intel_display.c 267 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. /**
  58. * find_pll() - Find the best values for the PLL
  59. * @limit: limits for the PLL
  60. * @crtc: current CRTC
  61. * @target: target frequency in kHz
  62. * @refclk: reference clock frequency in kHz
  63. * @match_clock: if provided, @best_clock P divider must
  64. * match the P divider from @match_clock
  65. * used for LVDS downclocking
  66. * @best_clock: best PLL values found
  67. *
  68. * Returns true on success, false on failure.
  69. */
  70. bool (*find_pll)(const intel_limit_t *limit,
  71. struct drm_crtc *crtc,
  72. int target, int refclk,
  73. intel_clock_t *match_clock,
  74. intel_clock_t *best_clock);
  75. };
  76. /* FDI */
  77. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  78. int
  79. intel_pch_rawclk(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. WARN_ON(!HAS_PCH_SPLIT(dev));
  83. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  84. }
  85. static bool
  86. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  87. int target, int refclk, intel_clock_t *match_clock,
  88. intel_clock_t *best_clock);
  89. static bool
  90. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  91. int target, int refclk, intel_clock_t *match_clock,
  92. intel_clock_t *best_clock);
  93. static bool
  94. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  95. int target, int refclk, intel_clock_t *match_clock,
  96. intel_clock_t *best_clock);
  97. static inline u32 /* units of 100MHz */
  98. intel_fdi_link_freq(struct drm_device *dev)
  99. {
  100. if (IS_GEN5(dev)) {
  101. struct drm_i915_private *dev_priv = dev->dev_private;
  102. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  103. } else
  104. return 27;
  105. }
  106. static const intel_limit_t intel_limits_i8xx_dvo = {
  107. .dot = { .min = 25000, .max = 350000 },
  108. .vco = { .min = 930000, .max = 1400000 },
  109. .n = { .min = 3, .max = 16 },
  110. .m = { .min = 96, .max = 140 },
  111. .m1 = { .min = 18, .max = 26 },
  112. .m2 = { .min = 6, .max = 16 },
  113. .p = { .min = 4, .max = 128 },
  114. .p1 = { .min = 2, .max = 33 },
  115. .p2 = { .dot_limit = 165000,
  116. .p2_slow = 4, .p2_fast = 2 },
  117. .find_pll = intel_find_best_PLL,
  118. };
  119. static const intel_limit_t intel_limits_i8xx_lvds = {
  120. .dot = { .min = 25000, .max = 350000 },
  121. .vco = { .min = 930000, .max = 1400000 },
  122. .n = { .min = 3, .max = 16 },
  123. .m = { .min = 96, .max = 140 },
  124. .m1 = { .min = 18, .max = 26 },
  125. .m2 = { .min = 6, .max = 16 },
  126. .p = { .min = 4, .max = 128 },
  127. .p1 = { .min = 1, .max = 6 },
  128. .p2 = { .dot_limit = 165000,
  129. .p2_slow = 14, .p2_fast = 7 },
  130. .find_pll = intel_find_best_PLL,
  131. };
  132. static const intel_limit_t intel_limits_i9xx_sdvo = {
  133. .dot = { .min = 20000, .max = 400000 },
  134. .vco = { .min = 1400000, .max = 2800000 },
  135. .n = { .min = 1, .max = 6 },
  136. .m = { .min = 70, .max = 120 },
  137. .m1 = { .min = 8, .max = 18 },
  138. .m2 = { .min = 3, .max = 7 },
  139. .p = { .min = 5, .max = 80 },
  140. .p1 = { .min = 1, .max = 8 },
  141. .p2 = { .dot_limit = 200000,
  142. .p2_slow = 10, .p2_fast = 5 },
  143. .find_pll = intel_find_best_PLL,
  144. };
  145. static const intel_limit_t intel_limits_i9xx_lvds = {
  146. .dot = { .min = 20000, .max = 400000 },
  147. .vco = { .min = 1400000, .max = 2800000 },
  148. .n = { .min = 1, .max = 6 },
  149. .m = { .min = 70, .max = 120 },
  150. .m1 = { .min = 8, .max = 18 },
  151. .m2 = { .min = 3, .max = 7 },
  152. .p = { .min = 7, .max = 98 },
  153. .p1 = { .min = 1, .max = 8 },
  154. .p2 = { .dot_limit = 112000,
  155. .p2_slow = 14, .p2_fast = 7 },
  156. .find_pll = intel_find_best_PLL,
  157. };
  158. static const intel_limit_t intel_limits_g4x_sdvo = {
  159. .dot = { .min = 25000, .max = 270000 },
  160. .vco = { .min = 1750000, .max = 3500000},
  161. .n = { .min = 1, .max = 4 },
  162. .m = { .min = 104, .max = 138 },
  163. .m1 = { .min = 17, .max = 23 },
  164. .m2 = { .min = 5, .max = 11 },
  165. .p = { .min = 10, .max = 30 },
  166. .p1 = { .min = 1, .max = 3},
  167. .p2 = { .dot_limit = 270000,
  168. .p2_slow = 10,
  169. .p2_fast = 10
  170. },
  171. .find_pll = intel_g4x_find_best_PLL,
  172. };
  173. static const intel_limit_t intel_limits_g4x_hdmi = {
  174. .dot = { .min = 22000, .max = 400000 },
  175. .vco = { .min = 1750000, .max = 3500000},
  176. .n = { .min = 1, .max = 4 },
  177. .m = { .min = 104, .max = 138 },
  178. .m1 = { .min = 16, .max = 23 },
  179. .m2 = { .min = 5, .max = 11 },
  180. .p = { .min = 5, .max = 80 },
  181. .p1 = { .min = 1, .max = 8},
  182. .p2 = { .dot_limit = 165000,
  183. .p2_slow = 10, .p2_fast = 5 },
  184. .find_pll = intel_g4x_find_best_PLL,
  185. };
  186. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  187. .dot = { .min = 20000, .max = 115000 },
  188. .vco = { .min = 1750000, .max = 3500000 },
  189. .n = { .min = 1, .max = 3 },
  190. .m = { .min = 104, .max = 138 },
  191. .m1 = { .min = 17, .max = 23 },
  192. .m2 = { .min = 5, .max = 11 },
  193. .p = { .min = 28, .max = 112 },
  194. .p1 = { .min = 2, .max = 8 },
  195. .p2 = { .dot_limit = 0,
  196. .p2_slow = 14, .p2_fast = 14
  197. },
  198. .find_pll = intel_g4x_find_best_PLL,
  199. };
  200. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  201. .dot = { .min = 80000, .max = 224000 },
  202. .vco = { .min = 1750000, .max = 3500000 },
  203. .n = { .min = 1, .max = 3 },
  204. .m = { .min = 104, .max = 138 },
  205. .m1 = { .min = 17, .max = 23 },
  206. .m2 = { .min = 5, .max = 11 },
  207. .p = { .min = 14, .max = 42 },
  208. .p1 = { .min = 2, .max = 6 },
  209. .p2 = { .dot_limit = 0,
  210. .p2_slow = 7, .p2_fast = 7
  211. },
  212. .find_pll = intel_g4x_find_best_PLL,
  213. };
  214. static const intel_limit_t intel_limits_pineview_sdvo = {
  215. .dot = { .min = 20000, .max = 400000},
  216. .vco = { .min = 1700000, .max = 3500000 },
  217. /* Pineview's Ncounter is a ring counter */
  218. .n = { .min = 3, .max = 6 },
  219. .m = { .min = 2, .max = 256 },
  220. /* Pineview only has one combined m divider, which we treat as m2. */
  221. .m1 = { .min = 0, .max = 0 },
  222. .m2 = { .min = 0, .max = 254 },
  223. .p = { .min = 5, .max = 80 },
  224. .p1 = { .min = 1, .max = 8 },
  225. .p2 = { .dot_limit = 200000,
  226. .p2_slow = 10, .p2_fast = 5 },
  227. .find_pll = intel_find_best_PLL,
  228. };
  229. static const intel_limit_t intel_limits_pineview_lvds = {
  230. .dot = { .min = 20000, .max = 400000 },
  231. .vco = { .min = 1700000, .max = 3500000 },
  232. .n = { .min = 3, .max = 6 },
  233. .m = { .min = 2, .max = 256 },
  234. .m1 = { .min = 0, .max = 0 },
  235. .m2 = { .min = 0, .max = 254 },
  236. .p = { .min = 7, .max = 112 },
  237. .p1 = { .min = 1, .max = 8 },
  238. .p2 = { .dot_limit = 112000,
  239. .p2_slow = 14, .p2_fast = 14 },
  240. .find_pll = intel_find_best_PLL,
  241. };
  242. /* Ironlake / Sandybridge
  243. *
  244. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  245. * the range value for them is (actual_value - 2).
  246. */
  247. static const intel_limit_t intel_limits_ironlake_dac = {
  248. .dot = { .min = 25000, .max = 350000 },
  249. .vco = { .min = 1760000, .max = 3510000 },
  250. .n = { .min = 1, .max = 5 },
  251. .m = { .min = 79, .max = 127 },
  252. .m1 = { .min = 12, .max = 22 },
  253. .m2 = { .min = 5, .max = 9 },
  254. .p = { .min = 5, .max = 80 },
  255. .p1 = { .min = 1, .max = 8 },
  256. .p2 = { .dot_limit = 225000,
  257. .p2_slow = 10, .p2_fast = 5 },
  258. .find_pll = intel_g4x_find_best_PLL,
  259. };
  260. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 3 },
  264. .m = { .min = 79, .max = 118 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 28, .max = 112 },
  268. .p1 = { .min = 2, .max = 8 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 14, .p2_fast = 14 },
  271. .find_pll = intel_g4x_find_best_PLL,
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 127 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 56 },
  281. .p1 = { .min = 2, .max = 8 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. .find_pll = intel_g4x_find_best_PLL,
  285. };
  286. /* LVDS 100mhz refclk limits. */
  287. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  288. .dot = { .min = 25000, .max = 350000 },
  289. .vco = { .min = 1760000, .max = 3510000 },
  290. .n = { .min = 1, .max = 2 },
  291. .m = { .min = 79, .max = 126 },
  292. .m1 = { .min = 12, .max = 22 },
  293. .m2 = { .min = 5, .max = 9 },
  294. .p = { .min = 28, .max = 112 },
  295. .p1 = { .min = 2, .max = 8 },
  296. .p2 = { .dot_limit = 225000,
  297. .p2_slow = 14, .p2_fast = 14 },
  298. .find_pll = intel_g4x_find_best_PLL,
  299. };
  300. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  301. .dot = { .min = 25000, .max = 350000 },
  302. .vco = { .min = 1760000, .max = 3510000 },
  303. .n = { .min = 1, .max = 3 },
  304. .m = { .min = 79, .max = 126 },
  305. .m1 = { .min = 12, .max = 22 },
  306. .m2 = { .min = 5, .max = 9 },
  307. .p = { .min = 14, .max = 42 },
  308. .p1 = { .min = 2, .max = 6 },
  309. .p2 = { .dot_limit = 225000,
  310. .p2_slow = 7, .p2_fast = 7 },
  311. .find_pll = intel_g4x_find_best_PLL,
  312. };
  313. static const intel_limit_t intel_limits_vlv_dac = {
  314. .dot = { .min = 25000, .max = 270000 },
  315. .vco = { .min = 4000000, .max = 6000000 },
  316. .n = { .min = 1, .max = 7 },
  317. .m = { .min = 22, .max = 450 }, /* guess */
  318. .m1 = { .min = 2, .max = 3 },
  319. .m2 = { .min = 11, .max = 156 },
  320. .p = { .min = 10, .max = 30 },
  321. .p1 = { .min = 1, .max = 3 },
  322. .p2 = { .dot_limit = 270000,
  323. .p2_slow = 2, .p2_fast = 20 },
  324. .find_pll = intel_vlv_find_best_pll,
  325. };
  326. static const intel_limit_t intel_limits_vlv_hdmi = {
  327. .dot = { .min = 25000, .max = 270000 },
  328. .vco = { .min = 4000000, .max = 6000000 },
  329. .n = { .min = 1, .max = 7 },
  330. .m = { .min = 60, .max = 300 }, /* guess */
  331. .m1 = { .min = 2, .max = 3 },
  332. .m2 = { .min = 11, .max = 156 },
  333. .p = { .min = 10, .max = 30 },
  334. .p1 = { .min = 2, .max = 3 },
  335. .p2 = { .dot_limit = 270000,
  336. .p2_slow = 2, .p2_fast = 20 },
  337. .find_pll = intel_vlv_find_best_pll,
  338. };
  339. static const intel_limit_t intel_limits_vlv_dp = {
  340. .dot = { .min = 25000, .max = 270000 },
  341. .vco = { .min = 4000000, .max = 6000000 },
  342. .n = { .min = 1, .max = 7 },
  343. .m = { .min = 22, .max = 450 },
  344. .m1 = { .min = 2, .max = 3 },
  345. .m2 = { .min = 11, .max = 156 },
  346. .p = { .min = 10, .max = 30 },
  347. .p1 = { .min = 1, .max = 3 },
  348. .p2 = { .dot_limit = 270000,
  349. .p2_slow = 2, .p2_fast = 20 },
  350. .find_pll = intel_vlv_find_best_pll,
  351. };
  352. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  353. {
  354. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  355. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  356. DRM_ERROR("DPIO idle wait timed out\n");
  357. return 0;
  358. }
  359. I915_WRITE(DPIO_REG, reg);
  360. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  361. DPIO_BYTE);
  362. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  363. DRM_ERROR("DPIO read wait timed out\n");
  364. return 0;
  365. }
  366. return I915_READ(DPIO_DATA);
  367. }
  368. void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
  369. {
  370. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  371. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  372. DRM_ERROR("DPIO idle wait timed out\n");
  373. return;
  374. }
  375. I915_WRITE(DPIO_DATA, val);
  376. I915_WRITE(DPIO_REG, reg);
  377. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  378. DPIO_BYTE);
  379. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  380. DRM_ERROR("DPIO write wait timed out\n");
  381. }
  382. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  383. int refclk)
  384. {
  385. struct drm_device *dev = crtc->dev;
  386. const intel_limit_t *limit;
  387. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  388. if (intel_is_dual_link_lvds(dev)) {
  389. if (refclk == 100000)
  390. limit = &intel_limits_ironlake_dual_lvds_100m;
  391. else
  392. limit = &intel_limits_ironlake_dual_lvds;
  393. } else {
  394. if (refclk == 100000)
  395. limit = &intel_limits_ironlake_single_lvds_100m;
  396. else
  397. limit = &intel_limits_ironlake_single_lvds;
  398. }
  399. } else
  400. limit = &intel_limits_ironlake_dac;
  401. return limit;
  402. }
  403. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  404. {
  405. struct drm_device *dev = crtc->dev;
  406. const intel_limit_t *limit;
  407. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  408. if (intel_is_dual_link_lvds(dev))
  409. limit = &intel_limits_g4x_dual_channel_lvds;
  410. else
  411. limit = &intel_limits_g4x_single_channel_lvds;
  412. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  413. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  414. limit = &intel_limits_g4x_hdmi;
  415. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  416. limit = &intel_limits_g4x_sdvo;
  417. } else /* The option is for other outputs */
  418. limit = &intel_limits_i9xx_sdvo;
  419. return limit;
  420. }
  421. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  422. {
  423. struct drm_device *dev = crtc->dev;
  424. const intel_limit_t *limit;
  425. if (HAS_PCH_SPLIT(dev))
  426. limit = intel_ironlake_limit(crtc, refclk);
  427. else if (IS_G4X(dev)) {
  428. limit = intel_g4x_limit(crtc);
  429. } else if (IS_PINEVIEW(dev)) {
  430. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  431. limit = &intel_limits_pineview_lvds;
  432. else
  433. limit = &intel_limits_pineview_sdvo;
  434. } else if (IS_VALLEYVIEW(dev)) {
  435. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  436. limit = &intel_limits_vlv_dac;
  437. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  438. limit = &intel_limits_vlv_hdmi;
  439. else
  440. limit = &intel_limits_vlv_dp;
  441. } else if (!IS_GEN2(dev)) {
  442. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  443. limit = &intel_limits_i9xx_lvds;
  444. else
  445. limit = &intel_limits_i9xx_sdvo;
  446. } else {
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  448. limit = &intel_limits_i8xx_lvds;
  449. else
  450. limit = &intel_limits_i8xx_dvo;
  451. }
  452. return limit;
  453. }
  454. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  455. static void pineview_clock(int refclk, intel_clock_t *clock)
  456. {
  457. clock->m = clock->m2 + 2;
  458. clock->p = clock->p1 * clock->p2;
  459. clock->vco = refclk * clock->m / clock->n;
  460. clock->dot = clock->vco / clock->p;
  461. }
  462. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  463. {
  464. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  465. }
  466. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  467. {
  468. if (IS_PINEVIEW(dev)) {
  469. pineview_clock(refclk, clock);
  470. return;
  471. }
  472. clock->m = i9xx_dpll_compute_m(clock);
  473. clock->p = clock->p1 * clock->p2;
  474. clock->vco = refclk * clock->m / (clock->n + 2);
  475. clock->dot = clock->vco / clock->p;
  476. }
  477. /**
  478. * Returns whether any output on the specified pipe is of the specified type
  479. */
  480. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  481. {
  482. struct drm_device *dev = crtc->dev;
  483. struct intel_encoder *encoder;
  484. for_each_encoder_on_crtc(dev, crtc, encoder)
  485. if (encoder->type == type)
  486. return true;
  487. return false;
  488. }
  489. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  490. /**
  491. * Returns whether the given set of divisors are valid for a given refclk with
  492. * the given connectors.
  493. */
  494. static bool intel_PLL_is_valid(struct drm_device *dev,
  495. const intel_limit_t *limit,
  496. const intel_clock_t *clock)
  497. {
  498. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  499. INTELPllInvalid("p1 out of range\n");
  500. if (clock->p < limit->p.min || limit->p.max < clock->p)
  501. INTELPllInvalid("p out of range\n");
  502. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  503. INTELPllInvalid("m2 out of range\n");
  504. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  505. INTELPllInvalid("m1 out of range\n");
  506. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  507. INTELPllInvalid("m1 <= m2\n");
  508. if (clock->m < limit->m.min || limit->m.max < clock->m)
  509. INTELPllInvalid("m out of range\n");
  510. if (clock->n < limit->n.min || limit->n.max < clock->n)
  511. INTELPllInvalid("n out of range\n");
  512. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  513. INTELPllInvalid("vco out of range\n");
  514. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  515. * connector, etc., rather than just a single range.
  516. */
  517. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  518. INTELPllInvalid("dot out of range\n");
  519. return true;
  520. }
  521. static bool
  522. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  523. int target, int refclk, intel_clock_t *match_clock,
  524. intel_clock_t *best_clock)
  525. {
  526. struct drm_device *dev = crtc->dev;
  527. intel_clock_t clock;
  528. int err = target;
  529. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  530. /*
  531. * For LVDS just rely on its current settings for dual-channel.
  532. * We haven't figured out how to reliably set up different
  533. * single/dual channel state, if we even can.
  534. */
  535. if (intel_is_dual_link_lvds(dev))
  536. clock.p2 = limit->p2.p2_fast;
  537. else
  538. clock.p2 = limit->p2.p2_slow;
  539. } else {
  540. if (target < limit->p2.dot_limit)
  541. clock.p2 = limit->p2.p2_slow;
  542. else
  543. clock.p2 = limit->p2.p2_fast;
  544. }
  545. memset(best_clock, 0, sizeof(*best_clock));
  546. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  547. clock.m1++) {
  548. for (clock.m2 = limit->m2.min;
  549. clock.m2 <= limit->m2.max; clock.m2++) {
  550. /* m1 is always 0 in Pineview */
  551. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  552. break;
  553. for (clock.n = limit->n.min;
  554. clock.n <= limit->n.max; clock.n++) {
  555. for (clock.p1 = limit->p1.min;
  556. clock.p1 <= limit->p1.max; clock.p1++) {
  557. int this_err;
  558. intel_clock(dev, refclk, &clock);
  559. if (!intel_PLL_is_valid(dev, limit,
  560. &clock))
  561. continue;
  562. if (match_clock &&
  563. clock.p != match_clock->p)
  564. continue;
  565. this_err = abs(clock.dot - target);
  566. if (this_err < err) {
  567. *best_clock = clock;
  568. err = this_err;
  569. }
  570. }
  571. }
  572. }
  573. }
  574. return (err != target);
  575. }
  576. static bool
  577. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  578. int target, int refclk, intel_clock_t *match_clock,
  579. intel_clock_t *best_clock)
  580. {
  581. struct drm_device *dev = crtc->dev;
  582. intel_clock_t clock;
  583. int max_n;
  584. bool found;
  585. /* approximately equals target * 0.00585 */
  586. int err_most = (target >> 8) + (target >> 9);
  587. found = false;
  588. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  589. int lvds_reg;
  590. if (HAS_PCH_SPLIT(dev))
  591. lvds_reg = PCH_LVDS;
  592. else
  593. lvds_reg = LVDS;
  594. if (intel_is_dual_link_lvds(dev))
  595. clock.p2 = limit->p2.p2_fast;
  596. else
  597. clock.p2 = limit->p2.p2_slow;
  598. } else {
  599. if (target < limit->p2.dot_limit)
  600. clock.p2 = limit->p2.p2_slow;
  601. else
  602. clock.p2 = limit->p2.p2_fast;
  603. }
  604. memset(best_clock, 0, sizeof(*best_clock));
  605. max_n = limit->n.max;
  606. /* based on hardware requirement, prefer smaller n to precision */
  607. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  608. /* based on hardware requirement, prefere larger m1,m2 */
  609. for (clock.m1 = limit->m1.max;
  610. clock.m1 >= limit->m1.min; clock.m1--) {
  611. for (clock.m2 = limit->m2.max;
  612. clock.m2 >= limit->m2.min; clock.m2--) {
  613. for (clock.p1 = limit->p1.max;
  614. clock.p1 >= limit->p1.min; clock.p1--) {
  615. int this_err;
  616. intel_clock(dev, refclk, &clock);
  617. if (!intel_PLL_is_valid(dev, limit,
  618. &clock))
  619. continue;
  620. this_err = abs(clock.dot - target);
  621. if (this_err < err_most) {
  622. *best_clock = clock;
  623. err_most = this_err;
  624. max_n = clock.n;
  625. found = true;
  626. }
  627. }
  628. }
  629. }
  630. }
  631. return found;
  632. }
  633. static bool
  634. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  635. int target, int refclk, intel_clock_t *match_clock,
  636. intel_clock_t *best_clock)
  637. {
  638. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  639. u32 m, n, fastclk;
  640. u32 updrate, minupdate, fracbits, p;
  641. unsigned long bestppm, ppm, absppm;
  642. int dotclk, flag;
  643. flag = 0;
  644. dotclk = target * 1000;
  645. bestppm = 1000000;
  646. ppm = absppm = 0;
  647. fastclk = dotclk / (2*100);
  648. updrate = 0;
  649. minupdate = 19200;
  650. fracbits = 1;
  651. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  652. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  653. /* based on hardware requirement, prefer smaller n to precision */
  654. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  655. updrate = refclk / n;
  656. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  657. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  658. if (p2 > 10)
  659. p2 = p2 - 1;
  660. p = p1 * p2;
  661. /* based on hardware requirement, prefer bigger m1,m2 values */
  662. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  663. m2 = (((2*(fastclk * p * n / m1 )) +
  664. refclk) / (2*refclk));
  665. m = m1 * m2;
  666. vco = updrate * m;
  667. if (vco >= limit->vco.min && vco < limit->vco.max) {
  668. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  669. absppm = (ppm > 0) ? ppm : (-ppm);
  670. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  671. bestppm = 0;
  672. flag = 1;
  673. }
  674. if (absppm < bestppm - 10) {
  675. bestppm = absppm;
  676. flag = 1;
  677. }
  678. if (flag) {
  679. bestn = n;
  680. bestm1 = m1;
  681. bestm2 = m2;
  682. bestp1 = p1;
  683. bestp2 = p2;
  684. flag = 0;
  685. }
  686. }
  687. }
  688. }
  689. }
  690. }
  691. best_clock->n = bestn;
  692. best_clock->m1 = bestm1;
  693. best_clock->m2 = bestm2;
  694. best_clock->p1 = bestp1;
  695. best_clock->p2 = bestp2;
  696. return true;
  697. }
  698. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  699. enum pipe pipe)
  700. {
  701. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  702. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  703. return intel_crtc->config.cpu_transcoder;
  704. }
  705. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  706. {
  707. struct drm_i915_private *dev_priv = dev->dev_private;
  708. u32 frame, frame_reg = PIPEFRAME(pipe);
  709. frame = I915_READ(frame_reg);
  710. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  711. DRM_DEBUG_KMS("vblank wait timed out\n");
  712. }
  713. /**
  714. * intel_wait_for_vblank - wait for vblank on a given pipe
  715. * @dev: drm device
  716. * @pipe: pipe to wait for
  717. *
  718. * Wait for vblank to occur on a given pipe. Needed for various bits of
  719. * mode setting code.
  720. */
  721. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  722. {
  723. struct drm_i915_private *dev_priv = dev->dev_private;
  724. int pipestat_reg = PIPESTAT(pipe);
  725. if (INTEL_INFO(dev)->gen >= 5) {
  726. ironlake_wait_for_vblank(dev, pipe);
  727. return;
  728. }
  729. /* Clear existing vblank status. Note this will clear any other
  730. * sticky status fields as well.
  731. *
  732. * This races with i915_driver_irq_handler() with the result
  733. * that either function could miss a vblank event. Here it is not
  734. * fatal, as we will either wait upon the next vblank interrupt or
  735. * timeout. Generally speaking intel_wait_for_vblank() is only
  736. * called during modeset at which time the GPU should be idle and
  737. * should *not* be performing page flips and thus not waiting on
  738. * vblanks...
  739. * Currently, the result of us stealing a vblank from the irq
  740. * handler is that a single frame will be skipped during swapbuffers.
  741. */
  742. I915_WRITE(pipestat_reg,
  743. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  744. /* Wait for vblank interrupt bit to set */
  745. if (wait_for(I915_READ(pipestat_reg) &
  746. PIPE_VBLANK_INTERRUPT_STATUS,
  747. 50))
  748. DRM_DEBUG_KMS("vblank wait timed out\n");
  749. }
  750. /*
  751. * intel_wait_for_pipe_off - wait for pipe to turn off
  752. * @dev: drm device
  753. * @pipe: pipe to wait for
  754. *
  755. * After disabling a pipe, we can't wait for vblank in the usual way,
  756. * spinning on the vblank interrupt status bit, since we won't actually
  757. * see an interrupt when the pipe is disabled.
  758. *
  759. * On Gen4 and above:
  760. * wait for the pipe register state bit to turn off
  761. *
  762. * Otherwise:
  763. * wait for the display line value to settle (it usually
  764. * ends up stopping at the start of the next frame).
  765. *
  766. */
  767. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  768. {
  769. struct drm_i915_private *dev_priv = dev->dev_private;
  770. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  771. pipe);
  772. if (INTEL_INFO(dev)->gen >= 4) {
  773. int reg = PIPECONF(cpu_transcoder);
  774. /* Wait for the Pipe State to go off */
  775. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  776. 100))
  777. WARN(1, "pipe_off wait timed out\n");
  778. } else {
  779. u32 last_line, line_mask;
  780. int reg = PIPEDSL(pipe);
  781. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  782. if (IS_GEN2(dev))
  783. line_mask = DSL_LINEMASK_GEN2;
  784. else
  785. line_mask = DSL_LINEMASK_GEN3;
  786. /* Wait for the display line to settle */
  787. do {
  788. last_line = I915_READ(reg) & line_mask;
  789. mdelay(5);
  790. } while (((I915_READ(reg) & line_mask) != last_line) &&
  791. time_after(timeout, jiffies));
  792. if (time_after(jiffies, timeout))
  793. WARN(1, "pipe_off wait timed out\n");
  794. }
  795. }
  796. /*
  797. * ibx_digital_port_connected - is the specified port connected?
  798. * @dev_priv: i915 private structure
  799. * @port: the port to test
  800. *
  801. * Returns true if @port is connected, false otherwise.
  802. */
  803. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  804. struct intel_digital_port *port)
  805. {
  806. u32 bit;
  807. if (HAS_PCH_IBX(dev_priv->dev)) {
  808. switch(port->port) {
  809. case PORT_B:
  810. bit = SDE_PORTB_HOTPLUG;
  811. break;
  812. case PORT_C:
  813. bit = SDE_PORTC_HOTPLUG;
  814. break;
  815. case PORT_D:
  816. bit = SDE_PORTD_HOTPLUG;
  817. break;
  818. default:
  819. return true;
  820. }
  821. } else {
  822. switch(port->port) {
  823. case PORT_B:
  824. bit = SDE_PORTB_HOTPLUG_CPT;
  825. break;
  826. case PORT_C:
  827. bit = SDE_PORTC_HOTPLUG_CPT;
  828. break;
  829. case PORT_D:
  830. bit = SDE_PORTD_HOTPLUG_CPT;
  831. break;
  832. default:
  833. return true;
  834. }
  835. }
  836. return I915_READ(SDEISR) & bit;
  837. }
  838. static const char *state_string(bool enabled)
  839. {
  840. return enabled ? "on" : "off";
  841. }
  842. /* Only for pre-ILK configs */
  843. static void assert_pll(struct drm_i915_private *dev_priv,
  844. enum pipe pipe, bool state)
  845. {
  846. int reg;
  847. u32 val;
  848. bool cur_state;
  849. reg = DPLL(pipe);
  850. val = I915_READ(reg);
  851. cur_state = !!(val & DPLL_VCO_ENABLE);
  852. WARN(cur_state != state,
  853. "PLL state assertion failure (expected %s, current %s)\n",
  854. state_string(state), state_string(cur_state));
  855. }
  856. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  857. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  858. /* For ILK+ */
  859. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  860. struct intel_pch_pll *pll,
  861. struct intel_crtc *crtc,
  862. bool state)
  863. {
  864. u32 val;
  865. bool cur_state;
  866. if (HAS_PCH_LPT(dev_priv->dev)) {
  867. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  868. return;
  869. }
  870. if (WARN (!pll,
  871. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  872. return;
  873. val = I915_READ(pll->pll_reg);
  874. cur_state = !!(val & DPLL_VCO_ENABLE);
  875. WARN(cur_state != state,
  876. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  877. pll->pll_reg, state_string(state), state_string(cur_state), val);
  878. /* Make sure the selected PLL is correctly attached to the transcoder */
  879. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  880. u32 pch_dpll;
  881. pch_dpll = I915_READ(PCH_DPLL_SEL);
  882. cur_state = pll->pll_reg == _PCH_DPLL_B;
  883. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  884. "PLL[%d] not attached to this transcoder %c: %08x\n",
  885. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  886. cur_state = !!(val >> (4*crtc->pipe + 3));
  887. WARN(cur_state != state,
  888. "PLL[%d] not %s on this transcoder %c: %08x\n",
  889. pll->pll_reg == _PCH_DPLL_B,
  890. state_string(state),
  891. pipe_name(crtc->pipe),
  892. val);
  893. }
  894. }
  895. }
  896. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  897. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  898. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  899. enum pipe pipe, bool state)
  900. {
  901. int reg;
  902. u32 val;
  903. bool cur_state;
  904. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  905. pipe);
  906. if (HAS_DDI(dev_priv->dev)) {
  907. /* DDI does not have a specific FDI_TX register */
  908. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  909. val = I915_READ(reg);
  910. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  911. } else {
  912. reg = FDI_TX_CTL(pipe);
  913. val = I915_READ(reg);
  914. cur_state = !!(val & FDI_TX_ENABLE);
  915. }
  916. WARN(cur_state != state,
  917. "FDI TX state assertion failure (expected %s, current %s)\n",
  918. state_string(state), state_string(cur_state));
  919. }
  920. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  921. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  922. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  923. enum pipe pipe, bool state)
  924. {
  925. int reg;
  926. u32 val;
  927. bool cur_state;
  928. reg = FDI_RX_CTL(pipe);
  929. val = I915_READ(reg);
  930. cur_state = !!(val & FDI_RX_ENABLE);
  931. WARN(cur_state != state,
  932. "FDI RX state assertion failure (expected %s, current %s)\n",
  933. state_string(state), state_string(cur_state));
  934. }
  935. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  936. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  937. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  938. enum pipe pipe)
  939. {
  940. int reg;
  941. u32 val;
  942. /* ILK FDI PLL is always enabled */
  943. if (dev_priv->info->gen == 5)
  944. return;
  945. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  946. if (HAS_DDI(dev_priv->dev))
  947. return;
  948. reg = FDI_TX_CTL(pipe);
  949. val = I915_READ(reg);
  950. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  951. }
  952. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  953. enum pipe pipe)
  954. {
  955. int reg;
  956. u32 val;
  957. reg = FDI_RX_CTL(pipe);
  958. val = I915_READ(reg);
  959. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  960. }
  961. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  962. enum pipe pipe)
  963. {
  964. int pp_reg, lvds_reg;
  965. u32 val;
  966. enum pipe panel_pipe = PIPE_A;
  967. bool locked = true;
  968. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  969. pp_reg = PCH_PP_CONTROL;
  970. lvds_reg = PCH_LVDS;
  971. } else {
  972. pp_reg = PP_CONTROL;
  973. lvds_reg = LVDS;
  974. }
  975. val = I915_READ(pp_reg);
  976. if (!(val & PANEL_POWER_ON) ||
  977. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  978. locked = false;
  979. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  980. panel_pipe = PIPE_B;
  981. WARN(panel_pipe == pipe && locked,
  982. "panel assertion failure, pipe %c regs locked\n",
  983. pipe_name(pipe));
  984. }
  985. void assert_pipe(struct drm_i915_private *dev_priv,
  986. enum pipe pipe, bool state)
  987. {
  988. int reg;
  989. u32 val;
  990. bool cur_state;
  991. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  992. pipe);
  993. /* if we need the pipe A quirk it must be always on */
  994. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  995. state = true;
  996. if (!intel_display_power_enabled(dev_priv->dev,
  997. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  998. cur_state = false;
  999. } else {
  1000. reg = PIPECONF(cpu_transcoder);
  1001. val = I915_READ(reg);
  1002. cur_state = !!(val & PIPECONF_ENABLE);
  1003. }
  1004. WARN(cur_state != state,
  1005. "pipe %c assertion failure (expected %s, current %s)\n",
  1006. pipe_name(pipe), state_string(state), state_string(cur_state));
  1007. }
  1008. static void assert_plane(struct drm_i915_private *dev_priv,
  1009. enum plane plane, bool state)
  1010. {
  1011. int reg;
  1012. u32 val;
  1013. bool cur_state;
  1014. reg = DSPCNTR(plane);
  1015. val = I915_READ(reg);
  1016. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1017. WARN(cur_state != state,
  1018. "plane %c assertion failure (expected %s, current %s)\n",
  1019. plane_name(plane), state_string(state), state_string(cur_state));
  1020. }
  1021. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1022. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1023. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1024. enum pipe pipe)
  1025. {
  1026. int reg, i;
  1027. u32 val;
  1028. int cur_pipe;
  1029. /* Planes are fixed to pipes on ILK+ */
  1030. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  1031. reg = DSPCNTR(pipe);
  1032. val = I915_READ(reg);
  1033. WARN((val & DISPLAY_PLANE_ENABLE),
  1034. "plane %c assertion failure, should be disabled but not\n",
  1035. plane_name(pipe));
  1036. return;
  1037. }
  1038. /* Need to check both planes against the pipe */
  1039. for (i = 0; i < 2; i++) {
  1040. reg = DSPCNTR(i);
  1041. val = I915_READ(reg);
  1042. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1043. DISPPLANE_SEL_PIPE_SHIFT;
  1044. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1045. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1046. plane_name(i), pipe_name(pipe));
  1047. }
  1048. }
  1049. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1050. enum pipe pipe)
  1051. {
  1052. int reg, i;
  1053. u32 val;
  1054. if (!IS_VALLEYVIEW(dev_priv->dev))
  1055. return;
  1056. /* Need to check both planes against the pipe */
  1057. for (i = 0; i < dev_priv->num_plane; i++) {
  1058. reg = SPCNTR(pipe, i);
  1059. val = I915_READ(reg);
  1060. WARN((val & SP_ENABLE),
  1061. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1062. sprite_name(pipe, i), pipe_name(pipe));
  1063. }
  1064. }
  1065. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1066. {
  1067. u32 val;
  1068. bool enabled;
  1069. if (HAS_PCH_LPT(dev_priv->dev)) {
  1070. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1071. return;
  1072. }
  1073. val = I915_READ(PCH_DREF_CONTROL);
  1074. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1075. DREF_SUPERSPREAD_SOURCE_MASK));
  1076. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1077. }
  1078. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1079. enum pipe pipe)
  1080. {
  1081. int reg;
  1082. u32 val;
  1083. bool enabled;
  1084. reg = PCH_TRANSCONF(pipe);
  1085. val = I915_READ(reg);
  1086. enabled = !!(val & TRANS_ENABLE);
  1087. WARN(enabled,
  1088. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1089. pipe_name(pipe));
  1090. }
  1091. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 port_sel, u32 val)
  1093. {
  1094. if ((val & DP_PORT_EN) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1098. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1099. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1100. return false;
  1101. } else {
  1102. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1103. return false;
  1104. }
  1105. return true;
  1106. }
  1107. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1108. enum pipe pipe, u32 val)
  1109. {
  1110. if ((val & SDVO_ENABLE) == 0)
  1111. return false;
  1112. if (HAS_PCH_CPT(dev_priv->dev)) {
  1113. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1114. return false;
  1115. } else {
  1116. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1117. return false;
  1118. }
  1119. return true;
  1120. }
  1121. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1122. enum pipe pipe, u32 val)
  1123. {
  1124. if ((val & LVDS_PORT_EN) == 0)
  1125. return false;
  1126. if (HAS_PCH_CPT(dev_priv->dev)) {
  1127. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1128. return false;
  1129. } else {
  1130. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1131. return false;
  1132. }
  1133. return true;
  1134. }
  1135. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1136. enum pipe pipe, u32 val)
  1137. {
  1138. if ((val & ADPA_DAC_ENABLE) == 0)
  1139. return false;
  1140. if (HAS_PCH_CPT(dev_priv->dev)) {
  1141. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1142. return false;
  1143. } else {
  1144. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, int reg, u32 port_sel)
  1151. {
  1152. u32 val = I915_READ(reg);
  1153. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1154. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1155. reg, pipe_name(pipe));
  1156. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1157. && (val & DP_PIPEB_SELECT),
  1158. "IBX PCH dp port still using transcoder B\n");
  1159. }
  1160. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1161. enum pipe pipe, int reg)
  1162. {
  1163. u32 val = I915_READ(reg);
  1164. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1165. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1166. reg, pipe_name(pipe));
  1167. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1168. && (val & SDVO_PIPE_B_SELECT),
  1169. "IBX PCH hdmi port still using transcoder B\n");
  1170. }
  1171. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1172. enum pipe pipe)
  1173. {
  1174. int reg;
  1175. u32 val;
  1176. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1177. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1178. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1179. reg = PCH_ADPA;
  1180. val = I915_READ(reg);
  1181. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1182. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1183. pipe_name(pipe));
  1184. reg = PCH_LVDS;
  1185. val = I915_READ(reg);
  1186. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1187. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1188. pipe_name(pipe));
  1189. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1190. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1191. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1192. }
  1193. /**
  1194. * intel_enable_pll - enable a PLL
  1195. * @dev_priv: i915 private structure
  1196. * @pipe: pipe PLL to enable
  1197. *
  1198. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1199. * make sure the PLL reg is writable first though, since the panel write
  1200. * protect mechanism may be enabled.
