time.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/clocksource.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/slab.h>
  38. #include <linux/math64.h>
  39. #include <linux/ptrace.h>
  40. #include <asm/uaccess.h>
  41. #include <asm/unistd.h>
  42. #include "timeconst.h"
  43. /*
  44. * The timezone where the local system is located. Used as a default by some
  45. * programs who obtain this value by using gettimeofday.
  46. */
  47. struct timezone sys_tz;
  48. EXPORT_SYMBOL(sys_tz);
  49. #ifdef __ARCH_WANT_SYS_TIME
  50. /*
  51. * sys_time() can be implemented in user-level using
  52. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  53. * why not move it into the appropriate arch directory (for those
  54. * architectures that need it).
  55. */
  56. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  57. {
  58. time_t i = get_seconds();
  59. if (tloc) {
  60. if (put_user(i,tloc))
  61. return -EFAULT;
  62. }
  63. force_successful_syscall_return();
  64. return i;
  65. }
  66. /*
  67. * sys_stime() can be implemented in user-level using
  68. * sys_settimeofday(). Is this for backwards compatibility? If so,
  69. * why not move it into the appropriate arch directory (for those
  70. * architectures that need it).
  71. */
  72. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  73. {
  74. struct timespec tv;
  75. int err;
  76. if (get_user(tv.tv_sec, tptr))
  77. return -EFAULT;
  78. tv.tv_nsec = 0;
  79. err = security_settime(&tv, NULL);
  80. if (err)
  81. return err;
  82. do_settimeofday(&tv);
  83. return 0;
  84. }
  85. #endif /* __ARCH_WANT_SYS_TIME */
  86. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  87. struct timezone __user *, tz)
  88. {
  89. if (likely(tv != NULL)) {
  90. struct timeval ktv;
  91. do_gettimeofday(&ktv);
  92. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  93. return -EFAULT;
  94. }
  95. if (unlikely(tz != NULL)) {
  96. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  97. return -EFAULT;
  98. }
  99. return 0;
  100. }
  101. /*
  102. * Adjust the time obtained from the CMOS to be UTC time instead of
  103. * local time.
  104. *
  105. * This is ugly, but preferable to the alternatives. Otherwise we
  106. * would either need to write a program to do it in /etc/rc (and risk
  107. * confusion if the program gets run more than once; it would also be
  108. * hard to make the program warp the clock precisely n hours) or
  109. * compile in the timezone information into the kernel. Bad, bad....
  110. *
  111. * - TYT, 1992-01-01
  112. *
  113. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  114. * as real UNIX machines always do it. This avoids all headaches about
  115. * daylight saving times and warping kernel clocks.
  116. */
  117. static inline void warp_clock(void)
  118. {
  119. write_seqlock_irq(&xtime_lock);
  120. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  121. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  122. update_xtime_cache(0);
  123. write_sequnlock_irq(&xtime_lock);
  124. clock_was_set();
  125. }
  126. /*
  127. * In case for some reason the CMOS clock has not already been running
  128. * in UTC, but in some local time: The first time we set the timezone,
  129. * we will warp the clock so that it is ticking UTC time instead of
  130. * local time. Presumably, if someone is setting the timezone then we
  131. * are running in an environment where the programs understand about
  132. * timezones. This should be done at boot time in the /etc/rc script,
  133. * as soon as possible, so that the clock can be set right. Otherwise,
  134. * various programs will get confused when the clock gets warped.
  135. */
  136. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  137. {
  138. static int firsttime = 1;
  139. int error = 0;
  140. if (tv && !timespec_valid(tv))
  141. return -EINVAL;
  142. error = security_settime(tv, tz);
  143. if (error)
  144. return error;
  145. if (tz) {
  146. /* SMP safe, global irq locking makes it work. */
  147. sys_tz = *tz;
  148. update_vsyscall_tz();
  149. if (firsttime) {
  150. firsttime = 0;
  151. if (!tv)
  152. warp_clock();
  153. }
  154. }
  155. if (tv)
  156. {
  157. /* SMP safe, again the code in arch/foo/time.c should
  158. * globally block out interrupts when it runs.
  159. */
  160. return do_settimeofday(tv);
  161. }
  162. return 0;
  163. }
  164. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  165. struct timezone __user *, tz)
  166. {
  167. struct timeval user_tv;
  168. struct timespec new_ts;
  169. struct timezone new_tz;
  170. if (tv) {
  171. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  172. return -EFAULT;
  173. new_ts.tv_sec = user_tv.tv_sec;
  174. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  175. }
  176. if (tz) {
  177. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  178. return -EFAULT;
  179. }
  180. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  181. }
  182. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  183. {
  184. struct timex txc; /* Local copy of parameter */
  185. int ret;
  186. /* Copy the user data space into the kernel copy
  187. * structure. But bear in mind that the structures
  188. * may change
  189. */
  190. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  191. return -EFAULT;
  192. ret = do_adjtimex(&txc);
  193. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  194. }
  195. /**
  196. * current_fs_time - Return FS time
  197. * @sb: Superblock.
