qlge_main.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <net/ip6_checksum.h>
  42. #include "qlge.h"
  43. char qlge_driver_name[] = DRV_NAME;
  44. const char qlge_driver_version[] = DRV_VERSION;
  45. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  46. MODULE_DESCRIPTION(DRV_STRING " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg =
  50. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  51. /* NETIF_MSG_TIMER | */
  52. NETIF_MSG_IFDOWN |
  53. NETIF_MSG_IFUP |
  54. NETIF_MSG_RX_ERR |
  55. NETIF_MSG_TX_ERR |
  56. /* NETIF_MSG_TX_QUEUED | */
  57. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  58. /* NETIF_MSG_PKTDATA | */
  59. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  60. static int debug = 0x00007fff; /* defaults above */
  61. module_param(debug, int, 0);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. #define MSIX_IRQ 0
  64. #define MSI_IRQ 1
  65. #define LEG_IRQ 2
  66. static int irq_type = MSIX_IRQ;
  67. module_param(irq_type, int, MSIX_IRQ);
  68. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  69. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  70. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  194. if (status)
  195. return status;
  196. status = ql_wait_cfg(qdev, bit);
  197. if (status) {
  198. QPRINTK(qdev, IFUP, ERR,
  199. "Timed out waiting for CFG to come ready.\n");
  200. goto exit;
  201. }
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. mask = CFG_Q_MASK | (bit << 16);
  205. value = bit | (q_id << CFG_Q_SHIFT);
  206. ql_write32(qdev, CFG, (mask | value));
  207. /*
  208. * Wait for the bit to clear after signaling hw.
  209. */
  210. status = ql_wait_cfg(qdev, bit);
  211. exit:
  212. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. switch (type) {
  223. case MAC_ADDR_TYPE_MULTI_MAC:
  224. case MAC_ADDR_TYPE_CAM_MAC:
  225. {
  226. status =
  227. ql_wait_reg_rdy(qdev,
  228. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  229. if (status)
  230. goto exit;
  231. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  232. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  233. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  234. status =
  235. ql_wait_reg_rdy(qdev,
  236. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  237. if (status)
  238. goto exit;
  239. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  265. MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. }
  270. break;
  271. }
  272. case MAC_ADDR_TYPE_VLAN:
  273. case MAC_ADDR_TYPE_MULTI_FLTR:
  274. default:
  275. QPRINTK(qdev, IFUP, CRIT,
  276. "Address type %d not yet supported.\n", type);
  277. status = -EPERM;
  278. }
  279. exit:
  280. return status;
  281. }
  282. /* Set up a MAC, multicast or VLAN address for the
  283. * inbound frame matching.
  284. */
  285. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  286. u16 index)
  287. {
  288. u32 offset = 0;
  289. int status = 0;
  290. switch (type) {
  291. case MAC_ADDR_TYPE_MULTI_MAC:
  292. {
  293. u32 upper = (addr[0] << 8) | addr[1];
  294. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  295. (addr[4] << 8) | (addr[5]);
  296. status =
  297. ql_wait_reg_rdy(qdev,
  298. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  299. if (status)
  300. goto exit;
  301. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  302. (index << MAC_ADDR_IDX_SHIFT) |
  303. type | MAC_ADDR_E);
  304. ql_write32(qdev, MAC_ADDR_DATA, lower);
  305. status =
  306. ql_wait_reg_rdy(qdev,
  307. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  308. if (status)
  309. goto exit;
  310. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  311. (index << MAC_ADDR_IDX_SHIFT) |
  312. type | MAC_ADDR_E);
  313. ql_write32(qdev, MAC_ADDR_DATA, upper);
  314. status =
  315. ql_wait_reg_rdy(qdev,
  316. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  317. if (status)
  318. goto exit;
  319. break;
  320. }
  321. case MAC_ADDR_TYPE_CAM_MAC:
  322. {
  323. u32 cam_output;
  324. u32 upper = (addr[0] << 8) | addr[1];
  325. u32 lower =
  326. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  327. (addr[5]);
  328. QPRINTK(qdev, IFUP, DEBUG,
  329. "Adding %s address %pM"
  330. " at index %d in the CAM.\n",
  331. ((type ==
  332. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  333. "UNICAST"), addr, index);
  334. status =
  335. ql_wait_reg_rdy(qdev,
  336. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  337. if (status)
  338. goto exit;
  339. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  340. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  341. type); /* type */
  342. ql_write32(qdev, MAC_ADDR_DATA, lower);
  343. status =
  344. ql_wait_reg_rdy(qdev,
  345. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  346. if (status)
  347. goto exit;
  348. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  349. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  350. type); /* type */
  351. ql_write32(qdev, MAC_ADDR_DATA, upper);
  352. status =
  353. ql_wait_reg_rdy(qdev,
  354. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  355. if (status)
  356. goto exit;
  357. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  358. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  359. type); /* type */
  360. /* This field should also include the queue id
  361. and possibly the function id. Right now we hardcode
  362. the route field to NIC core.
  363. */
  364. cam_output = (CAM_OUT_ROUTE_NIC |
  365. (qdev->
  366. func << CAM_OUT_FUNC_SHIFT) |
  367. (0 << CAM_OUT_CQ_ID_SHIFT));
  368. if (qdev->vlgrp)
  369. cam_output |= CAM_OUT_RV;
  370. /* route to NIC core */
  371. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  372. break;
  373. }
  374. case MAC_ADDR_TYPE_VLAN:
  375. {
  376. u32 enable_bit = *((u32 *) &addr[0]);
  377. /* For VLAN, the addr actually holds a bit that
  378. * either enables or disables the vlan id we are
  379. * addressing. It's either MAC_ADDR_E on or off.
  380. * That's bit-27 we're talking about.
  381. */
  382. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  383. (enable_bit ? "Adding" : "Removing"),
  384. index, (enable_bit ? "to" : "from"));
  385. status =
  386. ql_wait_reg_rdy(qdev,
  387. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  388. if (status)
  389. goto exit;
  390. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  391. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  392. type | /* type */
  393. enable_bit); /* enable/disable */
  394. break;
  395. }
  396. case MAC_ADDR_TYPE_MULTI_FLTR:
  397. default:
  398. QPRINTK(qdev, IFUP, CRIT,
  399. "Address type %d not yet supported.\n", type);
  400. status = -EPERM;
  401. }
  402. exit:
  403. return status;
  404. }
  405. /* Set or clear MAC address in hardware. We sometimes
  406. * have to clear it to prevent wrong frame routing
  407. * especially in a bonding environment.
  408. */
  409. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  410. {
  411. int status;
  412. char zero_mac_addr[ETH_ALEN];
  413. char *addr;
  414. if (set) {
  415. addr = &qdev->ndev->dev_addr[0];
  416. QPRINTK(qdev, IFUP, DEBUG,
  417. "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  418. addr[0], addr[1], addr[2], addr[3],
  419. addr[4], addr[5]);
  420. } else {
  421. memset(zero_mac_addr, 0, ETH_ALEN);
  422. addr = &zero_mac_addr[0];
  423. QPRINTK(qdev, IFUP, DEBUG,
  424. "Clearing MAC address on %s\n",
  425. qdev->ndev->name);
  426. }
  427. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  428. if (status)
  429. return status;
  430. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  431. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  432. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  433. if (status)
  434. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  435. "address.\n");
  436. return status;
  437. }
  438. void ql_link_on(struct ql_adapter *qdev)
  439. {
  440. QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
  441. qdev->ndev->name);
  442. netif_carrier_on(qdev->ndev);
  443. ql_set_mac_addr(qdev, 1);
  444. }
  445. void ql_link_off(struct ql_adapter *qdev)
  446. {
  447. QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
  448. qdev->ndev->name);
  449. netif_carrier_off(qdev->ndev);
  450. ql_set_mac_addr(qdev, 0);
  451. }
  452. /* Get a specific frame routing value from the CAM.
  453. * Used for debug and reg dump.
  454. */
  455. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  456. {
  457. int status = 0;
  458. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  459. if (status)
  460. goto exit;
  461. ql_write32(qdev, RT_IDX,
  462. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  463. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  464. if (status)
  465. goto exit;
  466. *value = ql_read32(qdev, RT_DATA);
  467. exit:
  468. return status;
  469. }
  470. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  471. * to route different frame types to various inbound queues. We send broadcast/
  472. * multicast/error frames to the default queue for slow handling,
  473. * and CAM hit/RSS frames to the fast handling queues.
  474. */
  475. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  476. int enable)
  477. {
  478. int status = -EINVAL; /* Return error if no mask match. */
  479. u32 value = 0;
  480. QPRINTK(qdev, IFUP, DEBUG,
  481. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  482. (enable ? "Adding" : "Removing"),
  483. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  484. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  485. ((index ==
  486. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  487. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  488. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  489. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  490. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  491. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  492. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  493. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  494. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  495. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  496. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  497. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  498. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  499. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  500. (enable ? "to" : "from"));
  501. switch (mask) {
  502. case RT_IDX_CAM_HIT:
  503. {
  504. value = RT_IDX_DST_CAM_Q | /* dest */
  505. RT_IDX_TYPE_NICQ | /* type */
  506. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  507. break;
  508. }
  509. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  510. {
  511. value = RT_IDX_DST_DFLT_Q | /* dest */
  512. RT_IDX_TYPE_NICQ | /* type */
  513. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  514. break;
  515. }
  516. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  517. {
  518. value = RT_IDX_DST_DFLT_Q | /* dest */
  519. RT_IDX_TYPE_NICQ | /* type */
  520. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  521. break;
  522. }
  523. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  524. {
  525. value = RT_IDX_DST_DFLT_Q | /* dest */
  526. RT_IDX_TYPE_NICQ | /* type */
  527. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  528. break;
  529. }
  530. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  531. {
  532. value = RT_IDX_DST_DFLT_Q | /* dest */
  533. RT_IDX_TYPE_NICQ | /* type */
  534. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  535. break;
  536. }
  537. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  538. {
  539. value = RT_IDX_DST_DFLT_Q | /* dest */
  540. RT_IDX_TYPE_NICQ | /* type */
  541. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  542. break;
  543. }
  544. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  545. {
  546. value = RT_IDX_DST_RSS | /* dest */
  547. RT_IDX_TYPE_NICQ | /* type */
  548. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  549. break;
  550. }
  551. case 0: /* Clear the E-bit on an entry. */
  552. {
  553. value = RT_IDX_DST_DFLT_Q | /* dest */
  554. RT_IDX_TYPE_NICQ | /* type */
  555. (index << RT_IDX_IDX_SHIFT);/* index */
  556. break;
  557. }
  558. default:
  559. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  560. mask);
  561. status = -EPERM;
  562. goto exit;
  563. }
  564. if (value) {
  565. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  566. if (status)
  567. goto exit;
  568. value |= (enable ? RT_IDX_E : 0);
  569. ql_write32(qdev, RT_IDX, value);
  570. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  571. }
  572. exit:
  573. return status;
  574. }
  575. static void ql_enable_interrupts(struct ql_adapter *qdev)
  576. {
  577. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  578. }
  579. static void ql_disable_interrupts(struct ql_adapter *qdev)
  580. {
  581. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  582. }
  583. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  584. * Otherwise, we may have multiple outstanding workers and don't want to
  585. * enable until the last one finishes. In this case, the irq_cnt gets
  586. * incremented everytime we queue a worker and decremented everytime
  587. * a worker finishes. Once it hits zero we enable the interrupt.
  588. */
  589. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  590. {
  591. u32 var = 0;
  592. unsigned long hw_flags = 0;
  593. struct intr_context *ctx = qdev->intr_context + intr;
  594. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  595. /* Always enable if we're MSIX multi interrupts and
  596. * it's not the default (zeroeth) interrupt.
  597. */
  598. ql_write32(qdev, INTR_EN,
  599. ctx->intr_en_mask);
  600. var = ql_read32(qdev, STS);
  601. return var;
  602. }
  603. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  604. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  605. ql_write32(qdev, INTR_EN,
  606. ctx->intr_en_mask);
  607. var = ql_read32(qdev, STS);
  608. }
  609. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  610. return var;
  611. }
  612. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  613. {
  614. u32 var = 0;
  615. struct intr_context *ctx;
  616. /* HW disables for us if we're MSIX multi interrupts and
  617. * it's not the default (zeroeth) interrupt.
  618. */
  619. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  620. return 0;
  621. ctx = qdev->intr_context + intr;
  622. spin_lock(&qdev->hw_lock);
  623. if (!atomic_read(&ctx->irq_cnt)) {
  624. ql_write32(qdev, INTR_EN,
  625. ctx->intr_dis_mask);
  626. var = ql_read32(qdev, STS);
  627. }
  628. atomic_inc(&ctx->irq_cnt);
  629. spin_unlock(&qdev->hw_lock);
  630. return var;
  631. }
  632. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  633. {
  634. int i;
  635. for (i = 0; i < qdev->intr_count; i++) {
  636. /* The enable call does a atomic_dec_and_test
  637. * and enables only if the result is zero.
  638. * So we precharge it here.
  639. */
  640. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  641. i == 0))
  642. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  643. ql_enable_completion_interrupt(qdev, i);
  644. }
  645. }
  646. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  647. {
  648. int status, i;
  649. u16 csum = 0;
  650. __le16 *flash = (__le16 *)&qdev->flash;
  651. status = strncmp((char *)&qdev->flash, str, 4);
  652. if (status) {
  653. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  654. return status;
  655. }
  656. for (i = 0; i < size; i++)
  657. csum += le16_to_cpu(*flash++);
  658. if (csum)
  659. QPRINTK(qdev, IFUP, ERR,
  660. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  661. return csum;
  662. }
  663. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  664. {
  665. int status = 0;
  666. /* wait for reg to come ready */
  667. status = ql_wait_reg_rdy(qdev,
  668. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  669. if (status)
  670. goto exit;
  671. /* set up for reg read */
  672. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  673. /* wait for reg to come ready */
  674. status = ql_wait_reg_rdy(qdev,
  675. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  676. if (status)
  677. goto exit;
  678. /* This data is stored on flash as an array of
  679. * __le32. Since ql_read32() returns cpu endian
  680. * we need to swap it back.
  681. */
  682. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  683. exit:
  684. return status;
  685. }
  686. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  687. {
  688. u32 i, size;
  689. int status;
  690. __le32 *p = (__le32 *)&qdev->flash;
  691. u32 offset;
  692. u8 mac_addr[6];
  693. /* Get flash offset for function and adjust
  694. * for dword access.
  695. */
  696. if (!qdev->port)
  697. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  698. else
  699. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  700. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  701. return -ETIMEDOUT;
  702. size = sizeof(struct flash_params_8000) / sizeof(u32);
  703. for (i = 0; i < size; i++, p++) {
  704. status = ql_read_flash_word(qdev, i+offset, p);
  705. if (status) {
  706. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  707. goto exit;
  708. }
  709. }
  710. status = ql_validate_flash(qdev,
  711. sizeof(struct flash_params_8000) / sizeof(u16),
  712. "8000");
  713. if (status) {
  714. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  715. status = -EINVAL;
  716. goto exit;
  717. }
  718. /* Extract either manufacturer or BOFM modified
  719. * MAC address.
  720. */
  721. if (qdev->flash.flash_params_8000.data_type1 == 2)
  722. memcpy(mac_addr,
  723. qdev->flash.flash_params_8000.mac_addr1,
  724. qdev->ndev->addr_len);
  725. else
  726. memcpy(mac_addr,
  727. qdev->flash.flash_params_8000.mac_addr,
  728. qdev->ndev->addr_len);
  729. if (!is_valid_ether_addr(mac_addr)) {
  730. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  731. status = -EINVAL;
  732. goto exit;
  733. }
  734. memcpy(qdev->ndev->dev_addr,
  735. mac_addr,
  736. qdev->ndev->addr_len);
  737. exit:
  738. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  739. return status;
  740. }
  741. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  742. {
  743. int i;
  744. int status;
  745. __le32 *p = (__le32 *)&qdev->flash;
  746. u32 offset = 0;
  747. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  748. /* Second function's parameters follow the first
  749. * function's.
