intel_dp.c 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. /**
  39. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  40. * @intel_dp: DP struct
  41. *
  42. * If a CPU or PCH DP output is attached to an eDP panel, this function
  43. * will return true, and false otherwise.
  44. */
  45. static bool is_edp(struct intel_dp *intel_dp)
  46. {
  47. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  48. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  49. }
  50. /**
  51. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  52. * @intel_dp: DP struct
  53. *
  54. * Returns true if the given DP struct corresponds to a PCH DP port attached
  55. * to an eDP panel, false otherwise. Helpful for determining whether we
  56. * may need FDI resources for a given DP output or not.
  57. */
  58. static bool is_pch_edp(struct intel_dp *intel_dp)
  59. {
  60. return intel_dp->is_pch_edp;
  61. }
  62. /**
  63. * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
  64. * @intel_dp: DP struct
  65. *
  66. * Returns true if the given DP struct corresponds to a CPU eDP port.
  67. */
  68. static bool is_cpu_edp(struct intel_dp *intel_dp)
  69. {
  70. return is_edp(intel_dp) && !is_pch_edp(intel_dp);
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. /**
  82. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  83. * @encoder: DRM encoder
  84. *
  85. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  86. * by intel_display.c.
  87. */
  88. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  89. {
  90. struct intel_dp *intel_dp;
  91. if (!encoder)
  92. return false;
  93. intel_dp = enc_to_intel_dp(encoder);
  94. return is_pch_edp(intel_dp);
  95. }
  96. static void intel_dp_link_down(struct intel_dp *intel_dp);
  97. static int
  98. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  99. {
  100. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  101. switch (max_link_bw) {
  102. case DP_LINK_BW_1_62:
  103. case DP_LINK_BW_2_7:
  104. break;
  105. default:
  106. max_link_bw = DP_LINK_BW_1_62;
  107. break;
  108. }
  109. return max_link_bw;
  110. }
  111. /*
  112. * The units on the numbers in the next two are... bizarre. Examples will
  113. * make it clearer; this one parallels an example in the eDP spec.
  114. *
  115. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  116. *
  117. * 270000 * 1 * 8 / 10 == 216000
  118. *
  119. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  120. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  121. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  122. * 119000. At 18bpp that's 2142000 kilobits per second.
  123. *
  124. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  125. * get the result in decakilobits instead of kilobits.
  126. */
  127. static int
  128. intel_dp_link_required(int pixel_clock, int bpp)
  129. {
  130. return (pixel_clock * bpp + 9) / 10;
  131. }
  132. static int
  133. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  134. {
  135. return (max_link_clock * max_lanes * 8) / 10;
  136. }
  137. static int
  138. intel_dp_mode_valid(struct drm_connector *connector,
  139. struct drm_display_mode *mode)
  140. {
  141. struct intel_dp *intel_dp = intel_attached_dp(connector);
  142. struct intel_connector *intel_connector = to_intel_connector(connector);
  143. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  144. int target_clock = mode->clock;
  145. int max_rate, mode_rate, max_lanes, max_link_clock;
  146. if (is_edp(intel_dp) && fixed_mode) {
  147. if (mode->hdisplay > fixed_mode->hdisplay)
  148. return MODE_PANEL;
  149. if (mode->vdisplay > fixed_mode->vdisplay)
  150. return MODE_PANEL;
  151. target_clock = fixed_mode->clock;
  152. }
  153. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  154. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  155. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  156. mode_rate = intel_dp_link_required(target_clock, 18);
  157. if (mode_rate > max_rate)
  158. return MODE_CLOCK_HIGH;
  159. if (mode->clock < 10000)
  160. return MODE_CLOCK_LOW;
  161. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  162. return MODE_H_ILLEGAL;
  163. return MODE_OK;
  164. }
  165. static uint32_t
  166. pack_aux(uint8_t *src, int src_bytes)
  167. {
  168. int i;
  169. uint32_t v = 0;
  170. if (src_bytes > 4)
  171. src_bytes = 4;
  172. for (i = 0; i < src_bytes; i++)
  173. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  174. return v;
  175. }
  176. static void
  177. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  178. {
  179. int i;
  180. if (dst_bytes > 4)
  181. dst_bytes = 4;
  182. for (i = 0; i < dst_bytes; i++)
  183. dst[i] = src >> ((3-i) * 8);
  184. }
  185. /* hrawclock is 1/4 the FSB frequency */
  186. static int
  187. intel_hrawclk(struct drm_device *dev)
  188. {
  189. struct drm_i915_private *dev_priv = dev->dev_private;
  190. uint32_t clkcfg;
  191. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  192. if (IS_VALLEYVIEW(dev))
  193. return 200;
  194. clkcfg = I915_READ(CLKCFG);
  195. switch (clkcfg & CLKCFG_FSB_MASK) {
  196. case CLKCFG_FSB_400:
  197. return 100;
  198. case CLKCFG_FSB_533:
  199. return 133;
  200. case CLKCFG_FSB_667:
  201. return 166;
  202. case CLKCFG_FSB_800:
  203. return 200;
  204. case CLKCFG_FSB_1067:
  205. return 266;
  206. case CLKCFG_FSB_1333:
  207. return 333;
  208. /* these two are just a guess; one of them might be right */
  209. case CLKCFG_FSB_1600:
  210. case CLKCFG_FSB_1600_ALT:
  211. return 400;
  212. default:
  213. return 133;
  214. }
  215. }
  216. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  217. {
  218. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  219. struct drm_i915_private *dev_priv = dev->dev_private;
  220. u32 pp_stat_reg;
  221. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  222. return (I915_READ(pp_stat_reg) & PP_ON) != 0;
  223. }
  224. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  225. {
  226. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  227. struct drm_i915_private *dev_priv = dev->dev_private;
  228. u32 pp_ctrl_reg;
  229. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  230. return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
  231. }
  232. static void
  233. intel_dp_check_edp(struct intel_dp *intel_dp)
  234. {
  235. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  236. struct drm_i915_private *dev_priv = dev->dev_private;
  237. u32 pp_stat_reg, pp_ctrl_reg;
  238. if (!is_edp(intel_dp))
  239. return;
  240. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  241. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  242. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  243. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  244. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  245. I915_READ(pp_stat_reg),
  246. I915_READ(pp_ctrl_reg));
  247. }
  248. }
  249. static uint32_t
  250. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  251. {
  252. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  253. struct drm_device *dev = intel_dig_port->base.base.dev;
  254. struct drm_i915_private *dev_priv = dev->dev_private;
  255. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  256. uint32_t status;
  257. bool done;
  258. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  259. if (has_aux_irq)
  260. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  261. msecs_to_jiffies(10));
  262. else
  263. done = wait_for_atomic(C, 10) == 0;
  264. if (!done)
  265. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  266. has_aux_irq);
  267. #undef C
  268. return status;
  269. }
  270. static int
  271. intel_dp_aux_ch(struct intel_dp *intel_dp,
  272. uint8_t *send, int send_bytes,
  273. uint8_t *recv, int recv_size)
  274. {
  275. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  276. struct drm_device *dev = intel_dig_port->base.base.dev;
  277. struct drm_i915_private *dev_priv = dev->dev_private;
  278. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  279. uint32_t ch_data = ch_ctl + 4;
  280. int i, ret, recv_bytes;
  281. uint32_t status;
  282. uint32_t aux_clock_divider;
  283. int try, precharge;
  284. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  285. /* dp aux is extremely sensitive to irq latency, hence request the
  286. * lowest possible wakeup latency and so prevent the cpu from going into
  287. * deep sleep states.
  288. */
  289. pm_qos_update_request(&dev_priv->pm_qos, 0);
  290. intel_dp_check_edp(intel_dp);
  291. /* The clock divider is based off the hrawclk,
  292. * and would like to run at 2MHz. So, take the
  293. * hrawclk value and divide by 2 and use that
  294. *
  295. * Note that PCH attached eDP panels should use a 125MHz input
  296. * clock divider.
  297. */
  298. if (is_cpu_edp(intel_dp)) {
  299. if (HAS_DDI(dev))
  300. aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
  301. else if (IS_VALLEYVIEW(dev))
  302. aux_clock_divider = 100;
  303. else if (IS_GEN6(dev) || IS_GEN7(dev))
  304. aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
  305. else
  306. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  307. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  308. /* Workaround for non-ULT HSW */
  309. aux_clock_divider = 74;
  310. } else if (HAS_PCH_SPLIT(dev)) {
  311. aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  312. } else {
  313. aux_clock_divider = intel_hrawclk(dev) / 2;
  314. }
  315. if (IS_GEN6(dev))
  316. precharge = 3;
  317. else
  318. precharge = 5;
  319. /* Try to wait for any previous AUX channel activity */
  320. for (try = 0; try < 3; try++) {
  321. status = I915_READ_NOTRACE(ch_ctl);
  322. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  323. break;
  324. msleep(1);
  325. }
  326. if (try == 3) {
  327. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  328. I915_READ(ch_ctl));
  329. ret = -EBUSY;
  330. goto out;
  331. }
  332. /* Must try at least 3 times according to DP spec */
  333. for (try = 0; try < 5; try++) {
  334. /* Load the send data into the aux channel data registers */
  335. for (i = 0; i < send_bytes; i += 4)
  336. I915_WRITE(ch_data + i,
  337. pack_aux(send + i, send_bytes - i));
  338. /* Send the command and wait for it to complete */
  339. I915_WRITE(ch_ctl,
  340. DP_AUX_CH_CTL_SEND_BUSY |
  341. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  342. DP_AUX_CH_CTL_TIME_OUT_400us |
  343. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  344. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  345. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  346. DP_AUX_CH_CTL_DONE |
  347. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  348. DP_AUX_CH_CTL_RECEIVE_ERROR);
  349. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  350. /* Clear done status and any errors */
  351. I915_WRITE(ch_ctl,
  352. status |
  353. DP_AUX_CH_CTL_DONE |
  354. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  355. DP_AUX_CH_CTL_RECEIVE_ERROR);
  356. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  357. DP_AUX_CH_CTL_RECEIVE_ERROR))
  358. continue;
  359. if (status & DP_AUX_CH_CTL_DONE)
  360. break;
  361. }
  362. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  363. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  364. ret = -EBUSY;
  365. goto out;
  366. }
  367. /* Check for timeout or receive error.
