session.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871
  1. #define _FILE_OFFSET_BITS 64
  2. #include <linux/kernel.h>
  3. #include <byteswap.h>
  4. #include <unistd.h>
  5. #include <sys/types.h>
  6. #include "session.h"
  7. #include "sort.h"
  8. #include "util.h"
  9. static int perf_session__open(struct perf_session *self, bool force)
  10. {
  11. struct stat input_stat;
  12. if (!strcmp(self->filename, "-")) {
  13. self->fd_pipe = true;
  14. self->fd = STDIN_FILENO;
  15. if (perf_header__read(self, self->fd) < 0)
  16. pr_err("incompatible file format");
  17. return 0;
  18. }
  19. self->fd = open(self->filename, O_RDONLY);
  20. if (self->fd < 0) {
  21. pr_err("failed to open file: %s", self->filename);
  22. if (!strcmp(self->filename, "perf.data"))
  23. pr_err(" (try 'perf record' first)");
  24. pr_err("\n");
  25. return -errno;
  26. }
  27. if (fstat(self->fd, &input_stat) < 0)
  28. goto out_close;
  29. if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
  30. pr_err("file %s not owned by current user or root\n",
  31. self->filename);
  32. goto out_close;
  33. }
  34. if (!input_stat.st_size) {
  35. pr_info("zero-sized file (%s), nothing to do!\n",
  36. self->filename);
  37. goto out_close;
  38. }
  39. if (perf_header__read(self, self->fd) < 0) {
  40. pr_err("incompatible file format");
  41. goto out_close;
  42. }
  43. self->size = input_stat.st_size;
  44. return 0;
  45. out_close:
  46. close(self->fd);
  47. self->fd = -1;
  48. return -1;
  49. }
  50. void perf_session__update_sample_type(struct perf_session *self)
  51. {
  52. self->sample_type = perf_header__sample_type(&self->header);
  53. }
  54. int perf_session__create_kernel_maps(struct perf_session *self)
  55. {
  56. struct rb_root *machines = &self->machines;
  57. int ret = machines__create_kernel_maps(machines, HOST_KERNEL_ID);
  58. if (ret >= 0)
  59. ret = machines__create_guest_kernel_maps(machines);
  60. return ret;
  61. }
  62. struct perf_session *perf_session__new(const char *filename, int mode, bool force)
  63. {
  64. size_t len = filename ? strlen(filename) + 1 : 0;
  65. struct perf_session *self = zalloc(sizeof(*self) + len);
  66. if (self == NULL)
  67. goto out;
  68. if (perf_header__init(&self->header) < 0)
  69. goto out_free;
  70. memcpy(self->filename, filename, len);
  71. self->threads = RB_ROOT;
  72. self->stats_by_id = RB_ROOT;
  73. self->last_match = NULL;
  74. self->mmap_window = 32;
  75. self->cwd = NULL;
  76. self->cwdlen = 0;
  77. self->unknown_events = 0;
  78. self->machines = RB_ROOT;
  79. self->ordered_samples.flush_limit = ULLONG_MAX;
  80. INIT_LIST_HEAD(&self->ordered_samples.samples_head);
  81. if (mode == O_RDONLY) {
  82. if (perf_session__open(self, force) < 0)
  83. goto out_delete;
  84. } else if (mode == O_WRONLY) {
  85. /*
  86. * In O_RDONLY mode this will be performed when reading the
  87. * kernel MMAP event, in event__process_mmap().