  1201. *
  1202. * Note! This is for pre-ILK only.
  1203. *
  1204. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1205. */
  1206. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1207. {
  1208. int reg;
  1209. u32 val;
  1210. assert_pipe_disabled(dev_priv, pipe);
  1211. /* No really, not for ILK+ */
  1212. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1213. /* PLL is protected by panel, make sure we can write it */
  1214. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1215. assert_panel_unlocked(dev_priv, pipe);
  1216. reg = DPLL(pipe);
  1217. val = I915_READ(reg);
  1218. val |= DPLL_VCO_ENABLE;
  1219. /* We do this three times for luck */
  1220. I915_WRITE(reg, val);
  1221. POSTING_READ(reg);
  1222. udelay(150); /* wait for warmup */
  1223. I915_WRITE(reg, val);
  1224. POSTING_READ(reg);
  1225. udelay(150); /* wait for warmup */
  1226. I915_WRITE(reg, val);
  1227. POSTING_READ(reg);
  1228. udelay(150); /* wait for warmup */
  1229. }
  1230. /**
  1231. * intel_disable_pll - disable a PLL
  1232. * @dev_priv: i915 private structure
  1233. * @pipe: pipe PLL to disable
  1234. *
  1235. * Disable the PLL for @pipe, making sure the pipe is off first.
  1236. *
  1237. * Note! This is for pre-ILK only.
  1238. */
  1239. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1240. {
  1241. int reg;
  1242. u32 val;
  1243. /* Don't disable pipe A or pipe A PLLs if needed */
  1244. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1245. return;
  1246. /* Make sure the pipe isn't still relying on us */
  1247. assert_pipe_disabled(dev_priv, pipe);
  1248. reg = DPLL(pipe);
  1249. val = I915_READ(reg);
  1250. val &= ~DPLL_VCO_ENABLE;
  1251. I915_WRITE(reg, val);
  1252. POSTING_READ(reg);
  1253. }
  1254. /* SBI access */
  1255. static void
  1256. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
  1257. enum intel_sbi_destination destination)
  1258. {
  1259. u32 tmp;
  1260. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1261. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1262. 100)) {
  1263. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1264. return;
  1265. }
  1266. I915_WRITE(SBI_ADDR, (reg << 16));
  1267. I915_WRITE(SBI_DATA, value);
  1268. if (destination == SBI_ICLK)
  1269. tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
  1270. else
  1271. tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
  1272. I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
  1273. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1274. 100)) {
  1275. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1276. return;
  1277. }
  1278. }
  1279. static u32
  1280. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
  1281. enum intel_sbi_destination destination)
  1282. {
  1283. u32 value = 0;
  1284. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1285. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1286. 100)) {
  1287. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1288. return 0;
  1289. }
  1290. I915_WRITE(SBI_ADDR, (reg << 16));
  1291. if (destination == SBI_ICLK)
  1292. value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
  1293. else
  1294. value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
  1295. I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
  1296. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1297. 100)) {
  1298. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1299. return 0;
  1300. }
  1301. return I915_READ(SBI_DATA);
  1302. }
  1303. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1304. {
  1305. u32 port_mask;
  1306. if (!port)
  1307. port_mask = DPLL_PORTB_READY_MASK;
  1308. else
  1309. port_mask = DPLL_PORTC_READY_MASK;
  1310. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1311. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1312. 'B' + port, I915_READ(DPLL(0)));
  1313. }
  1314. /**
  1315. * ironlake_enable_pch_pll - enable PCH PLL
  1316. * @dev_priv: i915 private structure
  1317. * @pipe: pipe PLL to enable
  1318. *
  1319. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1320. * drives the transcoder clock.
  1321. */
  1322. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1323. {
  1324. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1325. struct intel_pch_pll *pll;
  1326. int reg;
  1327. u32 val;
  1328. /* PCH PLLs only available on ILK, SNB and IVB */
  1329. BUG_ON(dev_priv->info->gen < 5);
  1330. pll = intel_crtc->pch_pll;
  1331. if (pll == NULL)
  1332. return;
  1333. if (WARN_ON(pll->refcount == 0))
  1334. return;
  1335. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1336. pll->pll_reg, pll->active, pll->on,
  1337. intel_crtc->base.base.id);
  1338. /* PCH refclock must be enabled first */
  1339. assert_pch_refclk_enabled(dev_priv);
  1340. if (pll->active++ && pll->on) {
  1341. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1342. return;
  1343. }
  1344. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1345. reg = pll->pll_reg;
  1346. val = I915_READ(reg);
  1347. val |= DPLL_VCO_ENABLE;
  1348. I915_WRITE(reg, val);
  1349. POSTING_READ(reg);
  1350. udelay(200);
  1351. pll->on = true;
  1352. }
  1353. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1354. {
  1355. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1356. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1357. int reg;
  1358. u32 val;
  1359. /* PCH only available on ILK+ */
  1360. BUG_ON(dev_priv->info->gen < 5);
  1361. if (pll == NULL)
  1362. return;
  1363. if (WARN_ON(pll->refcount == 0))
  1364. return;
  1365. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1366. pll->pll_reg, pll->active, pll->on,
  1367. intel_crtc->base.base.id);
  1368. if (WARN_ON(pll->active == 0)) {
  1369. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1370. return;
  1371. }
  1372. if (--pll->active) {
  1373. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1374. return;
  1375. }
  1376. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1377. /* Make sure transcoder isn't still depending on us */
  1378. assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1379. reg = pll->pll_reg;
  1380. val = I915_READ(reg);
  1381. val &= ~DPLL_VCO_ENABLE;
  1382. I915_WRITE(reg, val);
  1383. POSTING_READ(reg);
  1384. udelay(200);
  1385. pll->on = false;
  1386. }
  1387. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1388. enum pipe pipe)
  1389. {
  1390. struct drm_device *dev = dev_priv->dev;
  1391. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1392. uint32_t reg, val, pipeconf_val;
  1393. /* PCH only available on ILK+ */
  1394. BUG_ON(dev_priv->info->gen < 5);
  1395. /* Make sure PCH DPLL is enabled */
  1396. assert_pch_pll_enabled(dev_priv,
  1397. to_intel_crtc(crtc)->pch_pll,
  1398. to_intel_crtc(crtc));
  1399. /* FDI must be feeding us bits for PCH ports */
  1400. assert_fdi_tx_enabled(dev_priv, pipe);
  1401. assert_fdi_rx_enabled(dev_priv, pipe);
  1402. if (HAS_PCH_CPT(dev)) {
  1403. /* Workaround: Set the timing override bit before enabling the
  1404. * pch transcoder. */
  1405. reg = TRANS_CHICKEN2(pipe);
  1406. val = I915_READ(reg);
  1407. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1408. I915_WRITE(reg, val);
  1409. }
  1410. reg = PCH_TRANSCONF(pipe);
  1411. val = I915_READ(reg);
  1412. pipeconf_val = I915_READ(PIPECONF(pipe));
  1413. if (HAS_PCH_IBX(dev_priv->dev)) {
  1414. /*
  1415. * make the BPC in transcoder be consistent with
  1416. * that in pipeconf reg.
  1417. */
  1418. val &= ~PIPECONF_BPC_MASK;
  1419. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1420. }
  1421. val &= ~TRANS_INTERLACE_MASK;
  1422. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1423. if (HAS_PCH_IBX(dev_priv->dev) &&
  1424. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1425. val |= TRANS_LEGACY_INTERLACED_ILK;
  1426. else
  1427. val |= TRANS_INTERLACED;
  1428. else
  1429. val |= TRANS_PROGRESSIVE;
  1430. I915_WRITE(reg, val | TRANS_ENABLE);
  1431. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1432. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1433. }
  1434. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1435. enum transcoder cpu_transcoder)
  1436. {
  1437. u32 val, pipeconf_val;
  1438. /* PCH only available on ILK+ */
  1439. BUG_ON(dev_priv->info->gen < 5);
  1440. /* FDI must be feeding us bits for PCH ports */
  1441. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1442. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1443. /* Workaround: set timing override bit. */
  1444. val = I915_READ(_TRANSA_CHICKEN2);
  1445. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1446. I915_WRITE(_TRANSA_CHICKEN2, val);
  1447. val = TRANS_ENABLE;
  1448. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1449. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1450. PIPECONF_INTERLACED_ILK)
  1451. val |= TRANS_INTERLACED;
  1452. else
  1453. val |= TRANS_PROGRESSIVE;
  1454. I915_WRITE(LPT_TRANSCONF, val);
  1455. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1456. DRM_ERROR("Failed to enable PCH transcoder\n");
  1457. }
  1458. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1459. enum pipe pipe)
  1460. {
  1461. struct drm_device *dev = dev_priv->dev;
  1462. uint32_t reg, val;
  1463. /* FDI relies on the transcoder */
  1464. assert_fdi_tx_disabled(dev_priv, pipe);
  1465. assert_fdi_rx_disabled(dev_priv, pipe);
  1466. /* Ports must be off as well */
  1467. assert_pch_ports_disabled(dev_priv, pipe);
  1468. reg = PCH_TRANSCONF(pipe);
  1469. val = I915_READ(reg);
  1470. val &= ~TRANS_ENABLE;
  1471. I915_WRITE(reg, val);
  1472. /* wait for PCH transcoder off, transcoder state */
  1473. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1474. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1475. if (!HAS_PCH_IBX(dev)) {
  1476. /* Workaround: Clear the timing override chicken bit again. */
  1477. reg = TRANS_CHICKEN2(pipe);
  1478. val = I915_READ(reg);
  1479. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1480. I915_WRITE(reg, val);
  1481. }
  1482. }
  1483. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1484. {
  1485. u32 val;
  1486. val = I915_READ(LPT_TRANSCONF);
  1487. val &= ~TRANS_ENABLE;
  1488. I915_WRITE(LPT_TRANSCONF, val);
  1489. /* wait for PCH transcoder off, transcoder state */
  1490. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1491. DRM_ERROR("Failed to disable PCH transcoder\n");
  1492. /* Workaround: clear timing override bit. */
  1493. val = I915_READ(_TRANSA_CHICKEN2);
  1494. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1495. I915_WRITE(_TRANSA_CHICKEN2, val);
  1496. }
  1497. /**
  1498. * intel_enable_pipe - enable a pipe, asserting requirements
  1499. * @dev_priv: i915 private structure
  1500. * @pipe: pipe to enable
  1501. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1502. *
  1503. * Enable @pipe, making sure that various hardware specific requirements
  1504. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1505. *
  1506. * @pipe should be %PIPE_A or %PIPE_B.
  1507. *
  1508. * Will wait until the pipe is actually running (i.e. first vblank) before
  1509. * returning.
  1510. */
  1511. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1512. bool pch_port)
  1513. {
  1514. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1515. pipe);
  1516. enum pipe pch_transcoder;
  1517. int reg;
  1518. u32 val;
  1519. assert_planes_disabled(dev_priv, pipe);
  1520. assert_sprites_disabled(dev_priv, pipe);
  1521. if (HAS_PCH_LPT(dev_priv->dev))
  1522. pch_transcoder = TRANSCODER_A;
  1523. else
  1524. pch_transcoder = pipe;
  1525. /*
  1526. * A pipe without a PLL won't actually be able to drive bits from
  1527. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1528. * need the check.
  1529. */
  1530. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1531. assert_pll_enabled(dev_priv, pipe);
  1532. else {
  1533. if (pch_port) {
  1534. /* if driving the PCH, we need FDI enabled */
  1535. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1536. assert_fdi_tx_pll_enabled(dev_priv,
  1537. (enum pipe) cpu_transcoder);
  1538. }
  1539. /* FIXME: assert CPU port conditions for SNB+ */
  1540. }
  1541. reg = PIPECONF(cpu_transcoder);
  1542. val = I915_READ(reg);
  1543. if (val & PIPECONF_ENABLE)
  1544. return;
  1545. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1546. intel_wait_for_vblank(dev_priv->dev, pipe);
  1547. }
  1548. /**
  1549. * intel_disable_pipe - disable a pipe, asserting requirements
  1550. * @dev_priv: i915 private structure
  1551. * @pipe: pipe to disable
  1552. *
  1553. * Disable @pipe, making sure that various hardware specific requirements
  1554. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1555. *
  1556. * @pipe should be %PIPE_A or %PIPE_B.
  1557. *
  1558. * Will wait until the pipe has shut down before returning.
  1559. */
  1560. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1561. enum pipe pipe)
  1562. {
  1563. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1564. pipe);
  1565. int reg;
  1566. u32 val;
  1567. /*
  1568. * Make sure planes won't keep trying to pump pixels to us,
  1569. * or we might hang the display.
  1570. */
  1571. assert_planes_disabled(dev_priv, pipe);
  1572. assert_sprites_disabled(dev_priv, pipe);
  1573. /* Don't disable pipe A or pipe A PLLs if needed */
  1574. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1575. return;
  1576. reg = PIPECONF(cpu_transcoder);
  1577. val = I915_READ(reg);
  1578. if ((val & PIPECONF_ENABLE) == 0)
  1579. return;
  1580. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1581. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1582. }
  1583. /*
  1584. * Plane regs are double buffered, going from enabled->disabled needs a
  1585. * trigger in order to latch. The display address reg provides this.
  1586. */
  1587. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1588. enum plane plane)
  1589. {
  1590. if (dev_priv->info->gen >= 4)
  1591. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1592. else
  1593. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1594. }
  1595. /**
  1596. * intel_enable_plane - enable a display plane on a given pipe
  1597. * @dev_priv: i915 private structure
  1598. * @plane: plane to enable
  1599. * @pipe: pipe being fed
  1600. *
  1601. * Enable @plane on @pipe, making sure that @pipe is running first.
  1602. */
  1603. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1604. enum plane plane, enum pipe pipe)
  1605. {
  1606. int reg;
  1607. u32 val;
  1608. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1609. assert_pipe_enabled(dev_priv, pipe);
  1610. reg = DSPCNTR(plane);
  1611. val = I915_READ(reg);
  1612. if (val & DISPLAY_PLANE_ENABLE)
  1613. return;
  1614. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1615. intel_flush_display_plane(dev_priv, plane);
  1616. intel_wait_for_vblank(dev_priv->dev, pipe);
  1617. }
  1618. /**
  1619. * intel_disable_plane - disable a display plane
  1620. * @dev_priv: i915 private structure
  1621. * @plane: plane to disable
  1622. * @pipe: pipe consuming the data
  1623. *
  1624. * Disable @plane; should be an independent operation.
  1625. */
  1626. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1627. enum plane plane, enum pipe pipe)
  1628. {
  1629. int reg;
  1630. u32 val;
  1631. reg = DSPCNTR(plane);
  1632. val = I915_READ(reg);
  1633. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1634. return;
  1635. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1636. intel_flush_display_plane(dev_priv, plane);
  1637. intel_wait_for_vblank(dev_priv->dev, pipe);
  1638. }
  1639. static bool need_vtd_wa(struct drm_device *dev)
  1640. {
  1641. #ifdef CONFIG_INTEL_IOMMU
  1642. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1643. return true;
  1644. #endif
  1645. return false;
  1646. }
  1647. int
  1648. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1649. struct drm_i915_gem_object *obj,
  1650. struct intel_ring_buffer *pipelined)
  1651. {
  1652. struct drm_i915_private *dev_priv = dev->dev_private;
  1653. u32 alignment;
  1654. int ret;
  1655. switch (obj->tiling_mode) {
  1656. case I915_TILING_NONE:
  1657. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1658. alignment = 128 * 1024;
  1659. else if (INTEL_INFO(dev)->gen >= 4)
  1660. alignment = 4 * 1024;
  1661. else
  1662. alignment = 64 * 1024;
  1663. break;
  1664. case I915_TILING_X:
  1665. /* pin() will align the object as required by fence */
  1666. alignment = 0;
  1667. break;
  1668. case I915_TILING_Y:
  1669. /* Despite that we check this in framebuffer_init userspace can
  1670. * screw us over and change the tiling after the fact. Only
  1671. * pinned buffers can't change their tiling. */
  1672. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1673. return -EINVAL;
  1674. default:
  1675. BUG();
  1676. }
  1677. /* Note that the w/a also requires 64 PTE of padding following the
  1678. * bo. We currently fill all unused PTE with the shadow page and so
  1679. * we should always have valid PTE following the scanout preventing
  1680. * the VT-d warning.
  1681. */
  1682. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1683. alignment = 256 * 1024;
  1684. dev_priv->mm.interruptible = false;
  1685. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1686. if (ret)
  1687. goto err_interruptible;
  1688. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1689. * fence, whereas 965+ only requires a fence if using
  1690. * framebuffer compression. For simplicity, we always install
  1691. * a fence as the cost is not that onerous.
  1692. */
  1693. ret = i915_gem_object_get_fence(obj);
  1694. if (ret)
  1695. goto err_unpin;
  1696. i915_gem_object_pin_fence(obj);
  1697. dev_priv->mm.interruptible = true;
  1698. return 0;
  1699. err_unpin:
  1700. i915_gem_object_unpin(obj);
  1701. err_interruptible:
  1702. dev_priv->mm.interruptible = true;
  1703. return ret;
  1704. }
  1705. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1706. {
  1707. i915_gem_object_unpin_fence(obj);
  1708. i915_gem_object_unpin(obj);
  1709. }
  1710. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1711. * is assumed to be a power-of-two. */
  1712. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1713. unsigned int tiling_mode,
  1714. unsigned int cpp,
  1715. unsigned int pitch)
  1716. {
  1717. if (tiling_mode != I915_TILING_NONE) {
  1718. unsigned int tile_rows, tiles;
  1719. tile_rows = *y / 8;
  1720. *y %= 8;
  1721. tiles = *x / (512/cpp);
  1722. *x %= 512/cpp;
  1723. return tile_rows * pitch * 8 + tiles * 4096;
  1724. } else {
  1725. unsigned int offset;
  1726. offset = *y * pitch + *x * cpp;
  1727. *y = 0;
  1728. *x = (offset & 4095) / cpp;
  1729. return offset & -4096;
  1730. }
  1731. }
  1732. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1733. int x, int y)
  1734. {
  1735. struct drm_device *dev = crtc->dev;
  1736. struct drm_i915_private *dev_priv = dev->dev_private;
  1737. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1738. struct intel_framebuffer *intel_fb;
  1739. struct drm_i915_gem_object *obj;
  1740. int plane = intel_crtc->plane;
  1741. unsigned long linear_offset;
  1742. u32 dspcntr;
  1743. u32 reg;
  1744. switch (plane) {
  1745. case 0:
  1746. case 1:
  1747. break;
  1748. default:
  1749. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1750. return -EINVAL;
  1751. }
  1752. intel_fb = to_intel_framebuffer(fb);
  1753. obj = intel_fb->obj;
  1754. reg = DSPCNTR(plane);
  1755. dspcntr = I915_READ(reg);
  1756. /* Mask out pixel format bits in case we change it */
  1757. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1758. switch (fb->pixel_format) {
  1759. case DRM_FORMAT_C8:
  1760. dspcntr |= DISPPLANE_8BPP;
  1761. break;
  1762. case DRM_FORMAT_XRGB1555:
  1763. case DRM_FORMAT_ARGB1555:
  1764. dspcntr |= DISPPLANE_BGRX555;
  1765. break;
  1766. case DRM_FORMAT_RGB565:
  1767. dspcntr |= DISPPLANE_BGRX565;
  1768. break;
  1769. case DRM_FORMAT_XRGB8888:
  1770. case DRM_FORMAT_ARGB8888:
  1771. dspcntr |= DISPPLANE_BGRX888;
  1772. break;
  1773. case DRM_FORMAT_XBGR8888:
  1774. case DRM_FORMAT_ABGR8888:
  1775. dspcntr |= DISPPLANE_RGBX888;
  1776. break;
  1777. case DRM_FORMAT_XRGB2101010:
  1778. case DRM_FORMAT_ARGB2101010:
  1779. dspcntr |= DISPPLANE_BGRX101010;
  1780. break;
  1781. case DRM_FORMAT_XBGR2101010:
  1782. case DRM_FORMAT_ABGR2101010:
  1783. dspcntr |= DISPPLANE_RGBX101010;
  1784. break;
  1785. default:
  1786. BUG();
  1787. }
  1788. if (INTEL_INFO(dev)->gen >= 4) {
  1789. if (obj->tiling_mode != I915_TILING_NONE)
  1790. dspcntr |= DISPPLANE_TILED;
  1791. else
  1792. dspcntr &= ~DISPPLANE_TILED;
  1793. }
  1794. I915_WRITE(reg, dspcntr);
  1795. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1796. if (INTEL_INFO(dev)->gen >= 4) {
  1797. intel_crtc->dspaddr_offset =
  1798. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1799. fb->bits_per_pixel / 8,
  1800. fb->pitches[0]);
  1801. linear_offset -= intel_crtc->dspaddr_offset;
  1802. } else {
  1803. intel_crtc->dspaddr_offset = linear_offset;
  1804. }
  1805. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1806. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1807. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1808. if (INTEL_INFO(dev)->gen >= 4) {
  1809. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1810. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1811. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1812. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1813. } else
  1814. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1815. POSTING_READ(reg);
  1816. return 0;
  1817. }
  1818. static int ironlake_update_plane(struct drm_crtc *crtc,
  1819. struct drm_framebuffer *fb, int x, int y)
  1820. {
  1821. struct drm_device *dev = crtc->dev;
  1822. struct drm_i915_private *dev_priv = dev->dev_private;
  1823. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1824. struct intel_framebuffer *intel_fb;
  1825. struct drm_i915_gem_object *obj;
  1826. int plane = intel_crtc->plane;
  1827. unsigned long linear_offset;
  1828. u32 dspcntr;
  1829. u32 reg;
  1830. switch (plane) {
  1831. case 0:
  1832. case 1:
  1833. case 2:
  1834. break;
  1835. default:
  1836. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1837. return -EINVAL;
  1838. }
  1839. intel_fb = to_intel_framebuffer(fb);
  1840. obj = intel_fb->obj;
  1841. reg = DSPCNTR(plane);
  1842. dspcntr = I915_READ(reg);
  1843. /* Mask out pixel format bits in case we change it */
  1844. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1845. switch (fb->pixel_format) {
  1846. case DRM_FORMAT_C8:
  1847. dspcntr |= DISPPLANE_8BPP;
  1848. break;
  1849. case DRM_FORMAT_RGB565:
  1850. dspcntr |= DISPPLANE_BGRX565;
  1851. break;
  1852. case DRM_FORMAT_XRGB8888:
  1853. case DRM_FORMAT_ARGB8888:
  1854. dspcntr |= DISPPLANE_BGRX888;
  1855. break;
  1856. case DRM_FORMAT_XBGR8888:
  1857. case DRM_FORMAT_ABGR8888:
  1858. dspcntr |= DISPPLANE_RGBX888;
  1859. break;
  1860. case DRM_FORMAT_XRGB2101010:
  1861. case DRM_FORMAT_ARGB2101010:
  1862. dspcntr |= DISPPLANE_BGRX101010;
  1863. break;
  1864. case DRM_FORMAT_XBGR2101010:
  1865. case DRM_FORMAT_ABGR2101010:
  1866. dspcntr |= DISPPLANE_RGBX101010;
  1867. break;
  1868. default:
  1869. BUG();
  1870. }
  1871. if (obj->tiling_mode != I915_TILING_NONE)
  1872. dspcntr |= DISPPLANE_TILED;
  1873. else
  1874. dspcntr &= ~DISPPLANE_TILED;
  1875. /* must disable */
  1876. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1877. I915_WRITE(reg, dspcntr);
  1878. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1879. intel_crtc->dspaddr_offset =
  1880. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1881. fb->bits_per_pixel / 8,
  1882. fb->pitches[0]);
  1883. linear_offset -= intel_crtc->dspaddr_offset;
  1884. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1885. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1886. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1887. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1888. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1889. if (IS_HASWELL(dev)) {
  1890. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1891. } else {
  1892. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1893. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1894. }
  1895. POSTING_READ(reg);
  1896. return 0;
  1897. }
  1898. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1899. static int
  1900. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1901. int x, int y, enum mode_set_atomic state)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. if (dev_priv->display.disable_fbc)
  1906. dev_priv->display.disable_fbc(dev);
  1907. intel_increase_pllclock(crtc);
  1908. return dev_priv->display.update_plane(crtc, fb, x, y);
  1909. }
  1910. void intel_display_handle_reset(struct drm_device *dev)
  1911. {
  1912. struct drm_i915_private *dev_priv = dev->dev_private;
  1913. struct drm_crtc *crtc;
  1914. /*
  1915. * Flips in the rings have been nuked by the reset,
  1916. * so complete all pending flips so that user space
  1917. * will get its events and not get stuck.
  1918. *
  1919. * Also update the base address of all primary
  1920. * planes to the the last fb to make sure we're
  1921. * showing the correct fb after a reset.
  1922. *
  1923. * Need to make two loops over the crtcs so that we
  1924. * don't try to grab a crtc mutex before the
  1925. * pending_flip_queue really got woken up.
  1926. */
  1927. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1929. enum plane plane = intel_crtc->plane;
  1930. intel_prepare_page_flip(dev, plane);
  1931. intel_finish_page_flip_plane(dev, plane);
  1932. }
  1933. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1934. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1935. mutex_lock(&crtc->mutex);
  1936. if (intel_crtc->active)
  1937. dev_priv->display.update_plane(crtc, crtc->fb,
  1938. crtc->x, crtc->y);
  1939. mutex_unlock(&crtc->mutex);
  1940. }
  1941. }
  1942. static int
  1943. intel_finish_fb(struct drm_framebuffer *old_fb)
  1944. {
  1945. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1946. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1947. bool was_interruptible = dev_priv->mm.interruptible;
  1948. int ret;
  1949. /* Big Hammer, we also need to ensure that any pending
  1950. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1951. * current scanout is retired before unpinning the old
  1952. * framebuffer.
  1953. *
  1954. * This should only fail upon a hung GPU, in which case we
  1955. * can safely continue.
  1956. */
  1957. dev_priv->mm.interruptible = false;
  1958. ret = i915_gem_object_finish_gpu(obj);
  1959. dev_priv->mm.interruptible = was_interruptible;
  1960. return ret;
  1961. }
  1962. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1963. {
  1964. struct drm_device *dev = crtc->dev;
  1965. struct drm_i915_master_private *master_priv;
  1966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1967. if (!dev->primary->master)
  1968. return;
  1969. master_priv = dev->primary->master->driver_priv;
  1970. if (!master_priv->sarea_priv)
  1971. return;
  1972. switch (intel_crtc->pipe) {
  1973. case 0:
  1974. master_priv->sarea_priv->pipeA_x = x;
  1975. master_priv->sarea_priv->pipeA_y = y;
  1976. break;
  1977. case 1:
  1978. master_priv->sarea_priv->pipeB_x = x;
  1979. master_priv->sarea_priv->pipeB_y = y;
  1980. break;
  1981. default:
  1982. break;
  1983. }
  1984. }
  1985. static int
  1986. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1987. struct drm_framebuffer *fb)
  1988. {
  1989. struct drm_device *dev = crtc->dev;
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. struct drm_framebuffer *old_fb;
  1993. int ret;
  1994. /* no fb bound */
  1995. if (!fb) {
  1996. DRM_ERROR("No FB bound\n");
  1997. return 0;
  1998. }
  1999. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  2000. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2001. plane_name(intel_crtc->plane),
  2002. INTEL_INFO(dev)->num_pipes);
  2003. return -EINVAL;
  2004. }
  2005. mutex_lock(&dev->struct_mutex);
  2006. ret = intel_pin_and_fence_fb_obj(dev,
  2007. to_intel_framebuffer(fb)->obj,
  2008. NULL);
  2009. if (ret != 0) {
  2010. mutex_unlock(&dev->struct_mutex);
  2011. DRM_ERROR("pin & fence failed\n");
  2012. return ret;
  2013. }
  2014. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2015. if (ret) {
  2016. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2017. mutex_unlock(&dev->struct_mutex);
  2018. DRM_ERROR("failed to update base address\n");
  2019. return ret;
  2020. }
  2021. old_fb = crtc->fb;
  2022. crtc->fb = fb;
  2023. crtc->x = x;
  2024. crtc->y = y;
  2025. if (old_fb) {
  2026. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2027. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2028. }
  2029. intel_update_fbc(dev);
  2030. mutex_unlock(&dev->struct_mutex);
  2031. intel_crtc_update_sarea_pos(crtc, x, y);
  2032. return 0;
  2033. }
  2034. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2035. {
  2036. struct drm_device *dev = crtc->dev;
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2039. int pipe = intel_crtc->pipe;
  2040. u32 reg, temp;
  2041. /* enable normal train */
  2042. reg = FDI_TX_CTL(pipe);
  2043. temp = I915_READ(reg);
  2044. if (IS_IVYBRIDGE(dev)) {
  2045. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2046. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2047. } else {
  2048. temp &= ~FDI_LINK_TRAIN_NONE;
  2049. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2050. }
  2051. I915_WRITE(reg, temp);
  2052. reg = FDI_RX_CTL(pipe);
  2053. temp = I915_READ(reg);
  2054. if (HAS_PCH_CPT(dev)) {
  2055. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2056. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2057. } else {
  2058. temp &= ~FDI_LINK_TRAIN_NONE;
  2059. temp |= FDI_LINK_TRAIN_NONE;
  2060. }
  2061. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2062. /* wait one idle pattern time */
  2063. POSTING_READ(reg);
  2064. udelay(1000);
  2065. /* IVB wants error correction enabled */
  2066. if (IS_IVYBRIDGE(dev))
  2067. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2068. FDI_FE_ERRC_ENABLE);
  2069. }
  2070. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2071. {
  2072. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2073. }
  2074. static void ivb_modeset_global_resources(struct drm_device *dev)
  2075. {
  2076. struct drm_i915_private *dev_priv = dev->dev_private;
  2077. struct intel_crtc *pipe_B_crtc =
  2078. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2079. struct intel_crtc *pipe_C_crtc =
  2080. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2081. uint32_t temp;
  2082. /*
  2083. * When everything is off disable fdi C so that we could enable fdi B
  2084. * with all lanes. Note that we don't care about enabled pipes without
  2085. * an enabled pch encoder.
