memory.c 116 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <asm/io.h>
  58. #include <asm/pgalloc.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/tlb.h>
  61. #include <asm/tlbflush.h>
  62. #include <asm/pgtable.h>
  63. #include "internal.h"
  64. #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
  65. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
  66. #endif
  67. #ifndef CONFIG_NEED_MULTIPLE_NODES
  68. /* use the per-pgdat data instead for discontigmem - mbligh */
  69. unsigned long max_mapnr;
  70. struct page *mem_map;
  71. EXPORT_SYMBOL(max_mapnr);
  72. EXPORT_SYMBOL(mem_map);
  73. #endif
  74. /*
  75. * A number of key systems in x86 including ioremap() rely on the assumption
  76. * that high_memory defines the upper bound on direct map memory, then end
  77. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  78. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  79. * and ZONE_HIGHMEM.
  80. */
  81. void * high_memory;
  82. EXPORT_SYMBOL(high_memory);
  83. /*
  84. * Randomize the address space (stacks, mmaps, brk, etc.).
  85. *
  86. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  87. * as ancient (libc5 based) binaries can segfault. )
  88. */
  89. int randomize_va_space __read_mostly =
  90. #ifdef CONFIG_COMPAT_BRK
  91. 1;
  92. #else
  93. 2;
  94. #endif
  95. static int __init disable_randmaps(char *s)
  96. {
  97. randomize_va_space = 0;
  98. return 1;
  99. }
  100. __setup("norandmaps", disable_randmaps);
  101. unsigned long zero_pfn __read_mostly;
  102. unsigned long highest_memmap_pfn __read_mostly;
  103. /*
  104. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  105. */
  106. static int __init init_zero_pfn(void)
  107. {
  108. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  109. return 0;
  110. }
  111. core_initcall(init_zero_pfn);
  112. #if defined(SPLIT_RSS_COUNTING)
  113. void sync_mm_rss(struct mm_struct *mm)
  114. {
  115. int i;
  116. for (i = 0; i < NR_MM_COUNTERS; i++) {
  117. if (current->rss_stat.count[i]) {
  118. add_mm_counter(mm, i, current->rss_stat.count[i]);
  119. current->rss_stat.count[i] = 0;
  120. }
  121. }
  122. current->rss_stat.events = 0;
  123. }
  124. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  125. {
  126. struct task_struct *task = current;
  127. if (likely(task->mm == mm))
  128. task->rss_stat.count[member] += val;
  129. else
  130. add_mm_counter(mm, member, val);
  131. }
  132. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  133. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  134. /* sync counter once per 64 page faults */
  135. #define TASK_RSS_EVENTS_THRESH (64)
  136. static void check_sync_rss_stat(struct task_struct *task)
  137. {
  138. if (unlikely(task != current))
  139. return;
  140. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  141. sync_mm_rss(task->mm);
  142. }
  143. #else /* SPLIT_RSS_COUNTING */
  144. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  145. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  146. static void check_sync_rss_stat(struct task_struct *task)
  147. {
  148. }
  149. #endif /* SPLIT_RSS_COUNTING */
  150. #ifdef HAVE_GENERIC_MMU_GATHER
  151. static int tlb_next_batch(struct mmu_gather *tlb)
  152. {
  153. struct mmu_gather_batch *batch;
  154. batch = tlb->active;
  155. if (batch->next) {
  156. tlb->active = batch->next;
  157. return 1;
  158. }
  159. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  160. return 0;
  161. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  162. if (!batch)
  163. return 0;
  164. tlb->batch_count++;
  165. batch->next = NULL;
  166. batch->nr = 0;
  167. batch->max = MAX_GATHER_BATCH;
  168. tlb->active->next = batch;
  169. tlb->active = batch;
  170. return 1;
  171. }
  172. /* tlb_gather_mmu
  173. * Called to initialize an (on-stack) mmu_gather structure for page-table
  174. * tear-down from @mm. The @fullmm argument is used when @mm is without
  175. * users and we're going to destroy the full address space (exit/execve).
  176. */
  177. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  178. {
  179. tlb->mm = mm;
  180. /* Is it from 0 to ~0? */
  181. tlb->fullmm = !(start | (end+1));
  182. tlb->need_flush_all = 0;
  183. tlb->start = start;
  184. tlb->end = end;
  185. tlb->need_flush = 0;
  186. tlb->local.next = NULL;
  187. tlb->local.nr = 0;
  188. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  189. tlb->active = &tlb->local;
  190. tlb->batch_count = 0;
  191. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  192. tlb->batch = NULL;
  193. #endif
  194. }
  195. void tlb_flush_mmu(struct mmu_gather *tlb)
  196. {
  197. struct mmu_gather_batch *batch;
  198. if (!tlb->need_flush)
  199. return;
  200. tlb->need_flush = 0;
  201. tlb_flush(tlb);
  202. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  203. tlb_table_flush(tlb);
  204. #endif
  205. for (batch = &tlb->local; batch; batch = batch->next) {
  206. free_pages_and_swap_cache(batch->pages, batch->nr);
  207. batch->nr = 0;
  208. }
  209. tlb->active = &tlb->local;
  210. }
  211. /* tlb_finish_mmu
  212. * Called at the end of the shootdown operation to free up any resources
  213. * that were required.
  214. */
  215. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  216. {
  217. struct mmu_gather_batch *batch, *next;
  218. tlb_flush_mmu(tlb);
  219. /* keep the page table cache within bounds */
  220. check_pgt_cache();
  221. for (batch = tlb->local.next; batch; batch = next) {
  222. next = batch->next;
  223. free_pages((unsigned long)batch, 0);
  224. }
  225. tlb->local.next = NULL;
  226. }
  227. /* __tlb_remove_page
  228. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  229. * handling the additional races in SMP caused by other CPUs caching valid
  230. * mappings in their TLBs. Returns the number of free page slots left.
  231. * When out of page slots we must call tlb_flush_mmu().
  232. */
  233. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  234. {
  235. struct mmu_gather_batch *batch;
  236. VM_BUG_ON(!tlb->need_flush);
  237. batch = tlb->active;
  238. batch->pages[batch->nr++] = page;
  239. if (batch->nr == batch->max) {
  240. if (!tlb_next_batch(tlb))
  241. return 0;
  242. batch = tlb->active;
  243. }
  244. VM_BUG_ON(batch->nr > batch->max);
  245. return batch->max - batch->nr;
  246. }
  247. #endif /* HAVE_GENERIC_MMU_GATHER */
  248. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  249. /*
  250. * See the comment near struct mmu_table_batch.
  251. */
  252. static void tlb_remove_table_smp_sync(void *arg)
  253. {
  254. /* Simply deliver the interrupt */
  255. }
  256. static void tlb_remove_table_one(void *table)
  257. {
  258. /*
  259. * This isn't an RCU grace period and hence the page-tables cannot be
  260. * assumed to be actually RCU-freed.
  261. *
  262. * It is however sufficient for software page-table walkers that rely on
  263. * IRQ disabling. See the comment near struct mmu_table_batch.
  264. */
  265. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  266. __tlb_remove_table(table);
  267. }
  268. static void tlb_remove_table_rcu(struct rcu_head *head)
  269. {
  270. struct mmu_table_batch *batch;
  271. int i;
  272. batch = container_of(head, struct mmu_table_batch, rcu);
  273. for (i = 0; i < batch->nr; i++)
  274. __tlb_remove_table(batch->tables[i]);
  275. free_page((unsigned long)batch);
  276. }
  277. void tlb_table_flush(struct mmu_gather *tlb)
  278. {
  279. struct mmu_table_batch **batch = &tlb->batch;
  280. if (*batch) {
  281. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  282. *batch = NULL;
  283. }
  284. }
  285. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  286. {
  287. struct mmu_table_batch **batch = &tlb->batch;
  288. tlb->need_flush = 1;
  289. /*
  290. * When there's less then two users of this mm there cannot be a
  291. * concurrent page-table walk.
  292. */
  293. if (atomic_read(&tlb->mm->mm_users) < 2) {
  294. __tlb_remove_table(table);
  295. return;
  296. }
  297. if (*batch == NULL) {
  298. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  299. if (*batch == NULL) {
  300. tlb_remove_table_one(table);
  301. return;
  302. }
  303. (*batch)->nr = 0;
  304. }
  305. (*batch)->tables[(*batch)->nr++] = table;
  306. if ((*batch)->nr == MAX_TABLE_BATCH)
  307. tlb_table_flush(tlb);
  308. }
  309. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  310. /*
  311. * Note: this doesn't free the actual pages themselves. That
  312. * has been handled earlier when unmapping all the memory regions.
  313. */
  314. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  315. unsigned long addr)
  316. {
  317. pgtable_t token = pmd_pgtable(*pmd);
  318. pmd_clear(pmd);
  319. pte_free_tlb(tlb, token, addr);
  320. tlb->mm->nr_ptes--;
  321. }
  322. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  323. unsigned long addr, unsigned long end,
  324. unsigned long floor, unsigned long ceiling)
  325. {
  326. pmd_t *pmd;
  327. unsigned long next;
  328. unsigned long start;
  329. start = addr;
  330. pmd = pmd_offset(pud, addr);
  331. do {
  332. next = pmd_addr_end(addr, end);
  333. if (pmd_none_or_clear_bad(pmd))
  334. continue;
  335. free_pte_range(tlb, pmd, addr);
  336. } while (pmd++, addr = next, addr != end);
  337. start &= PUD_MASK;
  338. if (start < floor)
  339. return;
  340. if (ceiling) {
  341. ceiling &= PUD_MASK;
  342. if (!ceiling)
  343. return;
  344. }
  345. if (end - 1 > ceiling - 1)
  346. return;
  347. pmd = pmd_offset(pud, start);
  348. pud_clear(pud);
  349. pmd_free_tlb(tlb, pmd, start);
  350. }
  351. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  352. unsigned long addr, unsigned long end,
  353. unsigned long floor, unsigned long ceiling)
  354. {
  355. pud_t *pud;
  356. unsigned long next;
  357. unsigned long start;
  358. start = addr;
  359. pud = pud_offset(pgd, addr);
  360. do {
  361. next = pud_addr_end(addr, end);
  362. if (pud_none_or_clear_bad(pud))
  363. continue;
  364. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  365. } while (pud++, addr = next, addr != end);
  366. start &= PGDIR_MASK;
  367. if (start < floor)
  368. return;
  369. if (ceiling) {
  370. ceiling &= PGDIR_MASK;
  371. if (!ceiling)
  372. return;
  373. }
  374. if (end - 1 > ceiling - 1)
  375. return;
  376. pud = pud_offset(pgd, start);
  377. pgd_clear(pgd);
  378. pud_free_tlb(tlb, pud, start);
  379. }
  380. /*
  381. * This function frees user-level page tables of a process.
  382. *
  383. * Must be called with pagetable lock held.
  384. */
  385. void free_pgd_range(struct mmu_gather *tlb,
  386. unsigned long addr, unsigned long end,
  387. unsigned long floor, unsigned long ceiling)
  388. {
  389. pgd_t *pgd;
  390. unsigned long next;
  391. /*
  392. * The next few lines have given us lots of grief...
  393. *
  394. * Why are we testing PMD* at this top level? Because often
  395. * there will be no work to do at all, and we'd prefer not to
  396. * go all the way down to the bottom just to discover that.
  397. *
  398. * Why all these "- 1"s? Because 0 represents both the bottom
  399. * of the address space and the top of it (using -1 for the
  400. * top wouldn't help much: the masks would do the wrong thing).
  401. * The rule is that addr 0 and floor 0 refer to the bottom of
  402. * the address space, but end 0 and ceiling 0 refer to the top
  403. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  404. * that end 0 case should be mythical).
  405. *
  406. * Wherever addr is brought up or ceiling brought down, we must
  407. * be careful to reject "the opposite 0" before it confuses the
  408. * subsequent tests. But what about where end is brought down
  409. * by PMD_SIZE below? no, end can't go down to 0 there.
  410. *
  411. * Whereas we round start (addr) and ceiling down, by different
  412. * masks at different levels, in order to test whether a table
  413. * now has no other vmas using it, so can be freed, we don't
  414. * bother to round floor or end up - the tests don't need that.
  415. */
  416. addr &= PMD_MASK;
  417. if (addr < floor) {
  418. addr += PMD_SIZE;
  419. if (!addr)
  420. return;
  421. }
  422. if (ceiling) {
  423. ceiling &= PMD_MASK;
  424. if (!ceiling)
  425. return;
  426. }
  427. if (end - 1 > ceiling - 1)
  428. end -= PMD_SIZE;
  429. if (addr > end - 1)
  430. return;
  431. pgd = pgd_offset(tlb->mm, addr);
  432. do {
  433. next = pgd_addr_end(addr, end);
  434. if (pgd_none_or_clear_bad(pgd))
  435. continue;
  436. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  437. } while (pgd++, addr = next, addr != end);
  438. }
  439. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  440. unsigned long floor, unsigned long ceiling)
  441. {
  442. while (vma) {
  443. struct vm_area_struct *next = vma->vm_next;
  444. unsigned long addr = vma->vm_start;
  445. /*
  446. * Hide vma from rmap and truncate_pagecache before freeing
  447. * pgtables
  448. */
  449. unlink_anon_vmas(vma);
  450. unlink_file_vma(vma);
  451. if (is_vm_hugetlb_page(vma)) {
  452. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  453. floor, next? next->vm_start: ceiling);
  454. } else {
  455. /*
  456. * Optimization: gather nearby vmas into one call down
  457. */
  458. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  459. && !is_vm_hugetlb_page(next)) {
  460. vma = next;
  461. next = vma->vm_next;
  462. unlink_anon_vmas(vma);
  463. unlink_file_vma(vma);
  464. }
  465. free_pgd_range(tlb, addr, vma->vm_end,
  466. floor, next? next->vm_start: ceiling);
  467. }
  468. vma = next;
  469. }
  470. }
  471. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  472. pmd_t *pmd, unsigned long address)
  473. {
  474. pgtable_t new = pte_alloc_one(mm, address);
  475. int wait_split_huge_page;
  476. if (!new)
  477. return -ENOMEM;
  478. /*
  479. * Ensure all pte setup (eg. pte page lock and page clearing) are
  480. * visible before the pte is made visible to other CPUs by being
  481. * put into page tables.
  482. *
  483. * The other side of the story is the pointer chasing in the page
  484. * table walking code (when walking the page table without locking;
  485. * ie. most of the time). Fortunately, these data accesses consist
  486. * of a chain of data-dependent loads, meaning most CPUs (alpha
  487. * being the notable exception) will already guarantee loads are
  488. * seen in-order. See the alpha page table accessors for the
  489. * smp_read_barrier_depends() barriers in page table walking code.
  490. */
  491. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  492. spin_lock(&mm->page_table_lock);
  493. wait_split_huge_page = 0;
  494. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  495. mm->nr_ptes++;
  496. pmd_populate(mm, pmd, new);
  497. new = NULL;
  498. } else if (unlikely(pmd_trans_splitting(*pmd)))
  499. wait_split_huge_page = 1;
  500. spin_unlock(&mm->page_table_lock);
  501. if (new)
  502. pte_free(mm, new);
  503. if (wait_split_huge_page)
  504. wait_split_huge_page(vma->anon_vma, pmd);
  505. return 0;
  506. }
  507. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  508. {
  509. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  510. if (!new)
  511. return -ENOMEM;
  512. smp_wmb(); /* See comment in __pte_alloc */
  513. spin_lock(&init_mm.page_table_lock);
  514. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  515. pmd_populate_kernel(&init_mm, pmd, new);
  516. new = NULL;
  517. } else
  518. VM_BUG_ON(pmd_trans_splitting(*pmd));
  519. spin_unlock(&init_mm.page_table_lock);
  520. if (new)
  521. pte_free_kernel(&init_mm, new);
  522. return 0;
  523. }
  524. static inline void init_rss_vec(int *rss)
  525. {
  526. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  527. }
  528. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  529. {
  530. int i;
  531. if (current->mm == mm)
  532. sync_mm_rss(mm);
  533. for (i = 0; i < NR_MM_COUNTERS; i++)
  534. if (rss[i])
  535. add_mm_counter(mm, i, rss[i]);
  536. }
  537. /*
  538. * This function is called to print an error when a bad pte
  539. * is found. For example, we might have a PFN-mapped pte in
  540. * a region that doesn't allow it.
  541. *
  542. * The calling function must still handle the error.
  543. */
  544. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  545. pte_t pte, struct page *page)
  546. {
  547. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  548. pud_t *pud = pud_offset(pgd, addr);
  549. pmd_t *pmd = pmd_offset(pud, addr);
  550. struct address_space *mapping;
  551. pgoff_t index;
  552. static unsigned long resume;
  553. static unsigned long nr_shown;
  554. static unsigned long nr_unshown;
  555. /*
  556. * Allow a burst of 60 reports, then keep quiet for that minute;
  557. * or allow a steady drip of one report per second.