  368. * Timeouts occur when the sink is not connected
  369. */
  370. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  371. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  372. ret = -EIO;
  373. goto out;
  374. }
  375. /* Timeouts occur when the device isn't connected, so they're
  376. * "normal" -- don't fill the kernel log with these */
  377. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  378. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  379. ret = -ETIMEDOUT;
  380. goto out;
  381. }
  382. /* Unload any bytes sent back from the other side */
  383. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  384. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  385. if (recv_bytes > recv_size)
  386. recv_bytes = recv_size;
  387. for (i = 0; i < recv_bytes; i += 4)
  388. unpack_aux(I915_READ(ch_data + i),
  389. recv + i, recv_bytes - i);
  390. ret = recv_bytes;
  391. out:
  392. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  393. return ret;
  394. }
  395. /* Write data to the aux channel in native mode */
  396. static int
  397. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  398. uint16_t address, uint8_t *send, int send_bytes)
  399. {
  400. int ret;
  401. uint8_t msg[20];
  402. int msg_bytes;
  403. uint8_t ack;
  404. intel_dp_check_edp(intel_dp);
  405. if (send_bytes > 16)
  406. return -1;
  407. msg[0] = AUX_NATIVE_WRITE << 4;
  408. msg[1] = address >> 8;
  409. msg[2] = address & 0xff;
  410. msg[3] = send_bytes - 1;
  411. memcpy(&msg[4], send, send_bytes);
  412. msg_bytes = send_bytes + 4;
  413. for (;;) {
  414. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  415. if (ret < 0)
  416. return ret;
  417. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  418. break;
  419. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  420. udelay(100);
  421. else
  422. return -EIO;
  423. }
  424. return send_bytes;
  425. }
  426. /* Write a single byte to the aux channel in native mode */
  427. static int
  428. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  429. uint16_t address, uint8_t byte)
  430. {
  431. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  432. }
  433. /* read bytes from a native aux channel */
  434. static int
  435. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  436. uint16_t address, uint8_t *recv, int recv_bytes)
  437. {
  438. uint8_t msg[4];
  439. int msg_bytes;
  440. uint8_t reply[20];
  441. int reply_bytes;
  442. uint8_t ack;
  443. int ret;
  444. intel_dp_check_edp(intel_dp);
  445. msg[0] = AUX_NATIVE_READ << 4;
  446. msg[1] = address >> 8;
  447. msg[2] = address & 0xff;
  448. msg[3] = recv_bytes - 1;
  449. msg_bytes = 4;
  450. reply_bytes = recv_bytes + 1;
  451. for (;;) {
  452. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  453. reply, reply_bytes);
  454. if (ret == 0)
  455. return -EPROTO;
  456. if (ret < 0)
  457. return ret;
  458. ack = reply[0];
  459. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  460. memcpy(recv, reply + 1, ret - 1);
  461. return ret - 1;
  462. }
  463. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  464. udelay(100);
  465. else
  466. return -EIO;
  467. }
  468. }
  469. static int
  470. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  471. uint8_t write_byte, uint8_t *read_byte)
  472. {
  473. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  474. struct intel_dp *intel_dp = container_of(adapter,
  475. struct intel_dp,
  476. adapter);
  477. uint16_t address = algo_data->address;
  478. uint8_t msg[5];
  479. uint8_t reply[2];
  480. unsigned retry;
  481. int msg_bytes;
  482. int reply_bytes;
  483. int ret;
  484. intel_dp_check_edp(intel_dp);
  485. /* Set up the command byte */
  486. if (mode & MODE_I2C_READ)
  487. msg[0] = AUX_I2C_READ << 4;
  488. else
  489. msg[0] = AUX_I2C_WRITE << 4;
  490. if (!(mode & MODE_I2C_STOP))
  491. msg[0] |= AUX_I2C_MOT << 4;
  492. msg[1] = address >> 8;
  493. msg[2] = address;
  494. switch (mode) {
  495. case MODE_I2C_WRITE:
  496. msg[3] = 0;
  497. msg[4] = write_byte;
  498. msg_bytes = 5;
  499. reply_bytes = 1;
  500. break;
  501. case MODE_I2C_READ:
  502. msg[3] = 0;
  503. msg_bytes = 4;
  504. reply_bytes = 2;
  505. break;
  506. default:
  507. msg_bytes = 3;
  508. reply_bytes = 1;
  509. break;
  510. }
  511. for (retry = 0; retry < 5; retry++) {
  512. ret = intel_dp_aux_ch(intel_dp,
  513. msg, msg_bytes,
  514. reply, reply_bytes);
  515. if (ret < 0) {
  516. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  517. return ret;
  518. }
  519. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  520. case AUX_NATIVE_REPLY_ACK:
  521. /* I2C-over-AUX Reply field is only valid
  522. * when paired with AUX ACK.
  523. */
  524. break;
  525. case AUX_NATIVE_REPLY_NACK:
  526. DRM_DEBUG_KMS("aux_ch native nack\n");
  527. return -EREMOTEIO;
  528. case AUX_NATIVE_REPLY_DEFER:
  529. udelay(100);
  530. continue;
  531. default:
  532. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  533. reply[0]);
  534. return -EREMOTEIO;
  535. }
  536. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  537. case AUX_I2C_REPLY_ACK:
  538. if (mode == MODE_I2C_READ) {
  539. *read_byte = reply[1];
  540. }
  541. return reply_bytes - 1;
  542. case AUX_I2C_REPLY_NACK:
  543. DRM_DEBUG_KMS("aux_i2c nack\n");
  544. return -EREMOTEIO;
  545. case AUX_I2C_REPLY_DEFER:
  546. DRM_DEBUG_KMS("aux_i2c defer\n");
  547. udelay(100);
  548. break;
  549. default:
  550. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  551. return -EREMOTEIO;
  552. }
  553. }
  554. DRM_ERROR("too many retries, giving up\n");
  555. return -EREMOTEIO;
  556. }
  557. static int
  558. intel_dp_i2c_init(struct intel_dp *intel_dp,
  559. struct intel_connector *intel_connector, const char *name)
  560. {
  561. int ret;
  562. DRM_DEBUG_KMS("i2c_init %s\n", name);
  563. intel_dp->algo.running = false;
  564. intel_dp->algo.address = 0;
  565. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  566. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  567. intel_dp->adapter.owner = THIS_MODULE;
  568. intel_dp->adapter.class = I2C_CLASS_DDC;
  569. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  570. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  571. intel_dp->adapter.algo_data = &intel_dp->algo;
  572. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  573. ironlake_edp_panel_vdd_on(intel_dp);
  574. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  575. ironlake_edp_panel_vdd_off(intel_dp, false);
  576. return ret;
  577. }
  578. static void
  579. intel_dp_set_clock(struct intel_encoder *encoder,
  580. struct intel_crtc_config *pipe_config, int link_bw)
  581. {
  582. struct drm_device *dev = encoder->base.dev;
  583. if (IS_G4X(dev)) {
  584. if (link_bw == DP_LINK_BW_1_62) {
  585. pipe_config->dpll.p1 = 2;
  586. pipe_config->dpll.p2 = 10;
  587. pipe_config->dpll.n = 2;
  588. pipe_config->dpll.m1 = 23;
  589. pipe_config->dpll.m2 = 8;
  590. } else {
  591. pipe_config->dpll.p1 = 1;
  592. pipe_config->dpll.p2 = 10;
  593. pipe_config->dpll.n = 1;
  594. pipe_config->dpll.m1 = 14;
  595. pipe_config->dpll.m2 = 2;
  596. }
  597. pipe_config->clock_set = true;
  598. } else if (IS_HASWELL(dev)) {
  599. /* Haswell has special-purpose DP DDI clocks. */
  600. } else if (HAS_PCH_SPLIT(dev)) {
  601. if (link_bw == DP_LINK_BW_1_62) {
  602. pipe_config->dpll.n = 1;
  603. pipe_config->dpll.p1 = 2;
  604. pipe_config->dpll.p2 = 10;
  605. pipe_config->dpll.m1 = 12;
  606. pipe_config->dpll.m2 = 9;
  607. } else {
  608. pipe_config->dpll.n = 2;
  609. pipe_config->dpll.p1 = 1;
  610. pipe_config->dpll.p2 = 10;
  611. pipe_config->dpll.m1 = 14;
  612. pipe_config->dpll.m2 = 8;
  613. }
  614. pipe_config->clock_set = true;
  615. } else if (IS_VALLEYVIEW(dev)) {
  616. /* FIXME: Need to figure out optimized DP clocks for vlv. */
  617. }
  618. }
  619. bool
  620. intel_dp_compute_config(struct intel_encoder *encoder,
  621. struct intel_crtc_config *pipe_config)
  622. {
  623. struct drm_device *dev = encoder->base.dev;
  624. struct drm_i915_private *dev_priv = dev->dev_private;
  625. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  626. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  627. struct intel_crtc *intel_crtc = encoder->new_crtc;
  628. struct intel_connector *intel_connector = intel_dp->attached_connector;
  629. int lane_count, clock;
  630. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  631. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  632. int bpp, mode_rate;
  633. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  634. int target_clock, link_avail, link_clock;
  635. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && !is_cpu_edp(intel_dp))
  636. pipe_config->has_pch_encoder = true;
  637. pipe_config->has_dp_encoder = true;
  638. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  639. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  640. adjusted_mode);
  641. if (!HAS_PCH_SPLIT(dev))
  642. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  643. intel_connector->panel.fitting_mode);
  644. else
  645. intel_pch_panel_fitting(intel_crtc, pipe_config,
  646. intel_connector->panel.fitting_mode);
  647. }
  648. /* We need to take the panel's fixed mode into account. */
  649. target_clock = adjusted_mode->clock;
  650. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  651. return false;
  652. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  653. "max bw %02x pixel clock %iKHz\n",
  654. max_lane_count, bws[max_clock], adjusted_mode->clock);
  655. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  656. * bpc in between. */
  657. bpp = pipe_config->pipe_bpp;
  658. /*
  659. * eDP panels are really fickle, try to enfore the bpp the firmware
  660. * recomments. This means we'll up-dither 16bpp framebuffers on
  661. * high-depth panels.
  662. */
  663. if (is_edp(intel_dp) && dev_priv->edp.bpp) {
  664. DRM_DEBUG_KMS("forcing bpp for eDP panel to BIOS-provided %i\n",
  665. dev_priv->edp.bpp);
  666. bpp = dev_priv->edp.bpp;
  667. }
  668. for (; bpp >= 6*3; bpp -= 2*3) {
  669. mode_rate = intel_dp_link_required(target_clock, bpp);
  670. for (clock = 0; clock <= max_clock; clock++) {
  671. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  672. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  673. link_avail = intel_dp_max_data_rate(link_clock,
  674. lane_count);
  675. if (mode_rate <= link_avail) {
  676. goto found;
  677. }
  678. }
  679. }
  680. }
  681. return false;
  682. found:
  683. if (intel_dp->color_range_auto) {
  684. /*
  685. * See:
  686. * CEA-861-E - 5.1 Default Encoding Parameters
  687. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  688. */
  689. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  690. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  691. else
  692. intel_dp->color_range = 0;
  693. }
  694. if (intel_dp->color_range)
  695. pipe_config->limited_color_range = true;
  696. intel_dp->link_bw = bws[clock];
  697. intel_dp->lane_count = lane_count;
  698. adjusted_mode->clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  699. pipe_config->pixel_target_clock = target_clock;
  700. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  701. intel_dp->link_bw, intel_dp->lane_count,
  702. adjusted_mode->clock, bpp);
  703. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  704. mode_rate, link_avail);
  705. intel_link_compute_m_n(bpp, lane_count,
  706. target_clock, adjusted_mode->clock,
  707. &pipe_config->dp_m_n);
  708. pipe_config->pipe_bpp = bpp;
  709. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  710. return true;
  711. }
  712. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  713. {
  714. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  715. intel_dp->link_configuration[0] = intel_dp->link_bw;
  716. intel_dp->link_configuration[1] = intel_dp->lane_count;
  717. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  718. /*
  719. * Check for DPCD version > 1.1 and enhanced framing support
  720. */
  721. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  722. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  723. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  724. }
  725. }
  726. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  727. {
  728. struct drm_device *dev = crtc->dev;
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. u32 dpa_ctl;
  731. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  732. dpa_ctl = I915_READ(DP_A);
  733. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  734. if (clock < 200000) {
  735. /* For a long time we've carried around a ILK-DevA w/a for the
  736. * 160MHz clock. If we're really unlucky, it's still required.