  750. */
  751. if (qdev->port)
  752. offset = size;
  753. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  754. return -ETIMEDOUT;
  755. for (i = 0; i < size; i++, p++) {
  756. status = ql_read_flash_word(qdev, i+offset, p);
  757. if (status) {
  758. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  759. goto exit;
  760. }
  761. }
  762. status = ql_validate_flash(qdev,
  763. sizeof(struct flash_params_8012) / sizeof(u16),
  764. "8012");
  765. if (status) {
  766. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  767. status = -EINVAL;
  768. goto exit;
  769. }
  770. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  771. status = -EINVAL;
  772. goto exit;
  773. }
  774. memcpy(qdev->ndev->dev_addr,
  775. qdev->flash.flash_params_8012.mac_addr,
  776. qdev->ndev->addr_len);
  777. exit:
  778. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  779. return status;
  780. }
  781. /* xgmac register are located behind the xgmac_addr and xgmac_data
  782. * register pair. Each read/write requires us to wait for the ready
  783. * bit before reading/writing the data.
  784. */
  785. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  786. {
  787. int status;
  788. /* wait for reg to come ready */
  789. status = ql_wait_reg_rdy(qdev,
  790. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  791. if (status)
  792. return status;
  793. /* write the data to the data reg */
  794. ql_write32(qdev, XGMAC_DATA, data);
  795. /* trigger the write */
  796. ql_write32(qdev, XGMAC_ADDR, reg);
  797. return status;
  798. }
  799. /* xgmac register are located behind the xgmac_addr and xgmac_data
  800. * register pair. Each read/write requires us to wait for the ready
  801. * bit before reading/writing the data.
  802. */
  803. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  804. {
  805. int status = 0;
  806. /* wait for reg to come ready */
  807. status = ql_wait_reg_rdy(qdev,
  808. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  809. if (status)
  810. goto exit;
  811. /* set up for reg read */
  812. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  813. /* wait for reg to come ready */
  814. status = ql_wait_reg_rdy(qdev,
  815. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  816. if (status)
  817. goto exit;
  818. /* get the data */
  819. *data = ql_read32(qdev, XGMAC_DATA);
  820. exit:
  821. return status;
  822. }
  823. /* This is used for reading the 64-bit statistics regs. */
  824. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  825. {
  826. int status = 0;
  827. u32 hi = 0;
  828. u32 lo = 0;
  829. status = ql_read_xgmac_reg(qdev, reg, &lo);
  830. if (status)
  831. goto exit;
  832. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  833. if (status)
  834. goto exit;
  835. *data = (u64) lo | ((u64) hi << 32);
  836. exit:
  837. return status;
  838. }
  839. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  840. {
  841. int status;
  842. /*
  843. * Get MPI firmware version for driver banner
  844. * and ethool info.
  845. */
  846. status = ql_mb_about_fw(qdev);
  847. if (status)
  848. goto exit;
  849. status = ql_mb_get_fw_state(qdev);
  850. if (status)
  851. goto exit;
  852. /* Wake up a worker to get/set the TX/RX frame sizes. */
  853. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  854. exit:
  855. return status;
  856. }
  857. /* Take the MAC Core out of reset.
  858. * Enable statistics counting.
  859. * Take the transmitter/receiver out of reset.
  860. * This functionality may be done in the MPI firmware at a
  861. * later date.
  862. */
  863. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  864. {
  865. int status = 0;
  866. u32 data;
  867. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  868. /* Another function has the semaphore, so
  869. * wait for the port init bit to come ready.
  870. */
  871. QPRINTK(qdev, LINK, INFO,
  872. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  873. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  874. if (status) {
  875. QPRINTK(qdev, LINK, CRIT,
  876. "Port initialize timed out.\n");
  877. }
  878. return status;
  879. }
  880. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  881. /* Set the core reset. */
  882. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  883. if (status)
  884. goto end;
  885. data |= GLOBAL_CFG_RESET;
  886. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  887. if (status)
  888. goto end;
  889. /* Clear the core reset and turn on jumbo for receiver. */
  890. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  891. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  892. data |= GLOBAL_CFG_TX_STAT_EN;
  893. data |= GLOBAL_CFG_RX_STAT_EN;
  894. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  895. if (status)
  896. goto end;
  897. /* Enable transmitter, and clear it's reset. */
  898. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  899. if (status)
  900. goto end;
  901. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  902. data |= TX_CFG_EN; /* Enable the transmitter. */
  903. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  904. if (status)
  905. goto end;
  906. /* Enable receiver and clear it's reset. */
  907. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  908. if (status)
  909. goto end;
  910. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  911. data |= RX_CFG_EN; /* Enable the receiver. */
  912. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  913. if (status)
  914. goto end;
  915. /* Turn on jumbo. */
  916. status =
  917. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  918. if (status)
  919. goto end;
  920. status =
  921. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  922. if (status)
  923. goto end;
  924. /* Signal to the world that the port is enabled. */
  925. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  926. end:
  927. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  928. return status;
  929. }
  930. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  931. {
  932. return PAGE_SIZE << qdev->lbq_buf_order;
  933. }
  934. /* Get the next large buffer. */
  935. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  936. {
  937. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  938. rx_ring->lbq_curr_idx++;
  939. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  940. rx_ring->lbq_curr_idx = 0;
  941. rx_ring->lbq_free_cnt++;
  942. return lbq_desc;
  943. }
  944. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  945. struct rx_ring *rx_ring)
  946. {
  947. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  948. pci_dma_sync_single_for_cpu(qdev->pdev,
  949. pci_unmap_addr(lbq_desc, mapaddr),
  950. rx_ring->lbq_buf_size,
  951. PCI_DMA_FROMDEVICE);
  952. /* If it's the last chunk of our master page then
  953. * we unmap it.
  954. */
  955. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  956. == ql_lbq_block_size(qdev))
  957. pci_unmap_page(qdev->pdev,
  958. lbq_desc->p.pg_chunk.map,
  959. ql_lbq_block_size(qdev),
  960. PCI_DMA_FROMDEVICE);
  961. return lbq_desc;
  962. }
  963. /* Get the next small buffer. */
  964. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  965. {
  966. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  967. rx_ring->sbq_curr_idx++;
  968. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  969. rx_ring->sbq_curr_idx = 0;
  970. rx_ring->sbq_free_cnt++;
  971. return sbq_desc;
  972. }
  973. /* Update an rx ring index. */
  974. static void ql_update_cq(struct rx_ring *rx_ring)
  975. {
  976. rx_ring->cnsmr_idx++;
  977. rx_ring->curr_entry++;
  978. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  979. rx_ring->cnsmr_idx = 0;
  980. rx_ring->curr_entry = rx_ring->cq_base;
  981. }
  982. }
  983. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  984. {
  985. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  986. }
  987. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  988. struct bq_desc *lbq_desc)
  989. {
  990. if (!rx_ring->pg_chunk.page) {
  991. u64 map;
  992. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  993. GFP_ATOMIC,
  994. qdev->lbq_buf_order);
  995. if (unlikely(!rx_ring->pg_chunk.page)) {
  996. QPRINTK(qdev, DRV, ERR,
  997. "page allocation failed.\n");
  998. return -ENOMEM;
  999. }
  1000. rx_ring->pg_chunk.offset = 0;
  1001. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1002. 0, ql_lbq_block_size(qdev),
  1003. PCI_DMA_FROMDEVICE);
  1004. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1005. __free_pages(rx_ring->pg_chunk.page,
  1006. qdev->lbq_buf_order);
  1007. QPRINTK(qdev, DRV, ERR,
  1008. "PCI mapping failed.\n");
  1009. return -ENOMEM;
  1010. }
  1011. rx_ring->pg_chunk.map = map;
  1012. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1013. }
  1014. /* Copy the current master pg_chunk info
  1015. * to the current descriptor.
  1016. */
  1017. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1018. /* Adjust the master page chunk for next
  1019. * buffer get.
  1020. */
  1021. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1022. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1023. rx_ring->pg_chunk.page = NULL;
  1024. lbq_desc->p.pg_chunk.last_flag = 1;
  1025. } else {
  1026. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1027. get_page(rx_ring->pg_chunk.page);
  1028. lbq_desc->p.pg_chunk.last_flag = 0;
  1029. }
  1030. return 0;
  1031. }
  1032. /* Process (refill) a large buffer queue. */
  1033. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1034. {
  1035. u32 clean_idx = rx_ring->lbq_clean_idx;
  1036. u32 start_idx = clean_idx;
  1037. struct bq_desc *lbq_desc;
  1038. u64 map;
  1039. int i;
  1040. while (rx_ring->lbq_free_cnt > 32) {
  1041. for (i = 0; i < 16; i++) {
  1042. QPRINTK(qdev, RX_STATUS, DEBUG,
  1043. "lbq: try cleaning clean_idx = %d.\n",
  1044. clean_idx);
  1045. lbq_desc = &rx_ring->lbq[clean_idx];
  1046. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1047. QPRINTK(qdev, IFUP, ERR,
  1048. "Could not get a page chunk.\n");
  1049. return;
  1050. }
  1051. map = lbq_desc->p.pg_chunk.map +
  1052. lbq_desc->p.pg_chunk.offset;
  1053. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1054. pci_unmap_len_set(lbq_desc, maplen,
  1055. rx_ring->lbq_buf_size);
  1056. *lbq_desc->addr = cpu_to_le64(map);
  1057. pci_dma_sync_single_for_device(qdev->pdev, map,
  1058. rx_ring->lbq_buf_size,
  1059. PCI_DMA_FROMDEVICE);
  1060. clean_idx++;
  1061. if (clean_idx == rx_ring->lbq_len)
  1062. clean_idx = 0;
  1063. }
  1064. rx_ring->lbq_clean_idx = clean_idx;
  1065. rx_ring->lbq_prod_idx += 16;
  1066. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1067. rx_ring->lbq_prod_idx = 0;
  1068. rx_ring->lbq_free_cnt -= 16;
  1069. }
  1070. if (start_idx != clean_idx) {
  1071. QPRINTK(qdev, RX_STATUS, DEBUG,
  1072. "lbq: updating prod idx = %d.\n",
  1073. rx_ring->lbq_prod_idx);
  1074. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1075. rx_ring->lbq_prod_idx_db_reg);
  1076. }
  1077. }
  1078. /* Process (refill) a small buffer queue. */
  1079. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1080. {
  1081. u32 clean_idx = rx_ring->sbq_clean_idx;
  1082. u32 start_idx = clean_idx;
  1083. struct bq_desc *sbq_desc;
  1084. u64 map;
  1085. int i;
  1086. while (rx_ring->sbq_free_cnt > 16) {
  1087. for (i = 0; i < 16; i++) {
  1088. sbq_desc = &rx_ring->sbq[clean_idx];
  1089. QPRINTK(qdev, RX_STATUS, DEBUG,
  1090. "sbq: try cleaning clean_idx = %d.\n",
  1091. clean_idx);
  1092. if (sbq_desc->p.skb == NULL) {
  1093. QPRINTK(qdev, RX_STATUS, DEBUG,
  1094. "sbq: getting new skb for index %d.\n",
  1095. sbq_desc->index);
  1096. sbq_desc->p.skb =
  1097. netdev_alloc_skb(qdev->ndev,
  1098. SMALL_BUFFER_SIZE);
  1099. if (sbq_desc->p.skb == NULL) {
  1100. QPRINTK(qdev, PROBE, ERR,
  1101. "Couldn't get an skb.\n");
  1102. rx_ring->sbq_clean_idx = clean_idx;
  1103. return;
  1104. }
  1105. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1106. map = pci_map_single(qdev->pdev,
  1107. sbq_desc->p.skb->data,
  1108. rx_ring->sbq_buf_size,
  1109. PCI_DMA_FROMDEVICE);
  1110. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1111. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1112. rx_ring->sbq_clean_idx = clean_idx;
  1113. dev_kfree_skb_any(sbq_desc->p.skb);
  1114. sbq_desc->p.skb = NULL;
  1115. return;
  1116. }
  1117. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1118. pci_unmap_len_set(sbq_desc, maplen,
  1119. rx_ring->sbq_buf_size);
  1120. *sbq_desc->addr = cpu_to_le64(map);
  1121. }
  1122. clean_idx++;
  1123. if (clean_idx == rx_ring->sbq_len)
  1124. clean_idx = 0;
  1125. }
  1126. rx_ring->sbq_clean_idx = clean_idx;
  1127. rx_ring->sbq_prod_idx += 16;
  1128. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1129. rx_ring->sbq_prod_idx = 0;
  1130. rx_ring->sbq_free_cnt -= 16;
  1131. }
  1132. if (start_idx != clean_idx) {
  1133. QPRINTK(qdev, RX_STATUS, DEBUG,
  1134. "sbq: updating prod idx = %d.\n",
  1135. rx_ring->sbq_prod_idx);
  1136. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1137. rx_ring->sbq_prod_idx_db_reg);
  1138. }
  1139. }
  1140. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1141. struct rx_ring *rx_ring)
  1142. {
  1143. ql_update_sbq(qdev, rx_ring);
  1144. ql_update_lbq(qdev, rx_ring);
  1145. }
  1146. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1147. * fails at some stage, or from the interrupt when a tx completes.
  1148. */
  1149. static void ql_unmap_send(struct ql_adapter *qdev,
  1150. struct tx_ring_desc *tx_ring_desc, int mapped)
  1151. {
  1152. int i;
  1153. for (i = 0; i < mapped; i++) {
  1154. if (i == 0 || (i == 7 && mapped > 7)) {
  1155. /*
  1156. * Unmap the skb->data area, or the
  1157. * external sglist (AKA the Outbound
  1158. * Address List (OAL)).
  1159. * If its the zeroeth element, then it's
  1160. * the skb->data area. If it's the 7th
  1161. * element and there is more than 6 frags,
  1162. * then its an OAL.
  1163. */
  1164. if (i == 7) {
  1165. QPRINTK(qdev, TX_DONE, DEBUG,
  1166. "unmapping OAL area.\n");
  1167. }
  1168. pci_unmap_single(qdev->pdev,
  1169. pci_unmap_addr(&tx_ring_desc->map[i],
  1170. mapaddr),
  1171. pci_unmap_len(&tx_ring_desc->map[i],
  1172. maplen),
  1173. PCI_DMA_TODEVICE);
  1174. } else {
  1175. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1176. i);
  1177. pci_unmap_page(qdev->pdev,
  1178. pci_unmap_addr(&tx_ring_desc->map[i],
  1179. mapaddr),
  1180. pci_unmap_len(&tx_ring_desc->map[i],
  1181. maplen), PCI_DMA_TODEVICE);
  1182. }
  1183. }
  1184. }
  1185. /* Map the buffers for this transmit. This will return
  1186. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1187. */
  1188. static int ql_map_send(struct ql_adapter *qdev,
  1189. struct ob_mac_iocb_req *mac_iocb_ptr,
  1190. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1191. {
  1192. int len = skb_headlen(skb);
  1193. dma_addr_t map;
  1194. int frag_idx, err, map_idx = 0;
  1195. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1196. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1197. if (frag_cnt) {
  1198. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1199. }
  1200. /*
  1201. * Map the skb buffer first.