  558. */
  559. if (nr_shown == 60) {
  560. if (time_before(jiffies, resume)) {
  561. nr_unshown++;
  562. return;
  563. }
  564. if (nr_unshown) {
  565. printk(KERN_ALERT
  566. "BUG: Bad page map: %lu messages suppressed\n",
  567. nr_unshown);
  568. nr_unshown = 0;
  569. }
  570. nr_shown = 0;
  571. }
  572. if (nr_shown++ == 0)
  573. resume = jiffies + 60 * HZ;
  574. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  575. index = linear_page_index(vma, addr);
  576. printk(KERN_ALERT
  577. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  578. current->comm,
  579. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  580. if (page)
  581. dump_page(page);
  582. printk(KERN_ALERT
  583. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  584. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  585. /*
  586. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  587. */
  588. if (vma->vm_ops)
  589. printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
  590. vma->vm_ops->fault);
  591. if (vma->vm_file && vma->vm_file->f_op)
  592. printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
  593. vma->vm_file->f_op->mmap);
  594. dump_stack();
  595. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  596. }
  597. static inline bool is_cow_mapping(vm_flags_t flags)
  598. {
  599. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  600. }
  601. /*
  602. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  603. *
  604. * "Special" mappings do not wish to be associated with a "struct page" (either
  605. * it doesn't exist, or it exists but they don't want to touch it). In this
  606. * case, NULL is returned here. "Normal" mappings do have a struct page.
  607. *
  608. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  609. * pte bit, in which case this function is trivial. Secondly, an architecture
  610. * may not have a spare pte bit, which requires a more complicated scheme,
  611. * described below.
  612. *
  613. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  614. * special mapping (even if there are underlying and valid "struct pages").
  615. * COWed pages of a VM_PFNMAP are always normal.
  616. *
  617. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  618. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  619. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  620. * mapping will always honor the rule
  621. *
  622. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  623. *
  624. * And for normal mappings this is false.
  625. *
  626. * This restricts such mappings to be a linear translation from virtual address
  627. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  628. * as the vma is not a COW mapping; in that case, we know that all ptes are
  629. * special (because none can have been COWed).
  630. *
  631. *
  632. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  633. *
  634. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  635. * page" backing, however the difference is that _all_ pages with a struct
  636. * page (that is, those where pfn_valid is true) are refcounted and considered
  637. * normal pages by the VM. The disadvantage is that pages are refcounted
  638. * (which can be slower and simply not an option for some PFNMAP users). The
  639. * advantage is that we don't have to follow the strict linearity rule of
  640. * PFNMAP mappings in order to support COWable mappings.
  641. *
  642. */
  643. #ifdef __HAVE_ARCH_PTE_SPECIAL
  644. # define HAVE_PTE_SPECIAL 1
  645. #else
  646. # define HAVE_PTE_SPECIAL 0
  647. #endif
  648. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  649. pte_t pte)
  650. {
  651. unsigned long pfn = pte_pfn(pte);
  652. if (HAVE_PTE_SPECIAL) {
  653. if (likely(!pte_special(pte)))
  654. goto check_pfn;
  655. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  656. return NULL;
  657. if (!is_zero_pfn(pfn))
  658. print_bad_pte(vma, addr, pte, NULL);
  659. return NULL;
  660. }
  661. /* !HAVE_PTE_SPECIAL case follows: */
  662. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  663. if (vma->vm_flags & VM_MIXEDMAP) {
  664. if (!pfn_valid(pfn))
  665. return NULL;
  666. goto out;
  667. } else {
  668. unsigned long off;
  669. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  670. if (pfn == vma->vm_pgoff + off)
  671. return NULL;
  672. if (!is_cow_mapping(vma->vm_flags))
  673. return NULL;
  674. }
  675. }
  676. if (is_zero_pfn(pfn))
  677. return NULL;
  678. check_pfn:
  679. if (unlikely(pfn > highest_memmap_pfn)) {
  680. print_bad_pte(vma, addr, pte, NULL);
  681. return NULL;
  682. }
  683. /*
  684. * NOTE! We still have PageReserved() pages in the page tables.
  685. * eg. VDSO mappings can cause them to exist.
  686. */
  687. out:
  688. return pfn_to_page(pfn);
  689. }
  690. /*
  691. * copy one vm_area from one task to the other. Assumes the page tables
  692. * already present in the new task to be cleared in the whole range
  693. * covered by this vma.
  694. */
  695. static inline unsigned long
  696. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  697. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  698. unsigned long addr, int *rss)
  699. {
  700. unsigned long vm_flags = vma->vm_flags;
  701. pte_t pte = *src_pte;
  702. struct page *page;
  703. /* pte contains position in swap or file, so copy. */
  704. if (unlikely(!pte_present(pte))) {
  705. if (!pte_file(pte)) {
  706. swp_entry_t entry = pte_to_swp_entry(pte);
  707. if (swap_duplicate(entry) < 0)
  708. return entry.val;
  709. /* make sure dst_mm is on swapoff's mmlist. */
  710. if (unlikely(list_empty(&dst_mm->mmlist))) {
  711. spin_lock(&mmlist_lock);
  712. if (list_empty(&dst_mm->mmlist))
  713. list_add(&dst_mm->mmlist,
  714. &src_mm->mmlist);
  715. spin_unlock(&mmlist_lock);
  716. }
  717. if (likely(!non_swap_entry(entry)))
  718. rss[MM_SWAPENTS]++;
  719. else if (is_migration_entry(entry)) {
  720. page = migration_entry_to_page(entry);
  721. if (PageAnon(page))
  722. rss[MM_ANONPAGES]++;
  723. else
  724. rss[MM_FILEPAGES]++;
  725. if (is_write_migration_entry(entry) &&
  726. is_cow_mapping(vm_flags)) {
  727. /*
  728. * COW mappings require pages in both
  729. * parent and child to be set to read.
  730. */
  731. make_migration_entry_read(&entry);
  732. pte = swp_entry_to_pte(entry);
  733. set_pte_at(src_mm, addr, src_pte, pte);
  734. }
  735. }
  736. }
  737. goto out_set_pte;
  738. }
  739. /*
  740. * If it's a COW mapping, write protect it both
  741. * in the parent and the child
  742. */
  743. if (is_cow_mapping(vm_flags)) {
  744. ptep_set_wrprotect(src_mm, addr, src_pte);
  745. pte = pte_wrprotect(pte);
  746. }
  747. /*
  748. * If it's a shared mapping, mark it clean in
  749. * the child
  750. */
  751. if (vm_flags & VM_SHARED)
  752. pte = pte_mkclean(pte);
  753. pte = pte_mkold(pte);
  754. page = vm_normal_page(vma, addr, pte);
  755. if (page) {
  756. get_page(page);
  757. page_dup_rmap(page);
  758. if (PageAnon(page))
  759. rss[MM_ANONPAGES]++;
  760. else
  761. rss[MM_FILEPAGES]++;
  762. }
  763. out_set_pte:
  764. set_pte_at(dst_mm, addr, dst_pte, pte);
  765. return 0;
  766. }
  767. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  768. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  769. unsigned long addr, unsigned long end)
  770. {
  771. pte_t *orig_src_pte, *orig_dst_pte;
  772. pte_t *src_pte, *dst_pte;
  773. spinlock_t *src_ptl, *dst_ptl;
  774. int progress = 0;
  775. int rss[NR_MM_COUNTERS];
  776. swp_entry_t entry = (swp_entry_t){0};
  777. again:
  778. init_rss_vec(rss);
  779. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  780. if (!dst_pte)
  781. return -ENOMEM;
  782. src_pte = pte_offset_map(src_pmd, addr);
  783. src_ptl = pte_lockptr(src_mm, src_pmd);
  784. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  785. orig_src_pte = src_pte;
  786. orig_dst_pte = dst_pte;
  787. arch_enter_lazy_mmu_mode();
  788. do {
  789. /*
  790. * We are holding two locks at this point - either of them
  791. * could generate latencies in another task on another CPU.
  792. */
  793. if (progress >= 32) {
  794. progress = 0;
  795. if (need_resched() ||
  796. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  797. break;
  798. }
  799. if (pte_none(*src_pte)) {
  800. progress++;
  801. continue;
  802. }
  803. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  804. vma, addr, rss);
  805. if (entry.val)
  806. break;
  807. progress += 8;
  808. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  809. arch_leave_lazy_mmu_mode();
  810. spin_unlock(src_ptl);
  811. pte_unmap(orig_src_pte);
  812. add_mm_rss_vec(dst_mm, rss);
  813. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  814. cond_resched();
  815. if (entry.val) {
  816. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  817. return -ENOMEM;
  818. progress = 0;
  819. }
  820. if (addr != end)
  821. goto again;
  822. return 0;
  823. }
  824. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  825. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  826. unsigned long addr, unsigned long end)
  827. {
  828. pmd_t *src_pmd, *dst_pmd;
  829. unsigned long next;
  830. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  831. if (!dst_pmd)
  832. return -ENOMEM;
  833. src_pmd = pmd_offset(src_pud, addr);
  834. do {
  835. next = pmd_addr_end(addr, end);
  836. if (pmd_trans_huge(*src_pmd)) {
  837. int err;
  838. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  839. err = copy_huge_pmd(dst_mm, src_mm,
  840. dst_pmd, src_pmd, addr, vma);
  841. if (err == -ENOMEM)
  842. return -ENOMEM;
  843. if (!err)
  844. continue;
  845. /* fall through */
  846. }
  847. if (pmd_none_or_clear_bad(src_pmd))
  848. continue;
  849. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  850. vma, addr, next))
  851. return -ENOMEM;
  852. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  853. return 0;
  854. }
  855. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  856. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  857. unsigned long addr, unsigned long end)
  858. {
  859. pud_t *src_pud, *dst_pud;
  860. unsigned long next;
  861. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  862. if (!dst_pud)
  863. return -ENOMEM;
  864. src_pud = pud_offset(src_pgd, addr);
  865. do {
  866. next = pud_addr_end(addr, end);
  867. if (pud_none_or_clear_bad(src_pud))
  868. continue;
  869. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  870. vma, addr, next))
  871. return -ENOMEM;
  872. } while (dst_pud++, src_pud++, addr = next, addr != end);
  873. return 0;
  874. }
  875. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  876. struct vm_area_struct *vma)
  877. {
  878. pgd_t *src_pgd, *dst_pgd;
  879. unsigned long next;
  880. unsigned long addr = vma->vm_start;
  881. unsigned long end = vma->vm_end;
  882. unsigned long mmun_start; /* For mmu_notifiers */
  883. unsigned long mmun_end; /* For mmu_notifiers */
  884. bool is_cow;
  885. int ret;
  886. /*
  887. * Don't copy ptes where a page fault will fill them correctly.
  888. * Fork becomes much lighter when there are big shared or private
  889. * readonly mappings. The tradeoff is that copy_page_range is more
  890. * efficient than faulting.
  891. */
  892. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  893. VM_PFNMAP | VM_MIXEDMAP))) {
  894. if (!vma->anon_vma)
  895. return 0;
  896. }
  897. if (is_vm_hugetlb_page(vma))
  898. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  899. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  900. /*
  901. * We do not free on error cases below as remove_vma
  902. * gets called on error from higher level routine
  903. */
  904. ret = track_pfn_copy(vma);
  905. if (ret)
  906. return ret;
  907. }
  908. /*
  909. * We need to invalidate the secondary MMU mappings only when
  910. * there could be a permission downgrade on the ptes of the
  911. * parent mm. And a permission downgrade will only happen if
  912. * is_cow_mapping() returns true.
  913. */
  914. is_cow = is_cow_mapping(vma->vm_flags);
  915. mmun_start = addr;
  916. mmun_end = end;
  917. if (is_cow)
  918. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  919. mmun_end);
  920. ret = 0;
  921. dst_pgd = pgd_offset(dst_mm, addr);
  922. src_pgd = pgd_offset(src_mm, addr);
  923. do {
  924. next = pgd_addr_end(addr, end);
  925. if (pgd_none_or_clear_bad(src_pgd))
  926. continue;
  927. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  928. vma, addr, next))) {
  929. ret = -ENOMEM;
  930. break;
  931. }
  932. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  933. if (is_cow)
  934. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  935. return ret;
  936. }
  937. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  938. struct vm_area_struct *vma, pmd_t *pmd,
  939. unsigned long addr, unsigned long end,
  940. struct zap_details *details)
  941. {
  942. struct mm_struct *mm = tlb->mm;
  943. int force_flush = 0;
  944. int rss[NR_MM_COUNTERS];
  945. spinlock_t *ptl;
  946. pte_t *start_pte;
  947. pte_t *pte;
  948. again:
  949. init_rss_vec(rss);
  950. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  951. pte = start_pte;
  952. arch_enter_lazy_mmu_mode();
  953. do {
  954. pte_t ptent = *pte;
  955. if (pte_none(ptent)) {
  956. continue;
  957. }
  958. if (pte_present(ptent)) {
  959. struct page *page;
  960. page = vm_normal_page(vma, addr, ptent);
  961. if (unlikely(details) && page) {
  962. /*
  963. * unmap_shared_mapping_pages() wants to
  964. * invalidate cache without truncating:
  965. * unmap shared but keep private pages.
  966. */
  967. if (details->check_mapping &&
  968. details->check_mapping != page->mapping)
  969. continue;
  970. /*
  971. * Each page->index must be checked when
  972. * invalidating or truncating nonlinear.
  973. */
  974. if (details->nonlinear_vma &&
  975. (page->index < details->first_index ||
  976. page->index > details->last_index))
  977. continue;
  978. }
  979. ptent = ptep_get_and_clear_full(mm, addr, pte,
  980. tlb->fullmm);
  981. tlb_remove_tlb_entry(tlb, pte, addr);
  982. if (unlikely(!page))
  983. continue;
  984. if (unlikely(details) && details->nonlinear_vma
  985. && linear_page_index(details->nonlinear_vma,
  986. addr) != page->index) {
  987. pte_t ptfile = pgoff_to_pte(page->index);
  988. if (pte_soft_dirty(ptent))
  989. pte_file_mksoft_dirty(ptfile);
  990. set_pte_at(mm, addr, pte, ptfile);
  991. }
  992. if (PageAnon(page))
  993. rss[MM_ANONPAGES]--;
  994. else {
  995. if (pte_dirty(ptent))
  996. set_page_dirty(page);
  997. if (pte_young(ptent) &&
  998. likely(!(vma->vm_flags & VM_SEQ_READ)))
  999. mark_page_accessed(page);
  1000. rss[MM_FILEPAGES]--;
  1001. }
  1002. page_remove_rmap(page);
  1003. if (unlikely(page_mapcount(page) < 0))
  1004. print_bad_pte(vma, addr, ptent, page);
  1005. force_flush = !__tlb_remove_page(tlb, page);
  1006. if (force_flush)
  1007. break;
  1008. continue;
  1009. }
  1010. /*
  1011. * If details->check_mapping, we leave swap entries;
  1012. * if details->nonlinear_vma, we leave file entries.
  1013. */
  1014. if (unlikely(details))
  1015. continue;
  1016. if (pte_file(ptent)) {
  1017. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1018. print_bad_pte(vma, addr, ptent, NULL);
  1019. } else {
  1020. swp_entry_t entry = pte_to_swp_entry(ptent);
  1021. if (!non_swap_entry(entry))
  1022. rss[MM_SWAPENTS]--;
  1023. else if (is_migration_entry(entry)) {
  1024. struct page *page;
  1025. page = migration_entry_to_page(entry);
  1026. if (PageAnon(page))
  1027. rss[MM_ANONPAGES]--;
  1028. else
  1029. rss[MM_FILEPAGES]--;
  1030. }
  1031. if (unlikely(!free_swap_and_cache(entry)))
  1032. print_bad_pte(vma, addr, ptent, NULL);
  1033. }
  1034. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1035. } while (pte++, addr += PAGE_SIZE, addr != end);
  1036. add_mm_rss_vec(mm, rss);
  1037. arch_leave_lazy_mmu_mode();
  1038. pte_unmap_unlock(start_pte, ptl);
  1039. /*
  1040. * mmu_gather ran out of room to batch pages, we break out of
  1041. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1042. * and page-free while holding it.
  1043. */
  1044. if (force_flush) {
  1045. unsigned long old_end;
  1046. force_flush = 0;
  1047. /*
  1048. * Flush the TLB just for the previous segment,
  1049. * then update the range to be the remaining
  1050. * TLB range.