  737. */
  738. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  739. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  740. } else {
  741. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  742. }
  743. I915_WRITE(DP_A, dpa_ctl);
  744. POSTING_READ(DP_A);
  745. udelay(500);
  746. }
  747. static void
  748. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  749. struct drm_display_mode *adjusted_mode)
  750. {
  751. struct drm_device *dev = encoder->dev;
  752. struct drm_i915_private *dev_priv = dev->dev_private;
  753. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  754. struct drm_crtc *crtc = encoder->crtc;
  755. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  756. /*
  757. * There are four kinds of DP registers:
  758. *
  759. * IBX PCH
  760. * SNB CPU
  761. * IVB CPU
  762. * CPT PCH
  763. *
  764. * IBX PCH and CPU are the same for almost everything,
  765. * except that the CPU DP PLL is configured in this
  766. * register
  767. *
  768. * CPT PCH is quite different, having many bits moved
  769. * to the TRANS_DP_CTL register instead. That
  770. * configuration happens (oddly) in ironlake_pch_enable
  771. */
  772. /* Preserve the BIOS-computed detected bit. This is
  773. * supposed to be read-only.
  774. */
  775. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  776. /* Handle DP bits in common between all three register formats */
  777. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  778. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  779. if (intel_dp->has_audio) {
  780. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  781. pipe_name(intel_crtc->pipe));
  782. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  783. intel_write_eld(encoder, adjusted_mode);
  784. }
  785. intel_dp_init_link_config(intel_dp);
  786. /* Split out the IBX/CPU vs CPT settings */
  787. if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  788. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  789. intel_dp->DP |= DP_SYNC_HS_HIGH;
  790. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  791. intel_dp->DP |= DP_SYNC_VS_HIGH;
  792. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  793. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  794. intel_dp->DP |= DP_ENHANCED_FRAMING;
  795. intel_dp->DP |= intel_crtc->pipe << 29;
  796. /* don't miss out required setting for eDP */
  797. if (adjusted_mode->clock < 200000)
  798. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  799. else
  800. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  801. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  802. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  803. intel_dp->DP |= intel_dp->color_range;
  804. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  805. intel_dp->DP |= DP_SYNC_HS_HIGH;
  806. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  807. intel_dp->DP |= DP_SYNC_VS_HIGH;
  808. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  809. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  810. intel_dp->DP |= DP_ENHANCED_FRAMING;
  811. if (intel_crtc->pipe == 1)
  812. intel_dp->DP |= DP_PIPEB_SELECT;
  813. if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  814. /* don't miss out required setting for eDP */
  815. if (adjusted_mode->clock < 200000)
  816. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  817. else
  818. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  819. }
  820. } else {
  821. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  822. }
  823. if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
  824. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  825. }
  826. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  827. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  828. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  829. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  830. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  831. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  832. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  833. u32 mask,
  834. u32 value)
  835. {
  836. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  837. struct drm_i915_private *dev_priv = dev->dev_private;
  838. u32 pp_stat_reg, pp_ctrl_reg;
  839. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  840. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  841. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  842. mask, value,
  843. I915_READ(pp_stat_reg),
  844. I915_READ(pp_ctrl_reg));
  845. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  846. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  847. I915_READ(pp_stat_reg),
  848. I915_READ(pp_ctrl_reg));
  849. }
  850. }
  851. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  852. {
  853. DRM_DEBUG_KMS("Wait for panel power on\n");
  854. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  855. }
  856. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  857. {
  858. DRM_DEBUG_KMS("Wait for panel power off time\n");
  859. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  860. }
  861. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  862. {
  863. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  864. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  865. }
  866. /* Read the current pp_control value, unlocking the register if it
  867. * is locked
  868. */
  869. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  870. {
  871. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  872. struct drm_i915_private *dev_priv = dev->dev_private;
  873. u32 control;
  874. u32 pp_ctrl_reg;
  875. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  876. control = I915_READ(pp_ctrl_reg);
  877. control &= ~PANEL_UNLOCK_MASK;
  878. control |= PANEL_UNLOCK_REGS;
  879. return control;
  880. }
  881. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  882. {
  883. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  884. struct drm_i915_private *dev_priv = dev->dev_private;
  885. u32 pp;
  886. u32 pp_stat_reg, pp_ctrl_reg;
  887. if (!is_edp(intel_dp))
  888. return;
  889. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  890. WARN(intel_dp->want_panel_vdd,
  891. "eDP VDD already requested on\n");
  892. intel_dp->want_panel_vdd = true;
  893. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  894. DRM_DEBUG_KMS("eDP VDD already on\n");
  895. return;
  896. }
  897. if (!ironlake_edp_have_panel_power(intel_dp))
  898. ironlake_wait_panel_power_cycle(intel_dp);
  899. pp = ironlake_get_pp_control(intel_dp);
  900. pp |= EDP_FORCE_VDD;
  901. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  902. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  903. I915_WRITE(pp_ctrl_reg, pp);
  904. POSTING_READ(pp_ctrl_reg);
  905. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  906. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  907. /*
  908. * If the panel wasn't on, delay before accessing aux channel
  909. */
  910. if (!ironlake_edp_have_panel_power(intel_dp)) {
  911. DRM_DEBUG_KMS("eDP was not running\n");
  912. msleep(intel_dp->panel_power_up_delay);
  913. }
  914. }
  915. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  916. {
  917. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. u32 pp;
  920. u32 pp_stat_reg, pp_ctrl_reg;
  921. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  922. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  923. pp = ironlake_get_pp_control(intel_dp);
  924. pp &= ~EDP_FORCE_VDD;
  925. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  926. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  927. I915_WRITE(pp_ctrl_reg, pp);
  928. POSTING_READ(pp_ctrl_reg);
  929. /* Make sure sequencer is idle before allowing subsequent activity */
  930. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  931. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  932. msleep(intel_dp->panel_power_down_delay);
  933. }
  934. }
  935. static void ironlake_panel_vdd_work(struct work_struct *__work)
  936. {
  937. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  938. struct intel_dp, panel_vdd_work);
  939. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  940. mutex_lock(&dev->mode_config.mutex);
  941. ironlake_panel_vdd_off_sync(intel_dp);
  942. mutex_unlock(&dev->mode_config.mutex);
  943. }
  944. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  945. {
  946. if (!is_edp(intel_dp))
  947. return;
  948. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  949. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  950. intel_dp->want_panel_vdd = false;
  951. if (sync) {
  952. ironlake_panel_vdd_off_sync(intel_dp);
  953. } else {
  954. /*
  955. * Queue the timer to fire a long
  956. * time from now (relative to the power down delay)
  957. * to keep the panel power up across a sequence of operations
  958. */
  959. schedule_delayed_work(&intel_dp->panel_vdd_work,
  960. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  961. }
  962. }
  963. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  964. {
  965. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  966. struct drm_i915_private *dev_priv = dev->dev_private;
  967. u32 pp;
  968. u32 pp_ctrl_reg;
  969. if (!is_edp(intel_dp))
  970. return;
  971. DRM_DEBUG_KMS("Turn eDP power on\n");
  972. if (ironlake_edp_have_panel_power(intel_dp)) {
  973. DRM_DEBUG_KMS("eDP power already on\n");
  974. return;
  975. }
  976. ironlake_wait_panel_power_cycle(intel_dp);
  977. pp = ironlake_get_pp_control(intel_dp);
  978. if (IS_GEN5(dev)) {
  979. /* ILK workaround: disable reset around power sequence */
  980. pp &= ~PANEL_POWER_RESET;
  981. I915_WRITE(PCH_PP_CONTROL, pp);
  982. POSTING_READ(PCH_PP_CONTROL);
  983. }
  984. pp |= POWER_TARGET_ON;
  985. if (!IS_GEN5(dev))
  986. pp |= PANEL_POWER_RESET;
  987. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  988. I915_WRITE(pp_ctrl_reg, pp);
  989. POSTING_READ(pp_ctrl_reg);
  990. ironlake_wait_panel_on(intel_dp);
  991. if (IS_GEN5(dev)) {
  992. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  993. I915_WRITE(PCH_PP_CONTROL, pp);
  994. POSTING_READ(PCH_PP_CONTROL);
  995. }
  996. }
  997. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  998. {
  999. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1000. struct drm_i915_private *dev_priv = dev->dev_private;
  1001. u32 pp;
  1002. u32 pp_ctrl_reg;
  1003. if (!is_edp(intel_dp))
  1004. return;
  1005. DRM_DEBUG_KMS("Turn eDP power off\n");
  1006. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1007. pp = ironlake_get_pp_control(intel_dp);
  1008. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1009. * panels get very unhappy and cease to work. */
  1010. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  1011. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1012. I915_WRITE(pp_ctrl_reg, pp);
  1013. POSTING_READ(pp_ctrl_reg);
  1014. intel_dp->want_panel_vdd = false;
  1015. ironlake_wait_panel_off(intel_dp);
  1016. }
  1017. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  1018. {
  1019. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1020. struct drm_device *dev = intel_dig_port->base.base.dev;
  1021. struct drm_i915_private *dev_priv = dev->dev_private;
  1022. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  1023. u32 pp;
  1024. u32 pp_ctrl_reg;
  1025. if (!is_edp(intel_dp))
  1026. return;
  1027. DRM_DEBUG_KMS("\n");
  1028. /*
  1029. * If we enable the backlight right away following a panel power
  1030. * on, we may see slight flicker as the panel syncs with the eDP
  1031. * link. So delay a bit to make sure the image is solid before
  1032. * allowing it to appear.