  198. *
  199. * Return the current time truncated to the time granularity supported by
  200. * the fs.
  201. */
  202. struct timespec current_fs_time(struct super_block *sb)
  203. {
  204. struct timespec now = current_kernel_time();
  205. return timespec_trunc(now, sb->s_time_gran);
  206. }
  207. EXPORT_SYMBOL(current_fs_time);
  208. /*
  209. * Convert jiffies to milliseconds and back.
  210. *
  211. * Avoid unnecessary multiplications/divisions in the
  212. * two most common HZ cases:
  213. */
  214. unsigned int inline jiffies_to_msecs(const unsigned long j)
  215. {
  216. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  217. return (MSEC_PER_SEC / HZ) * j;
  218. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  219. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  220. #else
  221. # if BITS_PER_LONG == 32
  222. return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  223. # else
  224. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  225. # endif
  226. #endif
  227. }
  228. EXPORT_SYMBOL(jiffies_to_msecs);
  229. unsigned int inline jiffies_to_usecs(const unsigned long j)
  230. {
  231. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  232. return (USEC_PER_SEC / HZ) * j;
  233. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  234. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  235. #else
  236. # if BITS_PER_LONG == 32
  237. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  238. # else
  239. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  240. # endif
  241. #endif
  242. }
  243. EXPORT_SYMBOL(jiffies_to_usecs);
  244. /**
  245. * timespec_trunc - Truncate timespec to a granularity
  246. * @t: Timespec
  247. * @gran: Granularity in ns.
  248. *
  249. * Truncate a timespec to a granularity. gran must be smaller than a second.
  250. * Always rounds down.
  251. *
  252. * This function should be only used for timestamps returned by
  253. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  254. * it doesn't handle the better resolution of the latter.
  255. */
  256. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  257. {
  258. /*
  259. * Division is pretty slow so avoid it for common cases.
  260. * Currently current_kernel_time() never returns better than
  261. * jiffies resolution. Exploit that.
  262. */
  263. if (gran <= jiffies_to_usecs(1) * 1000) {
  264. /* nothing */
  265. } else if (gran == 1000000000) {
  266. t.tv_nsec = 0;
  267. } else {
  268. t.tv_nsec -= t.tv_nsec % gran;
  269. }
  270. return t;
  271. }
  272. EXPORT_SYMBOL(timespec_trunc);
  273. #ifndef CONFIG_GENERIC_TIME
  274. /*
  275. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  276. * and therefore only yields usec accuracy
  277. */
  278. void getnstimeofday(struct timespec *tv)
  279. {
  280. struct timeval x;
  281. do_gettimeofday(&x);
  282. tv->tv_sec = x.tv_sec;
  283. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  284. }
  285. EXPORT_SYMBOL_GPL(getnstimeofday);
  286. #endif
  287. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  288. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  289. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  290. *
  291. * [For the Julian calendar (which was used in Russia before 1917,
  292. * Britain & colonies before 1752, anywhere else before 1582,
  293. * and is still in use by some communities) leave out the
  294. * -year/100+year/400 terms, and add 10.]
  295. *
  296. * This algorithm was first published by Gauss (I think).
  297. *
  298. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  299. * machines where long is 32-bit! (However, as time_t is signed, we
  300. * will already get problems at other places on 2038-01-19 03:14:08)
  301. */
  302. unsigned long
  303. mktime(const unsigned int year0, const unsigned int mon0,
  304. const unsigned int day, const unsigned int hour,
  305. const unsigned int min, const unsigned int sec)
  306. {
  307. unsigned int mon = mon0, year = year0;
  308. /* 1..12 -> 11,12,1..10 */
  309. if (0 >= (int) (mon -= 2)) {
  310. mon += 12; /* Puts Feb last since it has leap day */
  311. year -= 1;
  312. }
  313. return ((((unsigned long)
  314. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  315. year*365 - 719499
  316. )*24 + hour /* now have hours */
  317. )*60 + min /* now have minutes */
  318. )*60 + sec; /* finally seconds */
  319. }
  320. EXPORT_SYMBOL(mktime);
  321. /**
  322. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  323. *
  324. * @ts: pointer to timespec variable to be set
  325. * @sec: seconds to set
  326. * @nsec: nanoseconds to set
  327. *
  328. * Set seconds and nanoseconds field of a timespec variable and
  329. * normalize to the timespec storage format
  330. *
  331. * Note: The tv_nsec part is always in the range of
  332. * 0 <= tv_nsec < NSEC_PER_SEC
  333. * For negative values only the tv_sec field is negative !