  1202. */
  1203. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1204. err = pci_dma_mapping_error(qdev->pdev, map);
  1205. if (err) {
  1206. QPRINTK(qdev, TX_QUEUED, ERR,
  1207. "PCI mapping failed with error: %d\n", err);
  1208. return NETDEV_TX_BUSY;
  1209. }
  1210. tbd->len = cpu_to_le32(len);
  1211. tbd->addr = cpu_to_le64(map);
  1212. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1213. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1214. map_idx++;
  1215. /*
  1216. * This loop fills the remainder of the 8 address descriptors
  1217. * in the IOCB. If there are more than 7 fragments, then the
  1218. * eighth address desc will point to an external list (OAL).
  1219. * When this happens, the remainder of the frags will be stored
  1220. * in this list.
  1221. */
  1222. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1223. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1224. tbd++;
  1225. if (frag_idx == 6 && frag_cnt > 7) {
  1226. /* Let's tack on an sglist.
  1227. * Our control block will now
  1228. * look like this:
  1229. * iocb->seg[0] = skb->data
  1230. * iocb->seg[1] = frag[0]
  1231. * iocb->seg[2] = frag[1]
  1232. * iocb->seg[3] = frag[2]
  1233. * iocb->seg[4] = frag[3]
  1234. * iocb->seg[5] = frag[4]
  1235. * iocb->seg[6] = frag[5]
  1236. * iocb->seg[7] = ptr to OAL (external sglist)
  1237. * oal->seg[0] = frag[6]
  1238. * oal->seg[1] = frag[7]
  1239. * oal->seg[2] = frag[8]
  1240. * oal->seg[3] = frag[9]
  1241. * oal->seg[4] = frag[10]
  1242. * etc...
  1243. */
  1244. /* Tack on the OAL in the eighth segment of IOCB. */
  1245. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1246. sizeof(struct oal),
  1247. PCI_DMA_TODEVICE);
  1248. err = pci_dma_mapping_error(qdev->pdev, map);
  1249. if (err) {
  1250. QPRINTK(qdev, TX_QUEUED, ERR,
  1251. "PCI mapping outbound address list with error: %d\n",
  1252. err);
  1253. goto map_error;
  1254. }
  1255. tbd->addr = cpu_to_le64(map);
  1256. /*
  1257. * The length is the number of fragments
  1258. * that remain to be mapped times the length
  1259. * of our sglist (OAL).
  1260. */
  1261. tbd->len =
  1262. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1263. (frag_cnt - frag_idx)) | TX_DESC_C);
  1264. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1265. map);
  1266. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1267. sizeof(struct oal));
  1268. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1269. map_idx++;
  1270. }
  1271. map =
  1272. pci_map_page(qdev->pdev, frag->page,
  1273. frag->page_offset, frag->size,
  1274. PCI_DMA_TODEVICE);
  1275. err = pci_dma_mapping_error(qdev->pdev, map);
  1276. if (err) {
  1277. QPRINTK(qdev, TX_QUEUED, ERR,
  1278. "PCI mapping frags failed with error: %d.\n",
  1279. err);
  1280. goto map_error;
  1281. }
  1282. tbd->addr = cpu_to_le64(map);
  1283. tbd->len = cpu_to_le32(frag->size);
  1284. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1285. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1286. frag->size);
  1287. }
  1288. /* Save the number of segments we've mapped. */
  1289. tx_ring_desc->map_cnt = map_idx;
  1290. /* Terminate the last segment. */
  1291. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1292. return NETDEV_TX_OK;
  1293. map_error:
  1294. /*
  1295. * If the first frag mapping failed, then i will be zero.
  1296. * This causes the unmap of the skb->data area. Otherwise
  1297. * we pass in the number of frags that mapped successfully
  1298. * so they can be umapped.
  1299. */
  1300. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1301. return NETDEV_TX_BUSY;
  1302. }
  1303. static void ql_realign_skb(struct sk_buff *skb, int len)
  1304. {
  1305. void *temp_addr = skb->data;
  1306. /* Undo the skb_reserve(skb,32) we did before
  1307. * giving to hardware, and realign data on
  1308. * a 2-byte boundary.
  1309. */
  1310. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1311. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1312. skb_copy_to_linear_data(skb, temp_addr,
  1313. (unsigned int)len);
  1314. }
  1315. /*
  1316. * This function builds an skb for the given inbound
  1317. * completion. It will be rewritten for readability in the near
  1318. * future, but for not it works well.
  1319. */
  1320. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1321. struct rx_ring *rx_ring,
  1322. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1323. {
  1324. struct bq_desc *lbq_desc;
  1325. struct bq_desc *sbq_desc;
  1326. struct sk_buff *skb = NULL;
  1327. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1328. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1329. /*
  1330. * Handle the header buffer if present.
  1331. */
  1332. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1333. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1334. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1335. /*
  1336. * Headers fit nicely into a small buffer.
  1337. */
  1338. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1339. pci_unmap_single(qdev->pdev,
  1340. pci_unmap_addr(sbq_desc, mapaddr),
  1341. pci_unmap_len(sbq_desc, maplen),
  1342. PCI_DMA_FROMDEVICE);
  1343. skb = sbq_desc->p.skb;
  1344. ql_realign_skb(skb, hdr_len);
  1345. skb_put(skb, hdr_len);
  1346. sbq_desc->p.skb = NULL;
  1347. }
  1348. /*
  1349. * Handle the data buffer(s).
  1350. */
  1351. if (unlikely(!length)) { /* Is there data too? */
  1352. QPRINTK(qdev, RX_STATUS, DEBUG,
  1353. "No Data buffer in this packet.\n");
  1354. return skb;
  1355. }
  1356. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1357. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1358. QPRINTK(qdev, RX_STATUS, DEBUG,
  1359. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1360. /*
  1361. * Data is less than small buffer size so it's
  1362. * stuffed in a small buffer.
  1363. * For this case we append the data
  1364. * from the "data" small buffer to the "header" small
  1365. * buffer.
  1366. */
  1367. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1368. pci_dma_sync_single_for_cpu(qdev->pdev,
  1369. pci_unmap_addr
  1370. (sbq_desc, mapaddr),
  1371. pci_unmap_len
  1372. (sbq_desc, maplen),
  1373. PCI_DMA_FROMDEVICE);
  1374. memcpy(skb_put(skb, length),
  1375. sbq_desc->p.skb->data, length);
  1376. pci_dma_sync_single_for_device(qdev->pdev,
  1377. pci_unmap_addr
  1378. (sbq_desc,
  1379. mapaddr),
  1380. pci_unmap_len
  1381. (sbq_desc,
  1382. maplen),
  1383. PCI_DMA_FROMDEVICE);
  1384. } else {
  1385. QPRINTK(qdev, RX_STATUS, DEBUG,
  1386. "%d bytes in a single small buffer.\n", length);
  1387. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1388. skb = sbq_desc->p.skb;
  1389. ql_realign_skb(skb, length);
  1390. skb_put(skb, length);
  1391. pci_unmap_single(qdev->pdev,
  1392. pci_unmap_addr(sbq_desc,
  1393. mapaddr),
  1394. pci_unmap_len(sbq_desc,
  1395. maplen),
  1396. PCI_DMA_FROMDEVICE);
  1397. sbq_desc->p.skb = NULL;
  1398. }
  1399. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1400. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1401. QPRINTK(qdev, RX_STATUS, DEBUG,
  1402. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1403. /*
  1404. * The data is in a single large buffer. We
  1405. * chain it to the header buffer's skb and let
  1406. * it rip.
  1407. */
  1408. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1409. QPRINTK(qdev, RX_STATUS, DEBUG,
  1410. "Chaining page at offset = %d,"
  1411. "for %d bytes to skb.\n",
  1412. lbq_desc->p.pg_chunk.offset, length);
  1413. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1414. lbq_desc->p.pg_chunk.offset,
  1415. length);
  1416. skb->len += length;
  1417. skb->data_len += length;
  1418. skb->truesize += length;
  1419. } else {
  1420. /*
  1421. * The headers and data are in a single large buffer. We
  1422. * copy it to a new skb and let it go. This can happen with
  1423. * jumbo mtu on a non-TCP/UDP frame.
  1424. */
  1425. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1426. skb = netdev_alloc_skb(qdev->ndev, length);
  1427. if (skb == NULL) {
  1428. QPRINTK(qdev, PROBE, DEBUG,
  1429. "No skb available, drop the packet.\n");
  1430. return NULL;
  1431. }
  1432. pci_unmap_page(qdev->pdev,
  1433. pci_unmap_addr(lbq_desc,
  1434. mapaddr),
  1435. pci_unmap_len(lbq_desc, maplen),
  1436. PCI_DMA_FROMDEVICE);
  1437. skb_reserve(skb, NET_IP_ALIGN);
  1438. QPRINTK(qdev, RX_STATUS, DEBUG,
  1439. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1440. skb_fill_page_desc(skb, 0,
  1441. lbq_desc->p.pg_chunk.page,
  1442. lbq_desc->p.pg_chunk.offset,
  1443. length);
  1444. skb->len += length;
  1445. skb->data_len += length;
  1446. skb->truesize += length;
  1447. length -= length;
  1448. __pskb_pull_tail(skb,
  1449. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1450. VLAN_ETH_HLEN : ETH_HLEN);
  1451. }
  1452. } else {
  1453. /*
  1454. * The data is in a chain of large buffers
  1455. * pointed to by a small buffer. We loop
  1456. * thru and chain them to the our small header
  1457. * buffer's skb.
  1458. * frags: There are 18 max frags and our small
  1459. * buffer will hold 32 of them. The thing is,
  1460. * we'll use 3 max for our 9000 byte jumbo
  1461. * frames. If the MTU goes up we could
  1462. * eventually be in trouble.
  1463. */
  1464. int size, i = 0;
  1465. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1466. pci_unmap_single(qdev->pdev,
  1467. pci_unmap_addr(sbq_desc, mapaddr),
  1468. pci_unmap_len(sbq_desc, maplen),
  1469. PCI_DMA_FROMDEVICE);
  1470. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1471. /*
  1472. * This is an non TCP/UDP IP frame, so
  1473. * the headers aren't split into a small
  1474. * buffer. We have to use the small buffer
  1475. * that contains our sg list as our skb to
  1476. * send upstairs. Copy the sg list here to
  1477. * a local buffer and use it to find the
  1478. * pages to chain.
  1479. */
  1480. QPRINTK(qdev, RX_STATUS, DEBUG,
  1481. "%d bytes of headers & data in chain of large.\n", length);
  1482. skb = sbq_desc->p.skb;
  1483. sbq_desc->p.skb = NULL;
  1484. skb_reserve(skb, NET_IP_ALIGN);
  1485. }
  1486. while (length > 0) {
  1487. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1488. size = (length < rx_ring->lbq_buf_size) ? length :
  1489. rx_ring->lbq_buf_size;
  1490. QPRINTK(qdev, RX_STATUS, DEBUG,
  1491. "Adding page %d to skb for %d bytes.\n",
  1492. i, size);
  1493. skb_fill_page_desc(skb, i,
  1494. lbq_desc->p.pg_chunk.page,
  1495. lbq_desc->p.pg_chunk.offset,
  1496. size);
  1497. skb->len += size;
  1498. skb->data_len += size;
  1499. skb->truesize += size;
  1500. length -= size;
  1501. i++;
  1502. }
  1503. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1504. VLAN_ETH_HLEN : ETH_HLEN);
  1505. }
  1506. return skb;
  1507. }
  1508. /* Process an inbound completion from an rx ring. */
  1509. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1510. struct rx_ring *rx_ring,
  1511. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1512. {
  1513. struct net_device *ndev = qdev->ndev;
  1514. struct sk_buff *skb = NULL;
  1515. u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
  1516. IB_MAC_IOCB_RSP_VLAN_MASK)
  1517. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1518. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1519. if (unlikely(!skb)) {
  1520. QPRINTK(qdev, RX_STATUS, DEBUG,
  1521. "No skb available, drop packet.\n");
  1522. return;
  1523. }
  1524. /* Frame error, so drop the packet. */
  1525. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1526. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1527. ib_mac_rsp->flags2);
  1528. dev_kfree_skb_any(skb);
  1529. return;
  1530. }
  1531. /* The max framesize filter on this chip is set higher than
  1532. * MTU since FCoE uses 2k frames.
  1533. */
  1534. if (skb->len > ndev->mtu + ETH_HLEN) {
  1535. dev_kfree_skb_any(skb);
  1536. return;
  1537. }
  1538. prefetch(skb->data);
  1539. skb->dev = ndev;
  1540. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1541. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1542. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1543. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1544. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1545. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1546. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1547. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1548. }
  1549. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1550. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1551. }
  1552. skb->protocol = eth_type_trans(skb, ndev);
  1553. skb->ip_summed = CHECKSUM_NONE;
  1554. /* If rx checksum is on, and there are no
  1555. * csum or frame errors.
  1556. */
  1557. if (qdev->rx_csum &&
  1558. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1559. /* TCP frame. */
  1560. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1561. QPRINTK(qdev, RX_STATUS, DEBUG,
  1562. "TCP checksum done!\n");
  1563. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1564. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1565. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1566. /* Unfragmented ipv4 UDP frame. */
  1567. struct iphdr *iph = (struct iphdr *) skb->data;
  1568. if (!(iph->frag_off &
  1569. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1570. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1571. QPRINTK(qdev, RX_STATUS, DEBUG,
  1572. "TCP checksum done!\n");
  1573. }
  1574. }
  1575. }
  1576. ndev->stats.rx_packets++;
  1577. ndev->stats.rx_bytes += skb->len;
  1578. skb_record_rx_queue(skb, rx_ring->cq_id);
  1579. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1580. if (qdev->vlgrp &&
  1581. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1582. (vlan_id != 0))
  1583. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1584. vlan_id, skb);
  1585. else
  1586. napi_gro_receive(&rx_ring->napi, skb);
  1587. } else {
  1588. if (qdev->vlgrp &&
  1589. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1590. (vlan_id != 0))
  1591. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1592. else
  1593. netif_receive_skb(skb);
  1594. }
  1595. }
  1596. /* Process an outbound completion from an rx ring. */
  1597. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1598. struct ob_mac_iocb_rsp *mac_rsp)
  1599. {
  1600. struct net_device *ndev = qdev->ndev;
  1601. struct tx_ring *tx_ring;
  1602. struct tx_ring_desc *tx_ring_desc;
  1603. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1604. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1605. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1606. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1607. ndev->stats.tx_bytes += (tx_ring_desc->skb)->len;
  1608. ndev->stats.tx_packets++;
  1609. dev_kfree_skb(tx_ring_desc->skb);
  1610. tx_ring_desc->skb = NULL;
  1611. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1612. OB_MAC_IOCB_RSP_S |
  1613. OB_MAC_IOCB_RSP_L |
  1614. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1615. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1616. QPRINTK(qdev, TX_DONE, WARNING,
  1617. "Total descriptor length did not match transfer length.\n");
  1618. }
  1619. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1620. QPRINTK(qdev, TX_DONE, WARNING,
  1621. "Frame too short to be legal, not sent.\n");
  1622. }
  1623. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1624. QPRINTK(qdev, TX_DONE, WARNING,
  1625. "Frame too long, but sent anyway.\n");
  1626. }
  1627. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1628. QPRINTK(qdev, TX_DONE, WARNING,
  1629. "PCI backplane error. Frame not sent.\n");
  1630. }
  1631. }
  1632. atomic_inc(&tx_ring->tx_count);
  1633. }
  1634. /* Fire up a handler to reset the MPI processor. */
  1635. void ql_queue_fw_error(struct ql_adapter *qdev)
  1636. {
  1637. ql_link_off(qdev);
  1638. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1639. }
  1640. void ql_queue_asic_error(struct ql_adapter *qdev)
  1641. {
  1642. ql_link_off(qdev);
  1643. ql_disable_interrupts(qdev);
  1644. /* Clear adapter up bit to signal the recovery
  1645. * process that it shouldn't kill the reset worker
  1646. * thread
  1647. */
  1648. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1649. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1650. }
  1651. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1652. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1653. {
  1654. switch (ib_ae_rsp->event) {
  1655. case MGMT_ERR_EVENT:
  1656. QPRINTK(qdev, RX_ERR, ERR,
  1657. "Management Processor Fatal Error.\n");
  1658. ql_queue_fw_error(qdev);
  1659. return;
  1660. case CAM_LOOKUP_ERR_EVENT:
  1661. QPRINTK(qdev, LINK, ERR,
  1662. "Multiple CAM hits lookup occurred.\n");
  1663. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1664. ql_queue_asic_error(qdev);
  1665. return;
  1666. case SOFT_ECC_ERROR_EVENT:
  1667. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1668. ql_queue_asic_error(qdev);
  1669. break;
  1670. case PCI_ERR_ANON_BUF_RD:
  1671. QPRINTK(qdev, RX_ERR, ERR,
  1672. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1673. ib_ae_rsp->q_id);
  1674. ql_queue_asic_error(qdev);
  1675. break;
  1676. default:
  1677. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1678. ib_ae_rsp->event);
  1679. ql_queue_asic_error(qdev);
  1680. break;
  1681. }
  1682. }
  1683. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1684. {
  1685. struct ql_adapter *qdev = rx_ring->qdev;
  1686. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1687. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1688. int count = 0;
  1689. struct tx_ring *tx_ring;
  1690. /* While there are entries in the completion queue. */
  1691. while (prod != rx_ring->cnsmr_idx) {
  1692. QPRINTK(qdev, RX_STATUS, DEBUG,
  1693. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1694. prod, rx_ring->cnsmr_idx);
  1695. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1696. rmb();
  1697. switch (net_rsp->opcode) {
  1698. case OPCODE_OB_MAC_TSO_IOCB:
  1699. case OPCODE_OB_MAC_IOCB:
  1700. ql_process_mac_tx_intr(qdev, net_rsp);
  1701. break;
  1702. default:
  1703. QPRINTK(qdev, RX_STATUS, DEBUG,
  1704. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1705. net_rsp->opcode);
  1706. }
  1707. count++;
  1708. ql_update_cq(rx_ring);
  1709. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1710. }
  1711. ql_write_cq_idx(rx_ring);
  1712. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1713. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1714. net_rsp != NULL) {
  1715. if (atomic_read(&tx_ring->queue_stopped) &&
  1716. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1717. /*
  1718. * The queue got stopped because the tx_ring was full.
