {
  1290. struct ceph_msg *m;
  1291. u64 ack = le64_to_cpu(con->in_temp_ack);
  1292. u64 seq;
  1293. while (!list_empty(&con->out_sent)) {
  1294. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1295. list_head);
  1296. seq = le64_to_cpu(m->hdr.seq);
  1297. if (seq > ack)
  1298. break;
  1299. dout("got ack for seq %llu type %d at %p\n", seq,
  1300. le16_to_cpu(m->hdr.type), m);
  1301. m->ack_stamp = jiffies;
  1302. ceph_msg_remove(m);
  1303. }
  1304. prepare_read_tag(con);
  1305. }
  1306. static int read_partial_message_section(struct ceph_connection *con,
  1307. struct kvec *section,
  1308. unsigned int sec_len, u32 *crc)
  1309. {
  1310. int ret, left;
  1311. BUG_ON(!section);
  1312. while (section->iov_len < sec_len) {
  1313. BUG_ON(section->iov_base == NULL);
  1314. left = sec_len - section->iov_len;
  1315. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1316. section->iov_len, left);
  1317. if (ret <= 0)
  1318. return ret;
  1319. section->iov_len += ret;
  1320. if (section->iov_len == sec_len)
  1321. *crc = crc32c(0, section->iov_base,
  1322. section->iov_len);
  1323. }
  1324. return 1;
  1325. }
  1326. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1327. struct ceph_msg_header *hdr,
  1328. int *skip);
  1329. static int read_partial_message_pages(struct ceph_connection *con,
  1330. struct page **pages,
  1331. unsigned data_len, bool do_datacrc)
  1332. {
  1333. void *p;
  1334. int ret;
  1335. int left;
  1336. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1337. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1338. /* (page) data */
  1339. BUG_ON(pages == NULL);
  1340. p = kmap(pages[con->in_msg_pos.page]);
  1341. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1342. left);
  1343. if (ret > 0 && do_datacrc)
  1344. con->in_data_crc =
  1345. crc32c(con->in_data_crc,
  1346. p + con->in_msg_pos.page_pos, ret);
  1347. kunmap(pages[con->in_msg_pos.page]);
  1348. if (ret <= 0)
  1349. return ret;
  1350. con->in_msg_pos.data_pos += ret;
  1351. con->in_msg_pos.page_pos += ret;
  1352. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1353. con->in_msg_pos.page_pos = 0;
  1354. con->in_msg_pos.page++;
  1355. }
  1356. return ret;
  1357. }
  1358. #ifdef CONFIG_BLOCK
  1359. static int read_partial_message_bio(struct ceph_connection *con,
  1360. struct bio **bio_iter, int *bio_seg,
  1361. unsigned data_len, bool do_datacrc)
  1362. {
  1363. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1364. void *p;
  1365. int ret, left;
  1366. if (IS_ERR(bv))
  1367. return PTR_ERR(bv);
  1368. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1369. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1370. p = kmap(bv->bv_page) + bv->bv_offset;
  1371. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1372. left);
  1373. if (ret > 0 && do_datacrc)
  1374. con->in_data_crc =
  1375. crc32c(con->in_data_crc,
  1376. p + con->in_msg_pos.page_pos, ret);
  1377. kunmap(bv->bv_page);
  1378. if (ret <= 0)
  1379. return ret;
  1380. con->in_msg_pos.data_pos += ret;
  1381. con->in_msg_pos.page_pos += ret;
  1382. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1383. con->in_msg_pos.page_pos = 0;
  1384. iter_bio_next(bio_iter, bio_seg);
  1385. }
  1386. return ret;
  1387. }
  1388. #endif
  1389. /*
  1390. * read (part of) a message.