  1051. */
  1052. old_end = tlb->end;
  1053. tlb->end = addr;
  1054. tlb_flush_mmu(tlb);
  1055. tlb->start = addr;
  1056. tlb->end = old_end;
  1057. if (addr != end)
  1058. goto again;
  1059. }
  1060. return addr;
  1061. }
  1062. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1063. struct vm_area_struct *vma, pud_t *pud,
  1064. unsigned long addr, unsigned long end,
  1065. struct zap_details *details)
  1066. {
  1067. pmd_t *pmd;
  1068. unsigned long next;
  1069. pmd = pmd_offset(pud, addr);
  1070. do {
  1071. next = pmd_addr_end(addr, end);
  1072. if (pmd_trans_huge(*pmd)) {
  1073. if (next - addr != HPAGE_PMD_SIZE) {
  1074. #ifdef CONFIG_DEBUG_VM
  1075. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1076. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1077. __func__, addr, end,
  1078. vma->vm_start,
  1079. vma->vm_end);
  1080. BUG();
  1081. }
  1082. #endif
  1083. split_huge_page_pmd(vma, addr, pmd);
  1084. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1085. goto next;
  1086. /* fall through */
  1087. }
  1088. /*
  1089. * Here there can be other concurrent MADV_DONTNEED or
  1090. * trans huge page faults running, and if the pmd is
  1091. * none or trans huge it can change under us. This is
  1092. * because MADV_DONTNEED holds the mmap_sem in read
  1093. * mode.
  1094. */
  1095. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1096. goto next;
  1097. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1098. next:
  1099. cond_resched();
  1100. } while (pmd++, addr = next, addr != end);
  1101. return addr;
  1102. }
  1103. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1104. struct vm_area_struct *vma, pgd_t *pgd,
  1105. unsigned long addr, unsigned long end,
  1106. struct zap_details *details)
  1107. {
  1108. pud_t *pud;
  1109. unsigned long next;
  1110. pud = pud_offset(pgd, addr);
  1111. do {
  1112. next = pud_addr_end(addr, end);
  1113. if (pud_none_or_clear_bad(pud))
  1114. continue;
  1115. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1116. } while (pud++, addr = next, addr != end);
  1117. return addr;
  1118. }
  1119. static void unmap_page_range(struct mmu_gather *tlb,
  1120. struct vm_area_struct *vma,
  1121. unsigned long addr, unsigned long end,
  1122. struct zap_details *details)
  1123. {
  1124. pgd_t *pgd;
  1125. unsigned long next;
  1126. if (details && !details->check_mapping && !details->nonlinear_vma)
  1127. details = NULL;
  1128. BUG_ON(addr >= end);
  1129. mem_cgroup_uncharge_start();
  1130. tlb_start_vma(tlb, vma);
  1131. pgd = pgd_offset(vma->vm_mm, addr);
  1132. do {
  1133. next = pgd_addr_end(addr, end);
  1134. if (pgd_none_or_clear_bad(pgd))
  1135. continue;
  1136. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1137. } while (pgd++, addr = next, addr != end);
  1138. tlb_end_vma(tlb, vma);
  1139. mem_cgroup_uncharge_end();
  1140. }
  1141. static void unmap_single_vma(struct mmu_gather *tlb,
  1142. struct vm_area_struct *vma, unsigned long start_addr,
  1143. unsigned long end_addr,
  1144. struct zap_details *details)
  1145. {
  1146. unsigned long start = max(vma->vm_start, start_addr);
  1147. unsigned long end;
  1148. if (start >= vma->vm_end)
  1149. return;
  1150. end = min(vma->vm_end, end_addr);
  1151. if (end <= vma->vm_start)
  1152. return;
  1153. if (vma->vm_file)
  1154. uprobe_munmap(vma, start, end);
  1155. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1156. untrack_pfn(vma, 0, 0);
  1157. if (start != end) {
  1158. if (unlikely(is_vm_hugetlb_page(vma))) {
  1159. /*
  1160. * It is undesirable to test vma->vm_file as it
  1161. * should be non-null for valid hugetlb area.
  1162. * However, vm_file will be NULL in the error
  1163. * cleanup path of do_mmap_pgoff. When
  1164. * hugetlbfs ->mmap method fails,
  1165. * do_mmap_pgoff() nullifies vma->vm_file
  1166. * before calling this function to clean up.
  1167. * Since no pte has actually been setup, it is
  1168. * safe to do nothing in this case.
  1169. */
  1170. if (vma->vm_file) {
  1171. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1172. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1173. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1174. }
  1175. } else
  1176. unmap_page_range(tlb, vma, start, end, details);
  1177. }
  1178. }
  1179. /**
  1180. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1181. * @tlb: address of the caller's struct mmu_gather
  1182. * @vma: the starting vma
  1183. * @start_addr: virtual address at which to start unmapping
  1184. * @end_addr: virtual address at which to end unmapping
  1185. *
  1186. * Unmap all pages in the vma list.
  1187. *
  1188. * Only addresses between `start' and `end' will be unmapped.
  1189. *
  1190. * The VMA list must be sorted in ascending virtual address order.
  1191. *
  1192. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1193. * range after unmap_vmas() returns. So the only responsibility here is to
  1194. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1195. * drops the lock and schedules.
  1196. */
  1197. void unmap_vmas(struct mmu_gather *tlb,
  1198. struct vm_area_struct *vma, unsigned long start_addr,
  1199. unsigned long end_addr)
  1200. {
  1201. struct mm_struct *mm = vma->vm_mm;
  1202. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1203. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1204. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1205. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1206. }
  1207. /**
  1208. * zap_page_range - remove user pages in a given range
  1209. * @vma: vm_area_struct holding the applicable pages
  1210. * @start: starting address of pages to zap
  1211. * @size: number of bytes to zap
  1212. * @details: details of nonlinear truncation or shared cache invalidation
  1213. *
  1214. * Caller must protect the VMA list
  1215. */
  1216. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1217. unsigned long size, struct zap_details *details)
  1218. {
  1219. struct mm_struct *mm = vma->vm_mm;
  1220. struct mmu_gather tlb;
  1221. unsigned long end = start + size;
  1222. lru_add_drain();
  1223. tlb_gather_mmu(&tlb, mm, start, end);
  1224. update_hiwater_rss(mm);
  1225. mmu_notifier_invalidate_range_start(mm, start, end);
  1226. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1227. unmap_single_vma(&tlb, vma, start, end, details);
  1228. mmu_notifier_invalidate_range_end(mm, start, end);
  1229. tlb_finish_mmu(&tlb, start, end);
  1230. }
  1231. /**
  1232. * zap_page_range_single - remove user pages in a given range
  1233. * @vma: vm_area_struct holding the applicable pages
  1234. * @address: starting address of pages to zap
  1235. * @size: number of bytes to zap
  1236. * @details: details of nonlinear truncation or shared cache invalidation
  1237. *
  1238. * The range must fit into one VMA.
  1239. */
  1240. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1241. unsigned long size, struct zap_details *details)
  1242. {
  1243. struct mm_struct *mm = vma->vm_mm;
  1244. struct mmu_gather tlb;
  1245. unsigned long end = address + size;
  1246. lru_add_drain();
  1247. tlb_gather_mmu(&tlb, mm, address, end);
  1248. update_hiwater_rss(mm);
  1249. mmu_notifier_invalidate_range_start(mm, address, end);
  1250. unmap_single_vma(&tlb, vma, address, end, details);
  1251. mmu_notifier_invalidate_range_end(mm, address, end);
  1252. tlb_finish_mmu(&tlb, address, end);
  1253. }
  1254. /**
  1255. * zap_vma_ptes - remove ptes mapping the vma
  1256. * @vma: vm_area_struct holding ptes to be zapped
  1257. * @address: starting address of pages to zap
  1258. * @size: number of bytes to zap
  1259. *
  1260. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1261. *
  1262. * The entire address range must be fully contained within the vma.
  1263. *
  1264. * Returns 0 if successful.
  1265. */
  1266. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1267. unsigned long size)
  1268. {
  1269. if (address < vma->vm_start || address + size > vma->vm_end ||
  1270. !(vma->vm_flags & VM_PFNMAP))
  1271. return -1;
  1272. zap_page_range_single(vma, address, size, NULL);
  1273. return 0;
  1274. }
  1275. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1276. /**
  1277. * follow_page_mask - look up a page descriptor from a user-virtual address
  1278. * @vma: vm_area_struct mapping @address
  1279. * @address: virtual address to look up
  1280. * @flags: flags modifying lookup behaviour
  1281. * @page_mask: on output, *page_mask is set according to the size of the page
  1282. *
  1283. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1284. *
  1285. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1286. * an error pointer if there is a mapping to something not represented
  1287. * by a page descriptor (see also vm_normal_page()).
  1288. */
  1289. struct page *follow_page_mask(struct vm_area_struct *vma,
  1290. unsigned long address, unsigned int flags,
  1291. unsigned int *page_mask)
  1292. {
  1293. pgd_t *pgd;
  1294. pud_t *pud;
  1295. pmd_t *pmd;
  1296. pte_t *ptep, pte;
  1297. spinlock_t *ptl;
  1298. struct page *page;
  1299. struct mm_struct *mm = vma->vm_mm;
  1300. *page_mask = 0;
  1301. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1302. if (!IS_ERR(page)) {
  1303. BUG_ON(flags & FOLL_GET);
  1304. goto out;
  1305. }
  1306. page = NULL;
  1307. pgd = pgd_offset(mm, address);
  1308. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1309. goto no_page_table;
  1310. pud = pud_offset(pgd, address);
  1311. if (pud_none(*pud))
  1312. goto no_page_table;
  1313. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1314. BUG_ON(flags & FOLL_GET);
  1315. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1316. goto out;
  1317. }
  1318. if (unlikely(pud_bad(*pud)))
  1319. goto no_page_table;
  1320. pmd = pmd_offset(pud, address);
  1321. if (pmd_none(*pmd))
  1322. goto no_page_table;
  1323. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1324. BUG_ON(flags & FOLL_GET);
  1325. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1326. goto out;
  1327. }
  1328. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1329. goto no_page_table;
  1330. if (pmd_trans_huge(*pmd)) {
  1331. if (flags & FOLL_SPLIT) {
  1332. split_huge_page_pmd(vma, address, pmd);
  1333. goto split_fallthrough;
  1334. }
  1335. spin_lock(&mm->page_table_lock);
  1336. if (likely(pmd_trans_huge(*pmd))) {
  1337. if (unlikely(pmd_trans_splitting(*pmd))) {
  1338. spin_unlock(&mm->page_table_lock);
  1339. wait_split_huge_page(vma->anon_vma, pmd);
  1340. } else {
  1341. page = follow_trans_huge_pmd(vma, address,
  1342. pmd, flags);
  1343. spin_unlock(&mm->page_table_lock);
  1344. *page_mask = HPAGE_PMD_NR - 1;
  1345. goto out;
  1346. }
  1347. } else
  1348. spin_unlock(&mm->page_table_lock);
  1349. /* fall through */
  1350. }
  1351. split_fallthrough:
  1352. if (unlikely(pmd_bad(*pmd)))
  1353. goto no_page_table;
  1354. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1355. pte = *ptep;
  1356. if (!pte_present(pte)) {
  1357. swp_entry_t entry;
  1358. /*
  1359. * KSM's break_ksm() relies upon recognizing a ksm page
  1360. * even while it is being migrated, so for that case we
  1361. * need migration_entry_wait().
  1362. */
  1363. if (likely(!(flags & FOLL_MIGRATION)))
  1364. goto no_page;
  1365. if (pte_none(pte) || pte_file(pte))
  1366. goto no_page;
  1367. entry = pte_to_swp_entry(pte);
  1368. if (!is_migration_entry(entry))
  1369. goto no_page;
  1370. pte_unmap_unlock(ptep, ptl);
  1371. migration_entry_wait(mm, pmd, address);
  1372. goto split_fallthrough;
  1373. }
  1374. if ((flags & FOLL_NUMA) && pte_numa(pte))
  1375. goto no_page;
  1376. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1377. goto unlock;
  1378. page = vm_normal_page(vma, address, pte);
  1379. if (unlikely(!page)) {
  1380. if ((flags & FOLL_DUMP) ||
  1381. !is_zero_pfn(pte_pfn(pte)))
  1382. goto bad_page;
  1383. page = pte_page(pte);
  1384. }
  1385. if (flags & FOLL_GET)
  1386. get_page_foll(page);
  1387. if (flags & FOLL_TOUCH) {
  1388. if ((flags & FOLL_WRITE) &&
  1389. !pte_dirty(pte) && !PageDirty(page))
  1390. set_page_dirty(page);
  1391. /*
  1392. * pte_mkyoung() would be more correct here, but atomic care
  1393. * is needed to avoid losing the dirty bit: it is easier to use
  1394. * mark_page_accessed().
  1395. */
  1396. mark_page_accessed(page);
  1397. }
  1398. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1399. /*
  1400. * The preliminary mapping check is mainly to avoid the
  1401. * pointless overhead of lock_page on the ZERO_PAGE
  1402. * which might bounce very badly if there is contention.
  1403. *
  1404. * If the page is already locked, we don't need to
  1405. * handle it now - vmscan will handle it later if and
  1406. * when it attempts to reclaim the page.
  1407. */
  1408. if (page->mapping && trylock_page(page)) {
  1409. lru_add_drain(); /* push cached pages to LRU */
  1410. /*
  1411. * Because we lock page here, and migration is
  1412. * blocked by the pte's page reference, and we
  1413. * know the page is still mapped, we don't even
  1414. * need to check for file-cache page truncation.
  1415. */
  1416. mlock_vma_page(page);
  1417. unlock_page(page);
  1418. }
  1419. }
  1420. unlock:
  1421. pte_unmap_unlock(ptep, ptl);
  1422. out:
  1423. return page;
  1424. bad_page:
  1425. pte_unmap_unlock(ptep, ptl);
  1426. return ERR_PTR(-EFAULT);
  1427. no_page:
  1428. pte_unmap_unlock(ptep, ptl);
  1429. if (!pte_none(pte))
  1430. return page;
  1431. no_page_table:
  1432. /*
  1433. * When core dumping an enormous anonymous area that nobody
  1434. * has touched so far, we don't want to allocate unnecessary pages or
  1435. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1436. * then get_dump_page() will return NULL to leave a hole in the dump.
  1437. * But we can only make this optimization where a hole would surely
  1438. * be zero-filled if handle_mm_fault() actually did handle it.
  1439. */
  1440. if ((flags & FOLL_DUMP) &&
  1441. (!vma->vm_ops || !vma->vm_ops->fault))
  1442. return ERR_PTR(-EFAULT);
  1443. return page;
  1444. }
  1445. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1446. {
  1447. return stack_guard_page_start(vma, addr) ||
  1448. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1449. }
  1450. /**
  1451. * __get_user_pages() - pin user pages in memory
  1452. * @tsk: task_struct of target task
  1453. * @mm: mm_struct of target mm
  1454. * @start: starting user address
  1455. * @nr_pages: number of pages from start to pin
  1456. * @gup_flags: flags modifying pin behaviour
  1457. * @pages: array that receives pointers to the pages pinned.
  1458. * Should be at least nr_pages long. Or NULL, if caller
  1459. * only intends to ensure the pages are faulted in.
  1460. * @vmas: array of pointers to vmas corresponding to each page.
  1461. * Or NULL if the caller does not require them.
  1462. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1463. *
  1464. * Returns number of pages pinned. This may be fewer than the number
  1465. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1466. * were pinned, returns -errno. Each page returned must be released
  1467. * with a put_page() call when it is finished with. vmas will only
  1468. * remain valid while mmap_sem is held.
  1469. *
  1470. * Must be called with mmap_sem held for read or write.
  1471. *
  1472. * __get_user_pages walks a process's page tables and takes a reference to
  1473. * each struct page that each user address corresponds to at a given
  1474. * instant. That is, it takes the page that would be accessed if a user
  1475. * thread accesses the given user virtual address at that instant.
  1476. *
  1477. * This does not guarantee that the page exists in the user mappings when
  1478. * __get_user_pages returns, and there may even be a completely different
  1479. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1480. * and subsequently re faulted). However it does guarantee that the page
  1481. * won't be freed completely. And mostly callers simply care that the page
  1482. * contains data that was valid *at some point in time*. Typically, an IO
  1483. * or similar operation cannot guarantee anything stronger anyway because
  1484. * locks can't be held over the syscall boundary.
  1485. *
  1486. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1487. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1488. * appropriate) must be called after the page is finished with, and
  1489. * before put_page is called.
  1490. *
  1491. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1492. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1493. * *@nonblocking will be set to 0.
  1494. *
  1495. * In most cases, get_user_pages or get_user_pages_fast should be used
  1496. * instead of __get_user_pages. __get_user_pages should be used only if
  1497. * you need some special @gup_flags.