  2086. */
  2087. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2088. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2089. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2090. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2091. temp = I915_READ(SOUTH_CHICKEN1);
  2092. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2093. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2094. I915_WRITE(SOUTH_CHICKEN1, temp);
  2095. }
  2096. }
  2097. /* The FDI link training functions for ILK/Ibexpeak. */
  2098. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2099. {
  2100. struct drm_device *dev = crtc->dev;
  2101. struct drm_i915_private *dev_priv = dev->dev_private;
  2102. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2103. int pipe = intel_crtc->pipe;
  2104. int plane = intel_crtc->plane;
  2105. u32 reg, temp, tries;
  2106. /* FDI needs bits from pipe & plane first */
  2107. assert_pipe_enabled(dev_priv, pipe);
  2108. assert_plane_enabled(dev_priv, plane);
  2109. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2110. for train result */
  2111. reg = FDI_RX_IMR(pipe);
  2112. temp = I915_READ(reg);
  2113. temp &= ~FDI_RX_SYMBOL_LOCK;
  2114. temp &= ~FDI_RX_BIT_LOCK;
  2115. I915_WRITE(reg, temp);
  2116. I915_READ(reg);
  2117. udelay(150);
  2118. /* enable CPU FDI TX and PCH FDI RX */
  2119. reg = FDI_TX_CTL(pipe);
  2120. temp = I915_READ(reg);
  2121. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2122. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2123. temp &= ~FDI_LINK_TRAIN_NONE;
  2124. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2125. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2126. reg = FDI_RX_CTL(pipe);
  2127. temp = I915_READ(reg);
  2128. temp &= ~FDI_LINK_TRAIN_NONE;
  2129. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2130. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2131. POSTING_READ(reg);
  2132. udelay(150);
  2133. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2134. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2135. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2136. FDI_RX_PHASE_SYNC_POINTER_EN);
  2137. reg = FDI_RX_IIR(pipe);
  2138. for (tries = 0; tries < 5; tries++) {
  2139. temp = I915_READ(reg);
  2140. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2141. if ((temp & FDI_RX_BIT_LOCK)) {
  2142. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2143. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2144. break;
  2145. }
  2146. }
  2147. if (tries == 5)
  2148. DRM_ERROR("FDI train 1 fail!\n");
  2149. /* Train 2 */
  2150. reg = FDI_TX_CTL(pipe);
  2151. temp = I915_READ(reg);
  2152. temp &= ~FDI_LINK_TRAIN_NONE;
  2153. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2154. I915_WRITE(reg, temp);
  2155. reg = FDI_RX_CTL(pipe);
  2156. temp = I915_READ(reg);
  2157. temp &= ~FDI_LINK_TRAIN_NONE;
  2158. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2159. I915_WRITE(reg, temp);
  2160. POSTING_READ(reg);
  2161. udelay(150);
  2162. reg = FDI_RX_IIR(pipe);
  2163. for (tries = 0; tries < 5; tries++) {
  2164. temp = I915_READ(reg);
  2165. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2166. if (temp & FDI_RX_SYMBOL_LOCK) {
  2167. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2168. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2169. break;
  2170. }
  2171. }
  2172. if (tries == 5)
  2173. DRM_ERROR("FDI train 2 fail!\n");
  2174. DRM_DEBUG_KMS("FDI train done\n");
  2175. }
  2176. static const int snb_b_fdi_train_param[] = {
  2177. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2178. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2179. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2180. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2181. };
  2182. /* The FDI link training functions for SNB/Cougarpoint. */
  2183. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2184. {
  2185. struct drm_device *dev = crtc->dev;
  2186. struct drm_i915_private *dev_priv = dev->dev_private;
  2187. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2188. int pipe = intel_crtc->pipe;
  2189. u32 reg, temp, i, retry;
  2190. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2191. for train result */
  2192. reg = FDI_RX_IMR(pipe);
  2193. temp = I915_READ(reg);
  2194. temp &= ~FDI_RX_SYMBOL_LOCK;
  2195. temp &= ~FDI_RX_BIT_LOCK;
  2196. I915_WRITE(reg, temp);
  2197. POSTING_READ(reg);
  2198. udelay(150);
  2199. /* enable CPU FDI TX and PCH FDI RX */
  2200. reg = FDI_TX_CTL(pipe);
  2201. temp = I915_READ(reg);
  2202. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2203. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2204. temp &= ~FDI_LINK_TRAIN_NONE;
  2205. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2206. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2207. /* SNB-B */
  2208. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2209. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2210. I915_WRITE(FDI_RX_MISC(pipe),
  2211. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2212. reg = FDI_RX_CTL(pipe);
  2213. temp = I915_READ(reg);
  2214. if (HAS_PCH_CPT(dev)) {
  2215. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2216. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2217. } else {
  2218. temp &= ~FDI_LINK_TRAIN_NONE;
  2219. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2220. }
  2221. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2222. POSTING_READ(reg);
  2223. udelay(150);
  2224. for (i = 0; i < 4; i++) {
  2225. reg = FDI_TX_CTL(pipe);
  2226. temp = I915_READ(reg);
  2227. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2228. temp |= snb_b_fdi_train_param[i];
  2229. I915_WRITE(reg, temp);
  2230. POSTING_READ(reg);
  2231. udelay(500);
  2232. for (retry = 0; retry < 5; retry++) {
  2233. reg = FDI_RX_IIR(pipe);
  2234. temp = I915_READ(reg);
  2235. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2236. if (temp & FDI_RX_BIT_LOCK) {
  2237. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2238. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2239. break;
  2240. }
  2241. udelay(50);
  2242. }
  2243. if (retry < 5)
  2244. break;
  2245. }
  2246. if (i == 4)
  2247. DRM_ERROR("FDI train 1 fail!\n");
  2248. /* Train 2 */
  2249. reg = FDI_TX_CTL(pipe);
  2250. temp = I915_READ(reg);
  2251. temp &= ~FDI_LINK_TRAIN_NONE;
  2252. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2253. if (IS_GEN6(dev)) {
  2254. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2255. /* SNB-B */
  2256. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2257. }
  2258. I915_WRITE(reg, temp);
  2259. reg = FDI_RX_CTL(pipe);
  2260. temp = I915_READ(reg);
  2261. if (HAS_PCH_CPT(dev)) {
  2262. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2263. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2264. } else {
  2265. temp &= ~FDI_LINK_TRAIN_NONE;
  2266. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2267. }
  2268. I915_WRITE(reg, temp);
  2269. POSTING_READ(reg);
  2270. udelay(150);
  2271. for (i = 0; i < 4; i++) {
  2272. reg = FDI_TX_CTL(pipe);
  2273. temp = I915_READ(reg);
  2274. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2275. temp |= snb_b_fdi_train_param[i];
  2276. I915_WRITE(reg, temp);
  2277. POSTING_READ(reg);
  2278. udelay(500);
  2279. for (retry = 0; retry < 5; retry++) {
  2280. reg = FDI_RX_IIR(pipe);
  2281. temp = I915_READ(reg);
  2282. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2283. if (temp & FDI_RX_SYMBOL_LOCK) {
  2284. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2285. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2286. break;
  2287. }
  2288. udelay(50);
  2289. }
  2290. if (retry < 5)
  2291. break;
  2292. }
  2293. if (i == 4)
  2294. DRM_ERROR("FDI train 2 fail!\n");
  2295. DRM_DEBUG_KMS("FDI train done.\n");
  2296. }
  2297. /* Manual link training for Ivy Bridge A0 parts */
  2298. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2299. {
  2300. struct drm_device *dev = crtc->dev;
  2301. struct drm_i915_private *dev_priv = dev->dev_private;
  2302. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2303. int pipe = intel_crtc->pipe;
  2304. u32 reg, temp, i;
  2305. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2306. for train result */
  2307. reg = FDI_RX_IMR(pipe);
  2308. temp = I915_READ(reg);
  2309. temp &= ~FDI_RX_SYMBOL_LOCK;
  2310. temp &= ~FDI_RX_BIT_LOCK;
  2311. I915_WRITE(reg, temp);
  2312. POSTING_READ(reg);
  2313. udelay(150);
  2314. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2315. I915_READ(FDI_RX_IIR(pipe)));
  2316. /* enable CPU FDI TX and PCH FDI RX */
  2317. reg = FDI_TX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2320. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2321. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2322. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2323. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2324. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2325. temp |= FDI_COMPOSITE_SYNC;
  2326. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2327. I915_WRITE(FDI_RX_MISC(pipe),
  2328. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2329. reg = FDI_RX_CTL(pipe);
  2330. temp = I915_READ(reg);
  2331. temp &= ~FDI_LINK_TRAIN_AUTO;
  2332. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2333. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2334. temp |= FDI_COMPOSITE_SYNC;
  2335. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2336. POSTING_READ(reg);
  2337. udelay(150);
  2338. for (i = 0; i < 4; i++) {
  2339. reg = FDI_TX_CTL(pipe);
  2340. temp = I915_READ(reg);
  2341. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2342. temp |= snb_b_fdi_train_param[i];
  2343. I915_WRITE(reg, temp);
  2344. POSTING_READ(reg);
  2345. udelay(500);
  2346. reg = FDI_RX_IIR(pipe);
  2347. temp = I915_READ(reg);
  2348. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2349. if (temp & FDI_RX_BIT_LOCK ||
  2350. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2351. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2352. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2353. break;
  2354. }
  2355. }
  2356. if (i == 4)
  2357. DRM_ERROR("FDI train 1 fail!\n");
  2358. /* Train 2 */
  2359. reg = FDI_TX_CTL(pipe);
  2360. temp = I915_READ(reg);
  2361. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2362. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2363. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2364. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2365. I915_WRITE(reg, temp);
  2366. reg = FDI_RX_CTL(pipe);
  2367. temp = I915_READ(reg);
  2368. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2369. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2370. I915_WRITE(reg, temp);
  2371. POSTING_READ(reg);
  2372. udelay(150);
  2373. for (i = 0; i < 4; i++) {
  2374. reg = FDI_TX_CTL(pipe);
  2375. temp = I915_READ(reg);
  2376. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2377. temp |= snb_b_fdi_train_param[i];
  2378. I915_WRITE(reg, temp);
  2379. POSTING_READ(reg);
  2380. udelay(500);
  2381. reg = FDI_RX_IIR(pipe);
  2382. temp = I915_READ(reg);
  2383. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2384. if (temp & FDI_RX_SYMBOL_LOCK) {
  2385. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2386. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2387. break;
  2388. }
  2389. }
  2390. if (i == 4)
  2391. DRM_ERROR("FDI train 2 fail!\n");
  2392. DRM_DEBUG_KMS("FDI train done.\n");
  2393. }
  2394. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2395. {
  2396. struct drm_device *dev = intel_crtc->base.dev;
  2397. struct drm_i915_private *dev_priv = dev->dev_private;
  2398. int pipe = intel_crtc->pipe;
  2399. u32 reg, temp;
  2400. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2401. reg = FDI_RX_CTL(pipe);
  2402. temp = I915_READ(reg);
  2403. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2404. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2405. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2406. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2407. POSTING_READ(reg);
  2408. udelay(200);
  2409. /* Switch from Rawclk to PCDclk */
  2410. temp = I915_READ(reg);
  2411. I915_WRITE(reg, temp | FDI_PCDCLK);
  2412. POSTING_READ(reg);
  2413. udelay(200);
  2414. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2415. reg = FDI_TX_CTL(pipe);
  2416. temp = I915_READ(reg);
  2417. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2418. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2419. POSTING_READ(reg);
  2420. udelay(100);
  2421. }
  2422. }
  2423. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2424. {
  2425. struct drm_device *dev = intel_crtc->base.dev;
  2426. struct drm_i915_private *dev_priv = dev->dev_private;
  2427. int pipe = intel_crtc->pipe;
  2428. u32 reg, temp;
  2429. /* Switch from PCDclk to Rawclk */
  2430. reg = FDI_RX_CTL(pipe);
  2431. temp = I915_READ(reg);
  2432. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2433. /* Disable CPU FDI TX PLL */
  2434. reg = FDI_TX_CTL(pipe);
  2435. temp = I915_READ(reg);
  2436. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2437. POSTING_READ(reg);
  2438. udelay(100);
  2439. reg = FDI_RX_CTL(pipe);
  2440. temp = I915_READ(reg);
  2441. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2442. /* Wait for the clocks to turn off. */
  2443. POSTING_READ(reg);
  2444. udelay(100);
  2445. }
  2446. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2447. {
  2448. struct drm_device *dev = crtc->dev;
  2449. struct drm_i915_private *dev_priv = dev->dev_private;
  2450. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2451. int pipe = intel_crtc->pipe;
  2452. u32 reg, temp;
  2453. /* disable CPU FDI tx and PCH FDI rx */
  2454. reg = FDI_TX_CTL(pipe);
  2455. temp = I915_READ(reg);
  2456. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2457. POSTING_READ(reg);
  2458. reg = FDI_RX_CTL(pipe);
  2459. temp = I915_READ(reg);
  2460. temp &= ~(0x7 << 16);
  2461. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2462. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2463. POSTING_READ(reg);
  2464. udelay(100);
  2465. /* Ironlake workaround, disable clock pointer after downing FDI */
  2466. if (HAS_PCH_IBX(dev)) {
  2467. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2468. }
  2469. /* still set train pattern 1 */
  2470. reg = FDI_TX_CTL(pipe);
  2471. temp = I915_READ(reg);
  2472. temp &= ~FDI_LINK_TRAIN_NONE;
  2473. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2474. I915_WRITE(reg, temp);
  2475. reg = FDI_RX_CTL(pipe);
  2476. temp = I915_READ(reg);
  2477. if (HAS_PCH_CPT(dev)) {
  2478. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2479. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2480. } else {
  2481. temp &= ~FDI_LINK_TRAIN_NONE;
  2482. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2483. }
  2484. /* BPC in FDI rx is consistent with that in PIPECONF */
  2485. temp &= ~(0x07 << 16);
  2486. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2487. I915_WRITE(reg, temp);
  2488. POSTING_READ(reg);
  2489. udelay(100);
  2490. }
  2491. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2492. {
  2493. struct drm_device *dev = crtc->dev;
  2494. struct drm_i915_private *dev_priv = dev->dev_private;
  2495. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2496. unsigned long flags;
  2497. bool pending;
  2498. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2499. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2500. return false;
  2501. spin_lock_irqsave(&dev->event_lock, flags);
  2502. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2503. spin_unlock_irqrestore(&dev->event_lock, flags);
  2504. return pending;
  2505. }
  2506. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2507. {
  2508. struct drm_device *dev = crtc->dev;
  2509. struct drm_i915_private *dev_priv = dev->dev_private;
  2510. if (crtc->fb == NULL)
  2511. return;
  2512. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2513. wait_event(dev_priv->pending_flip_queue,
  2514. !intel_crtc_has_pending_flip(crtc));
  2515. mutex_lock(&dev->struct_mutex);
  2516. intel_finish_fb(crtc->fb);
  2517. mutex_unlock(&dev->struct_mutex);
  2518. }
  2519. /* Program iCLKIP clock to the desired frequency */
  2520. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2521. {
  2522. struct drm_device *dev = crtc->dev;
  2523. struct drm_i915_private *dev_priv = dev->dev_private;
  2524. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2525. u32 temp;
  2526. mutex_lock(&dev_priv->dpio_lock);
  2527. /* It is necessary to ungate the pixclk gate prior to programming
  2528. * the divisors, and gate it back when it is done.
  2529. */
  2530. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2531. /* Disable SSCCTL */
  2532. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2533. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2534. SBI_SSCCTL_DISABLE,
  2535. SBI_ICLK);
  2536. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2537. if (crtc->mode.clock == 20000) {
  2538. auxdiv = 1;
  2539. divsel = 0x41;
  2540. phaseinc = 0x20;
  2541. } else {
  2542. /* The iCLK virtual clock root frequency is in MHz,
  2543. * but the crtc->mode.clock in in KHz. To get the divisors,
  2544. * it is necessary to divide one by another, so we
  2545. * convert the virtual clock precision to KHz here for higher
  2546. * precision.
  2547. */
  2548. u32 iclk_virtual_root_freq = 172800 * 1000;
  2549. u32 iclk_pi_range = 64;
  2550. u32 desired_divisor, msb_divisor_value, pi_value;
  2551. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2552. msb_divisor_value = desired_divisor / iclk_pi_range;
  2553. pi_value = desired_divisor % iclk_pi_range;
  2554. auxdiv = 0;
  2555. divsel = msb_divisor_value - 2;
  2556. phaseinc = pi_value;
  2557. }
  2558. /* This should not happen with any sane values */
  2559. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2560. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2561. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2562. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2563. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2564. crtc->mode.clock,
  2565. auxdiv,
  2566. divsel,
  2567. phasedir,
  2568. phaseinc);
  2569. /* Program SSCDIVINTPHASE6 */
  2570. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2571. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2572. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2573. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2574. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2575. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2576. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2577. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2578. /* Program SSCAUXDIV */
  2579. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2580. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2581. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2582. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2583. /* Enable modulator and associated divider */
  2584. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2585. temp &= ~SBI_SSCCTL_DISABLE;
  2586. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2587. /* Wait for initialization time */
  2588. udelay(24);
  2589. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2590. mutex_unlock(&dev_priv->dpio_lock);
  2591. }
  2592. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2593. enum pipe pch_transcoder)
  2594. {
  2595. struct drm_device *dev = crtc->base.dev;
  2596. struct drm_i915_private *dev_priv = dev->dev_private;
  2597. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2598. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2599. I915_READ(HTOTAL(cpu_transcoder)));
  2600. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2601. I915_READ(HBLANK(cpu_transcoder)));
  2602. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2603. I915_READ(HSYNC(cpu_transcoder)));
  2604. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2605. I915_READ(VTOTAL(cpu_transcoder)));
  2606. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2607. I915_READ(VBLANK(cpu_transcoder)));
  2608. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2609. I915_READ(VSYNC(cpu_transcoder)));
  2610. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2611. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2612. }
  2613. /*
  2614. * Enable PCH resources required for PCH ports:
  2615. * - PCH PLLs
  2616. * - FDI training & RX/TX
  2617. * - update transcoder timings
  2618. * - DP transcoding bits
  2619. * - transcoder
  2620. */
  2621. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2622. {
  2623. struct drm_device *dev = crtc->dev;
  2624. struct drm_i915_private *dev_priv = dev->dev_private;
  2625. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2626. int pipe = intel_crtc->pipe;
  2627. u32 reg, temp;
  2628. assert_pch_transcoder_disabled(dev_priv, pipe);
  2629. /* Write the TU size bits before fdi link training, so that error
  2630. * detection works. */
  2631. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2632. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2633. /* For PCH output, training FDI link */
  2634. dev_priv->display.fdi_link_train(crtc);
  2635. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2636. * transcoder, and we actually should do this to not upset any PCH
  2637. * transcoder that already use the clock when we share it.
  2638. *
  2639. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2640. * unconditionally resets the pll - we need that to have the right LVDS
  2641. * enable sequence. */
  2642. ironlake_enable_pch_pll(intel_crtc);
  2643. if (HAS_PCH_CPT(dev)) {
  2644. u32 sel;
  2645. temp = I915_READ(PCH_DPLL_SEL);
  2646. switch (pipe) {
  2647. default:
  2648. case 0:
  2649. temp |= TRANSA_DPLL_ENABLE;
  2650. sel = TRANSA_DPLLB_SEL;
  2651. break;
  2652. case 1:
  2653. temp |= TRANSB_DPLL_ENABLE;
  2654. sel = TRANSB_DPLLB_SEL;
  2655. break;
  2656. case 2:
  2657. temp |= TRANSC_DPLL_ENABLE;
  2658. sel = TRANSC_DPLLB_SEL;
  2659. break;
  2660. }
  2661. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2662. temp |= sel;
  2663. else
  2664. temp &= ~sel;
  2665. I915_WRITE(PCH_DPLL_SEL, temp);
  2666. }
  2667. /* set transcoder timing, panel must allow it */
  2668. assert_panel_unlocked(dev_priv, pipe);
  2669. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2670. intel_fdi_normal_train(crtc);
  2671. /* For PCH DP, enable TRANS_DP_CTL */
  2672. if (HAS_PCH_CPT(dev) &&
  2673. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2674. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2675. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2676. reg = TRANS_DP_CTL(pipe);
  2677. temp = I915_READ(reg);
  2678. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2679. TRANS_DP_SYNC_MASK |
  2680. TRANS_DP_BPC_MASK);
  2681. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2682. TRANS_DP_ENH_FRAMING);
  2683. temp |= bpc << 9; /* same format but at 11:9 */
  2684. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2685. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2686. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2687. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2688. switch (intel_trans_dp_port_sel(crtc)) {
  2689. case PCH_DP_B:
  2690. temp |= TRANS_DP_PORT_SEL_B;
  2691. break;
  2692. case PCH_DP_C:
  2693. temp |= TRANS_DP_PORT_SEL_C;
  2694. break;
  2695. case PCH_DP_D:
  2696. temp |= TRANS_DP_PORT_SEL_D;
  2697. break;
  2698. default:
  2699. BUG();
  2700. }
  2701. I915_WRITE(reg, temp);
  2702. }
  2703. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2704. }
  2705. static void lpt_pch_enable(struct drm_crtc *crtc)
  2706. {
  2707. struct drm_device *dev = crtc->dev;
  2708. struct drm_i915_private *dev_priv = dev->dev_private;
  2709. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2710. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2711. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2712. lpt_program_iclkip(crtc);
  2713. /* Set transcoder timing. */
  2714. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2715. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2716. }
  2717. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2718. {
  2719. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2720. if (pll == NULL)
  2721. return;
  2722. if (pll->refcount == 0) {
  2723. WARN(1, "bad PCH PLL refcount\n");
  2724. return;
  2725. }
  2726. --pll->refcount;
  2727. intel_crtc->pch_pll = NULL;
  2728. }
  2729. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2730. {
  2731. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2732. struct intel_pch_pll *pll;
  2733. int i;
  2734. pll = intel_crtc->pch_pll;
  2735. if (pll) {
  2736. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2737. intel_crtc->base.base.id, pll->pll_reg);
  2738. goto prepare;
  2739. }
  2740. if (HAS_PCH_IBX(dev_priv->dev)) {
  2741. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2742. i = intel_crtc->pipe;
  2743. pll = &dev_priv->pch_plls[i];
  2744. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2745. intel_crtc->base.base.id, pll->pll_reg);
  2746. goto found;
  2747. }
  2748. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2749. pll = &dev_priv->pch_plls[i];
  2750. /* Only want to check enabled timings first */
  2751. if (pll->refcount == 0)
  2752. continue;
  2753. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2754. fp == I915_READ(pll->fp0_reg)) {
  2755. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2756. intel_crtc->base.base.id,
  2757. pll->pll_reg, pll->refcount, pll->active);
  2758. goto found;
  2759. }
  2760. }
  2761. /* Ok no matching timings, maybe there's a free one? */
  2762. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2763. pll = &dev_priv->pch_plls[i];
  2764. if (pll->refcount == 0) {
  2765. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2766. intel_crtc->base.base.id, pll->pll_reg);
  2767. goto found;
  2768. }
  2769. }
  2770. return NULL;
  2771. found:
  2772. intel_crtc->pch_pll = pll;
  2773. pll->refcount++;
  2774. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2775. prepare: /* separate function? */
  2776. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2777. /* Wait for the clocks to stabilize before rewriting the regs */
  2778. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2779. POSTING_READ(pll->pll_reg);
  2780. udelay(150);
  2781. I915_WRITE(pll->fp0_reg, fp);
  2782. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2783. pll->on = false;
  2784. return pll;
  2785. }
  2786. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2787. {
  2788. struct drm_i915_private *dev_priv = dev->dev_private;
  2789. int dslreg = PIPEDSL(pipe);
  2790. u32 temp;
  2791. temp = I915_READ(dslreg);
  2792. udelay(500);
  2793. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2794. if (wait_for(I915_READ(dslreg) != temp, 5))
  2795. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2796. }
  2797. }
  2798. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2799. {
  2800. struct drm_device *dev = crtc->base.dev;
  2801. struct drm_i915_private *dev_priv = dev->dev_private;
  2802. int pipe = crtc->pipe;
  2803. if (crtc->config.pch_pfit.size) {
  2804. /* Force use of hard-coded filter coefficients
  2805. * as some pre-programmed values are broken,
  2806. * e.g. x201.
  2807. */
  2808. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2809. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2810. PF_PIPE_SEL_IVB(pipe));
  2811. else
  2812. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2813. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2814. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2815. }
  2816. }
  2817. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2818. {
  2819. struct drm_device *dev = crtc->dev;
  2820. struct drm_i915_private *dev_priv = dev->dev_private;
  2821. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2822. struct intel_encoder *encoder;
  2823. int pipe = intel_crtc->pipe;
  2824. int plane = intel_crtc->plane;
  2825. u32 temp;
  2826. WARN_ON(!crtc->enabled);
  2827. if (intel_crtc->active)
  2828. return;
  2829. intel_crtc->active = true;
  2830. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2831. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2832. intel_update_watermarks(dev);
  2833. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2834. temp = I915_READ(PCH_LVDS);
  2835. if ((temp & LVDS_PORT_EN) == 0)
  2836. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2837. }
  2838. if (intel_crtc->config.has_pch_encoder) {
  2839. /* Note: FDI PLL enabling _must_ be done before we enable the
  2840. * cpu pipes, hence this is separate from all the other fdi/pch
  2841. * enabling. */
  2842. ironlake_fdi_pll_enable(intel_crtc);
  2843. } else {
  2844. assert_fdi_tx_disabled(dev_priv, pipe);
  2845. assert_fdi_rx_disabled(dev_priv, pipe);
  2846. }
  2847. for_each_encoder_on_crtc(dev, crtc, encoder)
  2848. if (encoder->pre_enable)
  2849. encoder->pre_enable(encoder);
  2850. /* Enable panel fitting for LVDS */
  2851. ironlake_pfit_enable(intel_crtc);
  2852. /*
  2853. * On ILK+ LUT must be loaded before the pipe is running but with
  2854. * clocks enabled
  2855. */
  2856. intel_crtc_load_lut(crtc);
  2857. intel_enable_pipe(dev_priv, pipe,
  2858. intel_crtc->config.has_pch_encoder);
  2859. intel_enable_plane(dev_priv, plane, pipe);
  2860. if (intel_crtc->config.has_pch_encoder)
  2861. ironlake_pch_enable(crtc);
  2862. mutex_lock(&dev->struct_mutex);
  2863. intel_update_fbc(dev);
  2864. mutex_unlock(&dev->struct_mutex);
  2865. intel_crtc_update_cursor(crtc, true);
  2866. for_each_encoder_on_crtc(dev, crtc, encoder)
  2867. encoder->enable(encoder);
  2868. if (HAS_PCH_CPT(dev))
  2869. cpt_verify_modeset(dev, intel_crtc->pipe);
  2870. /*
  2871. * There seems to be a race in PCH platform hw (at least on some
  2872. * outputs) where an enabled pipe still completes any pageflip right
  2873. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2874. * as the first vblank happend, everything works as expected. Hence just
  2875. * wait for one vblank before returning to avoid strange things
  2876. * happening.
  2877. */
  2878. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2879. }
  2880. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2881. {
  2882. struct drm_device *dev = crtc->dev;
  2883. struct drm_i915_private *dev_priv = dev->dev_private;
  2884. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2885. struct intel_encoder *encoder;
  2886. int pipe = intel_crtc->pipe;
  2887. int plane = intel_crtc->plane;
  2888. WARN_ON(!crtc->enabled);
  2889. if (intel_crtc->active)
  2890. return;
  2891. intel_crtc->active = true;
  2892. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2893. if (intel_crtc->config.has_pch_encoder)
  2894. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2895. intel_update_watermarks(dev);
  2896. if (intel_crtc->config.has_pch_encoder)
  2897. dev_priv->display.fdi_link_train(crtc);
  2898. for_each_encoder_on_crtc(dev, crtc, encoder)
  2899. if (encoder->pre_enable)
  2900. encoder->pre_enable(encoder);
  2901. intel_ddi_enable_pipe_clock(intel_crtc);
  2902. /* Enable panel fitting for eDP */
  2903. ironlake_pfit_enable(intel_crtc);
  2904. /*
  2905. * On ILK+ LUT must be loaded before the pipe is running but with
  2906. * clocks enabled
  2907. */
  2908. intel_crtc_load_lut(crtc);
  2909. intel_ddi_set_pipe_settings(crtc);
  2910. intel_ddi_enable_transcoder_func(crtc);
  2911. intel_enable_pipe(dev_priv, pipe,
  2912. intel_crtc->config.has_pch_encoder);
  2913. intel_enable_plane(dev_priv, plane, pipe);
  2914. if (intel_crtc->config.has_pch_encoder)
  2915. lpt_pch_enable(crtc);
  2916. mutex_lock(&dev->struct_mutex);
  2917. intel_update_fbc(dev);
  2918. mutex_unlock(&dev->struct_mutex);
  2919. intel_crtc_update_cursor(crtc, true);
  2920. for_each_encoder_on_crtc(dev, crtc, encoder)
  2921. encoder->enable(encoder);
  2922. /*
  2923. * There seems to be a race in PCH platform hw (at least on some
  2924. * outputs) where an enabled pipe still completes any pageflip right
  2925. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2926. * as the first vblank happend, everything works as expected. Hence just
  2927. * wait for one vblank before returning to avoid strange things
  2928. * happening.
  2929. */
  2930. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2931. }
  2932. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2933. {
  2934. struct drm_device *dev = crtc->dev;
  2935. struct drm_i915_private *dev_priv = dev->dev_private;
  2936. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2937. struct intel_encoder *encoder;
  2938. int pipe = intel_crtc->pipe;
  2939. int plane = intel_crtc->plane;
  2940. u32 reg, temp;
  2941. if (!intel_crtc->active)
  2942. return;
  2943. for_each_encoder_on_crtc(dev, crtc, encoder)
  2944. encoder->disable(encoder);
  2945. intel_crtc_wait_for_pending_flips(crtc);
  2946. drm_vblank_off(dev, pipe);
  2947. intel_crtc_update_cursor(crtc, false);
  2948. intel_disable_plane(dev_priv, plane, pipe);
  2949. if (dev_priv->cfb_plane == plane)
  2950. intel_disable_fbc(dev);
  2951. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2952. intel_disable_pipe(dev_priv, pipe);
  2953. /* Disable PF */
  2954. I915_WRITE(PF_CTL(pipe), 0);
  2955. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2956. for_each_encoder_on_crtc(dev, crtc, encoder)
  2957. if (encoder->post_disable)
  2958. encoder->post_disable(encoder);
  2959. ironlake_fdi_disable(crtc);
  2960. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2961. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2962. if (HAS_PCH_CPT(dev)) {
  2963. /* disable TRANS_DP_CTL */
  2964. reg = TRANS_DP_CTL(pipe);
  2965. temp = I915_READ(reg);
  2966. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2967. temp |= TRANS_DP_PORT_SEL_NONE;
  2968. I915_WRITE(reg, temp);
  2969. /* disable DPLL_SEL */
  2970. temp = I915_READ(PCH_DPLL_SEL);
  2971. switch (pipe) {
  2972. case 0:
  2973. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2974. break;
  2975. case 1:
  2976. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2977. break;
  2978. case 2:
  2979. /* C shares PLL A or B */
  2980. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2981. break;
  2982. default:
  2983. BUG(); /* wtf */
  2984. }
  2985. I915_WRITE(PCH_DPLL_SEL, temp);
  2986. }
  2987. /* disable PCH DPLL */
  2988. intel_disable_pch_pll(intel_crtc);
  2989. ironlake_fdi_pll_disable(intel_crtc);
  2990. intel_crtc->active = false;
  2991. intel_update_watermarks(dev);
  2992. mutex_lock(&dev->struct_mutex);
  2993. intel_update_fbc(dev);
  2994. mutex_unlock(&dev->struct_mutex);
  2995. }
  2996. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2997. {
  2998. struct drm_device *dev = crtc->dev;
  2999. struct drm_i915_private *dev_priv = dev->dev_private;
  3000. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3001. struct intel_encoder *encoder;
  3002. int pipe = intel_crtc->pipe;
  3003. int plane = intel_crtc->plane;
  3004. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3005. if (!intel_crtc->active)
  3006. return;
  3007. for_each_encoder_on_crtc(dev, crtc, encoder)
  3008. encoder->disable(encoder);
  3009. intel_crtc_wait_for_pending_flips(crtc);
  3010. drm_vblank_off(dev, pipe);
  3011. intel_crtc_update_cursor(crtc, false);
  3012. intel_disable_plane(dev_priv, plane, pipe);
  3013. if (dev_priv->cfb_plane == plane)
  3014. intel_disable_fbc(dev);
  3015. if (intel_crtc->config.has_pch_encoder)
  3016. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3017. intel_disable_pipe(dev_priv, pipe);
  3018. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3019. /* XXX: Once we have proper panel fitter state tracking implemented with
  3020. * hardware state read/check support we should switch to only disable
  3021. * the panel fitter when we know it's used. */
  3022. if (intel_display_power_enabled(dev,
  3023. POWER_DOMAIN_PIPE_PANEL_FITTER(pipe))) {
  3024. I915_WRITE(PF_CTL(pipe), 0);
  3025. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3026. }
  3027. intel_ddi_disable_pipe_clock(intel_crtc);
  3028. for_each_encoder_on_crtc(dev, crtc, encoder)
  3029. if (encoder->post_disable)
  3030. encoder->post_disable(encoder);
  3031. if (intel_crtc->config.has_pch_encoder) {
  3032. lpt_disable_pch_transcoder(dev_priv);
  3033. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3034. intel_ddi_fdi_disable(crtc);
  3035. }
  3036. intel_crtc->active = false;
  3037. intel_update_watermarks(dev);
  3038. mutex_lock(&dev->struct_mutex);
  3039. intel_update_fbc(dev);
  3040. mutex_unlock(&dev->struct_mutex);
  3041. }
  3042. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3043. {
  3044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3045. intel_put_pch_pll(intel_crtc);
  3046. }
  3047. static void haswell_crtc_off(struct drm_crtc *crtc)
  3048. {
  3049. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3050. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3051. * start using it. */
  3052. intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  3053. intel_ddi_put_crtc_pll(crtc);
  3054. }
  3055. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3056. {
  3057. if (!enable && intel_crtc->overlay) {
  3058. struct drm_device *dev = intel_crtc->base.dev;
  3059. struct drm_i915_private *dev_priv = dev->dev_private;
  3060. mutex_lock(&dev->struct_mutex);
  3061. dev_priv->mm.interruptible = false;
  3062. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3063. dev_priv->mm.interruptible = true;
  3064. mutex_unlock(&dev->struct_mutex);
  3065. }
  3066. /* Let userspace switch the overlay on again. In most cases userspace
  3067. * has to recompute where to put it anyway.
  3068. */
  3069. }
  3070. /**
  3071. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3072. * cursor plane briefly if not already running after enabling the display
  3073. * plane.
  3074. * This workaround avoids occasional blank screens when self refresh is
  3075. * enabled.
  3076. */
  3077. static void
  3078. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3079. {
  3080. u32 cntl = I915_READ(CURCNTR(pipe));
  3081. if ((cntl & CURSOR_MODE) == 0) {
  3082. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3083. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3084. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3085. intel_wait_for_vblank(dev_priv->dev, pipe);
  3086. I915_WRITE(CURCNTR(pipe), cntl);
  3087. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3088. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3089. }
  3090. }
  3091. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3092. {
  3093. struct drm_device *dev = crtc->base.dev;
  3094. struct drm_i915_private *dev_priv = dev->dev_private;
  3095. struct intel_crtc_config *pipe_config = &crtc->config;
  3096. if (!(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3097. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)))
  3098. return;
  3099. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3100. assert_pipe_disabled(dev_priv, crtc->pipe);
  3101. /*
  3102. * Enable automatic panel scaling so that non-native modes
  3103. * fill the screen. The panel fitter should only be
  3104. * adjusted whilst the pipe is disabled, according to
  3105. * register description and PRM.