  1391. */
  1392. static int read_partial_message(struct ceph_connection *con)
  1393. {
  1394. struct ceph_msg *m = con->in_msg;
  1395. int ret;
  1396. int to, left;
  1397. unsigned front_len, middle_len, data_len;
  1398. bool do_datacrc = con->msgr->nocrc;
  1399. int skip;
  1400. u64 seq;
  1401. dout("read_partial_message con %p msg %p\n", con, m);
  1402. /* header */
  1403. while (con->in_base_pos < sizeof(con->in_hdr)) {
  1404. left = sizeof(con->in_hdr) - con->in_base_pos;
  1405. ret = ceph_tcp_recvmsg(con->sock,
  1406. (char *)&con->in_hdr + con->in_base_pos,
  1407. left);
  1408. if (ret <= 0)
  1409. return ret;
  1410. con->in_base_pos += ret;
  1411. if (con->in_base_pos == sizeof(con->in_hdr)) {
  1412. u32 crc = crc32c(0, &con->in_hdr,
  1413. sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
  1414. if (crc != le32_to_cpu(con->in_hdr.crc)) {
  1415. pr_err("read_partial_message bad hdr "
  1416. " crc %u != expected %u\n",
  1417. crc, con->in_hdr.crc);
  1418. return -EBADMSG;
  1419. }
  1420. }
  1421. }
  1422. front_len = le32_to_cpu(con->in_hdr.front_len);
  1423. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1424. return -EIO;
  1425. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1426. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1427. return -EIO;
  1428. data_len = le32_to_cpu(con->in_hdr.data_len);
  1429. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1430. return -EIO;
  1431. /* verify seq# */
  1432. seq = le64_to_cpu(con->in_hdr.seq);
  1433. if ((s64)seq - (s64)con->in_seq < 1) {
  1434. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1435. ENTITY_NAME(con->peer_name),
  1436. ceph_pr_addr(&con->peer_addr.in_addr),
  1437. seq, con->in_seq + 1);
  1438. con->in_base_pos = -front_len - middle_len - data_len -
  1439. sizeof(m->footer);
  1440. con->in_tag = CEPH_MSGR_TAG_READY;
  1441. return 0;
  1442. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1443. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1444. seq, con->in_seq + 1);
  1445. con->error_msg = "bad message sequence # for incoming message";
  1446. return -EBADMSG;
  1447. }
  1448. /* allocate message? */
  1449. if (!con->in_msg) {
  1450. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1451. con->in_hdr.front_len, con->in_hdr.data_len);
  1452. skip = 0;
  1453. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1454. if (skip) {
  1455. /* skip this message */
  1456. dout("alloc_msg said skip message\n");
  1457. BUG_ON(con->in_msg);
  1458. con->in_base_pos = -front_len - middle_len - data_len -
  1459. sizeof(m->footer);
  1460. con->in_tag = CEPH_MSGR_TAG_READY;
  1461. con->in_seq++;
  1462. return 0;
  1463. }
  1464. if (!con->in_msg) {
  1465. con->error_msg =
  1466. "error allocating memory for incoming message";
  1467. return -ENOMEM;
  1468. }
  1469. m = con->in_msg;
  1470. m->front.iov_len = 0; /* haven't read it yet */
  1471. if (m->middle)
  1472. m->middle->vec.iov_len = 0;
  1473. con->in_msg_pos.page = 0;
  1474. if (m->pages)
  1475. con->in_msg_pos.page_pos = m->page_alignment;
  1476. else
  1477. con->in_msg_pos.page_pos = 0;
  1478. con->in_msg_pos.data_pos = 0;
  1479. }
  1480. /* front */
  1481. ret = read_partial_message_section(con, &m->front, front_len,
  1482. &con->in_front_crc);
  1483. if (ret <= 0)
  1484. return ret;
  1485. /* middle */
  1486. if (m->middle) {
  1487. ret = read_partial_message_section(con, &m->middle->vec,
  1488. middle_len,
  1489. &con->in_middle_crc);
  1490. if (ret <= 0)
  1491. return ret;
  1492. }
  1493. #ifdef CONFIG_BLOCK
  1494. if (m->bio && !m->bio_iter)
  1495. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1496. #endif
  1497. /* (page) data */
  1498. while (con->in_msg_pos.data_pos < data_len) {
  1499. if (m->pages) {
  1500. ret = read_partial_message_pages(con, m->pages,
  1501. data_len, do_datacrc);
  1502. if (ret <= 0)
  1503. return ret;
  1504. #ifdef CONFIG_BLOCK
  1505. } else if (m->bio) {
  1506. ret = read_partial_message_bio(con,
  1507. &m->bio_iter, &m->bio_seg,
  1508. data_len, do_datacrc);
  1509. if (ret <= 0)
  1510. return ret;
  1511. #endif
  1512. } else {
  1513. BUG_ON(1);
  1514. }
  1515. }
  1516. /* footer */
  1517. to = sizeof(m->hdr) + sizeof(m->footer);
  1518. while (con->in_base_pos < to) {
  1519. left = to - con->in_base_pos;
  1520. ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
  1521. (con->in_base_pos - sizeof(m->hdr)),
  1522. left);
  1523. if (ret <= 0)
  1524. return ret;
  1525. con->in_base_pos += ret;
  1526. }
  1527. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1528. m, front_len, m->footer.front_crc, middle_len,
  1529. m->footer.middle_crc, data_len, m->footer.data_crc);
  1530. /* crc ok? */
  1531. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1532. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1533. m, con->in_front_crc, m->footer.front_crc);
  1534. return -EBADMSG;
  1535. }
  1536. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1537. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1538. m, con->in_middle_crc, m->footer.middle_crc);
  1539. return -EBADMSG;
  1540. }
  1541. if (do_datacrc &&
  1542. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1543. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1544. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1545. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1546. return -EBADMSG;
  1547. }
  1548. return 1; /* done! */
  1549. }
  1550. /*
  1551. * Process message. This happens in the worker thread. The callback should
  1552. * be careful not to do anything that waits on other incoming messages or it
  1553. * may deadlock.