  1033. */
  1034. msleep(intel_dp->backlight_on_delay);
  1035. pp = ironlake_get_pp_control(intel_dp);
  1036. pp |= EDP_BLC_ENABLE;
  1037. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1038. I915_WRITE(pp_ctrl_reg, pp);
  1039. POSTING_READ(pp_ctrl_reg);
  1040. intel_panel_enable_backlight(dev, pipe);
  1041. }
  1042. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1043. {
  1044. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1045. struct drm_i915_private *dev_priv = dev->dev_private;
  1046. u32 pp;
  1047. u32 pp_ctrl_reg;
  1048. if (!is_edp(intel_dp))
  1049. return;
  1050. intel_panel_disable_backlight(dev);
  1051. DRM_DEBUG_KMS("\n");
  1052. pp = ironlake_get_pp_control(intel_dp);
  1053. pp &= ~EDP_BLC_ENABLE;
  1054. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1055. I915_WRITE(pp_ctrl_reg, pp);
  1056. POSTING_READ(pp_ctrl_reg);
  1057. msleep(intel_dp->backlight_off_delay);
  1058. }
  1059. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1060. {
  1061. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1062. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1063. struct drm_device *dev = crtc->dev;
  1064. struct drm_i915_private *dev_priv = dev->dev_private;
  1065. u32 dpa_ctl;
  1066. assert_pipe_disabled(dev_priv,
  1067. to_intel_crtc(crtc)->pipe);
  1068. DRM_DEBUG_KMS("\n");
  1069. dpa_ctl = I915_READ(DP_A);
  1070. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1071. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1072. /* We don't adjust intel_dp->DP while tearing down the link, to
  1073. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1074. * enable bits here to ensure that we don't enable too much. */
  1075. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1076. intel_dp->DP |= DP_PLL_ENABLE;
  1077. I915_WRITE(DP_A, intel_dp->DP);
  1078. POSTING_READ(DP_A);
  1079. udelay(200);
  1080. }
  1081. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1082. {
  1083. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1084. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1085. struct drm_device *dev = crtc->dev;
  1086. struct drm_i915_private *dev_priv = dev->dev_private;
  1087. u32 dpa_ctl;
  1088. assert_pipe_disabled(dev_priv,
  1089. to_intel_crtc(crtc)->pipe);
  1090. dpa_ctl = I915_READ(DP_A);
  1091. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1092. "dp pll off, should be on\n");
  1093. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1094. /* We can't rely on the value tracked for the DP register in
  1095. * intel_dp->DP because link_down must not change that (otherwise link
  1096. * re-training will fail. */
  1097. dpa_ctl &= ~DP_PLL_ENABLE;
  1098. I915_WRITE(DP_A, dpa_ctl);
  1099. POSTING_READ(DP_A);
  1100. udelay(200);
  1101. }
  1102. /* If the sink supports it, try to set the power state appropriately */
  1103. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1104. {
  1105. int ret, i;
  1106. /* Should have a valid DPCD by this point */
  1107. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1108. return;
  1109. if (mode != DRM_MODE_DPMS_ON) {
  1110. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1111. DP_SET_POWER_D3);
  1112. if (ret != 1)
  1113. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1114. } else {
  1115. /*
  1116. * When turning on, we need to retry for 1ms to give the sink
  1117. * time to wake up.
  1118. */
  1119. for (i = 0; i < 3; i++) {
  1120. ret = intel_dp_aux_native_write_1(intel_dp,
  1121. DP_SET_POWER,
  1122. DP_SET_POWER_D0);
  1123. if (ret == 1)
  1124. break;
  1125. msleep(1);
  1126. }
  1127. }
  1128. }
  1129. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1130. enum pipe *pipe)
  1131. {
  1132. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1133. struct drm_device *dev = encoder->base.dev;
  1134. struct drm_i915_private *dev_priv = dev->dev_private;
  1135. u32 tmp = I915_READ(intel_dp->output_reg);
  1136. if (!(tmp & DP_PORT_EN))
  1137. return false;
  1138. if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1139. *pipe = PORT_TO_PIPE_CPT(tmp);
  1140. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  1141. *pipe = PORT_TO_PIPE(tmp);
  1142. } else {
  1143. u32 trans_sel;
  1144. u32 trans_dp;
  1145. int i;
  1146. switch (intel_dp->output_reg) {
  1147. case PCH_DP_B:
  1148. trans_sel = TRANS_DP_PORT_SEL_B;
  1149. break;
  1150. case PCH_DP_C:
  1151. trans_sel = TRANS_DP_PORT_SEL_C;
  1152. break;
  1153. case PCH_DP_D:
  1154. trans_sel = TRANS_DP_PORT_SEL_D;
  1155. break;
  1156. default:
  1157. return true;
  1158. }
  1159. for_each_pipe(i) {
  1160. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1161. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1162. *pipe = i;
  1163. return true;
  1164. }
  1165. }
  1166. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1167. intel_dp->output_reg);
  1168. }
  1169. return true;
  1170. }
  1171. static void intel_disable_dp(struct intel_encoder *encoder)
  1172. {
  1173. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1174. /* Make sure the panel is off before trying to change the mode. But also
  1175. * ensure that we have vdd while we switch off the panel. */
  1176. ironlake_edp_panel_vdd_on(intel_dp);
  1177. ironlake_edp_backlight_off(intel_dp);
  1178. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1179. ironlake_edp_panel_off(intel_dp);
  1180. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1181. if (!is_cpu_edp(intel_dp))
  1182. intel_dp_link_down(intel_dp);
  1183. }
  1184. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1185. {
  1186. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1187. struct drm_device *dev = encoder->base.dev;
  1188. if (is_cpu_edp(intel_dp)) {
  1189. intel_dp_link_down(intel_dp);
  1190. if (!IS_VALLEYVIEW(dev))
  1191. ironlake_edp_pll_off(intel_dp);
  1192. }
  1193. }
  1194. static void intel_enable_dp(struct intel_encoder *encoder)
  1195. {
  1196. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1197. struct drm_device *dev = encoder->base.dev;
  1198. struct drm_i915_private *dev_priv = dev->dev_private;
  1199. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1200. if (WARN_ON(dp_reg & DP_PORT_EN))
  1201. return;
  1202. ironlake_edp_panel_vdd_on(intel_dp);
  1203. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1204. intel_dp_start_link_train(intel_dp);
  1205. ironlake_edp_panel_on(intel_dp);
  1206. ironlake_edp_panel_vdd_off(intel_dp, true);
  1207. intel_dp_complete_link_train(intel_dp);
  1208. ironlake_edp_backlight_on(intel_dp);
  1209. if (IS_VALLEYVIEW(dev)) {
  1210. struct intel_digital_port *dport =
  1211. enc_to_dig_port(&encoder->base);
  1212. int channel = vlv_dport_to_channel(dport);
  1213. vlv_wait_port_ready(dev_priv, channel);
  1214. }
  1215. }
  1216. static void intel_pre_enable_dp(struct intel_encoder *encoder)
  1217. {
  1218. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1219. struct drm_device *dev = encoder->base.dev;
  1220. struct drm_i915_private *dev_priv = dev->dev_private;
  1221. if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
  1222. ironlake_edp_pll_on(intel_dp);
  1223. if (IS_VALLEYVIEW(dev)) {
  1224. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1225. struct intel_crtc *intel_crtc =
  1226. to_intel_crtc(encoder->base.crtc);
  1227. int port = vlv_dport_to_channel(dport);
  1228. int pipe = intel_crtc->pipe;
  1229. u32 val;
  1230. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1231. val = intel_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
  1232. val = 0;
  1233. if (pipe)
  1234. val |= (1<<21);
  1235. else
  1236. val &= ~(1<<21);
  1237. val |= 0x001000c4;
  1238. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
  1239. intel_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port),
  1240. 0x00760018);
  1241. intel_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port),
  1242. 0x00400888);
  1243. }
  1244. }
  1245. static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
  1246. {
  1247. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1248. struct drm_device *dev = encoder->base.dev;
  1249. struct drm_i915_private *dev_priv = dev->dev_private;
  1250. int port = vlv_dport_to_channel(dport);
  1251. if (!IS_VALLEYVIEW(dev))
  1252. return;
  1253. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1254. /* Program Tx lane resets to default */
  1255. intel_dpio_write(dev_priv, DPIO_PCS_TX(port),
  1256. DPIO_PCS_TX_LANE2_RESET |
  1257. DPIO_PCS_TX_LANE1_RESET);
  1258. intel_dpio_write(dev_priv, DPIO_PCS_CLK(port),
  1259. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1260. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1261. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1262. DPIO_PCS_CLK_SOFT_RESET);
  1263. /* Fix up inter-pair skew failure */
  1264. intel_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
  1265. intel_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
  1266. intel_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
  1267. }
  1268. /*
  1269. * Native read with retry for link status and receiver capability reads for
  1270. * cases where the sink may still be asleep.
  1271. */
  1272. static bool
  1273. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1274. uint8_t *recv, int recv_bytes)
  1275. {
  1276. int ret, i;
  1277. /*
  1278. * Sinks are *supposed* to come up within 1ms from an off state,
  1279. * but we're also supposed to retry 3 times per the spec.
  1280. */
  1281. for (i = 0; i < 3; i++) {
  1282. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1283. recv_bytes);
  1284. if (ret == recv_bytes)
  1285. return true;
  1286. msleep(1);
  1287. }
  1288. return false;
  1289. }
  1290. /*
  1291. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1292. * link status information
  1293. */
  1294. static bool
  1295. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1296. {
  1297. return intel_dp_aux_native_read_retry(intel_dp,
  1298. DP_LANE0_1_STATUS,
  1299. link_status,
  1300. DP_LINK_STATUS_SIZE);
  1301. }
  1302. #if 0
  1303. static char *voltage_names[] = {
  1304. "0.4V", "0.6V", "0.8V", "1.2V"
  1305. };
  1306. static char *pre_emph_names[] = {
  1307. "0dB", "3.5dB", "6dB", "9.5dB"
  1308. };
  1309. static char *link_train_names[] = {
  1310. "pattern 1", "pattern 2", "idle", "off"
  1311. };
  1312. #endif
  1313. /*
  1314. * These are source-specific values; current Intel hardware supports
  1315. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1316. */
  1317. static uint8_t
  1318. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1319. {
  1320. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1321. if (IS_VALLEYVIEW(dev))
  1322. return DP_TRAIN_VOLTAGE_SWING_1200;
  1323. else if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
  1324. return DP_TRAIN_VOLTAGE_SWING_800;
  1325. else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
  1326. return DP_TRAIN_VOLTAGE_SWING_1200;
  1327. else
  1328. return DP_TRAIN_VOLTAGE_SWING_800;
  1329. }
  1330. static uint8_t
  1331. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1332. {
  1333. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1334. if (HAS_DDI(dev)) {
  1335. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1336. case DP_TRAIN_VOLTAGE_SWING_400:
  1337. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1338. case DP_TRAIN_VOLTAGE_SWING_600:
  1339. return DP_TRAIN_PRE_EMPHASIS_6;
  1340. case DP_TRAIN_VOLTAGE_SWING_800:
  1341. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1342. case DP_TRAIN_VOLTAGE_SWING_1200:
  1343. default:
  1344. return DP_TRAIN_PRE_EMPHASIS_0;
  1345. }
  1346. } else if (IS_VALLEYVIEW(dev)) {
  1347. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1348. case DP_TRAIN_VOLTAGE_SWING_400:
  1349. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1350. case DP_TRAIN_VOLTAGE_SWING_600:
  1351. return DP_TRAIN_PRE_EMPHASIS_6;
  1352. case DP_TRAIN_VOLTAGE_SWING_800:
  1353. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1354. case DP_TRAIN_VOLTAGE_SWING_1200:
  1355. default:
  1356. return DP_TRAIN_PRE_EMPHASIS_0;
  1357. }
  1358. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
  1359. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1360. case DP_TRAIN_VOLTAGE_SWING_400:
  1361. return DP_TRAIN_PRE_EMPHASIS_6;
  1362. case DP_TRAIN_VOLTAGE_SWING_600:
  1363. case DP_TRAIN_VOLTAGE_SWING_800:
  1364. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1365. default:
  1366. return DP_TRAIN_PRE_EMPHASIS_0;
  1367. }
  1368. } else {
  1369. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1370. case DP_TRAIN_VOLTAGE_SWING_400:
  1371. return DP_TRAIN_PRE_EMPHASIS_6;
  1372. case DP_TRAIN_VOLTAGE_SWING_600:
  1373. return DP_TRAIN_PRE_EMPHASIS_6;