  1498. */
  1499. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1500. unsigned long start, unsigned long nr_pages,
  1501. unsigned int gup_flags, struct page **pages,
  1502. struct vm_area_struct **vmas, int *nonblocking)
  1503. {
  1504. long i;
  1505. unsigned long vm_flags;
  1506. unsigned int page_mask;
  1507. if (!nr_pages)
  1508. return 0;
  1509. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1510. /*
  1511. * Require read or write permissions.
  1512. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1513. */
  1514. vm_flags = (gup_flags & FOLL_WRITE) ?
  1515. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1516. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1517. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1518. /*
  1519. * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
  1520. * would be called on PROT_NONE ranges. We must never invoke
  1521. * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
  1522. * page faults would unprotect the PROT_NONE ranges if
  1523. * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
  1524. * bitflag. So to avoid that, don't set FOLL_NUMA if
  1525. * FOLL_FORCE is set.
  1526. */
  1527. if (!(gup_flags & FOLL_FORCE))
  1528. gup_flags |= FOLL_NUMA;
  1529. i = 0;
  1530. do {
  1531. struct vm_area_struct *vma;
  1532. vma = find_extend_vma(mm, start);
  1533. if (!vma && in_gate_area(mm, start)) {
  1534. unsigned long pg = start & PAGE_MASK;
  1535. pgd_t *pgd;
  1536. pud_t *pud;
  1537. pmd_t *pmd;
  1538. pte_t *pte;
  1539. /* user gate pages are read-only */
  1540. if (gup_flags & FOLL_WRITE)
  1541. return i ? : -EFAULT;
  1542. if (pg > TASK_SIZE)
  1543. pgd = pgd_offset_k(pg);
  1544. else
  1545. pgd = pgd_offset_gate(mm, pg);
  1546. BUG_ON(pgd_none(*pgd));
  1547. pud = pud_offset(pgd, pg);
  1548. BUG_ON(pud_none(*pud));
  1549. pmd = pmd_offset(pud, pg);
  1550. if (pmd_none(*pmd))
  1551. return i ? : -EFAULT;
  1552. VM_BUG_ON(pmd_trans_huge(*pmd));
  1553. pte = pte_offset_map(pmd, pg);
  1554. if (pte_none(*pte)) {
  1555. pte_unmap(pte);
  1556. return i ? : -EFAULT;
  1557. }
  1558. vma = get_gate_vma(mm);
  1559. if (pages) {
  1560. struct page *page;
  1561. page = vm_normal_page(vma, start, *pte);
  1562. if (!page) {
  1563. if (!(gup_flags & FOLL_DUMP) &&
  1564. is_zero_pfn(pte_pfn(*pte)))
  1565. page = pte_page(*pte);
  1566. else {
  1567. pte_unmap(pte);
  1568. return i ? : -EFAULT;
  1569. }
  1570. }
  1571. pages[i] = page;
  1572. get_page(page);
  1573. }
  1574. pte_unmap(pte);
  1575. page_mask = 0;
  1576. goto next_page;
  1577. }
  1578. if (!vma ||
  1579. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1580. !(vm_flags & vma->vm_flags))
  1581. return i ? : -EFAULT;
  1582. if (is_vm_hugetlb_page(vma)) {
  1583. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1584. &start, &nr_pages, i, gup_flags);
  1585. continue;
  1586. }
  1587. do {
  1588. struct page *page;
  1589. unsigned int foll_flags = gup_flags;
  1590. unsigned int page_increm;
  1591. /*
  1592. * If we have a pending SIGKILL, don't keep faulting
  1593. * pages and potentially allocating memory.
  1594. */
  1595. if (unlikely(fatal_signal_pending(current)))
  1596. return i ? i : -ERESTARTSYS;
  1597. cond_resched();
  1598. while (!(page = follow_page_mask(vma, start,
  1599. foll_flags, &page_mask))) {
  1600. int ret;
  1601. unsigned int fault_flags = 0;
  1602. /* For mlock, just skip the stack guard page. */
  1603. if (foll_flags & FOLL_MLOCK) {
  1604. if (stack_guard_page(vma, start))
  1605. goto next_page;
  1606. }
  1607. if (foll_flags & FOLL_WRITE)
  1608. fault_flags |= FAULT_FLAG_WRITE;
  1609. if (nonblocking)
  1610. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1611. if (foll_flags & FOLL_NOWAIT)
  1612. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1613. ret = handle_mm_fault(mm, vma, start,
  1614. fault_flags);
  1615. if (ret & VM_FAULT_ERROR) {
  1616. if (ret & VM_FAULT_OOM)
  1617. return i ? i : -ENOMEM;
  1618. if (ret & (VM_FAULT_HWPOISON |
  1619. VM_FAULT_HWPOISON_LARGE)) {
  1620. if (i)
  1621. return i;
  1622. else if (gup_flags & FOLL_HWPOISON)
  1623. return -EHWPOISON;
  1624. else
  1625. return -EFAULT;
  1626. }
  1627. if (ret & VM_FAULT_SIGBUS)
  1628. return i ? i : -EFAULT;
  1629. BUG();
  1630. }
  1631. if (tsk) {
  1632. if (ret & VM_FAULT_MAJOR)
  1633. tsk->maj_flt++;
  1634. else
  1635. tsk->min_flt++;
  1636. }
  1637. if (ret & VM_FAULT_RETRY) {
  1638. if (nonblocking)
  1639. *nonblocking = 0;
  1640. return i;
  1641. }
  1642. /*
  1643. * The VM_FAULT_WRITE bit tells us that
  1644. * do_wp_page has broken COW when necessary,
  1645. * even if maybe_mkwrite decided not to set
  1646. * pte_write. We can thus safely do subsequent
  1647. * page lookups as if they were reads. But only
  1648. * do so when looping for pte_write is futile:
  1649. * in some cases userspace may also be wanting
  1650. * to write to the gotten user page, which a
  1651. * read fault here might prevent (a readonly
  1652. * page might get reCOWed by userspace write).
  1653. */
  1654. if ((ret & VM_FAULT_WRITE) &&
  1655. !(vma->vm_flags & VM_WRITE))
  1656. foll_flags &= ~FOLL_WRITE;
  1657. cond_resched();
  1658. }
  1659. if (IS_ERR(page))
  1660. return i ? i : PTR_ERR(page);
  1661. if (pages) {
  1662. pages[i] = page;
  1663. flush_anon_page(vma, page, start);
  1664. flush_dcache_page(page);
  1665. page_mask = 0;
  1666. }
  1667. next_page:
  1668. if (vmas) {
  1669. vmas[i] = vma;
  1670. page_mask = 0;
  1671. }
  1672. page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
  1673. if (page_increm > nr_pages)
  1674. page_increm = nr_pages;
  1675. i += page_increm;
  1676. start += page_increm * PAGE_SIZE;
  1677. nr_pages -= page_increm;
  1678. } while (nr_pages && start < vma->vm_end);
  1679. } while (nr_pages);
  1680. return i;
  1681. }
  1682. EXPORT_SYMBOL(__get_user_pages);
  1683. /*
  1684. * fixup_user_fault() - manually resolve a user page fault
  1685. * @tsk: the task_struct to use for page fault accounting, or
  1686. * NULL if faults are not to be recorded.
  1687. * @mm: mm_struct of target mm
  1688. * @address: user address
  1689. * @fault_flags:flags to pass down to handle_mm_fault()
  1690. *
  1691. * This is meant to be called in the specific scenario where for locking reasons
  1692. * we try to access user memory in atomic context (within a pagefault_disable()
  1693. * section), this returns -EFAULT, and we want to resolve the user fault before
  1694. * trying again.
  1695. *
  1696. * Typically this is meant to be used by the futex code.
  1697. *
  1698. * The main difference with get_user_pages() is that this function will
  1699. * unconditionally call handle_mm_fault() which will in turn perform all the
  1700. * necessary SW fixup of the dirty and young bits in the PTE, while
  1701. * handle_mm_fault() only guarantees to update these in the struct page.
  1702. *
  1703. * This is important for some architectures where those bits also gate the
  1704. * access permission to the page because they are maintained in software. On
  1705. * such architectures, gup() will not be enough to make a subsequent access
  1706. * succeed.
  1707. *
  1708. * This should be called with the mm_sem held for read.
  1709. */
  1710. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1711. unsigned long address, unsigned int fault_flags)
  1712. {
  1713. struct vm_area_struct *vma;
  1714. int ret;
  1715. vma = find_extend_vma(mm, address);
  1716. if (!vma || address < vma->vm_start)
  1717. return -EFAULT;
  1718. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1719. if (ret & VM_FAULT_ERROR) {
  1720. if (ret & VM_FAULT_OOM)
  1721. return -ENOMEM;
  1722. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1723. return -EHWPOISON;
  1724. if (ret & VM_FAULT_SIGBUS)
  1725. return -EFAULT;
  1726. BUG();
  1727. }
  1728. if (tsk) {
  1729. if (ret & VM_FAULT_MAJOR)
  1730. tsk->maj_flt++;
  1731. else
  1732. tsk->min_flt++;
  1733. }
  1734. return 0;
  1735. }
  1736. /*
  1737. * get_user_pages() - pin user pages in memory
  1738. * @tsk: the task_struct to use for page fault accounting, or
  1739. * NULL if faults are not to be recorded.
  1740. * @mm: mm_struct of target mm
  1741. * @start: starting user address
  1742. * @nr_pages: number of pages from start to pin
  1743. * @write: whether pages will be written to by the caller
  1744. * @force: whether to force write access even if user mapping is
  1745. * readonly. This will result in the page being COWed even
  1746. * in MAP_SHARED mappings. You do not want this.
  1747. * @pages: array that receives pointers to the pages pinned.
  1748. * Should be at least nr_pages long. Or NULL, if caller
  1749. * only intends to ensure the pages are faulted in.
  1750. * @vmas: array of pointers to vmas corresponding to each page.
  1751. * Or NULL if the caller does not require them.
  1752. *
  1753. * Returns number of pages pinned. This may be fewer than the number
  1754. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1755. * were pinned, returns -errno. Each page returned must be released
  1756. * with a put_page() call when it is finished with. vmas will only
  1757. * remain valid while mmap_sem is held.
  1758. *
  1759. * Must be called with mmap_sem held for read or write.
  1760. *
  1761. * get_user_pages walks a process's page tables and takes a reference to
  1762. * each struct page that each user address corresponds to at a given
  1763. * instant. That is, it takes the page that would be accessed if a user
  1764. * thread accesses the given user virtual address at that instant.
  1765. *
  1766. * This does not guarantee that the page exists in the user mappings when
  1767. * get_user_pages returns, and there may even be a completely different
  1768. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1769. * and subsequently re faulted). However it does guarantee that the page
  1770. * won't be freed completely. And mostly callers simply care that the page
  1771. * contains data that was valid *at some point in time*. Typically, an IO
  1772. * or similar operation cannot guarantee anything stronger anyway because
  1773. * locks can't be held over the syscall boundary.
  1774. *
  1775. * If write=0, the page must not be written to. If the page is written to,
  1776. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1777. * after the page is finished with, and before put_page is called.
  1778. *
  1779. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1780. * handle on the memory by some means other than accesses via the user virtual
  1781. * addresses. The pages may be submitted for DMA to devices or accessed via
  1782. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1783. * use the correct cache flushing APIs.
  1784. *
  1785. * See also get_user_pages_fast, for performance critical applications.
  1786. */
  1787. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1788. unsigned long start, unsigned long nr_pages, int write,
  1789. int force, struct page **pages, struct vm_area_struct **vmas)
  1790. {
  1791. int flags = FOLL_TOUCH;
  1792. if (pages)
  1793. flags |= FOLL_GET;
  1794. if (write)
  1795. flags |= FOLL_WRITE;
  1796. if (force)
  1797. flags |= FOLL_FORCE;
  1798. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1799. NULL);
  1800. }
  1801. EXPORT_SYMBOL(get_user_pages);
  1802. /**
  1803. * get_dump_page() - pin user page in memory while writing it to core dump
  1804. * @addr: user address
  1805. *
  1806. * Returns struct page pointer of user page pinned for dump,
  1807. * to be freed afterwards by page_cache_release() or put_page().
  1808. *
  1809. * Returns NULL on any kind of failure - a hole must then be inserted into
  1810. * the corefile, to preserve alignment with its headers; and also returns
  1811. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1812. * allowing a hole to be left in the corefile to save diskspace.
  1813. *
  1814. * Called without mmap_sem, but after all other threads have been killed.
  1815. */
  1816. #ifdef CONFIG_ELF_CORE
  1817. struct page *get_dump_page(unsigned long addr)
  1818. {
  1819. struct vm_area_struct *vma;
  1820. struct page *page;
  1821. if (__get_user_pages(current, current->mm, addr, 1,
  1822. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1823. NULL) < 1)
  1824. return NULL;
  1825. flush_cache_page(vma, addr, page_to_pfn(page));
  1826. return page;
  1827. }
  1828. #endif /* CONFIG_ELF_CORE */
  1829. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1830. spinlock_t **ptl)
  1831. {
  1832. pgd_t * pgd = pgd_offset(mm, addr);
  1833. pud_t * pud = pud_alloc(mm, pgd, addr);
  1834. if (pud) {
  1835. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1836. if (pmd) {
  1837. VM_BUG_ON(pmd_trans_huge(*pmd));
  1838. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1839. }
  1840. }
  1841. return NULL;
  1842. }
  1843. /*
  1844. * This is the old fallback for page remapping.
  1845. *
  1846. * For historical reasons, it only allows reserved pages. Only
  1847. * old drivers should use this, and they needed to mark their
  1848. * pages reserved for the old functions anyway.
  1849. */
  1850. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1851. struct page *page, pgprot_t prot)
  1852. {
  1853. struct mm_struct *mm = vma->vm_mm;
  1854. int retval;
  1855. pte_t *pte;
  1856. spinlock_t *ptl;
  1857. retval = -EINVAL;
  1858. if (PageAnon(page))
  1859. goto out;
  1860. retval = -ENOMEM;
  1861. flush_dcache_page(page);
  1862. pte = get_locked_pte(mm, addr, &ptl);
  1863. if (!pte)
  1864. goto out;
  1865. retval = -EBUSY;
  1866. if (!pte_none(*pte))
  1867. goto out_unlock;
  1868. /* Ok, finally just insert the thing.. */
  1869. get_page(page);
  1870. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1871. page_add_file_rmap(page);
  1872. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1873. retval = 0;
  1874. pte_unmap_unlock(pte, ptl);
  1875. return retval;
  1876. out_unlock:
  1877. pte_unmap_unlock(pte, ptl);
  1878. out:
  1879. return retval;
  1880. }
  1881. /**
  1882. * vm_insert_page - insert single page into user vma
  1883. * @vma: user vma to map to
  1884. * @addr: target user address of this page
  1885. * @page: source kernel page
  1886. *
  1887. * This allows drivers to insert individual pages they've allocated
  1888. * into a user vma.
  1889. *
  1890. * The page has to be a nice clean _individual_ kernel allocation.
  1891. * If you allocate a compound page, you need to have marked it as
  1892. * such (__GFP_COMP), or manually just split the page up yourself
  1893. * (see split_page()).
  1894. *
  1895. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1896. * took an arbitrary page protection parameter. This doesn't allow
  1897. * that. Your vma protection will have to be set up correctly, which
  1898. * means that if you want a shared writable mapping, you'd better
  1899. * ask for a shared writable mapping!
  1900. *
  1901. * The page does not need to be reserved.
  1902. *
  1903. * Usually this function is called from f_op->mmap() handler
  1904. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1905. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1906. * function from other places, for example from page-fault handler.
  1907. */
  1908. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1909. struct page *page)
  1910. {
  1911. if (addr < vma->vm_start || addr >= vma->vm_end)
  1912. return -EFAULT;
  1913. if (!page_count(page))
  1914. return -EINVAL;
  1915. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1916. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1917. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1918. vma->vm_flags |= VM_MIXEDMAP;
  1919. }
  1920. return insert_page(vma, addr, page, vma->vm_page_prot);
  1921. }
  1922. EXPORT_SYMBOL(vm_insert_page);
  1923. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1924. unsigned long pfn, pgprot_t prot)
  1925. {
  1926. struct mm_struct *mm = vma->vm_mm;
  1927. int retval;
  1928. pte_t *pte, entry;
  1929. spinlock_t *ptl;
  1930. retval = -ENOMEM;
  1931. pte = get_locked_pte(mm, addr, &ptl);
  1932. if (!pte)
  1933. goto out;
  1934. retval = -EBUSY;
  1935. if (!pte_none(*pte))
  1936. goto out_unlock;
  1937. /* Ok, finally just insert the thing.. */
  1938. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1939. set_pte_at(mm, addr, pte, entry);
  1940. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1941. retval = 0;
  1942. out_unlock:
  1943. pte_unmap_unlock(pte, ptl);
  1944. out:
  1945. return retval;
  1946. }
  1947. /**
  1948. * vm_insert_pfn - insert single pfn into user vma
  1949. * @vma: user vma to map to
  1950. * @addr: target user address of this page
  1951. * @pfn: source kernel pfn
  1952. *
  1953. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1954. * they've allocated into a user vma. Same comments apply.