  1554. */
  1555. static void process_message(struct ceph_connection *con)
  1556. {
  1557. struct ceph_msg *msg;
  1558. msg = con->in_msg;
  1559. con->in_msg = NULL;
  1560. /* if first message, set peer_name */
  1561. if (con->peer_name.type == 0)
  1562. con->peer_name = msg->hdr.src;
  1563. con->in_seq++;
  1564. mutex_unlock(&con->mutex);
  1565. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1566. msg, le64_to_cpu(msg->hdr.seq),
  1567. ENTITY_NAME(msg->hdr.src),
  1568. le16_to_cpu(msg->hdr.type),
  1569. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1570. le32_to_cpu(msg->hdr.front_len),
  1571. le32_to_cpu(msg->hdr.data_len),
  1572. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1573. con->ops->dispatch(con, msg);
  1574. mutex_lock(&con->mutex);
  1575. prepare_read_tag(con);
  1576. }
  1577. /*
  1578. * Write something to the socket. Called in a worker thread when the
  1579. * socket appears to be writeable and we have something ready to send.
  1580. */
  1581. static int try_write(struct ceph_connection *con)
  1582. {
  1583. struct ceph_messenger *msgr = con->msgr;
  1584. int ret = 1;
  1585. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1586. atomic_read(&con->nref));
  1587. more:
  1588. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1589. /* open the socket first? */
  1590. if (con->sock == NULL) {
  1591. prepare_write_connect(msgr, con, 1);
  1592. prepare_read_banner(con);
  1593. set_bit(CONNECTING, &con->state);
  1594. clear_bit(NEGOTIATING, &con->state);
  1595. BUG_ON(con->in_msg);
  1596. con->in_tag = CEPH_MSGR_TAG_READY;
  1597. dout("try_write initiating connect on %p new state %lu\n",
  1598. con, con->state);
  1599. ret = ceph_tcp_connect(con);
  1600. if (ret < 0) {
  1601. con->error_msg = "connect error";
  1602. goto out;
  1603. }
  1604. }
  1605. more_kvec:
  1606. /* kvec data queued? */
  1607. if (con->out_skip) {
  1608. ret = write_partial_skip(con);
  1609. if (ret <= 0)
  1610. goto out;
  1611. }
  1612. if (con->out_kvec_left) {
  1613. ret = write_partial_kvec(con);
  1614. if (ret <= 0)
  1615. goto out;
  1616. }
  1617. /* msg pages? */
  1618. if (con->out_msg) {
  1619. if (con->out_msg_done) {
  1620. ceph_msg_put(con->out_msg);
  1621. con->out_msg = NULL; /* we're done with this one */
  1622. goto do_next;
  1623. }
  1624. ret = write_partial_msg_pages(con);
  1625. if (ret == 1)
  1626. goto more_kvec; /* we need to send the footer, too! */
  1627. if (ret == 0)
  1628. goto out;
  1629. if (ret < 0) {
  1630. dout("try_write write_partial_msg_pages err %d\n",
  1631. ret);
  1632. goto out;
  1633. }
  1634. }
  1635. do_next:
  1636. if (!test_bit(CONNECTING, &con->state)) {
  1637. /* is anything else pending? */
  1638. if (!list_empty(&con->out_queue)) {
  1639. prepare_write_message(con);
  1640. goto more;
  1641. }
  1642. if (con->in_seq > con->in_seq_acked) {
  1643. prepare_write_ack(con);
  1644. goto more;
  1645. }
  1646. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1647. prepare_write_keepalive(con);
  1648. goto more;
  1649. }
  1650. }
  1651. /* Nothing to do! */
  1652. clear_bit(WRITE_PENDING, &con->state);
  1653. dout("try_write nothing else to write.\n");
  1654. ret = 0;
  1655. out:
  1656. dout("try_write done on %p ret %d\n", con, ret);
  1657. return ret;
  1658. }
  1659. /*
  1660. * Read what we can from the socket.
