page_alloc.c 88 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/memory_hotplug.h>
  35. #include <linux/nodemask.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/stop_machine.h>
  39. #include <linux/sort.h>
  40. #include <linux/pfn.h>
  41. #include <linux/backing-dev.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/div64.h>
  44. #include "internal.h"
  45. /*
  46. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  47. * initializer cleaner
  48. */
  49. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  50. EXPORT_SYMBOL(node_online_map);
  51. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  52. EXPORT_SYMBOL(node_possible_map);
  53. unsigned long totalram_pages __read_mostly;
  54. unsigned long totalreserve_pages __read_mostly;
  55. long nr_swap_pages;
  56. int percpu_pagelist_fraction;
  57. static void __free_pages_ok(struct page *page, unsigned int order);
  58. /*
  59. * results with 256, 32 in the lowmem_reserve sysctl:
  60. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  61. * 1G machine -> (16M dma, 784M normal, 224M high)
  62. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  63. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  64. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  65. *
  66. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  67. * don't need any ZONE_NORMAL reservation
  68. */
  69. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  70. 256,
  71. #ifdef CONFIG_ZONE_DMA32
  72. 256,
  73. #endif
  74. #ifdef CONFIG_HIGHMEM
  75. 32
  76. #endif
  77. };
  78. EXPORT_SYMBOL(totalram_pages);
  79. static char *zone_names[MAX_NR_ZONES] = {
  80. "DMA",
  81. #ifdef CONFIG_ZONE_DMA32
  82. "DMA32",
  83. #endif
  84. "Normal",
  85. #ifdef CONFIG_HIGHMEM
  86. "HighMem"
  87. #endif
  88. };
  89. int min_free_kbytes = 1024;
  90. unsigned long __meminitdata nr_kernel_pages;
  91. unsigned long __meminitdata nr_all_pages;
  92. static unsigned long __initdata dma_reserve;
  93. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  94. /*
  95. * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
  96. * ranges of memory (RAM) that may be registered with add_active_range().
  97. * Ranges passed to add_active_range() will be merged if possible
  98. * so the number of times add_active_range() can be called is
  99. * related to the number of nodes and the number of holes
  100. */
  101. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  102. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  103. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  104. #else
  105. #if MAX_NUMNODES >= 32
  106. /* If there can be many nodes, allow up to 50 holes per node */
  107. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  108. #else
  109. /* By default, allow up to 256 distinct regions */
  110. #define MAX_ACTIVE_REGIONS 256
  111. #endif
  112. #endif
  113. struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
  114. int __initdata nr_nodemap_entries;
  115. unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  116. unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  117. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  118. unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
  119. unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
  120. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  121. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  122. #ifdef CONFIG_DEBUG_VM
  123. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  124. {
  125. int ret = 0;
  126. unsigned seq;
  127. unsigned long pfn = page_to_pfn(page);
  128. do {
  129. seq = zone_span_seqbegin(zone);
  130. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  131. ret = 1;
  132. else if (pfn < zone->zone_start_pfn)
  133. ret = 1;
  134. } while (zone_span_seqretry(zone, seq));
  135. return ret;
  136. }
  137. static int page_is_consistent(struct zone *zone, struct page *page)
  138. {
  139. #ifdef CONFIG_HOLES_IN_ZONE
  140. if (!pfn_valid(page_to_pfn(page)))
  141. return 0;
  142. #endif
  143. if (zone != page_zone(page))
  144. return 0;
  145. return 1;
  146. }
  147. /*
  148. * Temporary debugging check for pages not lying within a given zone.
  149. */
  150. static int bad_range(struct zone *zone, struct page *page)
  151. {
  152. if (page_outside_zone_boundaries(zone, page))
  153. return 1;
  154. if (!page_is_consistent(zone, page))
  155. return 1;
  156. return 0;
  157. }
  158. #else
  159. static inline int bad_range(struct zone *zone, struct page *page)
  160. {
  161. return 0;
  162. }
  163. #endif
  164. static void bad_page(struct page *page)
  165. {
  166. printk(KERN_EMERG "Bad page state in process '%s'\n"
  167. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  168. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  169. KERN_EMERG "Backtrace:\n",
  170. current->comm, page, (int)(2*sizeof(unsigned long)),
  171. (unsigned long)page->flags, page->mapping,
  172. page_mapcount(page), page_count(page));
  173. dump_stack();
  174. page->flags &= ~(1 << PG_lru |
  175. 1 << PG_private |
  176. 1 << PG_locked |
  177. 1 << PG_active |
  178. 1 << PG_dirty |
  179. 1 << PG_reclaim |
  180. 1 << PG_slab |
  181. 1 << PG_swapcache |
  182. 1 << PG_writeback |
  183. 1 << PG_buddy );
  184. set_page_count(page, 0);
  185. reset_page_mapcount(page);
  186. page->mapping = NULL;
  187. add_taint(TAINT_BAD_PAGE);
  188. }
  189. /*
  190. * Higher-order pages are called "compound pages". They are structured thusly:
  191. *
  192. * The first PAGE_SIZE page is called the "head page".
  193. *
  194. * The remaining PAGE_SIZE pages are called "tail pages".
  195. *
  196. * All pages have PG_compound set. All pages have their ->private pointing at
  197. * the head page (even the head page has this).
  198. *
  199. * The first tail page's ->lru.next holds the address of the compound page's
  200. * put_page() function. Its ->lru.prev holds the order of allocation.
  201. * This usage means that zero-order pages may not be compound.
  202. */
  203. static void free_compound_page(struct page *page)
  204. {
  205. __free_pages_ok(page, (unsigned long)page[1].lru.prev);
  206. }
  207. static void prep_compound_page(struct page *page, unsigned long order)
  208. {
  209. int i;
  210. int nr_pages = 1 << order;
  211. page[1].lru.next = (void *)free_compound_page; /* set dtor */
  212. page[1].lru.prev = (void *)order;
  213. for (i = 0; i < nr_pages; i++) {
  214. struct page *p = page + i;
  215. __SetPageCompound(p);
  216. set_page_private(p, (unsigned long)page);
  217. }
  218. }
  219. static void destroy_compound_page(struct page *page, unsigned long order)
  220. {
  221. int i;
  222. int nr_pages = 1 << order;
  223. if (unlikely((unsigned long)page[1].lru.prev != order))
  224. bad_page(page);
  225. for (i = 0; i < nr_pages; i++) {
  226. struct page *p = page + i;
  227. if (unlikely(!PageCompound(p) |
  228. (page_private(p) != (unsigned long)page)))
  229. bad_page(page);
  230. __ClearPageCompound(p);
  231. }
  232. }
  233. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  234. {
  235. int i;
  236. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  237. /*
  238. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  239. * and __GFP_HIGHMEM from hard or soft interrupt context.
  240. */
  241. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  242. for (i = 0; i < (1 << order); i++)
  243. clear_highpage(page + i);
  244. }
  245. /*
  246. * function for dealing with page's order in buddy system.
  247. * zone->lock is already acquired when we use these.
  248. * So, we don't need atomic page->flags operations here.
  249. */
  250. static inline unsigned long page_order(struct page *page)
  251. {
  252. return page_private(page);
  253. }
  254. static inline void set_page_order(struct page *page, int order)
  255. {
  256. set_page_private(page, order);
  257. __SetPageBuddy(page);
  258. }
  259. static inline void rmv_page_order(struct page *page)
  260. {
  261. __ClearPageBuddy(page);
  262. set_page_private(page, 0);
  263. }
  264. /*
  265. * Locate the struct page for both the matching buddy in our
  266. * pair (buddy1) and the combined O(n+1) page they form (page).
  267. *
  268. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  269. * the following equation:
  270. * B2 = B1 ^ (1 << O)
  271. * For example, if the starting buddy (buddy2) is #8 its order
  272. * 1 buddy is #10:
  273. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  274. *
  275. * 2) Any buddy B will have an order O+1 parent P which
  276. * satisfies the following equation:
  277. * P = B & ~(1 << O)
  278. *
  279. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  280. */
  281. static inline struct page *
  282. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  283. {
  284. unsigned long buddy_idx = page_idx ^ (1 << order);
  285. return page + (buddy_idx - page_idx);
  286. }
  287. static inline unsigned long
  288. __find_combined_index(unsigned long page_idx, unsigned int order)
  289. {
  290. return (page_idx & ~(1 << order));
  291. }
  292. /*
  293. * This function checks whether a page is free && is the buddy
  294. * we can do coalesce a page and its buddy if
  295. * (a) the buddy is not in a hole &&
  296. * (b) the buddy is in the buddy system &&
  297. * (c) a page and its buddy have the same order &&
  298. * (d) a page and its buddy are in the same zone.
  299. *
  300. * For recording whether a page is in the buddy system, we use PG_buddy.
  301. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  302. *
  303. * For recording page's order, we use page_private(page).
  304. */
  305. static inline int page_is_buddy(struct page *page, struct page *buddy,
  306. int order)
  307. {
  308. #ifdef CONFIG_HOLES_IN_ZONE
  309. if (!pfn_valid(page_to_pfn(buddy)))
  310. return 0;
  311. #endif
  312. if (page_zone_id(page) != page_zone_id(buddy))
  313. return 0;
  314. if (PageBuddy(buddy) && page_order(buddy) == order) {
  315. BUG_ON(page_count(buddy) != 0);
  316. return 1;
  317. }
  318. return 0;
  319. }
  320. /*
  321. * Freeing function for a buddy system allocator.
  322. *
  323. * The concept of a buddy system is to maintain direct-mapped table
  324. * (containing bit values) for memory blocks of various "orders".
  325. * The bottom level table contains the map for the smallest allocatable
  326. * units of memory (here, pages), and each level above it describes
  327. * pairs of units from the levels below, hence, "buddies".
  328. * At a high level, all that happens here is marking the table entry
  329. * at the bottom level available, and propagating the changes upward
  330. * as necessary, plus some accounting needed to play nicely with other
  331. * parts of the VM system.
  332. * At each level, we keep a list of pages, which are heads of continuous
  333. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  334. * order is recorded in page_private(page) field.
  335. * So when we are allocating or freeing one, we can derive the state of the
  336. * other. That is, if we allocate a small block, and both were
  337. * free, the remainder of the region must be split into blocks.
  338. * If a block is freed, and its buddy is also free, then this
  339. * triggers coalescing into a block of larger size.
  340. *
  341. * -- wli
  342. */
  343. static inline void __free_one_page(struct page *page,
  344. struct zone *zone, unsigned int order)
  345. {
  346. unsigned long page_idx;
  347. int order_size = 1 << order;
  348. if (unlikely(PageCompound(page)))
  349. destroy_compound_page(page, order);
  350. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  351. VM_BUG_ON(page_idx & (order_size - 1));
  352. VM_BUG_ON(bad_range(zone, page));
  353. zone->free_pages += order_size;
  354. while (order < MAX_ORDER-1) {
  355. unsigned long combined_idx;
  356. struct free_area *area;
  357. struct page *buddy;
  358. buddy = __page_find_buddy(page, page_idx, order);
  359. if (!page_is_buddy(page, buddy, order))
  360. break; /* Move the buddy up one level. */
  361. list_del(&buddy->lru);
  362. area = zone->free_area + order;
  363. area->nr_free--;
  364. rmv_page_order(buddy);
  365. combined_idx = __find_combined_index(page_idx, order);
  366. page = page + (combined_idx - page_idx);
  367. page_idx = combined_idx;
  368. order++;
  369. }
  370. set_page_order(page, order);
  371. list_add(&page->lru, &zone->free_area[order].free_list);
  372. zone->free_area[order].nr_free++;
  373. }
  374. static inline int free_pages_check(struct page *page)
  375. {
  376. if (unlikely(page_mapcount(page) |
  377. (page->mapping != NULL) |
  378. (page_count(page) != 0) |
  379. (page->flags & (
  380. 1 << PG_lru |
  381. 1 << PG_private |
  382. 1 << PG_locked |
  383. 1 << PG_active |
  384. 1 << PG_reclaim |
  385. 1 << PG_slab |
  386. 1 << PG_swapcache |
  387. 1 << PG_writeback |
  388. 1 << PG_reserved |
  389. 1 << PG_buddy ))))
  390. bad_page(page);
  391. if (PageDirty(page))
  392. __ClearPageDirty(page);
  393. /*
  394. * For now, we report if PG_reserved was found set, but do not
  395. * clear it, and do not free the page. But we shall soon need
  396. * to do more, for when the ZERO_PAGE count wraps negative.