  3106. */
  3107. DRM_DEBUG_KMS("applying panel-fitter: %x, %x\n",
  3108. pipe_config->gmch_pfit.control,
  3109. pipe_config->gmch_pfit.pgm_ratios);
  3110. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3111. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3112. /* Border color in case we don't scale up to the full screen. Black by
  3113. * default, change to something else for debugging. */
  3114. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3115. }
  3116. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3117. {
  3118. struct drm_device *dev = crtc->dev;
  3119. struct drm_i915_private *dev_priv = dev->dev_private;
  3120. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3121. struct intel_encoder *encoder;
  3122. int pipe = intel_crtc->pipe;
  3123. int plane = intel_crtc->plane;
  3124. WARN_ON(!crtc->enabled);
  3125. if (intel_crtc->active)
  3126. return;
  3127. intel_crtc->active = true;
  3128. intel_update_watermarks(dev);
  3129. mutex_lock(&dev_priv->dpio_lock);
  3130. for_each_encoder_on_crtc(dev, crtc, encoder)
  3131. if (encoder->pre_pll_enable)
  3132. encoder->pre_pll_enable(encoder);
  3133. intel_enable_pll(dev_priv, pipe);
  3134. for_each_encoder_on_crtc(dev, crtc, encoder)
  3135. if (encoder->pre_enable)
  3136. encoder->pre_enable(encoder);
  3137. /* VLV wants encoder enabling _before_ the pipe is up. */
  3138. for_each_encoder_on_crtc(dev, crtc, encoder)
  3139. encoder->enable(encoder);
  3140. /* Enable panel fitting for eDP */
  3141. i9xx_pfit_enable(intel_crtc);
  3142. intel_enable_pipe(dev_priv, pipe, false);
  3143. intel_enable_plane(dev_priv, plane, pipe);
  3144. intel_crtc_load_lut(crtc);
  3145. intel_update_fbc(dev);
  3146. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3147. intel_crtc_dpms_overlay(intel_crtc, true);
  3148. intel_crtc_update_cursor(crtc, true);
  3149. mutex_unlock(&dev_priv->dpio_lock);
  3150. }
  3151. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3152. {
  3153. struct drm_device *dev = crtc->dev;
  3154. struct drm_i915_private *dev_priv = dev->dev_private;
  3155. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3156. struct intel_encoder *encoder;
  3157. int pipe = intel_crtc->pipe;
  3158. int plane = intel_crtc->plane;
  3159. WARN_ON(!crtc->enabled);
  3160. if (intel_crtc->active)
  3161. return;
  3162. intel_crtc->active = true;
  3163. intel_update_watermarks(dev);
  3164. intel_enable_pll(dev_priv, pipe);
  3165. for_each_encoder_on_crtc(dev, crtc, encoder)
  3166. if (encoder->pre_enable)
  3167. encoder->pre_enable(encoder);
  3168. /* Enable panel fitting for LVDS */
  3169. i9xx_pfit_enable(intel_crtc);
  3170. intel_enable_pipe(dev_priv, pipe, false);
  3171. intel_enable_plane(dev_priv, plane, pipe);
  3172. if (IS_G4X(dev))
  3173. g4x_fixup_plane(dev_priv, pipe);
  3174. intel_crtc_load_lut(crtc);
  3175. intel_update_fbc(dev);
  3176. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3177. intel_crtc_dpms_overlay(intel_crtc, true);
  3178. intel_crtc_update_cursor(crtc, true);
  3179. for_each_encoder_on_crtc(dev, crtc, encoder)
  3180. encoder->enable(encoder);
  3181. }
  3182. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3183. {
  3184. struct drm_device *dev = crtc->base.dev;
  3185. struct drm_i915_private *dev_priv = dev->dev_private;
  3186. enum pipe pipe;
  3187. uint32_t pctl = I915_READ(PFIT_CONTROL);
  3188. assert_pipe_disabled(dev_priv, crtc->pipe);
  3189. if (INTEL_INFO(dev)->gen >= 4)
  3190. pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
  3191. else
  3192. pipe = PIPE_B;
  3193. if (pipe == crtc->pipe) {
  3194. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
  3195. I915_WRITE(PFIT_CONTROL, 0);
  3196. }
  3197. }
  3198. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3199. {
  3200. struct drm_device *dev = crtc->dev;
  3201. struct drm_i915_private *dev_priv = dev->dev_private;
  3202. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3203. struct intel_encoder *encoder;
  3204. int pipe = intel_crtc->pipe;
  3205. int plane = intel_crtc->plane;
  3206. if (!intel_crtc->active)
  3207. return;
  3208. for_each_encoder_on_crtc(dev, crtc, encoder)
  3209. encoder->disable(encoder);
  3210. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3211. intel_crtc_wait_for_pending_flips(crtc);
  3212. drm_vblank_off(dev, pipe);
  3213. intel_crtc_dpms_overlay(intel_crtc, false);
  3214. intel_crtc_update_cursor(crtc, false);
  3215. if (dev_priv->cfb_plane == plane)
  3216. intel_disable_fbc(dev);
  3217. intel_disable_plane(dev_priv, plane, pipe);
  3218. intel_disable_pipe(dev_priv, pipe);
  3219. i9xx_pfit_disable(intel_crtc);
  3220. for_each_encoder_on_crtc(dev, crtc, encoder)
  3221. if (encoder->post_disable)
  3222. encoder->post_disable(encoder);
  3223. intel_disable_pll(dev_priv, pipe);
  3224. intel_crtc->active = false;
  3225. intel_update_fbc(dev);
  3226. intel_update_watermarks(dev);
  3227. }
  3228. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3229. {
  3230. }
  3231. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3232. bool enabled)
  3233. {
  3234. struct drm_device *dev = crtc->dev;
  3235. struct drm_i915_master_private *master_priv;
  3236. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3237. int pipe = intel_crtc->pipe;
  3238. if (!dev->primary->master)
  3239. return;
  3240. master_priv = dev->primary->master->driver_priv;
  3241. if (!master_priv->sarea_priv)
  3242. return;
  3243. switch (pipe) {
  3244. case 0:
  3245. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3246. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3247. break;
  3248. case 1:
  3249. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3250. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3251. break;
  3252. default:
  3253. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3254. break;
  3255. }
  3256. }
  3257. /**
  3258. * Sets the power management mode of the pipe and plane.
  3259. */
  3260. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3261. {
  3262. struct drm_device *dev = crtc->dev;
  3263. struct drm_i915_private *dev_priv = dev->dev_private;
  3264. struct intel_encoder *intel_encoder;
  3265. bool enable = false;
  3266. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3267. enable |= intel_encoder->connectors_active;
  3268. if (enable)
  3269. dev_priv->display.crtc_enable(crtc);
  3270. else
  3271. dev_priv->display.crtc_disable(crtc);
  3272. intel_crtc_update_sarea(crtc, enable);
  3273. }
  3274. static void intel_crtc_disable(struct drm_crtc *crtc)
  3275. {
  3276. struct drm_device *dev = crtc->dev;
  3277. struct drm_connector *connector;
  3278. struct drm_i915_private *dev_priv = dev->dev_private;
  3279. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3280. /* crtc should still be enabled when we disable it. */
  3281. WARN_ON(!crtc->enabled);
  3282. dev_priv->display.crtc_disable(crtc);
  3283. intel_crtc->eld_vld = false;
  3284. intel_crtc_update_sarea(crtc, false);
  3285. dev_priv->display.off(crtc);
  3286. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3287. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3288. if (crtc->fb) {
  3289. mutex_lock(&dev->struct_mutex);
  3290. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3291. mutex_unlock(&dev->struct_mutex);
  3292. crtc->fb = NULL;
  3293. }
  3294. /* Update computed state. */
  3295. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3296. if (!connector->encoder || !connector->encoder->crtc)
  3297. continue;
  3298. if (connector->encoder->crtc != crtc)
  3299. continue;
  3300. connector->dpms = DRM_MODE_DPMS_OFF;
  3301. to_intel_encoder(connector->encoder)->connectors_active = false;
  3302. }
  3303. }
  3304. void intel_modeset_disable(struct drm_device *dev)
  3305. {
  3306. struct drm_crtc *crtc;
  3307. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3308. if (crtc->enabled)
  3309. intel_crtc_disable(crtc);
  3310. }
  3311. }
  3312. void intel_encoder_destroy(struct drm_encoder *encoder)
  3313. {
  3314. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3315. drm_encoder_cleanup(encoder);
  3316. kfree(intel_encoder);
  3317. }
  3318. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3319. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3320. * state of the entire output pipe. */
  3321. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3322. {
  3323. if (mode == DRM_MODE_DPMS_ON) {
  3324. encoder->connectors_active = true;
  3325. intel_crtc_update_dpms(encoder->base.crtc);
  3326. } else {
  3327. encoder->connectors_active = false;
  3328. intel_crtc_update_dpms(encoder->base.crtc);
  3329. }
  3330. }
  3331. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3332. * internal consistency). */
  3333. static void intel_connector_check_state(struct intel_connector *connector)
  3334. {
  3335. if (connector->get_hw_state(connector)) {
  3336. struct intel_encoder *encoder = connector->encoder;
  3337. struct drm_crtc *crtc;
  3338. bool encoder_enabled;
  3339. enum pipe pipe;
  3340. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3341. connector->base.base.id,
  3342. drm_get_connector_name(&connector->base));
  3343. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3344. "wrong connector dpms state\n");
  3345. WARN(connector->base.encoder != &encoder->base,
  3346. "active connector not linked to encoder\n");
  3347. WARN(!encoder->connectors_active,
  3348. "encoder->connectors_active not set\n");
  3349. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3350. WARN(!encoder_enabled, "encoder not enabled\n");
  3351. if (WARN_ON(!encoder->base.crtc))
  3352. return;
  3353. crtc = encoder->base.crtc;
  3354. WARN(!crtc->enabled, "crtc not enabled\n");
  3355. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3356. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3357. "encoder active on the wrong pipe\n");
  3358. }
  3359. }
  3360. /* Even simpler default implementation, if there's really no special case to
  3361. * consider. */
  3362. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3363. {
  3364. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3365. /* All the simple cases only support two dpms states. */
  3366. if (mode != DRM_MODE_DPMS_ON)
  3367. mode = DRM_MODE_DPMS_OFF;
  3368. if (mode == connector->dpms)
  3369. return;
  3370. connector->dpms = mode;
  3371. /* Only need to change hw state when actually enabled */
  3372. if (encoder->base.crtc)
  3373. intel_encoder_dpms(encoder, mode);
  3374. else
  3375. WARN_ON(encoder->connectors_active != false);
  3376. intel_modeset_check_state(connector->dev);
  3377. }
  3378. /* Simple connector->get_hw_state implementation for encoders that support only
  3379. * one connector and no cloning and hence the encoder state determines the state
  3380. * of the connector. */
  3381. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3382. {
  3383. enum pipe pipe = 0;
  3384. struct intel_encoder *encoder = connector->encoder;
  3385. return encoder->get_hw_state(encoder, &pipe);
  3386. }
  3387. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3388. struct intel_crtc_config *pipe_config)
  3389. {
  3390. struct drm_i915_private *dev_priv = dev->dev_private;
  3391. struct intel_crtc *pipe_B_crtc =
  3392. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3393. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3394. pipe_name(pipe), pipe_config->fdi_lanes);
  3395. if (pipe_config->fdi_lanes > 4) {
  3396. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3397. pipe_name(pipe), pipe_config->fdi_lanes);
  3398. return false;
  3399. }
  3400. if (IS_HASWELL(dev)) {
  3401. if (pipe_config->fdi_lanes > 2) {
  3402. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3403. pipe_config->fdi_lanes);
  3404. return false;
  3405. } else {
  3406. return true;
  3407. }
  3408. }
  3409. if (INTEL_INFO(dev)->num_pipes == 2)
  3410. return true;
  3411. /* Ivybridge 3 pipe is really complicated */
  3412. switch (pipe) {
  3413. case PIPE_A:
  3414. return true;
  3415. case PIPE_B:
  3416. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3417. pipe_config->fdi_lanes > 2) {
  3418. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3419. pipe_name(pipe), pipe_config->fdi_lanes);
  3420. return false;
  3421. }
  3422. return true;
  3423. case PIPE_C:
  3424. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3425. pipe_B_crtc->config.fdi_lanes <= 2) {
  3426. if (pipe_config->fdi_lanes > 2) {
  3427. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3428. pipe_name(pipe), pipe_config->fdi_lanes);
  3429. return false;
  3430. }
  3431. } else {
  3432. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3433. return false;
  3434. }
  3435. return true;
  3436. default:
  3437. BUG();
  3438. }
  3439. }
  3440. #define RETRY 1
  3441. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3442. struct intel_crtc_config *pipe_config)
  3443. {
  3444. struct drm_device *dev = intel_crtc->base.dev;
  3445. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3446. int target_clock, lane, link_bw;
  3447. bool setup_ok, needs_recompute = false;
  3448. retry:
  3449. /* FDI is a binary signal running at ~2.7GHz, encoding
  3450. * each output octet as 10 bits. The actual frequency
  3451. * is stored as a divider into a 100MHz clock, and the
  3452. * mode pixel clock is stored in units of 1KHz.
  3453. * Hence the bw of each lane in terms of the mode signal
  3454. * is:
  3455. */
  3456. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3457. if (pipe_config->pixel_target_clock)
  3458. target_clock = pipe_config->pixel_target_clock;
  3459. else
  3460. target_clock = adjusted_mode->clock;
  3461. lane = ironlake_get_lanes_required(target_clock, link_bw,
  3462. pipe_config->pipe_bpp);
  3463. pipe_config->fdi_lanes = lane;
  3464. if (pipe_config->pixel_multiplier > 1)
  3465. link_bw *= pipe_config->pixel_multiplier;
  3466. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
  3467. link_bw, &pipe_config->fdi_m_n);
  3468. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3469. intel_crtc->pipe, pipe_config);
  3470. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3471. pipe_config->pipe_bpp -= 2*3;
  3472. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3473. pipe_config->pipe_bpp);
  3474. needs_recompute = true;
  3475. pipe_config->bw_constrained = true;
  3476. goto retry;
  3477. }
  3478. if (needs_recompute)
  3479. return RETRY;
  3480. return setup_ok ? 0 : -EINVAL;
  3481. }
  3482. static int intel_crtc_compute_config(struct drm_crtc *crtc,
  3483. struct intel_crtc_config *pipe_config)
  3484. {
  3485. struct drm_device *dev = crtc->dev;
  3486. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3487. if (HAS_PCH_SPLIT(dev)) {
  3488. /* FDI link clock is fixed at 2.7G */
  3489. if (pipe_config->requested_mode.clock * 3
  3490. > IRONLAKE_FDI_FREQ * 4)
  3491. return -EINVAL;
  3492. }
  3493. /* All interlaced capable intel hw wants timings in frames. Note though
  3494. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3495. * timings, so we need to be careful not to clobber these.*/
  3496. if (!pipe_config->timings_set)
  3497. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3498. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3499. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3500. */
  3501. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3502. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3503. return -EINVAL;
  3504. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3505. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3506. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3507. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3508. * for lvds. */
  3509. pipe_config->pipe_bpp = 8*3;
  3510. }
  3511. if (pipe_config->has_pch_encoder)
  3512. return ironlake_fdi_compute_config(to_intel_crtc(crtc), pipe_config);
  3513. return 0;
  3514. }
  3515. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3516. {
  3517. return 400000; /* FIXME */
  3518. }
  3519. static int i945_get_display_clock_speed(struct drm_device *dev)
  3520. {
  3521. return 400000;
  3522. }
  3523. static int i915_get_display_clock_speed(struct drm_device *dev)
  3524. {
  3525. return 333000;
  3526. }
  3527. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3528. {
  3529. return 200000;
  3530. }
  3531. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3532. {
  3533. u16 gcfgc = 0;
  3534. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3535. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3536. return 133000;
  3537. else {
  3538. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3539. case GC_DISPLAY_CLOCK_333_MHZ:
  3540. return 333000;
  3541. default:
  3542. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3543. return 190000;
  3544. }
  3545. }
  3546. }
  3547. static int i865_get_display_clock_speed(struct drm_device *dev)
  3548. {
  3549. return 266000;
  3550. }
  3551. static int i855_get_display_clock_speed(struct drm_device *dev)
  3552. {
  3553. u16 hpllcc = 0;
  3554. /* Assume that the hardware is in the high speed state. This
  3555. * should be the default.
  3556. */
  3557. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3558. case GC_CLOCK_133_200:
  3559. case GC_CLOCK_100_200:
  3560. return 200000;
  3561. case GC_CLOCK_166_250:
  3562. return 250000;
  3563. case GC_CLOCK_100_133:
  3564. return 133000;
  3565. }
  3566. /* Shouldn't happen */
  3567. return 0;
  3568. }
  3569. static int i830_get_display_clock_speed(struct drm_device *dev)
  3570. {
  3571. return 133000;
  3572. }
  3573. static void
  3574. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  3575. {
  3576. while (*num > 0xffffff || *den > 0xffffff) {
  3577. *num >>= 1;
  3578. *den >>= 1;
  3579. }
  3580. }
  3581. void
  3582. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3583. int pixel_clock, int link_clock,
  3584. struct intel_link_m_n *m_n)
  3585. {
  3586. m_n->tu = 64;
  3587. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3588. m_n->gmch_n = link_clock * nlanes * 8;
  3589. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3590. m_n->link_m = pixel_clock;
  3591. m_n->link_n = link_clock;
  3592. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3593. }
  3594. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3595. {
  3596. if (i915_panel_use_ssc >= 0)
  3597. return i915_panel_use_ssc != 0;
  3598. return dev_priv->lvds_use_ssc
  3599. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3600. }
  3601. static int vlv_get_refclk(struct drm_crtc *crtc)
  3602. {
  3603. struct drm_device *dev = crtc->dev;
  3604. struct drm_i915_private *dev_priv = dev->dev_private;
  3605. int refclk = 27000; /* for DP & HDMI */
  3606. return 100000; /* only one validated so far */
  3607. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3608. refclk = 96000;
  3609. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3610. if (intel_panel_use_ssc(dev_priv))
  3611. refclk = 100000;
  3612. else
  3613. refclk = 96000;
  3614. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3615. refclk = 100000;
  3616. }
  3617. return refclk;
  3618. }
  3619. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3620. {
  3621. struct drm_device *dev = crtc->dev;
  3622. struct drm_i915_private *dev_priv = dev->dev_private;
  3623. int refclk;
  3624. if (IS_VALLEYVIEW(dev)) {
  3625. refclk = vlv_get_refclk(crtc);
  3626. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3627. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3628. refclk = dev_priv->lvds_ssc_freq * 1000;
  3629. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3630. refclk / 1000);
  3631. } else if (!IS_GEN2(dev)) {
  3632. refclk = 96000;
  3633. } else {
  3634. refclk = 48000;
  3635. }
  3636. return refclk;
  3637. }
  3638. static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
  3639. {
  3640. unsigned dotclock = crtc->config.adjusted_mode.clock;
  3641. struct dpll *clock = &crtc->config.dpll;
  3642. /* SDVO TV has fixed PLL values depend on its clock range,
  3643. this mirrors vbios setting. */
  3644. if (dotclock >= 100000 && dotclock < 140500) {
  3645. clock->p1 = 2;
  3646. clock->p2 = 10;
  3647. clock->n = 3;
  3648. clock->m1 = 16;
  3649. clock->m2 = 8;
  3650. } else if (dotclock >= 140500 && dotclock <= 200000) {
  3651. clock->p1 = 1;
  3652. clock->p2 = 10;
  3653. clock->n = 6;
  3654. clock->m1 = 12;
  3655. clock->m2 = 8;
  3656. }
  3657. crtc->config.clock_set = true;
  3658. }
  3659. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3660. {
  3661. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3662. }
  3663. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3664. {
  3665. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3666. }
  3667. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3668. intel_clock_t *reduced_clock)
  3669. {
  3670. struct drm_device *dev = crtc->base.dev;
  3671. struct drm_i915_private *dev_priv = dev->dev_private;
  3672. int pipe = crtc->pipe;
  3673. u32 fp, fp2 = 0;
  3674. if (IS_PINEVIEW(dev)) {
  3675. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3676. if (reduced_clock)
  3677. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3678. } else {
  3679. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3680. if (reduced_clock)
  3681. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3682. }
  3683. I915_WRITE(FP0(pipe), fp);
  3684. crtc->lowfreq_avail = false;
  3685. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3686. reduced_clock && i915_powersave) {
  3687. I915_WRITE(FP1(pipe), fp2);
  3688. crtc->lowfreq_avail = true;
  3689. } else {
  3690. I915_WRITE(FP1(pipe), fp);
  3691. }
  3692. }
  3693. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3694. {
  3695. u32 reg_val;
  3696. /*
  3697. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3698. * and set it to a reasonable value instead.
  3699. */
  3700. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3701. reg_val &= 0xffffff00;
  3702. reg_val |= 0x00000030;
  3703. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3704. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3705. reg_val &= 0x8cffffff;
  3706. reg_val = 0x8c000000;
  3707. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3708. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3709. reg_val &= 0xffffff00;
  3710. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3711. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3712. reg_val &= 0x00ffffff;
  3713. reg_val |= 0xb0000000;
  3714. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3715. }
  3716. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3717. struct intel_link_m_n *m_n)
  3718. {
  3719. struct drm_device *dev = crtc->base.dev;
  3720. struct drm_i915_private *dev_priv = dev->dev_private;
  3721. int pipe = crtc->pipe;
  3722. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3723. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3724. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3725. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3726. }
  3727. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3728. struct intel_link_m_n *m_n)
  3729. {
  3730. struct drm_device *dev = crtc->base.dev;
  3731. struct drm_i915_private *dev_priv = dev->dev_private;
  3732. int pipe = crtc->pipe;
  3733. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3734. if (INTEL_INFO(dev)->gen >= 5) {
  3735. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3736. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3737. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3738. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3739. } else {
  3740. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3741. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3742. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3743. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3744. }
  3745. }
  3746. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3747. {
  3748. if (crtc->config.has_pch_encoder)
  3749. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3750. else
  3751. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3752. }
  3753. static void vlv_update_pll(struct intel_crtc *crtc)
  3754. {
  3755. struct drm_device *dev = crtc->base.dev;
  3756. struct drm_i915_private *dev_priv = dev->dev_private;
  3757. struct drm_display_mode *adjusted_mode =
  3758. &crtc->config.adjusted_mode;
  3759. struct intel_encoder *encoder;
  3760. int pipe = crtc->pipe;
  3761. u32 dpll, mdiv;
  3762. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3763. bool is_hdmi;
  3764. u32 coreclk, reg_val, dpll_md;
  3765. mutex_lock(&dev_priv->dpio_lock);
  3766. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3767. bestn = crtc->config.dpll.n;
  3768. bestm1 = crtc->config.dpll.m1;
  3769. bestm2 = crtc->config.dpll.m2;
  3770. bestp1 = crtc->config.dpll.p1;
  3771. bestp2 = crtc->config.dpll.p2;
  3772. /* See eDP HDMI DPIO driver vbios notes doc */
  3773. /* PLL B needs special handling */
  3774. if (pipe)
  3775. vlv_pllb_recal_opamp(dev_priv);
  3776. /* Set up Tx target for periodic Rcomp update */
  3777. intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3778. /* Disable target IRef on PLL */
  3779. reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3780. reg_val &= 0x00ffffff;
  3781. intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3782. /* Disable fast lock */
  3783. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3784. /* Set idtafcrecal before PLL is enabled */
  3785. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3786. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3787. mdiv |= ((bestn << DPIO_N_SHIFT));
  3788. mdiv |= (1 << DPIO_K_SHIFT);
  3789. /*
  3790. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3791. * but we don't support that).
  3792. * Note: don't use the DAC post divider as it seems unstable.
  3793. */
  3794. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3795. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3796. mdiv |= DPIO_ENABLE_CALIBRATION;
  3797. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3798. /* Set HBR and RBR LPF coefficients */
  3799. if (adjusted_mode->clock == 162000 ||
  3800. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3801. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3802. 0x005f0021);
  3803. else
  3804. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3805. 0x00d0000f);
  3806. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3807. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3808. /* Use SSC source */
  3809. if (!pipe)
  3810. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3811. 0x0df40000);
  3812. else
  3813. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3814. 0x0df70000);
  3815. } else { /* HDMI or VGA */
  3816. /* Use bend source */
  3817. if (!pipe)
  3818. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3819. 0x0df70000);
  3820. else
  3821. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3822. 0x0df40000);
  3823. }
  3824. coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3825. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3826. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3827. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3828. coreclk |= 0x01000000;
  3829. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3830. intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3831. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3832. if (encoder->pre_pll_enable)
  3833. encoder->pre_pll_enable(encoder);
  3834. /* Enable DPIO clock input */
  3835. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3836. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3837. if (pipe)
  3838. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3839. dpll |= DPLL_VCO_ENABLE;
  3840. I915_WRITE(DPLL(pipe), dpll);
  3841. POSTING_READ(DPLL(pipe));
  3842. udelay(150);
  3843. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3844. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3845. dpll_md = 0;
  3846. if (crtc->config.pixel_multiplier > 1) {
  3847. dpll_md = (crtc->config.pixel_multiplier - 1)
  3848. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3849. }
  3850. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3851. POSTING_READ(DPLL_MD(pipe));
  3852. if (crtc->config.has_dp_encoder)
  3853. intel_dp_set_m_n(crtc);
  3854. mutex_unlock(&dev_priv->dpio_lock);
  3855. }
  3856. static void i9xx_update_pll(struct intel_crtc *crtc,
  3857. intel_clock_t *reduced_clock,
  3858. int num_connectors)
  3859. {
  3860. struct drm_device *dev = crtc->base.dev;
  3861. struct drm_i915_private *dev_priv = dev->dev_private;
  3862. struct intel_encoder *encoder;
  3863. int pipe = crtc->pipe;
  3864. u32 dpll;
  3865. bool is_sdvo;
  3866. struct dpll *clock = &crtc->config.dpll;
  3867. i9xx_update_pll_dividers(crtc, reduced_clock);
  3868. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3869. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3870. dpll = DPLL_VGA_MODE_DIS;
  3871. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3872. dpll |= DPLLB_MODE_LVDS;
  3873. else
  3874. dpll |= DPLLB_MODE_DAC_SERIAL;
  3875. if ((crtc->config.pixel_multiplier > 1) &&
  3876. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3877. dpll |= (crtc->config.pixel_multiplier - 1)
  3878. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3879. }
  3880. if (is_sdvo)
  3881. dpll |= DPLL_DVO_HIGH_SPEED;
  3882. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3883. dpll |= DPLL_DVO_HIGH_SPEED;
  3884. /* compute bitmask from p1 value */
  3885. if (IS_PINEVIEW(dev))
  3886. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3887. else {
  3888. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3889. if (IS_G4X(dev) && reduced_clock)
  3890. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3891. }
  3892. switch (clock->p2) {
  3893. case 5:
  3894. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3895. break;
  3896. case 7:
  3897. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3898. break;
  3899. case 10:
  3900. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3901. break;
  3902. case 14:
  3903. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3904. break;
  3905. }
  3906. if (INTEL_INFO(dev)->gen >= 4)
  3907. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3908. if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3909. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3910. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3911. /* XXX: just matching BIOS for now */
  3912. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3913. dpll |= 3;
  3914. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3915. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3916. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3917. else
  3918. dpll |= PLL_REF_INPUT_DREFCLK;
  3919. dpll |= DPLL_VCO_ENABLE;
  3920. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3921. POSTING_READ(DPLL(pipe));
  3922. udelay(150);
  3923. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3924. if (encoder->pre_pll_enable)
  3925. encoder->pre_pll_enable(encoder);
  3926. if (crtc->config.has_dp_encoder)
  3927. intel_dp_set_m_n(crtc);
  3928. I915_WRITE(DPLL(pipe), dpll);
  3929. /* Wait for the clocks to stabilize. */
  3930. POSTING_READ(DPLL(pipe));
  3931. udelay(150);
  3932. if (INTEL_INFO(dev)->gen >= 4) {
  3933. u32 dpll_md = 0;
  3934. if (crtc->config.pixel_multiplier > 1) {
  3935. dpll_md = (crtc->config.pixel_multiplier - 1)
  3936. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3937. }
  3938. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3939. } else {
  3940. /* The pixel multiplier can only be updated once the
  3941. * DPLL is enabled and the clocks are stable.
  3942. *
  3943. * So write it again.
  3944. */
  3945. I915_WRITE(DPLL(pipe), dpll);
  3946. }
  3947. }
  3948. static void i8xx_update_pll(struct intel_crtc *crtc,
  3949. struct drm_display_mode *adjusted_mode,
  3950. intel_clock_t *reduced_clock,
  3951. int num_connectors)
  3952. {
  3953. struct drm_device *dev = crtc->base.dev;
  3954. struct drm_i915_private *dev_priv = dev->dev_private;
  3955. struct intel_encoder *encoder;
  3956. int pipe = crtc->pipe;
  3957. u32 dpll;
  3958. struct dpll *clock = &crtc->config.dpll;
  3959. i9xx_update_pll_dividers(crtc, reduced_clock);
  3960. dpll = DPLL_VGA_MODE_DIS;
  3961. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3962. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3963. } else {
  3964. if (clock->p1 == 2)
  3965. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3966. else
  3967. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3968. if (clock->p2 == 4)
  3969. dpll |= PLL_P2_DIVIDE_BY_4;
  3970. }
  3971. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3972. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3973. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3974. else
  3975. dpll |= PLL_REF_INPUT_DREFCLK;
  3976. dpll |= DPLL_VCO_ENABLE;
  3977. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3978. POSTING_READ(DPLL(pipe));
  3979. udelay(150);
  3980. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3981. if (encoder->pre_pll_enable)
  3982. encoder->pre_pll_enable(encoder);
  3983. I915_WRITE(DPLL(pipe), dpll);
  3984. /* Wait for the clocks to stabilize. */
  3985. POSTING_READ(DPLL(pipe));
  3986. udelay(150);
  3987. /* The pixel multiplier can only be updated once the
  3988. * DPLL is enabled and the clocks are stable.
  3989. *
  3990. * So write it again.
  3991. */
  3992. I915_WRITE(DPLL(pipe), dpll);
  3993. }
  3994. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3995. struct drm_display_mode *mode,
  3996. struct drm_display_mode *adjusted_mode)
  3997. {
  3998. struct drm_device *dev = intel_crtc->base.dev;
  3999. struct drm_i915_private *dev_priv = dev->dev_private;
  4000. enum pipe pipe = intel_crtc->pipe;
  4001. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4002. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  4003. /* We need to be careful not to changed the adjusted mode, for otherwise
  4004. * the hw state checker will get angry at the mismatch. */
  4005. crtc_vtotal = adjusted_mode->crtc_vtotal;
  4006. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  4007. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4008. /* the chip adds 2 halflines automatically */
  4009. crtc_vtotal -= 1;
  4010. crtc_vblank_end -= 1;
  4011. vsyncshift = adjusted_mode->crtc_hsync_start
  4012. - adjusted_mode->crtc_htotal / 2;
  4013. } else {
  4014. vsyncshift = 0;
  4015. }
  4016. if (INTEL_INFO(dev)->gen > 3)
  4017. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  4018. I915_WRITE(HTOTAL(cpu_transcoder),
  4019. (adjusted_mode->crtc_hdisplay - 1) |
  4020. ((adjusted_mode->crtc_htotal - 1) << 16));
  4021. I915_WRITE(HBLANK(cpu_transcoder),
  4022. (adjusted_mode->crtc_hblank_start - 1) |
  4023. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4024. I915_WRITE(HSYNC(cpu_transcoder),
  4025. (adjusted_mode->crtc_hsync_start - 1) |
  4026. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4027. I915_WRITE(VTOTAL(cpu_transcoder),
  4028. (adjusted_mode->crtc_vdisplay - 1) |
  4029. ((crtc_vtotal - 1) << 16));
  4030. I915_WRITE(VBLANK(cpu_transcoder),
  4031. (adjusted_mode->crtc_vblank_start - 1) |
  4032. ((crtc_vblank_end - 1) << 16));
  4033. I915_WRITE(VSYNC(cpu_transcoder),
  4034. (adjusted_mode->crtc_vsync_start - 1) |
  4035. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4036. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4037. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4038. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4039. * bits. */
  4040. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4041. (pipe == PIPE_B || pipe == PIPE_C))
  4042. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4043. /* pipesrc controls the size that is scaled from, which should
  4044. * always be the user's requested size.
  4045. */
  4046. I915_WRITE(PIPESRC(pipe),
  4047. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4048. }
  4049. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4050. struct intel_crtc_config *pipe_config)
  4051. {
  4052. struct drm_device *dev = crtc->base.dev;
  4053. struct drm_i915_private *dev_priv = dev->dev_private;
  4054. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4055. uint32_t tmp;
  4056. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4057. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4058. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4059. tmp = I915_READ(HBLANK(cpu_transcoder));
  4060. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4061. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4062. tmp = I915_READ(HSYNC(cpu_transcoder));
  4063. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4064. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4065. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4066. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4067. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4068. tmp = I915_READ(VBLANK(cpu_transcoder));
  4069. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4070. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4071. tmp = I915_READ(VSYNC(cpu_transcoder));
  4072. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4073. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4074. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4075. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4076. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4077. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4078. }
  4079. tmp = I915_READ(PIPESRC(crtc->pipe));
  4080. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4081. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4082. }
  4083. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4084. {
  4085. struct drm_device *dev = intel_crtc->base.dev;
  4086. struct drm_i915_private *dev_priv = dev->dev_private;
  4087. uint32_t pipeconf;
  4088. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4089. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4090. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4091. * core speed.
  4092. *
  4093. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4094. * pipe == 0 check?
  4095. */
  4096. if (intel_crtc->config.requested_mode.clock >
  4097. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4098. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4099. else
  4100. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4101. }
  4102. /* only g4x and later have fancy bpc/dither controls */
  4103. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4104. pipeconf &= ~(PIPECONF_BPC_MASK |
  4105. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4106. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4107. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4108. pipeconf |= PIPECONF_DITHER_EN |
  4109. PIPECONF_DITHER_TYPE_SP;
  4110. switch (intel_crtc->config.pipe_bpp) {
  4111. case 18:
  4112. pipeconf |= PIPECONF_6BPC;
  4113. break;
  4114. case 24:
  4115. pipeconf |= PIPECONF_8BPC;
  4116. break;
  4117. case 30:
  4118. pipeconf |= PIPECONF_10BPC;
  4119. break;
  4120. default:
  4121. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4122. BUG();
  4123. }
  4124. }
  4125. if (HAS_PIPE_CXSR(dev)) {
  4126. if (intel_crtc->lowfreq_avail) {
  4127. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4128. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4129. } else {
  4130. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4131. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4132. }
  4133. }
  4134. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4135. if (!IS_GEN2(dev) &&
  4136. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4137. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4138. else
  4139. pipeconf |= PIPECONF_PROGRESSIVE;
  4140. if (IS_VALLEYVIEW(dev)) {
  4141. if (intel_crtc->config.limited_color_range)
  4142. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4143. else
  4144. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4145. }
  4146. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4147. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4148. }
  4149. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4150. int x, int y,
  4151. struct drm_framebuffer *fb)
  4152. {
  4153. struct drm_device *dev = crtc->dev;
  4154. struct drm_i915_private *dev_priv = dev->dev_private;
  4155. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4156. struct drm_display_mode *adjusted_mode =
  4157. &intel_crtc->config.adjusted_mode;
  4158. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4159. int pipe = intel_crtc->pipe;
  4160. int plane = intel_crtc->plane;
  4161. int refclk, num_connectors = 0;
  4162. intel_clock_t clock, reduced_clock;
  4163. u32 dspcntr;
  4164. bool ok, has_reduced_clock = false, is_sdvo = false;
  4165. bool is_lvds = false, is_tv = false;
  4166. struct intel_encoder *encoder;
  4167. const intel_limit_t *limit;
  4168. int ret;
  4169. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4170. switch (encoder->type) {
  4171. case INTEL_OUTPUT_LVDS:
  4172. is_lvds = true;
  4173. break;
  4174. case INTEL_OUTPUT_SDVO:
  4175. case INTEL_OUTPUT_HDMI:
  4176. is_sdvo = true;
  4177. if (encoder->needs_tv_clock)
  4178. is_tv = true;
  4179. break;
  4180. case INTEL_OUTPUT_TVOUT:
  4181. is_tv = true;
  4182. break;
  4183. }
  4184. num_connectors++;
  4185. }
  4186. refclk = i9xx_get_refclk(crtc, num_connectors);
  4187. /*
  4188. * Returns a set of divisors for the desired target clock with the given
  4189. * refclk, or FALSE. The returned values represent the clock equation:
  4190. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4191. */
  4192. limit = intel_limit(crtc, refclk);
  4193. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4194. &clock);
  4195. if (!ok) {
  4196. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4197. return -EINVAL;
  4198. }
  4199. /* Ensure that the cursor is valid for the new mode before changing... */
  4200. intel_crtc_update_cursor(crtc, true);
  4201. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4202. /*
  4203. * Ensure we match the reduced clock's P to the target clock.