  88. */
  89. if (perf_session__create_kernel_maps(self) < 0)
  90. goto out_delete;
  91. }
  92. perf_session__update_sample_type(self);
  93. out:
  94. return self;
  95. out_free:
  96. free(self);
  97. return NULL;
  98. out_delete:
  99. perf_session__delete(self);
  100. return NULL;
  101. }
  102. void perf_session__delete(struct perf_session *self)
  103. {
  104. perf_header__exit(&self->header);
  105. close(self->fd);
  106. free(self->cwd);
  107. free(self);
  108. }
  109. static bool symbol__match_parent_regex(struct symbol *sym)
  110. {
  111. if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
  112. return 1;
  113. return 0;
  114. }
  115. struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
  116. struct thread *thread,
  117. struct ip_callchain *chain,
  118. struct symbol **parent)
  119. {
  120. u8 cpumode = PERF_RECORD_MISC_USER;
  121. unsigned int i;
  122. struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
  123. if (!syms)
  124. return NULL;
  125. for (i = 0; i < chain->nr; i++) {
  126. u64 ip = chain->ips[i];
  127. struct addr_location al;
  128. if (ip >= PERF_CONTEXT_MAX) {
  129. switch (ip) {
  130. case PERF_CONTEXT_HV:
  131. cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
  132. case PERF_CONTEXT_KERNEL:
  133. cpumode = PERF_RECORD_MISC_KERNEL; break;
  134. case PERF_CONTEXT_USER:
  135. cpumode = PERF_RECORD_MISC_USER; break;
  136. default:
  137. break;
  138. }
  139. continue;
  140. }
  141. al.filtered = false;
  142. thread__find_addr_location(thread, self, cpumode,
  143. MAP__FUNCTION, thread->pid, ip, &al, NULL);
  144. if (al.sym != NULL) {
  145. if (sort__has_parent && !*parent &&
  146. symbol__match_parent_regex(al.sym))
  147. *parent = al.sym;
  148. if (!symbol_conf.use_callchain)
  149. break;
  150. syms[i].map = al.map;
  151. syms[i].sym = al.sym;
  152. }
  153. }
  154. return syms;
  155. }
  156. static int process_event_stub(event_t *event __used,
  157. struct perf_session *session __used)
  158. {
  159. dump_printf(": unhandled!\n");
  160. return 0;
  161. }
  162. static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
  163. {
  164. if (handler->sample == NULL)
  165. handler->sample = process_event_stub;
  166. if (handler->mmap == NULL)
  167. handler->mmap = process_event_stub;
  168. if (handler->comm == NULL)
  169. handler->comm = process_event_stub;
  170. if (handler->fork == NULL)
  171. handler->fork = process_event_stub;
  172. if (handler->exit == NULL)
  173. handler->exit = process_event_stub;
  174. if (handler->lost == NULL)
  175. handler->lost = process_event_stub;
  176. if (handler->read == NULL)
  177. handler->read = process_event_stub;
  178. if (handler->throttle == NULL)
  179. handler->throttle = process_event_stub;
  180. if (handler->unthrottle == NULL)
  181. handler->unthrottle = process_event_stub;
  182. if (handler->attr == NULL)
  183. handler->attr = process_event_stub;
  184. if (handler->event_type == NULL)
  185. handler->event_type = process_event_stub;
  186. if (handler->tracing_data == NULL)
  187. handler->tracing_data = process_event_stub;
  188. if (handler->build_id == NULL)
  189. handler->build_id = process_event_stub;
  190. }
  191. static const char *event__name[] = {
  192. [0] = "TOTAL",
  193. [PERF_RECORD_MMAP] = "MMAP",
  194. [PERF_RECORD_LOST] = "LOST",
  195. [PERF_RECORD_COMM] = "COMM",
  196. [PERF_RECORD_EXIT] = "EXIT",