  397. */
  398. return PageReserved(page);
  399. }
  400. /*
  401. * Frees a list of pages.
  402. * Assumes all pages on list are in same zone, and of same order.
  403. * count is the number of pages to free.
  404. *
  405. * If the zone was previously in an "all pages pinned" state then look to
  406. * see if this freeing clears that state.
  407. *
  408. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  409. * pinned" detection logic.
  410. */
  411. static void free_pages_bulk(struct zone *zone, int count,
  412. struct list_head *list, int order)
  413. {
  414. spin_lock(&zone->lock);
  415. zone->all_unreclaimable = 0;
  416. zone->pages_scanned = 0;
  417. while (count--) {
  418. struct page *page;
  419. VM_BUG_ON(list_empty(list));
  420. page = list_entry(list->prev, struct page, lru);
  421. /* have to delete it as __free_one_page list manipulates */
  422. list_del(&page->lru);
  423. __free_one_page(page, zone, order);
  424. }
  425. spin_unlock(&zone->lock);
  426. }
  427. static void free_one_page(struct zone *zone, struct page *page, int order)
  428. {
  429. spin_lock(&zone->lock);
  430. zone->all_unreclaimable = 0;
  431. zone->pages_scanned = 0;
  432. __free_one_page(page, zone, order);
  433. spin_unlock(&zone->lock);
  434. }
  435. static void __free_pages_ok(struct page *page, unsigned int order)
  436. {
  437. unsigned long flags;
  438. int i;
  439. int reserved = 0;
  440. for (i = 0 ; i < (1 << order) ; ++i)
  441. reserved += free_pages_check(page + i);
  442. if (reserved)
  443. return;
  444. if (!PageHighMem(page))
  445. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  446. arch_free_page(page, order);
  447. kernel_map_pages(page, 1 << order, 0);
  448. local_irq_save(flags);
  449. __count_vm_events(PGFREE, 1 << order);
  450. free_one_page(page_zone(page), page, order);
  451. local_irq_restore(flags);
  452. }
  453. /*
  454. * permit the bootmem allocator to evade page validation on high-order frees
  455. */
  456. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  457. {
  458. if (order == 0) {
  459. __ClearPageReserved(page);
  460. set_page_count(page, 0);
  461. set_page_refcounted(page);
  462. __free_page(page);
  463. } else {
  464. int loop;
  465. prefetchw(page);
  466. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  467. struct page *p = &page[loop];
  468. if (loop + 1 < BITS_PER_LONG)
  469. prefetchw(p + 1);
  470. __ClearPageReserved(p);
  471. set_page_count(p, 0);
  472. }
  473. set_page_refcounted(page);
  474. __free_pages(page, order);
  475. }
  476. }
  477. /*
  478. * The order of subdivision here is critical for the IO subsystem.
  479. * Please do not alter this order without good reasons and regression
  480. * testing. Specifically, as large blocks of memory are subdivided,
  481. * the order in which smaller blocks are delivered depends on the order
  482. * they're subdivided in this function. This is the primary factor
  483. * influencing the order in which pages are delivered to the IO
  484. * subsystem according to empirical testing, and this is also justified
  485. * by considering the behavior of a buddy system containing a single
  486. * large block of memory acted on by a series of small allocations.
  487. * This behavior is a critical factor in sglist merging's success.
  488. *
  489. * -- wli
  490. */
  491. static inline void expand(struct zone *zone, struct page *page,
  492. int low, int high, struct free_area *area)
  493. {
  494. unsigned long size = 1 << high;
  495. while (high > low) {
  496. area--;
  497. high--;
  498. size >>= 1;
  499. VM_BUG_ON(bad_range(zone, &page[size]));
  500. list_add(&page[size].lru, &area->free_list);
  501. area->nr_free++;
  502. set_page_order(&page[size], high);
  503. }
  504. }
  505. /*
  506. * This page is about to be returned from the page allocator
  507. */
  508. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  509. {
  510. if (unlikely(page_mapcount(page) |
  511. (page->mapping != NULL) |
  512. (page_count(page) != 0) |
  513. (page->flags & (
  514. 1 << PG_lru |
  515. 1 << PG_private |
  516. 1 << PG_locked |
  517. 1 << PG_active |
  518. 1 << PG_dirty |
  519. 1 << PG_reclaim |
  520. 1 << PG_slab |
  521. 1 << PG_swapcache |
  522. 1 << PG_writeback |
  523. 1 << PG_reserved |
  524. 1 << PG_buddy ))))
  525. bad_page(page);
  526. /*
  527. * For now, we report if PG_reserved was found set, but do not
  528. * clear it, and do not allocate the page: as a safety net.
  529. */
  530. if (PageReserved(page))
  531. return 1;
  532. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  533. 1 << PG_referenced | 1 << PG_arch_1 |
  534. 1 << PG_checked | 1 << PG_mappedtodisk);
  535. set_page_private(page, 0);
  536. set_page_refcounted(page);
  537. arch_alloc_page(page, order);
  538. kernel_map_pages(page, 1 << order, 1);
  539. if (gfp_flags & __GFP_ZERO)
  540. prep_zero_page(page, order, gfp_flags);
  541. if (order && (gfp_flags & __GFP_COMP))
  542. prep_compound_page(page, order);
  543. return 0;
  544. }
  545. /*
  546. * Do the hard work of removing an element from the buddy allocator.
  547. * Call me with the zone->lock already held.
  548. */
  549. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  550. {
  551. struct free_area * area;
  552. unsigned int current_order;
  553. struct page *page;
  554. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  555. area = zone->free_area + current_order;
  556. if (list_empty(&area->free_list))
  557. continue;
  558. page = list_entry(area->free_list.next, struct page, lru);
  559. list_del(&page->lru);
  560. rmv_page_order(page);
  561. area->nr_free--;
  562. zone->free_pages -= 1UL << order;
  563. expand(zone, page, order, current_order, area);
  564. return page;
  565. }
  566. return NULL;
  567. }
  568. /*
  569. * Obtain a specified number of elements from the buddy allocator, all under
  570. * a single hold of the lock, for efficiency. Add them to the supplied list.
  571. * Returns the number of new pages which were placed at *list.
  572. */
  573. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  574. unsigned long count, struct list_head *list)
  575. {
  576. int i;
  577. spin_lock(&zone->lock);
  578. for (i = 0; i < count; ++i) {
  579. struct page *page = __rmqueue(zone, order);
  580. if (unlikely(page == NULL))
  581. break;
  582. list_add_tail(&page->lru, list);
  583. }
  584. spin_unlock(&zone->lock);
  585. return i;
  586. }
  587. #ifdef CONFIG_NUMA
  588. /*
  589. * Called from the slab reaper to drain pagesets on a particular node that
  590. * belongs to the currently executing processor.
  591. * Note that this function must be called with the thread pinned to
  592. * a single processor.
  593. */
  594. void drain_node_pages(int nodeid)
  595. {
  596. int i;
  597. enum zone_type z;
  598. unsigned long flags;
  599. for (z = 0; z < MAX_NR_ZONES; z++) {
  600. struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
  601. struct per_cpu_pageset *pset;
  602. if (!populated_zone(zone))
  603. continue;
  604. pset = zone_pcp(zone, smp_processor_id());
  605. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  606. struct per_cpu_pages *pcp;
  607. pcp = &pset->pcp[i];
  608. if (pcp->count) {
  609. int to_drain;
  610. local_irq_save(flags);
  611. if (pcp->count >= pcp->batch)
  612. to_drain = pcp->batch;
  613. else
  614. to_drain = pcp->count;
  615. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  616. pcp->count -= to_drain;
  617. local_irq_restore(flags);
  618. }
  619. }
  620. }
  621. }
  622. #endif
  623. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  624. static void __drain_pages(unsigned int cpu)
  625. {
  626. unsigned long flags;
  627. struct zone *zone;
  628. int i;
  629. for_each_zone(zone) {
  630. struct per_cpu_pageset *pset;
  631. pset = zone_pcp(zone, cpu);
  632. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  633. struct per_cpu_pages *pcp;
  634. pcp = &pset->pcp[i];
  635. local_irq_save(flags);
  636. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  637. pcp->count = 0;
  638. local_irq_restore(flags);
  639. }
  640. }
  641. }
  642. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  643. #ifdef CONFIG_PM
  644. void mark_free_pages(struct zone *zone)
  645. {
  646. unsigned long pfn, max_zone_pfn;
  647. unsigned long flags;
  648. int order;
  649. struct list_head *curr;
  650. if (!zone->spanned_pages)
  651. return;
  652. spin_lock_irqsave(&zone->lock, flags);
  653. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  654. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  655. if (pfn_valid(pfn)) {
  656. struct page *page = pfn_to_page(pfn);
  657. if (!PageNosave(page))
  658. ClearPageNosaveFree(page);
  659. }
  660. for (order = MAX_ORDER - 1; order >= 0; --order)
  661. list_for_each(curr, &zone->free_area[order].free_list) {
  662. unsigned long i;
  663. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  664. for (i = 0; i < (1UL << order); i++)
  665. SetPageNosaveFree(pfn_to_page(pfn + i));
  666. }
  667. spin_unlock_irqrestore(&zone->lock, flags);
  668. }
  669. /*
  670. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  671. */
  672. void drain_local_pages(void)
  673. {
  674. unsigned long flags;
  675. local_irq_save(flags);
  676. __drain_pages(smp_processor_id());
  677. local_irq_restore(flags);
  678. }
  679. #endif /* CONFIG_PM */
  680. /*
  681. * Free a 0-order page
  682. */
  683. static void fastcall free_hot_cold_page(struct page *page, int cold)
  684. {
  685. struct zone *zone = page_zone(page);
  686. struct per_cpu_pages *pcp;
  687. unsigned long flags;
  688. if (PageAnon(page))
  689. page->mapping = NULL;
  690. if (free_pages_check(page))
  691. return;
  692. if (!PageHighMem(page))
  693. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  694. arch_free_page(page, 0);
  695. kernel_map_pages(page, 1, 0);
  696. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  697. local_irq_save(flags);
  698. __count_vm_event(PGFREE);
  699. list_add(&page->lru, &pcp->list);
  700. pcp->count++;
  701. if (pcp->count >= pcp->high) {
  702. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  703. pcp->count -= pcp->batch;
  704. }
  705. local_irq_restore(flags);
  706. put_cpu();
  707. }
  708. void fastcall free_hot_page(struct page *page)
  709. {
  710. free_hot_cold_page(page, 0);
  711. }
  712. void fastcall free_cold_page(struct page *page)
  713. {
  714. free_hot_cold_page(page, 1);
  715. }
  716. /*
  717. * split_page takes a non-compound higher-order page, and splits it into
  718. * n (1<<order) sub-pages: page[0..n]
  719. * Each sub-page must be freed individually.
  720. *
  721. * Note: this is probably too low level an operation for use in drivers.
  722. * Please consult with lkml before using this in your driver.
  723. */
  724. void split_page(struct page *page, unsigned int order)
  725. {
  726. int i;
  727. VM_BUG_ON(PageCompound(page));
  728. VM_BUG_ON(!page_count(page));
  729. for (i = 1; i < (1 << order); i++)
  730. set_page_refcounted(page + i);
  731. }
  732. /*
  733. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  734. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  735. * or two.
  736. */
  737. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  738. struct zone *zone, int order, gfp_t gfp_flags)
  739. {
  740. unsigned long flags;
  741. struct page *page;
  742. int cold = !!(gfp_flags & __GFP_COLD);
  743. int cpu;
  744. again:
  745. cpu = get_cpu();
  746. if (likely(order == 0)) {
  747. struct per_cpu_pages *pcp;
  748. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  749. local_irq_save(flags);
  750. if (!pcp->count) {
  751. pcp->count = rmqueue_bulk(zone, 0,
  752. pcp->batch, &pcp->list);
  753. if (unlikely(!pcp->count))
  754. goto failed;
  755. }
  756. page = list_entry(pcp->list.next, struct page, lru);
  757. list_del(&page->lru);
  758. pcp->count--;
  759. } else {
  760. spin_lock_irqsave(&zone->lock, flags);
  761. page = __rmqueue(zone, order);
  762. spin_unlock(&zone->lock);
  763. if (!page)
  764. goto failed;
  765. }
  766. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  767. zone_statistics(zonelist, zone);
  768. local_irq_restore(flags);
  769. put_cpu();
  770. VM_BUG_ON(bad_range(zone, page));
  771. if (prep_new_page(page, order, gfp_flags))
  772. goto again;
  773. return page;
  774. failed:
  775. local_irq_restore(flags);
  776. put_cpu();
  777. return NULL;
  778. }
  779. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  780. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  781. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  782. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  783. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  784. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  785. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  786. /*
  787. * Return 1 if free pages are above 'mark'. This takes into account the order
  788. * of the allocation.