  1719. * Wake it up, because it's now at least 25% empty.
  1720. */
  1721. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1722. }
  1723. return count;
  1724. }
  1725. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1726. {
  1727. struct ql_adapter *qdev = rx_ring->qdev;
  1728. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1729. struct ql_net_rsp_iocb *net_rsp;
  1730. int count = 0;
  1731. /* While there are entries in the completion queue. */
  1732. while (prod != rx_ring->cnsmr_idx) {
  1733. QPRINTK(qdev, RX_STATUS, DEBUG,
  1734. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1735. prod, rx_ring->cnsmr_idx);
  1736. net_rsp = rx_ring->curr_entry;
  1737. rmb();
  1738. switch (net_rsp->opcode) {
  1739. case OPCODE_IB_MAC_IOCB:
  1740. ql_process_mac_rx_intr(qdev, rx_ring,
  1741. (struct ib_mac_iocb_rsp *)
  1742. net_rsp);
  1743. break;
  1744. case OPCODE_IB_AE_IOCB:
  1745. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1746. net_rsp);
  1747. break;
  1748. default:
  1749. {
  1750. QPRINTK(qdev, RX_STATUS, DEBUG,
  1751. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1752. net_rsp->opcode);
  1753. }
  1754. }
  1755. count++;
  1756. ql_update_cq(rx_ring);
  1757. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1758. if (count == budget)
  1759. break;
  1760. }
  1761. ql_update_buffer_queues(qdev, rx_ring);
  1762. ql_write_cq_idx(rx_ring);
  1763. return count;
  1764. }
  1765. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1766. {
  1767. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1768. struct ql_adapter *qdev = rx_ring->qdev;
  1769. struct rx_ring *trx_ring;
  1770. int i, work_done = 0;
  1771. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  1772. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1773. rx_ring->cq_id);
  1774. /* Service the TX rings first. They start
  1775. * right after the RSS rings. */
  1776. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  1777. trx_ring = &qdev->rx_ring[i];
  1778. /* If this TX completion ring belongs to this vector and
  1779. * it's not empty then service it.
  1780. */
  1781. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  1782. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  1783. trx_ring->cnsmr_idx)) {
  1784. QPRINTK(qdev, INTR, DEBUG,
  1785. "%s: Servicing TX completion ring %d.\n",
  1786. __func__, trx_ring->cq_id);
  1787. ql_clean_outbound_rx_ring(trx_ring);
  1788. }
  1789. }
  1790. /*
  1791. * Now service the RSS ring if it's active.
  1792. */
  1793. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1794. rx_ring->cnsmr_idx) {
  1795. QPRINTK(qdev, INTR, DEBUG,
  1796. "%s: Servicing RX completion ring %d.\n",
  1797. __func__, rx_ring->cq_id);
  1798. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1799. }
  1800. if (work_done < budget) {
  1801. napi_complete(napi);
  1802. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1803. }
  1804. return work_done;
  1805. }
  1806. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1807. {
  1808. struct ql_adapter *qdev = netdev_priv(ndev);
  1809. qdev->vlgrp = grp;
  1810. if (grp) {
  1811. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1812. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1813. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1814. } else {
  1815. QPRINTK(qdev, IFUP, DEBUG,
  1816. "Turning off VLAN in NIC_RCV_CFG.\n");
  1817. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1818. }
  1819. }
  1820. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1821. {
  1822. struct ql_adapter *qdev = netdev_priv(ndev);
  1823. u32 enable_bit = MAC_ADDR_E;
  1824. int status;
  1825. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1826. if (status)
  1827. return;
  1828. if (ql_set_mac_addr_reg
  1829. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1830. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1831. }
  1832. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1833. }
  1834. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1835. {
  1836. struct ql_adapter *qdev = netdev_priv(ndev);
  1837. u32 enable_bit = 0;
  1838. int status;
  1839. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1840. if (status)
  1841. return;
  1842. if (ql_set_mac_addr_reg
  1843. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1844. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1845. }
  1846. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1847. }
  1848. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1849. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1850. {
  1851. struct rx_ring *rx_ring = dev_id;
  1852. napi_schedule(&rx_ring->napi);
  1853. return IRQ_HANDLED;
  1854. }
  1855. /* This handles a fatal error, MPI activity, and the default
  1856. * rx_ring in an MSI-X multiple vector environment.
  1857. * In MSI/Legacy environment it also process the rest of
  1858. * the rx_rings.
  1859. */
  1860. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1861. {
  1862. struct rx_ring *rx_ring = dev_id;
  1863. struct ql_adapter *qdev = rx_ring->qdev;
  1864. struct intr_context *intr_context = &qdev->intr_context[0];
  1865. u32 var;
  1866. int work_done = 0;
  1867. spin_lock(&qdev->hw_lock);
  1868. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1869. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1870. spin_unlock(&qdev->hw_lock);
  1871. return IRQ_NONE;
  1872. }
  1873. spin_unlock(&qdev->hw_lock);
  1874. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1875. /*
  1876. * Check for fatal error.
  1877. */
  1878. if (var & STS_FE) {
  1879. ql_queue_asic_error(qdev);
  1880. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1881. var = ql_read32(qdev, ERR_STS);
  1882. QPRINTK(qdev, INTR, ERR,
  1883. "Resetting chip. Error Status Register = 0x%x\n", var);
  1884. return IRQ_HANDLED;
  1885. }
  1886. /*
  1887. * Check MPI processor activity.
  1888. */
  1889. if ((var & STS_PI) &&
  1890. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  1891. /*
  1892. * We've got an async event or mailbox completion.
  1893. * Handle it and clear the source of the interrupt.
  1894. */
  1895. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1896. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1897. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  1898. queue_delayed_work_on(smp_processor_id(),
  1899. qdev->workqueue, &qdev->mpi_work, 0);
  1900. work_done++;
  1901. }
  1902. /*
  1903. * Get the bit-mask that shows the active queues for this
  1904. * pass. Compare it to the queues that this irq services
  1905. * and call napi if there's a match.
  1906. */
  1907. var = ql_read32(qdev, ISR1);
  1908. if (var & intr_context->irq_mask) {
  1909. QPRINTK(qdev, INTR, INFO,
  1910. "Waking handler for rx_ring[0].\n");
  1911. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1912. napi_schedule(&rx_ring->napi);
  1913. work_done++;
  1914. }
  1915. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1916. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1917. }
  1918. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1919. {
  1920. if (skb_is_gso(skb)) {
  1921. int err;
  1922. if (skb_header_cloned(skb)) {
  1923. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1924. if (err)
  1925. return err;
  1926. }
  1927. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1928. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1929. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1930. mac_iocb_ptr->total_hdrs_len =
  1931. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1932. mac_iocb_ptr->net_trans_offset =
  1933. cpu_to_le16(skb_network_offset(skb) |
  1934. skb_transport_offset(skb)
  1935. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1936. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1937. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1938. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1939. struct iphdr *iph = ip_hdr(skb);
  1940. iph->check = 0;
  1941. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1942. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1943. iph->daddr, 0,
  1944. IPPROTO_TCP,
  1945. 0);
  1946. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1947. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1948. tcp_hdr(skb)->check =
  1949. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1950. &ipv6_hdr(skb)->daddr,
  1951. 0, IPPROTO_TCP, 0);
  1952. }
  1953. return 1;
  1954. }
  1955. return 0;
  1956. }
  1957. static void ql_hw_csum_setup(struct sk_buff *skb,
  1958. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1959. {
  1960. int len;
  1961. struct iphdr *iph = ip_hdr(skb);
  1962. __sum16 *check;
  1963. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1964. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1965. mac_iocb_ptr->net_trans_offset =
  1966. cpu_to_le16(skb_network_offset(skb) |
  1967. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1968. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1969. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1970. if (likely(iph->protocol == IPPROTO_TCP)) {
  1971. check = &(tcp_hdr(skb)->check);
  1972. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1973. mac_iocb_ptr->total_hdrs_len =
  1974. cpu_to_le16(skb_transport_offset(skb) +
  1975. (tcp_hdr(skb)->doff << 2));
  1976. } else {
  1977. check = &(udp_hdr(skb)->check);
  1978. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1979. mac_iocb_ptr->total_hdrs_len =
  1980. cpu_to_le16(skb_transport_offset(skb) +
  1981. sizeof(struct udphdr));
  1982. }
  1983. *check = ~csum_tcpudp_magic(iph->saddr,
  1984. iph->daddr, len, iph->protocol, 0);
  1985. }
  1986. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1987. {
  1988. struct tx_ring_desc *tx_ring_desc;
  1989. struct ob_mac_iocb_req *mac_iocb_ptr;
  1990. struct ql_adapter *qdev = netdev_priv(ndev);
  1991. int tso;
  1992. struct tx_ring *tx_ring;
  1993. u32 tx_ring_idx = (u32) skb->queue_mapping;
  1994. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1995. if (skb_padto(skb, ETH_ZLEN))
  1996. return NETDEV_TX_OK;
  1997. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1998. QPRINTK(qdev, TX_QUEUED, INFO,
  1999. "%s: shutting down tx queue %d du to lack of resources.\n",
  2000. __func__, tx_ring_idx);
  2001. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2002. atomic_inc(&tx_ring->queue_stopped);
  2003. return NETDEV_TX_BUSY;
  2004. }
  2005. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2006. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2007. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2008. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2009. mac_iocb_ptr->tid = tx_ring_desc->index;
  2010. /* We use the upper 32-bits to store the tx queue for this IO.
  2011. * When we get the completion we can use it to establish the context.
  2012. */
  2013. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2014. tx_ring_desc->skb = skb;
  2015. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2016. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  2017. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  2018. vlan_tx_tag_get(skb));
  2019. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2020. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2021. }
  2022. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2023. if (tso < 0) {
  2024. dev_kfree_skb_any(skb);
  2025. return NETDEV_TX_OK;
  2026. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2027. ql_hw_csum_setup(skb,
  2028. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2029. }
  2030. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2031. NETDEV_TX_OK) {
  2032. QPRINTK(qdev, TX_QUEUED, ERR,
  2033. "Could not map the segments.\n");
  2034. return NETDEV_TX_BUSY;
  2035. }
  2036. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2037. tx_ring->prod_idx++;
  2038. if (tx_ring->prod_idx == tx_ring->wq_len)
  2039. tx_ring->prod_idx = 0;
  2040. wmb();
  2041. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2042. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  2043. tx_ring->prod_idx, skb->len);
  2044. atomic_dec(&tx_ring->tx_count);
  2045. return NETDEV_TX_OK;
  2046. }
  2047. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2048. {
  2049. if (qdev->rx_ring_shadow_reg_area) {
  2050. pci_free_consistent(qdev->pdev,
  2051. PAGE_SIZE,
  2052. qdev->rx_ring_shadow_reg_area,
  2053. qdev->rx_ring_shadow_reg_dma);
  2054. qdev->rx_ring_shadow_reg_area = NULL;
  2055. }
  2056. if (qdev->tx_ring_shadow_reg_area) {
  2057. pci_free_consistent(qdev->pdev,
  2058. PAGE_SIZE,
  2059. qdev->tx_ring_shadow_reg_area,
  2060. qdev->tx_ring_shadow_reg_dma);
  2061. qdev->tx_ring_shadow_reg_area = NULL;
  2062. }
  2063. }
  2064. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2065. {
  2066. qdev->rx_ring_shadow_reg_area =
  2067. pci_alloc_consistent(qdev->pdev,
  2068. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2069. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2070. QPRINTK(qdev, IFUP, ERR,
  2071. "Allocation of RX shadow space failed.\n");
  2072. return -ENOMEM;
  2073. }
  2074. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2075. qdev->tx_ring_shadow_reg_area =
  2076. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2077. &qdev->tx_ring_shadow_reg_dma);
  2078. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2079. QPRINTK(qdev, IFUP, ERR,
  2080. "Allocation of TX shadow space failed.\n");
  2081. goto err_wqp_sh_area;
  2082. }
  2083. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2084. return 0;
  2085. err_wqp_sh_area:
  2086. pci_free_consistent(qdev->pdev,
  2087. PAGE_SIZE,
  2088. qdev->rx_ring_shadow_reg_area,
  2089. qdev->rx_ring_shadow_reg_dma);
  2090. return -ENOMEM;
  2091. }
  2092. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2093. {
  2094. struct tx_ring_desc *tx_ring_desc;
  2095. int i;
  2096. struct ob_mac_iocb_req *mac_iocb_ptr;
  2097. mac_iocb_ptr = tx_ring->wq_base;
  2098. tx_ring_desc = tx_ring->q;
  2099. for (i = 0; i < tx_ring->wq_len; i++) {
  2100. tx_ring_desc->index = i;
  2101. tx_ring_desc->skb = NULL;
  2102. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2103. mac_iocb_ptr++;
  2104. tx_ring_desc++;
  2105. }
  2106. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2107. atomic_set(&tx_ring->queue_stopped, 0);
  2108. }
  2109. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2110. struct tx_ring *tx_ring)
  2111. {
  2112. if (tx_ring->wq_base) {
  2113. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2114. tx_ring->wq_base, tx_ring->wq_base_dma);
  2115. tx_ring->wq_base = NULL;
  2116. }
  2117. kfree(tx_ring->q);
  2118. tx_ring->q = NULL;
  2119. }
  2120. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2121. struct tx_ring *tx_ring)
  2122. {
  2123. tx_ring->wq_base =
  2124. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2125. &tx_ring->wq_base_dma);
  2126. if ((tx_ring->wq_base == NULL)
  2127. || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2128. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2129. return -ENOMEM;
  2130. }
  2131. tx_ring->q =
  2132. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2133. if (tx_ring->q == NULL)
  2134. goto err;
  2135. return 0;
  2136. err:
  2137. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2138. tx_ring->wq_base, tx_ring->wq_base_dma);
  2139. return -ENOMEM;
  2140. }
  2141. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2142. {
  2143. struct bq_desc *lbq_desc;
  2144. uint32_t curr_idx, clean_idx;
  2145. curr_idx = rx_ring->lbq_curr_idx;
  2146. clean_idx = rx_ring->lbq_clean_idx;
  2147. while (curr_idx != clean_idx) {
  2148. lbq_desc = &rx_ring->lbq[curr_idx];
  2149. if (lbq_desc->p.pg_chunk.last_flag) {
  2150. pci_unmap_page(qdev->pdev,
  2151. lbq_desc->p.pg_chunk.map,
  2152. ql_lbq_block_size(qdev),
  2153. PCI_DMA_FROMDEVICE);
  2154. lbq_desc->p.pg_chunk.last_flag = 0;
  2155. }
  2156. put_page(lbq_desc->p.pg_chunk.page);
  2157. lbq_desc->p.pg_chunk.page = NULL;
  2158. if (++curr_idx == rx_ring->lbq_len)
  2159. curr_idx = 0;
  2160. }
  2161. }
  2162. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2163. {
  2164. int i;
  2165. struct bq_desc *sbq_desc;
  2166. for (i = 0; i < rx_ring->sbq_len; i++) {
  2167. sbq_desc = &rx_ring->sbq[i];
  2168. if (sbq_desc == NULL) {
  2169. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2170. return;
  2171. }
  2172. if (sbq_desc->p.skb) {
  2173. pci_unmap_single(qdev->pdev,
  2174. pci_unmap_addr(sbq_desc, mapaddr),
  2175. pci_unmap_len(sbq_desc, maplen),
  2176. PCI_DMA_FROMDEVICE);
  2177. dev_kfree_skb(sbq_desc->p.skb);
  2178. sbq_desc->p.skb = NULL;
  2179. }
  2180. }
  2181. }
  2182. /* Free all large and small rx buffers associated
  2183. * with the completion queues for this device.