  1661. */
  1662. static int try_read(struct ceph_connection *con)
  1663. {
  1664. int ret = -1;
  1665. if (!con->sock)
  1666. return 0;
  1667. if (test_bit(STANDBY, &con->state))
  1668. return 0;
  1669. dout("try_read start on %p\n", con);
  1670. more:
  1671. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1672. con->in_base_pos);
  1673. /*
  1674. * process_connect and process_message drop and re-take
  1675. * con->mutex. make sure we handle a racing close or reopen.
  1676. */
  1677. if (test_bit(CLOSED, &con->state) ||
  1678. test_bit(OPENING, &con->state)) {
  1679. ret = -EAGAIN;
  1680. goto out;
  1681. }
  1682. if (test_bit(CONNECTING, &con->state)) {
  1683. if (!test_bit(NEGOTIATING, &con->state)) {
  1684. dout("try_read connecting\n");
  1685. ret = read_partial_banner(con);
  1686. if (ret <= 0)
  1687. goto out;
  1688. ret = process_banner(con);
  1689. if (ret < 0)
  1690. goto out;
  1691. }
  1692. ret = read_partial_connect(con);
  1693. if (ret <= 0)
  1694. goto out;
  1695. ret = process_connect(con);
  1696. if (ret < 0)
  1697. goto out;
  1698. goto more;
  1699. }
  1700. if (con->in_base_pos < 0) {
  1701. /*
  1702. * skipping + discarding content.
  1703. *
  1704. * FIXME: there must be a better way to do this!
  1705. */
  1706. static char buf[1024];
  1707. int skip = min(1024, -con->in_base_pos);
  1708. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1709. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1710. if (ret <= 0)
  1711. goto out;
  1712. con->in_base_pos += ret;
  1713. if (con->in_base_pos)
  1714. goto more;
  1715. }
  1716. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1717. /*
  1718. * what's next?
  1719. */
  1720. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1721. if (ret <= 0)
  1722. goto out;
  1723. dout("try_read got tag %d\n", (int)con->in_tag);
  1724. switch (con->in_tag) {
  1725. case CEPH_MSGR_TAG_MSG:
  1726. prepare_read_message(con);
  1727. break;
  1728. case CEPH_MSGR_TAG_ACK:
  1729. prepare_read_ack(con);
  1730. break;
  1731. case CEPH_MSGR_TAG_CLOSE:
  1732. set_bit(CLOSED, &con->state); /* fixme */
  1733. goto out;
  1734. default:
  1735. goto bad_tag;
  1736. }
  1737. }
  1738. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1739. ret = read_partial_message(con);
  1740. if (ret <= 0) {
  1741. switch (ret) {
  1742. case -EBADMSG:
  1743. con->error_msg = "bad crc";
  1744. ret = -EIO;
  1745. break;
  1746. case -EIO:
  1747. con->error_msg = "io error";
  1748. break;
  1749. }
  1750. goto out;
  1751. }
  1752. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1753. goto more;
  1754. process_message(con);
  1755. goto more;
  1756. }
  1757. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1758. ret = read_partial_ack(con);
  1759. if (ret <= 0)
  1760. goto out;
  1761. process_ack(con);
  1762. goto more;
  1763. }
  1764. out:
  1765. dout("try_read done on %p ret %d\n", con, ret);
  1766. return ret;
  1767. bad_tag:
  1768. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1769. con->error_msg = "protocol error, garbage tag";
  1770. ret = -1;
  1771. goto out;
  1772. }
  1773. /*
  1774. * Atomically queue work on a connection. Bump @con reference to
  1775. * avoid races with connection teardown.