  789. */
  790. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  791. int classzone_idx, int alloc_flags)
  792. {
  793. /* free_pages my go negative - that's OK */
  794. unsigned long min = mark;
  795. long free_pages = z->free_pages - (1 << order) + 1;
  796. int o;
  797. if (alloc_flags & ALLOC_HIGH)
  798. min -= min / 2;
  799. if (alloc_flags & ALLOC_HARDER)
  800. min -= min / 4;
  801. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  802. return 0;
  803. for (o = 0; o < order; o++) {
  804. /* At the next order, this order's pages become unavailable */
  805. free_pages -= z->free_area[o].nr_free << o;
  806. /* Require fewer higher order pages to be free */
  807. min >>= 1;
  808. if (free_pages <= min)
  809. return 0;
  810. }
  811. return 1;
  812. }
  813. #ifdef CONFIG_NUMA
  814. /*
  815. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  816. * skip over zones that are not allowed by the cpuset, or that have
  817. * been recently (in last second) found to be nearly full. See further
  818. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  819. * that have to skip over alot of full or unallowed zones.
  820. *
  821. * If the zonelist cache is present in the passed in zonelist, then
  822. * returns a pointer to the allowed node mask (either the current
  823. * tasks mems_allowed, or node_online_map.)
  824. *
  825. * If the zonelist cache is not available for this zonelist, does
  826. * nothing and returns NULL.
  827. *
  828. * If the fullzones BITMAP in the zonelist cache is stale (more than
  829. * a second since last zap'd) then we zap it out (clear its bits.)
  830. *
  831. * We hold off even calling zlc_setup, until after we've checked the
  832. * first zone in the zonelist, on the theory that most allocations will
  833. * be satisfied from that first zone, so best to examine that zone as
  834. * quickly as we can.
  835. */
  836. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  837. {
  838. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  839. nodemask_t *allowednodes; /* zonelist_cache approximation */
  840. zlc = zonelist->zlcache_ptr;
  841. if (!zlc)
  842. return NULL;
  843. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  844. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  845. zlc->last_full_zap = jiffies;
  846. }
  847. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  848. &cpuset_current_mems_allowed :
  849. &node_online_map;
  850. return allowednodes;
  851. }
  852. /*
  853. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  854. * if it is worth looking at further for free memory:
  855. * 1) Check that the zone isn't thought to be full (doesn't have its
  856. * bit set in the zonelist_cache fullzones BITMAP).
  857. * 2) Check that the zones node (obtained from the zonelist_cache
  858. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  859. * Return true (non-zero) if zone is worth looking at further, or
  860. * else return false (zero) if it is not.
  861. *
  862. * This check -ignores- the distinction between various watermarks,
  863. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  864. * found to be full for any variation of these watermarks, it will
  865. * be considered full for up to one second by all requests, unless
  866. * we are so low on memory on all allowed nodes that we are forced
  867. * into the second scan of the zonelist.
  868. *
  869. * In the second scan we ignore this zonelist cache and exactly
  870. * apply the watermarks to all zones, even it is slower to do so.
  871. * We are low on memory in the second scan, and should leave no stone
  872. * unturned looking for a free page.
  873. */
  874. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  875. nodemask_t *allowednodes)
  876. {
  877. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  878. int i; /* index of *z in zonelist zones */
  879. int n; /* node that zone *z is on */
  880. zlc = zonelist->zlcache_ptr;
  881. if (!zlc)
  882. return 1;
  883. i = z - zonelist->zones;
  884. n = zlc->z_to_n[i];
  885. /* This zone is worth trying if it is allowed but not full */
  886. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  887. }
  888. /*
  889. * Given 'z' scanning a zonelist, set the corresponding bit in
  890. * zlc->fullzones, so that subsequent attempts to allocate a page
  891. * from that zone don't waste time re-examining it.
  892. */
  893. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  894. {
  895. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  896. int i; /* index of *z in zonelist zones */
  897. zlc = zonelist->zlcache_ptr;
  898. if (!zlc)
  899. return;
  900. i = z - zonelist->zones;
  901. set_bit(i, zlc->fullzones);
  902. }
  903. #else /* CONFIG_NUMA */
  904. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  905. {
  906. return NULL;
  907. }
  908. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  909. nodemask_t *allowednodes)
  910. {
  911. return 1;
  912. }
  913. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  914. {
  915. }
  916. #endif /* CONFIG_NUMA */
  917. /*
  918. * get_page_from_freelist goes through the zonelist trying to allocate
  919. * a page.
  920. */
  921. static struct page *
  922. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  923. struct zonelist *zonelist, int alloc_flags)
  924. {
  925. struct zone **z;
  926. struct page *page = NULL;
  927. int classzone_idx = zone_idx(zonelist->zones[0]);
  928. struct zone *zone;
  929. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  930. int zlc_active = 0; /* set if using zonelist_cache */
  931. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  932. zonelist_scan:
  933. /*
  934. * Scan zonelist, looking for a zone with enough free.
  935. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  936. */
  937. z = zonelist->zones;
  938. do {
  939. if (NUMA_BUILD && zlc_active &&
  940. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  941. continue;
  942. zone = *z;
  943. if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
  944. zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
  945. break;
  946. if ((alloc_flags & ALLOC_CPUSET) &&
  947. !cpuset_zone_allowed(zone, gfp_mask))
  948. goto try_next_zone;
  949. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  950. unsigned long mark;
  951. if (alloc_flags & ALLOC_WMARK_MIN)
  952. mark = zone->pages_min;
  953. else if (alloc_flags & ALLOC_WMARK_LOW)
  954. mark = zone->pages_low;
  955. else
  956. mark = zone->pages_high;
  957. if (!zone_watermark_ok(zone, order, mark,
  958. classzone_idx, alloc_flags)) {
  959. if (!zone_reclaim_mode ||
  960. !zone_reclaim(zone, gfp_mask, order))
  961. goto this_zone_full;
  962. }
  963. }
  964. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  965. if (page)
  966. break;
  967. this_zone_full:
  968. if (NUMA_BUILD)
  969. zlc_mark_zone_full(zonelist, z);
  970. try_next_zone:
  971. if (NUMA_BUILD && !did_zlc_setup) {
  972. /* we do zlc_setup after the first zone is tried */
  973. allowednodes = zlc_setup(zonelist, alloc_flags);
  974. zlc_active = 1;
  975. did_zlc_setup = 1;
  976. }
  977. } while (*(++z) != NULL);
  978. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  979. /* Disable zlc cache for second zonelist scan */
  980. zlc_active = 0;
  981. goto zonelist_scan;
  982. }
  983. return page;
  984. }
  985. /*
  986. * This is the 'heart' of the zoned buddy allocator.
  987. */
  988. struct page * fastcall
  989. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  990. struct zonelist *zonelist)
  991. {
  992. const gfp_t wait = gfp_mask & __GFP_WAIT;
  993. struct zone **z;
  994. struct page *page;
  995. struct reclaim_state reclaim_state;
  996. struct task_struct *p = current;
  997. int do_retry;
  998. int alloc_flags;
  999. int did_some_progress;
  1000. might_sleep_if(wait);
  1001. restart:
  1002. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1003. if (unlikely(*z == NULL)) {
  1004. /* Should this ever happen?? */
  1005. return NULL;
  1006. }
  1007. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1008. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1009. if (page)
  1010. goto got_pg;
  1011. for (z = zonelist->zones; *z; z++)
  1012. wakeup_kswapd(*z, order);
  1013. /*
  1014. * OK, we're below the kswapd watermark and have kicked background
  1015. * reclaim. Now things get more complex, so set up alloc_flags according
  1016. * to how we want to proceed.
  1017. *
  1018. * The caller may dip into page reserves a bit more if the caller
  1019. * cannot run direct reclaim, or if the caller has realtime scheduling
  1020. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1021. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1022. */
  1023. alloc_flags = ALLOC_WMARK_MIN;
  1024. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1025. alloc_flags |= ALLOC_HARDER;
  1026. if (gfp_mask & __GFP_HIGH)
  1027. alloc_flags |= ALLOC_HIGH;
  1028. if (wait)
  1029. alloc_flags |= ALLOC_CPUSET;
  1030. /*
  1031. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1032. * coming from realtime tasks go deeper into reserves.
  1033. *
  1034. * This is the last chance, in general, before the goto nopage.
  1035. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1036. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1037. */
  1038. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1039. if (page)
  1040. goto got_pg;
  1041. /* This allocation should allow future memory freeing. */
  1042. rebalance:
  1043. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1044. && !in_interrupt()) {
  1045. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1046. nofail_alloc:
  1047. /* go through the zonelist yet again, ignoring mins */
  1048. page = get_page_from_freelist(gfp_mask, order,
  1049. zonelist, ALLOC_NO_WATERMARKS);
  1050. if (page)
  1051. goto got_pg;
  1052. if (gfp_mask & __GFP_NOFAIL) {
  1053. congestion_wait(WRITE, HZ/50);
  1054. goto nofail_alloc;
  1055. }
  1056. }
  1057. goto nopage;
  1058. }
  1059. /* Atomic allocations - we can't balance anything */
  1060. if (!wait)
  1061. goto nopage;
  1062. cond_resched();
  1063. /* We now go into synchronous reclaim */
  1064. cpuset_memory_pressure_bump();
  1065. p->flags |= PF_MEMALLOC;
  1066. reclaim_state.reclaimed_slab = 0;
  1067. p->reclaim_state = &reclaim_state;
  1068. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  1069. p->reclaim_state = NULL;
  1070. p->flags &= ~PF_MEMALLOC;
  1071. cond_resched();
  1072. if (likely(did_some_progress)) {
  1073. page = get_page_from_freelist(gfp_mask, order,
  1074. zonelist, alloc_flags);
  1075. if (page)
  1076. goto got_pg;
  1077. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1078. /*
  1079. * Go through the zonelist yet one more time, keep
  1080. * very high watermark here, this is only to catch
  1081. * a parallel oom killing, we must fail if we're still
  1082. * under heavy pressure.
  1083. */
  1084. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1085. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1086. if (page)
  1087. goto got_pg;
  1088. out_of_memory(zonelist, gfp_mask, order);
  1089. goto restart;
  1090. }
  1091. /*
  1092. * Don't let big-order allocations loop unless the caller explicitly
  1093. * requests that. Wait for some write requests to complete then retry.
  1094. *
  1095. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1096. * <= 3, but that may not be true in other implementations.
  1097. */
  1098. do_retry = 0;
  1099. if (!(gfp_mask & __GFP_NORETRY)) {
  1100. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  1101. do_retry = 1;
  1102. if (gfp_mask & __GFP_NOFAIL)
  1103. do_retry = 1;
  1104. }
  1105. if (do_retry) {
  1106. congestion_wait(WRITE, HZ/50);
  1107. goto rebalance;
  1108. }
  1109. nopage:
  1110. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1111. printk(KERN_WARNING "%s: page allocation failure."
  1112. " order:%d, mode:0x%x\n",
  1113. p->comm, order, gfp_mask);
  1114. dump_stack();
  1115. show_mem();
  1116. }
  1117. got_pg:
  1118. return page;
  1119. }
  1120. EXPORT_SYMBOL(__alloc_pages);
  1121. /*
  1122. * Common helper functions.