  334. */
  335. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  336. {
  337. while (nsec >= NSEC_PER_SEC) {
  338. nsec -= NSEC_PER_SEC;
  339. ++sec;
  340. }
  341. while (nsec < 0) {
  342. nsec += NSEC_PER_SEC;
  343. --sec;
  344. }
  345. ts->tv_sec = sec;
  346. ts->tv_nsec = nsec;
  347. }
  348. EXPORT_SYMBOL(set_normalized_timespec);
  349. /**
  350. * ns_to_timespec - Convert nanoseconds to timespec
  351. * @nsec: the nanoseconds value to be converted
  352. *
  353. * Returns the timespec representation of the nsec parameter.
  354. */
  355. struct timespec ns_to_timespec(const s64 nsec)
  356. {
  357. struct timespec ts;
  358. s32 rem;
  359. if (!nsec)
  360. return (struct timespec) {0, 0};
  361. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  362. if (unlikely(rem < 0)) {
  363. ts.tv_sec--;
  364. rem += NSEC_PER_SEC;
  365. }
  366. ts.tv_nsec = rem;
  367. return ts;
  368. }
  369. EXPORT_SYMBOL(ns_to_timespec);
  370. /**
  371. * ns_to_timeval - Convert nanoseconds to timeval
  372. * @nsec: the nanoseconds value to be converted
  373. *
  374. * Returns the timeval representation of the nsec parameter.
  375. */
  376. struct timeval ns_to_timeval(const s64 nsec)
  377. {
  378. struct timespec ts = ns_to_timespec(nsec);
  379. struct timeval tv;
  380. tv.tv_sec = ts.tv_sec;
  381. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  382. return tv;
  383. }
  384. EXPORT_SYMBOL(ns_to_timeval);
  385. /*
  386. * When we convert to jiffies then we interpret incoming values
  387. * the following way:
  388. *
  389. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  390. *
  391. * - 'too large' values [that would result in larger than
  392. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  393. *
  394. * - all other values are converted to jiffies by either multiplying
  395. * the input value by a factor or dividing it with a factor
  396. *
  397. * We must also be careful about 32-bit overflows.
  398. */
  399. unsigned long msecs_to_jiffies(const unsigned int m)
  400. {
  401. /*
  402. * Negative value, means infinite timeout:
  403. */
  404. if ((int)m < 0)
  405. return MAX_JIFFY_OFFSET;
  406. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  407. /*
  408. * HZ is equal to or smaller than 1000, and 1000 is a nice
  409. * round multiple of HZ, divide with the factor between them,
  410. * but round upwards:
  411. */
  412. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  413. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  414. /*
  415. * HZ is larger than 1000, and HZ is a nice round multiple of
  416. * 1000 - simply multiply with the factor between them.
  417. *
  418. * But first make sure the multiplication result cannot
  419. * overflow:
  420. */
  421. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  422. return MAX_JIFFY_OFFSET;
  423. return m * (HZ / MSEC_PER_SEC);
  424. #else
  425. /*
  426. * Generic case - multiply, round and divide. But first
  427. * check that if we are doing a net multiplication, that
  428. * we wouldn't overflow:
  429. */
  430. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  431. return MAX_JIFFY_OFFSET;
  432. return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
  433. >> MSEC_TO_HZ_SHR32;
  434. #endif
  435. }
  436. EXPORT_SYMBOL(msecs_to_jiffies);
  437. unsigned long usecs_to_jiffies(const unsigned int u)
  438. {
  439. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  440. return MAX_JIFFY_OFFSET;
  441. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  442. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  443. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  444. return u * (HZ / USEC_PER_SEC);
  445. #else
  446. return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  447. >> USEC_TO_HZ_SHR32;
  448. #endif
  449. }
  450. EXPORT_SYMBOL(usecs_to_jiffies);
  451. /*
  452. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  453. * that a remainder subtract here would not do the right thing as the
  454. * resolution values don't fall on second boundries. I.e. the line:
  455. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  456. *
  457. * Rather, we just shift the bits off the right.
  458. *
  459. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  460. * value to a scaled second value.
  461. */
  462. unsigned long
  463. timespec_to_jiffies(const struct timespec *value)
  464. {
  465. unsigned long sec = value->tv_sec;
  466. long nsec = value->tv_nsec + TICK_NSEC - 1;
  467. if (sec >= MAX_SEC_IN_JIFFIES){
  468. sec = MAX_SEC_IN_JIFFIES;
  469. nsec = 0;
  470. }
  471. return (((u64)sec * SEC_CONVERSION) +
  472. (((u64)nsec * NSEC_CONVERSION) >>
  473. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  474. }
  475. EXPORT_SYMBOL(timespec_to_jiffies);
  476. void
  477. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  478. {
  479. /*
  480. * Convert jiffies to nanoseconds and separate with
  481. * one divide.