  1776. */
  1777. static void queue_con(struct ceph_connection *con)
  1778. {
  1779. if (test_bit(DEAD, &con->state)) {
  1780. dout("queue_con %p ignoring: DEAD\n",
  1781. con);
  1782. return;
  1783. }
  1784. if (!con->ops->get(con)) {
  1785. dout("queue_con %p ref count 0\n", con);
  1786. return;
  1787. }
  1788. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1789. dout("queue_con %p - already queued\n", con);
  1790. con->ops->put(con);
  1791. } else {
  1792. dout("queue_con %p\n", con);
  1793. }
  1794. }
  1795. /*
  1796. * Do some work on a connection. Drop a connection ref when we're done.
  1797. */
  1798. static void con_work(struct work_struct *work)
  1799. {
  1800. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1801. work.work);
  1802. int ret;
  1803. mutex_lock(&con->mutex);
  1804. restart:
  1805. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1806. dout("con_work %p backing off\n", con);
  1807. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1808. round_jiffies_relative(con->delay))) {
  1809. dout("con_work %p backoff %lu\n", con, con->delay);
  1810. mutex_unlock(&con->mutex);
  1811. return;
  1812. } else {
  1813. con->ops->put(con);
  1814. dout("con_work %p FAILED to back off %lu\n", con,
  1815. con->delay);
  1816. }
  1817. }
  1818. if (test_bit(STANDBY, &con->state)) {
  1819. dout("con_work %p STANDBY\n", con);
  1820. goto done;
  1821. }
  1822. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1823. dout("con_work CLOSED\n");
  1824. con_close_socket(con);
  1825. goto done;
  1826. }
  1827. if (test_and_clear_bit(OPENING, &con->state)) {
  1828. /* reopen w/ new peer */
  1829. dout("con_work OPENING\n");
  1830. con_close_socket(con);
  1831. }
  1832. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1833. goto fault;
  1834. ret = try_read(con);
  1835. if (ret == -EAGAIN)
  1836. goto restart;
  1837. if (ret < 0)
  1838. goto fault;
  1839. ret = try_write(con);
  1840. if (ret == -EAGAIN)
  1841. goto restart;
  1842. if (ret < 0)
  1843. goto fault;
  1844. done:
  1845. mutex_unlock(&con->mutex);
  1846. done_unlocked:
  1847. con->ops->put(con);
  1848. return;
  1849. fault:
  1850. mutex_unlock(&con->mutex);
  1851. ceph_fault(con); /* error/fault path */
  1852. goto done_unlocked;
  1853. }
  1854. /*
  1855. * Generic error/fault handler. A retry mechanism is used with
  1856. * exponential backoff
  1857. */
  1858. static void ceph_fault(struct ceph_connection *con)
  1859. {
  1860. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1861. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1862. dout("fault %p state %lu to peer %s\n",
  1863. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1864. if (test_bit(LOSSYTX, &con->state)) {
  1865. dout("fault on LOSSYTX channel\n");
  1866. goto out;
  1867. }
  1868. mutex_lock(&con->mutex);
  1869. if (test_bit(CLOSED, &con->state))
  1870. goto out_unlock;
  1871. con_close_socket(con);
  1872. if (con->in_msg) {
  1873. ceph_msg_put(con->in_msg);
  1874. con->in_msg = NULL;
  1875. }
  1876. /* Requeue anything that hasn't been acked */
  1877. list_splice_init(&con->out_sent, &con->out_queue);
  1878. /* If there are no messages queued or keepalive pending, place
  1879. * the connection in a STANDBY state */
  1880. if (list_empty(&con->out_queue) &&
  1881. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1882. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1883. clear_bit(WRITE_PENDING, &con->state);
  1884. set_bit(STANDBY, &con->state);
  1885. } else {
  1886. /* retry after a delay. */
  1887. if (con->delay == 0)
  1888. con->delay = BASE_DELAY_INTERVAL;
  1889. else if (con->delay < MAX_DELAY_INTERVAL)
  1890. con->delay *= 2;
  1891. con->ops->get(con);
  1892. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1893. round_jiffies_relative(con->delay))) {
  1894. dout("fault queued %p delay %lu\n", con, con->delay);
  1895. } else {
  1896. con->ops->put(con);
  1897. dout("fault failed to queue %p delay %lu, backoff\n",
  1898. con, con->delay);
  1899. /*
  1900. * In many cases we see a socket state change
  1901. * while con_work is running and end up
  1902. * queuing (non-delayed) work, such that we
  1903. * can't backoff with a delay. Set a flag so
  1904. * that when con_work restarts we schedule the
  1905. * delay then.