  1123. */
  1124. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1125. {
  1126. struct page * page;
  1127. page = alloc_pages(gfp_mask, order);
  1128. if (!page)
  1129. return 0;
  1130. return (unsigned long) page_address(page);
  1131. }
  1132. EXPORT_SYMBOL(__get_free_pages);
  1133. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1134. {
  1135. struct page * page;
  1136. /*
  1137. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1138. * a highmem page
  1139. */
  1140. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1141. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1142. if (page)
  1143. return (unsigned long) page_address(page);
  1144. return 0;
  1145. }
  1146. EXPORT_SYMBOL(get_zeroed_page);
  1147. void __pagevec_free(struct pagevec *pvec)
  1148. {
  1149. int i = pagevec_count(pvec);
  1150. while (--i >= 0)
  1151. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1152. }
  1153. fastcall void __free_pages(struct page *page, unsigned int order)
  1154. {
  1155. if (put_page_testzero(page)) {
  1156. if (order == 0)
  1157. free_hot_page(page);
  1158. else
  1159. __free_pages_ok(page, order);
  1160. }
  1161. }
  1162. EXPORT_SYMBOL(__free_pages);
  1163. fastcall void free_pages(unsigned long addr, unsigned int order)
  1164. {
  1165. if (addr != 0) {
  1166. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1167. __free_pages(virt_to_page((void *)addr), order);
  1168. }
  1169. }
  1170. EXPORT_SYMBOL(free_pages);
  1171. /*
  1172. * Total amount of free (allocatable) RAM:
  1173. */
  1174. unsigned int nr_free_pages(void)
  1175. {
  1176. unsigned int sum = 0;
  1177. struct zone *zone;
  1178. for_each_zone(zone)
  1179. sum += zone->free_pages;
  1180. return sum;
  1181. }
  1182. EXPORT_SYMBOL(nr_free_pages);
  1183. #ifdef CONFIG_NUMA
  1184. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  1185. {
  1186. unsigned int sum = 0;
  1187. enum zone_type i;
  1188. for (i = 0; i < MAX_NR_ZONES; i++)
  1189. sum += pgdat->node_zones[i].free_pages;
  1190. return sum;
  1191. }
  1192. #endif
  1193. static unsigned int nr_free_zone_pages(int offset)
  1194. {
  1195. /* Just pick one node, since fallback list is circular */
  1196. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1197. unsigned int sum = 0;
  1198. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1199. struct zone **zonep = zonelist->zones;
  1200. struct zone *zone;
  1201. for (zone = *zonep++; zone; zone = *zonep++) {
  1202. unsigned long size = zone->present_pages;
  1203. unsigned long high = zone->pages_high;
  1204. if (size > high)
  1205. sum += size - high;
  1206. }
  1207. return sum;
  1208. }
  1209. /*
  1210. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1211. */
  1212. unsigned int nr_free_buffer_pages(void)
  1213. {
  1214. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1215. }
  1216. /*
  1217. * Amount of free RAM allocatable within all zones
  1218. */
  1219. unsigned int nr_free_pagecache_pages(void)
  1220. {
  1221. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  1222. }
  1223. static inline void show_node(struct zone *zone)
  1224. {
  1225. if (NUMA_BUILD)
  1226. printk("Node %ld ", zone_to_nid(zone));
  1227. }
  1228. void si_meminfo(struct sysinfo *val)
  1229. {
  1230. val->totalram = totalram_pages;
  1231. val->sharedram = 0;
  1232. val->freeram = nr_free_pages();
  1233. val->bufferram = nr_blockdev_pages();
  1234. val->totalhigh = totalhigh_pages;
  1235. val->freehigh = nr_free_highpages();
  1236. val->mem_unit = PAGE_SIZE;
  1237. }
  1238. EXPORT_SYMBOL(si_meminfo);
  1239. #ifdef CONFIG_NUMA
  1240. void si_meminfo_node(struct sysinfo *val, int nid)
  1241. {
  1242. pg_data_t *pgdat = NODE_DATA(nid);
  1243. val->totalram = pgdat->node_present_pages;
  1244. val->freeram = nr_free_pages_pgdat(pgdat);
  1245. #ifdef CONFIG_HIGHMEM
  1246. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1247. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1248. #else
  1249. val->totalhigh = 0;
  1250. val->freehigh = 0;
  1251. #endif
  1252. val->mem_unit = PAGE_SIZE;
  1253. }
  1254. #endif
  1255. #define K(x) ((x) << (PAGE_SHIFT-10))
  1256. /*
  1257. * Show free area list (used inside shift_scroll-lock stuff)
  1258. * We also calculate the percentage fragmentation. We do this by counting the
  1259. * memory on each free list with the exception of the first item on the list.
  1260. */
  1261. void show_free_areas(void)
  1262. {
  1263. int cpu;
  1264. unsigned long active;
  1265. unsigned long inactive;
  1266. unsigned long free;
  1267. struct zone *zone;
  1268. for_each_zone(zone) {
  1269. if (!populated_zone(zone))
  1270. continue;
  1271. show_node(zone);
  1272. printk("%s per-cpu:\n", zone->name);
  1273. for_each_online_cpu(cpu) {
  1274. struct per_cpu_pageset *pageset;
  1275. pageset = zone_pcp(zone, cpu);
  1276. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1277. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1278. cpu, pageset->pcp[0].high,
  1279. pageset->pcp[0].batch, pageset->pcp[0].count,
  1280. pageset->pcp[1].high, pageset->pcp[1].batch,
  1281. pageset->pcp[1].count);
  1282. }
  1283. }
  1284. get_zone_counts(&active, &inactive, &free);
  1285. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1286. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1287. active,
  1288. inactive,
  1289. global_page_state(NR_FILE_DIRTY),
  1290. global_page_state(NR_WRITEBACK),
  1291. global_page_state(NR_UNSTABLE_NFS),
  1292. nr_free_pages(),
  1293. global_page_state(NR_SLAB_RECLAIMABLE) +
  1294. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1295. global_page_state(NR_FILE_MAPPED),
  1296. global_page_state(NR_PAGETABLE));
  1297. for_each_zone(zone) {
  1298. int i;
  1299. if (!populated_zone(zone))
  1300. continue;
  1301. show_node(zone);
  1302. printk("%s"
  1303. " free:%lukB"
  1304. " min:%lukB"
  1305. " low:%lukB"
  1306. " high:%lukB"
  1307. " active:%lukB"
  1308. " inactive:%lukB"
  1309. " present:%lukB"
  1310. " pages_scanned:%lu"
  1311. " all_unreclaimable? %s"
  1312. "\n",
  1313. zone->name,
  1314. K(zone->free_pages),
  1315. K(zone->pages_min),
  1316. K(zone->pages_low),
  1317. K(zone->pages_high),
  1318. K(zone->nr_active),
  1319. K(zone->nr_inactive),
  1320. K(zone->present_pages),
  1321. zone->pages_scanned,
  1322. (zone->all_unreclaimable ? "yes" : "no")
  1323. );
  1324. printk("lowmem_reserve[]:");
  1325. for (i = 0; i < MAX_NR_ZONES; i++)
  1326. printk(" %lu", zone->lowmem_reserve[i]);
  1327. printk("\n");
  1328. }
  1329. for_each_zone(zone) {
  1330. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1331. if (!populated_zone(zone))
  1332. continue;
  1333. show_node(zone);
  1334. printk("%s: ", zone->name);
  1335. spin_lock_irqsave(&zone->lock, flags);
  1336. for (order = 0; order < MAX_ORDER; order++) {
  1337. nr[order] = zone->free_area[order].nr_free;
  1338. total += nr[order] << order;
  1339. }
  1340. spin_unlock_irqrestore(&zone->lock, flags);
  1341. for (order = 0; order < MAX_ORDER; order++)
  1342. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1343. printk("= %lukB\n", K(total));
  1344. }
  1345. show_swap_cache_info();
  1346. }
  1347. /*
  1348. * Builds allocation fallback zone lists.
  1349. *
  1350. * Add all populated zones of a node to the zonelist.
  1351. */
  1352. static int __meminit build_zonelists_node(pg_data_t *pgdat,
  1353. struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
  1354. {
  1355. struct zone *zone;
  1356. BUG_ON(zone_type >= MAX_NR_ZONES);
  1357. zone_type++;
  1358. do {
  1359. zone_type--;
  1360. zone = pgdat->node_zones + zone_type;
  1361. if (populated_zone(zone)) {
  1362. zonelist->zones[nr_zones++] = zone;
  1363. check_highest_zone(zone_type);
  1364. }
  1365. } while (zone_type);
  1366. return nr_zones;
  1367. }
  1368. #ifdef CONFIG_NUMA
  1369. #define MAX_NODE_LOAD (num_online_nodes())
  1370. static int __meminitdata node_load[MAX_NUMNODES];
  1371. /**
  1372. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1373. * @node: node whose fallback list we're appending
  1374. * @used_node_mask: nodemask_t of already used nodes
  1375. *
  1376. * We use a number of factors to determine which is the next node that should
  1377. * appear on a given node's fallback list. The node should not have appeared
  1378. * already in @node's fallback list, and it should be the next closest node
  1379. * according to the distance array (which contains arbitrary distance values
  1380. * from each node to each node in the system), and should also prefer nodes
  1381. * with no CPUs, since presumably they'll have very little allocation pressure
  1382. * on them otherwise.
  1383. * It returns -1 if no node is found.
  1384. */
  1385. static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
  1386. {
  1387. int n, val;
  1388. int min_val = INT_MAX;
  1389. int best_node = -1;
  1390. /* Use the local node if we haven't already */
  1391. if (!node_isset(node, *used_node_mask)) {
  1392. node_set(node, *used_node_mask);
  1393. return node;
  1394. }
  1395. for_each_online_node(n) {
  1396. cpumask_t tmp;
  1397. /* Don't want a node to appear more than once */
  1398. if (node_isset(n, *used_node_mask))
  1399. continue;
  1400. /* Use the distance array to find the distance */
  1401. val = node_distance(node, n);
  1402. /* Penalize nodes under us ("prefer the next node") */
  1403. val += (n < node);
  1404. /* Give preference to headless and unused nodes */
  1405. tmp = node_to_cpumask(n);
  1406. if (!cpus_empty(tmp))
  1407. val += PENALTY_FOR_NODE_WITH_CPUS;
  1408. /* Slight preference for less loaded node */
  1409. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1410. val += node_load[n];
  1411. if (val < min_val) {
  1412. min_val = val;
  1413. best_node = n;
  1414. }
  1415. }
  1416. if (best_node >= 0)
  1417. node_set(best_node, *used_node_mask);
  1418. return best_node;
  1419. }
  1420. static void __meminit build_zonelists(pg_data_t *pgdat)
  1421. {
  1422. int j, node, local_node;
  1423. enum zone_type i;
  1424. int prev_node, load;
  1425. struct zonelist *zonelist;
  1426. nodemask_t used_mask;
  1427. /* initialize zonelists */
  1428. for (i = 0; i < MAX_NR_ZONES; i++) {
  1429. zonelist = pgdat->node_zonelists + i;
  1430. zonelist->zones[0] = NULL;
  1431. }
  1432. /* NUMA-aware ordering of nodes */
  1433. local_node = pgdat->node_id;
  1434. load = num_online_nodes();
  1435. prev_node = local_node;
  1436. nodes_clear(used_mask);
  1437. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1438. int distance = node_distance(local_node, node);
  1439. /*
  1440. * If another node is sufficiently far away then it is better
  1441. * to reclaim pages in a zone before going off node.
  1442. */
  1443. if (distance > RECLAIM_DISTANCE)
  1444. zone_reclaim_mode = 1;
  1445. /*
  1446. * We don't want to pressure a particular node.
  1447. * So adding penalty to the first node in same
  1448. * distance group to make it round-robin.
  1449. */
  1450. if (distance != node_distance(local_node, prev_node))
  1451. node_load[node] += load;
  1452. prev_node = node;
  1453. load--;
  1454. for (i = 0; i < MAX_NR_ZONES; i++) {
  1455. zonelist = pgdat->node_zonelists + i;
  1456. for (j = 0; zonelist->zones[j] != NULL; j++);
  1457. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1458. zonelist->zones[j] = NULL;
  1459. }
  1460. }
  1461. }
  1462. /* Construct the zonelist performance cache - see further mmzone.h */
  1463. static void __meminit build_zonelist_cache(pg_data_t *pgdat)
  1464. {
  1465. int i;
  1466. for (i = 0; i < MAX_NR_ZONES; i++) {
  1467. struct zonelist *zonelist;
  1468. struct zonelist_cache *zlc;
  1469. struct zone **z;
  1470. zonelist = pgdat->node_zonelists + i;
  1471. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1472. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1473. for (z = zonelist->zones; *z; z++)
  1474. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1475. }
  1476. }
  1477. #else /* CONFIG_NUMA */
  1478. static void __meminit build_zonelists(pg_data_t *pgdat)
  1479. {
  1480. int node, local_node;
  1481. enum zone_type i,j;
  1482. local_node = pgdat->node_id;
  1483. for (i = 0; i < MAX_NR_ZONES; i++) {
  1484. struct zonelist *zonelist;
  1485. zonelist = pgdat->node_zonelists + i;
  1486. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1487. /*
  1488. * Now we build the zonelist so that it contains the zones
  1489. * of all the other nodes.