  1955. *
  1956. * This function should only be called from a vm_ops->fault handler, and
  1957. * in that case the handler should return NULL.
  1958. *
  1959. * vma cannot be a COW mapping.
  1960. *
  1961. * As this is called only for pages that do not currently exist, we
  1962. * do not need to flush old virtual caches or the TLB.
  1963. */
  1964. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1965. unsigned long pfn)
  1966. {
  1967. int ret;
  1968. pgprot_t pgprot = vma->vm_page_prot;
  1969. /*
  1970. * Technically, architectures with pte_special can avoid all these
  1971. * restrictions (same for remap_pfn_range). However we would like
  1972. * consistency in testing and feature parity among all, so we should
  1973. * try to keep these invariants in place for everybody.
  1974. */
  1975. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1976. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1977. (VM_PFNMAP|VM_MIXEDMAP));
  1978. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1979. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1980. if (addr < vma->vm_start || addr >= vma->vm_end)
  1981. return -EFAULT;
  1982. if (track_pfn_insert(vma, &pgprot, pfn))
  1983. return -EINVAL;
  1984. ret = insert_pfn(vma, addr, pfn, pgprot);
  1985. return ret;
  1986. }
  1987. EXPORT_SYMBOL(vm_insert_pfn);
  1988. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1989. unsigned long pfn)
  1990. {
  1991. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1992. if (addr < vma->vm_start || addr >= vma->vm_end)
  1993. return -EFAULT;
  1994. /*
  1995. * If we don't have pte special, then we have to use the pfn_valid()
  1996. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1997. * refcount the page if pfn_valid is true (hence insert_page rather
  1998. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1999. * without pte special, it would there be refcounted as a normal page.
  2000. */
  2001. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  2002. struct page *page;
  2003. page = pfn_to_page(pfn);
  2004. return insert_page(vma, addr, page, vma->vm_page_prot);
  2005. }
  2006. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  2007. }
  2008. EXPORT_SYMBOL(vm_insert_mixed);
  2009. /*
  2010. * maps a range of physical memory into the requested pages. the old
  2011. * mappings are removed. any references to nonexistent pages results
  2012. * in null mappings (currently treated as "copy-on-access")
  2013. */
  2014. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2015. unsigned long addr, unsigned long end,
  2016. unsigned long pfn, pgprot_t prot)
  2017. {
  2018. pte_t *pte;
  2019. spinlock_t *ptl;
  2020. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2021. if (!pte)
  2022. return -ENOMEM;
  2023. arch_enter_lazy_mmu_mode();
  2024. do {
  2025. BUG_ON(!pte_none(*pte));
  2026. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  2027. pfn++;
  2028. } while (pte++, addr += PAGE_SIZE, addr != end);
  2029. arch_leave_lazy_mmu_mode();
  2030. pte_unmap_unlock(pte - 1, ptl);
  2031. return 0;
  2032. }
  2033. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2034. unsigned long addr, unsigned long end,
  2035. unsigned long pfn, pgprot_t prot)
  2036. {
  2037. pmd_t *pmd;
  2038. unsigned long next;
  2039. pfn -= addr >> PAGE_SHIFT;
  2040. pmd = pmd_alloc(mm, pud, addr);
  2041. if (!pmd)
  2042. return -ENOMEM;
  2043. VM_BUG_ON(pmd_trans_huge(*pmd));
  2044. do {
  2045. next = pmd_addr_end(addr, end);
  2046. if (remap_pte_range(mm, pmd, addr, next,
  2047. pfn + (addr >> PAGE_SHIFT), prot))
  2048. return -ENOMEM;
  2049. } while (pmd++, addr = next, addr != end);
  2050. return 0;
  2051. }
  2052. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2053. unsigned long addr, unsigned long end,
  2054. unsigned long pfn, pgprot_t prot)
  2055. {
  2056. pud_t *pud;
  2057. unsigned long next;
  2058. pfn -= addr >> PAGE_SHIFT;
  2059. pud = pud_alloc(mm, pgd, addr);
  2060. if (!pud)
  2061. return -ENOMEM;
  2062. do {
  2063. next = pud_addr_end(addr, end);
  2064. if (remap_pmd_range(mm, pud, addr, next,
  2065. pfn + (addr >> PAGE_SHIFT), prot))
  2066. return -ENOMEM;
  2067. } while (pud++, addr = next, addr != end);
  2068. return 0;
  2069. }
  2070. /**
  2071. * remap_pfn_range - remap kernel memory to userspace
  2072. * @vma: user vma to map to
  2073. * @addr: target user address to start at
  2074. * @pfn: physical address of kernel memory
  2075. * @size: size of map area
  2076. * @prot: page protection flags for this mapping
  2077. *
  2078. * Note: this is only safe if the mm semaphore is held when called.
  2079. */
  2080. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2081. unsigned long pfn, unsigned long size, pgprot_t prot)
  2082. {
  2083. pgd_t *pgd;
  2084. unsigned long next;
  2085. unsigned long end = addr + PAGE_ALIGN(size);
  2086. struct mm_struct *mm = vma->vm_mm;
  2087. int err;
  2088. /*
  2089. * Physically remapped pages are special. Tell the
  2090. * rest of the world about it:
  2091. * VM_IO tells people not to look at these pages
  2092. * (accesses can have side effects).
  2093. * VM_PFNMAP tells the core MM that the base pages are just
  2094. * raw PFN mappings, and do not have a "struct page" associated
  2095. * with them.
  2096. * VM_DONTEXPAND
  2097. * Disable vma merging and expanding with mremap().
  2098. * VM_DONTDUMP
  2099. * Omit vma from core dump, even when VM_IO turned off.
  2100. *
  2101. * There's a horrible special case to handle copy-on-write
  2102. * behaviour that some programs depend on. We mark the "original"
  2103. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2104. * See vm_normal_page() for details.
  2105. */
  2106. if (is_cow_mapping(vma->vm_flags)) {
  2107. if (addr != vma->vm_start || end != vma->vm_end)
  2108. return -EINVAL;
  2109. vma->vm_pgoff = pfn;
  2110. }
  2111. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2112. if (err)
  2113. return -EINVAL;
  2114. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2115. BUG_ON(addr >= end);
  2116. pfn -= addr >> PAGE_SHIFT;
  2117. pgd = pgd_offset(mm, addr);
  2118. flush_cache_range(vma, addr, end);
  2119. do {
  2120. next = pgd_addr_end(addr, end);
  2121. err = remap_pud_range(mm, pgd, addr, next,
  2122. pfn + (addr >> PAGE_SHIFT), prot);
  2123. if (err)
  2124. break;
  2125. } while (pgd++, addr = next, addr != end);
  2126. if (err)
  2127. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2128. return err;
  2129. }
  2130. EXPORT_SYMBOL(remap_pfn_range);
  2131. /**
  2132. * vm_iomap_memory - remap memory to userspace
  2133. * @vma: user vma to map to
  2134. * @start: start of area
  2135. * @len: size of area
  2136. *
  2137. * This is a simplified io_remap_pfn_range() for common driver use. The
  2138. * driver just needs to give us the physical memory range to be mapped,
  2139. * we'll figure out the rest from the vma information.
  2140. *
  2141. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  2142. * whatever write-combining details or similar.
  2143. */
  2144. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  2145. {
  2146. unsigned long vm_len, pfn, pages;
  2147. /* Check that the physical memory area passed in looks valid */
  2148. if (start + len < start)
  2149. return -EINVAL;
  2150. /*
  2151. * You *really* shouldn't map things that aren't page-aligned,
  2152. * but we've historically allowed it because IO memory might
  2153. * just have smaller alignment.
  2154. */
  2155. len += start & ~PAGE_MASK;
  2156. pfn = start >> PAGE_SHIFT;
  2157. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  2158. if (pfn + pages < pfn)
  2159. return -EINVAL;
  2160. /* We start the mapping 'vm_pgoff' pages into the area */
  2161. if (vma->vm_pgoff > pages)
  2162. return -EINVAL;
  2163. pfn += vma->vm_pgoff;
  2164. pages -= vma->vm_pgoff;
  2165. /* Can we fit all of the mapping? */
  2166. vm_len = vma->vm_end - vma->vm_start;
  2167. if (vm_len >> PAGE_SHIFT > pages)
  2168. return -EINVAL;
  2169. /* Ok, let it rip */
  2170. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  2171. }
  2172. EXPORT_SYMBOL(vm_iomap_memory);
  2173. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2174. unsigned long addr, unsigned long end,
  2175. pte_fn_t fn, void *data)
  2176. {
  2177. pte_t *pte;
  2178. int err;
  2179. pgtable_t token;
  2180. spinlock_t *uninitialized_var(ptl);
  2181. pte = (mm == &init_mm) ?
  2182. pte_alloc_kernel(pmd, addr) :
  2183. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2184. if (!pte)
  2185. return -ENOMEM;
  2186. BUG_ON(pmd_huge(*pmd));
  2187. arch_enter_lazy_mmu_mode();
  2188. token = pmd_pgtable(*pmd);
  2189. do {
  2190. err = fn(pte++, token, addr, data);
  2191. if (err)
  2192. break;
  2193. } while (addr += PAGE_SIZE, addr != end);
  2194. arch_leave_lazy_mmu_mode();
  2195. if (mm != &init_mm)
  2196. pte_unmap_unlock(pte-1, ptl);
  2197. return err;
  2198. }
  2199. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2200. unsigned long addr, unsigned long end,
  2201. pte_fn_t fn, void *data)
  2202. {
  2203. pmd_t *pmd;
  2204. unsigned long next;
  2205. int err;
  2206. BUG_ON(pud_huge(*pud));
  2207. pmd = pmd_alloc(mm, pud, addr);
  2208. if (!pmd)
  2209. return -ENOMEM;
  2210. do {
  2211. next = pmd_addr_end(addr, end);
  2212. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2213. if (err)
  2214. break;
  2215. } while (pmd++, addr = next, addr != end);
  2216. return err;
  2217. }
  2218. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2219. unsigned long addr, unsigned long end,
  2220. pte_fn_t fn, void *data)
  2221. {
  2222. pud_t *pud;
  2223. unsigned long next;
  2224. int err;
  2225. pud = pud_alloc(mm, pgd, addr);
  2226. if (!pud)
  2227. return -ENOMEM;
  2228. do {
  2229. next = pud_addr_end(addr, end);
  2230. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2231. if (err)
  2232. break;
  2233. } while (pud++, addr = next, addr != end);
  2234. return err;
  2235. }
  2236. /*
  2237. * Scan a region of virtual memory, filling in page tables as necessary
  2238. * and calling a provided function on each leaf page table.
  2239. */
  2240. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2241. unsigned long size, pte_fn_t fn, void *data)
  2242. {
  2243. pgd_t *pgd;
  2244. unsigned long next;
  2245. unsigned long end = addr + size;
  2246. int err;
  2247. BUG_ON(addr >= end);
  2248. pgd = pgd_offset(mm, addr);
  2249. do {
  2250. next = pgd_addr_end(addr, end);
  2251. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2252. if (err)
  2253. break;
  2254. } while (pgd++, addr = next, addr != end);
  2255. return err;
  2256. }
  2257. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2258. /*
  2259. * handle_pte_fault chooses page fault handler according to an entry
  2260. * which was read non-atomically. Before making any commitment, on
  2261. * those architectures or configurations (e.g. i386 with PAE) which
  2262. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2263. * must check under lock before unmapping the pte and proceeding
  2264. * (but do_wp_page is only called after already making such a check;
  2265. * and do_anonymous_page can safely check later on).
  2266. */
  2267. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2268. pte_t *page_table, pte_t orig_pte)
  2269. {
  2270. int same = 1;
  2271. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2272. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2273. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2274. spin_lock(ptl);
  2275. same = pte_same(*page_table, orig_pte);
  2276. spin_unlock(ptl);
  2277. }
  2278. #endif
  2279. pte_unmap(page_table);
  2280. return same;
  2281. }
  2282. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2283. {
  2284. /*
  2285. * If the source page was a PFN mapping, we don't have
  2286. * a "struct page" for it. We do a best-effort copy by
  2287. * just copying from the original user address. If that
  2288. * fails, we just zero-fill it. Live with it.
  2289. */
  2290. if (unlikely(!src)) {
  2291. void *kaddr = kmap_atomic(dst);
  2292. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2293. /*
  2294. * This really shouldn't fail, because the page is there
  2295. * in the page tables. But it might just be unreadable,
  2296. * in which case we just give up and fill the result with
  2297. * zeroes.
  2298. */
  2299. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2300. clear_page(kaddr);
  2301. kunmap_atomic(kaddr);
  2302. flush_dcache_page(dst);
  2303. } else
  2304. copy_user_highpage(dst, src, va, vma);
  2305. }
  2306. /*
  2307. * This routine handles present pages, when users try to write
  2308. * to a shared page. It is done by copying the page to a new address
  2309. * and decrementing the shared-page counter for the old page.
  2310. *
  2311. * Note that this routine assumes that the protection checks have been
  2312. * done by the caller (the low-level page fault routine in most cases).
  2313. * Thus we can safely just mark it writable once we've done any necessary
  2314. * COW.
  2315. *
  2316. * We also mark the page dirty at this point even though the page will
  2317. * change only once the write actually happens. This avoids a few races,
  2318. * and potentially makes it more efficient.
  2319. *
  2320. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2321. * but allow concurrent faults), with pte both mapped and locked.
  2322. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2323. */
  2324. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2325. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2326. spinlock_t *ptl, pte_t orig_pte)
  2327. __releases(ptl)
  2328. {
  2329. struct page *old_page, *new_page = NULL;
  2330. pte_t entry;
  2331. int ret = 0;
  2332. int page_mkwrite = 0;
  2333. struct page *dirty_page = NULL;
  2334. unsigned long mmun_start = 0; /* For mmu_notifiers */
  2335. unsigned long mmun_end = 0; /* For mmu_notifiers */
  2336. old_page = vm_normal_page(vma, address, orig_pte);
  2337. if (!old_page) {
  2338. /*
  2339. * VM_MIXEDMAP !pfn_valid() case
  2340. *
  2341. * We should not cow pages in a shared writeable mapping.
  2342. * Just mark the pages writable as we can't do any dirty
  2343. * accounting on raw pfn maps.
  2344. */
  2345. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2346. (VM_WRITE|VM_SHARED))
  2347. goto reuse;
  2348. goto gotten;
  2349. }
  2350. /*
  2351. * Take out anonymous pages first, anonymous shared vmas are
  2352. * not dirty accountable.
  2353. */
  2354. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2355. if (!trylock_page(old_page)) {
  2356. page_cache_get(old_page);
  2357. pte_unmap_unlock(page_table, ptl);
  2358. lock_page(old_page);
  2359. page_table = pte_offset_map_lock(mm, pmd, address,
  2360. &ptl);
  2361. if (!pte_same(*page_table, orig_pte)) {
  2362. unlock_page(old_page);
  2363. goto unlock;
  2364. }
  2365. page_cache_release(old_page);
  2366. }
  2367. if (reuse_swap_page(old_page)) {
  2368. /*
  2369. * The page is all ours. Move it to our anon_vma so
  2370. * the rmap code will not search our parent or siblings.
  2371. * Protected against the rmap code by the page lock.
  2372. */
  2373. page_move_anon_rmap(old_page, vma, address);
  2374. unlock_page(old_page);
  2375. goto reuse;
  2376. }
  2377. unlock_page(old_page);
  2378. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2379. (VM_WRITE|VM_SHARED))) {
  2380. /*
  2381. * Only catch write-faults on shared writable pages,
  2382. * read-only shared pages can get COWed by
  2383. * get_user_pages(.write=1, .force=1).
  2384. */
  2385. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2386. struct vm_fault vmf;
  2387. int tmp;
  2388. vmf.virtual_address = (void __user *)(address &
  2389. PAGE_MASK);
  2390. vmf.pgoff = old_page->index;
  2391. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2392. vmf.page = old_page;
  2393. /*
  2394. * Notify the address space that the page is about to
  2395. * become writable so that it can prohibit this or wait
  2396. * for the page to get into an appropriate state.
  2397. *
  2398. * We do this without the lock held, so that it can
  2399. * sleep if it needs to.