  2184. */
  2185. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2186. {
  2187. int i;
  2188. struct rx_ring *rx_ring;
  2189. for (i = 0; i < qdev->rx_ring_count; i++) {
  2190. rx_ring = &qdev->rx_ring[i];
  2191. if (rx_ring->lbq)
  2192. ql_free_lbq_buffers(qdev, rx_ring);
  2193. if (rx_ring->sbq)
  2194. ql_free_sbq_buffers(qdev, rx_ring);
  2195. }
  2196. }
  2197. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2198. {
  2199. struct rx_ring *rx_ring;
  2200. int i;
  2201. for (i = 0; i < qdev->rx_ring_count; i++) {
  2202. rx_ring = &qdev->rx_ring[i];
  2203. if (rx_ring->type != TX_Q)
  2204. ql_update_buffer_queues(qdev, rx_ring);
  2205. }
  2206. }
  2207. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2208. struct rx_ring *rx_ring)
  2209. {
  2210. int i;
  2211. struct bq_desc *lbq_desc;
  2212. __le64 *bq = rx_ring->lbq_base;
  2213. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2214. for (i = 0; i < rx_ring->lbq_len; i++) {
  2215. lbq_desc = &rx_ring->lbq[i];
  2216. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2217. lbq_desc->index = i;
  2218. lbq_desc->addr = bq;
  2219. bq++;
  2220. }
  2221. }
  2222. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2223. struct rx_ring *rx_ring)
  2224. {
  2225. int i;
  2226. struct bq_desc *sbq_desc;
  2227. __le64 *bq = rx_ring->sbq_base;
  2228. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2229. for (i = 0; i < rx_ring->sbq_len; i++) {
  2230. sbq_desc = &rx_ring->sbq[i];
  2231. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2232. sbq_desc->index = i;
  2233. sbq_desc->addr = bq;
  2234. bq++;
  2235. }
  2236. }
  2237. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2238. struct rx_ring *rx_ring)
  2239. {
  2240. /* Free the small buffer queue. */
  2241. if (rx_ring->sbq_base) {
  2242. pci_free_consistent(qdev->pdev,
  2243. rx_ring->sbq_size,
  2244. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2245. rx_ring->sbq_base = NULL;
  2246. }
  2247. /* Free the small buffer queue control blocks. */
  2248. kfree(rx_ring->sbq);
  2249. rx_ring->sbq = NULL;
  2250. /* Free the large buffer queue. */
  2251. if (rx_ring->lbq_base) {
  2252. pci_free_consistent(qdev->pdev,
  2253. rx_ring->lbq_size,
  2254. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2255. rx_ring->lbq_base = NULL;
  2256. }
  2257. /* Free the large buffer queue control blocks. */
  2258. kfree(rx_ring->lbq);
  2259. rx_ring->lbq = NULL;
  2260. /* Free the rx queue. */
  2261. if (rx_ring->cq_base) {
  2262. pci_free_consistent(qdev->pdev,
  2263. rx_ring->cq_size,
  2264. rx_ring->cq_base, rx_ring->cq_base_dma);
  2265. rx_ring->cq_base = NULL;
  2266. }
  2267. }
  2268. /* Allocate queues and buffers for this completions queue based
  2269. * on the values in the parameter structure. */
  2270. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2271. struct rx_ring *rx_ring)
  2272. {
  2273. /*
  2274. * Allocate the completion queue for this rx_ring.
  2275. */
  2276. rx_ring->cq_base =
  2277. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2278. &rx_ring->cq_base_dma);
  2279. if (rx_ring->cq_base == NULL) {
  2280. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2281. return -ENOMEM;
  2282. }
  2283. if (rx_ring->sbq_len) {
  2284. /*
  2285. * Allocate small buffer queue.
  2286. */
  2287. rx_ring->sbq_base =
  2288. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2289. &rx_ring->sbq_base_dma);
  2290. if (rx_ring->sbq_base == NULL) {
  2291. QPRINTK(qdev, IFUP, ERR,
  2292. "Small buffer queue allocation failed.\n");
  2293. goto err_mem;
  2294. }
  2295. /*
  2296. * Allocate small buffer queue control blocks.
  2297. */
  2298. rx_ring->sbq =
  2299. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2300. GFP_KERNEL);
  2301. if (rx_ring->sbq == NULL) {
  2302. QPRINTK(qdev, IFUP, ERR,
  2303. "Small buffer queue control block allocation failed.\n");
  2304. goto err_mem;
  2305. }
  2306. ql_init_sbq_ring(qdev, rx_ring);
  2307. }
  2308. if (rx_ring->lbq_len) {
  2309. /*
  2310. * Allocate large buffer queue.
  2311. */
  2312. rx_ring->lbq_base =
  2313. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2314. &rx_ring->lbq_base_dma);
  2315. if (rx_ring->lbq_base == NULL) {
  2316. QPRINTK(qdev, IFUP, ERR,
  2317. "Large buffer queue allocation failed.\n");
  2318. goto err_mem;
  2319. }
  2320. /*
  2321. * Allocate large buffer queue control blocks.
  2322. */
  2323. rx_ring->lbq =
  2324. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2325. GFP_KERNEL);
  2326. if (rx_ring->lbq == NULL) {
  2327. QPRINTK(qdev, IFUP, ERR,
  2328. "Large buffer queue control block allocation failed.\n");
  2329. goto err_mem;
  2330. }
  2331. ql_init_lbq_ring(qdev, rx_ring);
  2332. }
  2333. return 0;
  2334. err_mem:
  2335. ql_free_rx_resources(qdev, rx_ring);
  2336. return -ENOMEM;
  2337. }
  2338. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2339. {
  2340. struct tx_ring *tx_ring;
  2341. struct tx_ring_desc *tx_ring_desc;
  2342. int i, j;
  2343. /*
  2344. * Loop through all queues and free
  2345. * any resources.
  2346. */
  2347. for (j = 0; j < qdev->tx_ring_count; j++) {
  2348. tx_ring = &qdev->tx_ring[j];
  2349. for (i = 0; i < tx_ring->wq_len; i++) {
  2350. tx_ring_desc = &tx_ring->q[i];
  2351. if (tx_ring_desc && tx_ring_desc->skb) {
  2352. QPRINTK(qdev, IFDOWN, ERR,
  2353. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2354. tx_ring_desc->skb, j,
  2355. tx_ring_desc->index);
  2356. ql_unmap_send(qdev, tx_ring_desc,
  2357. tx_ring_desc->map_cnt);
  2358. dev_kfree_skb(tx_ring_desc->skb);
  2359. tx_ring_desc->skb = NULL;
  2360. }
  2361. }
  2362. }
  2363. }
  2364. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2365. {
  2366. int i;
  2367. for (i = 0; i < qdev->tx_ring_count; i++)
  2368. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2369. for (i = 0; i < qdev->rx_ring_count; i++)
  2370. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2371. ql_free_shadow_space(qdev);
  2372. }
  2373. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2374. {
  2375. int i;
  2376. /* Allocate space for our shadow registers and such. */
  2377. if (ql_alloc_shadow_space(qdev))
  2378. return -ENOMEM;
  2379. for (i = 0; i < qdev->rx_ring_count; i++) {
  2380. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2381. QPRINTK(qdev, IFUP, ERR,
  2382. "RX resource allocation failed.\n");
  2383. goto err_mem;
  2384. }
  2385. }
  2386. /* Allocate tx queue resources */
  2387. for (i = 0; i < qdev->tx_ring_count; i++) {
  2388. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2389. QPRINTK(qdev, IFUP, ERR,
  2390. "TX resource allocation failed.\n");
  2391. goto err_mem;
  2392. }
  2393. }
  2394. return 0;
  2395. err_mem:
  2396. ql_free_mem_resources(qdev);
  2397. return -ENOMEM;
  2398. }
  2399. /* Set up the rx ring control block and pass it to the chip.
  2400. * The control block is defined as
  2401. * "Completion Queue Initialization Control Block", or cqicb.
  2402. */
  2403. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2404. {
  2405. struct cqicb *cqicb = &rx_ring->cqicb;
  2406. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2407. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2408. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2409. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2410. void __iomem *doorbell_area =
  2411. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2412. int err = 0;
  2413. u16 bq_len;
  2414. u64 tmp;
  2415. __le64 *base_indirect_ptr;
  2416. int page_entries;
  2417. /* Set up the shadow registers for this ring. */
  2418. rx_ring->prod_idx_sh_reg = shadow_reg;
  2419. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2420. *rx_ring->prod_idx_sh_reg = 0;
  2421. shadow_reg += sizeof(u64);
  2422. shadow_reg_dma += sizeof(u64);
  2423. rx_ring->lbq_base_indirect = shadow_reg;
  2424. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2425. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2426. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2427. rx_ring->sbq_base_indirect = shadow_reg;
  2428. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2429. /* PCI doorbell mem area + 0x00 for consumer index register */
  2430. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2431. rx_ring->cnsmr_idx = 0;
  2432. rx_ring->curr_entry = rx_ring->cq_base;
  2433. /* PCI doorbell mem area + 0x04 for valid register */
  2434. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2435. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2436. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2437. /* PCI doorbell mem area + 0x1c */
  2438. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2439. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2440. cqicb->msix_vect = rx_ring->irq;
  2441. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2442. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2443. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2444. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2445. /*
  2446. * Set up the control block load flags.
  2447. */
  2448. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2449. FLAGS_LV | /* Load MSI-X vector */
  2450. FLAGS_LI; /* Load irq delay values */
  2451. if (rx_ring->lbq_len) {
  2452. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2453. tmp = (u64)rx_ring->lbq_base_dma;
  2454. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2455. page_entries = 0;
  2456. do {
  2457. *base_indirect_ptr = cpu_to_le64(tmp);
  2458. tmp += DB_PAGE_SIZE;
  2459. base_indirect_ptr++;
  2460. page_entries++;
  2461. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2462. cqicb->lbq_addr =
  2463. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2464. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2465. (u16) rx_ring->lbq_buf_size;
  2466. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2467. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2468. (u16) rx_ring->lbq_len;
  2469. cqicb->lbq_len = cpu_to_le16(bq_len);
  2470. rx_ring->lbq_prod_idx = 0;
  2471. rx_ring->lbq_curr_idx = 0;
  2472. rx_ring->lbq_clean_idx = 0;
  2473. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2474. }
  2475. if (rx_ring->sbq_len) {
  2476. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2477. tmp = (u64)rx_ring->sbq_base_dma;
  2478. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2479. page_entries = 0;
  2480. do {
  2481. *base_indirect_ptr = cpu_to_le64(tmp);
  2482. tmp += DB_PAGE_SIZE;
  2483. base_indirect_ptr++;
  2484. page_entries++;
  2485. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2486. cqicb->sbq_addr =
  2487. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2488. cqicb->sbq_buf_size =
  2489. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2490. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2491. (u16) rx_ring->sbq_len;
  2492. cqicb->sbq_len = cpu_to_le16(bq_len);
  2493. rx_ring->sbq_prod_idx = 0;
  2494. rx_ring->sbq_curr_idx = 0;
  2495. rx_ring->sbq_clean_idx = 0;
  2496. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2497. }
  2498. switch (rx_ring->type) {
  2499. case TX_Q:
  2500. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2501. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2502. break;
  2503. case RX_Q:
  2504. /* Inbound completion handling rx_rings run in
  2505. * separate NAPI contexts.
  2506. */
  2507. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2508. 64);
  2509. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2510. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2511. break;
  2512. default:
  2513. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2514. rx_ring->type);
  2515. }
  2516. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2517. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2518. CFG_LCQ, rx_ring->cq_id);
  2519. if (err) {
  2520. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2521. return err;
  2522. }
  2523. return err;
  2524. }
  2525. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2526. {
  2527. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2528. void __iomem *doorbell_area =
  2529. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2530. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2531. (tx_ring->wq_id * sizeof(u64));
  2532. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2533. (tx_ring->wq_id * sizeof(u64));
  2534. int err = 0;
  2535. /*
  2536. * Assign doorbell registers for this tx_ring.
  2537. */
  2538. /* TX PCI doorbell mem area for tx producer index */
  2539. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2540. tx_ring->prod_idx = 0;
  2541. /* TX PCI doorbell mem area + 0x04 */
  2542. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2543. /*
  2544. * Assign shadow registers for this tx_ring.
  2545. */
  2546. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2547. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2548. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2549. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2550. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2551. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2552. wqicb->rid = 0;
  2553. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2554. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2555. ql_init_tx_ring(qdev, tx_ring);
  2556. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2557. (u16) tx_ring->wq_id);
  2558. if (err) {
  2559. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2560. return err;
  2561. }
  2562. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2563. return err;
  2564. }
  2565. static void ql_disable_msix(struct ql_adapter *qdev)
  2566. {
  2567. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2568. pci_disable_msix(qdev->pdev);
  2569. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2570. kfree(qdev->msi_x_entry);
  2571. qdev->msi_x_entry = NULL;
  2572. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2573. pci_disable_msi(qdev->pdev);
  2574. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2575. }
  2576. }
  2577. /* We start by trying to get the number of vectors
  2578. * stored in qdev->intr_count. If we don't get that
  2579. * many then we reduce the count and try again.
  2580. */
  2581. static void ql_enable_msix(struct ql_adapter *qdev)
  2582. {
  2583. int i, err;
  2584. /* Get the MSIX vectors. */
  2585. if (irq_type == MSIX_IRQ) {
  2586. /* Try to alloc space for the msix struct,
  2587. * if it fails then go to MSI/legacy.