  1490. * We don't want to pressure a particular node, so when
  1491. * building the zones for node N, we make sure that the
  1492. * zones coming right after the local ones are those from
  1493. * node N+1 (modulo N)
  1494. */
  1495. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1496. if (!node_online(node))
  1497. continue;
  1498. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1499. }
  1500. for (node = 0; node < local_node; node++) {
  1501. if (!node_online(node))
  1502. continue;
  1503. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1504. }
  1505. zonelist->zones[j] = NULL;
  1506. }
  1507. }
  1508. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1509. static void __meminit build_zonelist_cache(pg_data_t *pgdat)
  1510. {
  1511. int i;
  1512. for (i = 0; i < MAX_NR_ZONES; i++)
  1513. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  1514. }
  1515. #endif /* CONFIG_NUMA */
  1516. /* return values int ....just for stop_machine_run() */
  1517. static int __meminit __build_all_zonelists(void *dummy)
  1518. {
  1519. int nid;
  1520. for_each_online_node(nid) {
  1521. build_zonelists(NODE_DATA(nid));
  1522. build_zonelist_cache(NODE_DATA(nid));
  1523. }
  1524. return 0;
  1525. }
  1526. void __meminit build_all_zonelists(void)
  1527. {
  1528. if (system_state == SYSTEM_BOOTING) {
  1529. __build_all_zonelists(NULL);
  1530. cpuset_init_current_mems_allowed();
  1531. } else {
  1532. /* we have to stop all cpus to guaranntee there is no user
  1533. of zonelist */
  1534. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1535. /* cpuset refresh routine should be here */
  1536. }
  1537. vm_total_pages = nr_free_pagecache_pages();
  1538. printk("Built %i zonelists. Total pages: %ld\n",
  1539. num_online_nodes(), vm_total_pages);
  1540. }
  1541. /*
  1542. * Helper functions to size the waitqueue hash table.
  1543. * Essentially these want to choose hash table sizes sufficiently
  1544. * large so that collisions trying to wait on pages are rare.
  1545. * But in fact, the number of active page waitqueues on typical
  1546. * systems is ridiculously low, less than 200. So this is even
  1547. * conservative, even though it seems large.
  1548. *
  1549. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1550. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1551. */
  1552. #define PAGES_PER_WAITQUEUE 256
  1553. #ifndef CONFIG_MEMORY_HOTPLUG
  1554. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1555. {
  1556. unsigned long size = 1;
  1557. pages /= PAGES_PER_WAITQUEUE;
  1558. while (size < pages)
  1559. size <<= 1;
  1560. /*
  1561. * Once we have dozens or even hundreds of threads sleeping
  1562. * on IO we've got bigger problems than wait queue collision.
  1563. * Limit the size of the wait table to a reasonable size.
  1564. */
  1565. size = min(size, 4096UL);
  1566. return max(size, 4UL);
  1567. }
  1568. #else
  1569. /*
  1570. * A zone's size might be changed by hot-add, so it is not possible to determine
  1571. * a suitable size for its wait_table. So we use the maximum size now.
  1572. *
  1573. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1574. *
  1575. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1576. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1577. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1578. *
  1579. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1580. * or more by the traditional way. (See above). It equals:
  1581. *
  1582. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1583. * ia64(16K page size) : = ( 8G + 4M)byte.
  1584. * powerpc (64K page size) : = (32G +16M)byte.
  1585. */
  1586. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1587. {
  1588. return 4096UL;
  1589. }
  1590. #endif
  1591. /*
  1592. * This is an integer logarithm so that shifts can be used later
  1593. * to extract the more random high bits from the multiplicative
  1594. * hash function before the remainder is taken.
  1595. */
  1596. static inline unsigned long wait_table_bits(unsigned long size)
  1597. {
  1598. return ffz(~size);
  1599. }
  1600. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1601. /*
  1602. * Initially all pages are reserved - free ones are freed
  1603. * up by free_all_bootmem() once the early boot process is
  1604. * done. Non-atomic initialization, single-pass.
  1605. */
  1606. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1607. unsigned long start_pfn)
  1608. {
  1609. struct page *page;
  1610. unsigned long end_pfn = start_pfn + size;
  1611. unsigned long pfn;
  1612. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1613. if (!early_pfn_valid(pfn))
  1614. continue;
  1615. if (!early_pfn_in_nid(pfn, nid))
  1616. continue;
  1617. page = pfn_to_page(pfn);
  1618. set_page_links(page, zone, nid, pfn);
  1619. init_page_count(page);
  1620. reset_page_mapcount(page);
  1621. SetPageReserved(page);
  1622. INIT_LIST_HEAD(&page->lru);
  1623. #ifdef WANT_PAGE_VIRTUAL
  1624. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1625. if (!is_highmem_idx(zone))
  1626. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1627. #endif
  1628. }
  1629. }
  1630. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1631. unsigned long size)
  1632. {
  1633. int order;
  1634. for (order = 0; order < MAX_ORDER ; order++) {
  1635. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1636. zone->free_area[order].nr_free = 0;
  1637. }
  1638. }
  1639. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1640. #define memmap_init(size, nid, zone, start_pfn) \
  1641. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1642. #endif
  1643. static int __cpuinit zone_batchsize(struct zone *zone)
  1644. {
  1645. int batch;
  1646. /*
  1647. * The per-cpu-pages pools are set to around 1000th of the
  1648. * size of the zone. But no more than 1/2 of a meg.
  1649. *
  1650. * OK, so we don't know how big the cache is. So guess.
  1651. */
  1652. batch = zone->present_pages / 1024;
  1653. if (batch * PAGE_SIZE > 512 * 1024)
  1654. batch = (512 * 1024) / PAGE_SIZE;
  1655. batch /= 4; /* We effectively *= 4 below */
  1656. if (batch < 1)
  1657. batch = 1;
  1658. /*
  1659. * Clamp the batch to a 2^n - 1 value. Having a power
  1660. * of 2 value was found to be more likely to have
  1661. * suboptimal cache aliasing properties in some cases.
  1662. *
  1663. * For example if 2 tasks are alternately allocating
  1664. * batches of pages, one task can end up with a lot
  1665. * of pages of one half of the possible page colors
  1666. * and the other with pages of the other colors.
  1667. */
  1668. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1669. return batch;
  1670. }
  1671. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1672. {
  1673. struct per_cpu_pages *pcp;
  1674. memset(p, 0, sizeof(*p));
  1675. pcp = &p->pcp[0]; /* hot */
  1676. pcp->count = 0;
  1677. pcp->high = 6 * batch;
  1678. pcp->batch = max(1UL, 1 * batch);
  1679. INIT_LIST_HEAD(&pcp->list);
  1680. pcp = &p->pcp[1]; /* cold*/
  1681. pcp->count = 0;
  1682. pcp->high = 2 * batch;
  1683. pcp->batch = max(1UL, batch/2);
  1684. INIT_LIST_HEAD(&pcp->list);
  1685. }
  1686. /*
  1687. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  1688. * to the value high for the pageset p.
  1689. */
  1690. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  1691. unsigned long high)
  1692. {
  1693. struct per_cpu_pages *pcp;
  1694. pcp = &p->pcp[0]; /* hot list */
  1695. pcp->high = high;
  1696. pcp->batch = max(1UL, high/4);
  1697. if ((high/4) > (PAGE_SHIFT * 8))
  1698. pcp->batch = PAGE_SHIFT * 8;
  1699. }
  1700. #ifdef CONFIG_NUMA
  1701. /*
  1702. * Boot pageset table. One per cpu which is going to be used for all
  1703. * zones and all nodes. The parameters will be set in such a way
  1704. * that an item put on a list will immediately be handed over to
  1705. * the buddy list. This is safe since pageset manipulation is done
  1706. * with interrupts disabled.
  1707. *
  1708. * Some NUMA counter updates may also be caught by the boot pagesets.
  1709. *
  1710. * The boot_pagesets must be kept even after bootup is complete for
  1711. * unused processors and/or zones. They do play a role for bootstrapping
  1712. * hotplugged processors.
  1713. *
  1714. * zoneinfo_show() and maybe other functions do
  1715. * not check if the processor is online before following the pageset pointer.
  1716. * Other parts of the kernel may not check if the zone is available.
  1717. */
  1718. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  1719. /*
  1720. * Dynamically allocate memory for the
  1721. * per cpu pageset array in struct zone.
  1722. */
  1723. static int __cpuinit process_zones(int cpu)
  1724. {
  1725. struct zone *zone, *dzone;
  1726. for_each_zone(zone) {
  1727. if (!populated_zone(zone))
  1728. continue;
  1729. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  1730. GFP_KERNEL, cpu_to_node(cpu));
  1731. if (!zone_pcp(zone, cpu))
  1732. goto bad;
  1733. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  1734. if (percpu_pagelist_fraction)
  1735. setup_pagelist_highmark(zone_pcp(zone, cpu),
  1736. (zone->present_pages / percpu_pagelist_fraction));
  1737. }
  1738. return 0;
  1739. bad:
  1740. for_each_zone(dzone) {
  1741. if (dzone == zone)
  1742. break;
  1743. kfree(zone_pcp(dzone, cpu));
  1744. zone_pcp(dzone, cpu) = NULL;
  1745. }
  1746. return -ENOMEM;
  1747. }
  1748. static inline void free_zone_pagesets(int cpu)
  1749. {
  1750. struct zone *zone;
  1751. for_each_zone(zone) {
  1752. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1753. /* Free per_cpu_pageset if it is slab allocated */
  1754. if (pset != &boot_pageset[cpu])
  1755. kfree(pset);
  1756. zone_pcp(zone, cpu) = NULL;
  1757. }
  1758. }
  1759. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  1760. unsigned long action,
  1761. void *hcpu)
  1762. {
  1763. int cpu = (long)hcpu;
  1764. int ret = NOTIFY_OK;
  1765. switch (action) {
  1766. case CPU_UP_PREPARE:
  1767. if (process_zones(cpu))
  1768. ret = NOTIFY_BAD;
  1769. break;
  1770. case CPU_UP_CANCELED:
  1771. case CPU_DEAD:
  1772. free_zone_pagesets(cpu);
  1773. break;
  1774. default:
  1775. break;
  1776. }
  1777. return ret;
  1778. }
  1779. static struct notifier_block __cpuinitdata pageset_notifier =
  1780. { &pageset_cpuup_callback, NULL, 0 };
  1781. void __init setup_per_cpu_pageset(void)
  1782. {
  1783. int err;
  1784. /* Initialize per_cpu_pageset for cpu 0.
  1785. * A cpuup callback will do this for every cpu
  1786. * as it comes online
  1787. */
  1788. err = process_zones(smp_processor_id());
  1789. BUG_ON(err);
  1790. register_cpu_notifier(&pageset_notifier);
  1791. }
  1792. #endif
  1793. static __meminit
  1794. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1795. {
  1796. int i;
  1797. struct pglist_data *pgdat = zone->zone_pgdat;
  1798. size_t alloc_size;
  1799. /*
  1800. * The per-page waitqueue mechanism uses hashed waitqueues
  1801. * per zone.
  1802. */
  1803. zone->wait_table_hash_nr_entries =
  1804. wait_table_hash_nr_entries(zone_size_pages);
  1805. zone->wait_table_bits =
  1806. wait_table_bits(zone->wait_table_hash_nr_entries);
  1807. alloc_size = zone->wait_table_hash_nr_entries
  1808. * sizeof(wait_queue_head_t);
  1809. if (system_state == SYSTEM_BOOTING) {
  1810. zone->wait_table = (wait_queue_head_t *)
  1811. alloc_bootmem_node(pgdat, alloc_size);
  1812. } else {
  1813. /*
  1814. * This case means that a zone whose size was 0 gets new memory
  1815. * via memory hot-add.
  1816. * But it may be the case that a new node was hot-added. In
  1817. * this case vmalloc() will not be able to use this new node's
  1818. * memory - this wait_table must be initialized to use this new
  1819. * node itself as well.
  1820. * To use this new node's memory, further consideration will be
  1821. * necessary.