  1906. */
  1907. set_bit(BACKOFF, &con->state);
  1908. }
  1909. }
  1910. out_unlock:
  1911. mutex_unlock(&con->mutex);
  1912. out:
  1913. /*
  1914. * in case we faulted due to authentication, invalidate our
  1915. * current tickets so that we can get new ones.
  1916. */
  1917. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1918. dout("calling invalidate_authorizer()\n");
  1919. con->ops->invalidate_authorizer(con);
  1920. }
  1921. if (con->ops->fault)
  1922. con->ops->fault(con);
  1923. }
  1924. /*
  1925. * create a new messenger instance
  1926. */
  1927. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1928. u32 supported_features,
  1929. u32 required_features)
  1930. {
  1931. struct ceph_messenger *msgr;
  1932. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1933. if (msgr == NULL)
  1934. return ERR_PTR(-ENOMEM);
  1935. msgr->supported_features = supported_features;
  1936. msgr->required_features = required_features;
  1937. spin_lock_init(&msgr->global_seq_lock);
  1938. if (myaddr)
  1939. msgr->inst.addr = *myaddr;
  1940. /* select a random nonce */
  1941. msgr->inst.addr.type = 0;
  1942. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1943. encode_my_addr(msgr);
  1944. dout("messenger_create %p\n", msgr);
  1945. return msgr;
  1946. }
  1947. EXPORT_SYMBOL(ceph_messenger_create);
  1948. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1949. {
  1950. dout("destroy %p\n", msgr);
  1951. kfree(msgr);
  1952. dout("destroyed messenger %p\n", msgr);
  1953. }
  1954. EXPORT_SYMBOL(ceph_messenger_destroy);
  1955. static void clear_standby(struct ceph_connection *con)
  1956. {
  1957. /* come back from STANDBY? */
  1958. if (test_and_clear_bit(STANDBY, &con->state)) {
  1959. mutex_lock(&con->mutex);
  1960. dout("clear_standby %p and ++connect_seq\n", con);
  1961. con->connect_seq++;
  1962. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1963. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1964. mutex_unlock(&con->mutex);
  1965. }
  1966. }
  1967. /*
  1968. * Queue up an outgoing message on the given connection.
  1969. */
  1970. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1971. {
  1972. if (test_bit(CLOSED, &con->state)) {
  1973. dout("con_send %p closed, dropping %p\n", con, msg);
  1974. ceph_msg_put(msg);
  1975. return;
  1976. }
  1977. /* set src+dst */
  1978. msg->hdr.src = con->msgr->inst.name;
  1979. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1980. msg->needs_out_seq = true;
  1981. /* queue */
  1982. mutex_lock(&con->mutex);
  1983. BUG_ON(!list_empty(&msg->list_head));
  1984. list_add_tail(&msg->list_head, &con->out_queue);
  1985. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  1986. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  1987. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1988. le32_to_cpu(msg->hdr.front_len),
  1989. le32_to_cpu(msg->hdr.middle_len),
  1990. le32_to_cpu(msg->hdr.data_len));
  1991. mutex_unlock(&con->mutex);
  1992. /* if there wasn't anything waiting to send before, queue
  1993. * new work */
  1994. clear_standby(con);
  1995. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  1996. queue_con(con);
  1997. }
  1998. EXPORT_SYMBOL(ceph_con_send);
  1999. /*
  2000. * Revoke a message that was previously queued for send
  2001. */
  2002. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  2003. {
  2004. mutex_lock(&con->mutex);
  2005. if (!list_empty(&msg->list_head)) {
  2006. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2007. list_del_init(&msg->list_head);
  2008. ceph_msg_put(msg);
  2009. msg->hdr.seq = 0;
  2010. }
  2011. if (con->out_msg == msg) {
  2012. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2013. con->out_msg = NULL;
  2014. if (con->out_kvec_is_msg) {
  2015. con->out_skip = con->out_kvec_bytes;
  2016. con->out_kvec_is_msg = false;
  2017. }
  2018. ceph_msg_put(msg);
  2019. msg->hdr.seq = 0;
  2020. }
  2021. mutex_unlock(&con->mutex);
  2022. }
  2023. /*
  2024. * Revoke a message that we may be reading data into
  2025. */
  2026. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2027. {
  2028. mutex_lock(&con->mutex);
  2029. if (con->in_msg && con->in_msg == msg) {
  2030. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2031. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2032. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2033. /* skip rest of message */
  2034. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2035. con->in_base_pos = con->in_base_pos -
  2036. sizeof(struct ceph_msg_header) -
  2037. front_len -
  2038. middle_len -
  2039. data_len -
  2040. sizeof(struct ceph_msg_footer);
  2041. ceph_msg_put(con->in_msg);
  2042. con->in_msg = NULL;
  2043. con->in_tag = CEPH_MSGR_TAG_READY;
  2044. con->in_seq++;
  2045. } else {
  2046. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2047. con, con->in_msg, msg);
  2048. }
  2049. mutex_unlock(&con->mutex);
  2050. }
  2051. /*
  2052. * Queue a keepalive byte to ensure the tcp connection is alive.