  2588. */
  2589. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2590. sizeof(struct msix_entry),
  2591. GFP_KERNEL);
  2592. if (!qdev->msi_x_entry) {
  2593. irq_type = MSI_IRQ;
  2594. goto msi;
  2595. }
  2596. for (i = 0; i < qdev->intr_count; i++)
  2597. qdev->msi_x_entry[i].entry = i;
  2598. /* Loop to get our vectors. We start with
  2599. * what we want and settle for what we get.
  2600. */
  2601. do {
  2602. err = pci_enable_msix(qdev->pdev,
  2603. qdev->msi_x_entry, qdev->intr_count);
  2604. if (err > 0)
  2605. qdev->intr_count = err;
  2606. } while (err > 0);
  2607. if (err < 0) {
  2608. kfree(qdev->msi_x_entry);
  2609. qdev->msi_x_entry = NULL;
  2610. QPRINTK(qdev, IFUP, WARNING,
  2611. "MSI-X Enable failed, trying MSI.\n");
  2612. qdev->intr_count = 1;
  2613. irq_type = MSI_IRQ;
  2614. } else if (err == 0) {
  2615. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2616. QPRINTK(qdev, IFUP, INFO,
  2617. "MSI-X Enabled, got %d vectors.\n",
  2618. qdev->intr_count);
  2619. return;
  2620. }
  2621. }
  2622. msi:
  2623. qdev->intr_count = 1;
  2624. if (irq_type == MSI_IRQ) {
  2625. if (!pci_enable_msi(qdev->pdev)) {
  2626. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2627. QPRINTK(qdev, IFUP, INFO,
  2628. "Running with MSI interrupts.\n");
  2629. return;
  2630. }
  2631. }
  2632. irq_type = LEG_IRQ;
  2633. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2634. }
  2635. /* Each vector services 1 RSS ring and and 1 or more
  2636. * TX completion rings. This function loops through
  2637. * the TX completion rings and assigns the vector that
  2638. * will service it. An example would be if there are
  2639. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2640. * This would mean that vector 0 would service RSS ring 0
  2641. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2642. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2643. */
  2644. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2645. {
  2646. int i, j, vect;
  2647. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2648. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2649. /* Assign irq vectors to TX rx_rings.*/
  2650. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2651. i < qdev->rx_ring_count; i++) {
  2652. if (j == tx_rings_per_vector) {
  2653. vect++;
  2654. j = 0;
  2655. }
  2656. qdev->rx_ring[i].irq = vect;
  2657. j++;
  2658. }
  2659. } else {
  2660. /* For single vector all rings have an irq
  2661. * of zero.
  2662. */
  2663. for (i = 0; i < qdev->rx_ring_count; i++)
  2664. qdev->rx_ring[i].irq = 0;
  2665. }
  2666. }
  2667. /* Set the interrupt mask for this vector. Each vector
  2668. * will service 1 RSS ring and 1 or more TX completion
  2669. * rings. This function sets up a bit mask per vector
  2670. * that indicates which rings it services.
  2671. */
  2672. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2673. {
  2674. int j, vect = ctx->intr;
  2675. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2676. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2677. /* Add the RSS ring serviced by this vector
  2678. * to the mask.
  2679. */
  2680. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  2681. /* Add the TX ring(s) serviced by this vector
  2682. * to the mask. */
  2683. for (j = 0; j < tx_rings_per_vector; j++) {
  2684. ctx->irq_mask |=
  2685. (1 << qdev->rx_ring[qdev->rss_ring_count +
  2686. (vect * tx_rings_per_vector) + j].cq_id);
  2687. }
  2688. } else {
  2689. /* For single vector we just shift each queue's
  2690. * ID into the mask.
  2691. */
  2692. for (j = 0; j < qdev->rx_ring_count; j++)
  2693. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  2694. }
  2695. }
  2696. /*
  2697. * Here we build the intr_context structures based on
  2698. * our rx_ring count and intr vector count.
  2699. * The intr_context structure is used to hook each vector
  2700. * to possibly different handlers.
  2701. */
  2702. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2703. {
  2704. int i = 0;
  2705. struct intr_context *intr_context = &qdev->intr_context[0];
  2706. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2707. /* Each rx_ring has it's
  2708. * own intr_context since we have separate
  2709. * vectors for each queue.
  2710. */
  2711. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2712. qdev->rx_ring[i].irq = i;
  2713. intr_context->intr = i;
  2714. intr_context->qdev = qdev;
  2715. /* Set up this vector's bit-mask that indicates
  2716. * which queues it services.
  2717. */
  2718. ql_set_irq_mask(qdev, intr_context);
  2719. /*
  2720. * We set up each vectors enable/disable/read bits so
  2721. * there's no bit/mask calculations in the critical path.
  2722. */
  2723. intr_context->intr_en_mask =
  2724. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2725. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2726. | i;
  2727. intr_context->intr_dis_mask =
  2728. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2729. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2730. INTR_EN_IHD | i;
  2731. intr_context->intr_read_mask =
  2732. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2733. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2734. i;
  2735. if (i == 0) {
  2736. /* The first vector/queue handles
  2737. * broadcast/multicast, fatal errors,
  2738. * and firmware events. This in addition
  2739. * to normal inbound NAPI processing.
  2740. */
  2741. intr_context->handler = qlge_isr;
  2742. sprintf(intr_context->name, "%s-rx-%d",
  2743. qdev->ndev->name, i);
  2744. } else {
  2745. /*
  2746. * Inbound queues handle unicast frames only.
  2747. */
  2748. intr_context->handler = qlge_msix_rx_isr;
  2749. sprintf(intr_context->name, "%s-rx-%d",
  2750. qdev->ndev->name, i);
  2751. }
  2752. }
  2753. } else {
  2754. /*
  2755. * All rx_rings use the same intr_context since
  2756. * there is only one vector.
  2757. */
  2758. intr_context->intr = 0;
  2759. intr_context->qdev = qdev;
  2760. /*
  2761. * We set up each vectors enable/disable/read bits so
  2762. * there's no bit/mask calculations in the critical path.
  2763. */
  2764. intr_context->intr_en_mask =
  2765. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2766. intr_context->intr_dis_mask =
  2767. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2768. INTR_EN_TYPE_DISABLE;
  2769. intr_context->intr_read_mask =
  2770. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2771. /*
  2772. * Single interrupt means one handler for all rings.
  2773. */
  2774. intr_context->handler = qlge_isr;
  2775. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2776. /* Set up this vector's bit-mask that indicates
  2777. * which queues it services. In this case there is
  2778. * a single vector so it will service all RSS and
  2779. * TX completion rings.
  2780. */
  2781. ql_set_irq_mask(qdev, intr_context);
  2782. }
  2783. /* Tell the TX completion rings which MSIx vector
  2784. * they will be using.
  2785. */
  2786. ql_set_tx_vect(qdev);
  2787. }
  2788. static void ql_free_irq(struct ql_adapter *qdev)
  2789. {
  2790. int i;
  2791. struct intr_context *intr_context = &qdev->intr_context[0];
  2792. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2793. if (intr_context->hooked) {
  2794. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2795. free_irq(qdev->msi_x_entry[i].vector,
  2796. &qdev->rx_ring[i]);
  2797. QPRINTK(qdev, IFDOWN, DEBUG,
  2798. "freeing msix interrupt %d.\n", i);
  2799. } else {
  2800. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2801. QPRINTK(qdev, IFDOWN, DEBUG,
  2802. "freeing msi interrupt %d.\n", i);
  2803. }
  2804. }
  2805. }
  2806. ql_disable_msix(qdev);
  2807. }
  2808. static int ql_request_irq(struct ql_adapter *qdev)
  2809. {
  2810. int i;
  2811. int status = 0;
  2812. struct pci_dev *pdev = qdev->pdev;
  2813. struct intr_context *intr_context = &qdev->intr_context[0];
  2814. ql_resolve_queues_to_irqs(qdev);
  2815. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2816. atomic_set(&intr_context->irq_cnt, 0);
  2817. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2818. status = request_irq(qdev->msi_x_entry[i].vector,
  2819. intr_context->handler,
  2820. 0,
  2821. intr_context->name,
  2822. &qdev->rx_ring[i]);
  2823. if (status) {
  2824. QPRINTK(qdev, IFUP, ERR,
  2825. "Failed request for MSIX interrupt %d.\n",
  2826. i);
  2827. goto err_irq;
  2828. } else {
  2829. QPRINTK(qdev, IFUP, DEBUG,
  2830. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2831. i,
  2832. qdev->rx_ring[i].type ==
  2833. DEFAULT_Q ? "DEFAULT_Q" : "",
  2834. qdev->rx_ring[i].type ==
  2835. TX_Q ? "TX_Q" : "",
  2836. qdev->rx_ring[i].type ==
  2837. RX_Q ? "RX_Q" : "", intr_context->name);
  2838. }
  2839. } else {
  2840. QPRINTK(qdev, IFUP, DEBUG,
  2841. "trying msi or legacy interrupts.\n");
  2842. QPRINTK(qdev, IFUP, DEBUG,
  2843. "%s: irq = %d.\n", __func__, pdev->irq);
  2844. QPRINTK(qdev, IFUP, DEBUG,
  2845. "%s: context->name = %s.\n", __func__,
  2846. intr_context->name);
  2847. QPRINTK(qdev, IFUP, DEBUG,
  2848. "%s: dev_id = 0x%p.\n", __func__,
  2849. &qdev->rx_ring[0]);
  2850. status =
  2851. request_irq(pdev->irq, qlge_isr,
  2852. test_bit(QL_MSI_ENABLED,
  2853. &qdev->
  2854. flags) ? 0 : IRQF_SHARED,
  2855. intr_context->name, &qdev->rx_ring[0]);
  2856. if (status)
  2857. goto err_irq;
  2858. QPRINTK(qdev, IFUP, ERR,
  2859. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2860. i,
  2861. qdev->rx_ring[0].type ==
  2862. DEFAULT_Q ? "DEFAULT_Q" : "",
  2863. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2864. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2865. intr_context->name);
  2866. }
  2867. intr_context->hooked = 1;
  2868. }
  2869. return status;
  2870. err_irq:
  2871. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2872. ql_free_irq(qdev);
  2873. return status;
  2874. }
  2875. static int ql_start_rss(struct ql_adapter *qdev)
  2876. {
  2877. u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  2878. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
  2879. 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
  2880. 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
  2881. 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
  2882. 0xbe, 0xac, 0x01, 0xfa};
  2883. struct ricb *ricb = &qdev->ricb;
  2884. int status = 0;
  2885. int i;
  2886. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2887. memset((void *)ricb, 0, sizeof(*ricb));
  2888. ricb->base_cq = RSS_L4K;
  2889. ricb->flags =
  2890. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  2891. ricb->mask = cpu_to_le16((u16)(0x3ff));
  2892. /*
  2893. * Fill out the Indirection Table.
  2894. */
  2895. for (i = 0; i < 1024; i++)
  2896. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  2897. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  2898. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  2899. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2900. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  2901. if (status) {
  2902. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2903. return status;
  2904. }
  2905. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2906. return status;
  2907. }
  2908. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  2909. {
  2910. int i, status = 0;
  2911. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2912. if (status)
  2913. return status;
  2914. /* Clear all the entries in the routing table. */
  2915. for (i = 0; i < 16; i++) {
  2916. status = ql_set_routing_reg(qdev, i, 0, 0);
  2917. if (status) {
  2918. QPRINTK(qdev, IFUP, ERR,
  2919. "Failed to init routing register for CAM "
  2920. "packets.\n");
  2921. break;
  2922. }
  2923. }
  2924. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2925. return status;
  2926. }
  2927. /* Initialize the frame-to-queue routing. */
  2928. static int ql_route_initialize(struct ql_adapter *qdev)
  2929. {
  2930. int status = 0;
  2931. /* Clear all the entries in the routing table. */
  2932. status = ql_clear_routing_entries(qdev);
  2933. if (status)
  2934. return status;
  2935. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2936. if (status)
  2937. return status;
  2938. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2939. if (status) {
  2940. QPRINTK(qdev, IFUP, ERR,
  2941. "Failed to init routing register for error packets.\n");
  2942. goto exit;
  2943. }
  2944. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2945. if (status) {
  2946. QPRINTK(qdev, IFUP, ERR,
  2947. "Failed to init routing register for broadcast packets.\n");
  2948. goto exit;
  2949. }
  2950. /* If we have more than one inbound queue, then turn on RSS in the
  2951. * routing block.
  2952. */
  2953. if (qdev->rss_ring_count > 1) {
  2954. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2955. RT_IDX_RSS_MATCH, 1);
  2956. if (status) {
  2957. QPRINTK(qdev, IFUP, ERR,
  2958. "Failed to init routing register for MATCH RSS packets.\n");
  2959. goto exit;
  2960. }
  2961. }
  2962. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2963. RT_IDX_CAM_HIT, 1);
  2964. if (status)
  2965. QPRINTK(qdev, IFUP, ERR,
  2966. "Failed to init routing register for CAM packets.\n");
  2967. exit:
  2968. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2969. return status;
  2970. }
  2971. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2972. {
  2973. int status, set;
  2974. /* If check if the link is up and use to
  2975. * determine if we are setting or clearing
  2976. * the MAC address in the CAM.
  2977. */
  2978. set = ql_read32(qdev, STS);
  2979. set &= qdev->port_link_up;
  2980. status = ql_set_mac_addr(qdev, set);
  2981. if (status) {
  2982. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2983. return status;
  2984. }
  2985. status = ql_route_initialize(qdev);
  2986. if (status)
  2987. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2988. return status;
  2989. }
  2990. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2991. {
  2992. u32 value, mask;
  2993. int i;
  2994. int status = 0;
  2995. /*
  2996. * Set up the System register to halt on errors.
  2997. */
  2998. value = SYS_EFE | SYS_FAE;
  2999. mask = value << 16;
  3000. ql_write32(qdev, SYS, mask | value);
  3001. /* Set the default queue, and VLAN behavior. */
  3002. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3003. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3004. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3005. /* Set the MPI interrupt to enabled. */
  3006. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3007. /* Enable the function, set pagesize, enable error checking. */
  3008. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3009. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  3010. /* Set/clear header splitting. */
  3011. mask = FSC_VM_PAGESIZE_MASK |
  3012. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3013. ql_write32(qdev, FSC, mask | value);
  3014. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  3015. min(SMALL_BUF_MAP_SIZE, MAX_SPLIT_SIZE));
  3016. /* Set RX packet routing to use port/pci function on which the
  3017. * packet arrived on in addition to usual frame routing.
  3018. * This is helpful on bonding where both interfaces can have
  3019. * the same MAC address.
  3020. */
  3021. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3022. /* Reroute all packets to our Interface.
  3023. * They may have been routed to MPI firmware
  3024. * due to WOL.
  3025. */
  3026. value = ql_read32(qdev, MGMT_RCV_CFG);
  3027. value &= ~MGMT_RCV_CFG_RM;
  3028. mask = 0xffff0000;
  3029. /* Sticky reg needs clearing due to WOL. */
  3030. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3031. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3032. /* Default WOL is enable on Mezz cards */
  3033. if (qdev->pdev->subsystem_device == 0x0068 ||
  3034. qdev->pdev->subsystem_device == 0x0180)
  3035. qdev->wol = WAKE_MAGIC;
  3036. /* Start up the rx queues. */
  3037. for (i = 0; i < qdev->rx_ring_count; i++) {
  3038. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3039. if (status) {
  3040. QPRINTK(qdev, IFUP, ERR,
  3041. "Failed to start rx ring[%d].\n", i);
  3042. return status;
  3043. }
  3044. }
  3045. /* If there is more than one inbound completion queue
  3046. * then download a RICB to configure RSS.