  4204. * If the clocks don't match, we can't switch the display clock
  4205. * by using the FP0/FP1. In such case we will disable the LVDS
  4206. * downclock feature.
  4207. */
  4208. has_reduced_clock = limit->find_pll(limit, crtc,
  4209. dev_priv->lvds_downclock,
  4210. refclk,
  4211. &clock,
  4212. &reduced_clock);
  4213. }
  4214. /* Compat-code for transition, will disappear. */
  4215. if (!intel_crtc->config.clock_set) {
  4216. intel_crtc->config.dpll.n = clock.n;
  4217. intel_crtc->config.dpll.m1 = clock.m1;
  4218. intel_crtc->config.dpll.m2 = clock.m2;
  4219. intel_crtc->config.dpll.p1 = clock.p1;
  4220. intel_crtc->config.dpll.p2 = clock.p2;
  4221. }
  4222. if (is_sdvo && is_tv)
  4223. i9xx_adjust_sdvo_tv_clock(intel_crtc);
  4224. if (IS_GEN2(dev))
  4225. i8xx_update_pll(intel_crtc, adjusted_mode,
  4226. has_reduced_clock ? &reduced_clock : NULL,
  4227. num_connectors);
  4228. else if (IS_VALLEYVIEW(dev))
  4229. vlv_update_pll(intel_crtc);
  4230. else
  4231. i9xx_update_pll(intel_crtc,
  4232. has_reduced_clock ? &reduced_clock : NULL,
  4233. num_connectors);
  4234. /* Set up the display plane register */
  4235. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4236. if (!IS_VALLEYVIEW(dev)) {
  4237. if (pipe == 0)
  4238. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4239. else
  4240. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4241. }
  4242. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4243. drm_mode_debug_printmodeline(mode);
  4244. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4245. /* pipesrc and dspsize control the size that is scaled from,
  4246. * which should always be the user's requested size.
  4247. */
  4248. I915_WRITE(DSPSIZE(plane),
  4249. ((mode->vdisplay - 1) << 16) |
  4250. (mode->hdisplay - 1));
  4251. I915_WRITE(DSPPOS(plane), 0);
  4252. i9xx_set_pipeconf(intel_crtc);
  4253. I915_WRITE(DSPCNTR(plane), dspcntr);
  4254. POSTING_READ(DSPCNTR(plane));
  4255. ret = intel_pipe_set_base(crtc, x, y, fb);
  4256. intel_update_watermarks(dev);
  4257. return ret;
  4258. }
  4259. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4260. struct intel_crtc_config *pipe_config)
  4261. {
  4262. struct drm_device *dev = crtc->base.dev;
  4263. struct drm_i915_private *dev_priv = dev->dev_private;
  4264. uint32_t tmp;
  4265. tmp = I915_READ(PIPECONF(crtc->pipe));
  4266. if (!(tmp & PIPECONF_ENABLE))
  4267. return false;
  4268. intel_get_pipe_timings(crtc, pipe_config);
  4269. return true;
  4270. }
  4271. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4272. {
  4273. struct drm_i915_private *dev_priv = dev->dev_private;
  4274. struct drm_mode_config *mode_config = &dev->mode_config;
  4275. struct intel_encoder *encoder;
  4276. u32 val, final;
  4277. bool has_lvds = false;
  4278. bool has_cpu_edp = false;
  4279. bool has_pch_edp = false;
  4280. bool has_panel = false;
  4281. bool has_ck505 = false;
  4282. bool can_ssc = false;
  4283. /* We need to take the global config into account */
  4284. list_for_each_entry(encoder, &mode_config->encoder_list,
  4285. base.head) {
  4286. switch (encoder->type) {
  4287. case INTEL_OUTPUT_LVDS:
  4288. has_panel = true;
  4289. has_lvds = true;
  4290. break;
  4291. case INTEL_OUTPUT_EDP:
  4292. has_panel = true;
  4293. if (intel_encoder_is_pch_edp(&encoder->base))
  4294. has_pch_edp = true;
  4295. else
  4296. has_cpu_edp = true;
  4297. break;
  4298. }
  4299. }
  4300. if (HAS_PCH_IBX(dev)) {
  4301. has_ck505 = dev_priv->display_clock_mode;
  4302. can_ssc = has_ck505;
  4303. } else {
  4304. has_ck505 = false;
  4305. can_ssc = true;
  4306. }
  4307. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4308. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4309. has_ck505);
  4310. /* Ironlake: try to setup display ref clock before DPLL
  4311. * enabling. This is only under driver's control after
  4312. * PCH B stepping, previous chipset stepping should be
  4313. * ignoring this setting.
  4314. */
  4315. val = I915_READ(PCH_DREF_CONTROL);
  4316. /* As we must carefully and slowly disable/enable each source in turn,
  4317. * compute the final state we want first and check if we need to
  4318. * make any changes at all.
  4319. */
  4320. final = val;
  4321. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4322. if (has_ck505)
  4323. final |= DREF_NONSPREAD_CK505_ENABLE;
  4324. else
  4325. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4326. final &= ~DREF_SSC_SOURCE_MASK;
  4327. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4328. final &= ~DREF_SSC1_ENABLE;
  4329. if (has_panel) {
  4330. final |= DREF_SSC_SOURCE_ENABLE;
  4331. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4332. final |= DREF_SSC1_ENABLE;
  4333. if (has_cpu_edp) {
  4334. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4335. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4336. else
  4337. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4338. } else
  4339. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4340. } else {
  4341. final |= DREF_SSC_SOURCE_DISABLE;
  4342. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4343. }
  4344. if (final == val)
  4345. return;
  4346. /* Always enable nonspread source */
  4347. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4348. if (has_ck505)
  4349. val |= DREF_NONSPREAD_CK505_ENABLE;
  4350. else
  4351. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4352. if (has_panel) {
  4353. val &= ~DREF_SSC_SOURCE_MASK;
  4354. val |= DREF_SSC_SOURCE_ENABLE;
  4355. /* SSC must be turned on before enabling the CPU output */
  4356. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4357. DRM_DEBUG_KMS("Using SSC on panel\n");
  4358. val |= DREF_SSC1_ENABLE;
  4359. } else
  4360. val &= ~DREF_SSC1_ENABLE;
  4361. /* Get SSC going before enabling the outputs */
  4362. I915_WRITE(PCH_DREF_CONTROL, val);
  4363. POSTING_READ(PCH_DREF_CONTROL);
  4364. udelay(200);
  4365. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4366. /* Enable CPU source on CPU attached eDP */
  4367. if (has_cpu_edp) {
  4368. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4369. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4370. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4371. }
  4372. else
  4373. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4374. } else
  4375. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4376. I915_WRITE(PCH_DREF_CONTROL, val);
  4377. POSTING_READ(PCH_DREF_CONTROL);
  4378. udelay(200);
  4379. } else {
  4380. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4381. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4382. /* Turn off CPU output */
  4383. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4384. I915_WRITE(PCH_DREF_CONTROL, val);
  4385. POSTING_READ(PCH_DREF_CONTROL);
  4386. udelay(200);
  4387. /* Turn off the SSC source */
  4388. val &= ~DREF_SSC_SOURCE_MASK;
  4389. val |= DREF_SSC_SOURCE_DISABLE;
  4390. /* Turn off SSC1 */
  4391. val &= ~DREF_SSC1_ENABLE;
  4392. I915_WRITE(PCH_DREF_CONTROL, val);
  4393. POSTING_READ(PCH_DREF_CONTROL);
  4394. udelay(200);
  4395. }
  4396. BUG_ON(val != final);
  4397. }
  4398. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4399. static void lpt_init_pch_refclk(struct drm_device *dev)
  4400. {
  4401. struct drm_i915_private *dev_priv = dev->dev_private;
  4402. struct drm_mode_config *mode_config = &dev->mode_config;
  4403. struct intel_encoder *encoder;
  4404. bool has_vga = false;
  4405. bool is_sdv = false;
  4406. u32 tmp;
  4407. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4408. switch (encoder->type) {
  4409. case INTEL_OUTPUT_ANALOG:
  4410. has_vga = true;
  4411. break;
  4412. }
  4413. }
  4414. if (!has_vga)
  4415. return;
  4416. mutex_lock(&dev_priv->dpio_lock);
  4417. /* XXX: Rip out SDV support once Haswell ships for real. */
  4418. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4419. is_sdv = true;
  4420. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4421. tmp &= ~SBI_SSCCTL_DISABLE;
  4422. tmp |= SBI_SSCCTL_PATHALT;
  4423. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4424. udelay(24);
  4425. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4426. tmp &= ~SBI_SSCCTL_PATHALT;
  4427. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4428. if (!is_sdv) {
  4429. tmp = I915_READ(SOUTH_CHICKEN2);
  4430. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4431. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4432. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4433. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4434. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4435. tmp = I915_READ(SOUTH_CHICKEN2);
  4436. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4437. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4438. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4439. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4440. 100))
  4441. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4442. }
  4443. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4444. tmp &= ~(0xFF << 24);
  4445. tmp |= (0x12 << 24);
  4446. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4447. if (is_sdv) {
  4448. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4449. tmp |= 0x7FFF;
  4450. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4451. }
  4452. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4453. tmp |= (1 << 11);
  4454. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4455. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4456. tmp |= (1 << 11);
  4457. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4458. if (is_sdv) {
  4459. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4460. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4461. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4462. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4463. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4464. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4465. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4466. tmp |= (0x3F << 8);
  4467. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4468. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4469. tmp |= (0x3F << 8);
  4470. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4471. }
  4472. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4473. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4474. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4475. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4476. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4477. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4478. if (!is_sdv) {
  4479. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4480. tmp &= ~(7 << 13);
  4481. tmp |= (5 << 13);
  4482. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4483. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4484. tmp &= ~(7 << 13);
  4485. tmp |= (5 << 13);
  4486. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4487. }
  4488. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4489. tmp &= ~0xFF;
  4490. tmp |= 0x1C;
  4491. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4492. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4493. tmp &= ~0xFF;
  4494. tmp |= 0x1C;
  4495. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4496. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4497. tmp &= ~(0xFF << 16);
  4498. tmp |= (0x1C << 16);
  4499. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4500. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4501. tmp &= ~(0xFF << 16);
  4502. tmp |= (0x1C << 16);
  4503. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4504. if (!is_sdv) {
  4505. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4506. tmp |= (1 << 27);
  4507. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4508. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4509. tmp |= (1 << 27);
  4510. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4511. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4512. tmp &= ~(0xF << 28);
  4513. tmp |= (4 << 28);
  4514. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4515. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4516. tmp &= ~(0xF << 28);
  4517. tmp |= (4 << 28);
  4518. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4519. }
  4520. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4521. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4522. tmp |= SBI_DBUFF0_ENABLE;
  4523. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4524. mutex_unlock(&dev_priv->dpio_lock);
  4525. }
  4526. /*
  4527. * Initialize reference clocks when the driver loads
  4528. */
  4529. void intel_init_pch_refclk(struct drm_device *dev)
  4530. {
  4531. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4532. ironlake_init_pch_refclk(dev);
  4533. else if (HAS_PCH_LPT(dev))
  4534. lpt_init_pch_refclk(dev);
  4535. }
  4536. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4537. {
  4538. struct drm_device *dev = crtc->dev;
  4539. struct drm_i915_private *dev_priv = dev->dev_private;
  4540. struct intel_encoder *encoder;
  4541. struct intel_encoder *edp_encoder = NULL;
  4542. int num_connectors = 0;
  4543. bool is_lvds = false;
  4544. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4545. switch (encoder->type) {
  4546. case INTEL_OUTPUT_LVDS:
  4547. is_lvds = true;
  4548. break;
  4549. case INTEL_OUTPUT_EDP:
  4550. edp_encoder = encoder;
  4551. break;
  4552. }
  4553. num_connectors++;
  4554. }
  4555. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4556. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4557. dev_priv->lvds_ssc_freq);
  4558. return dev_priv->lvds_ssc_freq * 1000;
  4559. }
  4560. return 120000;
  4561. }
  4562. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4563. {
  4564. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4565. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4566. int pipe = intel_crtc->pipe;
  4567. uint32_t val;
  4568. val = I915_READ(PIPECONF(pipe));
  4569. val &= ~PIPECONF_BPC_MASK;
  4570. switch (intel_crtc->config.pipe_bpp) {
  4571. case 18:
  4572. val |= PIPECONF_6BPC;
  4573. break;
  4574. case 24:
  4575. val |= PIPECONF_8BPC;
  4576. break;
  4577. case 30:
  4578. val |= PIPECONF_10BPC;
  4579. break;
  4580. case 36:
  4581. val |= PIPECONF_12BPC;
  4582. break;
  4583. default:
  4584. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4585. BUG();
  4586. }
  4587. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4588. if (intel_crtc->config.dither)
  4589. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4590. val &= ~PIPECONF_INTERLACE_MASK;
  4591. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4592. val |= PIPECONF_INTERLACED_ILK;
  4593. else
  4594. val |= PIPECONF_PROGRESSIVE;
  4595. if (intel_crtc->config.limited_color_range)
  4596. val |= PIPECONF_COLOR_RANGE_SELECT;
  4597. else
  4598. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4599. I915_WRITE(PIPECONF(pipe), val);
  4600. POSTING_READ(PIPECONF(pipe));
  4601. }
  4602. /*
  4603. * Set up the pipe CSC unit.
  4604. *
  4605. * Currently only full range RGB to limited range RGB conversion
  4606. * is supported, but eventually this should handle various
  4607. * RGB<->YCbCr scenarios as well.
  4608. */
  4609. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4610. {
  4611. struct drm_device *dev = crtc->dev;
  4612. struct drm_i915_private *dev_priv = dev->dev_private;
  4613. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4614. int pipe = intel_crtc->pipe;
  4615. uint16_t coeff = 0x7800; /* 1.0 */
  4616. /*
  4617. * TODO: Check what kind of values actually come out of the pipe
  4618. * with these coeff/postoff values and adjust to get the best
  4619. * accuracy. Perhaps we even need to take the bpc value into
  4620. * consideration.
  4621. */
  4622. if (intel_crtc->config.limited_color_range)
  4623. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4624. /*
  4625. * GY/GU and RY/RU should be the other way around according
  4626. * to BSpec, but reality doesn't agree. Just set them up in
  4627. * a way that results in the correct picture.
  4628. */
  4629. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4630. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4631. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4632. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4633. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4634. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4635. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4636. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4637. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4638. if (INTEL_INFO(dev)->gen > 6) {
  4639. uint16_t postoff = 0;
  4640. if (intel_crtc->config.limited_color_range)
  4641. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4642. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4643. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4644. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4645. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4646. } else {
  4647. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4648. if (intel_crtc->config.limited_color_range)
  4649. mode |= CSC_BLACK_SCREEN_OFFSET;
  4650. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4651. }
  4652. }
  4653. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4654. {
  4655. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4657. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4658. uint32_t val;
  4659. val = I915_READ(PIPECONF(cpu_transcoder));
  4660. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4661. if (intel_crtc->config.dither)
  4662. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4663. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4664. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4665. val |= PIPECONF_INTERLACED_ILK;
  4666. else
  4667. val |= PIPECONF_PROGRESSIVE;
  4668. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4669. POSTING_READ(PIPECONF(cpu_transcoder));
  4670. }
  4671. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4672. struct drm_display_mode *adjusted_mode,
  4673. intel_clock_t *clock,
  4674. bool *has_reduced_clock,
  4675. intel_clock_t *reduced_clock)
  4676. {
  4677. struct drm_device *dev = crtc->dev;
  4678. struct drm_i915_private *dev_priv = dev->dev_private;
  4679. struct intel_encoder *intel_encoder;
  4680. int refclk;
  4681. const intel_limit_t *limit;
  4682. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4683. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4684. switch (intel_encoder->type) {
  4685. case INTEL_OUTPUT_LVDS:
  4686. is_lvds = true;
  4687. break;
  4688. case INTEL_OUTPUT_SDVO:
  4689. case INTEL_OUTPUT_HDMI:
  4690. is_sdvo = true;
  4691. if (intel_encoder->needs_tv_clock)
  4692. is_tv = true;
  4693. break;
  4694. case INTEL_OUTPUT_TVOUT:
  4695. is_tv = true;
  4696. break;
  4697. }
  4698. }
  4699. refclk = ironlake_get_refclk(crtc);
  4700. /*
  4701. * Returns a set of divisors for the desired target clock with the given
  4702. * refclk, or FALSE. The returned values represent the clock equation:
  4703. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4704. */
  4705. limit = intel_limit(crtc, refclk);
  4706. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4707. clock);
  4708. if (!ret)
  4709. return false;
  4710. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4711. /*
  4712. * Ensure we match the reduced clock's P to the target clock.
  4713. * If the clocks don't match, we can't switch the display clock
  4714. * by using the FP0/FP1. In such case we will disable the LVDS
  4715. * downclock feature.
  4716. */
  4717. *has_reduced_clock = limit->find_pll(limit, crtc,
  4718. dev_priv->lvds_downclock,
  4719. refclk,
  4720. clock,
  4721. reduced_clock);
  4722. }
  4723. if (is_sdvo && is_tv)
  4724. i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
  4725. return true;
  4726. }
  4727. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4728. {
  4729. struct drm_i915_private *dev_priv = dev->dev_private;
  4730. uint32_t temp;
  4731. temp = I915_READ(SOUTH_CHICKEN1);
  4732. if (temp & FDI_BC_BIFURCATION_SELECT)
  4733. return;
  4734. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4735. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4736. temp |= FDI_BC_BIFURCATION_SELECT;
  4737. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4738. I915_WRITE(SOUTH_CHICKEN1, temp);
  4739. POSTING_READ(SOUTH_CHICKEN1);
  4740. }
  4741. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4742. {
  4743. struct drm_device *dev = intel_crtc->base.dev;
  4744. struct drm_i915_private *dev_priv = dev->dev_private;
  4745. switch (intel_crtc->pipe) {
  4746. case PIPE_A:
  4747. break;
  4748. case PIPE_B:
  4749. if (intel_crtc->config.fdi_lanes > 2)
  4750. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4751. else
  4752. cpt_enable_fdi_bc_bifurcation(dev);
  4753. break;
  4754. case PIPE_C:
  4755. cpt_enable_fdi_bc_bifurcation(dev);
  4756. break;
  4757. default:
  4758. BUG();
  4759. }
  4760. }
  4761. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4762. {
  4763. /*
  4764. * Account for spread spectrum to avoid
  4765. * oversubscribing the link. Max center spread
  4766. * is 2.5%; use 5% for safety's sake.
  4767. */
  4768. u32 bps = target_clock * bpp * 21 / 20;
  4769. return bps / (link_bw * 8) + 1;
  4770. }
  4771. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4772. {
  4773. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4774. }
  4775. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4776. u32 *fp,
  4777. intel_clock_t *reduced_clock, u32 *fp2)
  4778. {
  4779. struct drm_crtc *crtc = &intel_crtc->base;
  4780. struct drm_device *dev = crtc->dev;
  4781. struct drm_i915_private *dev_priv = dev->dev_private;
  4782. struct intel_encoder *intel_encoder;
  4783. uint32_t dpll;
  4784. int factor, num_connectors = 0;
  4785. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4786. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4787. switch (intel_encoder->type) {
  4788. case INTEL_OUTPUT_LVDS:
  4789. is_lvds = true;
  4790. break;
  4791. case INTEL_OUTPUT_SDVO:
  4792. case INTEL_OUTPUT_HDMI:
  4793. is_sdvo = true;
  4794. if (intel_encoder->needs_tv_clock)
  4795. is_tv = true;
  4796. break;
  4797. case INTEL_OUTPUT_TVOUT:
  4798. is_tv = true;
  4799. break;
  4800. }
  4801. num_connectors++;
  4802. }
  4803. /* Enable autotuning of the PLL clock (if permissible) */
  4804. factor = 21;
  4805. if (is_lvds) {
  4806. if ((intel_panel_use_ssc(dev_priv) &&
  4807. dev_priv->lvds_ssc_freq == 100) ||
  4808. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4809. factor = 25;
  4810. } else if (is_sdvo && is_tv)
  4811. factor = 20;
  4812. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4813. *fp |= FP_CB_TUNE;
  4814. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4815. *fp2 |= FP_CB_TUNE;
  4816. dpll = 0;
  4817. if (is_lvds)
  4818. dpll |= DPLLB_MODE_LVDS;
  4819. else
  4820. dpll |= DPLLB_MODE_DAC_SERIAL;
  4821. if (intel_crtc->config.pixel_multiplier > 1) {
  4822. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4823. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4824. }
  4825. if (is_sdvo)
  4826. dpll |= DPLL_DVO_HIGH_SPEED;
  4827. if (intel_crtc->config.has_dp_encoder)
  4828. dpll |= DPLL_DVO_HIGH_SPEED;
  4829. /* compute bitmask from p1 value */
  4830. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4831. /* also FPA1 */
  4832. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4833. switch (intel_crtc->config.dpll.p2) {
  4834. case 5:
  4835. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4836. break;
  4837. case 7:
  4838. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4839. break;
  4840. case 10:
  4841. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4842. break;
  4843. case 14:
  4844. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4845. break;
  4846. }
  4847. if (is_sdvo && is_tv)
  4848. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4849. else if (is_tv)
  4850. /* XXX: just matching BIOS for now */
  4851. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4852. dpll |= 3;
  4853. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4854. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4855. else
  4856. dpll |= PLL_REF_INPUT_DREFCLK;
  4857. return dpll;
  4858. }
  4859. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4860. int x, int y,
  4861. struct drm_framebuffer *fb)
  4862. {
  4863. struct drm_device *dev = crtc->dev;
  4864. struct drm_i915_private *dev_priv = dev->dev_private;
  4865. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4866. struct drm_display_mode *adjusted_mode =
  4867. &intel_crtc->config.adjusted_mode;
  4868. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4869. int pipe = intel_crtc->pipe;
  4870. int plane = intel_crtc->plane;
  4871. int num_connectors = 0;
  4872. intel_clock_t clock, reduced_clock;
  4873. u32 dpll = 0, fp = 0, fp2 = 0;
  4874. bool ok, has_reduced_clock = false;
  4875. bool is_lvds = false;
  4876. struct intel_encoder *encoder;
  4877. int ret;
  4878. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4879. switch (encoder->type) {
  4880. case INTEL_OUTPUT_LVDS:
  4881. is_lvds = true;
  4882. break;
  4883. }
  4884. num_connectors++;
  4885. }
  4886. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4887. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4888. intel_crtc->config.cpu_transcoder = pipe;
  4889. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4890. &has_reduced_clock, &reduced_clock);
  4891. if (!ok) {
  4892. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4893. return -EINVAL;
  4894. }
  4895. /* Compat-code for transition, will disappear. */
  4896. if (!intel_crtc->config.clock_set) {
  4897. intel_crtc->config.dpll.n = clock.n;
  4898. intel_crtc->config.dpll.m1 = clock.m1;
  4899. intel_crtc->config.dpll.m2 = clock.m2;
  4900. intel_crtc->config.dpll.p1 = clock.p1;
  4901. intel_crtc->config.dpll.p2 = clock.p2;
  4902. }
  4903. /* Ensure that the cursor is valid for the new mode before changing... */
  4904. intel_crtc_update_cursor(crtc, true);
  4905. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4906. drm_mode_debug_printmodeline(mode);
  4907. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4908. if (intel_crtc->config.has_pch_encoder) {
  4909. struct intel_pch_pll *pll;
  4910. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4911. if (has_reduced_clock)
  4912. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4913. dpll = ironlake_compute_dpll(intel_crtc,
  4914. &fp, &reduced_clock,
  4915. has_reduced_clock ? &fp2 : NULL);
  4916. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4917. if (pll == NULL) {
  4918. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4919. pipe_name(pipe));
  4920. return -EINVAL;
  4921. }
  4922. } else
  4923. intel_put_pch_pll(intel_crtc);
  4924. if (intel_crtc->config.has_dp_encoder)
  4925. intel_dp_set_m_n(intel_crtc);
  4926. for_each_encoder_on_crtc(dev, crtc, encoder)
  4927. if (encoder->pre_pll_enable)
  4928. encoder->pre_pll_enable(encoder);
  4929. if (intel_crtc->pch_pll) {
  4930. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4931. /* Wait for the clocks to stabilize. */
  4932. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4933. udelay(150);
  4934. /* The pixel multiplier can only be updated once the
  4935. * DPLL is enabled and the clocks are stable.
  4936. *
  4937. * So write it again.
  4938. */
  4939. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4940. }
  4941. intel_crtc->lowfreq_avail = false;
  4942. if (intel_crtc->pch_pll) {
  4943. if (is_lvds && has_reduced_clock && i915_powersave) {
  4944. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4945. intel_crtc->lowfreq_avail = true;
  4946. } else {
  4947. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4948. }
  4949. }
  4950. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4951. if (intel_crtc->config.has_pch_encoder) {
  4952. intel_cpu_transcoder_set_m_n(intel_crtc,
  4953. &intel_crtc->config.fdi_m_n);
  4954. }
  4955. if (IS_IVYBRIDGE(dev))
  4956. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4957. ironlake_set_pipeconf(crtc);
  4958. /* Set up the display plane register */
  4959. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4960. POSTING_READ(DSPCNTR(plane));
  4961. ret = intel_pipe_set_base(crtc, x, y, fb);
  4962. intel_update_watermarks(dev);
  4963. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4964. return ret;
  4965. }
  4966. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4967. struct intel_crtc_config *pipe_config)
  4968. {
  4969. struct drm_device *dev = crtc->base.dev;
  4970. struct drm_i915_private *dev_priv = dev->dev_private;
  4971. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4972. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4973. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4974. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4975. & ~TU_SIZE_MASK;
  4976. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4977. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4978. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4979. }
  4980. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4981. struct intel_crtc_config *pipe_config)
  4982. {
  4983. struct drm_device *dev = crtc->base.dev;
  4984. struct drm_i915_private *dev_priv = dev->dev_private;
  4985. uint32_t tmp;
  4986. tmp = I915_READ(PIPECONF(crtc->pipe));
  4987. if (!(tmp & PIPECONF_ENABLE))
  4988. return false;
  4989. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4990. pipe_config->has_pch_encoder = true;
  4991. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4992. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4993. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4994. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4995. }
  4996. intel_get_pipe_timings(crtc, pipe_config);
  4997. return true;
  4998. }
  4999. static void haswell_modeset_global_resources(struct drm_device *dev)
  5000. {
  5001. bool enable = false;
  5002. struct intel_crtc *crtc;
  5003. struct intel_encoder *encoder;
  5004. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5005. if (crtc->pipe != PIPE_A && crtc->base.enabled)
  5006. enable = true;
  5007. /* XXX: Should check for edp transcoder here, but thanks to init
  5008. * sequence that's not yet available. Just in case desktop eDP
  5009. * on PORT D is possible on haswell, too. */
  5010. /* Even the eDP panel fitter is outside the always-on well. */
  5011. if (crtc->config.pch_pfit.size && crtc->base.enabled)
  5012. enable = true;
  5013. }
  5014. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5015. base.head) {
  5016. if (encoder->type != INTEL_OUTPUT_EDP &&
  5017. encoder->connectors_active)
  5018. enable = true;
  5019. }
  5020. intel_set_power_well(dev, enable);
  5021. }
  5022. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5023. int x, int y,
  5024. struct drm_framebuffer *fb)
  5025. {
  5026. struct drm_device *dev = crtc->dev;
  5027. struct drm_i915_private *dev_priv = dev->dev_private;
  5028. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5029. struct drm_display_mode *adjusted_mode =
  5030. &intel_crtc->config.adjusted_mode;
  5031. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5032. int pipe = intel_crtc->pipe;
  5033. int plane = intel_crtc->plane;
  5034. int num_connectors = 0;
  5035. bool is_cpu_edp = false;
  5036. struct intel_encoder *encoder;
  5037. int ret;
  5038. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5039. switch (encoder->type) {
  5040. case INTEL_OUTPUT_EDP:
  5041. if (!intel_encoder_is_pch_edp(&encoder->base))
  5042. is_cpu_edp = true;
  5043. break;
  5044. }
  5045. num_connectors++;
  5046. }
  5047. if (is_cpu_edp)
  5048. intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
  5049. else
  5050. intel_crtc->config.cpu_transcoder = pipe;
  5051. /* We are not sure yet this won't happen. */
  5052. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  5053. INTEL_PCH_TYPE(dev));
  5054. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  5055. num_connectors, pipe_name(pipe));
  5056. WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
  5057. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  5058. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  5059. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  5060. return -EINVAL;
  5061. /* Ensure that the cursor is valid for the new mode before changing... */
  5062. intel_crtc_update_cursor(crtc, true);
  5063. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  5064. drm_mode_debug_printmodeline(mode);
  5065. if (intel_crtc->config.has_dp_encoder)
  5066. intel_dp_set_m_n(intel_crtc);
  5067. intel_crtc->lowfreq_avail = false;
  5068. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  5069. if (intel_crtc->config.has_pch_encoder) {
  5070. intel_cpu_transcoder_set_m_n(intel_crtc,
  5071. &intel_crtc->config.fdi_m_n);
  5072. }
  5073. haswell_set_pipeconf(crtc);
  5074. intel_set_pipe_csc(crtc);
  5075. /* Set up the display plane register */
  5076. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5077. POSTING_READ(DSPCNTR(plane));
  5078. ret = intel_pipe_set_base(crtc, x, y, fb);
  5079. intel_update_watermarks(dev);
  5080. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  5081. return ret;
  5082. }
  5083. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5084. struct intel_crtc_config *pipe_config)
  5085. {
  5086. struct drm_device *dev = crtc->base.dev;
  5087. struct drm_i915_private *dev_priv = dev->dev_private;
  5088. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  5089. uint32_t tmp;
  5090. if (!intel_display_power_enabled(dev,
  5091. POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
  5092. return false;
  5093. tmp = I915_READ(PIPECONF(cpu_transcoder));
  5094. if (!(tmp & PIPECONF_ENABLE))
  5095. return false;
  5096. /*
  5097. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5098. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5099. * the PCH transcoder is on.