  2053. */
  2054. void ceph_con_keepalive(struct ceph_connection *con)
  2055. {
  2056. dout("con_keepalive %p\n", con);
  2057. clear_standby(con);
  2058. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  2059. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2060. queue_con(con);
  2061. }
  2062. EXPORT_SYMBOL(ceph_con_keepalive);
  2063. /*
  2064. * construct a new message with given type, size
  2065. * the new msg has a ref count of 1.
  2066. */
  2067. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2068. bool can_fail)
  2069. {
  2070. struct ceph_msg *m;
  2071. m = kmalloc(sizeof(*m), flags);
  2072. if (m == NULL)
  2073. goto out;
  2074. kref_init(&m->kref);
  2075. INIT_LIST_HEAD(&m->list_head);
  2076. m->hdr.tid = 0;
  2077. m->hdr.type = cpu_to_le16(type);
  2078. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2079. m->hdr.version = 0;
  2080. m->hdr.front_len = cpu_to_le32(front_len);
  2081. m->hdr.middle_len = 0;
  2082. m->hdr.data_len = 0;
  2083. m->hdr.data_off = 0;
  2084. m->hdr.reserved = 0;
  2085. m->footer.front_crc = 0;
  2086. m->footer.middle_crc = 0;
  2087. m->footer.data_crc = 0;
  2088. m->footer.flags = 0;
  2089. m->front_max = front_len;
  2090. m->front_is_vmalloc = false;
  2091. m->more_to_follow = false;
  2092. m->ack_stamp = 0;
  2093. m->pool = NULL;
  2094. /* middle */
  2095. m->middle = NULL;
  2096. /* data */
  2097. m->nr_pages = 0;
  2098. m->page_alignment = 0;
  2099. m->pages = NULL;
  2100. m->pagelist = NULL;
  2101. m->bio = NULL;
  2102. m->bio_iter = NULL;
  2103. m->bio_seg = 0;
  2104. m->trail = NULL;
  2105. /* front */
  2106. if (front_len) {
  2107. if (front_len > PAGE_CACHE_SIZE) {
  2108. m->front.iov_base = __vmalloc(front_len, flags,
  2109. PAGE_KERNEL);
  2110. m->front_is_vmalloc = true;
  2111. } else {
  2112. m->front.iov_base = kmalloc(front_len, flags);
  2113. }
  2114. if (m->front.iov_base == NULL) {
  2115. dout("ceph_msg_new can't allocate %d bytes\n",
  2116. front_len);
  2117. goto out2;
  2118. }
  2119. } else {
  2120. m->front.iov_base = NULL;
  2121. }
  2122. m->front.iov_len = front_len;
  2123. dout("ceph_msg_new %p front %d\n", m, front_len);
  2124. return m;
  2125. out2:
  2126. ceph_msg_put(m);
  2127. out:
  2128. if (!can_fail) {
  2129. pr_err("msg_new can't create type %d front %d\n", type,
  2130. front_len);
  2131. WARN_ON(1);
  2132. } else {
  2133. dout("msg_new can't create type %d front %d\n", type,
  2134. front_len);
  2135. }
  2136. return NULL;
  2137. }
  2138. EXPORT_SYMBOL(ceph_msg_new);
  2139. /*
  2140. * Allocate "middle" portion of a message, if it is needed and wasn't
  2141. * allocated by alloc_msg. This allows us to read a small fixed-size
  2142. * per-type header in the front and then gracefully fail (i.e.,
  2143. * propagate the error to the caller based on info in the front) when
  2144. * the middle is too large.