  3047. */
  3048. if (qdev->rss_ring_count > 1) {
  3049. status = ql_start_rss(qdev);
  3050. if (status) {
  3051. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  3052. return status;
  3053. }
  3054. }
  3055. /* Start up the tx queues. */
  3056. for (i = 0; i < qdev->tx_ring_count; i++) {
  3057. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3058. if (status) {
  3059. QPRINTK(qdev, IFUP, ERR,
  3060. "Failed to start tx ring[%d].\n", i);
  3061. return status;
  3062. }
  3063. }
  3064. /* Initialize the port and set the max framesize. */
  3065. status = qdev->nic_ops->port_initialize(qdev);
  3066. if (status)
  3067. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  3068. /* Set up the MAC address and frame routing filter. */
  3069. status = ql_cam_route_initialize(qdev);
  3070. if (status) {
  3071. QPRINTK(qdev, IFUP, ERR,
  3072. "Failed to init CAM/Routing tables.\n");
  3073. return status;
  3074. }
  3075. /* Start NAPI for the RSS queues. */
  3076. for (i = 0; i < qdev->rss_ring_count; i++) {
  3077. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  3078. i);
  3079. napi_enable(&qdev->rx_ring[i].napi);
  3080. }
  3081. return status;
  3082. }
  3083. /* Issue soft reset to chip. */
  3084. static int ql_adapter_reset(struct ql_adapter *qdev)
  3085. {
  3086. u32 value;
  3087. int status = 0;
  3088. unsigned long end_jiffies;
  3089. /* Clear all the entries in the routing table. */
  3090. status = ql_clear_routing_entries(qdev);
  3091. if (status) {
  3092. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  3093. return status;
  3094. }
  3095. end_jiffies = jiffies +
  3096. max((unsigned long)1, usecs_to_jiffies(30));
  3097. /* Stop management traffic. */
  3098. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3099. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3100. ql_wait_fifo_empty(qdev);
  3101. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3102. do {
  3103. value = ql_read32(qdev, RST_FO);
  3104. if ((value & RST_FO_FR) == 0)
  3105. break;
  3106. cpu_relax();
  3107. } while (time_before(jiffies, end_jiffies));
  3108. if (value & RST_FO_FR) {
  3109. QPRINTK(qdev, IFDOWN, ERR,
  3110. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3111. status = -ETIMEDOUT;
  3112. }
  3113. /* Resume management traffic. */
  3114. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3115. return status;
  3116. }
  3117. static void ql_display_dev_info(struct net_device *ndev)
  3118. {
  3119. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3120. QPRINTK(qdev, PROBE, INFO,
  3121. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3122. "XG Roll = %d, XG Rev = %d.\n",
  3123. qdev->func,
  3124. qdev->port,
  3125. qdev->chip_rev_id & 0x0000000f,
  3126. qdev->chip_rev_id >> 4 & 0x0000000f,
  3127. qdev->chip_rev_id >> 8 & 0x0000000f,
  3128. qdev->chip_rev_id >> 12 & 0x0000000f);
  3129. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  3130. }
  3131. int ql_wol(struct ql_adapter *qdev)
  3132. {
  3133. int status = 0;
  3134. u32 wol = MB_WOL_DISABLE;
  3135. /* The CAM is still intact after a reset, but if we
  3136. * are doing WOL, then we may need to program the
  3137. * routing regs. We would also need to issue the mailbox
  3138. * commands to instruct the MPI what to do per the ethtool
  3139. * settings.
  3140. */
  3141. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3142. WAKE_MCAST | WAKE_BCAST)) {
  3143. QPRINTK(qdev, IFDOWN, ERR,
  3144. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3145. qdev->wol);
  3146. return -EINVAL;
  3147. }
  3148. if (qdev->wol & WAKE_MAGIC) {
  3149. status = ql_mb_wol_set_magic(qdev, 1);
  3150. if (status) {
  3151. QPRINTK(qdev, IFDOWN, ERR,
  3152. "Failed to set magic packet on %s.\n",
  3153. qdev->ndev->name);
  3154. return status;
  3155. } else
  3156. QPRINTK(qdev, DRV, INFO,
  3157. "Enabled magic packet successfully on %s.\n",
  3158. qdev->ndev->name);
  3159. wol |= MB_WOL_MAGIC_PKT;
  3160. }
  3161. if (qdev->wol) {
  3162. /* Reroute all packets to Management Interface */
  3163. ql_write32(qdev, MGMT_RCV_CFG, (MGMT_RCV_CFG_RM |
  3164. (MGMT_RCV_CFG_RM << 16)));
  3165. wol |= MB_WOL_MODE_ON;
  3166. status = ql_mb_wol_mode(qdev, wol);
  3167. QPRINTK(qdev, DRV, ERR, "WOL %s (wol code 0x%x) on %s\n",
  3168. (status == 0) ? "Sucessfully set" : "Failed", wol,
  3169. qdev->ndev->name);
  3170. }
  3171. return status;
  3172. }
  3173. static int ql_adapter_down(struct ql_adapter *qdev)
  3174. {
  3175. int i, status = 0;
  3176. ql_link_off(qdev);
  3177. /* Don't kill the reset worker thread if we
  3178. * are in the process of recovery.
  3179. */
  3180. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3181. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3182. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3183. cancel_delayed_work_sync(&qdev->mpi_work);
  3184. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3185. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3186. for (i = 0; i < qdev->rss_ring_count; i++)
  3187. napi_disable(&qdev->rx_ring[i].napi);
  3188. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3189. ql_disable_interrupts(qdev);
  3190. ql_tx_ring_clean(qdev);
  3191. /* Call netif_napi_del() from common point.
  3192. */
  3193. for (i = 0; i < qdev->rss_ring_count; i++)
  3194. netif_napi_del(&qdev->rx_ring[i].napi);
  3195. ql_free_rx_buffers(qdev);
  3196. status = ql_adapter_reset(qdev);
  3197. if (status)
  3198. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3199. qdev->func);
  3200. return status;
  3201. }
  3202. static int ql_adapter_up(struct ql_adapter *qdev)
  3203. {
  3204. int err = 0;
  3205. err = ql_adapter_initialize(qdev);
  3206. if (err) {
  3207. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3208. goto err_init;
  3209. }
  3210. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3211. ql_alloc_rx_buffers(qdev);
  3212. /* If the port is initialized and the
  3213. * link is up the turn on the carrier.
  3214. */
  3215. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3216. (ql_read32(qdev, STS) & qdev->port_link_up))
  3217. ql_link_on(qdev);
  3218. ql_enable_interrupts(qdev);
  3219. ql_enable_all_completion_interrupts(qdev);
  3220. netif_tx_start_all_queues(qdev->ndev);
  3221. return 0;
  3222. err_init:
  3223. ql_adapter_reset(qdev);
  3224. return err;
  3225. }
  3226. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3227. {
  3228. ql_free_mem_resources(qdev);
  3229. ql_free_irq(qdev);
  3230. }
  3231. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3232. {
  3233. int status = 0;
  3234. if (ql_alloc_mem_resources(qdev)) {
  3235. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3236. return -ENOMEM;
  3237. }
  3238. status = ql_request_irq(qdev);
  3239. return status;
  3240. }
  3241. static int qlge_close(struct net_device *ndev)
  3242. {
  3243. struct ql_adapter *qdev = netdev_priv(ndev);
  3244. /*
  3245. * Wait for device to recover from a reset.
  3246. * (Rarely happens, but possible.)
  3247. */
  3248. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3249. msleep(1);
  3250. ql_adapter_down(qdev);
  3251. ql_release_adapter_resources(qdev);
  3252. return 0;
  3253. }
  3254. static int ql_configure_rings(struct ql_adapter *qdev)
  3255. {
  3256. int i;
  3257. struct rx_ring *rx_ring;
  3258. struct tx_ring *tx_ring;
  3259. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3260. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3261. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3262. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3263. /* In a perfect world we have one RSS ring for each CPU
  3264. * and each has it's own vector. To do that we ask for
  3265. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3266. * vector count to what we actually get. We then
  3267. * allocate an RSS ring for each.
  3268. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3269. */
  3270. qdev->intr_count = cpu_cnt;
  3271. ql_enable_msix(qdev);
  3272. /* Adjust the RSS ring count to the actual vector count. */
  3273. qdev->rss_ring_count = qdev->intr_count;
  3274. qdev->tx_ring_count = cpu_cnt;
  3275. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3276. for (i = 0; i < qdev->tx_ring_count; i++) {
  3277. tx_ring = &qdev->tx_ring[i];
  3278. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3279. tx_ring->qdev = qdev;
  3280. tx_ring->wq_id = i;
  3281. tx_ring->wq_len = qdev->tx_ring_size;
  3282. tx_ring->wq_size =
  3283. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3284. /*
  3285. * The completion queue ID for the tx rings start
  3286. * immediately after the rss rings.
  3287. */
  3288. tx_ring->cq_id = qdev->rss_ring_count + i;
  3289. }
  3290. for (i = 0; i < qdev->rx_ring_count; i++) {
  3291. rx_ring = &qdev->rx_ring[i];
  3292. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3293. rx_ring->qdev = qdev;
  3294. rx_ring->cq_id = i;
  3295. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3296. if (i < qdev->rss_ring_count) {
  3297. /*
  3298. * Inbound (RSS) queues.
  3299. */
  3300. rx_ring->cq_len = qdev->rx_ring_size;
  3301. rx_ring->cq_size =
  3302. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3303. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3304. rx_ring->lbq_size =
  3305. rx_ring->lbq_len * sizeof(__le64);
  3306. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3307. QPRINTK(qdev, IFUP, DEBUG,
  3308. "lbq_buf_size %d, order = %d\n",
  3309. rx_ring->lbq_buf_size, qdev->lbq_buf_order);
  3310. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3311. rx_ring->sbq_size =
  3312. rx_ring->sbq_len * sizeof(__le64);
  3313. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3314. rx_ring->type = RX_Q;
  3315. } else {
  3316. /*
  3317. * Outbound queue handles outbound completions only.
  3318. */
  3319. /* outbound cq is same size as tx_ring it services. */
  3320. rx_ring->cq_len = qdev->tx_ring_size;
  3321. rx_ring->cq_size =
  3322. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3323. rx_ring->lbq_len = 0;
  3324. rx_ring->lbq_size = 0;
  3325. rx_ring->lbq_buf_size = 0;
  3326. rx_ring->sbq_len = 0;
  3327. rx_ring->sbq_size = 0;
  3328. rx_ring->sbq_buf_size = 0;
  3329. rx_ring->type = TX_Q;
  3330. }
  3331. }
  3332. return 0;
  3333. }
  3334. static int qlge_open(struct net_device *ndev)
  3335. {
  3336. int err = 0;
  3337. struct ql_adapter *qdev = netdev_priv(ndev);
  3338. err = ql_configure_rings(qdev);
  3339. if (err)
  3340. return err;
  3341. err = ql_get_adapter_resources(qdev);
  3342. if (err)
  3343. goto error_up;
  3344. err = ql_adapter_up(qdev);
  3345. if (err)
  3346. goto error_up;
  3347. return err;
  3348. error_up:
  3349. ql_release_adapter_resources(qdev);
  3350. return err;
  3351. }
  3352. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3353. {
  3354. struct rx_ring *rx_ring;
  3355. int i, status;
  3356. u32 lbq_buf_len;
  3357. /* Wait for an oustanding reset to complete. */
  3358. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3359. int i = 3;
  3360. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3361. QPRINTK(qdev, IFUP, ERR,
  3362. "Waiting for adapter UP...\n");
  3363. ssleep(1);
  3364. }
  3365. if (!i) {
  3366. QPRINTK(qdev, IFUP, ERR,
  3367. "Timed out waiting for adapter UP\n");
  3368. return -ETIMEDOUT;
  3369. }
  3370. }
  3371. status = ql_adapter_down(qdev);
  3372. if (status)
  3373. goto error;
  3374. /* Get the new rx buffer size. */
  3375. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3376. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3377. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3378. for (i = 0; i < qdev->rss_ring_count; i++) {
  3379. rx_ring = &qdev->rx_ring[i];
  3380. /* Set the new size. */
  3381. rx_ring->lbq_buf_size = lbq_buf_len;
  3382. }
  3383. status = ql_adapter_up(qdev);
  3384. if (status)
  3385. goto error;
  3386. return status;
  3387. error:
  3388. QPRINTK(qdev, IFUP, ALERT,
  3389. "Driver up/down cycle failed, closing device.\n");
  3390. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3391. dev_close(qdev->ndev);
  3392. return status;
  3393. }
  3394. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3395. {
  3396. struct ql_adapter *qdev = netdev_priv(ndev);
  3397. int status;
  3398. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3399. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3400. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3401. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3402. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3403. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3404. return 0;
  3405. } else
  3406. return -EINVAL;
  3407. queue_delayed_work(qdev->workqueue,
  3408. &qdev->mpi_port_cfg_work, 3*HZ);
  3409. if (!netif_running(qdev->ndev)) {
  3410. ndev->mtu = new_mtu;
  3411. return 0;
  3412. }
  3413. ndev->mtu = new_mtu;
  3414. status = ql_change_rx_buffers(qdev);
  3415. if (status) {
  3416. QPRINTK(qdev, IFUP, ERR,
  3417. "Changing MTU failed.\n");
  3418. }
  3419. return status;
  3420. }
  3421. static struct net_device_stats *qlge_get_stats(struct net_device
  3422. *ndev)
  3423. {
  3424. return &ndev->stats;
  3425. }
  3426. static void qlge_set_multicast_list(struct net_device *ndev)
  3427. {
  3428. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3429. struct dev_mc_list *mc_ptr;
  3430. int i, status;
  3431. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3432. if (status)
  3433. return;
  3434. /*
  3435. * Set or clear promiscuous mode if a
  3436. * transition is taking place.
  3437. */
  3438. if (ndev->flags & IFF_PROMISC) {
  3439. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3440. if (ql_set_routing_reg
  3441. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3442. QPRINTK(qdev, HW, ERR,
  3443. "Failed to set promiscous mode.\n");
  3444. } else {
  3445. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3446. }
  3447. }
  3448. } else {
  3449. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3450. if (ql_set_routing_reg
  3451. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3452. QPRINTK(qdev, HW, ERR,
  3453. "Failed to clear promiscous mode.\n");
  3454. } else {
  3455. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3456. }
  3457. }
  3458. }
  3459. /*
  3460. * Set or clear all multicast mode if a
  3461. * transition is taking place.