  2400. */
  2401. page_cache_get(old_page);
  2402. pte_unmap_unlock(page_table, ptl);
  2403. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2404. if (unlikely(tmp &
  2405. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2406. ret = tmp;
  2407. goto unwritable_page;
  2408. }
  2409. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2410. lock_page(old_page);
  2411. if (!old_page->mapping) {
  2412. ret = 0; /* retry the fault */
  2413. unlock_page(old_page);
  2414. goto unwritable_page;
  2415. }
  2416. } else
  2417. VM_BUG_ON(!PageLocked(old_page));
  2418. /*
  2419. * Since we dropped the lock we need to revalidate
  2420. * the PTE as someone else may have changed it. If
  2421. * they did, we just return, as we can count on the
  2422. * MMU to tell us if they didn't also make it writable.
  2423. */
  2424. page_table = pte_offset_map_lock(mm, pmd, address,
  2425. &ptl);
  2426. if (!pte_same(*page_table, orig_pte)) {
  2427. unlock_page(old_page);
  2428. goto unlock;
  2429. }
  2430. page_mkwrite = 1;
  2431. }
  2432. dirty_page = old_page;
  2433. get_page(dirty_page);
  2434. reuse:
  2435. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2436. entry = pte_mkyoung(orig_pte);
  2437. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2438. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2439. update_mmu_cache(vma, address, page_table);
  2440. pte_unmap_unlock(page_table, ptl);
  2441. ret |= VM_FAULT_WRITE;
  2442. if (!dirty_page)
  2443. return ret;
  2444. /*
  2445. * Yes, Virginia, this is actually required to prevent a race
  2446. * with clear_page_dirty_for_io() from clearing the page dirty
  2447. * bit after it clear all dirty ptes, but before a racing
  2448. * do_wp_page installs a dirty pte.
  2449. *
  2450. * __do_fault is protected similarly.
  2451. */
  2452. if (!page_mkwrite) {
  2453. wait_on_page_locked(dirty_page);
  2454. set_page_dirty_balance(dirty_page, page_mkwrite);
  2455. /* file_update_time outside page_lock */
  2456. if (vma->vm_file)
  2457. file_update_time(vma->vm_file);
  2458. }
  2459. put_page(dirty_page);
  2460. if (page_mkwrite) {
  2461. struct address_space *mapping = dirty_page->mapping;
  2462. set_page_dirty(dirty_page);
  2463. unlock_page(dirty_page);
  2464. page_cache_release(dirty_page);
  2465. if (mapping) {
  2466. /*
  2467. * Some device drivers do not set page.mapping
  2468. * but still dirty their pages
  2469. */
  2470. balance_dirty_pages_ratelimited(mapping);
  2471. }
  2472. }
  2473. return ret;
  2474. }
  2475. /*
  2476. * Ok, we need to copy. Oh, well..
  2477. */
  2478. page_cache_get(old_page);
  2479. gotten:
  2480. pte_unmap_unlock(page_table, ptl);
  2481. if (unlikely(anon_vma_prepare(vma)))
  2482. goto oom;
  2483. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2484. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2485. if (!new_page)
  2486. goto oom;
  2487. } else {
  2488. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2489. if (!new_page)
  2490. goto oom;
  2491. cow_user_page(new_page, old_page, address, vma);
  2492. }
  2493. __SetPageUptodate(new_page);
  2494. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2495. goto oom_free_new;
  2496. mmun_start = address & PAGE_MASK;
  2497. mmun_end = mmun_start + PAGE_SIZE;
  2498. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2499. /*
  2500. * Re-check the pte - we dropped the lock
  2501. */
  2502. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2503. if (likely(pte_same(*page_table, orig_pte))) {
  2504. if (old_page) {
  2505. if (!PageAnon(old_page)) {
  2506. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2507. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2508. }
  2509. } else
  2510. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2511. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2512. entry = mk_pte(new_page, vma->vm_page_prot);
  2513. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2514. /*
  2515. * Clear the pte entry and flush it first, before updating the
  2516. * pte with the new entry. This will avoid a race condition
  2517. * seen in the presence of one thread doing SMC and another
  2518. * thread doing COW.
  2519. */
  2520. ptep_clear_flush(vma, address, page_table);
  2521. page_add_new_anon_rmap(new_page, vma, address);
  2522. /*
  2523. * We call the notify macro here because, when using secondary
  2524. * mmu page tables (such as kvm shadow page tables), we want the
  2525. * new page to be mapped directly into the secondary page table.
  2526. */
  2527. set_pte_at_notify(mm, address, page_table, entry);
  2528. update_mmu_cache(vma, address, page_table);
  2529. if (old_page) {
  2530. /*
  2531. * Only after switching the pte to the new page may
  2532. * we remove the mapcount here. Otherwise another
  2533. * process may come and find the rmap count decremented
  2534. * before the pte is switched to the new page, and
  2535. * "reuse" the old page writing into it while our pte
  2536. * here still points into it and can be read by other
  2537. * threads.
  2538. *
  2539. * The critical issue is to order this
  2540. * page_remove_rmap with the ptp_clear_flush above.
  2541. * Those stores are ordered by (if nothing else,)
  2542. * the barrier present in the atomic_add_negative
  2543. * in page_remove_rmap.
  2544. *
  2545. * Then the TLB flush in ptep_clear_flush ensures that
  2546. * no process can access the old page before the
  2547. * decremented mapcount is visible. And the old page
  2548. * cannot be reused until after the decremented
  2549. * mapcount is visible. So transitively, TLBs to
  2550. * old page will be flushed before it can be reused.
  2551. */
  2552. page_remove_rmap(old_page);
  2553. }
  2554. /* Free the old page.. */
  2555. new_page = old_page;
  2556. ret |= VM_FAULT_WRITE;
  2557. } else
  2558. mem_cgroup_uncharge_page(new_page);
  2559. if (new_page)
  2560. page_cache_release(new_page);
  2561. unlock:
  2562. pte_unmap_unlock(page_table, ptl);
  2563. if (mmun_end > mmun_start)
  2564. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2565. if (old_page) {
  2566. /*
  2567. * Don't let another task, with possibly unlocked vma,
  2568. * keep the mlocked page.
  2569. */
  2570. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2571. lock_page(old_page); /* LRU manipulation */
  2572. munlock_vma_page(old_page);
  2573. unlock_page(old_page);
  2574. }
  2575. page_cache_release(old_page);
  2576. }
  2577. return ret;
  2578. oom_free_new:
  2579. page_cache_release(new_page);
  2580. oom:
  2581. if (old_page)
  2582. page_cache_release(old_page);
  2583. return VM_FAULT_OOM;
  2584. unwritable_page:
  2585. page_cache_release(old_page);
  2586. return ret;
  2587. }
  2588. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2589. unsigned long start_addr, unsigned long end_addr,
  2590. struct zap_details *details)
  2591. {
  2592. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2593. }
  2594. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2595. struct zap_details *details)
  2596. {
  2597. struct vm_area_struct *vma;
  2598. pgoff_t vba, vea, zba, zea;
  2599. vma_interval_tree_foreach(vma, root,
  2600. details->first_index, details->last_index) {
  2601. vba = vma->vm_pgoff;
  2602. vea = vba + vma_pages(vma) - 1;
  2603. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2604. zba = details->first_index;
  2605. if (zba < vba)
  2606. zba = vba;
  2607. zea = details->last_index;
  2608. if (zea > vea)
  2609. zea = vea;
  2610. unmap_mapping_range_vma(vma,
  2611. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2612. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2613. details);
  2614. }
  2615. }
  2616. static inline void unmap_mapping_range_list(struct list_head *head,
  2617. struct zap_details *details)
  2618. {
  2619. struct vm_area_struct *vma;
  2620. /*
  2621. * In nonlinear VMAs there is no correspondence between virtual address
  2622. * offset and file offset. So we must perform an exhaustive search
  2623. * across *all* the pages in each nonlinear VMA, not just the pages
  2624. * whose virtual address lies outside the file truncation point.
  2625. */
  2626. list_for_each_entry(vma, head, shared.nonlinear) {
  2627. details->nonlinear_vma = vma;
  2628. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2629. }
  2630. }
  2631. /**
  2632. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2633. * @mapping: the address space containing mmaps to be unmapped.
  2634. * @holebegin: byte in first page to unmap, relative to the start of
  2635. * the underlying file. This will be rounded down to a PAGE_SIZE
  2636. * boundary. Note that this is different from truncate_pagecache(), which
  2637. * must keep the partial page. In contrast, we must get rid of
  2638. * partial pages.
  2639. * @holelen: size of prospective hole in bytes. This will be rounded
  2640. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2641. * end of the file.
  2642. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2643. * but 0 when invalidating pagecache, don't throw away private data.
  2644. */
  2645. void unmap_mapping_range(struct address_space *mapping,
  2646. loff_t const holebegin, loff_t const holelen, int even_cows)
  2647. {
  2648. struct zap_details details;
  2649. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2650. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2651. /* Check for overflow. */
  2652. if (sizeof(holelen) > sizeof(hlen)) {
  2653. long long holeend =
  2654. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2655. if (holeend & ~(long long)ULONG_MAX)
  2656. hlen = ULONG_MAX - hba + 1;
  2657. }
  2658. details.check_mapping = even_cows? NULL: mapping;
  2659. details.nonlinear_vma = NULL;
  2660. details.first_index = hba;
  2661. details.last_index = hba + hlen - 1;
  2662. if (details.last_index < details.first_index)
  2663. details.last_index = ULONG_MAX;
  2664. mutex_lock(&mapping->i_mmap_mutex);
  2665. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2666. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2667. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2668. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2669. mutex_unlock(&mapping->i_mmap_mutex);
  2670. }
  2671. EXPORT_SYMBOL(unmap_mapping_range);
  2672. /*
  2673. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2674. * but allow concurrent faults), and pte mapped but not yet locked.
  2675. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2676. */
  2677. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2678. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2679. unsigned int flags, pte_t orig_pte)
  2680. {
  2681. spinlock_t *ptl;
  2682. struct page *page, *swapcache;
  2683. swp_entry_t entry;
  2684. pte_t pte;
  2685. int locked;
  2686. struct mem_cgroup *ptr;
  2687. int exclusive = 0;
  2688. int ret = 0;
  2689. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2690. goto out;
  2691. entry = pte_to_swp_entry(orig_pte);
  2692. if (unlikely(non_swap_entry(entry))) {
  2693. if (is_migration_entry(entry)) {
  2694. migration_entry_wait(mm, pmd, address);
  2695. } else if (is_hwpoison_entry(entry)) {
  2696. ret = VM_FAULT_HWPOISON;
  2697. } else {
  2698. print_bad_pte(vma, address, orig_pte, NULL);
  2699. ret = VM_FAULT_SIGBUS;
  2700. }
  2701. goto out;
  2702. }
  2703. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2704. page = lookup_swap_cache(entry);
  2705. if (!page) {
  2706. page = swapin_readahead(entry,
  2707. GFP_HIGHUSER_MOVABLE, vma, address);
  2708. if (!page) {
  2709. /*
  2710. * Back out if somebody else faulted in this pte
  2711. * while we released the pte lock.
  2712. */
  2713. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2714. if (likely(pte_same(*page_table, orig_pte)))
  2715. ret = VM_FAULT_OOM;
  2716. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2717. goto unlock;
  2718. }
  2719. /* Had to read the page from swap area: Major fault */
  2720. ret = VM_FAULT_MAJOR;
  2721. count_vm_event(PGMAJFAULT);
  2722. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2723. } else if (PageHWPoison(page)) {
  2724. /*
  2725. * hwpoisoned dirty swapcache pages are kept for killing
  2726. * owner processes (which may be unknown at hwpoison time)
  2727. */
  2728. ret = VM_FAULT_HWPOISON;
  2729. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2730. swapcache = page;
  2731. goto out_release;
  2732. }
  2733. swapcache = page;
  2734. locked = lock_page_or_retry(page, mm, flags);
  2735. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2736. if (!locked) {
  2737. ret |= VM_FAULT_RETRY;
  2738. goto out_release;
  2739. }
  2740. /*
  2741. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2742. * release the swapcache from under us. The page pin, and pte_same
  2743. * test below, are not enough to exclude that. Even if it is still
  2744. * swapcache, we need to check that the page's swap has not changed.
  2745. */
  2746. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2747. goto out_page;
  2748. page = ksm_might_need_to_copy(page, vma, address);
  2749. if (unlikely(!page)) {
  2750. ret = VM_FAULT_OOM;
  2751. page = swapcache;
  2752. goto out_page;
  2753. }
  2754. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2755. ret = VM_FAULT_OOM;
  2756. goto out_page;
  2757. }
  2758. /*
  2759. * Back out if somebody else already faulted in this pte.
  2760. */
  2761. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2762. if (unlikely(!pte_same(*page_table, orig_pte)))
  2763. goto out_nomap;
  2764. if (unlikely(!PageUptodate(page))) {
  2765. ret = VM_FAULT_SIGBUS;
  2766. goto out_nomap;
  2767. }
  2768. /*
  2769. * The page isn't present yet, go ahead with the fault.
  2770. *
  2771. * Be careful about the sequence of operations here.
  2772. * To get its accounting right, reuse_swap_page() must be called
  2773. * while the page is counted on swap but not yet in mapcount i.e.
  2774. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2775. * must be called after the swap_free(), or it will never succeed.
  2776. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2777. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2778. * in page->private. In this case, a record in swap_cgroup is silently
  2779. * discarded at swap_free().
  2780. */
  2781. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2782. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2783. pte = mk_pte(page, vma->vm_page_prot);
  2784. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2785. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2786. flags &= ~FAULT_FLAG_WRITE;
  2787. ret |= VM_FAULT_WRITE;
  2788. exclusive = 1;
  2789. }
  2790. flush_icache_page(vma, page);
  2791. if (pte_swp_soft_dirty(orig_pte))
  2792. pte = pte_mksoft_dirty(pte);
  2793. set_pte_at(mm, address, page_table, pte);
  2794. if (page == swapcache)
  2795. do_page_add_anon_rmap(page, vma, address, exclusive);
  2796. else /* ksm created a completely new copy */
  2797. page_add_new_anon_rmap(page, vma, address);
  2798. /* It's better to call commit-charge after rmap is established */
  2799. mem_cgroup_commit_charge_swapin(page, ptr);
  2800. swap_free(entry);
  2801. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2802. try_to_free_swap(page);
  2803. unlock_page(page);
  2804. if (page != swapcache) {
  2805. /*
  2806. * Hold the lock to avoid the swap entry to be reused
  2807. * until we take the PT lock for the pte_same() check
  2808. * (to avoid false positives from pte_same). For
  2809. * further safety release the lock after the swap_free
  2810. * so that the swap count won't change under a
  2811. * parallel locked swapcache.
  2812. */
  2813. unlock_page(swapcache);
  2814. page_cache_release(swapcache);
  2815. }
  2816. if (flags & FAULT_FLAG_WRITE) {
  2817. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2818. if (ret & VM_FAULT_ERROR)
  2819. ret &= VM_FAULT_ERROR;
  2820. goto out;
  2821. }
  2822. /* No need to invalidate - it was non-present before */
  2823. update_mmu_cache(vma, address, page_table);
  2824. unlock:
  2825. pte_unmap_unlock(page_table, ptl);
  2826. out:
  2827. return ret;
  2828. out_nomap:
  2829. mem_cgroup_cancel_charge_swapin(ptr);
  2830. pte_unmap_unlock(page_table, ptl);
  2831. out_page:
  2832. unlock_page(page);
  2833. out_release:
  2834. page_cache_release(page);
  2835. if (page != swapcache) {
  2836. unlock_page(swapcache);
  2837. page_cache_release(swapcache);
  2838. }
  2839. return ret;
  2840. }
  2841. /*
  2842. * This is like a special single-page "expand_{down|up}wards()",
  2843. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2844. * doesn't hit another vma.
  2845. */
  2846. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2847. {
  2848. address &= PAGE_MASK;
  2849. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2850. struct vm_area_struct *prev = vma->vm_prev;
  2851. /*
  2852. * Is there a mapping abutting this one below?
  2853. *
  2854. * That's only ok if it's the same stack mapping
  2855. * that has gotten split..
  2856. */
  2857. if (prev && prev->vm_end == address)
  2858. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2859. expand_downwards(vma, address - PAGE_SIZE);
  2860. }
  2861. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2862. struct vm_area_struct *next = vma->vm_next;
  2863. /* As VM_GROWSDOWN but s/below/above/ */
  2864. if (next && next->vm_start == address + PAGE_SIZE)
  2865. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2866. expand_upwards(vma, address + PAGE_SIZE);
  2867. }
  2868. return 0;
  2869. }
  2870. /*
  2871. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2872. * but allow concurrent faults), and pte mapped but not yet locked.