  2145. */
  2146. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2147. {
  2148. int type = le16_to_cpu(msg->hdr.type);
  2149. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2150. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2151. ceph_msg_type_name(type), middle_len);
  2152. BUG_ON(!middle_len);
  2153. BUG_ON(msg->middle);
  2154. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2155. if (!msg->middle)
  2156. return -ENOMEM;
  2157. return 0;
  2158. }
  2159. /*
  2160. * Generic message allocator, for incoming messages.
  2161. */
  2162. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2163. struct ceph_msg_header *hdr,
  2164. int *skip)
  2165. {
  2166. int type = le16_to_cpu(hdr->type);
  2167. int front_len = le32_to_cpu(hdr->front_len);
  2168. int middle_len = le32_to_cpu(hdr->middle_len);
  2169. struct ceph_msg *msg = NULL;
  2170. int ret;
  2171. if (con->ops->alloc_msg) {
  2172. mutex_unlock(&con->mutex);
  2173. msg = con->ops->alloc_msg(con, hdr, skip);
  2174. mutex_lock(&con->mutex);
  2175. if (!msg || *skip)
  2176. return NULL;
  2177. }
  2178. if (!msg) {
  2179. *skip = 0;
  2180. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2181. if (!msg) {
  2182. pr_err("unable to allocate msg type %d len %d\n",
  2183. type, front_len);
  2184. return NULL;
  2185. }
  2186. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2187. }
  2188. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2189. if (middle_len && !msg->middle) {
  2190. ret = ceph_alloc_middle(con, msg);
  2191. if (ret < 0) {
  2192. ceph_msg_put(msg);
  2193. return NULL;
  2194. }
  2195. }
  2196. return msg;
  2197. }
  2198. /*
  2199. * Free a generically kmalloc'd message.
  2200. */
  2201. void ceph_msg_kfree(struct ceph_msg *m)
  2202. {
  2203. dout("msg_kfree %p\n", m);
  2204. if (m->front_is_vmalloc)
  2205. vfree(m->front.iov_base);
  2206. else
  2207. kfree(m->front.iov_base);
  2208. kfree(m);
  2209. }
  2210. /*
  2211. * Drop a msg ref. Destroy as needed.
  2212. */
  2213. void ceph_msg_last_put(struct kref *kref)
  2214. {
  2215. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2216. dout("ceph_msg_put last one on %p\n", m);
  2217. WARN_ON(!list_empty(&m->list_head));
  2218. /* drop middle, data, if any */
  2219. if (m->middle) {
  2220. ceph_buffer_put(m->middle);
  2221. m->middle = NULL;
  2222. }
  2223. m->nr_pages = 0;
  2224. m->pages = NULL;
  2225. if (m->pagelist) {
  2226. ceph_pagelist_release(m->pagelist);
  2227. kfree(m->pagelist);
  2228. m->pagelist = NULL;
  2229. }
  2230. m->trail = NULL;
  2231. if (m->pool)
  2232. ceph_msgpool_put(m->pool, m);
  2233. else
  2234. ceph_msg_kfree(m);
  2235. }
  2236. EXPORT_SYMBOL(ceph_msg_last_put);
  2237. void ceph_msg_dump(struct ceph_msg *msg)
  2238. {
  2239. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2240. msg->front_max, msg->nr_pages);
  2241. print_hex_dump(KERN_DEBUG, "header: ",
  2242. DUMP_PREFIX_OFFSET, 16, 1,
  2243. &msg->hdr, sizeof(msg->hdr), true);
  2244. print_hex_dump(KERN_DEBUG, " front: ",
  2245. DUMP_PREFIX_OFFSET, 16, 1,
  2246. msg->front.iov_base, msg->front.iov_len, true);
  2247. if (msg->middle)
  2248. print_hex_dump(KERN_DEBUG, "middle: ",
  2249. DUMP_PREFIX_OFFSET, 16, 1,
  2250. msg->middle->vec.iov_base,
  2251. msg->middle->vec.iov_len, true);
  2252. print_hex_dump(KERN_DEBUG, "footer: ",
  2253. DUMP_PREFIX_OFFSET, 16, 1,
  2254. &msg->footer, sizeof(msg->footer), true);
  2255. }
  2256. EXPORT_SYMBOL(ceph_msg_dump);