  5100. */
  5101. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  5102. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5103. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5104. pipe_config->has_pch_encoder = true;
  5105. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5106. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5107. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5108. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5109. }
  5110. intel_get_pipe_timings(crtc, pipe_config);
  5111. return true;
  5112. }
  5113. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5114. int x, int y,
  5115. struct drm_framebuffer *fb)
  5116. {
  5117. struct drm_device *dev = crtc->dev;
  5118. struct drm_i915_private *dev_priv = dev->dev_private;
  5119. struct drm_encoder_helper_funcs *encoder_funcs;
  5120. struct intel_encoder *encoder;
  5121. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5122. struct drm_display_mode *adjusted_mode =
  5123. &intel_crtc->config.adjusted_mode;
  5124. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5125. int pipe = intel_crtc->pipe;
  5126. int ret;
  5127. drm_vblank_pre_modeset(dev, pipe);
  5128. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5129. drm_vblank_post_modeset(dev, pipe);
  5130. if (ret != 0)
  5131. return ret;
  5132. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5133. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5134. encoder->base.base.id,
  5135. drm_get_encoder_name(&encoder->base),
  5136. mode->base.id, mode->name);
  5137. if (encoder->mode_set) {
  5138. encoder->mode_set(encoder);
  5139. } else {
  5140. encoder_funcs = encoder->base.helper_private;
  5141. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5142. }
  5143. }
  5144. return 0;
  5145. }
  5146. static bool intel_eld_uptodate(struct drm_connector *connector,
  5147. int reg_eldv, uint32_t bits_eldv,
  5148. int reg_elda, uint32_t bits_elda,
  5149. int reg_edid)
  5150. {
  5151. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5152. uint8_t *eld = connector->eld;
  5153. uint32_t i;
  5154. i = I915_READ(reg_eldv);
  5155. i &= bits_eldv;
  5156. if (!eld[0])
  5157. return !i;
  5158. if (!i)
  5159. return false;
  5160. i = I915_READ(reg_elda);
  5161. i &= ~bits_elda;
  5162. I915_WRITE(reg_elda, i);
  5163. for (i = 0; i < eld[2]; i++)
  5164. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5165. return false;
  5166. return true;
  5167. }
  5168. static void g4x_write_eld(struct drm_connector *connector,
  5169. struct drm_crtc *crtc)
  5170. {
  5171. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5172. uint8_t *eld = connector->eld;
  5173. uint32_t eldv;
  5174. uint32_t len;
  5175. uint32_t i;
  5176. i = I915_READ(G4X_AUD_VID_DID);
  5177. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5178. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5179. else
  5180. eldv = G4X_ELDV_DEVCTG;
  5181. if (intel_eld_uptodate(connector,
  5182. G4X_AUD_CNTL_ST, eldv,
  5183. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5184. G4X_HDMIW_HDMIEDID))
  5185. return;
  5186. i = I915_READ(G4X_AUD_CNTL_ST);
  5187. i &= ~(eldv | G4X_ELD_ADDR);
  5188. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5189. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5190. if (!eld[0])
  5191. return;
  5192. len = min_t(uint8_t, eld[2], len);
  5193. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5194. for (i = 0; i < len; i++)
  5195. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5196. i = I915_READ(G4X_AUD_CNTL_ST);
  5197. i |= eldv;
  5198. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5199. }
  5200. static void haswell_write_eld(struct drm_connector *connector,
  5201. struct drm_crtc *crtc)
  5202. {
  5203. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5204. uint8_t *eld = connector->eld;
  5205. struct drm_device *dev = crtc->dev;
  5206. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5207. uint32_t eldv;
  5208. uint32_t i;
  5209. int len;
  5210. int pipe = to_intel_crtc(crtc)->pipe;
  5211. int tmp;
  5212. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5213. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5214. int aud_config = HSW_AUD_CFG(pipe);
  5215. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5216. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5217. /* Audio output enable */
  5218. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5219. tmp = I915_READ(aud_cntrl_st2);
  5220. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5221. I915_WRITE(aud_cntrl_st2, tmp);
  5222. /* Wait for 1 vertical blank */
  5223. intel_wait_for_vblank(dev, pipe);
  5224. /* Set ELD valid state */
  5225. tmp = I915_READ(aud_cntrl_st2);
  5226. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5227. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5228. I915_WRITE(aud_cntrl_st2, tmp);
  5229. tmp = I915_READ(aud_cntrl_st2);
  5230. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5231. /* Enable HDMI mode */
  5232. tmp = I915_READ(aud_config);
  5233. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5234. /* clear N_programing_enable and N_value_index */
  5235. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5236. I915_WRITE(aud_config, tmp);
  5237. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5238. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5239. intel_crtc->eld_vld = true;
  5240. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5241. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5242. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5243. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5244. } else
  5245. I915_WRITE(aud_config, 0);
  5246. if (intel_eld_uptodate(connector,
  5247. aud_cntrl_st2, eldv,
  5248. aud_cntl_st, IBX_ELD_ADDRESS,
  5249. hdmiw_hdmiedid))
  5250. return;
  5251. i = I915_READ(aud_cntrl_st2);
  5252. i &= ~eldv;
  5253. I915_WRITE(aud_cntrl_st2, i);
  5254. if (!eld[0])
  5255. return;
  5256. i = I915_READ(aud_cntl_st);
  5257. i &= ~IBX_ELD_ADDRESS;
  5258. I915_WRITE(aud_cntl_st, i);
  5259. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5260. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5261. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5262. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5263. for (i = 0; i < len; i++)
  5264. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5265. i = I915_READ(aud_cntrl_st2);
  5266. i |= eldv;
  5267. I915_WRITE(aud_cntrl_st2, i);
  5268. }
  5269. static void ironlake_write_eld(struct drm_connector *connector,
  5270. struct drm_crtc *crtc)
  5271. {
  5272. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5273. uint8_t *eld = connector->eld;
  5274. uint32_t eldv;
  5275. uint32_t i;
  5276. int len;
  5277. int hdmiw_hdmiedid;
  5278. int aud_config;
  5279. int aud_cntl_st;
  5280. int aud_cntrl_st2;
  5281. int pipe = to_intel_crtc(crtc)->pipe;
  5282. if (HAS_PCH_IBX(connector->dev)) {
  5283. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5284. aud_config = IBX_AUD_CFG(pipe);
  5285. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5286. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5287. } else {
  5288. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5289. aud_config = CPT_AUD_CFG(pipe);
  5290. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5291. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5292. }
  5293. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5294. i = I915_READ(aud_cntl_st);
  5295. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5296. if (!i) {
  5297. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5298. /* operate blindly on all ports */
  5299. eldv = IBX_ELD_VALIDB;
  5300. eldv |= IBX_ELD_VALIDB << 4;
  5301. eldv |= IBX_ELD_VALIDB << 8;
  5302. } else {
  5303. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5304. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5305. }
  5306. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5307. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5308. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5309. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5310. } else
  5311. I915_WRITE(aud_config, 0);
  5312. if (intel_eld_uptodate(connector,
  5313. aud_cntrl_st2, eldv,
  5314. aud_cntl_st, IBX_ELD_ADDRESS,
  5315. hdmiw_hdmiedid))
  5316. return;
  5317. i = I915_READ(aud_cntrl_st2);
  5318. i &= ~eldv;
  5319. I915_WRITE(aud_cntrl_st2, i);
  5320. if (!eld[0])
  5321. return;
  5322. i = I915_READ(aud_cntl_st);
  5323. i &= ~IBX_ELD_ADDRESS;
  5324. I915_WRITE(aud_cntl_st, i);
  5325. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5326. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5327. for (i = 0; i < len; i++)
  5328. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5329. i = I915_READ(aud_cntrl_st2);
  5330. i |= eldv;
  5331. I915_WRITE(aud_cntrl_st2, i);
  5332. }
  5333. void intel_write_eld(struct drm_encoder *encoder,
  5334. struct drm_display_mode *mode)
  5335. {
  5336. struct drm_crtc *crtc = encoder->crtc;
  5337. struct drm_connector *connector;
  5338. struct drm_device *dev = encoder->dev;
  5339. struct drm_i915_private *dev_priv = dev->dev_private;
  5340. connector = drm_select_eld(encoder, mode);
  5341. if (!connector)
  5342. return;
  5343. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5344. connector->base.id,
  5345. drm_get_connector_name(connector),
  5346. connector->encoder->base.id,
  5347. drm_get_encoder_name(connector->encoder));
  5348. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5349. if (dev_priv->display.write_eld)
  5350. dev_priv->display.write_eld(connector, crtc);
  5351. }
  5352. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5353. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5354. {
  5355. struct drm_device *dev = crtc->dev;
  5356. struct drm_i915_private *dev_priv = dev->dev_private;
  5357. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5358. int palreg = PALETTE(intel_crtc->pipe);
  5359. int i;
  5360. /* The clocks have to be on to load the palette. */
  5361. if (!crtc->enabled || !intel_crtc->active)
  5362. return;
  5363. /* use legacy palette for Ironlake */
  5364. if (HAS_PCH_SPLIT(dev))
  5365. palreg = LGC_PALETTE(intel_crtc->pipe);
  5366. for (i = 0; i < 256; i++) {
  5367. I915_WRITE(palreg + 4 * i,
  5368. (intel_crtc->lut_r[i] << 16) |
  5369. (intel_crtc->lut_g[i] << 8) |
  5370. intel_crtc->lut_b[i]);
  5371. }
  5372. }
  5373. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5374. {
  5375. struct drm_device *dev = crtc->dev;
  5376. struct drm_i915_private *dev_priv = dev->dev_private;
  5377. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5378. bool visible = base != 0;
  5379. u32 cntl;
  5380. if (intel_crtc->cursor_visible == visible)
  5381. return;
  5382. cntl = I915_READ(_CURACNTR);
  5383. if (visible) {
  5384. /* On these chipsets we can only modify the base whilst
  5385. * the cursor is disabled.
  5386. */
  5387. I915_WRITE(_CURABASE, base);
  5388. cntl &= ~(CURSOR_FORMAT_MASK);
  5389. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5390. cntl |= CURSOR_ENABLE |
  5391. CURSOR_GAMMA_ENABLE |
  5392. CURSOR_FORMAT_ARGB;
  5393. } else
  5394. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5395. I915_WRITE(_CURACNTR, cntl);
  5396. intel_crtc->cursor_visible = visible;
  5397. }
  5398. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5399. {
  5400. struct drm_device *dev = crtc->dev;
  5401. struct drm_i915_private *dev_priv = dev->dev_private;
  5402. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5403. int pipe = intel_crtc->pipe;
  5404. bool visible = base != 0;
  5405. if (intel_crtc->cursor_visible != visible) {
  5406. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5407. if (base) {
  5408. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5409. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5410. cntl |= pipe << 28; /* Connect to correct pipe */
  5411. } else {
  5412. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5413. cntl |= CURSOR_MODE_DISABLE;
  5414. }
  5415. I915_WRITE(CURCNTR(pipe), cntl);
  5416. intel_crtc->cursor_visible = visible;
  5417. }
  5418. /* and commit changes on next vblank */
  5419. I915_WRITE(CURBASE(pipe), base);
  5420. }
  5421. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5422. {
  5423. struct drm_device *dev = crtc->dev;
  5424. struct drm_i915_private *dev_priv = dev->dev_private;
  5425. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5426. int pipe = intel_crtc->pipe;
  5427. bool visible = base != 0;
  5428. if (intel_crtc->cursor_visible != visible) {
  5429. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5430. if (base) {
  5431. cntl &= ~CURSOR_MODE;
  5432. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5433. } else {
  5434. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5435. cntl |= CURSOR_MODE_DISABLE;
  5436. }
  5437. if (IS_HASWELL(dev))
  5438. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5439. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5440. intel_crtc->cursor_visible = visible;
  5441. }
  5442. /* and commit changes on next vblank */
  5443. I915_WRITE(CURBASE_IVB(pipe), base);
  5444. }
  5445. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5446. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5447. bool on)
  5448. {
  5449. struct drm_device *dev = crtc->dev;
  5450. struct drm_i915_private *dev_priv = dev->dev_private;
  5451. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5452. int pipe = intel_crtc->pipe;
  5453. int x = intel_crtc->cursor_x;
  5454. int y = intel_crtc->cursor_y;
  5455. u32 base, pos;
  5456. bool visible;
  5457. pos = 0;
  5458. if (on && crtc->enabled && crtc->fb) {
  5459. base = intel_crtc->cursor_addr;
  5460. if (x > (int) crtc->fb->width)
  5461. base = 0;
  5462. if (y > (int) crtc->fb->height)
  5463. base = 0;
  5464. } else
  5465. base = 0;
  5466. if (x < 0) {
  5467. if (x + intel_crtc->cursor_width < 0)
  5468. base = 0;
  5469. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5470. x = -x;
  5471. }
  5472. pos |= x << CURSOR_X_SHIFT;
  5473. if (y < 0) {
  5474. if (y + intel_crtc->cursor_height < 0)
  5475. base = 0;
  5476. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5477. y = -y;
  5478. }
  5479. pos |= y << CURSOR_Y_SHIFT;
  5480. visible = base != 0;
  5481. if (!visible && !intel_crtc->cursor_visible)
  5482. return;
  5483. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5484. I915_WRITE(CURPOS_IVB(pipe), pos);
  5485. ivb_update_cursor(crtc, base);
  5486. } else {
  5487. I915_WRITE(CURPOS(pipe), pos);
  5488. if (IS_845G(dev) || IS_I865G(dev))
  5489. i845_update_cursor(crtc, base);
  5490. else
  5491. i9xx_update_cursor(crtc, base);
  5492. }
  5493. }
  5494. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5495. struct drm_file *file,
  5496. uint32_t handle,
  5497. uint32_t width, uint32_t height)
  5498. {
  5499. struct drm_device *dev = crtc->dev;
  5500. struct drm_i915_private *dev_priv = dev->dev_private;
  5501. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5502. struct drm_i915_gem_object *obj;
  5503. uint32_t addr;
  5504. int ret;
  5505. /* if we want to turn off the cursor ignore width and height */
  5506. if (!handle) {
  5507. DRM_DEBUG_KMS("cursor off\n");
  5508. addr = 0;
  5509. obj = NULL;
  5510. mutex_lock(&dev->struct_mutex);
  5511. goto finish;
  5512. }
  5513. /* Currently we only support 64x64 cursors */
  5514. if (width != 64 || height != 64) {
  5515. DRM_ERROR("we currently only support 64x64 cursors\n");
  5516. return -EINVAL;
  5517. }
  5518. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5519. if (&obj->base == NULL)
  5520. return -ENOENT;
  5521. if (obj->base.size < width * height * 4) {
  5522. DRM_ERROR("buffer is to small\n");
  5523. ret = -ENOMEM;
  5524. goto fail;
  5525. }
  5526. /* we only need to pin inside GTT if cursor is non-phy */
  5527. mutex_lock(&dev->struct_mutex);
  5528. if (!dev_priv->info->cursor_needs_physical) {
  5529. unsigned alignment;
  5530. if (obj->tiling_mode) {
  5531. DRM_ERROR("cursor cannot be tiled\n");
  5532. ret = -EINVAL;
  5533. goto fail_locked;
  5534. }
  5535. /* Note that the w/a also requires 2 PTE of padding following
  5536. * the bo. We currently fill all unused PTE with the shadow
  5537. * page and so we should always have valid PTE following the
  5538. * cursor preventing the VT-d warning.
  5539. */
  5540. alignment = 0;
  5541. if (need_vtd_wa(dev))
  5542. alignment = 64*1024;
  5543. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5544. if (ret) {
  5545. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5546. goto fail_locked;
  5547. }
  5548. ret = i915_gem_object_put_fence(obj);
  5549. if (ret) {
  5550. DRM_ERROR("failed to release fence for cursor");
  5551. goto fail_unpin;
  5552. }
  5553. addr = obj->gtt_offset;
  5554. } else {
  5555. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5556. ret = i915_gem_attach_phys_object(dev, obj,
  5557. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5558. align);
  5559. if (ret) {
  5560. DRM_ERROR("failed to attach phys object\n");
  5561. goto fail_locked;
  5562. }
  5563. addr = obj->phys_obj->handle->busaddr;
  5564. }
  5565. if (IS_GEN2(dev))
  5566. I915_WRITE(CURSIZE, (height << 12) | width);
  5567. finish:
  5568. if (intel_crtc->cursor_bo) {
  5569. if (dev_priv->info->cursor_needs_physical) {
  5570. if (intel_crtc->cursor_bo != obj)
  5571. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5572. } else
  5573. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5574. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5575. }
  5576. mutex_unlock(&dev->struct_mutex);
  5577. intel_crtc->cursor_addr = addr;
  5578. intel_crtc->cursor_bo = obj;
  5579. intel_crtc->cursor_width = width;
  5580. intel_crtc->cursor_height = height;
  5581. intel_crtc_update_cursor(crtc, true);
  5582. return 0;
  5583. fail_unpin:
  5584. i915_gem_object_unpin(obj);
  5585. fail_locked:
  5586. mutex_unlock(&dev->struct_mutex);
  5587. fail:
  5588. drm_gem_object_unreference_unlocked(&obj->base);
  5589. return ret;
  5590. }
  5591. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5592. {
  5593. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5594. intel_crtc->cursor_x = x;
  5595. intel_crtc->cursor_y = y;
  5596. intel_crtc_update_cursor(crtc, true);
  5597. return 0;
  5598. }
  5599. /** Sets the color ramps on behalf of RandR */
  5600. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5601. u16 blue, int regno)
  5602. {
  5603. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5604. intel_crtc->lut_r[regno] = red >> 8;
  5605. intel_crtc->lut_g[regno] = green >> 8;
  5606. intel_crtc->lut_b[regno] = blue >> 8;
  5607. }
  5608. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5609. u16 *blue, int regno)
  5610. {
  5611. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5612. *red = intel_crtc->lut_r[regno] << 8;
  5613. *green = intel_crtc->lut_g[regno] << 8;
  5614. *blue = intel_crtc->lut_b[regno] << 8;
  5615. }
  5616. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5617. u16 *blue, uint32_t start, uint32_t size)
  5618. {
  5619. int end = (start + size > 256) ? 256 : start + size, i;
  5620. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5621. for (i = start; i < end; i++) {
  5622. intel_crtc->lut_r[i] = red[i] >> 8;
  5623. intel_crtc->lut_g[i] = green[i] >> 8;
  5624. intel_crtc->lut_b[i] = blue[i] >> 8;
  5625. }
  5626. intel_crtc_load_lut(crtc);
  5627. }
  5628. /* VESA 640x480x72Hz mode to set on the pipe */
  5629. static struct drm_display_mode load_detect_mode = {
  5630. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5631. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5632. };
  5633. static struct drm_framebuffer *
  5634. intel_framebuffer_create(struct drm_device *dev,
  5635. struct drm_mode_fb_cmd2 *mode_cmd,
  5636. struct drm_i915_gem_object *obj)
  5637. {
  5638. struct intel_framebuffer *intel_fb;
  5639. int ret;
  5640. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5641. if (!intel_fb) {
  5642. drm_gem_object_unreference_unlocked(&obj->base);
  5643. return ERR_PTR(-ENOMEM);
  5644. }
  5645. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5646. if (ret) {
  5647. drm_gem_object_unreference_unlocked(&obj->base);
  5648. kfree(intel_fb);
  5649. return ERR_PTR(ret);
  5650. }
  5651. return &intel_fb->base;
  5652. }
  5653. static u32
  5654. intel_framebuffer_pitch_for_width(int width, int bpp)
  5655. {
  5656. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5657. return ALIGN(pitch, 64);
  5658. }
  5659. static u32
  5660. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5661. {
  5662. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5663. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5664. }
  5665. static struct drm_framebuffer *
  5666. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5667. struct drm_display_mode *mode,
  5668. int depth, int bpp)
  5669. {
  5670. struct drm_i915_gem_object *obj;
  5671. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5672. obj = i915_gem_alloc_object(dev,
  5673. intel_framebuffer_size_for_mode(mode, bpp));
  5674. if (obj == NULL)
  5675. return ERR_PTR(-ENOMEM);
  5676. mode_cmd.width = mode->hdisplay;
  5677. mode_cmd.height = mode->vdisplay;
  5678. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5679. bpp);
  5680. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5681. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5682. }
  5683. static struct drm_framebuffer *
  5684. mode_fits_in_fbdev(struct drm_device *dev,
  5685. struct drm_display_mode *mode)
  5686. {
  5687. struct drm_i915_private *dev_priv = dev->dev_private;
  5688. struct drm_i915_gem_object *obj;
  5689. struct drm_framebuffer *fb;
  5690. if (dev_priv->fbdev == NULL)
  5691. return NULL;
  5692. obj = dev_priv->fbdev->ifb.obj;
  5693. if (obj == NULL)
  5694. return NULL;
  5695. fb = &dev_priv->fbdev->ifb.base;
  5696. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5697. fb->bits_per_pixel))
  5698. return NULL;
  5699. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5700. return NULL;
  5701. return fb;
  5702. }
  5703. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5704. struct drm_display_mode *mode,
  5705. struct intel_load_detect_pipe *old)
  5706. {
  5707. struct intel_crtc *intel_crtc;
  5708. struct intel_encoder *intel_encoder =
  5709. intel_attached_encoder(connector);
  5710. struct drm_crtc *possible_crtc;
  5711. struct drm_encoder *encoder = &intel_encoder->base;
  5712. struct drm_crtc *crtc = NULL;
  5713. struct drm_device *dev = encoder->dev;
  5714. struct drm_framebuffer *fb;
  5715. int i = -1;
  5716. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5717. connector->base.id, drm_get_connector_name(connector),
  5718. encoder->base.id, drm_get_encoder_name(encoder));
  5719. /*
  5720. * Algorithm gets a little messy:
  5721. *
  5722. * - if the connector already has an assigned crtc, use it (but make
  5723. * sure it's on first)
  5724. *
  5725. * - try to find the first unused crtc that can drive this connector,
  5726. * and use that if we find one
  5727. */
  5728. /* See if we already have a CRTC for this connector */
  5729. if (encoder->crtc) {
  5730. crtc = encoder->crtc;
  5731. mutex_lock(&crtc->mutex);
  5732. old->dpms_mode = connector->dpms;
  5733. old->load_detect_temp = false;
  5734. /* Make sure the crtc and connector are running */
  5735. if (connector->dpms != DRM_MODE_DPMS_ON)
  5736. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5737. return true;
  5738. }
  5739. /* Find an unused one (if possible) */
  5740. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5741. i++;
  5742. if (!(encoder->possible_crtcs & (1 << i)))
  5743. continue;
  5744. if (!possible_crtc->enabled) {
  5745. crtc = possible_crtc;
  5746. break;
  5747. }
  5748. }
  5749. /*
  5750. * If we didn't find an unused CRTC, don't use any.
  5751. */
  5752. if (!crtc) {
  5753. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5754. return false;
  5755. }
  5756. mutex_lock(&crtc->mutex);
  5757. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5758. to_intel_connector(connector)->new_encoder = intel_encoder;
  5759. intel_crtc = to_intel_crtc(crtc);
  5760. old->dpms_mode = connector->dpms;
  5761. old->load_detect_temp = true;
  5762. old->release_fb = NULL;
  5763. if (!mode)
  5764. mode = &load_detect_mode;
  5765. /* We need a framebuffer large enough to accommodate all accesses
  5766. * that the plane may generate whilst we perform load detection.
  5767. * We can not rely on the fbcon either being present (we get called
  5768. * during its initialisation to detect all boot displays, or it may
  5769. * not even exist) or that it is large enough to satisfy the
  5770. * requested mode.
  5771. */
  5772. fb = mode_fits_in_fbdev(dev, mode);
  5773. if (fb == NULL) {
  5774. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5775. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5776. old->release_fb = fb;
  5777. } else
  5778. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5779. if (IS_ERR(fb)) {
  5780. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5781. mutex_unlock(&crtc->mutex);
  5782. return false;
  5783. }
  5784. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5785. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5786. if (old->release_fb)
  5787. old->release_fb->funcs->destroy(old->release_fb);
  5788. mutex_unlock(&crtc->mutex);
  5789. return false;
  5790. }
  5791. /* let the connector get through one full cycle before testing */
  5792. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5793. return true;
  5794. }
  5795. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5796. struct intel_load_detect_pipe *old)
  5797. {
  5798. struct intel_encoder *intel_encoder =
  5799. intel_attached_encoder(connector);
  5800. struct drm_encoder *encoder = &intel_encoder->base;
  5801. struct drm_crtc *crtc = encoder->crtc;
  5802. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5803. connector->base.id, drm_get_connector_name(connector),
  5804. encoder->base.id, drm_get_encoder_name(encoder));
  5805. if (old->load_detect_temp) {
  5806. to_intel_connector(connector)->new_encoder = NULL;
  5807. intel_encoder->new_crtc = NULL;
  5808. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5809. if (old->release_fb) {
  5810. drm_framebuffer_unregister_private(old->release_fb);
  5811. drm_framebuffer_unreference(old->release_fb);
  5812. }
  5813. mutex_unlock(&crtc->mutex);
  5814. return;
  5815. }
  5816. /* Switch crtc and encoder back off if necessary */
  5817. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5818. connector->funcs->dpms(connector, old->dpms_mode);
  5819. mutex_unlock(&crtc->mutex);
  5820. }
  5821. /* Returns the clock of the currently programmed mode of the given pipe. */
  5822. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5823. {
  5824. struct drm_i915_private *dev_priv = dev->dev_private;
  5825. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5826. int pipe = intel_crtc->pipe;
  5827. u32 dpll = I915_READ(DPLL(pipe));
  5828. u32 fp;
  5829. intel_clock_t clock;
  5830. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5831. fp = I915_READ(FP0(pipe));
  5832. else
  5833. fp = I915_READ(FP1(pipe));
  5834. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5835. if (IS_PINEVIEW(dev)) {
  5836. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5837. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5838. } else {
  5839. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5840. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5841. }
  5842. if (!IS_GEN2(dev)) {
  5843. if (IS_PINEVIEW(dev))
  5844. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5845. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5846. else
  5847. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5848. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5849. switch (dpll & DPLL_MODE_MASK) {
  5850. case DPLLB_MODE_DAC_SERIAL:
  5851. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5852. 5 : 10;
  5853. break;
  5854. case DPLLB_MODE_LVDS:
  5855. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5856. 7 : 14;
  5857. break;
  5858. default:
  5859. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5860. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5861. return 0;
  5862. }
  5863. /* XXX: Handle the 100Mhz refclk */
  5864. intel_clock(dev, 96000, &clock);
  5865. } else {
  5866. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5867. if (is_lvds) {
  5868. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5869. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5870. clock.p2 = 14;
  5871. if ((dpll & PLL_REF_INPUT_MASK) ==
  5872. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5873. /* XXX: might not be 66MHz */
  5874. intel_clock(dev, 66000, &clock);
  5875. } else
  5876. intel_clock(dev, 48000, &clock);
  5877. } else {
  5878. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5879. clock.p1 = 2;
  5880. else {
  5881. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5882. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5883. }
  5884. if (dpll & PLL_P2_DIVIDE_BY_4)
  5885. clock.p2 = 4;
  5886. else
  5887. clock.p2 = 2;
  5888. intel_clock(dev, 48000, &clock);
  5889. }
  5890. }
  5891. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5892. * i830PllIsValid() because it relies on the xf86_config connector
  5893. * configuration being accurate, which it isn't necessarily.
  5894. */
  5895. return clock.dot;
  5896. }
  5897. /** Returns the currently programmed mode of the given pipe. */
  5898. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5899. struct drm_crtc *crtc)
  5900. {
  5901. struct drm_i915_private *dev_priv = dev->dev_private;
  5902. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5903. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5904. struct drm_display_mode *mode;
  5905. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5906. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5907. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5908. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5909. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5910. if (!mode)
  5911. return NULL;
  5912. mode->clock = intel_crtc_clock_get(dev, crtc);
  5913. mode->hdisplay = (htot & 0xffff) + 1;
  5914. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5915. mode->hsync_start = (hsync & 0xffff) + 1;
  5916. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5917. mode->vdisplay = (vtot & 0xffff) + 1;
  5918. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5919. mode->vsync_start = (vsync & 0xffff) + 1;
  5920. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5921. drm_mode_set_name(mode);
  5922. return mode;
  5923. }
  5924. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5925. {
  5926. struct drm_device *dev = crtc->dev;
  5927. drm_i915_private_t *dev_priv = dev->dev_private;
  5928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5929. int pipe = intel_crtc->pipe;
  5930. int dpll_reg = DPLL(pipe);
  5931. int dpll;
  5932. if (HAS_PCH_SPLIT(dev))
  5933. return;
  5934. if (!dev_priv->lvds_downclock_avail)
  5935. return;
  5936. dpll = I915_READ(dpll_reg);
  5937. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5938. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5939. assert_panel_unlocked(dev_priv, pipe);
  5940. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5941. I915_WRITE(dpll_reg, dpll);
  5942. intel_wait_for_vblank(dev, pipe);
  5943. dpll = I915_READ(dpll_reg);
  5944. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5945. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5946. }
  5947. }
  5948. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5949. {
  5950. struct drm_device *dev = crtc->dev;
  5951. drm_i915_private_t *dev_priv = dev->dev_private;
  5952. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5953. if (HAS_PCH_SPLIT(dev))
  5954. return;
  5955. if (!dev_priv->lvds_downclock_avail)
  5956. return;
  5957. /*
  5958. * Since this is called by a timer, we should never get here in
  5959. * the manual case.
  5960. */
  5961. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5962. int pipe = intel_crtc->pipe;
  5963. int dpll_reg = DPLL(pipe);
  5964. int dpll;
  5965. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5966. assert_panel_unlocked(dev_priv, pipe);
  5967. dpll = I915_READ(dpll_reg);
  5968. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5969. I915_WRITE(dpll_reg, dpll);
  5970. intel_wait_for_vblank(dev, pipe);
  5971. dpll = I915_READ(dpll_reg);
  5972. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5973. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5974. }
  5975. }
  5976. void intel_mark_busy(struct drm_device *dev)
  5977. {
  5978. i915_update_gfx_val(dev->dev_private);
  5979. }
  5980. void intel_mark_idle(struct drm_device *dev)
  5981. {
  5982. struct drm_crtc *crtc;
  5983. if (!i915_powersave)
  5984. return;
  5985. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5986. if (!crtc->fb)
  5987. continue;
  5988. intel_decrease_pllclock(crtc);
  5989. }
  5990. }
  5991. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5992. {
  5993. struct drm_device *dev = obj->base.dev;
  5994. struct drm_crtc *crtc;
  5995. if (!i915_powersave)
  5996. return;
  5997. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5998. if (!crtc->fb)
  5999. continue;
  6000. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  6001. intel_increase_pllclock(crtc);
  6002. }
  6003. }
  6004. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6005. {
  6006. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6007. struct drm_device *dev = crtc->dev;
  6008. struct intel_unpin_work *work;
  6009. unsigned long flags;
  6010. spin_lock_irqsave(&dev->event_lock, flags);
  6011. work = intel_crtc->unpin_work;
  6012. intel_crtc->unpin_work = NULL;
  6013. spin_unlock_irqrestore(&dev->event_lock, flags);
  6014. if (work) {
  6015. cancel_work_sync(&work->work);
  6016. kfree(work);
  6017. }
  6018. drm_crtc_cleanup(crtc);
  6019. kfree(intel_crtc);
  6020. }
  6021. static void intel_unpin_work_fn(struct work_struct *__work)
  6022. {
  6023. struct intel_unpin_work *work =
  6024. container_of(__work, struct intel_unpin_work, work);
  6025. struct drm_device *dev = work->crtc->dev;
  6026. mutex_lock(&dev->struct_mutex);
  6027. intel_unpin_fb_obj(work->old_fb_obj);
  6028. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6029. drm_gem_object_unreference(&work->old_fb_obj->base);
  6030. intel_update_fbc(dev);
  6031. mutex_unlock(&dev->struct_mutex);
  6032. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6033. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6034. kfree(work);
  6035. }
  6036. static void do_intel_finish_page_flip(struct drm_device *dev,
  6037. struct drm_crtc *crtc)
  6038. {
  6039. drm_i915_private_t *dev_priv = dev->dev_private;
  6040. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6041. struct intel_unpin_work *work;
  6042. unsigned long flags;
  6043. /* Ignore early vblank irqs */
  6044. if (intel_crtc == NULL)
  6045. return;
  6046. spin_lock_irqsave(&dev->event_lock, flags);
  6047. work = intel_crtc->unpin_work;
  6048. /* Ensure we don't miss a work->pending update ... */
  6049. smp_rmb();
  6050. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6051. spin_unlock_irqrestore(&dev->event_lock, flags);
  6052. return;
  6053. }
  6054. /* and that the unpin work is consistent wrt ->pending. */
  6055. smp_rmb();
  6056. intel_crtc->unpin_work = NULL;
  6057. if (work->event)
  6058. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6059. drm_vblank_put(dev, intel_crtc->pipe);
  6060. spin_unlock_irqrestore(&dev->event_lock, flags);
  6061. wake_up_all(&dev_priv->pending_flip_queue);
  6062. queue_work(dev_priv->wq, &work->work);
  6063. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6064. }
  6065. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6066. {
  6067. drm_i915_private_t *dev_priv = dev->dev_private;
  6068. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6069. do_intel_finish_page_flip(dev, crtc);
  6070. }
  6071. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6072. {
  6073. drm_i915_private_t *dev_priv = dev->dev_private;
  6074. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6075. do_intel_finish_page_flip(dev, crtc);
  6076. }
  6077. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6078. {
  6079. drm_i915_private_t *dev_priv = dev->dev_private;
  6080. struct intel_crtc *intel_crtc =
  6081. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6082. unsigned long flags;
  6083. /* NB: An MMIO update of the plane base pointer will also
  6084. * generate a page-flip completion irq, i.e. every modeset
  6085. * is also accompanied by a spurious intel_prepare_page_flip().
  6086. */
  6087. spin_lock_irqsave(&dev->event_lock, flags);
  6088. if (intel_crtc->unpin_work)
  6089. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6090. spin_unlock_irqrestore(&dev->event_lock, flags);
  6091. }
  6092. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6093. {
  6094. /* Ensure that the work item is consistent when activating it ... */
  6095. smp_wmb();
  6096. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6097. /* and that it is marked active as soon as the irq could fire. */
  6098. smp_wmb();
  6099. }
  6100. static int intel_gen2_queue_flip(struct drm_device *dev,
  6101. struct drm_crtc *crtc,
  6102. struct drm_framebuffer *fb,
  6103. struct drm_i915_gem_object *obj)
  6104. {
  6105. struct drm_i915_private *dev_priv = dev->dev_private;
  6106. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6107. u32 flip_mask;
  6108. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6109. int ret;
  6110. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6111. if (ret)
  6112. goto err;
  6113. ret = intel_ring_begin(ring, 6);
  6114. if (ret)
  6115. goto err_unpin;
  6116. /* Can't queue multiple flips, so wait for the previous
  6117. * one to finish before executing the next.
  6118. */
  6119. if (intel_crtc->plane)
  6120. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6121. else
  6122. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6123. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6124. intel_ring_emit(ring, MI_NOOP);
  6125. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6126. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6127. intel_ring_emit(ring, fb->pitches[0]);
  6128. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6129. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6130. intel_mark_page_flip_active(intel_crtc);
  6131. intel_ring_advance(ring);
  6132. return 0;
  6133. err_unpin:
  6134. intel_unpin_fb_obj(obj);
  6135. err:
  6136. return ret;
  6137. }
  6138. static int intel_gen3_queue_flip(struct drm_device *dev,
  6139. struct drm_crtc *crtc,
  6140. struct drm_framebuffer *fb,
  6141. struct drm_i915_gem_object *obj)
  6142. {
  6143. struct drm_i915_private *dev_priv = dev->dev_private;
  6144. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6145. u32 flip_mask;
  6146. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6147. int ret;
  6148. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6149. if (ret)
  6150. goto err;
  6151. ret = intel_ring_begin(ring, 6);
  6152. if (ret)
  6153. goto err_unpin;
  6154. if (intel_crtc->plane)
  6155. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6156. else
  6157. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6158. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6159. intel_ring_emit(ring, MI_NOOP);
  6160. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6161. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6162. intel_ring_emit(ring, fb->pitches[0]);
  6163. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6164. intel_ring_emit(ring, MI_NOOP);
  6165. intel_mark_page_flip_active(intel_crtc);
  6166. intel_ring_advance(ring);
  6167. return 0;
  6168. err_unpin:
  6169. intel_unpin_fb_obj(obj);
  6170. err:
  6171. return ret;
  6172. }
  6173. static int intel_gen4_queue_flip(struct drm_device *dev,
  6174. struct drm_crtc *crtc,
  6175. struct drm_framebuffer *fb,
  6176. struct drm_i915_gem_object *obj)
  6177. {
  6178. struct drm_i915_private *dev_priv = dev->dev_private;
  6179. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6180. uint32_t pf, pipesrc;
  6181. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6182. int ret;
  6183. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6184. if (ret)
  6185. goto err;
  6186. ret = intel_ring_begin(ring, 4);
  6187. if (ret)
  6188. goto err_unpin;
  6189. /* i965+ uses the linear or tiled offsets from the
  6190. * Display Registers (which do not change across a page-flip)
  6191. * so we need only reprogram the base address.
  6192. */
  6193. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6194. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6195. intel_ring_emit(ring, fb->pitches[0]);
  6196. intel_ring_emit(ring,
  6197. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6198. obj->tiling_mode);
  6199. /* XXX Enabling the panel-fitter across page-flip is so far
  6200. * untested on non-native modes, so ignore it for now.
  6201. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6202. */
  6203. pf = 0;
  6204. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6205. intel_ring_emit(ring, pf | pipesrc);
  6206. intel_mark_page_flip_active(intel_crtc);
  6207. intel_ring_advance(ring);
  6208. return 0;
  6209. err_unpin:
  6210. intel_unpin_fb_obj(obj);
  6211. err:
  6212. return ret;
  6213. }
  6214. static int intel_gen6_queue_flip(struct drm_device *dev,
  6215. struct drm_crtc *crtc,
  6216. struct drm_framebuffer *fb,
  6217. struct drm_i915_gem_object *obj)
  6218. {
  6219. struct drm_i915_private *dev_priv = dev->dev_private;
  6220. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6221. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6222. uint32_t pf, pipesrc;
  6223. int ret;
  6224. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6225. if (ret)
  6226. goto err;
  6227. ret = intel_ring_begin(ring, 4);
  6228. if (ret)
  6229. goto err_unpin;
  6230. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6231. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6232. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6233. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6234. /* Contrary to the suggestions in the documentation,
  6235. * "Enable Panel Fitter" does not seem to be required when page
  6236. * flipping with a non-native mode, and worse causes a normal
  6237. * modeset to fail.
  6238. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6239. */
  6240. pf = 0;
  6241. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6242. intel_ring_emit(ring, pf | pipesrc);
  6243. intel_mark_page_flip_active(intel_crtc);
  6244. intel_ring_advance(ring);
  6245. return 0;
  6246. err_unpin:
  6247. intel_unpin_fb_obj(obj);
  6248. err:
  6249. return ret;
  6250. }
  6251. /*
  6252. * On gen7 we currently use the blit ring because (in early silicon at least)
  6253. * the render ring doesn't give us interrpts for page flip completion, which
  6254. * means clients will hang after the first flip is queued. Fortunately the
  6255. * blit ring generates interrupts properly, so use it instead.