  1374. case DP_TRAIN_VOLTAGE_SWING_800:
  1375. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1376. case DP_TRAIN_VOLTAGE_SWING_1200:
  1377. default:
  1378. return DP_TRAIN_PRE_EMPHASIS_0;
  1379. }
  1380. }
  1381. }
  1382. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1383. {
  1384. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1385. struct drm_i915_private *dev_priv = dev->dev_private;
  1386. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1387. unsigned long demph_reg_value, preemph_reg_value,
  1388. uniqtranscale_reg_value;
  1389. uint8_t train_set = intel_dp->train_set[0];
  1390. int port = vlv_dport_to_channel(dport);
  1391. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1392. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1393. case DP_TRAIN_PRE_EMPHASIS_0:
  1394. preemph_reg_value = 0x0004000;
  1395. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1396. case DP_TRAIN_VOLTAGE_SWING_400:
  1397. demph_reg_value = 0x2B405555;
  1398. uniqtranscale_reg_value = 0x552AB83A;
  1399. break;
  1400. case DP_TRAIN_VOLTAGE_SWING_600:
  1401. demph_reg_value = 0x2B404040;
  1402. uniqtranscale_reg_value = 0x5548B83A;
  1403. break;
  1404. case DP_TRAIN_VOLTAGE_SWING_800:
  1405. demph_reg_value = 0x2B245555;
  1406. uniqtranscale_reg_value = 0x5560B83A;
  1407. break;
  1408. case DP_TRAIN_VOLTAGE_SWING_1200:
  1409. demph_reg_value = 0x2B405555;
  1410. uniqtranscale_reg_value = 0x5598DA3A;
  1411. break;
  1412. default:
  1413. return 0;
  1414. }
  1415. break;
  1416. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1417. preemph_reg_value = 0x0002000;
  1418. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1419. case DP_TRAIN_VOLTAGE_SWING_400:
  1420. demph_reg_value = 0x2B404040;
  1421. uniqtranscale_reg_value = 0x5552B83A;
  1422. break;
  1423. case DP_TRAIN_VOLTAGE_SWING_600:
  1424. demph_reg_value = 0x2B404848;
  1425. uniqtranscale_reg_value = 0x5580B83A;
  1426. break;
  1427. case DP_TRAIN_VOLTAGE_SWING_800:
  1428. demph_reg_value = 0x2B404040;
  1429. uniqtranscale_reg_value = 0x55ADDA3A;
  1430. break;
  1431. default:
  1432. return 0;
  1433. }
  1434. break;
  1435. case DP_TRAIN_PRE_EMPHASIS_6:
  1436. preemph_reg_value = 0x0000000;
  1437. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1438. case DP_TRAIN_VOLTAGE_SWING_400:
  1439. demph_reg_value = 0x2B305555;
  1440. uniqtranscale_reg_value = 0x5570B83A;
  1441. break;
  1442. case DP_TRAIN_VOLTAGE_SWING_600:
  1443. demph_reg_value = 0x2B2B4040;
  1444. uniqtranscale_reg_value = 0x55ADDA3A;
  1445. break;
  1446. default:
  1447. return 0;
  1448. }
  1449. break;
  1450. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1451. preemph_reg_value = 0x0006000;
  1452. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1453. case DP_TRAIN_VOLTAGE_SWING_400:
  1454. demph_reg_value = 0x1B405555;
  1455. uniqtranscale_reg_value = 0x55ADDA3A;
  1456. break;
  1457. default:
  1458. return 0;
  1459. }
  1460. break;
  1461. default:
  1462. return 0;
  1463. }
  1464. intel_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
  1465. intel_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
  1466. intel_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
  1467. uniqtranscale_reg_value);
  1468. intel_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
  1469. intel_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
  1470. intel_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
  1471. intel_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
  1472. return 0;
  1473. }
  1474. static void
  1475. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1476. {
  1477. uint8_t v = 0;
  1478. uint8_t p = 0;
  1479. int lane;
  1480. uint8_t voltage_max;
  1481. uint8_t preemph_max;
  1482. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1483. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1484. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1485. if (this_v > v)
  1486. v = this_v;
  1487. if (this_p > p)
  1488. p = this_p;
  1489. }
  1490. voltage_max = intel_dp_voltage_max(intel_dp);
  1491. if (v >= voltage_max)
  1492. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1493. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1494. if (p >= preemph_max)
  1495. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1496. for (lane = 0; lane < 4; lane++)
  1497. intel_dp->train_set[lane] = v | p;
  1498. }
  1499. static uint32_t
  1500. intel_gen4_signal_levels(uint8_t train_set)
  1501. {
  1502. uint32_t signal_levels = 0;
  1503. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1504. case DP_TRAIN_VOLTAGE_SWING_400:
  1505. default:
  1506. signal_levels |= DP_VOLTAGE_0_4;
  1507. break;
  1508. case DP_TRAIN_VOLTAGE_SWING_600:
  1509. signal_levels |= DP_VOLTAGE_0_6;
  1510. break;
  1511. case DP_TRAIN_VOLTAGE_SWING_800:
  1512. signal_levels |= DP_VOLTAGE_0_8;
  1513. break;
  1514. case DP_TRAIN_VOLTAGE_SWING_1200:
  1515. signal_levels |= DP_VOLTAGE_1_2;
  1516. break;
  1517. }
  1518. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1519. case DP_TRAIN_PRE_EMPHASIS_0:
  1520. default:
  1521. signal_levels |= DP_PRE_EMPHASIS_0;
  1522. break;
  1523. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1524. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1525. break;
  1526. case DP_TRAIN_PRE_EMPHASIS_6:
  1527. signal_levels |= DP_PRE_EMPHASIS_6;
  1528. break;
  1529. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1530. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1531. break;
  1532. }
  1533. return signal_levels;
  1534. }
  1535. /* Gen6's DP voltage swing and pre-emphasis control */
  1536. static uint32_t
  1537. intel_gen6_edp_signal_levels(uint8_t train_set)
  1538. {
  1539. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1540. DP_TRAIN_PRE_EMPHASIS_MASK);
  1541. switch (signal_levels) {
  1542. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1543. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1544. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1545. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1546. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1547. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1548. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1549. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1550. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1551. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1552. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1553. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1554. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1555. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1556. default:
  1557. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1558. "0x%x\n", signal_levels);
  1559. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1560. }
  1561. }
  1562. /* Gen7's DP voltage swing and pre-emphasis control */
  1563. static uint32_t
  1564. intel_gen7_edp_signal_levels(uint8_t train_set)
  1565. {
  1566. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1567. DP_TRAIN_PRE_EMPHASIS_MASK);
  1568. switch (signal_levels) {
  1569. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1570. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1571. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1572. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1573. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1574. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1575. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1576. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1577. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1578. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1579. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1580. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1581. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1582. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1583. default:
  1584. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1585. "0x%x\n", signal_levels);
  1586. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1587. }
  1588. }
  1589. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1590. static uint32_t
  1591. intel_hsw_signal_levels(uint8_t train_set)
  1592. {
  1593. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1594. DP_TRAIN_PRE_EMPHASIS_MASK);
  1595. switch (signal_levels) {
  1596. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1597. return DDI_BUF_EMP_400MV_0DB_HSW;
  1598. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1599. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1600. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1601. return DDI_BUF_EMP_400MV_6DB_HSW;
  1602. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1603. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1604. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1605. return DDI_BUF_EMP_600MV_0DB_HSW;
  1606. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1607. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1608. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1609. return DDI_BUF_EMP_600MV_6DB_HSW;
  1610. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1611. return DDI_BUF_EMP_800MV_0DB_HSW;
  1612. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1613. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1614. default:
  1615. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1616. "0x%x\n", signal_levels);
  1617. return DDI_BUF_EMP_400MV_0DB_HSW;
  1618. }
  1619. }
  1620. /* Properly updates "DP" with the correct signal levels. */
  1621. static void
  1622. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1623. {
  1624. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1625. struct drm_device *dev = intel_dig_port->base.base.dev;
  1626. uint32_t signal_levels, mask;
  1627. uint8_t train_set = intel_dp->train_set[0];
  1628. if (HAS_DDI(dev)) {
  1629. signal_levels = intel_hsw_signal_levels(train_set);
  1630. mask = DDI_BUF_EMP_MASK;
  1631. } else if (IS_VALLEYVIEW(dev)) {
  1632. signal_levels = intel_vlv_signal_levels(intel_dp);
  1633. mask = 0;
  1634. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
  1635. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1636. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1637. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1638. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1639. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1640. } else {
  1641. signal_levels = intel_gen4_signal_levels(train_set);
  1642. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1643. }
  1644. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1645. *DP = (*DP & ~mask) | signal_levels;
  1646. }
  1647. static bool
  1648. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1649. uint32_t dp_reg_value,
  1650. uint8_t dp_train_pat)
  1651. {
  1652. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1653. struct drm_device *dev = intel_dig_port->base.base.dev;
  1654. struct drm_i915_private *dev_priv = dev->dev_private;
  1655. enum port port = intel_dig_port->port;
  1656. int ret;
  1657. uint32_t temp;
  1658. if (HAS_DDI(dev)) {
  1659. temp = I915_READ(DP_TP_CTL(port));
  1660. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1661. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1662. else
  1663. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1664. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1665. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1666. case DP_TRAINING_PATTERN_DISABLE:
  1667. if (port != PORT_A) {
  1668. temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
  1669. I915_WRITE(DP_TP_CTL(port), temp);
  1670. if (wait_for((I915_READ(DP_TP_STATUS(port)) &
  1671. DP_TP_STATUS_IDLE_DONE), 1))
  1672. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  1673. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1674. }
  1675. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1676. break;
  1677. case DP_TRAINING_PATTERN_1:
  1678. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1679. break;
  1680. case DP_TRAINING_PATTERN_2:
  1681. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1682. break;
  1683. case DP_TRAINING_PATTERN_3:
  1684. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1685. break;
  1686. }
  1687. I915_WRITE(DP_TP_CTL(port), temp);
  1688. } else if (HAS_PCH_CPT(dev) &&
  1689. (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1690. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  1691. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1692. case DP_TRAINING_PATTERN_DISABLE:
  1693. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  1694. break;
  1695. case DP_TRAINING_PATTERN_1:
  1696. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  1697. break;