  2873. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2874. */
  2875. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2876. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2877. unsigned int flags)
  2878. {
  2879. struct page *page;
  2880. spinlock_t *ptl;
  2881. pte_t entry;
  2882. pte_unmap(page_table);
  2883. /* Check if we need to add a guard page to the stack */
  2884. if (check_stack_guard_page(vma, address) < 0)
  2885. return VM_FAULT_SIGBUS;
  2886. /* Use the zero-page for reads */
  2887. if (!(flags & FAULT_FLAG_WRITE)) {
  2888. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2889. vma->vm_page_prot));
  2890. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2891. if (!pte_none(*page_table))
  2892. goto unlock;
  2893. goto setpte;
  2894. }
  2895. /* Allocate our own private page. */
  2896. if (unlikely(anon_vma_prepare(vma)))
  2897. goto oom;
  2898. page = alloc_zeroed_user_highpage_movable(vma, address);
  2899. if (!page)
  2900. goto oom;
  2901. /*
  2902. * The memory barrier inside __SetPageUptodate makes sure that
  2903. * preceeding stores to the page contents become visible before
  2904. * the set_pte_at() write.
  2905. */
  2906. __SetPageUptodate(page);
  2907. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2908. goto oom_free_page;
  2909. entry = mk_pte(page, vma->vm_page_prot);
  2910. if (vma->vm_flags & VM_WRITE)
  2911. entry = pte_mkwrite(pte_mkdirty(entry));
  2912. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2913. if (!pte_none(*page_table))
  2914. goto release;
  2915. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2916. page_add_new_anon_rmap(page, vma, address);
  2917. setpte:
  2918. set_pte_at(mm, address, page_table, entry);
  2919. /* No need to invalidate - it was non-present before */
  2920. update_mmu_cache(vma, address, page_table);
  2921. unlock:
  2922. pte_unmap_unlock(page_table, ptl);
  2923. return 0;
  2924. release:
  2925. mem_cgroup_uncharge_page(page);
  2926. page_cache_release(page);
  2927. goto unlock;
  2928. oom_free_page:
  2929. page_cache_release(page);
  2930. oom:
  2931. return VM_FAULT_OOM;
  2932. }
  2933. /*
  2934. * __do_fault() tries to create a new page mapping. It aggressively
  2935. * tries to share with existing pages, but makes a separate copy if
  2936. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2937. * the next page fault.
  2938. *
  2939. * As this is called only for pages that do not currently exist, we
  2940. * do not need to flush old virtual caches or the TLB.
  2941. *
  2942. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2943. * but allow concurrent faults), and pte neither mapped nor locked.
  2944. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2945. */
  2946. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2947. unsigned long address, pmd_t *pmd,
  2948. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2949. {
  2950. pte_t *page_table;
  2951. spinlock_t *ptl;
  2952. struct page *page;
  2953. struct page *cow_page;
  2954. pte_t entry;
  2955. int anon = 0;
  2956. struct page *dirty_page = NULL;
  2957. struct vm_fault vmf;
  2958. int ret;
  2959. int page_mkwrite = 0;
  2960. /*
  2961. * If we do COW later, allocate page befor taking lock_page()
  2962. * on the file cache page. This will reduce lock holding time.
  2963. */
  2964. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2965. if (unlikely(anon_vma_prepare(vma)))
  2966. return VM_FAULT_OOM;
  2967. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2968. if (!cow_page)
  2969. return VM_FAULT_OOM;
  2970. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2971. page_cache_release(cow_page);
  2972. return VM_FAULT_OOM;
  2973. }
  2974. } else
  2975. cow_page = NULL;
  2976. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2977. vmf.pgoff = pgoff;
  2978. vmf.flags = flags;
  2979. vmf.page = NULL;
  2980. ret = vma->vm_ops->fault(vma, &vmf);
  2981. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2982. VM_FAULT_RETRY)))
  2983. goto uncharge_out;
  2984. if (unlikely(PageHWPoison(vmf.page))) {
  2985. if (ret & VM_FAULT_LOCKED)
  2986. unlock_page(vmf.page);
  2987. ret = VM_FAULT_HWPOISON;
  2988. goto uncharge_out;
  2989. }
  2990. /*
  2991. * For consistency in subsequent calls, make the faulted page always
  2992. * locked.
  2993. */
  2994. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2995. lock_page(vmf.page);
  2996. else
  2997. VM_BUG_ON(!PageLocked(vmf.page));
  2998. /*
  2999. * Should we do an early C-O-W break?
  3000. */
  3001. page = vmf.page;
  3002. if (flags & FAULT_FLAG_WRITE) {
  3003. if (!(vma->vm_flags & VM_SHARED)) {
  3004. page = cow_page;
  3005. anon = 1;
  3006. copy_user_highpage(page, vmf.page, address, vma);
  3007. __SetPageUptodate(page);
  3008. } else {
  3009. /*
  3010. * If the page will be shareable, see if the backing
  3011. * address space wants to know that the page is about
  3012. * to become writable
  3013. */
  3014. if (vma->vm_ops->page_mkwrite) {
  3015. int tmp;
  3016. unlock_page(page);
  3017. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  3018. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  3019. if (unlikely(tmp &
  3020. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  3021. ret = tmp;
  3022. goto unwritable_page;
  3023. }
  3024. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  3025. lock_page(page);
  3026. if (!page->mapping) {
  3027. ret = 0; /* retry the fault */
  3028. unlock_page(page);
  3029. goto unwritable_page;
  3030. }
  3031. } else
  3032. VM_BUG_ON(!PageLocked(page));
  3033. page_mkwrite = 1;
  3034. }
  3035. }
  3036. }
  3037. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  3038. /*
  3039. * This silly early PAGE_DIRTY setting removes a race
  3040. * due to the bad i386 page protection. But it's valid
  3041. * for other architectures too.
  3042. *
  3043. * Note that if FAULT_FLAG_WRITE is set, we either now have
  3044. * an exclusive copy of the page, or this is a shared mapping,
  3045. * so we can make it writable and dirty to avoid having to
  3046. * handle that later.
  3047. */
  3048. /* Only go through if we didn't race with anybody else... */
  3049. if (likely(pte_same(*page_table, orig_pte))) {
  3050. flush_icache_page(vma, page);
  3051. entry = mk_pte(page, vma->vm_page_prot);
  3052. if (flags & FAULT_FLAG_WRITE)
  3053. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  3054. else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
  3055. pte_mksoft_dirty(entry);
  3056. if (anon) {
  3057. inc_mm_counter_fast(mm, MM_ANONPAGES);
  3058. page_add_new_anon_rmap(page, vma, address);
  3059. } else {
  3060. inc_mm_counter_fast(mm, MM_FILEPAGES);
  3061. page_add_file_rmap(page);
  3062. if (flags & FAULT_FLAG_WRITE) {
  3063. dirty_page = page;
  3064. get_page(dirty_page);
  3065. }
  3066. }
  3067. set_pte_at(mm, address, page_table, entry);
  3068. /* no need to invalidate: a not-present page won't be cached */
  3069. update_mmu_cache(vma, address, page_table);
  3070. } else {
  3071. if (cow_page)
  3072. mem_cgroup_uncharge_page(cow_page);
  3073. if (anon)
  3074. page_cache_release(page);
  3075. else
  3076. anon = 1; /* no anon but release faulted_page */
  3077. }
  3078. pte_unmap_unlock(page_table, ptl);
  3079. if (dirty_page) {
  3080. struct address_space *mapping = page->mapping;
  3081. int dirtied = 0;
  3082. if (set_page_dirty(dirty_page))
  3083. dirtied = 1;
  3084. unlock_page(dirty_page);
  3085. put_page(dirty_page);
  3086. if ((dirtied || page_mkwrite) && mapping) {
  3087. /*
  3088. * Some device drivers do not set page.mapping but still
  3089. * dirty their pages
  3090. */
  3091. balance_dirty_pages_ratelimited(mapping);
  3092. }
  3093. /* file_update_time outside page_lock */
  3094. if (vma->vm_file && !page_mkwrite)
  3095. file_update_time(vma->vm_file);
  3096. } else {
  3097. unlock_page(vmf.page);
  3098. if (anon)
  3099. page_cache_release(vmf.page);
  3100. }
  3101. return ret;
  3102. unwritable_page:
  3103. page_cache_release(page);
  3104. return ret;
  3105. uncharge_out:
  3106. /* fs's fault handler get error */
  3107. if (cow_page) {
  3108. mem_cgroup_uncharge_page(cow_page);
  3109. page_cache_release(cow_page);
  3110. }
  3111. return ret;
  3112. }
  3113. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3114. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3115. unsigned int flags, pte_t orig_pte)
  3116. {
  3117. pgoff_t pgoff = (((address & PAGE_MASK)
  3118. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3119. pte_unmap(page_table);
  3120. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3121. }
  3122. /*
  3123. * Fault of a previously existing named mapping. Repopulate the pte
  3124. * from the encoded file_pte if possible. This enables swappable
  3125. * nonlinear vmas.
  3126. *
  3127. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3128. * but allow concurrent faults), and pte mapped but not yet locked.
  3129. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3130. */
  3131. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3132. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3133. unsigned int flags, pte_t orig_pte)
  3134. {
  3135. pgoff_t pgoff;
  3136. flags |= FAULT_FLAG_NONLINEAR;
  3137. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3138. return 0;
  3139. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3140. /*
  3141. * Page table corrupted: show pte and kill process.
  3142. */
  3143. print_bad_pte(vma, address, orig_pte, NULL);
  3144. return VM_FAULT_SIGBUS;
  3145. }
  3146. pgoff = pte_to_pgoff(orig_pte);
  3147. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3148. }
  3149. int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  3150. unsigned long addr, int current_nid)
  3151. {
  3152. get_page(page);
  3153. count_vm_numa_event(NUMA_HINT_FAULTS);
  3154. if (current_nid == numa_node_id())
  3155. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  3156. return mpol_misplaced(page, vma, addr);
  3157. }
  3158. int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3159. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  3160. {
  3161. struct page *page = NULL;
  3162. spinlock_t *ptl;
  3163. int current_nid = -1;
  3164. int target_nid;
  3165. bool migrated = false;
  3166. /*
  3167. * The "pte" at this point cannot be used safely without
  3168. * validation through pte_unmap_same(). It's of NUMA type but
  3169. * the pfn may be screwed if the read is non atomic.
  3170. *
  3171. * ptep_modify_prot_start is not called as this is clearing
  3172. * the _PAGE_NUMA bit and it is not really expected that there
  3173. * would be concurrent hardware modifications to the PTE.
  3174. */
  3175. ptl = pte_lockptr(mm, pmd);
  3176. spin_lock(ptl);
  3177. if (unlikely(!pte_same(*ptep, pte))) {
  3178. pte_unmap_unlock(ptep, ptl);
  3179. goto out;
  3180. }
  3181. pte = pte_mknonnuma(pte);
  3182. set_pte_at(mm, addr, ptep, pte);
  3183. update_mmu_cache(vma, addr, ptep);
  3184. page = vm_normal_page(vma, addr, pte);
  3185. if (!page) {
  3186. pte_unmap_unlock(ptep, ptl);
  3187. return 0;
  3188. }
  3189. current_nid = page_to_nid(page);
  3190. target_nid = numa_migrate_prep(page, vma, addr, current_nid);
  3191. pte_unmap_unlock(ptep, ptl);
  3192. if (target_nid == -1) {
  3193. /*
  3194. * Account for the fault against the current node if it not
  3195. * being replaced regardless of where the page is located.
  3196. */
  3197. current_nid = numa_node_id();
  3198. put_page(page);
  3199. goto out;
  3200. }
  3201. /* Migrate to the requested node */
  3202. migrated = migrate_misplaced_page(page, target_nid);
  3203. if (migrated)
  3204. current_nid = target_nid;
  3205. out:
  3206. if (current_nid != -1)
  3207. task_numa_fault(current_nid, 1, migrated);
  3208. return 0;
  3209. }
  3210. /* NUMA hinting page fault entry point for regular pmds */
  3211. #ifdef CONFIG_NUMA_BALANCING
  3212. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3213. unsigned long addr, pmd_t *pmdp)
  3214. {
  3215. pmd_t pmd;
  3216. pte_t *pte, *orig_pte;
  3217. unsigned long _addr = addr & PMD_MASK;
  3218. unsigned long offset;
  3219. spinlock_t *ptl;
  3220. bool numa = false;
  3221. int local_nid = numa_node_id();
  3222. spin_lock(&mm->page_table_lock);
  3223. pmd = *pmdp;
  3224. if (pmd_numa(pmd)) {
  3225. set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
  3226. numa = true;
  3227. }
  3228. spin_unlock(&mm->page_table_lock);
  3229. if (!numa)
  3230. return 0;
  3231. /* we're in a page fault so some vma must be in the range */
  3232. BUG_ON(!vma);
  3233. BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
  3234. offset = max(_addr, vma->vm_start) & ~PMD_MASK;
  3235. VM_BUG_ON(offset >= PMD_SIZE);
  3236. orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
  3237. pte += offset >> PAGE_SHIFT;
  3238. for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
  3239. pte_t pteval = *pte;
  3240. struct page *page;
  3241. int curr_nid = local_nid;
  3242. int target_nid;
  3243. bool migrated;
  3244. if (!pte_present(pteval))
  3245. continue;
  3246. if (!pte_numa(pteval))
  3247. continue;
  3248. if (addr >= vma->vm_end) {
  3249. vma = find_vma(mm, addr);
  3250. /* there's a pte present so there must be a vma */
  3251. BUG_ON(!vma);
  3252. BUG_ON(addr < vma->vm_start);
  3253. }
  3254. if (pte_numa(pteval)) {
  3255. pteval = pte_mknonnuma(pteval);
  3256. set_pte_at(mm, addr, pte, pteval);
  3257. }
  3258. page = vm_normal_page(vma, addr, pteval);
  3259. if (unlikely(!page))
  3260. continue;
  3261. /* only check non-shared pages */
  3262. if (unlikely(page_mapcount(page) != 1))
  3263. continue;
  3264. /*
  3265. * Note that the NUMA fault is later accounted to either
  3266. * the node that is currently running or where the page is
  3267. * migrated to.
  3268. */
  3269. curr_nid = local_nid;
  3270. target_nid = numa_migrate_prep(page, vma, addr,
  3271. page_to_nid(page));
  3272. if (target_nid == -1) {
  3273. put_page(page);
  3274. continue;
  3275. }
  3276. /* Migrate to the requested node */
  3277. pte_unmap_unlock(pte, ptl);
  3278. migrated = migrate_misplaced_page(page, target_nid);
  3279. if (migrated)
  3280. curr_nid = target_nid;
  3281. task_numa_fault(curr_nid, 1, migrated);
  3282. pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
  3283. }
  3284. pte_unmap_unlock(orig_pte, ptl);
  3285. return 0;
  3286. }
  3287. #else
  3288. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3289. unsigned long addr, pmd_t *pmdp)
  3290. {
  3291. BUG();
  3292. return 0;
  3293. }
  3294. #endif /* CONFIG_NUMA_BALANCING */
  3295. /*
  3296. * These routines also need to handle stuff like marking pages dirty
  3297. * and/or accessed for architectures that don't do it in hardware (most
  3298. * RISC architectures). The early dirtying is also good on the i386.
  3299. *
  3300. * There is also a hook called "update_mmu_cache()" that architectures
  3301. * with external mmu caches can use to update those (ie the Sparc or
  3302. * PowerPC hashed page tables that act as extended TLBs).
  3303. *
  3304. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3305. * but allow concurrent faults), and pte mapped but not yet locked.
  3306. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3307. */
  3308. int handle_pte_fault(struct mm_struct *mm,
  3309. struct vm_area_struct *vma, unsigned long address,
  3310. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3311. {
  3312. pte_t entry;
  3313. spinlock_t *ptl;
  3314. entry = *pte;
  3315. if (!pte_present(entry)) {
  3316. if (pte_none(entry)) {
  3317. if (vma->vm_ops) {
  3318. if (likely(vma->vm_ops->fault))
  3319. return do_linear_fault(mm, vma, address,
  3320. pte, pmd, flags, entry);
  3321. }
  3322. return do_anonymous_page(mm, vma, address,
  3323. pte, pmd, flags);
  3324. }
  3325. if (pte_file(entry))
  3326. return do_nonlinear_fault(mm, vma, address,
  3327. pte, pmd, flags, entry);
  3328. return do_swap_page(mm, vma, address,
  3329. pte, pmd, flags, entry);
  3330. }
  3331. if (pte_numa(entry))
  3332. return do_numa_page(mm, vma, address, entry, pte, pmd);
  3333. ptl = pte_lockptr(mm, pmd);
  3334. spin_lock(ptl);
  3335. if (unlikely(!pte_same(*pte, entry)))
  3336. goto unlock;
  3337. if (flags & FAULT_FLAG_WRITE) {
  3338. if (!pte_write(entry))
  3339. return do_wp_page(mm, vma, address,
  3340. pte, pmd, ptl, entry);
  3341. entry = pte_mkdirty(entry);
  3342. }
  3343. entry = pte_mkyoung(entry);
  3344. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3345. update_mmu_cache(vma, address, pte);
  3346. } else {
  3347. /*
  3348. * This is needed only for protection faults but the arch code
  3349. * is not yet telling us if this is a protection fault or not.