  6256. */
  6257. static int intel_gen7_queue_flip(struct drm_device *dev,
  6258. struct drm_crtc *crtc,
  6259. struct drm_framebuffer *fb,
  6260. struct drm_i915_gem_object *obj)
  6261. {
  6262. struct drm_i915_private *dev_priv = dev->dev_private;
  6263. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6264. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6265. uint32_t plane_bit = 0;
  6266. int ret;
  6267. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6268. if (ret)
  6269. goto err;
  6270. switch(intel_crtc->plane) {
  6271. case PLANE_A:
  6272. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6273. break;
  6274. case PLANE_B:
  6275. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6276. break;
  6277. case PLANE_C:
  6278. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6279. break;
  6280. default:
  6281. WARN_ONCE(1, "unknown plane in flip command\n");
  6282. ret = -ENODEV;
  6283. goto err_unpin;
  6284. }
  6285. ret = intel_ring_begin(ring, 4);
  6286. if (ret)
  6287. goto err_unpin;
  6288. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6289. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6290. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6291. intel_ring_emit(ring, (MI_NOOP));
  6292. intel_mark_page_flip_active(intel_crtc);
  6293. intel_ring_advance(ring);
  6294. return 0;
  6295. err_unpin:
  6296. intel_unpin_fb_obj(obj);
  6297. err:
  6298. return ret;
  6299. }
  6300. static int intel_default_queue_flip(struct drm_device *dev,
  6301. struct drm_crtc *crtc,
  6302. struct drm_framebuffer *fb,
  6303. struct drm_i915_gem_object *obj)
  6304. {
  6305. return -ENODEV;
  6306. }
  6307. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6308. struct drm_framebuffer *fb,
  6309. struct drm_pending_vblank_event *event)
  6310. {
  6311. struct drm_device *dev = crtc->dev;
  6312. struct drm_i915_private *dev_priv = dev->dev_private;
  6313. struct drm_framebuffer *old_fb = crtc->fb;
  6314. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6315. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6316. struct intel_unpin_work *work;
  6317. unsigned long flags;
  6318. int ret;
  6319. /* Can't change pixel format via MI display flips. */
  6320. if (fb->pixel_format != crtc->fb->pixel_format)
  6321. return -EINVAL;
  6322. /*
  6323. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6324. * Note that pitch changes could also affect these register.
  6325. */
  6326. if (INTEL_INFO(dev)->gen > 3 &&
  6327. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6328. fb->pitches[0] != crtc->fb->pitches[0]))
  6329. return -EINVAL;
  6330. work = kzalloc(sizeof *work, GFP_KERNEL);
  6331. if (work == NULL)
  6332. return -ENOMEM;
  6333. work->event = event;
  6334. work->crtc = crtc;
  6335. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6336. INIT_WORK(&work->work, intel_unpin_work_fn);
  6337. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6338. if (ret)
  6339. goto free_work;
  6340. /* We borrow the event spin lock for protecting unpin_work */
  6341. spin_lock_irqsave(&dev->event_lock, flags);
  6342. if (intel_crtc->unpin_work) {
  6343. spin_unlock_irqrestore(&dev->event_lock, flags);
  6344. kfree(work);
  6345. drm_vblank_put(dev, intel_crtc->pipe);
  6346. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6347. return -EBUSY;
  6348. }
  6349. intel_crtc->unpin_work = work;
  6350. spin_unlock_irqrestore(&dev->event_lock, flags);
  6351. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6352. flush_workqueue(dev_priv->wq);
  6353. ret = i915_mutex_lock_interruptible(dev);
  6354. if (ret)
  6355. goto cleanup;
  6356. /* Reference the objects for the scheduled work. */
  6357. drm_gem_object_reference(&work->old_fb_obj->base);
  6358. drm_gem_object_reference(&obj->base);
  6359. crtc->fb = fb;
  6360. work->pending_flip_obj = obj;
  6361. work->enable_stall_check = true;
  6362. atomic_inc(&intel_crtc->unpin_work_count);
  6363. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6364. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6365. if (ret)
  6366. goto cleanup_pending;
  6367. intel_disable_fbc(dev);
  6368. intel_mark_fb_busy(obj);
  6369. mutex_unlock(&dev->struct_mutex);
  6370. trace_i915_flip_request(intel_crtc->plane, obj);
  6371. return 0;
  6372. cleanup_pending:
  6373. atomic_dec(&intel_crtc->unpin_work_count);
  6374. crtc->fb = old_fb;
  6375. drm_gem_object_unreference(&work->old_fb_obj->base);
  6376. drm_gem_object_unreference(&obj->base);
  6377. mutex_unlock(&dev->struct_mutex);
  6378. cleanup:
  6379. spin_lock_irqsave(&dev->event_lock, flags);
  6380. intel_crtc->unpin_work = NULL;
  6381. spin_unlock_irqrestore(&dev->event_lock, flags);
  6382. drm_vblank_put(dev, intel_crtc->pipe);
  6383. free_work:
  6384. kfree(work);
  6385. return ret;
  6386. }
  6387. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6388. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6389. .load_lut = intel_crtc_load_lut,
  6390. };
  6391. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6392. {
  6393. struct intel_encoder *other_encoder;
  6394. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6395. if (WARN_ON(!crtc))
  6396. return false;
  6397. list_for_each_entry(other_encoder,
  6398. &crtc->dev->mode_config.encoder_list,
  6399. base.head) {
  6400. if (&other_encoder->new_crtc->base != crtc ||
  6401. encoder == other_encoder)
  6402. continue;
  6403. else
  6404. return true;
  6405. }
  6406. return false;
  6407. }
  6408. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6409. struct drm_crtc *crtc)
  6410. {
  6411. struct drm_device *dev;
  6412. struct drm_crtc *tmp;
  6413. int crtc_mask = 1;
  6414. WARN(!crtc, "checking null crtc?\n");
  6415. dev = crtc->dev;
  6416. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6417. if (tmp == crtc)
  6418. break;
  6419. crtc_mask <<= 1;
  6420. }
  6421. if (encoder->possible_crtcs & crtc_mask)
  6422. return true;
  6423. return false;
  6424. }
  6425. /**
  6426. * intel_modeset_update_staged_output_state
  6427. *
  6428. * Updates the staged output configuration state, e.g. after we've read out the
  6429. * current hw state.
  6430. */
  6431. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6432. {
  6433. struct intel_encoder *encoder;
  6434. struct intel_connector *connector;
  6435. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6436. base.head) {
  6437. connector->new_encoder =
  6438. to_intel_encoder(connector->base.encoder);
  6439. }
  6440. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6441. base.head) {
  6442. encoder->new_crtc =
  6443. to_intel_crtc(encoder->base.crtc);
  6444. }
  6445. }
  6446. /**
  6447. * intel_modeset_commit_output_state
  6448. *
  6449. * This function copies the stage display pipe configuration to the real one.
  6450. */
  6451. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6452. {
  6453. struct intel_encoder *encoder;
  6454. struct intel_connector *connector;
  6455. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6456. base.head) {
  6457. connector->base.encoder = &connector->new_encoder->base;
  6458. }
  6459. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6460. base.head) {
  6461. encoder->base.crtc = &encoder->new_crtc->base;
  6462. }
  6463. }
  6464. static int
  6465. pipe_config_set_bpp(struct drm_crtc *crtc,
  6466. struct drm_framebuffer *fb,
  6467. struct intel_crtc_config *pipe_config)
  6468. {
  6469. struct drm_device *dev = crtc->dev;
  6470. struct drm_connector *connector;
  6471. int bpp;
  6472. switch (fb->pixel_format) {
  6473. case DRM_FORMAT_C8:
  6474. bpp = 8*3; /* since we go through a colormap */
  6475. break;
  6476. case DRM_FORMAT_XRGB1555:
  6477. case DRM_FORMAT_ARGB1555:
  6478. /* checked in intel_framebuffer_init already */
  6479. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6480. return -EINVAL;
  6481. case DRM_FORMAT_RGB565:
  6482. bpp = 6*3; /* min is 18bpp */
  6483. break;
  6484. case DRM_FORMAT_XBGR8888:
  6485. case DRM_FORMAT_ABGR8888:
  6486. /* checked in intel_framebuffer_init already */
  6487. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6488. return -EINVAL;
  6489. case DRM_FORMAT_XRGB8888:
  6490. case DRM_FORMAT_ARGB8888:
  6491. bpp = 8*3;
  6492. break;
  6493. case DRM_FORMAT_XRGB2101010:
  6494. case DRM_FORMAT_ARGB2101010:
  6495. case DRM_FORMAT_XBGR2101010:
  6496. case DRM_FORMAT_ABGR2101010:
  6497. /* checked in intel_framebuffer_init already */
  6498. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6499. return -EINVAL;
  6500. bpp = 10*3;
  6501. break;
  6502. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6503. default:
  6504. DRM_DEBUG_KMS("unsupported depth\n");
  6505. return -EINVAL;
  6506. }
  6507. pipe_config->pipe_bpp = bpp;
  6508. /* Clamp display bpp to EDID value */
  6509. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6510. head) {
  6511. if (connector->encoder && connector->encoder->crtc != crtc)
  6512. continue;
  6513. /* Don't use an invalid EDID bpc value */
  6514. if (connector->display_info.bpc &&
  6515. connector->display_info.bpc * 3 < bpp) {
  6516. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6517. bpp, connector->display_info.bpc*3);
  6518. pipe_config->pipe_bpp = connector->display_info.bpc*3;
  6519. }
  6520. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6521. if (connector->display_info.bpc == 0 && bpp > 24) {
  6522. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6523. bpp);
  6524. pipe_config->pipe_bpp = 24;
  6525. }
  6526. }
  6527. return bpp;
  6528. }
  6529. static struct intel_crtc_config *
  6530. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6531. struct drm_framebuffer *fb,
  6532. struct drm_display_mode *mode)
  6533. {
  6534. struct drm_device *dev = crtc->dev;
  6535. struct drm_encoder_helper_funcs *encoder_funcs;
  6536. struct intel_encoder *encoder;
  6537. struct intel_crtc_config *pipe_config;
  6538. int plane_bpp, ret = -EINVAL;
  6539. bool retry = true;
  6540. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6541. if (!pipe_config)
  6542. return ERR_PTR(-ENOMEM);
  6543. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6544. drm_mode_copy(&pipe_config->requested_mode, mode);
  6545. plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
  6546. if (plane_bpp < 0)
  6547. goto fail;
  6548. encoder_retry:
  6549. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6550. * adjust it according to limitations or connector properties, and also
  6551. * a chance to reject the mode entirely.
  6552. */
  6553. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6554. base.head) {
  6555. if (&encoder->new_crtc->base != crtc)
  6556. continue;
  6557. if (encoder->compute_config) {
  6558. if (!(encoder->compute_config(encoder, pipe_config))) {
  6559. DRM_DEBUG_KMS("Encoder config failure\n");
  6560. goto fail;
  6561. }
  6562. continue;
  6563. }
  6564. encoder_funcs = encoder->base.helper_private;
  6565. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6566. &pipe_config->requested_mode,
  6567. &pipe_config->adjusted_mode))) {
  6568. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6569. goto fail;
  6570. }
  6571. }
  6572. ret = intel_crtc_compute_config(crtc, pipe_config);
  6573. if (ret < 0) {
  6574. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6575. goto fail;
  6576. }
  6577. if (ret == RETRY) {
  6578. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6579. ret = -EINVAL;
  6580. goto fail;
  6581. }
  6582. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6583. retry = false;
  6584. goto encoder_retry;
  6585. }
  6586. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6587. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6588. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6589. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6590. return pipe_config;
  6591. fail:
  6592. kfree(pipe_config);
  6593. return ERR_PTR(ret);
  6594. }
  6595. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6596. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6597. static void
  6598. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6599. unsigned *prepare_pipes, unsigned *disable_pipes)
  6600. {
  6601. struct intel_crtc *intel_crtc;
  6602. struct drm_device *dev = crtc->dev;
  6603. struct intel_encoder *encoder;
  6604. struct intel_connector *connector;
  6605. struct drm_crtc *tmp_crtc;
  6606. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6607. /* Check which crtcs have changed outputs connected to them, these need
  6608. * to be part of the prepare_pipes mask. We don't (yet) support global
  6609. * modeset across multiple crtcs, so modeset_pipes will only have one
  6610. * bit set at most. */
  6611. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6612. base.head) {
  6613. if (connector->base.encoder == &connector->new_encoder->base)
  6614. continue;
  6615. if (connector->base.encoder) {
  6616. tmp_crtc = connector->base.encoder->crtc;
  6617. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6618. }
  6619. if (connector->new_encoder)
  6620. *prepare_pipes |=
  6621. 1 << connector->new_encoder->new_crtc->pipe;
  6622. }
  6623. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6624. base.head) {
  6625. if (encoder->base.crtc == &encoder->new_crtc->base)
  6626. continue;
  6627. if (encoder->base.crtc) {
  6628. tmp_crtc = encoder->base.crtc;
  6629. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6630. }
  6631. if (encoder->new_crtc)
  6632. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6633. }
  6634. /* Check for any pipes that will be fully disabled ... */
  6635. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6636. base.head) {
  6637. bool used = false;
  6638. /* Don't try to disable disabled crtcs. */
  6639. if (!intel_crtc->base.enabled)
  6640. continue;
  6641. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6642. base.head) {
  6643. if (encoder->new_crtc == intel_crtc)
  6644. used = true;
  6645. }
  6646. if (!used)
  6647. *disable_pipes |= 1 << intel_crtc->pipe;
  6648. }
  6649. /* set_mode is also used to update properties on life display pipes. */
  6650. intel_crtc = to_intel_crtc(crtc);
  6651. if (crtc->enabled)
  6652. *prepare_pipes |= 1 << intel_crtc->pipe;
  6653. /*
  6654. * For simplicity do a full modeset on any pipe where the output routing
  6655. * changed. We could be more clever, but that would require us to be
  6656. * more careful with calling the relevant encoder->mode_set functions.
  6657. */
  6658. if (*prepare_pipes)
  6659. *modeset_pipes = *prepare_pipes;
  6660. /* ... and mask these out. */
  6661. *modeset_pipes &= ~(*disable_pipes);
  6662. *prepare_pipes &= ~(*disable_pipes);
  6663. /*
  6664. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6665. * obies this rule, but the modeset restore mode of
  6666. * intel_modeset_setup_hw_state does not.
  6667. */
  6668. *modeset_pipes &= 1 << intel_crtc->pipe;
  6669. *prepare_pipes &= 1 << intel_crtc->pipe;
  6670. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6671. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6672. }
  6673. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6674. {
  6675. struct drm_encoder *encoder;
  6676. struct drm_device *dev = crtc->dev;
  6677. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6678. if (encoder->crtc == crtc)
  6679. return true;
  6680. return false;
  6681. }
  6682. static void
  6683. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6684. {
  6685. struct intel_encoder *intel_encoder;
  6686. struct intel_crtc *intel_crtc;
  6687. struct drm_connector *connector;
  6688. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6689. base.head) {
  6690. if (!intel_encoder->base.crtc)
  6691. continue;
  6692. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6693. if (prepare_pipes & (1 << intel_crtc->pipe))
  6694. intel_encoder->connectors_active = false;
  6695. }
  6696. intel_modeset_commit_output_state(dev);
  6697. /* Update computed state. */
  6698. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6699. base.head) {
  6700. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6701. }
  6702. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6703. if (!connector->encoder || !connector->encoder->crtc)
  6704. continue;
  6705. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6706. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6707. struct drm_property *dpms_property =
  6708. dev->mode_config.dpms_property;
  6709. connector->dpms = DRM_MODE_DPMS_ON;
  6710. drm_object_property_set_value(&connector->base,
  6711. dpms_property,
  6712. DRM_MODE_DPMS_ON);
  6713. intel_encoder = to_intel_encoder(connector->encoder);
  6714. intel_encoder->connectors_active = true;
  6715. }
  6716. }
  6717. }
  6718. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6719. list_for_each_entry((intel_crtc), \
  6720. &(dev)->mode_config.crtc_list, \
  6721. base.head) \
  6722. if (mask & (1 <<(intel_crtc)->pipe))
  6723. static bool
  6724. intel_pipe_config_compare(struct intel_crtc_config *current_config,
  6725. struct intel_crtc_config *pipe_config)
  6726. {
  6727. #define PIPE_CONF_CHECK_I(name) \
  6728. if (current_config->name != pipe_config->name) { \
  6729. DRM_ERROR("mismatch in " #name " " \
  6730. "(expected %i, found %i)\n", \
  6731. current_config->name, \
  6732. pipe_config->name); \
  6733. return false; \
  6734. }
  6735. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6736. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6737. DRM_ERROR("mismatch in " #name " " \
  6738. "(expected %i, found %i)\n", \
  6739. current_config->name & (mask), \
  6740. pipe_config->name & (mask)); \
  6741. return false; \
  6742. }
  6743. PIPE_CONF_CHECK_I(has_pch_encoder);
  6744. PIPE_CONF_CHECK_I(fdi_lanes);
  6745. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6746. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6747. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6748. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6749. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6750. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6751. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6752. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6753. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6754. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6755. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6756. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6757. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6758. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6759. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6760. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6761. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6762. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6763. DRM_MODE_FLAG_INTERLACE);
  6764. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6765. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6766. #undef PIPE_CONF_CHECK_I
  6767. #undef PIPE_CONF_CHECK_FLAGS
  6768. return true;
  6769. }
  6770. void
  6771. intel_modeset_check_state(struct drm_device *dev)
  6772. {
  6773. drm_i915_private_t *dev_priv = dev->dev_private;
  6774. struct intel_crtc *crtc;
  6775. struct intel_encoder *encoder;
  6776. struct intel_connector *connector;
  6777. struct intel_crtc_config pipe_config;
  6778. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6779. base.head) {
  6780. /* This also checks the encoder/connector hw state with the
  6781. * ->get_hw_state callbacks. */
  6782. intel_connector_check_state(connector);
  6783. WARN(&connector->new_encoder->base != connector->base.encoder,
  6784. "connector's staged encoder doesn't match current encoder\n");
  6785. }
  6786. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6787. base.head) {
  6788. bool enabled = false;
  6789. bool active = false;
  6790. enum pipe pipe, tracked_pipe;
  6791. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6792. encoder->base.base.id,
  6793. drm_get_encoder_name(&encoder->base));
  6794. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6795. "encoder's stage crtc doesn't match current crtc\n");
  6796. WARN(encoder->connectors_active && !encoder->base.crtc,
  6797. "encoder's active_connectors set, but no crtc\n");
  6798. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6799. base.head) {
  6800. if (connector->base.encoder != &encoder->base)
  6801. continue;
  6802. enabled = true;
  6803. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6804. active = true;
  6805. }
  6806. WARN(!!encoder->base.crtc != enabled,
  6807. "encoder's enabled state mismatch "
  6808. "(expected %i, found %i)\n",
  6809. !!encoder->base.crtc, enabled);
  6810. WARN(active && !encoder->base.crtc,
  6811. "active encoder with no crtc\n");
  6812. WARN(encoder->connectors_active != active,
  6813. "encoder's computed active state doesn't match tracked active state "
  6814. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6815. active = encoder->get_hw_state(encoder, &pipe);
  6816. WARN(active != encoder->connectors_active,
  6817. "encoder's hw state doesn't match sw tracking "
  6818. "(expected %i, found %i)\n",
  6819. encoder->connectors_active, active);
  6820. if (!encoder->base.crtc)
  6821. continue;
  6822. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6823. WARN(active && pipe != tracked_pipe,
  6824. "active encoder's pipe doesn't match"
  6825. "(expected %i, found %i)\n",
  6826. tracked_pipe, pipe);
  6827. }
  6828. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6829. base.head) {
  6830. bool enabled = false;
  6831. bool active = false;
  6832. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6833. crtc->base.base.id);
  6834. WARN(crtc->active && !crtc->base.enabled,
  6835. "active crtc, but not enabled in sw tracking\n");
  6836. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6837. base.head) {
  6838. if (encoder->base.crtc != &crtc->base)
  6839. continue;
  6840. enabled = true;
  6841. if (encoder->connectors_active)
  6842. active = true;
  6843. }
  6844. WARN(active != crtc->active,
  6845. "crtc's computed active state doesn't match tracked active state "
  6846. "(expected %i, found %i)\n", active, crtc->active);
  6847. WARN(enabled != crtc->base.enabled,
  6848. "crtc's computed enabled state doesn't match tracked enabled state "
  6849. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6850. memset(&pipe_config, 0, sizeof(pipe_config));
  6851. pipe_config.cpu_transcoder = crtc->config.cpu_transcoder;
  6852. active = dev_priv->display.get_pipe_config(crtc,
  6853. &pipe_config);
  6854. WARN(crtc->active != active,
  6855. "crtc active state doesn't match with hw state "
  6856. "(expected %i, found %i)\n", crtc->active, active);
  6857. WARN(active &&
  6858. !intel_pipe_config_compare(&crtc->config, &pipe_config),
  6859. "pipe state doesn't match!\n");
  6860. }
  6861. }
  6862. static int __intel_set_mode(struct drm_crtc *crtc,
  6863. struct drm_display_mode *mode,
  6864. int x, int y, struct drm_framebuffer *fb)
  6865. {
  6866. struct drm_device *dev = crtc->dev;
  6867. drm_i915_private_t *dev_priv = dev->dev_private;
  6868. struct drm_display_mode *saved_mode, *saved_hwmode;
  6869. struct intel_crtc_config *pipe_config = NULL;
  6870. struct intel_crtc *intel_crtc;
  6871. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6872. int ret = 0;
  6873. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6874. if (!saved_mode)
  6875. return -ENOMEM;
  6876. saved_hwmode = saved_mode + 1;
  6877. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6878. &prepare_pipes, &disable_pipes);
  6879. *saved_hwmode = crtc->hwmode;
  6880. *saved_mode = crtc->mode;
  6881. /* Hack: Because we don't (yet) support global modeset on multiple
  6882. * crtcs, we don't keep track of the new mode for more than one crtc.
  6883. * Hence simply check whether any bit is set in modeset_pipes in all the
  6884. * pieces of code that are not yet converted to deal with mutliple crtcs
  6885. * changing their mode at the same time. */
  6886. if (modeset_pipes) {
  6887. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6888. if (IS_ERR(pipe_config)) {
  6889. ret = PTR_ERR(pipe_config);
  6890. pipe_config = NULL;
  6891. goto out;
  6892. }
  6893. }
  6894. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6895. intel_crtc_disable(&intel_crtc->base);
  6896. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6897. if (intel_crtc->base.enabled)
  6898. dev_priv->display.crtc_disable(&intel_crtc->base);
  6899. }
  6900. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6901. * to set it here already despite that we pass it down the callchain.
  6902. */
  6903. if (modeset_pipes) {
  6904. enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
  6905. crtc->mode = *mode;
  6906. /* mode_set/enable/disable functions rely on a correct pipe
  6907. * config. */
  6908. to_intel_crtc(crtc)->config = *pipe_config;
  6909. to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
  6910. }
  6911. /* Only after disabling all output pipelines that will be changed can we
  6912. * update the the output configuration. */
  6913. intel_modeset_update_state(dev, prepare_pipes);
  6914. if (dev_priv->display.modeset_global_resources)
  6915. dev_priv->display.modeset_global_resources(dev);
  6916. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6917. * on the DPLL.
  6918. */
  6919. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6920. ret = intel_crtc_mode_set(&intel_crtc->base,
  6921. x, y, fb);
  6922. if (ret)
  6923. goto done;
  6924. }
  6925. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6926. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6927. dev_priv->display.crtc_enable(&intel_crtc->base);
  6928. if (modeset_pipes) {
  6929. /* Store real post-adjustment hardware mode. */
  6930. crtc->hwmode = pipe_config->adjusted_mode;
  6931. /* Calculate and store various constants which
  6932. * are later needed by vblank and swap-completion
  6933. * timestamping. They are derived from true hwmode.
  6934. */
  6935. drm_calc_timestamping_constants(crtc);
  6936. }
  6937. /* FIXME: add subpixel order */
  6938. done:
  6939. if (ret && crtc->enabled) {
  6940. crtc->hwmode = *saved_hwmode;
  6941. crtc->mode = *saved_mode;
  6942. }
  6943. out:
  6944. kfree(pipe_config);
  6945. kfree(saved_mode);
  6946. return ret;
  6947. }
  6948. int intel_set_mode(struct drm_crtc *crtc,
  6949. struct drm_display_mode *mode,
  6950. int x, int y, struct drm_framebuffer *fb)
  6951. {
  6952. int ret;
  6953. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6954. if (ret == 0)
  6955. intel_modeset_check_state(crtc->dev);
  6956. return ret;
  6957. }
  6958. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6959. {
  6960. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6961. }
  6962. #undef for_each_intel_crtc_masked
  6963. static void intel_set_config_free(struct intel_set_config *config)
  6964. {
  6965. if (!config)
  6966. return;
  6967. kfree(config->save_connector_encoders);
  6968. kfree(config->save_encoder_crtcs);
  6969. kfree(config);
  6970. }
  6971. static int intel_set_config_save_state(struct drm_device *dev,
  6972. struct intel_set_config *config)
  6973. {
  6974. struct drm_encoder *encoder;
  6975. struct drm_connector *connector;
  6976. int count;
  6977. config->save_encoder_crtcs =
  6978. kcalloc(dev->mode_config.num_encoder,
  6979. sizeof(struct drm_crtc *), GFP_KERNEL);
  6980. if (!config->save_encoder_crtcs)
  6981. return -ENOMEM;
  6982. config->save_connector_encoders =
  6983. kcalloc(dev->mode_config.num_connector,
  6984. sizeof(struct drm_encoder *), GFP_KERNEL);
  6985. if (!config->save_connector_encoders)
  6986. return -ENOMEM;
  6987. /* Copy data. Note that driver private data is not affected.
  6988. * Should anything bad happen only the expected state is
  6989. * restored, not the drivers personal bookkeeping.