  1822. */
  1823. zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
  1824. }
  1825. if (!zone->wait_table)
  1826. return -ENOMEM;
  1827. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  1828. init_waitqueue_head(zone->wait_table + i);
  1829. return 0;
  1830. }
  1831. static __meminit void zone_pcp_init(struct zone *zone)
  1832. {
  1833. int cpu;
  1834. unsigned long batch = zone_batchsize(zone);
  1835. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1836. #ifdef CONFIG_NUMA
  1837. /* Early boot. Slab allocator not functional yet */
  1838. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  1839. setup_pageset(&boot_pageset[cpu],0);
  1840. #else
  1841. setup_pageset(zone_pcp(zone,cpu), batch);
  1842. #endif
  1843. }
  1844. if (zone->present_pages)
  1845. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1846. zone->name, zone->present_pages, batch);
  1847. }
  1848. __meminit int init_currently_empty_zone(struct zone *zone,
  1849. unsigned long zone_start_pfn,
  1850. unsigned long size)
  1851. {
  1852. struct pglist_data *pgdat = zone->zone_pgdat;
  1853. int ret;
  1854. ret = zone_wait_table_init(zone, size);
  1855. if (ret)
  1856. return ret;
  1857. pgdat->nr_zones = zone_idx(zone) + 1;
  1858. zone->zone_start_pfn = zone_start_pfn;
  1859. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1860. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1861. return 0;
  1862. }
  1863. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  1864. /*
  1865. * Basic iterator support. Return the first range of PFNs for a node
  1866. * Note: nid == MAX_NUMNODES returns first region regardless of node
  1867. */
  1868. static int __init first_active_region_index_in_nid(int nid)
  1869. {
  1870. int i;
  1871. for (i = 0; i < nr_nodemap_entries; i++)
  1872. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  1873. return i;
  1874. return -1;
  1875. }
  1876. /*
  1877. * Basic iterator support. Return the next active range of PFNs for a node
  1878. * Note: nid == MAX_NUMNODES returns next region regardles of node
  1879. */
  1880. static int __init next_active_region_index_in_nid(int index, int nid)
  1881. {
  1882. for (index = index + 1; index < nr_nodemap_entries; index++)
  1883. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  1884. return index;
  1885. return -1;
  1886. }
  1887. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1888. /*
  1889. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  1890. * Architectures may implement their own version but if add_active_range()
  1891. * was used and there are no special requirements, this is a convenient
  1892. * alternative
  1893. */
  1894. int __init early_pfn_to_nid(unsigned long pfn)
  1895. {
  1896. int i;
  1897. for (i = 0; i < nr_nodemap_entries; i++) {
  1898. unsigned long start_pfn = early_node_map[i].start_pfn;
  1899. unsigned long end_pfn = early_node_map[i].end_pfn;
  1900. if (start_pfn <= pfn && pfn < end_pfn)
  1901. return early_node_map[i].nid;
  1902. }
  1903. return 0;
  1904. }
  1905. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1906. /* Basic iterator support to walk early_node_map[] */
  1907. #define for_each_active_range_index_in_nid(i, nid) \
  1908. for (i = first_active_region_index_in_nid(nid); i != -1; \
  1909. i = next_active_region_index_in_nid(i, nid))
  1910. /**
  1911. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  1912. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  1913. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  1914. *
  1915. * If an architecture guarantees that all ranges registered with
  1916. * add_active_ranges() contain no holes and may be freed, this
  1917. * this function may be used instead of calling free_bootmem() manually.
  1918. */
  1919. void __init free_bootmem_with_active_regions(int nid,
  1920. unsigned long max_low_pfn)
  1921. {
  1922. int i;
  1923. for_each_active_range_index_in_nid(i, nid) {
  1924. unsigned long size_pages = 0;
  1925. unsigned long end_pfn = early_node_map[i].end_pfn;
  1926. if (early_node_map[i].start_pfn >= max_low_pfn)
  1927. continue;
  1928. if (end_pfn > max_low_pfn)
  1929. end_pfn = max_low_pfn;
  1930. size_pages = end_pfn - early_node_map[i].start_pfn;
  1931. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  1932. PFN_PHYS(early_node_map[i].start_pfn),
  1933. size_pages << PAGE_SHIFT);
  1934. }
  1935. }
  1936. /**
  1937. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  1938. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  1939. *
  1940. * If an architecture guarantees that all ranges registered with
  1941. * add_active_ranges() contain no holes and may be freed, this
  1942. * function may be used instead of calling memory_present() manually.
  1943. */
  1944. void __init sparse_memory_present_with_active_regions(int nid)
  1945. {
  1946. int i;
  1947. for_each_active_range_index_in_nid(i, nid)
  1948. memory_present(early_node_map[i].nid,
  1949. early_node_map[i].start_pfn,
  1950. early_node_map[i].end_pfn);
  1951. }
  1952. /**
  1953. * push_node_boundaries - Push node boundaries to at least the requested boundary
  1954. * @nid: The nid of the node to push the boundary for
  1955. * @start_pfn: The start pfn of the node
  1956. * @end_pfn: The end pfn of the node
  1957. *
  1958. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  1959. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  1960. * be hotplugged even though no physical memory exists. This function allows
  1961. * an arch to push out the node boundaries so mem_map is allocated that can
  1962. * be used later.
  1963. */
  1964. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  1965. void __init push_node_boundaries(unsigned int nid,
  1966. unsigned long start_pfn, unsigned long end_pfn)
  1967. {
  1968. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  1969. nid, start_pfn, end_pfn);
  1970. /* Initialise the boundary for this node if necessary */
  1971. if (node_boundary_end_pfn[nid] == 0)
  1972. node_boundary_start_pfn[nid] = -1UL;
  1973. /* Update the boundaries */
  1974. if (node_boundary_start_pfn[nid] > start_pfn)
  1975. node_boundary_start_pfn[nid] = start_pfn;
  1976. if (node_boundary_end_pfn[nid] < end_pfn)
  1977. node_boundary_end_pfn[nid] = end_pfn;
  1978. }
  1979. /* If necessary, push the node boundary out for reserve hotadd */
  1980. static void __init account_node_boundary(unsigned int nid,
  1981. unsigned long *start_pfn, unsigned long *end_pfn)
  1982. {
  1983. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  1984. nid, *start_pfn, *end_pfn);
  1985. /* Return if boundary information has not been provided */
  1986. if (node_boundary_end_pfn[nid] == 0)
  1987. return;
  1988. /* Check the boundaries and update if necessary */
  1989. if (node_boundary_start_pfn[nid] < *start_pfn)
  1990. *start_pfn = node_boundary_start_pfn[nid];
  1991. if (node_boundary_end_pfn[nid] > *end_pfn)
  1992. *end_pfn = node_boundary_end_pfn[nid];
  1993. }
  1994. #else
  1995. void __init push_node_boundaries(unsigned int nid,
  1996. unsigned long start_pfn, unsigned long end_pfn) {}
  1997. static void __init account_node_boundary(unsigned int nid,
  1998. unsigned long *start_pfn, unsigned long *end_pfn) {}
  1999. #endif
  2000. /**
  2001. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2002. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2003. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2004. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2005. *
  2006. * It returns the start and end page frame of a node based on information
  2007. * provided by an arch calling add_active_range(). If called for a node
  2008. * with no available memory, a warning is printed and the start and end
  2009. * PFNs will be 0.
  2010. */
  2011. void __init get_pfn_range_for_nid(unsigned int nid,
  2012. unsigned long *start_pfn, unsigned long *end_pfn)
  2013. {
  2014. int i;
  2015. *start_pfn = -1UL;
  2016. *end_pfn = 0;
  2017. for_each_active_range_index_in_nid(i, nid) {
  2018. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2019. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2020. }
  2021. if (*start_pfn == -1UL) {
  2022. printk(KERN_WARNING "Node %u active with no memory\n", nid);
  2023. *start_pfn = 0;
  2024. }
  2025. /* Push the node boundaries out if requested */
  2026. account_node_boundary(nid, start_pfn, end_pfn);
  2027. }
  2028. /*
  2029. * Return the number of pages a zone spans in a node, including holes
  2030. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2031. */
  2032. unsigned long __init zone_spanned_pages_in_node(int nid,
  2033. unsigned long zone_type,
  2034. unsigned long *ignored)
  2035. {
  2036. unsigned long node_start_pfn, node_end_pfn;
  2037. unsigned long zone_start_pfn, zone_end_pfn;
  2038. /* Get the start and end of the node and zone */
  2039. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2040. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2041. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2042. /* Check that this node has pages within the zone's required range */
  2043. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2044. return 0;
  2045. /* Move the zone boundaries inside the node if necessary */
  2046. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2047. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2048. /* Return the spanned pages */
  2049. return zone_end_pfn - zone_start_pfn;
  2050. }
  2051. /*
  2052. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2053. * then all holes in the requested range will be accounted for.
  2054. */
  2055. unsigned long __init __absent_pages_in_range(int nid,
  2056. unsigned long range_start_pfn,
  2057. unsigned long range_end_pfn)
  2058. {
  2059. int i = 0;
  2060. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2061. unsigned long start_pfn;
  2062. /* Find the end_pfn of the first active range of pfns in the node */
  2063. i = first_active_region_index_in_nid(nid);
  2064. if (i == -1)
  2065. return 0;
  2066. /* Account for ranges before physical memory on this node */
  2067. if (early_node_map[i].start_pfn > range_start_pfn)
  2068. hole_pages = early_node_map[i].start_pfn - range_start_pfn;
  2069. prev_end_pfn = early_node_map[i].start_pfn;
  2070. /* Find all holes for the zone within the node */
  2071. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2072. /* No need to continue if prev_end_pfn is outside the zone */
  2073. if (prev_end_pfn >= range_end_pfn)
  2074. break;
  2075. /* Make sure the end of the zone is not within the hole */
  2076. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2077. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2078. /* Update the hole size cound and move on */
  2079. if (start_pfn > range_start_pfn) {
  2080. BUG_ON(prev_end_pfn > start_pfn);
  2081. hole_pages += start_pfn - prev_end_pfn;
  2082. }
  2083. prev_end_pfn = early_node_map[i].end_pfn;
  2084. }
  2085. /* Account for ranges past physical memory on this node */
  2086. if (range_end_pfn > prev_end_pfn)
  2087. hole_pages += range_end_pfn -
  2088. max(range_start_pfn, prev_end_pfn);
  2089. return hole_pages;
  2090. }
  2091. /**
  2092. * absent_pages_in_range - Return number of page frames in holes within a range
  2093. * @start_pfn: The start PFN to start searching for holes
  2094. * @end_pfn: The end PFN to stop searching for holes
  2095. *
  2096. * It returns the number of pages frames in memory holes within a range.