  1698. case DP_TRAINING_PATTERN_2:
  1699. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1700. break;
  1701. case DP_TRAINING_PATTERN_3:
  1702. DRM_ERROR("DP training pattern 3 not supported\n");
  1703. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1704. break;
  1705. }
  1706. } else {
  1707. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  1708. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1709. case DP_TRAINING_PATTERN_DISABLE:
  1710. dp_reg_value |= DP_LINK_TRAIN_OFF;
  1711. break;
  1712. case DP_TRAINING_PATTERN_1:
  1713. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  1714. break;
  1715. case DP_TRAINING_PATTERN_2:
  1716. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1717. break;
  1718. case DP_TRAINING_PATTERN_3:
  1719. DRM_ERROR("DP training pattern 3 not supported\n");
  1720. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1721. break;
  1722. }
  1723. }
  1724. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1725. POSTING_READ(intel_dp->output_reg);
  1726. intel_dp_aux_native_write_1(intel_dp,
  1727. DP_TRAINING_PATTERN_SET,
  1728. dp_train_pat);
  1729. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  1730. DP_TRAINING_PATTERN_DISABLE) {
  1731. ret = intel_dp_aux_native_write(intel_dp,
  1732. DP_TRAINING_LANE0_SET,
  1733. intel_dp->train_set,
  1734. intel_dp->lane_count);
  1735. if (ret != intel_dp->lane_count)
  1736. return false;
  1737. }
  1738. return true;
  1739. }
  1740. /* Enable corresponding port and start training pattern 1 */
  1741. void
  1742. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1743. {
  1744. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  1745. struct drm_device *dev = encoder->dev;
  1746. int i;
  1747. uint8_t voltage;
  1748. bool clock_recovery = false;
  1749. int voltage_tries, loop_tries;
  1750. uint32_t DP = intel_dp->DP;
  1751. if (HAS_DDI(dev))
  1752. intel_ddi_prepare_link_retrain(encoder);
  1753. /* Write the link configuration data */
  1754. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1755. intel_dp->link_configuration,
  1756. DP_LINK_CONFIGURATION_SIZE);
  1757. DP |= DP_PORT_EN;
  1758. memset(intel_dp->train_set, 0, 4);
  1759. voltage = 0xff;
  1760. voltage_tries = 0;
  1761. loop_tries = 0;
  1762. clock_recovery = false;
  1763. for (;;) {
  1764. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1765. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1766. intel_dp_set_signal_levels(intel_dp, &DP);
  1767. /* Set training pattern 1 */
  1768. if (!intel_dp_set_link_train(intel_dp, DP,
  1769. DP_TRAINING_PATTERN_1 |
  1770. DP_LINK_SCRAMBLING_DISABLE))
  1771. break;
  1772. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  1773. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1774. DRM_ERROR("failed to get link status\n");
  1775. break;
  1776. }
  1777. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1778. DRM_DEBUG_KMS("clock recovery OK\n");
  1779. clock_recovery = true;
  1780. break;
  1781. }
  1782. /* Check to see if we've tried the max voltage */
  1783. for (i = 0; i < intel_dp->lane_count; i++)
  1784. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1785. break;
  1786. if (i == intel_dp->lane_count) {
  1787. ++loop_tries;
  1788. if (loop_tries == 5) {
  1789. DRM_DEBUG_KMS("too many full retries, give up\n");
  1790. break;
  1791. }
  1792. memset(intel_dp->train_set, 0, 4);
  1793. voltage_tries = 0;
  1794. continue;
  1795. }
  1796. /* Check to see if we've tried the same voltage 5 times */
  1797. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1798. ++voltage_tries;
  1799. if (voltage_tries == 5) {
  1800. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  1801. break;
  1802. }
  1803. } else
  1804. voltage_tries = 0;
  1805. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1806. /* Compute new intel_dp->train_set as requested by target */
  1807. intel_get_adjust_train(intel_dp, link_status);
  1808. }
  1809. intel_dp->DP = DP;
  1810. }
  1811. void
  1812. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1813. {
  1814. bool channel_eq = false;
  1815. int tries, cr_tries;
  1816. uint32_t DP = intel_dp->DP;
  1817. /* channel equalization */
  1818. tries = 0;
  1819. cr_tries = 0;
  1820. channel_eq = false;
  1821. for (;;) {
  1822. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1823. if (cr_tries > 5) {
  1824. DRM_ERROR("failed to train DP, aborting\n");
  1825. intel_dp_link_down(intel_dp);
  1826. break;
  1827. }
  1828. intel_dp_set_signal_levels(intel_dp, &DP);
  1829. /* channel eq pattern */
  1830. if (!intel_dp_set_link_train(intel_dp, DP,
  1831. DP_TRAINING_PATTERN_2 |
  1832. DP_LINK_SCRAMBLING_DISABLE))
  1833. break;
  1834. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  1835. if (!intel_dp_get_link_status(intel_dp, link_status))
  1836. break;
  1837. /* Make sure clock is still ok */
  1838. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1839. intel_dp_start_link_train(intel_dp);
  1840. cr_tries++;
  1841. continue;
  1842. }
  1843. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1844. channel_eq = true;
  1845. break;
  1846. }
  1847. /* Try 5 times, then try clock recovery if that fails */
  1848. if (tries > 5) {
  1849. intel_dp_link_down(intel_dp);
  1850. intel_dp_start_link_train(intel_dp);
  1851. tries = 0;
  1852. cr_tries++;
  1853. continue;
  1854. }
  1855. /* Compute new intel_dp->train_set as requested by target */
  1856. intel_get_adjust_train(intel_dp, link_status);
  1857. ++tries;
  1858. }
  1859. if (channel_eq)
  1860. DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
  1861. intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
  1862. }
  1863. static void
  1864. intel_dp_link_down(struct intel_dp *intel_dp)
  1865. {
  1866. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1867. struct drm_device *dev = intel_dig_port->base.base.dev;
  1868. struct drm_i915_private *dev_priv = dev->dev_private;
  1869. struct intel_crtc *intel_crtc =
  1870. to_intel_crtc(intel_dig_port->base.base.crtc);
  1871. uint32_t DP = intel_dp->DP;
  1872. /*
  1873. * DDI code has a strict mode set sequence and we should try to respect
  1874. * it, otherwise we might hang the machine in many different ways. So we
  1875. * really should be disabling the port only on a complete crtc_disable
  1876. * sequence. This function is just called under two conditions on DDI
  1877. * code:
  1878. * - Link train failed while doing crtc_enable, and on this case we
  1879. * really should respect the mode set sequence and wait for a
  1880. * crtc_disable.
  1881. * - Someone turned the monitor off and intel_dp_check_link_status
  1882. * called us. We don't need to disable the whole port on this case, so
  1883. * when someone turns the monitor on again,
  1884. * intel_ddi_prepare_link_retrain will take care of redoing the link
  1885. * train.
  1886. */
  1887. if (HAS_DDI(dev))
  1888. return;
  1889. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  1890. return;
  1891. DRM_DEBUG_KMS("\n");
  1892. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1893. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1894. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1895. } else {
  1896. DP &= ~DP_LINK_TRAIN_MASK;
  1897. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1898. }
  1899. POSTING_READ(intel_dp->output_reg);
  1900. /* We don't really know why we're doing this */
  1901. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1902. if (HAS_PCH_IBX(dev) &&
  1903. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1904. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1905. /* Hardware workaround: leaving our transcoder select
  1906. * set to transcoder B while it's off will prevent the
  1907. * corresponding HDMI output on transcoder A.
  1908. *
  1909. * Combine this with another hardware workaround:
  1910. * transcoder select bit can only be cleared while the
  1911. * port is enabled.
  1912. */
  1913. DP &= ~DP_PIPEB_SELECT;
  1914. I915_WRITE(intel_dp->output_reg, DP);
  1915. /* Changes to enable or select take place the vblank
  1916. * after being written.
  1917. */
  1918. if (WARN_ON(crtc == NULL)) {
  1919. /* We should never try to disable a port without a crtc
  1920. * attached. For paranoia keep the code around for a
  1921. * bit. */
  1922. POSTING_READ(intel_dp->output_reg);
  1923. msleep(50);
  1924. } else
  1925. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1926. }
  1927. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  1928. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1929. POSTING_READ(intel_dp->output_reg);
  1930. msleep(intel_dp->panel_power_down_delay);
  1931. }
  1932. static bool
  1933. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1934. {
  1935. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  1936. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1937. sizeof(intel_dp->dpcd)) == 0)
  1938. return false; /* aux transfer failed */
  1939. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  1940. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  1941. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  1942. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  1943. return false; /* DPCD not present */
  1944. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  1945. DP_DWN_STRM_PORT_PRESENT))
  1946. return true; /* native DP sink */
  1947. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  1948. return true; /* no per-port downstream info */
  1949. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  1950. intel_dp->downstream_ports,
  1951. DP_MAX_DOWNSTREAM_PORTS) == 0)
  1952. return false; /* downstream port status fetch failed */
  1953. return true;
  1954. }
  1955. static void
  1956. intel_dp_probe_oui(struct intel_dp *intel_dp)
  1957. {
  1958. u8 buf[3];
  1959. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  1960. return;
  1961. ironlake_edp_panel_vdd_on(intel_dp);
  1962. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  1963. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  1964. buf[0], buf[1], buf[2]);
  1965. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  1966. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  1967. buf[0], buf[1], buf[2]);
  1968. ironlake_edp_panel_vdd_off(intel_dp, false);
  1969. }
  1970. static bool
  1971. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  1972. {
  1973. int ret;
  1974. ret = intel_dp_aux_native_read_retry(intel_dp,
  1975. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1976. sink_irq_vector, 1);
  1977. if (!ret)
  1978. return false;
  1979. return true;
  1980. }
  1981. static void
  1982. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  1983. {
  1984. /* NAK by default */
  1985. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  1986. }
  1987. /*
  1988. * According to DP spec
  1989. * 5.1.2:
  1990. * 1. Read DPCD
  1991. * 2. Configure link according to Receiver Capabilities
  1992. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1993. * 4. Check link status on receipt of hot-plug interrupt
  1994. */
  1995. void
  1996. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1997. {
  1998. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1999. u8 sink_irq_vector;
  2000. u8 link_status[DP_LINK_STATUS_SIZE];
  2001. if (!intel_encoder->connectors_active)
  2002. return;
  2003. if (WARN_ON(!intel_encoder->base.crtc))
  2004. return;
  2005. /* Try to read receiver status if the link appears to be up */
  2006. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2007. intel_dp_link_down(intel_dp);
  2008. return;
  2009. }
  2010. /* Now read the DPCD to see if it's actually running */
  2011. if (!intel_dp_get_dpcd(intel_dp)) {
  2012. intel_dp_link_down(intel_dp);
  2013. return;
  2014. }
  2015. /* Try to read the source of the interrupt */
  2016. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2017. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2018. /* Clear interrupt source */
  2019. intel_dp_aux_native_write_1(intel_dp,
  2020. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2021. sink_irq_vector);
  2022. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2023. intel_dp_handle_test_request(intel_dp);
  2024. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2025. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2026. }
  2027. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2028. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2029. drm_get_encoder_name(&intel_encoder->base));
  2030. intel_dp_start_link_train(intel_dp);
  2031. intel_dp_complete_link_train(intel_dp);
  2032. }
  2033. }
  2034. /* XXX this is probably wrong for multiple downstream ports */
  2035. static enum drm_connector_status