  6990. */
  6991. count = 0;
  6992. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6993. config->save_encoder_crtcs[count++] = encoder->crtc;
  6994. }
  6995. count = 0;
  6996. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6997. config->save_connector_encoders[count++] = connector->encoder;
  6998. }
  6999. return 0;
  7000. }
  7001. static void intel_set_config_restore_state(struct drm_device *dev,
  7002. struct intel_set_config *config)
  7003. {
  7004. struct intel_encoder *encoder;
  7005. struct intel_connector *connector;
  7006. int count;
  7007. count = 0;
  7008. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7009. encoder->new_crtc =
  7010. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7011. }
  7012. count = 0;
  7013. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7014. connector->new_encoder =
  7015. to_intel_encoder(config->save_connector_encoders[count++]);
  7016. }
  7017. }
  7018. static void
  7019. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7020. struct intel_set_config *config)
  7021. {
  7022. /* We should be able to check here if the fb has the same properties
  7023. * and then just flip_or_move it */
  7024. if (set->crtc->fb != set->fb) {
  7025. /* If we have no fb then treat it as a full mode set */
  7026. if (set->crtc->fb == NULL) {
  7027. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7028. config->mode_changed = true;
  7029. } else if (set->fb == NULL) {
  7030. config->mode_changed = true;
  7031. } else if (set->fb->pixel_format !=
  7032. set->crtc->fb->pixel_format) {
  7033. config->mode_changed = true;
  7034. } else
  7035. config->fb_changed = true;
  7036. }
  7037. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7038. config->fb_changed = true;
  7039. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7040. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7041. drm_mode_debug_printmodeline(&set->crtc->mode);
  7042. drm_mode_debug_printmodeline(set->mode);
  7043. config->mode_changed = true;
  7044. }
  7045. }
  7046. static int
  7047. intel_modeset_stage_output_state(struct drm_device *dev,
  7048. struct drm_mode_set *set,
  7049. struct intel_set_config *config)
  7050. {
  7051. struct drm_crtc *new_crtc;
  7052. struct intel_connector *connector;
  7053. struct intel_encoder *encoder;
  7054. int count, ro;
  7055. /* The upper layers ensure that we either disable a crtc or have a list
  7056. * of connectors. For paranoia, double-check this. */
  7057. WARN_ON(!set->fb && (set->num_connectors != 0));
  7058. WARN_ON(set->fb && (set->num_connectors == 0));
  7059. count = 0;
  7060. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7061. base.head) {
  7062. /* Otherwise traverse passed in connector list and get encoders
  7063. * for them. */
  7064. for (ro = 0; ro < set->num_connectors; ro++) {
  7065. if (set->connectors[ro] == &connector->base) {
  7066. connector->new_encoder = connector->encoder;
  7067. break;
  7068. }
  7069. }
  7070. /* If we disable the crtc, disable all its connectors. Also, if
  7071. * the connector is on the changing crtc but not on the new
  7072. * connector list, disable it. */
  7073. if ((!set->fb || ro == set->num_connectors) &&
  7074. connector->base.encoder &&
  7075. connector->base.encoder->crtc == set->crtc) {
  7076. connector->new_encoder = NULL;
  7077. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7078. connector->base.base.id,
  7079. drm_get_connector_name(&connector->base));
  7080. }
  7081. if (&connector->new_encoder->base != connector->base.encoder) {
  7082. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7083. config->mode_changed = true;
  7084. }
  7085. }
  7086. /* connector->new_encoder is now updated for all connectors. */
  7087. /* Update crtc of enabled connectors. */
  7088. count = 0;
  7089. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7090. base.head) {
  7091. if (!connector->new_encoder)
  7092. continue;
  7093. new_crtc = connector->new_encoder->base.crtc;
  7094. for (ro = 0; ro < set->num_connectors; ro++) {
  7095. if (set->connectors[ro] == &connector->base)
  7096. new_crtc = set->crtc;
  7097. }
  7098. /* Make sure the new CRTC will work with the encoder */
  7099. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7100. new_crtc)) {
  7101. return -EINVAL;
  7102. }
  7103. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7104. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7105. connector->base.base.id,
  7106. drm_get_connector_name(&connector->base),
  7107. new_crtc->base.id);
  7108. }
  7109. /* Check for any encoders that needs to be disabled. */
  7110. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7111. base.head) {
  7112. list_for_each_entry(connector,
  7113. &dev->mode_config.connector_list,
  7114. base.head) {
  7115. if (connector->new_encoder == encoder) {
  7116. WARN_ON(!connector->new_encoder->new_crtc);
  7117. goto next_encoder;
  7118. }
  7119. }
  7120. encoder->new_crtc = NULL;
  7121. next_encoder:
  7122. /* Only now check for crtc changes so we don't miss encoders
  7123. * that will be disabled. */
  7124. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7125. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7126. config->mode_changed = true;
  7127. }
  7128. }
  7129. /* Now we've also updated encoder->new_crtc for all encoders. */
  7130. return 0;
  7131. }
  7132. static int intel_crtc_set_config(struct drm_mode_set *set)
  7133. {
  7134. struct drm_device *dev;
  7135. struct drm_mode_set save_set;
  7136. struct intel_set_config *config;
  7137. int ret;
  7138. BUG_ON(!set);
  7139. BUG_ON(!set->crtc);
  7140. BUG_ON(!set->crtc->helper_private);
  7141. /* Enforce sane interface api - has been abused by the fb helper. */
  7142. BUG_ON(!set->mode && set->fb);
  7143. BUG_ON(set->fb && set->num_connectors == 0);
  7144. if (set->fb) {
  7145. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7146. set->crtc->base.id, set->fb->base.id,
  7147. (int)set->num_connectors, set->x, set->y);
  7148. } else {
  7149. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7150. }
  7151. dev = set->crtc->dev;
  7152. ret = -ENOMEM;
  7153. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7154. if (!config)
  7155. goto out_config;
  7156. ret = intel_set_config_save_state(dev, config);
  7157. if (ret)
  7158. goto out_config;
  7159. save_set.crtc = set->crtc;
  7160. save_set.mode = &set->crtc->mode;
  7161. save_set.x = set->crtc->x;
  7162. save_set.y = set->crtc->y;
  7163. save_set.fb = set->crtc->fb;
  7164. /* Compute whether we need a full modeset, only an fb base update or no
  7165. * change at all. In the future we might also check whether only the
  7166. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7167. * such cases. */
  7168. intel_set_config_compute_mode_changes(set, config);
  7169. ret = intel_modeset_stage_output_state(dev, set, config);
  7170. if (ret)
  7171. goto fail;
  7172. if (config->mode_changed) {
  7173. if (set->mode) {
  7174. DRM_DEBUG_KMS("attempting to set mode from"
  7175. " userspace\n");
  7176. drm_mode_debug_printmodeline(set->mode);
  7177. }
  7178. ret = intel_set_mode(set->crtc, set->mode,
  7179. set->x, set->y, set->fb);
  7180. if (ret) {
  7181. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7182. set->crtc->base.id, ret);
  7183. goto fail;
  7184. }
  7185. } else if (config->fb_changed) {
  7186. intel_crtc_wait_for_pending_flips(set->crtc);
  7187. ret = intel_pipe_set_base(set->crtc,
  7188. set->x, set->y, set->fb);
  7189. }
  7190. intel_set_config_free(config);
  7191. return 0;
  7192. fail:
  7193. intel_set_config_restore_state(dev, config);
  7194. /* Try to restore the config */
  7195. if (config->mode_changed &&
  7196. intel_set_mode(save_set.crtc, save_set.mode,
  7197. save_set.x, save_set.y, save_set.fb))
  7198. DRM_ERROR("failed to restore config after modeset failure\n");
  7199. out_config:
  7200. intel_set_config_free(config);
  7201. return ret;
  7202. }
  7203. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7204. .cursor_set = intel_crtc_cursor_set,
  7205. .cursor_move = intel_crtc_cursor_move,
  7206. .gamma_set = intel_crtc_gamma_set,
  7207. .set_config = intel_crtc_set_config,
  7208. .destroy = intel_crtc_destroy,
  7209. .page_flip = intel_crtc_page_flip,
  7210. };
  7211. static void intel_cpu_pll_init(struct drm_device *dev)
  7212. {
  7213. if (HAS_DDI(dev))
  7214. intel_ddi_pll_init(dev);
  7215. }
  7216. static void intel_pch_pll_init(struct drm_device *dev)
  7217. {
  7218. drm_i915_private_t *dev_priv = dev->dev_private;
  7219. int i;
  7220. if (dev_priv->num_pch_pll == 0) {
  7221. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7222. return;
  7223. }
  7224. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7225. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7226. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7227. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7228. }
  7229. }
  7230. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7231. {
  7232. drm_i915_private_t *dev_priv = dev->dev_private;
  7233. struct intel_crtc *intel_crtc;
  7234. int i;
  7235. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7236. if (intel_crtc == NULL)
  7237. return;
  7238. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7239. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7240. for (i = 0; i < 256; i++) {
  7241. intel_crtc->lut_r[i] = i;
  7242. intel_crtc->lut_g[i] = i;
  7243. intel_crtc->lut_b[i] = i;
  7244. }
  7245. /* Swap pipes & planes for FBC on pre-965 */
  7246. intel_crtc->pipe = pipe;
  7247. intel_crtc->plane = pipe;
  7248. intel_crtc->config.cpu_transcoder = pipe;
  7249. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7250. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7251. intel_crtc->plane = !pipe;
  7252. }
  7253. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7254. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7255. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7256. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7257. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7258. }
  7259. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7260. struct drm_file *file)
  7261. {
  7262. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7263. struct drm_mode_object *drmmode_obj;
  7264. struct intel_crtc *crtc;
  7265. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7266. return -ENODEV;
  7267. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7268. DRM_MODE_OBJECT_CRTC);
  7269. if (!drmmode_obj) {
  7270. DRM_ERROR("no such CRTC id\n");
  7271. return -EINVAL;
  7272. }
  7273. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7274. pipe_from_crtc_id->pipe = crtc->pipe;
  7275. return 0;
  7276. }
  7277. static int intel_encoder_clones(struct intel_encoder *encoder)
  7278. {
  7279. struct drm_device *dev = encoder->base.dev;
  7280. struct intel_encoder *source_encoder;
  7281. int index_mask = 0;
  7282. int entry = 0;
  7283. list_for_each_entry(source_encoder,
  7284. &dev->mode_config.encoder_list, base.head) {
  7285. if (encoder == source_encoder)
  7286. index_mask |= (1 << entry);
  7287. /* Intel hw has only one MUX where enocoders could be cloned. */
  7288. if (encoder->cloneable && source_encoder->cloneable)
  7289. index_mask |= (1 << entry);
  7290. entry++;
  7291. }
  7292. return index_mask;
  7293. }
  7294. static bool has_edp_a(struct drm_device *dev)
  7295. {
  7296. struct drm_i915_private *dev_priv = dev->dev_private;
  7297. if (!IS_MOBILE(dev))
  7298. return false;
  7299. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7300. return false;
  7301. if (IS_GEN5(dev) &&
  7302. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7303. return false;
  7304. return true;
  7305. }
  7306. static void intel_setup_outputs(struct drm_device *dev)
  7307. {
  7308. struct drm_i915_private *dev_priv = dev->dev_private;
  7309. struct intel_encoder *encoder;
  7310. bool dpd_is_edp = false;
  7311. bool has_lvds;
  7312. has_lvds = intel_lvds_init(dev);
  7313. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7314. /* disable the panel fitter on everything but LVDS */
  7315. I915_WRITE(PFIT_CONTROL, 0);
  7316. }
  7317. if (!IS_ULT(dev))
  7318. intel_crt_init(dev);
  7319. if (HAS_DDI(dev)) {
  7320. int found;
  7321. /* Haswell uses DDI functions to detect digital outputs */
  7322. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7323. /* DDI A only supports eDP */
  7324. if (found)
  7325. intel_ddi_init(dev, PORT_A);
  7326. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7327. * register */
  7328. found = I915_READ(SFUSE_STRAP);
  7329. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7330. intel_ddi_init(dev, PORT_B);
  7331. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7332. intel_ddi_init(dev, PORT_C);
  7333. if (found & SFUSE_STRAP_DDID_DETECTED)
  7334. intel_ddi_init(dev, PORT_D);
  7335. } else if (HAS_PCH_SPLIT(dev)) {
  7336. int found;
  7337. dpd_is_edp = intel_dpd_is_edp(dev);
  7338. if (has_edp_a(dev))
  7339. intel_dp_init(dev, DP_A, PORT_A);
  7340. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7341. /* PCH SDVOB multiplex with HDMIB */
  7342. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7343. if (!found)
  7344. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7345. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7346. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7347. }
  7348. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7349. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7350. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7351. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7352. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7353. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7354. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7355. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7356. } else if (IS_VALLEYVIEW(dev)) {
  7357. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7358. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7359. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7360. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7361. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7362. PORT_B);
  7363. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7364. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7365. }
  7366. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7367. bool found = false;
  7368. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7369. DRM_DEBUG_KMS("probing SDVOB\n");
  7370. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7371. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7372. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7373. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7374. }
  7375. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7376. DRM_DEBUG_KMS("probing DP_B\n");
  7377. intel_dp_init(dev, DP_B, PORT_B);
  7378. }
  7379. }
  7380. /* Before G4X SDVOC doesn't have its own detect register */
  7381. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7382. DRM_DEBUG_KMS("probing SDVOC\n");
  7383. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7384. }
  7385. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7386. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7387. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7388. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7389. }
  7390. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7391. DRM_DEBUG_KMS("probing DP_C\n");
  7392. intel_dp_init(dev, DP_C, PORT_C);
  7393. }
  7394. }
  7395. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7396. (I915_READ(DP_D) & DP_DETECTED)) {
  7397. DRM_DEBUG_KMS("probing DP_D\n");
  7398. intel_dp_init(dev, DP_D, PORT_D);
  7399. }
  7400. } else if (IS_GEN2(dev))
  7401. intel_dvo_init(dev);
  7402. if (SUPPORTS_TV(dev))
  7403. intel_tv_init(dev);
  7404. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7405. encoder->base.possible_crtcs = encoder->crtc_mask;
  7406. encoder->base.possible_clones =
  7407. intel_encoder_clones(encoder);
  7408. }
  7409. intel_init_pch_refclk(dev);
  7410. drm_helper_move_panel_connectors_to_head(dev);
  7411. }
  7412. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7413. {
  7414. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7415. drm_framebuffer_cleanup(fb);
  7416. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7417. kfree(intel_fb);
  7418. }
  7419. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7420. struct drm_file *file,
  7421. unsigned int *handle)
  7422. {
  7423. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7424. struct drm_i915_gem_object *obj = intel_fb->obj;
  7425. return drm_gem_handle_create(file, &obj->base, handle);
  7426. }
  7427. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7428. .destroy = intel_user_framebuffer_destroy,
  7429. .create_handle = intel_user_framebuffer_create_handle,
  7430. };
  7431. int intel_framebuffer_init(struct drm_device *dev,
  7432. struct intel_framebuffer *intel_fb,
  7433. struct drm_mode_fb_cmd2 *mode_cmd,
  7434. struct drm_i915_gem_object *obj)
  7435. {
  7436. int ret;
  7437. if (obj->tiling_mode == I915_TILING_Y) {
  7438. DRM_DEBUG("hardware does not support tiling Y\n");
  7439. return -EINVAL;
  7440. }
  7441. if (mode_cmd->pitches[0] & 63) {
  7442. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7443. mode_cmd->pitches[0]);
  7444. return -EINVAL;
  7445. }
  7446. /* FIXME <= Gen4 stride limits are bit unclear */
  7447. if (mode_cmd->pitches[0] > 32768) {
  7448. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7449. mode_cmd->pitches[0]);
  7450. return -EINVAL;
  7451. }
  7452. if (obj->tiling_mode != I915_TILING_NONE &&
  7453. mode_cmd->pitches[0] != obj->stride) {
  7454. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7455. mode_cmd->pitches[0], obj->stride);
  7456. return -EINVAL;
  7457. }
  7458. /* Reject formats not supported by any plane early. */
  7459. switch (mode_cmd->pixel_format) {
  7460. case DRM_FORMAT_C8:
  7461. case DRM_FORMAT_RGB565:
  7462. case DRM_FORMAT_XRGB8888:
  7463. case DRM_FORMAT_ARGB8888:
  7464. break;
  7465. case DRM_FORMAT_XRGB1555:
  7466. case DRM_FORMAT_ARGB1555:
  7467. if (INTEL_INFO(dev)->gen > 3) {
  7468. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7469. return -EINVAL;
  7470. }
  7471. break;
  7472. case DRM_FORMAT_XBGR8888:
  7473. case DRM_FORMAT_ABGR8888:
  7474. case DRM_FORMAT_XRGB2101010:
  7475. case DRM_FORMAT_ARGB2101010:
  7476. case DRM_FORMAT_XBGR2101010:
  7477. case DRM_FORMAT_ABGR2101010:
  7478. if (INTEL_INFO(dev)->gen < 4) {
  7479. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7480. return -EINVAL;
  7481. }
  7482. break;
  7483. case DRM_FORMAT_YUYV:
  7484. case DRM_FORMAT_UYVY:
  7485. case DRM_FORMAT_YVYU:
  7486. case DRM_FORMAT_VYUY:
  7487. if (INTEL_INFO(dev)->gen < 5) {
  7488. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7489. return -EINVAL;
  7490. }
  7491. break;
  7492. default:
  7493. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7494. return -EINVAL;
  7495. }
  7496. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7497. if (mode_cmd->offsets[0] != 0)
  7498. return -EINVAL;
  7499. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7500. intel_fb->obj = obj;
  7501. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7502. if (ret) {
  7503. DRM_ERROR("framebuffer init failed %d\n", ret);
  7504. return ret;
  7505. }
  7506. return 0;
  7507. }
  7508. static struct drm_framebuffer *
  7509. intel_user_framebuffer_create(struct drm_device *dev,
  7510. struct drm_file *filp,
  7511. struct drm_mode_fb_cmd2 *mode_cmd)
  7512. {
  7513. struct drm_i915_gem_object *obj;
  7514. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7515. mode_cmd->handles[0]));
  7516. if (&obj->base == NULL)
  7517. return ERR_PTR(-ENOENT);
  7518. return intel_framebuffer_create(dev, mode_cmd, obj);
  7519. }
  7520. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7521. .fb_create = intel_user_framebuffer_create,
  7522. .output_poll_changed = intel_fb_output_poll_changed,
  7523. };
  7524. /* Set up chip specific display functions */
  7525. static void intel_init_display(struct drm_device *dev)
  7526. {
  7527. struct drm_i915_private *dev_priv = dev->dev_private;
  7528. if (HAS_DDI(dev)) {
  7529. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7530. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7531. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7532. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7533. dev_priv->display.off = haswell_crtc_off;
  7534. dev_priv->display.update_plane = ironlake_update_plane;
  7535. } else if (HAS_PCH_SPLIT(dev)) {
  7536. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7537. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7538. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7539. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7540. dev_priv->display.off = ironlake_crtc_off;
  7541. dev_priv->display.update_plane = ironlake_update_plane;
  7542. } else if (IS_VALLEYVIEW(dev)) {
  7543. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7544. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7545. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7546. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7547. dev_priv->display.off = i9xx_crtc_off;
  7548. dev_priv->display.update_plane = i9xx_update_plane;
  7549. } else {
  7550. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7551. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7552. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7553. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7554. dev_priv->display.off = i9xx_crtc_off;
  7555. dev_priv->display.update_plane = i9xx_update_plane;
  7556. }
  7557. /* Returns the core display clock speed */
  7558. if (IS_VALLEYVIEW(dev))
  7559. dev_priv->display.get_display_clock_speed =
  7560. valleyview_get_display_clock_speed;
  7561. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7562. dev_priv->display.get_display_clock_speed =
  7563. i945_get_display_clock_speed;
  7564. else if (IS_I915G(dev))
  7565. dev_priv->display.get_display_clock_speed =
  7566. i915_get_display_clock_speed;
  7567. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7568. dev_priv->display.get_display_clock_speed =
  7569. i9xx_misc_get_display_clock_speed;
  7570. else if (IS_I915GM(dev))
  7571. dev_priv->display.get_display_clock_speed =
  7572. i915gm_get_display_clock_speed;
  7573. else if (IS_I865G(dev))
  7574. dev_priv->display.get_display_clock_speed =
  7575. i865_get_display_clock_speed;
  7576. else if (IS_I85X(dev))
  7577. dev_priv->display.get_display_clock_speed =
  7578. i855_get_display_clock_speed;
  7579. else /* 852, 830 */
  7580. dev_priv->display.get_display_clock_speed =
  7581. i830_get_display_clock_speed;
  7582. if (HAS_PCH_SPLIT(dev)) {
  7583. if (IS_GEN5(dev)) {
  7584. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7585. dev_priv->display.write_eld = ironlake_write_eld;
  7586. } else if (IS_GEN6(dev)) {
  7587. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7588. dev_priv->display.write_eld = ironlake_write_eld;
  7589. } else if (IS_IVYBRIDGE(dev)) {
  7590. /* FIXME: detect B0+ stepping and use auto training */
  7591. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7592. dev_priv->display.write_eld = ironlake_write_eld;
  7593. dev_priv->display.modeset_global_resources =
  7594. ivb_modeset_global_resources;
  7595. } else if (IS_HASWELL(dev)) {
  7596. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7597. dev_priv->display.write_eld = haswell_write_eld;
  7598. dev_priv->display.modeset_global_resources =
  7599. haswell_modeset_global_resources;
  7600. }
  7601. } else if (IS_G4X(dev)) {
  7602. dev_priv->display.write_eld = g4x_write_eld;
  7603. }
  7604. /* Default just returns -ENODEV to indicate unsupported */
  7605. dev_priv->display.queue_flip = intel_default_queue_flip;
  7606. switch (INTEL_INFO(dev)->gen) {
  7607. case 2:
  7608. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7609. break;
  7610. case 3:
  7611. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7612. break;
  7613. case 4:
  7614. case 5:
  7615. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7616. break;
  7617. case 6:
  7618. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7619. break;
  7620. case 7:
  7621. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7622. break;
  7623. }
  7624. }
  7625. /*
  7626. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7627. * resume, or other times. This quirk makes sure that's the case for
  7628. * affected systems.
  7629. */
  7630. static void quirk_pipea_force(struct drm_device *dev)
  7631. {
  7632. struct drm_i915_private *dev_priv = dev->dev_private;
  7633. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7634. DRM_INFO("applying pipe a force quirk\n");
  7635. }
  7636. /*
  7637. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7638. */
  7639. static void quirk_ssc_force_disable(struct drm_device *dev)
  7640. {
  7641. struct drm_i915_private *dev_priv = dev->dev_private;
  7642. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7643. DRM_INFO("applying lvds SSC disable quirk\n");
  7644. }
  7645. /*
  7646. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7647. * brightness value
  7648. */
  7649. static void quirk_invert_brightness(struct drm_device *dev)
  7650. {
  7651. struct drm_i915_private *dev_priv = dev->dev_private;
  7652. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7653. DRM_INFO("applying inverted panel brightness quirk\n");
  7654. }
  7655. struct intel_quirk {
  7656. int device;
  7657. int subsystem_vendor;
  7658. int subsystem_device;
  7659. void (*hook)(struct drm_device *dev);
  7660. };
  7661. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7662. struct intel_dmi_quirk {
  7663. void (*hook)(struct drm_device *dev);
  7664. const struct dmi_system_id (*dmi_id_list)[];
  7665. };
  7666. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7667. {
  7668. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7669. return 1;
  7670. }
  7671. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7672. {
  7673. .dmi_id_list = &(const struct dmi_system_id[]) {
  7674. {
  7675. .callback = intel_dmi_reverse_brightness,
  7676. .ident = "NCR Corporation",
  7677. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7678. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7679. },
  7680. },
  7681. { } /* terminating entry */
  7682. },
  7683. .hook = quirk_invert_brightness,
  7684. },
  7685. };
  7686. static struct intel_quirk intel_quirks[] = {
  7687. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7688. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7689. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7690. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7691. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7692. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7693. /* 830/845 need to leave pipe A & dpll A up */
  7694. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7695. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7696. /* Lenovo U160 cannot use SSC on LVDS */
  7697. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7698. /* Sony Vaio Y cannot use SSC on LVDS */
  7699. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7700. /* Acer Aspire 5734Z must invert backlight brightness */
  7701. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7702. /* Acer/eMachines G725 */
  7703. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7704. /* Acer/eMachines e725 */
  7705. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7706. /* Acer/Packard Bell NCL20 */
  7707. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7708. /* Acer Aspire 4736Z */
  7709. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7710. };
  7711. static void intel_init_quirks(struct drm_device *dev)
  7712. {
  7713. struct pci_dev *d = dev->pdev;
  7714. int i;
  7715. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7716. struct intel_quirk *q = &intel_quirks[i];
  7717. if (d->device == q->device &&
  7718. (d->subsystem_vendor == q->subsystem_vendor ||
  7719. q->subsystem_vendor == PCI_ANY_ID) &&
  7720. (d->subsystem_device == q->subsystem_device ||
  7721. q->subsystem_device == PCI_ANY_ID))
  7722. q->hook(dev);
  7723. }
  7724. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7725. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7726. intel_dmi_quirks[i].hook(dev);
  7727. }
  7728. }
  7729. /* Disable the VGA plane that we never use */
  7730. static void i915_disable_vga(struct drm_device *dev)
  7731. {
  7732. struct drm_i915_private *dev_priv = dev->dev_private;
  7733. u8 sr1;
  7734. u32 vga_reg = i915_vgacntrl_reg(dev);
  7735. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7736. outb(SR01, VGA_SR_INDEX);
  7737. sr1 = inb(VGA_SR_DATA);
  7738. outb(sr1 | 1<<5, VGA_SR_DATA);
  7739. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7740. udelay(300);
  7741. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7742. POSTING_READ(vga_reg);
  7743. }
  7744. void intel_modeset_init_hw(struct drm_device *dev)
  7745. {
  7746. intel_init_power_well(dev);
  7747. intel_prepare_ddi(dev);
  7748. intel_init_clock_gating(dev);
  7749. mutex_lock(&dev->struct_mutex);
  7750. intel_enable_gt_powersave(dev);
  7751. mutex_unlock(&dev->struct_mutex);
  7752. }
  7753. void intel_modeset_init(struct drm_device *dev)
  7754. {
  7755. struct drm_i915_private *dev_priv = dev->dev_private;
  7756. int i, j, ret;
  7757. drm_mode_config_init(dev);
  7758. dev->mode_config.min_width = 0;
  7759. dev->mode_config.min_height = 0;
  7760. dev->mode_config.preferred_depth = 24;
  7761. dev->mode_config.prefer_shadow = 1;
  7762. dev->mode_config.funcs = &intel_mode_funcs;
  7763. intel_init_quirks(dev);
  7764. intel_init_pm(dev);
  7765. if (INTEL_INFO(dev)->num_pipes == 0)
  7766. return;
  7767. intel_init_display(dev);
  7768. if (IS_GEN2(dev)) {
  7769. dev->mode_config.max_width = 2048;
  7770. dev->mode_config.max_height = 2048;
  7771. } else if (IS_GEN3(dev)) {
  7772. dev->mode_config.max_width = 4096;
  7773. dev->mode_config.max_height = 4096;
  7774. } else {
  7775. dev->mode_config.max_width = 8192;
  7776. dev->mode_config.max_height = 8192;
  7777. }
  7778. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7779. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7780. INTEL_INFO(dev)->num_pipes,
  7781. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7782. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7783. intel_crtc_init(dev, i);
  7784. for (j = 0; j < dev_priv->num_plane; j++) {
  7785. ret = intel_plane_init(dev, i, j);
  7786. if (ret)
  7787. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7788. pipe_name(i), sprite_name(i, j), ret);
  7789. }
  7790. }
  7791. intel_cpu_pll_init(dev);
  7792. intel_pch_pll_init(dev);
  7793. /* Just disable it once at startup */
  7794. i915_disable_vga(dev);
  7795. intel_setup_outputs(dev);
  7796. /* Just in case the BIOS is doing something questionable. */
  7797. intel_disable_fbc(dev);
  7798. }
  7799. static void
  7800. intel_connector_break_all_links(struct intel_connector *connector)
  7801. {
  7802. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7803. connector->base.encoder = NULL;
  7804. connector->encoder->connectors_active = false;
  7805. connector->encoder->base.crtc = NULL;
  7806. }
  7807. static void intel_enable_pipe_a(struct drm_device *dev)
  7808. {
  7809. struct intel_connector *connector;
  7810. struct drm_connector *crt = NULL;
  7811. struct intel_load_detect_pipe load_detect_temp;
  7812. /* We can't just switch on the pipe A, we need to set things up with a
  7813. * proper mode and output configuration. As a gross hack, enable pipe A
  7814. * by enabling the load detect pipe once. */
  7815. list_for_each_entry(connector,
  7816. &dev->mode_config.connector_list,
  7817. base.head) {
  7818. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7819. crt = &connector->base;
  7820. break;
  7821. }
  7822. }
  7823. if (!crt)
  7824. return;
  7825. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7826. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7827. }
  7828. static bool
  7829. intel_check_plane_mapping(struct intel_crtc *crtc)
  7830. {
  7831. struct drm_device *dev = crtc->base.dev;
  7832. struct drm_i915_private *dev_priv = dev->dev_private;
  7833. u32 reg, val;
  7834. if (INTEL_INFO(dev)->num_pipes == 1)
  7835. return true;
  7836. reg = DSPCNTR(!crtc->plane);
  7837. val = I915_READ(reg);
  7838. if ((val & DISPLAY_PLANE_ENABLE) &&
  7839. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7840. return false;
  7841. return true;
  7842. }
  7843. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7844. {
  7845. struct drm_device *dev = crtc->base.dev;
  7846. struct drm_i915_private *dev_priv = dev->dev_private;
  7847. u32 reg;
  7848. /* Clear any frame start delays used for debugging left by the BIOS */
  7849. reg = PIPECONF(crtc->config.cpu_transcoder);
  7850. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7851. /* We need to sanitize the plane -> pipe mapping first because this will
  7852. * disable the crtc (and hence change the state) if it is wrong. Note
  7853. * that gen4+ has a fixed plane -> pipe mapping. */
  7854. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7855. struct intel_connector *connector;
  7856. bool plane;
  7857. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7858. crtc->base.base.id);
  7859. /* Pipe has the wrong plane attached and the plane is active.
  7860. * Temporarily change the plane mapping and disable everything
  7861. * ... */
  7862. plane = crtc->plane;
  7863. crtc->plane = !plane;
  7864. dev_priv->display.crtc_disable(&crtc->base);
  7865. crtc->plane = plane;
  7866. /* ... and break all links. */
  7867. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7868. base.head) {
  7869. if (connector->encoder->base.crtc != &crtc->base)
  7870. continue;
  7871. intel_connector_break_all_links(connector);
  7872. }
  7873. WARN_ON(crtc->active);
  7874. crtc->base.enabled = false;
  7875. }
  7876. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7877. crtc->pipe == PIPE_A && !crtc->active) {
  7878. /* BIOS forgot to enable pipe A, this mostly happens after
  7879. * resume. Force-enable the pipe to fix this, the update_dpms
  7880. * call below we restore the pipe to the right state, but leave
  7881. * the required bits on. */
  7882. intel_enable_pipe_a(dev);
  7883. }
  7884. /* Adjust the state of the output pipe according to whether we
  7885. * have active connectors/encoders. */
  7886. intel_crtc_update_dpms(&crtc->base);
  7887. if (crtc->active != crtc->base.enabled) {
  7888. struct intel_encoder *encoder;
  7889. /* This can happen either due to bugs in the get_hw_state
  7890. * functions or because the pipe is force-enabled due to the
  7891. * pipe A quirk. */
  7892. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7893. crtc->base.base.id,
  7894. crtc->base.enabled ? "enabled" : "disabled",
  7895. crtc->active ? "enabled" : "disabled");
  7896. crtc->base.enabled = crtc->active;
  7897. /* Because we only establish the connector -> encoder ->
  7898. * crtc links if something is active, this means the
  7899. * crtc is now deactivated. Break the links. connector
  7900. * -> encoder links are only establish when things are
  7901. * actually up, hence no need to break them. */
  7902. WARN_ON(crtc->active);
  7903. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7904. WARN_ON(encoder->connectors_active);
  7905. encoder->base.crtc = NULL;
  7906. }
  7907. }
  7908. }
  7909. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7910. {
  7911. struct intel_connector *connector;
  7912. struct drm_device *dev = encoder->base.dev;
  7913. /* We need to check both for a crtc link (meaning that the
  7914. * encoder is active and trying to read from a pipe) and the
  7915. * pipe itself being active. */
  7916. bool has_active_crtc = encoder->base.crtc &&
  7917. to_intel_crtc(encoder->base.crtc)->active;
  7918. if (encoder->connectors_active && !has_active_crtc) {
  7919. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7920. encoder->base.base.id,
  7921. drm_get_encoder_name(&encoder->base));
  7922. /* Connector is active, but has no active pipe. This is
  7923. * fallout from our resume register restoring. Disable
  7924. * the encoder manually again. */
  7925. if (encoder->base.crtc) {
  7926. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7927. encoder->base.base.id,
  7928. drm_get_encoder_name(&encoder->base));
  7929. encoder->disable(encoder);
  7930. }
  7931. /* Inconsistent output/port/pipe state happens presumably due to
  7932. * a bug in one of the get_hw_state functions. Or someplace else
  7933. * in our code, like the register restore mess on resume. Clamp
  7934. * things to off as a safer default. */
  7935. list_for_each_entry(connector,
  7936. &dev->mode_config.connector_list,
  7937. base.head) {
  7938. if (connector->encoder != encoder)
  7939. continue;
  7940. intel_connector_break_all_links(connector);
  7941. }
  7942. }
  7943. /* Enabled encoders without active connectors will be fixed in
  7944. * the crtc fixup. */
  7945. }
  7946. void i915_redisable_vga(struct drm_device *dev)
  7947. {
  7948. struct drm_i915_private *dev_priv = dev->dev_private;
  7949. u32 vga_reg = i915_vgacntrl_reg(dev);
  7950. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7951. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7952. i915_disable_vga(dev);
  7953. }
  7954. }
  7955. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7956. * and i915 state tracking structures. */
  7957. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7958. bool force_restore)
  7959. {
  7960. struct drm_i915_private *dev_priv = dev->dev_private;
  7961. enum pipe pipe;
  7962. u32 tmp;
  7963. struct drm_plane *plane;
  7964. struct intel_crtc *crtc;
  7965. struct intel_encoder *encoder;
  7966. struct intel_connector *connector;
  7967. if (HAS_DDI(dev)) {
  7968. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7969. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7970. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7971. case TRANS_DDI_EDP_INPUT_A_ON:
  7972. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7973. pipe = PIPE_A;
  7974. break;
  7975. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7976. pipe = PIPE_B;
  7977. break;
  7978. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7979. pipe = PIPE_C;
  7980. break;
  7981. default:
  7982. /* A bogus value has been programmed, disable
  7983. * the transcoder */
  7984. WARN(1, "Bogus eDP source %08x\n", tmp);
  7985. intel_ddi_disable_transcoder_func(dev_priv,
  7986. TRANSCODER_EDP);
  7987. goto setup_pipes;
  7988. }
  7989. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7990. crtc->config.cpu_transcoder = TRANSCODER_EDP;
  7991. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7992. pipe_name(pipe));
  7993. }
  7994. }
  7995. setup_pipes:
  7996. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7997. base.head) {
  7998. enum transcoder tmp = crtc->config.cpu_transcoder;
  7999. memset(&crtc->config, 0, sizeof(crtc->config));
  8000. crtc->config.cpu_transcoder = tmp;
  8001. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8002. &crtc->config);
  8003. crtc->base.enabled = crtc->active;
  8004. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8005. crtc->base.base.id,
  8006. crtc->active ? "enabled" : "disabled");
  8007. }
  8008. if (HAS_DDI(dev))
  8009. intel_ddi_setup_hw_pll_state(dev);
  8010. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8011. base.head) {
  8012. pipe = 0;
  8013. if (encoder->get_hw_state(encoder, &pipe)) {
  8014. encoder->base.crtc =
  8015. dev_priv->pipe_to_crtc_mapping[pipe];
  8016. } else {
  8017. encoder->base.crtc = NULL;
  8018. }
  8019. encoder->connectors_active = false;
  8020. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8021. encoder->base.base.id,
  8022. drm_get_encoder_name(&encoder->base),
  8023. encoder->base.crtc ? "enabled" : "disabled",
  8024. pipe);
  8025. }
  8026. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8027. base.head) {
  8028. if (connector->get_hw_state(connector)) {
  8029. connector->base.dpms = DRM_MODE_DPMS_ON;
  8030. connector->encoder->connectors_active = true;
  8031. connector->base.encoder = &connector->encoder->base;
  8032. } else {
  8033. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8034. connector->base.encoder = NULL;
  8035. }
  8036. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8037. connector->base.base.id,
  8038. drm_get_connector_name(&connector->base),
  8039. connector->base.encoder ? "enabled" : "disabled");
  8040. }
  8041. /* HW state is read out, now we need to sanitize this mess. */
  8042. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8043. base.head) {
  8044. intel_sanitize_encoder(encoder);
  8045. }
  8046. for_each_pipe(pipe) {
  8047. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8048. intel_sanitize_crtc(crtc);
  8049. }
  8050. if (force_restore) {
  8051. /*
  8052. * We need to use raw interfaces for restoring state to avoid
  8053. * checking (bogus) intermediate states.
  8054. */
  8055. for_each_pipe(pipe) {
  8056. struct drm_crtc *crtc =
  8057. dev_priv->pipe_to_crtc_mapping[pipe];
  8058. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8059. crtc->fb);
  8060. }
  8061. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8062. intel_plane_restore(plane);
  8063. i915_redisable_vga(dev);
  8064. } else {
  8065. intel_modeset_update_staged_output_state(dev);
  8066. }
  8067. intel_modeset_check_state(dev);
  8068. drm_mode_config_reset(dev);
  8069. }
  8070. void intel_modeset_gem_init(struct drm_device *dev)
  8071. {
  8072. intel_modeset_init_hw(dev);
  8073. intel_setup_overlay(dev);
  8074. intel_modeset_setup_hw_state(dev, false);
  8075. }
  8076. void intel_modeset_cleanup(struct drm_device *dev)
  8077. {
  8078. struct drm_i915_private *dev_priv = dev->dev_private;
  8079. struct drm_crtc *crtc;
  8080. struct intel_crtc *intel_crtc;
  8081. /*
  8082. * Interrupts and polling as the first thing to avoid creating havoc.
  8083. * Too much stuff here (turning of rps, connectors, ...) would
  8084. * experience fancy races otherwise.
  8085. */
  8086. drm_irq_uninstall(dev);
  8087. cancel_work_sync(&dev_priv->hotplug_work);
  8088. /*
  8089. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8090. * poll handlers. Hence disable polling after hpd handling is shut down.
  8091. */
  8092. drm_kms_helper_poll_fini(dev);
  8093. mutex_lock(&dev->struct_mutex);
  8094. intel_unregister_dsm_handler();
  8095. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8096. /* Skip inactive CRTCs */
  8097. if (!crtc->fb)
  8098. continue;
  8099. intel_crtc = to_intel_crtc(crtc);
  8100. intel_increase_pllclock(crtc);
  8101. }
  8102. intel_disable_fbc(dev);
  8103. intel_disable_gt_powersave(dev);
  8104. ironlake_teardown_rc6(dev);
  8105. mutex_unlock(&dev->struct_mutex);
  8106. /* flush any delayed tasks or pending work */
  8107. flush_scheduled_work();
  8108. /* destroy backlight, if any, before the connectors */
  8109. intel_panel_destroy_backlight(dev);
  8110. drm_mode_config_cleanup(dev);
  8111. intel_cleanup_overlay(dev);
  8112. }
  8113. /*
  8114. * Return which encoder is currently attached for connector.
  8115. */
  8116. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8117. {
  8118. return &intel_attached_encoder(connector)->base;
  8119. }
  8120. void intel_connector_attach_encoder(struct intel_connector *connector,
  8121. struct intel_encoder *encoder)
  8122. {
  8123. connector->encoder = encoder;
  8124. drm_mode_connector_attach_encoder(&connector->base,
  8125. &encoder->base);
  8126. }
  8127. /*
  8128. * set vga decode state - true == enable VGA decode
  8129. */
  8130. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8131. {
  8132. struct drm_i915_private *dev_priv = dev->dev_private;
  8133. u16 gmch_ctrl;
  8134. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8135. if (state)
  8136. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8137. else
  8138. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8139. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8140. return 0;
  8141. }
  8142. #ifdef CONFIG_DEBUG_FS
  8143. #include <linux/seq_file.h>
  8144. struct intel_display_error_state {
  8145. u32 power_well_driver;
  8146. struct intel_cursor_error_state {
  8147. u32 control;
  8148. u32 position;
  8149. u32 base;
  8150. u32 size;
  8151. } cursor[I915_MAX_PIPES];
  8152. struct intel_pipe_error_state {
  8153. enum transcoder cpu_transcoder;
  8154. u32 conf;
  8155. u32 source;
  8156. u32 htotal;
  8157. u32 hblank;
  8158. u32 hsync;
  8159. u32 vtotal;
  8160. u32 vblank;
  8161. u32 vsync;
  8162. } pipe[I915_MAX_PIPES];
  8163. struct intel_plane_error_state {
  8164. u32 control;
  8165. u32 stride;
  8166. u32 size;
  8167. u32 pos;
  8168. u32 addr;
  8169. u32 surface;
  8170. u32 tile_offset;
  8171. } plane[I915_MAX_PIPES];
  8172. };
  8173. struct intel_display_error_state *
  8174. intel_display_capture_error_state(struct drm_device *dev)
  8175. {
  8176. drm_i915_private_t *dev_priv = dev->dev_private;
  8177. struct intel_display_error_state *error;
  8178. enum transcoder cpu_transcoder;
  8179. int i;
  8180. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8181. if (error == NULL)
  8182. return NULL;
  8183. if (HAS_POWER_WELL(dev))
  8184. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8185. for_each_pipe(i) {
  8186. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8187. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8188. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8189. error->cursor[i].control = I915_READ(CURCNTR(i));
  8190. error->cursor[i].position = I915_READ(CURPOS(i));
  8191. error->cursor[i].base = I915_READ(CURBASE(i));
  8192. } else {
  8193. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8194. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8195. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8196. }
  8197. error->plane[i].control = I915_READ(DSPCNTR(i));
  8198. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8199. if (INTEL_INFO(dev)->gen <= 3) {
  8200. error->plane[i].size = I915_READ(DSPSIZE(i));
  8201. error->plane[i].pos = I915_READ(DSPPOS(i));
  8202. }
  8203. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8204. error->plane[i].addr = I915_READ(DSPADDR(i));
  8205. if (INTEL_INFO(dev)->gen >= 4) {
  8206. error->plane[i].surface = I915_READ(DSPSURF(i));
  8207. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8208. }
  8209. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8210. error->pipe[i].source = I915_READ(PIPESRC(i));
  8211. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8212. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8213. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8214. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8215. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8216. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8217. }
  8218. /* In the code above we read the registers without checking if the power
  8219. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8220. * prevent the next I915_WRITE from detecting it and printing an error
  8221. * message. */
  8222. if (HAS_POWER_WELL(dev))
  8223. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8224. return error;
  8225. }
  8226. void
  8227. intel_display_print_error_state(struct seq_file *m,
  8228. struct drm_device *dev,
  8229. struct intel_display_error_state *error)
  8230. {
  8231. int i;
  8232. seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8233. if (HAS_POWER_WELL(dev))
  8234. seq_printf(m, "PWR_WELL_CTL2: %08x\n",
  8235. error->power_well_driver);
  8236. for_each_pipe(i) {
  8237. seq_printf(m, "Pipe [%d]:\n", i);
  8238. seq_printf(m, " CPU transcoder: %c\n",
  8239. transcoder_name(error->pipe[i].cpu_transcoder));
  8240. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8241. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8242. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8243. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8244. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8245. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8246. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8247. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8248. seq_printf(m, "Plane [%d]:\n", i);
  8249. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8250. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8251. if (INTEL_INFO(dev)->gen <= 3) {
  8252. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8253. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8254. }
  8255. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8256. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8257. if (INTEL_INFO(dev)->gen >= 4) {
  8258. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8259. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8260. }
  8261. seq_printf(m, "Cursor [%d]:\n", i);
  8262. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8263. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8264. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8265. }
  8266. }
  8267. #endif