  197. [PERF_RECORD_THROTTLE] = "THROTTLE",
  198. [PERF_RECORD_UNTHROTTLE] = "UNTHROTTLE",
  199. [PERF_RECORD_FORK] = "FORK",
  200. [PERF_RECORD_READ] = "READ",
  201. [PERF_RECORD_SAMPLE] = "SAMPLE",
  202. [PERF_RECORD_HEADER_ATTR] = "ATTR",
  203. [PERF_RECORD_HEADER_EVENT_TYPE] = "EVENT_TYPE",
  204. [PERF_RECORD_HEADER_TRACING_DATA] = "TRACING_DATA",
  205. [PERF_RECORD_HEADER_BUILD_ID] = "BUILD_ID",
  206. };
  207. unsigned long event__total[PERF_RECORD_HEADER_MAX];
  208. void event__print_totals(void)
  209. {
  210. int i;
  211. for (i = 0; i < PERF_RECORD_HEADER_MAX; ++i) {
  212. if (!event__name[i])
  213. continue;
  214. pr_info("%10s events: %10ld\n",
  215. event__name[i], event__total[i]);
  216. }
  217. }
  218. void mem_bswap_64(void *src, int byte_size)
  219. {
  220. u64 *m = src;
  221. while (byte_size > 0) {
  222. *m = bswap_64(*m);
  223. byte_size -= sizeof(u64);
  224. ++m;
  225. }
  226. }
  227. static void event__all64_swap(event_t *self)
  228. {
  229. struct perf_event_header *hdr = &self->header;
  230. mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
  231. }
  232. static void event__comm_swap(event_t *self)
  233. {
  234. self->comm.pid = bswap_32(self->comm.pid);
  235. self->comm.tid = bswap_32(self->comm.tid);
  236. }
  237. static void event__mmap_swap(event_t *self)
  238. {
  239. self->mmap.pid = bswap_32(self->mmap.pid);
  240. self->mmap.tid = bswap_32(self->mmap.tid);
  241. self->mmap.start = bswap_64(self->mmap.start);
  242. self->mmap.len = bswap_64(self->mmap.len);
  243. self->mmap.pgoff = bswap_64(self->mmap.pgoff);
  244. }
  245. static void event__task_swap(event_t *self)
  246. {
  247. self->fork.pid = bswap_32(self->fork.pid);
  248. self->fork.tid = bswap_32(self->fork.tid);
  249. self->fork.ppid = bswap_32(self->fork.ppid);
  250. self->fork.ptid = bswap_32(self->fork.ptid);
  251. self->fork.time = bswap_64(self->fork.time);
  252. }
  253. static void event__read_swap(event_t *self)
  254. {
  255. self->read.pid = bswap_32(self->read.pid);
  256. self->read.tid = bswap_32(self->read.tid);
  257. self->read.value = bswap_64(self->read.value);
  258. self->read.time_enabled = bswap_64(self->read.time_enabled);
  259. self->read.time_running = bswap_64(self->read.time_running);
  260. self->read.id = bswap_64(self->read.id);
  261. }
  262. static void event__attr_swap(event_t *self)
  263. {
  264. size_t size;
  265. self->attr.attr.type = bswap_32(self->attr.attr.type);
  266. self->attr.attr.size = bswap_32(self->attr.attr.size);
  267. self->attr.attr.config = bswap_64(self->attr.attr.config);
  268. self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
  269. self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
  270. self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
  271. self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
  272. self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
  273. self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
  274. self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
  275. size = self->header.size;
  276. size -= (void *)&self->attr.id - (void *)self;
  277. mem_bswap_64(self->attr.id, size);
  278. }
  279. static void event__event_type_swap(event_t *self)
  280. {
  281. self->event_type.event_type.event_id =
  282. bswap_64(self->event_type.event_type.event_id);
  283. }
  284. static void event__tracing_data_swap(event_t *self)
  285. {