  2097. */
  2098. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2099. unsigned long end_pfn)
  2100. {
  2101. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2102. }
  2103. /* Return the number of page frames in holes in a zone on a node */
  2104. unsigned long __init zone_absent_pages_in_node(int nid,
  2105. unsigned long zone_type,
  2106. unsigned long *ignored)
  2107. {
  2108. unsigned long node_start_pfn, node_end_pfn;
  2109. unsigned long zone_start_pfn, zone_end_pfn;
  2110. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2111. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2112. node_start_pfn);
  2113. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2114. node_end_pfn);
  2115. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2116. }
  2117. #else
  2118. static inline unsigned long zone_spanned_pages_in_node(int nid,
  2119. unsigned long zone_type,
  2120. unsigned long *zones_size)
  2121. {
  2122. return zones_size[zone_type];
  2123. }
  2124. static inline unsigned long zone_absent_pages_in_node(int nid,
  2125. unsigned long zone_type,
  2126. unsigned long *zholes_size)
  2127. {
  2128. if (!zholes_size)
  2129. return 0;
  2130. return zholes_size[zone_type];
  2131. }
  2132. #endif
  2133. static void __init calculate_node_totalpages(struct pglist_data *pgdat,
  2134. unsigned long *zones_size, unsigned long *zholes_size)
  2135. {
  2136. unsigned long realtotalpages, totalpages = 0;
  2137. enum zone_type i;
  2138. for (i = 0; i < MAX_NR_ZONES; i++)
  2139. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2140. zones_size);
  2141. pgdat->node_spanned_pages = totalpages;
  2142. realtotalpages = totalpages;
  2143. for (i = 0; i < MAX_NR_ZONES; i++)
  2144. realtotalpages -=
  2145. zone_absent_pages_in_node(pgdat->node_id, i,
  2146. zholes_size);
  2147. pgdat->node_present_pages = realtotalpages;
  2148. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2149. realtotalpages);
  2150. }
  2151. /*
  2152. * Set up the zone data structures:
  2153. * - mark all pages reserved
  2154. * - mark all memory queues empty
  2155. * - clear the memory bitmaps
  2156. */
  2157. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2158. unsigned long *zones_size, unsigned long *zholes_size)
  2159. {
  2160. enum zone_type j;
  2161. int nid = pgdat->node_id;
  2162. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2163. int ret;
  2164. pgdat_resize_init(pgdat);
  2165. pgdat->nr_zones = 0;
  2166. init_waitqueue_head(&pgdat->kswapd_wait);
  2167. pgdat->kswapd_max_order = 0;
  2168. for (j = 0; j < MAX_NR_ZONES; j++) {
  2169. struct zone *zone = pgdat->node_zones + j;
  2170. unsigned long size, realsize, memmap_pages;
  2171. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2172. realsize = size - zone_absent_pages_in_node(nid, j,
  2173. zholes_size);
  2174. /*
  2175. * Adjust realsize so that it accounts for how much memory
  2176. * is used by this zone for memmap. This affects the watermark
  2177. * and per-cpu initialisations
  2178. */
  2179. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2180. if (realsize >= memmap_pages) {
  2181. realsize -= memmap_pages;
  2182. printk(KERN_DEBUG
  2183. " %s zone: %lu pages used for memmap\n",
  2184. zone_names[j], memmap_pages);
  2185. } else
  2186. printk(KERN_WARNING
  2187. " %s zone: %lu pages exceeds realsize %lu\n",
  2188. zone_names[j], memmap_pages, realsize);
  2189. /* Account for reserved DMA pages */
  2190. if (j == ZONE_DMA && realsize > dma_reserve) {
  2191. realsize -= dma_reserve;
  2192. printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
  2193. dma_reserve);
  2194. }
  2195. if (!is_highmem_idx(j))
  2196. nr_kernel_pages += realsize;
  2197. nr_all_pages += realsize;
  2198. zone->spanned_pages = size;
  2199. zone->present_pages = realsize;
  2200. #ifdef CONFIG_NUMA
  2201. zone->node = nid;
  2202. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2203. / 100;
  2204. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2205. #endif
  2206. zone->name = zone_names[j];
  2207. spin_lock_init(&zone->lock);
  2208. spin_lock_init(&zone->lru_lock);
  2209. zone_seqlock_init(zone);
  2210. zone->zone_pgdat = pgdat;
  2211. zone->free_pages = 0;
  2212. zone->prev_priority = DEF_PRIORITY;
  2213. zone_pcp_init(zone);
  2214. INIT_LIST_HEAD(&zone->active_list);
  2215. INIT_LIST_HEAD(&zone->inactive_list);
  2216. zone->nr_scan_active = 0;
  2217. zone->nr_scan_inactive = 0;
  2218. zone->nr_active = 0;
  2219. zone->nr_inactive = 0;
  2220. zap_zone_vm_stats(zone);
  2221. atomic_set(&zone->reclaim_in_progress, 0);
  2222. if (!size)
  2223. continue;
  2224. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  2225. BUG_ON(ret);
  2226. zone_start_pfn += size;
  2227. }
  2228. }
  2229. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  2230. {
  2231. /* Skip empty nodes */
  2232. if (!pgdat->node_spanned_pages)
  2233. return;
  2234. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2235. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2236. if (!pgdat->node_mem_map) {
  2237. unsigned long size, start, end;
  2238. struct page *map;
  2239. /*
  2240. * The zone's endpoints aren't required to be MAX_ORDER
  2241. * aligned but the node_mem_map endpoints must be in order
  2242. * for the buddy allocator to function correctly.
  2243. */
  2244. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2245. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2246. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2247. size = (end - start) * sizeof(struct page);
  2248. map = alloc_remap(pgdat->node_id, size);
  2249. if (!map)
  2250. map = alloc_bootmem_node(pgdat, size);
  2251. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2252. }
  2253. #ifdef CONFIG_FLATMEM
  2254. /*
  2255. * With no DISCONTIG, the global mem_map is just set as node 0's
  2256. */
  2257. if (pgdat == NODE_DATA(0)) {
  2258. mem_map = NODE_DATA(0)->node_mem_map;
  2259. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2260. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2261. mem_map -= pgdat->node_start_pfn;
  2262. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2263. }
  2264. #endif
  2265. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2266. }
  2267. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2268. unsigned long *zones_size, unsigned long node_start_pfn,
  2269. unsigned long *zholes_size)
  2270. {
  2271. pgdat->node_id = nid;
  2272. pgdat->node_start_pfn = node_start_pfn;
  2273. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2274. alloc_node_mem_map(pgdat);
  2275. free_area_init_core(pgdat, zones_size, zholes_size);
  2276. }
  2277. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2278. /**
  2279. * add_active_range - Register a range of PFNs backed by physical memory
  2280. * @nid: The node ID the range resides on
  2281. * @start_pfn: The start PFN of the available physical memory
  2282. * @end_pfn: The end PFN of the available physical memory
  2283. *
  2284. * These ranges are stored in an early_node_map[] and later used by
  2285. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2286. * range spans a memory hole, it is up to the architecture to ensure
  2287. * the memory is not freed by the bootmem allocator. If possible
  2288. * the range being registered will be merged with existing ranges.
  2289. */
  2290. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2291. unsigned long end_pfn)
  2292. {
  2293. int i;
  2294. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  2295. "%d entries of %d used\n",
  2296. nid, start_pfn, end_pfn,
  2297. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  2298. /* Merge with existing active regions if possible */
  2299. for (i = 0; i < nr_nodemap_entries; i++) {
  2300. if (early_node_map[i].nid != nid)
  2301. continue;
  2302. /* Skip if an existing region covers this new one */
  2303. if (start_pfn >= early_node_map[i].start_pfn &&
  2304. end_pfn <= early_node_map[i].end_pfn)
  2305. return;
  2306. /* Merge forward if suitable */
  2307. if (start_pfn <= early_node_map[i].end_pfn &&
  2308. end_pfn > early_node_map[i].end_pfn) {
  2309. early_node_map[i].end_pfn = end_pfn;
  2310. return;
  2311. }
  2312. /* Merge backward if suitable */
  2313. if (start_pfn < early_node_map[i].end_pfn &&
  2314. end_pfn >= early_node_map[i].start_pfn) {
  2315. early_node_map[i].start_pfn = start_pfn;
  2316. return;
  2317. }
  2318. }
  2319. /* Check that early_node_map is large enough */
  2320. if (i >= MAX_ACTIVE_REGIONS) {
  2321. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  2322. MAX_ACTIVE_REGIONS);
  2323. return;
  2324. }
  2325. early_node_map[i].nid = nid;
  2326. early_node_map[i].start_pfn = start_pfn;
  2327. early_node_map[i].end_pfn = end_pfn;
  2328. nr_nodemap_entries = i + 1;
  2329. }
  2330. /**
  2331. * shrink_active_range - Shrink an existing registered range of PFNs
  2332. * @nid: The node id the range is on that should be shrunk
  2333. * @old_end_pfn: The old end PFN of the range
  2334. * @new_end_pfn: The new PFN of the range
  2335. *
  2336. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  2337. * The map is kept at the end physical page range that has already been
  2338. * registered with add_active_range(). This function allows an arch to shrink
  2339. * an existing registered range.
  2340. */
  2341. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  2342. unsigned long new_end_pfn)
  2343. {
  2344. int i;
  2345. /* Find the old active region end and shrink */
  2346. for_each_active_range_index_in_nid(i, nid)
  2347. if (early_node_map[i].end_pfn == old_end_pfn) {
  2348. early_node_map[i].end_pfn = new_end_pfn;
  2349. break;
  2350. }
  2351. }
  2352. /**
  2353. * remove_all_active_ranges - Remove all currently registered regions
  2354. *
  2355. * During discovery, it may be found that a table like SRAT is invalid
  2356. * and an alternative discovery method must be used. This function removes
  2357. * all currently registered regions.
  2358. */
  2359. void __init remove_all_active_ranges(void)
  2360. {
  2361. memset(early_node_map, 0, sizeof(early_node_map));
  2362. nr_nodemap_entries = 0;
  2363. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2364. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  2365. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  2366. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  2367. }
  2368. /* Compare two active node_active_regions */
  2369. static int __init cmp_node_active_region(const void *a, const void *b)
  2370. {
  2371. struct node_active_region *arange = (struct node_active_region *)a;
  2372. struct node_active_region *brange = (struct node_active_region *)b;
  2373. /* Done this way to avoid overflows */
  2374. if (arange->start_pfn > brange->start_pfn)
  2375. return 1;
  2376. if (arange->start_pfn < brange->start_pfn)
  2377. return -1;
  2378. return 0;
  2379. }
  2380. /* sort the node_map by start_pfn */
  2381. static void __init sort_node_map(void)
  2382. {
  2383. sort(early_node_map, (size_t)nr_nodemap_entries,
  2384. sizeof(struct node_active_region),
  2385. cmp_node_active_region, NULL);
  2386. }
  2387. /* Find the lowest pfn for a node. This depends on a sorted early_node_map */
  2388. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  2389. {
  2390. int i;
  2391. /* Regions in the early_node_map can be in any order */
  2392. sort_node_map();
  2393. /* Assuming a sorted map, the first range found has the starting pfn */
  2394. for_each_active_range_index_in_nid(i, nid)
  2395. return early_node_map[i].start_pfn;
  2396. printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
  2397. return 0;
  2398. }
  2399. /**
  2400. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  2401. *
  2402. * It returns the minimum PFN based on information provided via
  2403. * add_active_range().
  2404. */
  2405. unsigned long __init find_min_pfn_with_active_regions(void)
  2406. {
  2407. return find_min_pfn_for_node(MAX_NUMNODES);
  2408. }
  2409. /**
  2410. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  2411. *
  2412. * It returns the maximum PFN based on information provided via
  2413. * add_active_range().
  2414. */
  2415. unsigned long __init find_max_pfn_with_active_regions(void)
  2416. {
  2417. int i;
  2418. unsigned long max_pfn = 0;
  2419. for (i = 0; i < nr_nodemap_entries; i++)
  2420. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  2421. return max_pfn;
  2422. }
  2423. /**
  2424. * free_area_init_nodes - Initialise all pg_data_t and zone data
  2425. * @max_zone_pfn: an array of max PFNs for each zone
  2426. *
  2427. * This will call free_area_init_node() for each active node in the system.
  2428. * Using the page ranges provided by add_active_range(), the size of each
  2429. * zone in each node and their holes is calculated. If the maximum PFN
  2430. * between two adjacent zones match, it is assumed that the zone is empty.
  2431. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  2432. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  2433. * starts where the previous one ended. For example, ZONE_DMA32 starts
  2434. * at arch_max_dma_pfn.
  2435. */
  2436. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  2437. {
  2438. unsigned long nid;
  2439. enum zone_type i;
  2440. /* Record where the zone boundaries are */
  2441. memset(arch_zone_lowest_possible_pfn, 0,
  2442. sizeof(arch_zone_lowest_possible_pfn));
  2443. memset(arch_zone_highest_possible_pfn, 0,
  2444. sizeof(arch_zone_highest_possible_pfn));
  2445. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  2446. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  2447. for (i = 1; i < MAX_NR_ZONES; i++) {
  2448. arch_zone_lowest_possible_pfn[i] =
  2449. arch_zone_highest_possible_pfn[i-1];
  2450. arch_zone_highest_possible_pfn[i] =
  2451. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  2452. }
  2453. /* Print out the zone ranges */
  2454. printk("Zone PFN ranges:\n");
  2455. for (i = 0; i < MAX_NR_ZONES; i++)
  2456. printk(" %-8s %8lu -> %8lu\n",
  2457. zone_names[i],
  2458. arch_zone_lowest_possible_pfn[i],
  2459. arch_zone_highest_possible_pfn[i]);
  2460. /* Print out the early_node_map[] */
  2461. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  2462. for (i = 0; i < nr_nodemap_entries; i++)
  2463. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  2464. early_node_map[i].start_pfn,
  2465. early_node_map[i].end_pfn);
  2466. /* Initialise every node */
  2467. for_each_online_node(nid) {
  2468. pg_data_t *pgdat = NODE_DATA(nid);
  2469. free_area_init_node(nid, pgdat, NULL,
  2470. find_min_pfn_for_node(nid), NULL);
  2471. }
  2472. }
  2473. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2474. /**
  2475. * set_dma_reserve - set the specified number of pages reserved in the first zone
  2476. * @new_dma_reserve: The number of pages to mark reserved
  2477. *
  2478. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  2479. * In the DMA zone, a significant percentage may be consumed by kernel image
  2480. * and other unfreeable allocations which can skew the watermarks badly. This
  2481. * function may optionally be used to account for unfreeable pages in the
  2482. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  2483. * smaller per-cpu batchsize.