  2036. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2037. {
  2038. uint8_t *dpcd = intel_dp->dpcd;
  2039. bool hpd;
  2040. uint8_t type;
  2041. if (!intel_dp_get_dpcd(intel_dp))
  2042. return connector_status_disconnected;
  2043. /* if there's no downstream port, we're done */
  2044. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2045. return connector_status_connected;
  2046. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2047. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  2048. if (hpd) {
  2049. uint8_t reg;
  2050. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  2051. &reg, 1))
  2052. return connector_status_unknown;
  2053. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2054. : connector_status_disconnected;
  2055. }
  2056. /* If no HPD, poke DDC gently */
  2057. if (drm_probe_ddc(&intel_dp->adapter))
  2058. return connector_status_connected;
  2059. /* Well we tried, say unknown for unreliable port types */
  2060. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2061. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  2062. return connector_status_unknown;
  2063. /* Anything else is out of spec, warn and ignore */
  2064. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2065. return connector_status_disconnected;
  2066. }
  2067. static enum drm_connector_status
  2068. ironlake_dp_detect(struct intel_dp *intel_dp)
  2069. {
  2070. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2071. struct drm_i915_private *dev_priv = dev->dev_private;
  2072. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2073. enum drm_connector_status status;
  2074. /* Can't disconnect eDP, but you can close the lid... */
  2075. if (is_edp(intel_dp)) {
  2076. status = intel_panel_detect(dev);
  2077. if (status == connector_status_unknown)
  2078. status = connector_status_connected;
  2079. return status;
  2080. }
  2081. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2082. return connector_status_disconnected;
  2083. return intel_dp_detect_dpcd(intel_dp);
  2084. }
  2085. static enum drm_connector_status
  2086. g4x_dp_detect(struct intel_dp *intel_dp)
  2087. {
  2088. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2089. struct drm_i915_private *dev_priv = dev->dev_private;
  2090. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2091. uint32_t bit;
  2092. /* Can't disconnect eDP, but you can close the lid... */
  2093. if (is_edp(intel_dp)) {
  2094. enum drm_connector_status status;
  2095. status = intel_panel_detect(dev);
  2096. if (status == connector_status_unknown)
  2097. status = connector_status_connected;
  2098. return status;
  2099. }
  2100. switch (intel_dig_port->port) {
  2101. case PORT_B:
  2102. bit = PORTB_HOTPLUG_LIVE_STATUS;
  2103. break;
  2104. case PORT_C:
  2105. bit = PORTC_HOTPLUG_LIVE_STATUS;
  2106. break;
  2107. case PORT_D:
  2108. bit = PORTD_HOTPLUG_LIVE_STATUS;
  2109. break;
  2110. default:
  2111. return connector_status_unknown;
  2112. }
  2113. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2114. return connector_status_disconnected;
  2115. return intel_dp_detect_dpcd(intel_dp);
  2116. }
  2117. static struct edid *
  2118. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2119. {
  2120. struct intel_connector *intel_connector = to_intel_connector(connector);
  2121. /* use cached edid if we have one */
  2122. if (intel_connector->edid) {
  2123. struct edid *edid;
  2124. int size;
  2125. /* invalid edid */
  2126. if (IS_ERR(intel_connector->edid))
  2127. return NULL;
  2128. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  2129. edid = kmalloc(size, GFP_KERNEL);
  2130. if (!edid)
  2131. return NULL;
  2132. memcpy(edid, intel_connector->edid, size);
  2133. return edid;
  2134. }
  2135. return drm_get_edid(connector, adapter);
  2136. }
  2137. static int
  2138. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2139. {
  2140. struct intel_connector *intel_connector = to_intel_connector(connector);
  2141. /* use cached edid if we have one */
  2142. if (intel_connector->edid) {
  2143. /* invalid edid */
  2144. if (IS_ERR(intel_connector->edid))
  2145. return 0;
  2146. return intel_connector_update_modes(connector,
  2147. intel_connector->edid);
  2148. }
  2149. return intel_ddc_get_modes(connector, adapter);
  2150. }
  2151. static enum drm_connector_status
  2152. intel_dp_detect(struct drm_connector *connector, bool force)
  2153. {
  2154. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2155. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2156. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2157. struct drm_device *dev = connector->dev;
  2158. enum drm_connector_status status;
  2159. struct edid *edid = NULL;
  2160. intel_dp->has_audio = false;
  2161. if (HAS_PCH_SPLIT(dev))
  2162. status = ironlake_dp_detect(intel_dp);
  2163. else
  2164. status = g4x_dp_detect(intel_dp);
  2165. if (status != connector_status_connected)
  2166. return status;
  2167. intel_dp_probe_oui(intel_dp);
  2168. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2169. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2170. } else {
  2171. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2172. if (edid) {
  2173. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2174. kfree(edid);
  2175. }
  2176. }
  2177. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2178. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2179. return connector_status_connected;
  2180. }
  2181. static int intel_dp_get_modes(struct drm_connector *connector)
  2182. {
  2183. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2184. struct intel_connector *intel_connector = to_intel_connector(connector);
  2185. struct drm_device *dev = connector->dev;
  2186. int ret;
  2187. /* We should parse the EDID data and find out if it has an audio sink
  2188. */
  2189. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2190. if (ret)
  2191. return ret;
  2192. /* if eDP has no EDID, fall back to fixed mode */
  2193. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2194. struct drm_display_mode *mode;
  2195. mode = drm_mode_duplicate(dev,
  2196. intel_connector->panel.fixed_mode);
  2197. if (mode) {
  2198. drm_mode_probed_add(connector, mode);
  2199. return 1;
  2200. }
  2201. }
  2202. return 0;
  2203. }
  2204. static bool
  2205. intel_dp_detect_audio(struct drm_connector *connector)
  2206. {
  2207. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2208. struct edid *edid;
  2209. bool has_audio = false;
  2210. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2211. if (edid) {
  2212. has_audio = drm_detect_monitor_audio(edid);
  2213. kfree(edid);
  2214. }
  2215. return has_audio;
  2216. }
  2217. static int
  2218. intel_dp_set_property(struct drm_connector *connector,
  2219. struct drm_property *property,
  2220. uint64_t val)
  2221. {
  2222. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2223. struct intel_connector *intel_connector = to_intel_connector(connector);
  2224. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2225. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2226. int ret;
  2227. ret = drm_object_property_set_value(&connector->base, property, val);
  2228. if (ret)
  2229. return ret;
  2230. if (property == dev_priv->force_audio_property) {
  2231. int i = val;
  2232. bool has_audio;
  2233. if (i == intel_dp->force_audio)
  2234. return 0;
  2235. intel_dp->force_audio = i;
  2236. if (i == HDMI_AUDIO_AUTO)
  2237. has_audio = intel_dp_detect_audio(connector);
  2238. else
  2239. has_audio = (i == HDMI_AUDIO_ON);
  2240. if (has_audio == intel_dp->has_audio)
  2241. return 0;
  2242. intel_dp->has_audio = has_audio;
  2243. goto done;
  2244. }
  2245. if (property == dev_priv->broadcast_rgb_property) {
  2246. switch (val) {
  2247. case INTEL_BROADCAST_RGB_AUTO:
  2248. intel_dp->color_range_auto = true;
  2249. break;
  2250. case INTEL_BROADCAST_RGB_FULL:
  2251. intel_dp->color_range_auto = false;
  2252. intel_dp->color_range = 0;
  2253. break;
  2254. case INTEL_BROADCAST_RGB_LIMITED:
  2255. intel_dp->color_range_auto = false;
  2256. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2257. break;
  2258. default:
  2259. return -EINVAL;
  2260. }
  2261. goto done;
  2262. }
  2263. if (is_edp(intel_dp) &&
  2264. property == connector->dev->mode_config.scaling_mode_property) {
  2265. if (val == DRM_MODE_SCALE_NONE) {
  2266. DRM_DEBUG_KMS("no scaling not supported\n");
  2267. return -EINVAL;
  2268. }
  2269. if (intel_connector->panel.fitting_mode == val) {
  2270. /* the eDP scaling property is not changed */
  2271. return 0;
  2272. }
  2273. intel_connector->panel.fitting_mode = val;
  2274. goto done;
  2275. }
  2276. return -EINVAL;
  2277. done:
  2278. if (intel_encoder->base.crtc)
  2279. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2280. return 0;
  2281. }
  2282. static void
  2283. intel_dp_destroy(struct drm_connector *connector)
  2284. {
  2285. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2286. struct intel_connector *intel_connector = to_intel_connector(connector);
  2287. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2288. kfree(intel_connector->edid);
  2289. if (is_edp(intel_dp))
  2290. intel_panel_fini(&intel_connector->panel);
  2291. drm_sysfs_connector_remove(connector);
  2292. drm_connector_cleanup(connector);
  2293. kfree(connector);
  2294. }
  2295. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2296. {
  2297. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2298. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2299. i2c_del_adapter(&intel_dp->adapter);
  2300. drm_encoder_cleanup(encoder);
  2301. if (is_edp(intel_dp)) {
  2302. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2303. ironlake_panel_vdd_off_sync(intel_dp);
  2304. }
  2305. kfree(intel_dig_port);
  2306. }
  2307. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  2308. .mode_set = intel_dp_mode_set,
  2309. };
  2310. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2311. .dpms = intel_connector_dpms,
  2312. .detect = intel_dp_detect,
  2313. .fill_modes = drm_helper_probe_single_connector_modes,
  2314. .set_property = intel_dp_set_property,
  2315. .destroy = intel_dp_destroy,
  2316. };
  2317. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2318. .get_modes = intel_dp_get_modes,
  2319. .mode_valid = intel_dp_mode_valid,
  2320. .best_encoder = intel_best_encoder,
  2321. };
  2322. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2323. .destroy = intel_dp_encoder_destroy,
  2324. };
  2325. static void
  2326. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2327. {
  2328. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2329. intel_dp_check_link_status(intel_dp);
  2330. }
  2331. /* Return which DP Port should be selected for Transcoder DP control */
  2332. int
  2333. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2334. {
  2335. struct drm_device *dev = crtc->dev;
  2336. struct intel_encoder *intel_encoder;
  2337. struct intel_dp *intel_dp;
  2338. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2339. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2340. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2341. intel_encoder->type == INTEL_OUTPUT_EDP)
  2342. return intel_dp->output_reg;
  2343. }
  2344. return -1;
  2345. }
  2346. /* check the VBT to see whether the eDP is on DP-D port */
  2347. bool intel_dpd_is_edp(struct drm_device *dev)
  2348. {
  2349. struct drm_i915_private *dev_priv = dev->dev_private;
  2350. struct child_device_config *p_child;
  2351. int i;
  2352. if (!dev_priv->child_dev_num)
  2353. return false;
  2354. for (i = 0; i < dev_priv->child_dev_num; i++) {
  2355. p_child = dev_priv->child_dev + i;
  2356. if (p_child->dvo_port == PORT_IDPD &&
  2357. p_child->device_type == DEVICE_TYPE_eDP)
  2358. return true;
  2359. }
  2360. return false;
  2361. }
  2362. static void
  2363. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2364. {
  2365. struct intel_connector *intel_connector = to_intel_connector(connector);
  2366. intel_attach_force_audio_property(connector);
  2367. intel_attach_broadcast_rgb_property(connector);
  2368. intel_dp->color_range_auto = true;
  2369. if (is_edp(intel_dp)) {
  2370. drm_mode_create_scaling_mode_property(connector->dev);
  2371. drm_object_attach_property(
  2372. &connector->base,
  2373. connector->dev->mode_config.scaling_mode_property,
  2374. DRM_MODE_SCALE_ASPECT);
  2375. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2376. }
  2377. }
  2378. static void
  2379. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2380. struct intel_dp *intel_dp,
  2381. struct edp_power_seq *out)
  2382. {
  2383. struct drm_i915_private *dev_priv = dev->dev_private;