  286. self->tracing_data.size = bswap_32(self->tracing_data.size);
  287. }
  288. typedef void (*event__swap_op)(event_t *self);
  289. static event__swap_op event__swap_ops[] = {
  290. [PERF_RECORD_MMAP] = event__mmap_swap,
  291. [PERF_RECORD_COMM] = event__comm_swap,
  292. [PERF_RECORD_FORK] = event__task_swap,
  293. [PERF_RECORD_EXIT] = event__task_swap,
  294. [PERF_RECORD_LOST] = event__all64_swap,
  295. [PERF_RECORD_READ] = event__read_swap,
  296. [PERF_RECORD_SAMPLE] = event__all64_swap,
  297. [PERF_RECORD_HEADER_ATTR] = event__attr_swap,
  298. [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
  299. [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
  300. [PERF_RECORD_HEADER_BUILD_ID] = NULL,
  301. [PERF_RECORD_HEADER_MAX] = NULL,
  302. };
  303. struct sample_queue {
  304. u64 timestamp;
  305. struct sample_event *event;
  306. struct list_head list;
  307. };
  308. #define FLUSH_PERIOD (2 * NSEC_PER_SEC)
  309. static void flush_sample_queue(struct perf_session *s,
  310. struct perf_event_ops *ops)
  311. {
  312. struct list_head *head = &s->ordered_samples.samples_head;
  313. u64 limit = s->ordered_samples.flush_limit;
  314. struct sample_queue *tmp, *iter;
  315. if (!ops->ordered_samples)
  316. return;
  317. list_for_each_entry_safe(iter, tmp, head, list) {
  318. if (iter->timestamp > limit)
  319. return;
  320. if (iter == s->ordered_samples.last_inserted)
  321. s->ordered_samples.last_inserted = NULL;
  322. ops->sample((event_t *)iter->event, s);
  323. s->ordered_samples.last_flush = iter->timestamp;
  324. list_del(&iter->list);
  325. free(iter->event);
  326. free(iter);
  327. }
  328. }
  329. static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
  330. {
  331. struct sample_queue *iter;
  332. list_for_each_entry_reverse(iter, head, list) {
  333. if (iter->timestamp < new->timestamp) {
  334. list_add(&new->list, &iter->list);
  335. return;
  336. }
  337. }
  338. list_add(&new->list, head);
  339. }
  340. static void __queue_sample_before(struct sample_queue *new,
  341. struct sample_queue *iter,
  342. struct list_head *head)
  343. {
  344. list_for_each_entry_continue_reverse(iter, head, list) {
  345. if (iter->timestamp < new->timestamp) {
  346. list_add(&new->list, &iter->list);
  347. return;
  348. }
  349. }
  350. list_add(&new->list, head);
  351. }
  352. static void __queue_sample_after(struct sample_queue *new,
  353. struct sample_queue *iter,
  354. struct list_head *head)
  355. {
  356. list_for_each_entry_continue(iter, head, list) {
  357. if (iter->timestamp > new->timestamp) {
  358. list_add_tail(&new->list, &iter->list);
  359. return;
  360. }
  361. }
  362. list_add_tail(&new->list, head);
  363. }
  364. /* The queue is ordered by time */
  365. static void __queue_sample_event(struct sample_queue *new,
  366. struct perf_session *s)
  367. {
  368. struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
  369. struct list_head *head = &s->ordered_samples.samples_head;
  370. if (!last_inserted) {
  371. __queue_sample_end(new, head);
  372. return;
  373. }
  374. /*
  375. * Most of the time the current event has a timestamp
  376. * very close to the last event inserted, unless we just switched
  377. * to another event buffer. Having a sorting based on a list and
  378. * on the last inserted event that is close to the current one is
  379. * probably more efficient than an rbtree based sorting.