  2484. */
  2485. void __init set_dma_reserve(unsigned long new_dma_reserve)
  2486. {
  2487. dma_reserve = new_dma_reserve;
  2488. }
  2489. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2490. static bootmem_data_t contig_bootmem_data;
  2491. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  2492. EXPORT_SYMBOL(contig_page_data);
  2493. #endif
  2494. void __init free_area_init(unsigned long *zones_size)
  2495. {
  2496. free_area_init_node(0, NODE_DATA(0), zones_size,
  2497. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  2498. }
  2499. #ifdef CONFIG_HOTPLUG_CPU
  2500. static int page_alloc_cpu_notify(struct notifier_block *self,
  2501. unsigned long action, void *hcpu)
  2502. {
  2503. int cpu = (unsigned long)hcpu;
  2504. if (action == CPU_DEAD) {
  2505. local_irq_disable();
  2506. __drain_pages(cpu);
  2507. vm_events_fold_cpu(cpu);
  2508. local_irq_enable();
  2509. refresh_cpu_vm_stats(cpu);
  2510. }
  2511. return NOTIFY_OK;
  2512. }
  2513. #endif /* CONFIG_HOTPLUG_CPU */
  2514. void __init page_alloc_init(void)
  2515. {
  2516. hotcpu_notifier(page_alloc_cpu_notify, 0);
  2517. }
  2518. /*
  2519. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  2520. * or min_free_kbytes changes.
  2521. */
  2522. static void calculate_totalreserve_pages(void)
  2523. {
  2524. struct pglist_data *pgdat;
  2525. unsigned long reserve_pages = 0;
  2526. enum zone_type i, j;
  2527. for_each_online_pgdat(pgdat) {
  2528. for (i = 0; i < MAX_NR_ZONES; i++) {
  2529. struct zone *zone = pgdat->node_zones + i;
  2530. unsigned long max = 0;
  2531. /* Find valid and maximum lowmem_reserve in the zone */
  2532. for (j = i; j < MAX_NR_ZONES; j++) {
  2533. if (zone->lowmem_reserve[j] > max)
  2534. max = zone->lowmem_reserve[j];
  2535. }
  2536. /* we treat pages_high as reserved pages. */
  2537. max += zone->pages_high;
  2538. if (max > zone->present_pages)
  2539. max = zone->present_pages;
  2540. reserve_pages += max;
  2541. }
  2542. }
  2543. totalreserve_pages = reserve_pages;
  2544. }
  2545. /*
  2546. * setup_per_zone_lowmem_reserve - called whenever
  2547. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  2548. * has a correct pages reserved value, so an adequate number of
  2549. * pages are left in the zone after a successful __alloc_pages().
  2550. */
  2551. static void setup_per_zone_lowmem_reserve(void)
  2552. {
  2553. struct pglist_data *pgdat;
  2554. enum zone_type j, idx;
  2555. for_each_online_pgdat(pgdat) {
  2556. for (j = 0; j < MAX_NR_ZONES; j++) {
  2557. struct zone *zone = pgdat->node_zones + j;
  2558. unsigned long present_pages = zone->present_pages;
  2559. zone->lowmem_reserve[j] = 0;
  2560. idx = j;
  2561. while (idx) {
  2562. struct zone *lower_zone;
  2563. idx--;
  2564. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  2565. sysctl_lowmem_reserve_ratio[idx] = 1;
  2566. lower_zone = pgdat->node_zones + idx;
  2567. lower_zone->lowmem_reserve[j] = present_pages /
  2568. sysctl_lowmem_reserve_ratio[idx];
  2569. present_pages += lower_zone->present_pages;
  2570. }
  2571. }
  2572. }
  2573. /* update totalreserve_pages */
  2574. calculate_totalreserve_pages();
  2575. }
  2576. /**
  2577. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  2578. *
  2579. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  2580. * with respect to min_free_kbytes.
  2581. */
  2582. void setup_per_zone_pages_min(void)
  2583. {
  2584. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  2585. unsigned long lowmem_pages = 0;
  2586. struct zone *zone;
  2587. unsigned long flags;
  2588. /* Calculate total number of !ZONE_HIGHMEM pages */
  2589. for_each_zone(zone) {
  2590. if (!is_highmem(zone))
  2591. lowmem_pages += zone->present_pages;
  2592. }
  2593. for_each_zone(zone) {
  2594. u64 tmp;
  2595. spin_lock_irqsave(&zone->lru_lock, flags);
  2596. tmp = (u64)pages_min * zone->present_pages;
  2597. do_div(tmp, lowmem_pages);
  2598. if (is_highmem(zone)) {
  2599. /*
  2600. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  2601. * need highmem pages, so cap pages_min to a small
  2602. * value here.
  2603. *
  2604. * The (pages_high-pages_low) and (pages_low-pages_min)
  2605. * deltas controls asynch page reclaim, and so should
  2606. * not be capped for highmem.
  2607. */
  2608. int min_pages;
  2609. min_pages = zone->present_pages / 1024;
  2610. if (min_pages < SWAP_CLUSTER_MAX)
  2611. min_pages = SWAP_CLUSTER_MAX;
  2612. if (min_pages > 128)
  2613. min_pages = 128;
  2614. zone->pages_min = min_pages;
  2615. } else {
  2616. /*
  2617. * If it's a lowmem zone, reserve a number of pages
  2618. * proportionate to the zone's size.
  2619. */
  2620. zone->pages_min = tmp;
  2621. }
  2622. zone->pages_low = zone->pages_min + (tmp >> 2);
  2623. zone->pages_high = zone->pages_min + (tmp >> 1);
  2624. spin_unlock_irqrestore(&zone->lru_lock, flags);
  2625. }
  2626. /* update totalreserve_pages */
  2627. calculate_totalreserve_pages();
  2628. }
  2629. /*
  2630. * Initialise min_free_kbytes.
  2631. *
  2632. * For small machines we want it small (128k min). For large machines
  2633. * we want it large (64MB max). But it is not linear, because network
  2634. * bandwidth does not increase linearly with machine size. We use
  2635. *
  2636. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  2637. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  2638. *
  2639. * which yields
  2640. *
  2641. * 16MB: 512k
  2642. * 32MB: 724k
  2643. * 64MB: 1024k
  2644. * 128MB: 1448k
  2645. * 256MB: 2048k
  2646. * 512MB: 2896k
  2647. * 1024MB: 4096k
  2648. * 2048MB: 5792k
  2649. * 4096MB: 8192k
  2650. * 8192MB: 11584k
  2651. * 16384MB: 16384k
  2652. */
  2653. static int __init init_per_zone_pages_min(void)
  2654. {
  2655. unsigned long lowmem_kbytes;
  2656. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  2657. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  2658. if (min_free_kbytes < 128)
  2659. min_free_kbytes = 128;
  2660. if (min_free_kbytes > 65536)
  2661. min_free_kbytes = 65536;
  2662. setup_per_zone_pages_min();
  2663. setup_per_zone_lowmem_reserve();
  2664. return 0;
  2665. }
  2666. module_init(init_per_zone_pages_min)
  2667. /*
  2668. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2669. * that we can call two helper functions whenever min_free_kbytes
  2670. * changes.
  2671. */
  2672. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2673. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2674. {
  2675. proc_dointvec(table, write, file, buffer, length, ppos);
  2676. setup_per_zone_pages_min();
  2677. return 0;
  2678. }
  2679. #ifdef CONFIG_NUMA
  2680. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  2681. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2682. {
  2683. struct zone *zone;
  2684. int rc;
  2685. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2686. if (rc)
  2687. return rc;
  2688. for_each_zone(zone)
  2689. zone->min_unmapped_pages = (zone->present_pages *
  2690. sysctl_min_unmapped_ratio) / 100;
  2691. return 0;
  2692. }
  2693. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  2694. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2695. {
  2696. struct zone *zone;
  2697. int rc;
  2698. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2699. if (rc)
  2700. return rc;
  2701. for_each_zone(zone)
  2702. zone->min_slab_pages = (zone->present_pages *
  2703. sysctl_min_slab_ratio) / 100;
  2704. return 0;
  2705. }
  2706. #endif
  2707. /*
  2708. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2709. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2710. * whenever sysctl_lowmem_reserve_ratio changes.
  2711. *
  2712. * The reserve ratio obviously has absolutely no relation with the
  2713. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2714. * if in function of the boot time zone sizes.
  2715. */
  2716. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2717. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2718. {
  2719. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2720. setup_per_zone_lowmem_reserve();
  2721. return 0;
  2722. }
  2723. /*
  2724. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  2725. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  2726. * can have before it gets flushed back to buddy allocator.
  2727. */
  2728. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  2729. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2730. {
  2731. struct zone *zone;
  2732. unsigned int cpu;
  2733. int ret;
  2734. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2735. if (!write || (ret == -EINVAL))
  2736. return ret;
  2737. for_each_zone(zone) {
  2738. for_each_online_cpu(cpu) {
  2739. unsigned long high;
  2740. high = zone->present_pages / percpu_pagelist_fraction;
  2741. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  2742. }
  2743. }
  2744. return 0;
  2745. }
  2746. int hashdist = HASHDIST_DEFAULT;
  2747. #ifdef CONFIG_NUMA
  2748. static int __init set_hashdist(char *str)
  2749. {
  2750. if (!str)
  2751. return 0;
  2752. hashdist = simple_strtoul(str, &str, 0);
  2753. return 1;
  2754. }
  2755. __setup("hashdist=", set_hashdist);
  2756. #endif
  2757. /*
  2758. * allocate a large system hash table from bootmem
  2759. * - it is assumed that the hash table must contain an exact power-of-2
  2760. * quantity of entries
  2761. * - limit is the number of hash buckets, not the total allocation size
  2762. */
  2763. void *__init alloc_large_system_hash(const char *tablename,
  2764. unsigned long bucketsize,
  2765. unsigned long numentries,
  2766. int scale,
  2767. int flags,
  2768. unsigned int *_hash_shift,
  2769. unsigned int *_hash_mask,
  2770. unsigned long limit)
  2771. {
  2772. unsigned long long max = limit;
  2773. unsigned long log2qty, size;
  2774. void *table = NULL;
  2775. /* allow the kernel cmdline to have a say */
  2776. if (!numentries) {
  2777. /* round applicable memory size up to nearest megabyte */
  2778. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2779. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2780. numentries >>= 20 - PAGE_SHIFT;
  2781. numentries <<= 20 - PAGE_SHIFT;
  2782. /* limit to 1 bucket per 2^scale bytes of low memory */
  2783. if (scale > PAGE_SHIFT)
  2784. numentries >>= (scale - PAGE_SHIFT);
  2785. else
  2786. numentries <<= (PAGE_SHIFT - scale);
  2787. }
  2788. numentries = roundup_pow_of_two(numentries);
  2789. /* limit allocation size to 1/16 total memory by default */
  2790. if (max == 0) {
  2791. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2792. do_div(max, bucketsize);
  2793. }
  2794. if (numentries > max)
  2795. numentries = max;
  2796. log2qty = long_log2(numentries);
  2797. do {
  2798. size = bucketsize << log2qty;
  2799. if (flags & HASH_EARLY)
  2800. table = alloc_bootmem(size);
  2801. else if (hashdist)
  2802. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2803. else {
  2804. unsigned long order;
  2805. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2806. ;
  2807. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2808. }
  2809. } while (!table && size > PAGE_SIZE && --log2qty);
  2810. if (!table)
  2811. panic("Failed to allocate %s hash table\n", tablename);
  2812. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2813. tablename,
  2814. (1U << log2qty),
  2815. long_log2(size) - PAGE_SHIFT,
  2816. size);
  2817. if (_hash_shift)
  2818. *_hash_shift = log2qty;
  2819. if (_hash_mask)
  2820. *_hash_mask = (1 << log2qty) - 1;
  2821. return table;
  2822. }
  2823. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  2824. struct page *pfn_to_page(unsigned long pfn)
  2825. {
  2826. return __pfn_to_page(pfn);
  2827. }
  2828. unsigned long page_to_pfn(struct page *page)
  2829. {
  2830. return __page_to_pfn(page);
  2831. }
  2832. EXPORT_SYMBOL(pfn_to_page);
  2833. EXPORT_SYMBOL(page_to_pfn);
  2834. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  2835. #if MAX_NUMNODES > 1
  2836. /*
  2837. * Find the highest possible node id.
  2838. */
  2839. int highest_possible_node_id(void)
  2840. {
  2841. unsigned int node;
  2842. unsigned int highest = 0;
  2843. for_each_node_mask(node, node_possible_map)
  2844. highest = node;
  2845. return highest;
  2846. }
  2847. EXPORT_SYMBOL(highest_possible_node_id);
  2848. #endif