  2384. struct edp_power_seq cur, vbt, spec, final;
  2385. u32 pp_on, pp_off, pp_div, pp;
  2386. int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  2387. if (HAS_PCH_SPLIT(dev)) {
  2388. pp_control_reg = PCH_PP_CONTROL;
  2389. pp_on_reg = PCH_PP_ON_DELAYS;
  2390. pp_off_reg = PCH_PP_OFF_DELAYS;
  2391. pp_div_reg = PCH_PP_DIVISOR;
  2392. } else {
  2393. pp_control_reg = PIPEA_PP_CONTROL;
  2394. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2395. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2396. pp_div_reg = PIPEA_PP_DIVISOR;
  2397. }
  2398. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2399. * the very first thing. */
  2400. pp = ironlake_get_pp_control(intel_dp);
  2401. I915_WRITE(pp_control_reg, pp);
  2402. pp_on = I915_READ(pp_on_reg);
  2403. pp_off = I915_READ(pp_off_reg);
  2404. pp_div = I915_READ(pp_div_reg);
  2405. /* Pull timing values out of registers */
  2406. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2407. PANEL_POWER_UP_DELAY_SHIFT;
  2408. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2409. PANEL_LIGHT_ON_DELAY_SHIFT;
  2410. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2411. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2412. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2413. PANEL_POWER_DOWN_DELAY_SHIFT;
  2414. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2415. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2416. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2417. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2418. vbt = dev_priv->edp.pps;
  2419. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2420. * our hw here, which are all in 100usec. */
  2421. spec.t1_t3 = 210 * 10;
  2422. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2423. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2424. spec.t10 = 500 * 10;
  2425. /* This one is special and actually in units of 100ms, but zero
  2426. * based in the hw (so we need to add 100 ms). But the sw vbt
  2427. * table multiplies it with 1000 to make it in units of 100usec,
  2428. * too. */
  2429. spec.t11_t12 = (510 + 100) * 10;
  2430. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2431. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2432. /* Use the max of the register settings and vbt. If both are
  2433. * unset, fall back to the spec limits. */
  2434. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2435. spec.field : \
  2436. max(cur.field, vbt.field))
  2437. assign_final(t1_t3);
  2438. assign_final(t8);
  2439. assign_final(t9);
  2440. assign_final(t10);
  2441. assign_final(t11_t12);
  2442. #undef assign_final
  2443. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2444. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2445. intel_dp->backlight_on_delay = get_delay(t8);
  2446. intel_dp->backlight_off_delay = get_delay(t9);
  2447. intel_dp->panel_power_down_delay = get_delay(t10);
  2448. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2449. #undef get_delay
  2450. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2451. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2452. intel_dp->panel_power_cycle_delay);
  2453. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2454. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2455. if (out)
  2456. *out = final;
  2457. }
  2458. static void
  2459. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  2460. struct intel_dp *intel_dp,
  2461. struct edp_power_seq *seq)
  2462. {
  2463. struct drm_i915_private *dev_priv = dev->dev_private;
  2464. u32 pp_on, pp_off, pp_div, port_sel = 0;
  2465. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  2466. int pp_on_reg, pp_off_reg, pp_div_reg;
  2467. if (HAS_PCH_SPLIT(dev)) {
  2468. pp_on_reg = PCH_PP_ON_DELAYS;
  2469. pp_off_reg = PCH_PP_OFF_DELAYS;
  2470. pp_div_reg = PCH_PP_DIVISOR;
  2471. } else {
  2472. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2473. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2474. pp_div_reg = PIPEA_PP_DIVISOR;
  2475. }
  2476. if (IS_VALLEYVIEW(dev))
  2477. port_sel = I915_READ(pp_on_reg) & 0xc0000000;
  2478. /* And finally store the new values in the power sequencer. */
  2479. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2480. (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2481. pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2482. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2483. /* Compute the divisor for the pp clock, simply match the Bspec
  2484. * formula. */
  2485. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  2486. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  2487. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2488. /* Haswell doesn't have any port selection bits for the panel
  2489. * power sequencer any more. */
  2490. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2491. if (is_cpu_edp(intel_dp))
  2492. port_sel = PANEL_POWER_PORT_DP_A;
  2493. else
  2494. port_sel = PANEL_POWER_PORT_DP_D;
  2495. }
  2496. pp_on |= port_sel;
  2497. I915_WRITE(pp_on_reg, pp_on);
  2498. I915_WRITE(pp_off_reg, pp_off);
  2499. I915_WRITE(pp_div_reg, pp_div);
  2500. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2501. I915_READ(pp_on_reg),
  2502. I915_READ(pp_off_reg),
  2503. I915_READ(pp_div_reg));
  2504. }
  2505. void
  2506. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2507. struct intel_connector *intel_connector)
  2508. {
  2509. struct drm_connector *connector = &intel_connector->base;
  2510. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2511. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2512. struct drm_device *dev = intel_encoder->base.dev;
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. struct drm_display_mode *fixed_mode = NULL;
  2515. struct edp_power_seq power_seq = { 0 };
  2516. enum port port = intel_dig_port->port;
  2517. const char *name = NULL;
  2518. int type;
  2519. /* Preserve the current hw state. */
  2520. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2521. intel_dp->attached_connector = intel_connector;
  2522. if (HAS_PCH_SPLIT(dev) && port == PORT_D)
  2523. if (intel_dpd_is_edp(dev))
  2524. intel_dp->is_pch_edp = true;
  2525. /*
  2526. * FIXME : We need to initialize built-in panels before external panels.
  2527. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2528. */
  2529. if (IS_VALLEYVIEW(dev) && port == PORT_C) {
  2530. type = DRM_MODE_CONNECTOR_eDP;
  2531. intel_encoder->type = INTEL_OUTPUT_EDP;
  2532. } else if (port == PORT_A || is_pch_edp(intel_dp)) {
  2533. type = DRM_MODE_CONNECTOR_eDP;
  2534. intel_encoder->type = INTEL_OUTPUT_EDP;
  2535. } else {
  2536. /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
  2537. * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
  2538. * rewrite it.
  2539. */
  2540. type = DRM_MODE_CONNECTOR_DisplayPort;
  2541. }
  2542. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2543. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2544. connector->interlace_allowed = true;
  2545. connector->doublescan_allowed = 0;
  2546. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2547. ironlake_panel_vdd_work);
  2548. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2549. drm_sysfs_connector_add(connector);
  2550. if (HAS_DDI(dev))
  2551. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2552. else
  2553. intel_connector->get_hw_state = intel_connector_get_hw_state;
  2554. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  2555. if (HAS_DDI(dev)) {
  2556. switch (intel_dig_port->port) {
  2557. case PORT_A:
  2558. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  2559. break;
  2560. case PORT_B:
  2561. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  2562. break;
  2563. case PORT_C:
  2564. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  2565. break;
  2566. case PORT_D:
  2567. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  2568. break;
  2569. default:
  2570. BUG();
  2571. }
  2572. }
  2573. /* Set up the DDC bus. */
  2574. switch (port) {
  2575. case PORT_A:
  2576. intel_encoder->hpd_pin = HPD_PORT_A;
  2577. name = "DPDDC-A";
  2578. break;
  2579. case PORT_B:
  2580. intel_encoder->hpd_pin = HPD_PORT_B;
  2581. name = "DPDDC-B";
  2582. break;
  2583. case PORT_C:
  2584. intel_encoder->hpd_pin = HPD_PORT_C;
  2585. name = "DPDDC-C";
  2586. break;
  2587. case PORT_D:
  2588. intel_encoder->hpd_pin = HPD_PORT_D;
  2589. name = "DPDDC-D";
  2590. break;
  2591. default:
  2592. BUG();
  2593. }
  2594. if (is_edp(intel_dp))
  2595. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  2596. intel_dp_i2c_init(intel_dp, intel_connector, name);
  2597. /* Cache DPCD and EDID for edp. */
  2598. if (is_edp(intel_dp)) {
  2599. bool ret;
  2600. struct drm_display_mode *scan;
  2601. struct edid *edid;
  2602. ironlake_edp_panel_vdd_on(intel_dp);
  2603. ret = intel_dp_get_dpcd(intel_dp);
  2604. ironlake_edp_panel_vdd_off(intel_dp, false);
  2605. if (ret) {
  2606. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2607. dev_priv->no_aux_handshake =
  2608. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2609. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2610. } else {
  2611. /* if this fails, presume the device is a ghost */
  2612. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2613. intel_dp_encoder_destroy(&intel_encoder->base);
  2614. intel_dp_destroy(connector);
  2615. return;
  2616. }
  2617. /* We now know it's not a ghost, init power sequence regs. */
  2618. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  2619. &power_seq);
  2620. ironlake_edp_panel_vdd_on(intel_dp);
  2621. edid = drm_get_edid(connector, &intel_dp->adapter);
  2622. if (edid) {
  2623. if (drm_add_edid_modes(connector, edid)) {
  2624. drm_mode_connector_update_edid_property(connector, edid);
  2625. drm_edid_to_eld(connector, edid);
  2626. } else {
  2627. kfree(edid);
  2628. edid = ERR_PTR(-EINVAL);
  2629. }
  2630. } else {
  2631. edid = ERR_PTR(-ENOENT);
  2632. }
  2633. intel_connector->edid = edid;
  2634. /* prefer fixed mode from EDID if available */
  2635. list_for_each_entry(scan, &connector->probed_modes, head) {
  2636. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2637. fixed_mode = drm_mode_duplicate(dev, scan);
  2638. break;
  2639. }
  2640. }
  2641. /* fallback to VBT if available for eDP */
  2642. if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
  2643. fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  2644. if (fixed_mode)
  2645. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2646. }
  2647. ironlake_edp_panel_vdd_off(intel_dp, false);
  2648. }
  2649. if (is_edp(intel_dp)) {
  2650. intel_panel_init(&intel_connector->panel, fixed_mode);
  2651. intel_panel_setup_backlight(connector);
  2652. }
  2653. intel_dp_add_properties(intel_dp, connector);
  2654. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2655. * 0xd. Failure to do so will result in spurious interrupts being
  2656. * generated on the port when a cable is not attached.
  2657. */
  2658. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2659. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2660. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2661. }
  2662. }
  2663. void
  2664. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  2665. {
  2666. struct intel_digital_port *intel_dig_port;
  2667. struct intel_encoder *intel_encoder;
  2668. struct drm_encoder *encoder;
  2669. struct intel_connector *intel_connector;
  2670. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  2671. if (!intel_dig_port)
  2672. return;
  2673. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2674. if (!intel_connector) {
  2675. kfree(intel_dig_port);
  2676. return;
  2677. }
  2678. intel_encoder = &intel_dig_port->base;
  2679. encoder = &intel_encoder->base;
  2680. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2681. DRM_MODE_ENCODER_TMDS);
  2682. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  2683. intel_encoder->compute_config = intel_dp_compute_config;
  2684. intel_encoder->enable = intel_enable_dp;
  2685. intel_encoder->pre_enable = intel_pre_enable_dp;
  2686. intel_encoder->disable = intel_disable_dp;
  2687. intel_encoder->post_disable = intel_post_disable_dp;
  2688. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  2689. if (IS_VALLEYVIEW(dev))
  2690. intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
  2691. intel_dig_port->port = port;
  2692. intel_dig_port->dp.output_reg = output_reg;
  2693. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2694. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2695. intel_encoder->cloneable = false;
  2696. intel_encoder->hot_plug = intel_dp_hot_plug;
  2697. intel_dp_init_connector(intel_dig_port, intel_connector);
  2698. }