  380. */
  381. if (last_inserted->timestamp >= new->timestamp)
  382. __queue_sample_before(new, last_inserted, head);
  383. else
  384. __queue_sample_after(new, last_inserted, head);
  385. }
  386. static int queue_sample_event(event_t *event, struct sample_data *data,
  387. struct perf_session *s,
  388. struct perf_event_ops *ops)
  389. {
  390. u64 timestamp = data->time;
  391. struct sample_queue *new;
  392. u64 flush_limit;
  393. if (s->ordered_samples.flush_limit == ULLONG_MAX)
  394. s->ordered_samples.flush_limit = timestamp + FLUSH_PERIOD;
  395. if (timestamp < s->ordered_samples.last_flush) {
  396. printf("Warning: Timestamp below last timeslice flush\n");
  397. return -EINVAL;
  398. }
  399. new = malloc(sizeof(*new));
  400. if (!new)
  401. return -ENOMEM;
  402. new->timestamp = timestamp;
  403. new->event = malloc(event->header.size);
  404. if (!new->event) {
  405. free(new);
  406. return -ENOMEM;
  407. }
  408. memcpy(new->event, event, event->header.size);
  409. __queue_sample_event(new, s);
  410. s->ordered_samples.last_inserted = new;
  411. /*
  412. * We want to have a slice of events covering 2 * FLUSH_PERIOD
  413. * If FLUSH_PERIOD is big enough, it ensures every events that occured
  414. * in the first half of the timeslice have all been buffered and there
  415. * are none remaining (we need that because of the weakly ordered
  416. * event recording we have). Then once we reach the 2 * FLUSH_PERIOD
  417. * timeslice, we flush the first half to be gentle with the memory
  418. * (the second half can still get new events in the middle, so wait
  419. * another period to flush it)
  420. */
  421. flush_limit = s->ordered_samples.flush_limit;
  422. if (new->timestamp > flush_limit &&
  423. new->timestamp - flush_limit > FLUSH_PERIOD) {
  424. s->ordered_samples.flush_limit += FLUSH_PERIOD;
  425. flush_sample_queue(s, ops);
  426. }
  427. return 0;
  428. }
  429. static int perf_session__process_sample(event_t *event, struct perf_session *s,
  430. struct perf_event_ops *ops)
  431. {
  432. struct sample_data data;
  433. if (!ops->ordered_samples)
  434. return ops->sample(event, s);
  435. bzero(&data, sizeof(struct sample_data));
  436. event__parse_sample(event, s->sample_type, &data);
  437. queue_sample_event(event, &data, s, ops);
  438. return 0;
  439. }
  440. static int perf_session__process_event(struct perf_session *self,
  441. event_t *event,
  442. struct perf_event_ops *ops,
  443. u64 offset, u64 head)
  444. {
  445. trace_event(event);
  446. if (event->header.type < PERF_RECORD_HEADER_MAX) {
  447. dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
  448. offset + head, event->header.size,
  449. event__name[event->header.type]);
  450. ++event__total[0];
  451. ++event__total[event->header.type];
  452. }
  453. if (self->header.needs_swap && event__swap_ops[event->header.type])
  454. event__swap_ops[event->header.type](event);
  455. switch (event->header.type) {
  456. case PERF_RECORD_SAMPLE:
  457. return perf_session__process_sample(event, self, ops);
  458. case PERF_RECORD_MMAP:
  459. return ops->mmap(event, self);
  460. case PERF_RECORD_COMM:
  461. return ops->comm(event, self);
  462. case PERF_RECORD_FORK:
  463. return ops->fork(event, self);
  464. case PERF_RECORD_EXIT:
  465. return ops->exit(event, self);
  466. case PERF_RECORD_LOST:
  467. return ops->lost(event, self);
  468. case PERF_RECORD_READ:
  469. return ops->read(event, self);
  470. case PERF_RECORD_THROTTLE:
  471. return ops->throttle(event, self);
  472. case PERF_RECORD_UNTHROTTLE:
  473. return ops->unthrottle(event, self);
  474. case PERF_RECORD_HEADER_ATTR:
  475. return ops->attr(event, self);
  476. case PERF_RECORD_HEADER_EVENT_TYPE:
  477. return ops->event_type(event, self);
  478. case PERF_RECORD_HEADER_TRACING_DATA:
  479. /* setup for reading amidst mmap */
  480. lseek(self->fd, offset + head, SEEK_SET);
  481. return ops->tracing_data(event, self);
  482. case PERF_RECORD_HEADER_BUILD_ID:
  483. return ops->build_id(event, self);
  484. default:
  485. self->unknown_events++;
  486. return -1;
  487. }
  488. }
  489. void perf_event_header__bswap(struct perf_event_header *self)
  490. {
  491. self->type = bswap_32(self->type);
  492. self->misc = bswap_16(self->misc);
  493. self->size = bswap_16(self->size);
  494. }
  495. static struct thread *perf_session__register_idle_thread(struct perf_session *self)
  496. {
  497. struct thread *thread = perf_session__findnew(self, 0);
  498. if (thread == NULL || thread__set_comm(thread, "swapper")) {
  499. pr_err("problem inserting idle task.\n");
  500. thread = NULL;
  501. }
  502. return thread;
  503. }
  504. int do_read(int fd, void *buf, size_t size)
  505. {
  506. void *buf_start = buf;
  507. while (size) {
  508. int ret = read(fd, buf, size);
  509. if (ret <= 0)
  510. return ret;
  511. size -= ret;
  512. buf += ret;
  513. }
  514. return buf - buf_start;
  515. }
  516. #define session_done() (*(volatile int *)(&session_done))
  517. volatile int session_done;
  518. static int __perf_session__process_pipe_events(struct perf_session *self,
  519. struct perf_event_ops *ops)
  520. {
  521. event_t event;
  522. uint32_t size;
  523. int skip = 0;
  524. u64 head;
  525. int err;
  526. void *p;
  527. perf_event_ops__fill_defaults(ops);
  528. head = 0;
  529. more:
  530. err = do_read(self->fd, &event, sizeof(struct perf_event_header));
  531. if (err <= 0) {
  532. if (err == 0)
  533. goto done;
  534. pr_err("failed to read event header\n");
  535. goto out_err;
  536. }
  537. if (self->header.needs_swap)
  538. perf_event_header__bswap(&event.header);
  539. size = event.header.size;
  540. if (size == 0)
  541. size = 8;
  542. p = &event;
  543. p += sizeof(struct perf_event_header);
  544. err = do_read(self->fd, p, size - sizeof(struct perf_event_header));
  545. if (err <= 0) {
  546. if (err == 0) {
  547. pr_err("unexpected end of event stream\n");
  548. goto done;
  549. }
  550. pr_err("failed to read event data\n");
  551. goto out_err;
  552. }
  553. if (size == 0 ||
  554. (skip = perf_session__process_event(self, &event, ops,
  555. 0, head)) < 0) {
  556. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  557. head, event.header.size, event.header.type);
  558. /*
  559. * assume we lost track of the stream, check alignment, and
  560. * increment a single u64 in the hope to catch on again 'soon'.
  561. */
  562. if (unlikely(head & 7))
  563. head &= ~7ULL;
  564. size = 8;
  565. }
  566. head += size;
  567. dump_printf("\n%#Lx [%#x]: event: %d\n",
  568. head, event.header.size, event.header.type);
  569. if (skip > 0)
  570. head += skip;
  571. if (!session_done())
  572. goto more;
  573. done:
  574. err = 0;
  575. out_err:
  576. return err;
  577. }
  578. int __perf_session__process_events(struct perf_session *self,
  579. u64 data_offset, u64 data_size,
  580. u64 file_size, struct perf_event_ops *ops)
  581. {
  582. int err, mmap_prot, mmap_flags;
  583. u64 head, shift;
  584. u64 offset = 0;
  585. size_t page_size;
  586. event_t *event;
  587. uint32_t size;
  588. char *buf;
  589. struct ui_progress *progress = ui_progress__new("Processing events...",
  590. self->size);
  591. if (progress == NULL)
  592. return -1;
  593. perf_event_ops__fill_defaults(ops);
  594. page_size = sysconf(_SC_PAGESIZE);
  595. head = data_offset;
  596. shift = page_size * (head / page_size);
  597. offset += shift;
  598. head -= shift;
  599. mmap_prot = PROT_READ;
  600. mmap_flags = MAP_SHARED;