  482. */
  483. u32 rem;
  484. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  485. NSEC_PER_SEC, &rem);
  486. value->tv_nsec = rem;
  487. }
  488. EXPORT_SYMBOL(jiffies_to_timespec);
  489. /* Same for "timeval"
  490. *
  491. * Well, almost. The problem here is that the real system resolution is
  492. * in nanoseconds and the value being converted is in micro seconds.
  493. * Also for some machines (those that use HZ = 1024, in-particular),
  494. * there is a LARGE error in the tick size in microseconds.
  495. * The solution we use is to do the rounding AFTER we convert the
  496. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  497. * Instruction wise, this should cost only an additional add with carry
  498. * instruction above the way it was done above.
  499. */
  500. unsigned long
  501. timeval_to_jiffies(const struct timeval *value)
  502. {
  503. unsigned long sec = value->tv_sec;
  504. long usec = value->tv_usec;
  505. if (sec >= MAX_SEC_IN_JIFFIES){
  506. sec = MAX_SEC_IN_JIFFIES;
  507. usec = 0;
  508. }
  509. return (((u64)sec * SEC_CONVERSION) +
  510. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  511. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  512. }
  513. EXPORT_SYMBOL(timeval_to_jiffies);
  514. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  515. {
  516. /*
  517. * Convert jiffies to nanoseconds and separate with
  518. * one divide.
  519. */
  520. u32 rem;
  521. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  522. NSEC_PER_SEC, &rem);
  523. value->tv_usec = rem / NSEC_PER_USEC;
  524. }
  525. EXPORT_SYMBOL(jiffies_to_timeval);
  526. /*
  527. * Convert jiffies/jiffies_64 to clock_t and back.
  528. */
  529. clock_t jiffies_to_clock_t(long x)
  530. {
  531. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  532. # if HZ < USER_HZ
  533. return x * (USER_HZ / HZ);
  534. # else
  535. return x / (HZ / USER_HZ);
  536. # endif
  537. #else
  538. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  539. #endif
  540. }
  541. EXPORT_SYMBOL(jiffies_to_clock_t);
  542. unsigned long clock_t_to_jiffies(unsigned long x)
  543. {
  544. #if (HZ % USER_HZ)==0
  545. if (x >= ~0UL / (HZ / USER_HZ))
  546. return ~0UL;
  547. return x * (HZ / USER_HZ);
  548. #else
  549. /* Don't worry about loss of precision here .. */
  550. if (x >= ~0UL / HZ * USER_HZ)
  551. return ~0UL;
  552. /* .. but do try to contain it here */
  553. return div_u64((u64)x * HZ, USER_HZ);
  554. #endif
  555. }
  556. EXPORT_SYMBOL(clock_t_to_jiffies);
  557. u64 jiffies_64_to_clock_t(u64 x)
  558. {
  559. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  560. # if HZ < USER_HZ
  561. x = div_u64(x * USER_HZ, HZ);
  562. # elif HZ > USER_HZ
  563. x = div_u64(x, HZ / USER_HZ);
  564. # else
  565. /* Nothing to do */
  566. # endif
  567. #else
  568. /*
  569. * There are better ways that don't overflow early,
  570. * but even this doesn't overflow in hundreds of years
  571. * in 64 bits, so..
  572. */
  573. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  574. #endif
  575. return x;
  576. }
  577. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  578. u64 nsec_to_clock_t(u64 x)
  579. {
  580. #if (NSEC_PER_SEC % USER_HZ) == 0
  581. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  582. #elif (USER_HZ % 512) == 0
  583. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  584. #else
  585. /*
  586. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  587. * overflow after 64.99 years.
  588. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  589. */
  590. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  591. #endif
  592. }
  593. #if (BITS_PER_LONG < 64)
  594. u64 get_jiffies_64(void)
  595. {
  596. unsigned long seq;
  597. u64 ret;
  598. do {
  599. seq = read_seqbegin(&xtime_lock);
  600. ret = jiffies_64;
  601. } while (read_seqretry(&xtime_lock, seq));
  602. return ret;
  603. }
  604. EXPORT_SYMBOL(get_jiffies_64);
  605. #endif
  606. EXPORT_SYMBOL(jiffies);
  607. /*
  608. * Add two timespec values and do a safety check for overflow.
  609. * It's assumed that both values are valid (>= 0)
  610. */
  611. struct timespec timespec_add_safe(const struct timespec lhs,
  612. const struct timespec rhs)
  613. {
  614. struct timespec res;
  615. set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
  616. lhs.tv_nsec + rhs.tv_nsec);
  617. if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
  618. res.tv_sec = TIME_T_MAX;
  619. return res;
  620. }