  3462. */
  3463. if ((ndev->flags & IFF_ALLMULTI) ||
  3464. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3465. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3466. if (ql_set_routing_reg
  3467. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3468. QPRINTK(qdev, HW, ERR,
  3469. "Failed to set all-multi mode.\n");
  3470. } else {
  3471. set_bit(QL_ALLMULTI, &qdev->flags);
  3472. }
  3473. }
  3474. } else {
  3475. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3476. if (ql_set_routing_reg
  3477. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3478. QPRINTK(qdev, HW, ERR,
  3479. "Failed to clear all-multi mode.\n");
  3480. } else {
  3481. clear_bit(QL_ALLMULTI, &qdev->flags);
  3482. }
  3483. }
  3484. }
  3485. if (ndev->mc_count) {
  3486. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3487. if (status)
  3488. goto exit;
  3489. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3490. i++, mc_ptr = mc_ptr->next)
  3491. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3492. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3493. QPRINTK(qdev, HW, ERR,
  3494. "Failed to loadmulticast address.\n");
  3495. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3496. goto exit;
  3497. }
  3498. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3499. if (ql_set_routing_reg
  3500. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3501. QPRINTK(qdev, HW, ERR,
  3502. "Failed to set multicast match mode.\n");
  3503. } else {
  3504. set_bit(QL_ALLMULTI, &qdev->flags);
  3505. }
  3506. }
  3507. exit:
  3508. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3509. }
  3510. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3511. {
  3512. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3513. struct sockaddr *addr = p;
  3514. int status;
  3515. if (netif_running(ndev))
  3516. return -EBUSY;
  3517. if (!is_valid_ether_addr(addr->sa_data))
  3518. return -EADDRNOTAVAIL;
  3519. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3520. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3521. if (status)
  3522. return status;
  3523. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3524. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3525. if (status)
  3526. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3527. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3528. return status;
  3529. }
  3530. static void qlge_tx_timeout(struct net_device *ndev)
  3531. {
  3532. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3533. ql_queue_asic_error(qdev);
  3534. }
  3535. static void ql_asic_reset_work(struct work_struct *work)
  3536. {
  3537. struct ql_adapter *qdev =
  3538. container_of(work, struct ql_adapter, asic_reset_work.work);
  3539. int status;
  3540. rtnl_lock();
  3541. status = ql_adapter_down(qdev);
  3542. if (status)
  3543. goto error;
  3544. status = ql_adapter_up(qdev);
  3545. if (status)
  3546. goto error;
  3547. /* Restore rx mode. */
  3548. clear_bit(QL_ALLMULTI, &qdev->flags);
  3549. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3550. qlge_set_multicast_list(qdev->ndev);
  3551. rtnl_unlock();
  3552. return;
  3553. error:
  3554. QPRINTK(qdev, IFUP, ALERT,
  3555. "Driver up/down cycle failed, closing device\n");
  3556. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3557. dev_close(qdev->ndev);
  3558. rtnl_unlock();
  3559. }
  3560. static struct nic_operations qla8012_nic_ops = {
  3561. .get_flash = ql_get_8012_flash_params,
  3562. .port_initialize = ql_8012_port_initialize,
  3563. };
  3564. static struct nic_operations qla8000_nic_ops = {
  3565. .get_flash = ql_get_8000_flash_params,
  3566. .port_initialize = ql_8000_port_initialize,
  3567. };
  3568. /* Find the pcie function number for the other NIC
  3569. * on this chip. Since both NIC functions share a
  3570. * common firmware we have the lowest enabled function
  3571. * do any common work. Examples would be resetting
  3572. * after a fatal firmware error, or doing a firmware
  3573. * coredump.
  3574. */
  3575. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3576. {
  3577. int status = 0;
  3578. u32 temp;
  3579. u32 nic_func1, nic_func2;
  3580. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3581. &temp);
  3582. if (status)
  3583. return status;
  3584. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3585. MPI_TEST_NIC_FUNC_MASK);
  3586. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3587. MPI_TEST_NIC_FUNC_MASK);
  3588. if (qdev->func == nic_func1)
  3589. qdev->alt_func = nic_func2;
  3590. else if (qdev->func == nic_func2)
  3591. qdev->alt_func = nic_func1;
  3592. else
  3593. status = -EIO;
  3594. return status;
  3595. }
  3596. static int ql_get_board_info(struct ql_adapter *qdev)
  3597. {
  3598. int status;
  3599. qdev->func =
  3600. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3601. if (qdev->func > 3)
  3602. return -EIO;
  3603. status = ql_get_alt_pcie_func(qdev);
  3604. if (status)
  3605. return status;
  3606. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3607. if (qdev->port) {
  3608. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3609. qdev->port_link_up = STS_PL1;
  3610. qdev->port_init = STS_PI1;
  3611. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3612. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3613. } else {
  3614. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3615. qdev->port_link_up = STS_PL0;
  3616. qdev->port_init = STS_PI0;
  3617. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3618. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3619. }
  3620. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3621. qdev->device_id = qdev->pdev->device;
  3622. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3623. qdev->nic_ops = &qla8012_nic_ops;
  3624. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3625. qdev->nic_ops = &qla8000_nic_ops;
  3626. return status;
  3627. }
  3628. static void ql_release_all(struct pci_dev *pdev)
  3629. {
  3630. struct net_device *ndev = pci_get_drvdata(pdev);
  3631. struct ql_adapter *qdev = netdev_priv(ndev);
  3632. if (qdev->workqueue) {
  3633. destroy_workqueue(qdev->workqueue);
  3634. qdev->workqueue = NULL;
  3635. }
  3636. if (qdev->reg_base)
  3637. iounmap(qdev->reg_base);
  3638. if (qdev->doorbell_area)
  3639. iounmap(qdev->doorbell_area);
  3640. pci_release_regions(pdev);
  3641. pci_set_drvdata(pdev, NULL);
  3642. }
  3643. static int __devinit ql_init_device(struct pci_dev *pdev,
  3644. struct net_device *ndev, int cards_found)
  3645. {
  3646. struct ql_adapter *qdev = netdev_priv(ndev);
  3647. int err = 0;
  3648. memset((void *)qdev, 0, sizeof(*qdev));
  3649. err = pci_enable_device(pdev);
  3650. if (err) {
  3651. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3652. return err;
  3653. }
  3654. qdev->ndev = ndev;
  3655. qdev->pdev = pdev;
  3656. pci_set_drvdata(pdev, ndev);
  3657. /* Set PCIe read request size */
  3658. err = pcie_set_readrq(pdev, 4096);
  3659. if (err) {
  3660. dev_err(&pdev->dev, "Set readrq failed.\n");
  3661. goto err_out;
  3662. }
  3663. err = pci_request_regions(pdev, DRV_NAME);
  3664. if (err) {
  3665. dev_err(&pdev->dev, "PCI region request failed.\n");
  3666. return err;
  3667. }
  3668. pci_set_master(pdev);
  3669. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3670. set_bit(QL_DMA64, &qdev->flags);
  3671. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3672. } else {
  3673. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3674. if (!err)
  3675. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3676. }
  3677. if (err) {
  3678. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3679. goto err_out;
  3680. }
  3681. qdev->reg_base =
  3682. ioremap_nocache(pci_resource_start(pdev, 1),
  3683. pci_resource_len(pdev, 1));
  3684. if (!qdev->reg_base) {
  3685. dev_err(&pdev->dev, "Register mapping failed.\n");
  3686. err = -ENOMEM;
  3687. goto err_out;
  3688. }
  3689. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3690. qdev->doorbell_area =
  3691. ioremap_nocache(pci_resource_start(pdev, 3),
  3692. pci_resource_len(pdev, 3));
  3693. if (!qdev->doorbell_area) {
  3694. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3695. err = -ENOMEM;
  3696. goto err_out;
  3697. }
  3698. err = ql_get_board_info(qdev);
  3699. if (err) {
  3700. dev_err(&pdev->dev, "Register access failed.\n");
  3701. err = -EIO;
  3702. goto err_out;
  3703. }
  3704. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3705. spin_lock_init(&qdev->hw_lock);
  3706. spin_lock_init(&qdev->stats_lock);
  3707. /* make sure the EEPROM is good */
  3708. err = qdev->nic_ops->get_flash(qdev);
  3709. if (err) {
  3710. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3711. goto err_out;
  3712. }
  3713. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3714. /* Set up the default ring sizes. */
  3715. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3716. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3717. /* Set up the coalescing parameters. */
  3718. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3719. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3720. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3721. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3722. /*
  3723. * Set up the operating parameters.
  3724. */
  3725. qdev->rx_csum = 1;
  3726. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3727. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3728. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3729. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3730. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3731. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3732. init_completion(&qdev->ide_completion);
  3733. if (!cards_found) {
  3734. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3735. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3736. DRV_NAME, DRV_VERSION);
  3737. }
  3738. return 0;
  3739. err_out:
  3740. ql_release_all(pdev);
  3741. pci_disable_device(pdev);
  3742. return err;
  3743. }
  3744. static const struct net_device_ops qlge_netdev_ops = {
  3745. .ndo_open = qlge_open,
  3746. .ndo_stop = qlge_close,
  3747. .ndo_start_xmit = qlge_send,
  3748. .ndo_change_mtu = qlge_change_mtu,
  3749. .ndo_get_stats = qlge_get_stats,
  3750. .ndo_set_multicast_list = qlge_set_multicast_list,
  3751. .ndo_set_mac_address = qlge_set_mac_address,
  3752. .ndo_validate_addr = eth_validate_addr,
  3753. .ndo_tx_timeout = qlge_tx_timeout,
  3754. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3755. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3756. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3757. };
  3758. static int __devinit qlge_probe(struct pci_dev *pdev,
  3759. const struct pci_device_id *pci_entry)
  3760. {
  3761. struct net_device *ndev = NULL;
  3762. struct ql_adapter *qdev = NULL;
  3763. static int cards_found = 0;
  3764. int err = 0;
  3765. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  3766. min(MAX_CPUS, (int)num_online_cpus()));
  3767. if (!ndev)
  3768. return -ENOMEM;
  3769. err = ql_init_device(pdev, ndev, cards_found);
  3770. if (err < 0) {
  3771. free_netdev(ndev);
  3772. return err;
  3773. }
  3774. qdev = netdev_priv(ndev);
  3775. SET_NETDEV_DEV(ndev, &pdev->dev);
  3776. ndev->features = (0
  3777. | NETIF_F_IP_CSUM
  3778. | NETIF_F_SG
  3779. | NETIF_F_TSO
  3780. | NETIF_F_TSO6
  3781. | NETIF_F_TSO_ECN
  3782. | NETIF_F_HW_VLAN_TX
  3783. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3784. ndev->features |= NETIF_F_GRO;
  3785. if (test_bit(QL_DMA64, &qdev->flags))
  3786. ndev->features |= NETIF_F_HIGHDMA;
  3787. /*
  3788. * Set up net_device structure.
  3789. */
  3790. ndev->tx_queue_len = qdev->tx_ring_size;
  3791. ndev->irq = pdev->irq;
  3792. ndev->netdev_ops = &qlge_netdev_ops;
  3793. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3794. ndev->watchdog_timeo = 10 * HZ;
  3795. err = register_netdev(ndev);
  3796. if (err) {
  3797. dev_err(&pdev->dev, "net device registration failed.\n");
  3798. ql_release_all(pdev);
  3799. pci_disable_device(pdev);
  3800. return err;
  3801. }
  3802. ql_link_off(qdev);
  3803. ql_display_dev_info(ndev);
  3804. cards_found++;
  3805. return 0;
  3806. }
  3807. static void __devexit qlge_remove(struct pci_dev *pdev)
  3808. {
  3809. struct net_device *ndev = pci_get_drvdata(pdev);
  3810. unregister_netdev(ndev);
  3811. ql_release_all(pdev);
  3812. pci_disable_device(pdev);
  3813. free_netdev(ndev);
  3814. }
  3815. /*
  3816. * This callback is called by the PCI subsystem whenever
  3817. * a PCI bus error is detected.
  3818. */
  3819. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3820. enum pci_channel_state state)
  3821. {
  3822. struct net_device *ndev = pci_get_drvdata(pdev);
  3823. struct ql_adapter *qdev = netdev_priv(ndev);
  3824. netif_device_detach(ndev);
  3825. if (state == pci_channel_io_perm_failure)
  3826. return PCI_ERS_RESULT_DISCONNECT;
  3827. if (netif_running(ndev))
  3828. ql_adapter_down(qdev);
  3829. pci_disable_device(pdev);
  3830. /* Request a slot reset. */
  3831. return PCI_ERS_RESULT_NEED_RESET;
  3832. }
  3833. /*
  3834. * This callback is called after the PCI buss has been reset.
  3835. * Basically, this tries to restart the card from scratch.
  3836. * This is a shortened version of the device probe/discovery code,
  3837. * it resembles the first-half of the () routine.
  3838. */
  3839. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3840. {
  3841. struct net_device *ndev = pci_get_drvdata(pdev);
  3842. struct ql_adapter *qdev = netdev_priv(ndev);
  3843. if (pci_enable_device(pdev)) {
  3844. QPRINTK(qdev, IFUP, ERR,
  3845. "Cannot re-enable PCI device after reset.\n");
  3846. return PCI_ERS_RESULT_DISCONNECT;
  3847. }
  3848. pci_set_master(pdev);
  3849. netif_carrier_off(ndev);
  3850. ql_adapter_reset(qdev);
  3851. /* Make sure the EEPROM is good */
  3852. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3853. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3854. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3855. return PCI_ERS_RESULT_DISCONNECT;
  3856. }
  3857. return PCI_ERS_RESULT_RECOVERED;
  3858. }
  3859. static void qlge_io_resume(struct pci_dev *pdev)
  3860. {
  3861. struct net_device *ndev = pci_get_drvdata(pdev);
  3862. struct ql_adapter *qdev = netdev_priv(ndev);
  3863. pci_set_master(pdev);
  3864. if (netif_running(ndev)) {
  3865. if (ql_adapter_up(qdev)) {
  3866. QPRINTK(qdev, IFUP, ERR,
  3867. "Device initialization failed after reset.\n");
  3868. return;
  3869. }
  3870. }
  3871. netif_device_attach(ndev);
  3872. }
  3873. static struct pci_error_handlers qlge_err_handler = {
  3874. .error_detected = qlge_io_error_detected,
  3875. .slot_reset = qlge_io_slot_reset,
  3876. .resume = qlge_io_resume,
  3877. };
  3878. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3879. {
  3880. struct net_device *ndev = pci_get_drvdata(pdev);
  3881. struct ql_adapter *qdev = netdev_priv(ndev);
  3882. int err;
  3883. netif_device_detach(ndev);
  3884. if (netif_running(ndev)) {
  3885. err = ql_adapter_down(qdev);
  3886. if (!err)
  3887. return err;
  3888. }
  3889. ql_wol(qdev);
  3890. err = pci_save_state(pdev);
  3891. if (err)
  3892. return err;
  3893. pci_disable_device(pdev);
  3894. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3895. return 0;
  3896. }
  3897. #ifdef CONFIG_PM
  3898. static int qlge_resume(struct pci_dev *pdev)
  3899. {
  3900. struct net_device *ndev = pci_get_drvdata(pdev);
  3901. struct ql_adapter *qdev = netdev_priv(ndev);
  3902. int err;
  3903. pci_set_power_state(pdev, PCI_D0);
  3904. pci_restore_state(pdev);
  3905. err = pci_enable_device(pdev);
  3906. if (err) {
  3907. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3908. return err;
  3909. }
  3910. pci_set_master(pdev);
  3911. pci_enable_wake(pdev, PCI_D3hot, 0);
  3912. pci_enable_wake(pdev, PCI_D3cold, 0);
  3913. if (netif_running(ndev)) {
  3914. err = ql_adapter_up(qdev);
  3915. if (err)
  3916. return err;
  3917. }
  3918. netif_device_attach(ndev);
  3919. return 0;
  3920. }
  3921. #endif /* CONFIG_PM */
  3922. static void qlge_shutdown(struct pci_dev *pdev)
  3923. {
  3924. qlge_suspend(pdev, PMSG_SUSPEND);
  3925. }
  3926. static struct pci_driver qlge_driver = {
  3927. .name = DRV_NAME,
  3928. .id_table = qlge_pci_tbl,
  3929. .probe = qlge_probe,
  3930. .remove = __devexit_p(qlge_remove),
  3931. #ifdef CONFIG_PM
  3932. .suspend = qlge_suspend,
  3933. .resume = qlge_resume,
  3934. #endif
  3935. .shutdown = qlge_shutdown,
  3936. .err_handler = &qlge_err_handler
  3937. };
  3938. static int __init qlge_init_module(void)
  3939. {
  3940. return pci_register_driver(&qlge_driver);
  3941. }
  3942. static void __exit qlge_exit(void)
  3943. {
  3944. pci_unregister_driver(&qlge_driver);
  3945. }
  3946. module_init(qlge_init_module);
  3947. module_exit(qlge_exit);