  601. if (self->header.needs_swap) {
  602. mmap_prot |= PROT_WRITE;
  603. mmap_flags = MAP_PRIVATE;
  604. }
  605. remap:
  606. buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
  607. mmap_flags, self->fd, offset);
  608. if (buf == MAP_FAILED) {
  609. pr_err("failed to mmap file\n");
  610. err = -errno;
  611. goto out_err;
  612. }
  613. more:
  614. event = (event_t *)(buf + head);
  615. ui_progress__update(progress, offset);
  616. if (self->header.needs_swap)
  617. perf_event_header__bswap(&event->header);
  618. size = event->header.size;
  619. if (size == 0)
  620. size = 8;
  621. if (head + event->header.size >= page_size * self->mmap_window) {
  622. int munmap_ret;
  623. shift = page_size * (head / page_size);
  624. munmap_ret = munmap(buf, page_size * self->mmap_window);
  625. assert(munmap_ret == 0);
  626. offset += shift;
  627. head -= shift;
  628. goto remap;
  629. }
  630. size = event->header.size;
  631. dump_printf("\n%#Lx [%#x]: event: %d\n",
  632. offset + head, event->header.size, event->header.type);
  633. if (size == 0 ||
  634. perf_session__process_event(self, event, ops, offset, head) < 0) {
  635. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  636. offset + head, event->header.size,
  637. event->header.type);
  638. /*
  639. * assume we lost track of the stream, check alignment, and
  640. * increment a single u64 in the hope to catch on again 'soon'.
  641. */
  642. if (unlikely(head & 7))
  643. head &= ~7ULL;
  644. size = 8;
  645. }
  646. head += size;
  647. if (offset + head >= data_offset + data_size)
  648. goto done;
  649. if (offset + head < file_size)
  650. goto more;
  651. done:
  652. err = 0;
  653. /* do the final flush for ordered samples */
  654. self->ordered_samples.flush_limit = ULLONG_MAX;
  655. flush_sample_queue(self, ops);
  656. out_err:
  657. ui_progress__delete(progress);
  658. return err;
  659. }
  660. int perf_session__process_events(struct perf_session *self,
  661. struct perf_event_ops *ops)
  662. {
  663. int err;
  664. if (perf_session__register_idle_thread(self) == NULL)
  665. return -ENOMEM;
  666. if (!symbol_conf.full_paths) {
  667. char bf[PATH_MAX];
  668. if (getcwd(bf, sizeof(bf)) == NULL) {
  669. err = -errno;
  670. out_getcwd_err:
  671. pr_err("failed to get the current directory\n");
  672. goto out_err;
  673. }
  674. self->cwd = strdup(bf);
  675. if (self->cwd == NULL) {
  676. err = -ENOMEM;
  677. goto out_getcwd_err;
  678. }
  679. self->cwdlen = strlen(self->cwd);
  680. }
  681. if (!self->fd_pipe)
  682. err = __perf_session__process_events(self,
  683. self->header.data_offset,
  684. self->header.data_size,
  685. self->size, ops);
  686. else
  687. err = __perf_session__process_pipe_events(self, ops);
  688. out_err:
  689. return err;
  690. }
  691. bool perf_session__has_traces(struct perf_session *self, const char *msg)
  692. {
  693. if (!(self->sample_type & PERF_SAMPLE_RAW)) {
  694. pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
  695. return false;
  696. }
  697. return true;
  698. }
  699. int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
  700. const char *symbol_name,
  701. u64 addr)
  702. {
  703. char *bracket;
  704. enum map_type i;
  705. struct ref_reloc_sym *ref;
  706. ref = zalloc(sizeof(struct ref_reloc_sym));
  707. if (ref == NULL)
  708. return -ENOMEM;
  709. ref->name = strdup(symbol_name);
  710. if (ref->name == NULL) {
  711. free(ref);
  712. return -ENOMEM;
  713. }
  714. bracket = strchr(ref->name, ']');
  715. if (bracket)
  716. *bracket = '\0';
  717. ref->addr = addr;
  718. for (i = 0; i < MAP__NR_TYPES; ++i) {
  719. struct kmap *kmap = map__kmap(maps[i]);
  720. kmap->ref_reloc_sym = ref;
  721. }
  722. return 0;
  723. }