  3350. * This still avoids useless tlb flushes for .text page faults
  3351. * with threads.
  3352. */
  3353. if (flags & FAULT_FLAG_WRITE)
  3354. flush_tlb_fix_spurious_fault(vma, address);
  3355. }
  3356. unlock:
  3357. pte_unmap_unlock(pte, ptl);
  3358. return 0;
  3359. }
  3360. /*
  3361. * By the time we get here, we already hold the mm semaphore
  3362. */
  3363. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3364. unsigned long address, unsigned int flags)
  3365. {
  3366. pgd_t *pgd;
  3367. pud_t *pud;
  3368. pmd_t *pmd;
  3369. pte_t *pte;
  3370. __set_current_state(TASK_RUNNING);
  3371. count_vm_event(PGFAULT);
  3372. mem_cgroup_count_vm_event(mm, PGFAULT);
  3373. /* do counter updates before entering really critical section. */
  3374. check_sync_rss_stat(current);
  3375. if (unlikely(is_vm_hugetlb_page(vma)))
  3376. return hugetlb_fault(mm, vma, address, flags);
  3377. retry:
  3378. pgd = pgd_offset(mm, address);
  3379. pud = pud_alloc(mm, pgd, address);
  3380. if (!pud)
  3381. return VM_FAULT_OOM;
  3382. pmd = pmd_alloc(mm, pud, address);
  3383. if (!pmd)
  3384. return VM_FAULT_OOM;
  3385. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3386. if (!vma->vm_ops)
  3387. return do_huge_pmd_anonymous_page(mm, vma, address,
  3388. pmd, flags);
  3389. } else {
  3390. pmd_t orig_pmd = *pmd;
  3391. int ret;
  3392. barrier();
  3393. if (pmd_trans_huge(orig_pmd)) {
  3394. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3395. /*
  3396. * If the pmd is splitting, return and retry the
  3397. * the fault. Alternative: wait until the split
  3398. * is done, and goto retry.
  3399. */
  3400. if (pmd_trans_splitting(orig_pmd))
  3401. return 0;
  3402. if (pmd_numa(orig_pmd))
  3403. return do_huge_pmd_numa_page(mm, vma, address,
  3404. orig_pmd, pmd);
  3405. if (dirty && !pmd_write(orig_pmd)) {
  3406. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3407. orig_pmd);
  3408. /*
  3409. * If COW results in an oom, the huge pmd will
  3410. * have been split, so retry the fault on the
  3411. * pte for a smaller charge.
  3412. */
  3413. if (unlikely(ret & VM_FAULT_OOM))
  3414. goto retry;
  3415. return ret;
  3416. } else {
  3417. huge_pmd_set_accessed(mm, vma, address, pmd,
  3418. orig_pmd, dirty);
  3419. }
  3420. return 0;
  3421. }
  3422. }
  3423. if (pmd_numa(*pmd))
  3424. return do_pmd_numa_page(mm, vma, address, pmd);
  3425. /*
  3426. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3427. * run pte_offset_map on the pmd, if an huge pmd could
  3428. * materialize from under us from a different thread.
  3429. */
  3430. if (unlikely(pmd_none(*pmd)) &&
  3431. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3432. return VM_FAULT_OOM;
  3433. /* if an huge pmd materialized from under us just retry later */
  3434. if (unlikely(pmd_trans_huge(*pmd)))
  3435. return 0;
  3436. /*
  3437. * A regular pmd is established and it can't morph into a huge pmd
  3438. * from under us anymore at this point because we hold the mmap_sem
  3439. * read mode and khugepaged takes it in write mode. So now it's
  3440. * safe to run pte_offset_map().
  3441. */
  3442. pte = pte_offset_map(pmd, address);
  3443. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3444. }
  3445. #ifndef __PAGETABLE_PUD_FOLDED
  3446. /*
  3447. * Allocate page upper directory.
  3448. * We've already handled the fast-path in-line.
  3449. */
  3450. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3451. {
  3452. pud_t *new = pud_alloc_one(mm, address);
  3453. if (!new)
  3454. return -ENOMEM;
  3455. smp_wmb(); /* See comment in __pte_alloc */
  3456. spin_lock(&mm->page_table_lock);
  3457. if (pgd_present(*pgd)) /* Another has populated it */
  3458. pud_free(mm, new);
  3459. else
  3460. pgd_populate(mm, pgd, new);
  3461. spin_unlock(&mm->page_table_lock);
  3462. return 0;
  3463. }
  3464. #endif /* __PAGETABLE_PUD_FOLDED */
  3465. #ifndef __PAGETABLE_PMD_FOLDED
  3466. /*
  3467. * Allocate page middle directory.
  3468. * We've already handled the fast-path in-line.
  3469. */
  3470. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3471. {
  3472. pmd_t *new = pmd_alloc_one(mm, address);
  3473. if (!new)
  3474. return -ENOMEM;
  3475. smp_wmb(); /* See comment in __pte_alloc */
  3476. spin_lock(&mm->page_table_lock);
  3477. #ifndef __ARCH_HAS_4LEVEL_HACK
  3478. if (pud_present(*pud)) /* Another has populated it */
  3479. pmd_free(mm, new);
  3480. else
  3481. pud_populate(mm, pud, new);
  3482. #else
  3483. if (pgd_present(*pud)) /* Another has populated it */
  3484. pmd_free(mm, new);
  3485. else
  3486. pgd_populate(mm, pud, new);
  3487. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3488. spin_unlock(&mm->page_table_lock);
  3489. return 0;
  3490. }
  3491. #endif /* __PAGETABLE_PMD_FOLDED */
  3492. #if !defined(__HAVE_ARCH_GATE_AREA)
  3493. #if defined(AT_SYSINFO_EHDR)
  3494. static struct vm_area_struct gate_vma;
  3495. static int __init gate_vma_init(void)
  3496. {
  3497. gate_vma.vm_mm = NULL;
  3498. gate_vma.vm_start = FIXADDR_USER_START;
  3499. gate_vma.vm_end = FIXADDR_USER_END;
  3500. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3501. gate_vma.vm_page_prot = __P101;
  3502. return 0;
  3503. }
  3504. __initcall(gate_vma_init);
  3505. #endif
  3506. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3507. {
  3508. #ifdef AT_SYSINFO_EHDR
  3509. return &gate_vma;
  3510. #else
  3511. return NULL;
  3512. #endif
  3513. }
  3514. int in_gate_area_no_mm(unsigned long addr)
  3515. {
  3516. #ifdef AT_SYSINFO_EHDR
  3517. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3518. return 1;
  3519. #endif
  3520. return 0;
  3521. }
  3522. #endif /* __HAVE_ARCH_GATE_AREA */
  3523. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3524. pte_t **ptepp, spinlock_t **ptlp)
  3525. {
  3526. pgd_t *pgd;
  3527. pud_t *pud;
  3528. pmd_t *pmd;
  3529. pte_t *ptep;
  3530. pgd = pgd_offset(mm, address);
  3531. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3532. goto out;
  3533. pud = pud_offset(pgd, address);
  3534. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3535. goto out;
  3536. pmd = pmd_offset(pud, address);
  3537. VM_BUG_ON(pmd_trans_huge(*pmd));
  3538. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3539. goto out;
  3540. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3541. if (pmd_huge(*pmd))
  3542. goto out;
  3543. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3544. if (!ptep)
  3545. goto out;
  3546. if (!pte_present(*ptep))
  3547. goto unlock;
  3548. *ptepp = ptep;
  3549. return 0;
  3550. unlock:
  3551. pte_unmap_unlock(ptep, *ptlp);
  3552. out:
  3553. return -EINVAL;
  3554. }
  3555. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3556. pte_t **ptepp, spinlock_t **ptlp)
  3557. {
  3558. int res;
  3559. /* (void) is needed to make gcc happy */
  3560. (void) __cond_lock(*ptlp,
  3561. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3562. return res;
  3563. }
  3564. /**
  3565. * follow_pfn - look up PFN at a user virtual address
  3566. * @vma: memory mapping
  3567. * @address: user virtual address
  3568. * @pfn: location to store found PFN
  3569. *
  3570. * Only IO mappings and raw PFN mappings are allowed.
  3571. *
  3572. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3573. */
  3574. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3575. unsigned long *pfn)
  3576. {
  3577. int ret = -EINVAL;
  3578. spinlock_t *ptl;
  3579. pte_t *ptep;
  3580. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3581. return ret;
  3582. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3583. if (ret)
  3584. return ret;
  3585. *pfn = pte_pfn(*ptep);
  3586. pte_unmap_unlock(ptep, ptl);
  3587. return 0;
  3588. }
  3589. EXPORT_SYMBOL(follow_pfn);
  3590. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3591. int follow_phys(struct vm_area_struct *vma,
  3592. unsigned long address, unsigned int flags,
  3593. unsigned long *prot, resource_size_t *phys)
  3594. {
  3595. int ret = -EINVAL;
  3596. pte_t *ptep, pte;
  3597. spinlock_t *ptl;
  3598. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3599. goto out;
  3600. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3601. goto out;
  3602. pte = *ptep;
  3603. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3604. goto unlock;
  3605. *prot = pgprot_val(pte_pgprot(pte));
  3606. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3607. ret = 0;
  3608. unlock:
  3609. pte_unmap_unlock(ptep, ptl);
  3610. out:
  3611. return ret;
  3612. }
  3613. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3614. void *buf, int len, int write)
  3615. {
  3616. resource_size_t phys_addr;
  3617. unsigned long prot = 0;
  3618. void __iomem *maddr;
  3619. int offset = addr & (PAGE_SIZE-1);
  3620. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3621. return -EINVAL;
  3622. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3623. if (write)
  3624. memcpy_toio(maddr + offset, buf, len);
  3625. else
  3626. memcpy_fromio(buf, maddr + offset, len);
  3627. iounmap(maddr);
  3628. return len;
  3629. }
  3630. EXPORT_SYMBOL_GPL(generic_access_phys);
  3631. #endif
  3632. /*
  3633. * Access another process' address space as given in mm. If non-NULL, use the
  3634. * given task for page fault accounting.
  3635. */
  3636. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3637. unsigned long addr, void *buf, int len, int write)
  3638. {
  3639. struct vm_area_struct *vma;
  3640. void *old_buf = buf;
  3641. down_read(&mm->mmap_sem);
  3642. /* ignore errors, just check how much was successfully transferred */
  3643. while (len) {
  3644. int bytes, ret, offset;
  3645. void *maddr;
  3646. struct page *page = NULL;
  3647. ret = get_user_pages(tsk, mm, addr, 1,
  3648. write, 1, &page, &vma);
  3649. if (ret <= 0) {
  3650. /*
  3651. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3652. * we can access using slightly different code.
  3653. */
  3654. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3655. vma = find_vma(mm, addr);
  3656. if (!vma || vma->vm_start > addr)
  3657. break;
  3658. if (vma->vm_ops && vma->vm_ops->access)
  3659. ret = vma->vm_ops->access(vma, addr, buf,
  3660. len, write);
  3661. if (ret <= 0)
  3662. #endif
  3663. break;
  3664. bytes = ret;
  3665. } else {
  3666. bytes = len;
  3667. offset = addr & (PAGE_SIZE-1);
  3668. if (bytes > PAGE_SIZE-offset)
  3669. bytes = PAGE_SIZE-offset;
  3670. maddr = kmap(page);
  3671. if (write) {
  3672. copy_to_user_page(vma, page, addr,
  3673. maddr + offset, buf, bytes);
  3674. set_page_dirty_lock(page);
  3675. } else {
  3676. copy_from_user_page(vma, page, addr,
  3677. buf, maddr + offset, bytes);
  3678. }
  3679. kunmap(page);
  3680. page_cache_release(page);
  3681. }
  3682. len -= bytes;
  3683. buf += bytes;
  3684. addr += bytes;
  3685. }
  3686. up_read(&mm->mmap_sem);
  3687. return buf - old_buf;
  3688. }
  3689. /**
  3690. * access_remote_vm - access another process' address space
  3691. * @mm: the mm_struct of the target address space
  3692. * @addr: start address to access
  3693. * @buf: source or destination buffer
  3694. * @len: number of bytes to transfer
  3695. * @write: whether the access is a write
  3696. *
  3697. * The caller must hold a reference on @mm.
  3698. */
  3699. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3700. void *buf, int len, int write)
  3701. {
  3702. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3703. }
  3704. /*
  3705. * Access another process' address space.
  3706. * Source/target buffer must be kernel space,
  3707. * Do not walk the page table directly, use get_user_pages
  3708. */
  3709. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3710. void *buf, int len, int write)
  3711. {
  3712. struct mm_struct *mm;
  3713. int ret;
  3714. mm = get_task_mm(tsk);
  3715. if (!mm)
  3716. return 0;
  3717. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3718. mmput(mm);
  3719. return ret;
  3720. }
  3721. /*
  3722. * Print the name of a VMA.
  3723. */
  3724. void print_vma_addr(char *prefix, unsigned long ip)
  3725. {
  3726. struct mm_struct *mm = current->mm;
  3727. struct vm_area_struct *vma;
  3728. /*
  3729. * Do not print if we are in atomic
  3730. * contexts (in exception stacks, etc.):
  3731. */
  3732. if (preempt_count())
  3733. return;
  3734. down_read(&mm->mmap_sem);
  3735. vma = find_vma(mm, ip);
  3736. if (vma && vma->vm_file) {
  3737. struct file *f = vma->vm_file;
  3738. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3739. if (buf) {
  3740. char *p;
  3741. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3742. if (IS_ERR(p))
  3743. p = "?";
  3744. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3745. vma->vm_start,
  3746. vma->vm_end - vma->vm_start);
  3747. free_page((unsigned long)buf);
  3748. }
  3749. }
  3750. up_read(&mm->mmap_sem);
  3751. }
  3752. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3753. void might_fault(void)
  3754. {
  3755. /*
  3756. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3757. * holding the mmap_sem, this is safe because kernel memory doesn't
  3758. * get paged out, therefore we'll never actually fault, and the
  3759. * below annotations will generate false positives.
  3760. */
  3761. if (segment_eq(get_fs(), KERNEL_DS))
  3762. return;
  3763. /*
  3764. * it would be nicer only to annotate paths which are not under
  3765. * pagefault_disable, however that requires a larger audit and
  3766. * providing helpers like get_user_atomic.
  3767. */
  3768. if (in_atomic())
  3769. return;
  3770. __might_sleep(__FILE__, __LINE__, 0);
  3771. if (current->mm)
  3772. might_lock_read(&current->mm->mmap_sem);
  3773. }
  3774. EXPORT_SYMBOL(might_fault);
  3775. #endif
  3776. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3777. static void clear_gigantic_page(struct page *page,
  3778. unsigned long addr,
  3779. unsigned int pages_per_huge_page)
  3780. {
  3781. int i;
  3782. struct page *p = page;
  3783. might_sleep();
  3784. for (i = 0; i < pages_per_huge_page;
  3785. i++, p = mem_map_next(p, page, i)) {
  3786. cond_resched();
  3787. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3788. }
  3789. }
  3790. void clear_huge_page(struct page *page,
  3791. unsigned long addr, unsigned int pages_per_huge_page)
  3792. {
  3793. int i;
  3794. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3795. clear_gigantic_page(page, addr, pages_per_huge_page);
  3796. return;
  3797. }
  3798. might_sleep();
  3799. for (i = 0; i < pages_per_huge_page; i++) {
  3800. cond_resched();
  3801. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3802. }
  3803. }
  3804. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3805. unsigned long addr,
  3806. struct vm_area_struct *vma,
  3807. unsigned int pages_per_huge_page)
  3808. {
  3809. int i;
  3810. struct page *dst_base = dst;
  3811. struct page *src_base = src;
  3812. for (i = 0; i < pages_per_huge_page; ) {
  3813. cond_resched();
  3814. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3815. i++;
  3816. dst = mem_map_next(dst, dst_base, i);
  3817. src = mem_map_next(src, src_base, i);
  3818. }
  3819. }
  3820. void copy_user_huge_page(struct page *dst, struct page *src,
  3821. unsigned long addr, struct vm_area_struct *vma,
  3822. unsigned int pages_per_huge_page)
  3823. {
  3824. int i;
  3825. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3826. copy_user_gigantic_page(dst, src, addr, vma,
  3827. pages_per_huge_page);
  3828. return;
  3829. }
  3830. might_sleep();
  3831. for (i = 0; i < pages_per_huge_page; i++) {
  3832. cond_resched();
  3833. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3834. }
  3835. }
  3836. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */