posix-timers.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007
  1. /*
  2. * linux/kernel/posix-timers.c
  3. *
  4. *
  5. * 2002-10-15 Posix Clocks & timers
  6. * by George Anzinger george@mvista.com
  7. *
  8. * Copyright (C) 2002 2003 by MontaVista Software.
  9. *
  10. * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11. * Copyright (C) 2004 Boris Hu
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or (at
  16. * your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful, but
  19. * WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * General Public License for more details.
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  27. */
  28. /* These are all the functions necessary to implement
  29. * POSIX clocks & timers
  30. */
  31. #include <linux/mm.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/slab.h>
  34. #include <linux/time.h>
  35. #include <linux/mutex.h>
  36. #include <asm/uaccess.h>
  37. #include <linux/list.h>
  38. #include <linux/init.h>
  39. #include <linux/compiler.h>
  40. #include <linux/idr.h>
  41. #include <linux/posix-timers.h>
  42. #include <linux/syscalls.h>
  43. #include <linux/wait.h>
  44. #include <linux/workqueue.h>
  45. #include <linux/module.h>
  46. /*
  47. * Management arrays for POSIX timers. Timers are kept in slab memory
  48. * Timer ids are allocated by an external routine that keeps track of the
  49. * id and the timer. The external interface is:
  50. *
  51. * void *idr_find(struct idr *idp, int id); to find timer_id <id>
  52. * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
  53. * related it to <ptr>
  54. * void idr_remove(struct idr *idp, int id); to release <id>
  55. * void idr_init(struct idr *idp); to initialize <idp>
  56. * which we supply.
  57. * The idr_get_new *may* call slab for more memory so it must not be
  58. * called under a spin lock. Likewise idr_remore may release memory
  59. * (but it may be ok to do this under a lock...).
  60. * idr_find is just a memory look up and is quite fast. A -1 return
  61. * indicates that the requested id does not exist.
  62. */
  63. /*
  64. * Lets keep our timers in a slab cache :-)
  65. */
  66. static struct kmem_cache *posix_timers_cache;
  67. static struct idr posix_timers_id;
  68. static DEFINE_SPINLOCK(idr_lock);
  69. /*
  70. * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  71. * SIGEV values. Here we put out an error if this assumption fails.
  72. */
  73. #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  74. ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  75. #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  76. #endif
  77. /*
  78. * The timer ID is turned into a timer address by idr_find().
  79. * Verifying a valid ID consists of:
  80. *
  81. * a) checking that idr_find() returns other than -1.
  82. * b) checking that the timer id matches the one in the timer itself.
  83. * c) that the timer owner is in the callers thread group.
  84. */
  85. /*
  86. * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  87. * to implement others. This structure defines the various
  88. * clocks and allows the possibility of adding others. We
  89. * provide an interface to add clocks to the table and expect
  90. * the "arch" code to add at least one clock that is high
  91. * resolution. Here we define the standard CLOCK_REALTIME as a
  92. * 1/HZ resolution clock.
  93. *
  94. * RESOLUTION: Clock resolution is used to round up timer and interval
  95. * times, NOT to report clock times, which are reported with as
  96. * much resolution as the system can muster. In some cases this
  97. * resolution may depend on the underlying clock hardware and
  98. * may not be quantifiable until run time, and only then is the
  99. * necessary code is written. The standard says we should say
  100. * something about this issue in the documentation...
  101. *
  102. * FUNCTIONS: The CLOCKs structure defines possible functions to handle
  103. * various clock functions. For clocks that use the standard
  104. * system timer code these entries should be NULL. This will
  105. * allow dispatch without the overhead of indirect function
  106. * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
  107. * must supply functions here, even if the function just returns
  108. * ENOSYS. The standard POSIX timer management code assumes the
  109. * following: 1.) The k_itimer struct (sched.h) is used for the
  110. * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
  111. * fields are not modified by timer code.
  112. *
  113. * At this time all functions EXCEPT clock_nanosleep can be
  114. * redirected by the CLOCKS structure. Clock_nanosleep is in
  115. * there, but the code ignores it.
  116. *
  117. * Permissions: It is assumed that the clock_settime() function defined
  118. * for each clock will take care of permission checks. Some
  119. * clocks may be set able by any user (i.e. local process
  120. * clocks) others not. Currently the only set able clock we
  121. * have is CLOCK_REALTIME and its high res counter part, both of
  122. * which we beg off on and pass to do_sys_settimeofday().
  123. */
  124. static struct k_clock posix_clocks[MAX_CLOCKS];
  125. /*
  126. * These ones are defined below.
  127. */
  128. static int common_nsleep(const clockid_t, int flags, struct timespec *t,
  129. struct timespec __user *rmtp);
  130. static void common_timer_get(struct k_itimer *, struct itimerspec *);
  131. static int common_timer_set(struct k_itimer *, int,
  132. struct itimerspec *, struct itimerspec *);
  133. static int common_timer_del(struct k_itimer *timer);
  134. static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
  135. static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
  136. static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
  137. {
  138. spin_unlock_irqrestore(&timr->it_lock, flags);
  139. }
  140. /*
  141. * Call the k_clock hook function if non-null, or the default function.
  142. */
  143. #define CLOCK_DISPATCH(clock, call, arglist) \
  144. ((clock) < 0 ? posix_cpu_##call arglist : \
  145. (posix_clocks[clock].call != NULL \
  146. ? (*posix_clocks[clock].call) arglist : common_##call arglist))
  147. /*
  148. * Default clock hook functions when the struct k_clock passed
  149. * to register_posix_clock leaves a function pointer null.
  150. *
  151. * The function common_CALL is the default implementation for
  152. * the function pointer CALL in struct k_clock.
  153. */
  154. static inline int common_clock_getres(const clockid_t which_clock,
  155. struct timespec *tp)
  156. {
  157. tp->tv_sec = 0;
  158. tp->tv_nsec = posix_clocks[which_clock].res;
  159. return 0;
  160. }
  161. /*
  162. * Get real time for posix timers
  163. */
  164. static int common_clock_get(clockid_t which_clock, struct timespec *tp)
  165. {
  166. ktime_get_real_ts(tp);
  167. return 0;
  168. }
  169. static inline int common_clock_set(const clockid_t which_clock,
  170. struct timespec *tp)
  171. {
  172. return do_sys_settimeofday(tp, NULL);
  173. }
  174. static int common_timer_create(struct k_itimer *new_timer)
  175. {
  176. hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
  177. return 0;
  178. }
  179. static int no_timer_create(struct k_itimer *new_timer)
  180. {
  181. return -EOPNOTSUPP;
  182. }
  183. static int no_nsleep(const clockid_t which_clock, int flags,
  184. struct timespec *tsave, struct timespec __user *rmtp)
  185. {
  186. return -EOPNOTSUPP;
  187. }
  188. /*
  189. * Return nonzero if we know a priori this clockid_t value is bogus.
  190. */
  191. static inline int invalid_clockid(const clockid_t which_clock)
  192. {
  193. if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
  194. return 0;
  195. if ((unsigned) which_clock >= MAX_CLOCKS)
  196. return 1;
  197. if (posix_clocks[which_clock].clock_getres != NULL)
  198. return 0;
  199. if (posix_clocks[which_clock].res != 0)
  200. return 0;
  201. return 1;
  202. }
  203. /*
  204. * Get monotonic time for posix timers
  205. */
  206. static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
  207. {
  208. ktime_get_ts(tp);
  209. return 0;
  210. }
  211. /*
  212. * Get monotonic time for posix timers
  213. */
  214. static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
  215. {
  216. getrawmonotonic(tp);
  217. return 0;
  218. }
  219. /*
  220. * Initialize everything, well, just everything in Posix clocks/timers ;)
  221. */
  222. static __init int init_posix_timers(void)
  223. {
  224. struct k_clock clock_realtime = {
  225. .clock_getres = hrtimer_get_res,
  226. };
  227. struct k_clock clock_monotonic = {
  228. .clock_getres = hrtimer_get_res,
  229. .clock_get = posix_ktime_get_ts,
  230. .clock_set = do_posix_clock_nosettime,
  231. };
  232. struct k_clock clock_monotonic_raw = {
  233. .clock_getres = hrtimer_get_res,
  234. .clock_get = posix_get_monotonic_raw,
  235. .clock_set = do_posix_clock_nosettime,
  236. .timer_create = no_timer_create,
  237. .nsleep = no_nsleep,
  238. };
  239. register_posix_clock(CLOCK_REALTIME, &clock_realtime);
  240. register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
  241. register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
  242. posix_timers_cache = kmem_cache_create("posix_timers_cache",
  243. sizeof (struct k_itimer), 0, SLAB_PANIC,
  244. NULL);
  245. idr_init(&posix_timers_id);
  246. return 0;
  247. }
  248. __initcall(init_posix_timers);
  249. static void schedule_next_timer(struct k_itimer *timr)
  250. {
  251. struct hrtimer *timer = &timr->it.real.timer;
  252. if (timr->it.real.interval.tv64 == 0)
  253. return;
  254. timr->it_overrun += (unsigned int) hrtimer_forward(timer,
  255. timer->base->get_time(),
  256. timr->it.real.interval);
  257. timr->it_overrun_last = timr->it_overrun;
  258. timr->it_overrun = -1;
  259. ++timr->it_requeue_pending;
  260. hrtimer_restart(timer);
  261. }
  262. /*
  263. * This function is exported for use by the signal deliver code. It is
  264. * called just prior to the info block being released and passes that
  265. * block to us. It's function is to update the overrun entry AND to
  266. * restart the timer. It should only be called if the timer is to be
  267. * restarted (i.e. we have flagged this in the sys_private entry of the
  268. * info block).
  269. *
  270. * To protect aginst the timer going away while the interrupt is queued,
  271. * we require that the it_requeue_pending flag be set.
  272. */
  273. void do_schedule_next_timer(struct siginfo *info)
  274. {
  275. struct k_itimer *timr;
  276. unsigned long flags;
  277. timr = lock_timer(info->si_tid, &flags);
  278. if (timr && timr->it_requeue_pending == info->si_sys_private) {
  279. if (timr->it_clock < 0)
  280. posix_cpu_timer_schedule(timr);
  281. else
  282. schedule_next_timer(timr);
  283. info->si_overrun += timr->it_overrun_last;
  284. }
  285. if (timr)
  286. unlock_timer(timr, flags);
  287. }
  288. int posix_timer_event(struct k_itimer *timr, int si_private)
  289. {
  290. struct task_struct *task;
  291. int shared, ret = -1;
  292. /*
  293. * FIXME: if ->sigq is queued we can race with
  294. * dequeue_signal()->do_schedule_next_timer().
  295. *
  296. * If dequeue_signal() sees the "right" value of
  297. * si_sys_private it calls do_schedule_next_timer().
  298. * We re-queue ->sigq and drop ->it_lock().
  299. * do_schedule_next_timer() locks the timer
  300. * and re-schedules it while ->sigq is pending.
  301. * Not really bad, but not that we want.
  302. */
  303. timr->sigq->info.si_sys_private = si_private;
  304. rcu_read_lock();
  305. task = pid_task(timr->it_pid, PIDTYPE_PID);
  306. if (task) {
  307. shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
  308. ret = send_sigqueue(timr->sigq, task, shared);
  309. }
  310. rcu_read_unlock();
  311. /* If we failed to send the signal the timer stops. */
  312. return ret > 0;
  313. }
  314. EXPORT_SYMBOL_GPL(posix_timer_event);
  315. /*
  316. * This function gets called when a POSIX.1b interval timer expires. It
  317. * is used as a callback from the kernel internal timer. The
  318. * run_timer_list code ALWAYS calls with interrupts on.
  319. * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
  320. */
  321. static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
  322. {
  323. struct k_itimer *timr;
  324. unsigned long flags;
  325. int si_private = 0;
  326. enum hrtimer_restart ret = HRTIMER_NORESTART;
  327. timr = container_of(timer, struct k_itimer, it.real.timer);
  328. spin_lock_irqsave(&timr->it_lock, flags);
  329. if (timr->it.real.interval.tv64 != 0)
  330. si_private = ++timr->it_requeue_pending;
  331. if (posix_timer_event(timr, si_private)) {
  332. /*
  333. * signal was not sent because of sig_ignor
  334. * we will not get a call back to restart it AND
  335. * it should be restarted.
  336. */
  337. if (timr->it.real.interval.tv64 != 0) {
  338. ktime_t now = hrtimer_cb_get_time(timer);
  339. /*
  340. * FIXME: What we really want, is to stop this
  341. * timer completely and restart it in case the
  342. * SIG_IGN is removed. This is a non trivial
  343. * change which involves sighand locking
  344. * (sigh !), which we don't want to do late in
  345. * the release cycle.
  346. *
  347. * For now we just let timers with an interval
  348. * less than a jiffie expire every jiffie to
  349. * avoid softirq starvation in case of SIG_IGN
  350. * and a very small interval, which would put
  351. * the timer right back on the softirq pending
  352. * list. By moving now ahead of time we trick
  353. * hrtimer_forward() to expire the timer
  354. * later, while we still maintain the overrun
  355. * accuracy, but have some inconsistency in
  356. * the timer_gettime() case. This is at least
  357. * better than a starved softirq. A more
  358. * complex fix which solves also another related
  359. * inconsistency is already in the pipeline.
  360. */
  361. #ifdef CONFIG_HIGH_RES_TIMERS
  362. {
  363. ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
  364. if (timr->it.real.interval.tv64 < kj.tv64)
  365. now = ktime_add(now, kj);
  366. }
  367. #endif
  368. timr->it_overrun += (unsigned int)
  369. hrtimer_forward(timer, now,
  370. timr->it.real.interval);
  371. ret = HRTIMER_RESTART;
  372. ++timr->it_requeue_pending;
  373. }
  374. }
  375. unlock_timer(timr, flags);
  376. return ret;
  377. }
  378. static struct pid *good_sigevent(sigevent_t * event)
  379. {
  380. struct task_struct *rtn = current->group_leader;
  381. if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
  382. (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
  383. !same_thread_group(rtn, current) ||
  384. (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
  385. return NULL;
  386. if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
  387. ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
  388. return NULL;
  389. return task_pid(rtn);
  390. }
  391. void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
  392. {
  393. if ((unsigned) clock_id >= MAX_CLOCKS) {
  394. printk("POSIX clock register failed for clock_id %d\n",
  395. clock_id);
  396. return;
  397. }
  398. posix_clocks[clock_id] = *new_clock;
  399. }
  400. EXPORT_SYMBOL_GPL(register_posix_clock);
  401. static struct k_itimer * alloc_posix_timer(void)
  402. {
  403. struct k_itimer *tmr;
  404. tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
  405. if (!tmr)
  406. return tmr;
  407. if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
  408. kmem_cache_free(posix_timers_cache, tmr);
  409. return NULL;
  410. }
  411. memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
  412. return tmr;
  413. }
  414. #define IT_ID_SET 1
  415. #define IT_ID_NOT_SET 0
  416. static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
  417. {
  418. if (it_id_set) {
  419. unsigned long flags;
  420. spin_lock_irqsave(&idr_lock, flags);
  421. idr_remove(&posix_timers_id, tmr->it_id);
  422. spin_unlock_irqrestore(&idr_lock, flags);
  423. }
  424. put_pid(tmr->it_pid);
  425. sigqueue_free(tmr->sigq);
  426. kmem_cache_free(posix_timers_cache, tmr);
  427. }
  428. /* Create a POSIX.1b interval timer. */
  429. SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
  430. struct sigevent __user *, timer_event_spec,
  431. timer_t __user *, created_timer_id)
  432. {
  433. struct k_itimer *new_timer;
  434. int error, new_timer_id;
  435. sigevent_t event;
  436. int it_id_set = IT_ID_NOT_SET;
  437. if (invalid_clockid(which_clock))
  438. return -EINVAL;
  439. new_timer = alloc_posix_timer();
  440. if (unlikely(!new_timer))
  441. return -EAGAIN;
  442. spin_lock_init(&new_timer->it_lock);
  443. retry:
  444. if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
  445. error = -EAGAIN;
  446. goto out;
  447. }
  448. spin_lock_irq(&idr_lock);
  449. error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
  450. spin_unlock_irq(&idr_lock);
  451. if (error) {
  452. if (error == -EAGAIN)
  453. goto retry;
  454. /*
  455. * Weird looking, but we return EAGAIN if the IDR is
  456. * full (proper POSIX return value for this)
  457. */
  458. error = -EAGAIN;
  459. goto out;
  460. }
  461. it_id_set = IT_ID_SET;
  462. new_timer->it_id = (timer_t) new_timer_id;
  463. new_timer->it_clock = which_clock;
  464. new_timer->it_overrun = -1;
  465. error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
  466. if (error)
  467. goto out;
  468. /*
  469. * return the timer_id now. The next step is hard to
  470. * back out if there is an error.
  471. */
  472. if (copy_to_user(created_timer_id,
  473. &new_timer_id, sizeof (new_timer_id))) {
  474. error = -EFAULT;
  475. goto out;
  476. }
  477. if (timer_event_spec) {
  478. if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
  479. error = -EFAULT;
  480. goto out;
  481. }
  482. rcu_read_lock();
  483. new_timer->it_pid = get_pid(good_sigevent(&event));
  484. rcu_read_unlock();
  485. if (!new_timer->it_pid) {
  486. error = -EINVAL;
  487. goto out;
  488. }
  489. } else {
  490. event.sigev_notify = SIGEV_SIGNAL;
  491. event.sigev_signo = SIGALRM;
  492. event.sigev_value.sival_int = new_timer->it_id;
  493. new_timer->it_pid = get_pid(task_tgid(current));
  494. }
  495. new_timer->it_sigev_notify = event.sigev_notify;
  496. new_timer->sigq->info.si_signo = event.sigev_signo;
  497. new_timer->sigq->info.si_value = event.sigev_value;
  498. new_timer->sigq->info.si_tid = new_timer->it_id;
  499. new_timer->sigq->info.si_code = SI_TIMER;
  500. spin_lock_irq(&current->sighand->siglock);
  501. new_timer->it_signal = current->signal;
  502. list_add(&new_timer->list, &current->signal->posix_timers);
  503. spin_unlock_irq(&current->sighand->siglock);
  504. return 0;
  505. /*
  506. * In the case of the timer belonging to another task, after
  507. * the task is unlocked, the timer is owned by the other task
  508. * and may cease to exist at any time. Don't use or modify
  509. * new_timer after the unlock call.
  510. */
  511. out:
  512. release_posix_timer(new_timer, it_id_set);
  513. return error;
  514. }
  515. /*
  516. * Locking issues: We need to protect the result of the id look up until
  517. * we get the timer locked down so it is not deleted under us. The
  518. * removal is done under the idr spinlock so we use that here to bridge
  519. * the find to the timer lock. To avoid a dead lock, the timer id MUST
  520. * be release with out holding the timer lock.
  521. */
  522. static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
  523. {
  524. struct k_itimer *timr;
  525. /*
  526. * Watch out here. We do a irqsave on the idr_lock and pass the
  527. * flags part over to the timer lock. Must not let interrupts in
  528. * while we are moving the lock.
  529. */
  530. spin_lock_irqsave(&idr_lock, *flags);
  531. timr = idr_find(&posix_timers_id, (int)timer_id);
  532. if (timr) {
  533. spin_lock(&timr->it_lock);
  534. if (timr->it_signal == current->signal) {
  535. spin_unlock(&idr_lock);
  536. return timr;
  537. }
  538. spin_unlock(&timr->it_lock);
  539. }
  540. spin_unlock_irqrestore(&idr_lock, *flags);
  541. return NULL;
  542. }
  543. /*
  544. * Get the time remaining on a POSIX.1b interval timer. This function
  545. * is ALWAYS called with spin_lock_irq on the timer, thus it must not
  546. * mess with irq.
  547. *
  548. * We have a couple of messes to clean up here. First there is the case
  549. * of a timer that has a requeue pending. These timers should appear to
  550. * be in the timer list with an expiry as if we were to requeue them
  551. * now.
  552. *
  553. * The second issue is the SIGEV_NONE timer which may be active but is
  554. * not really ever put in the timer list (to save system resources).
  555. * This timer may be expired, and if so, we will do it here. Otherwise
  556. * it is the same as a requeue pending timer WRT to what we should
  557. * report.
  558. */
  559. static void
  560. common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
  561. {
  562. ktime_t now, remaining, iv;
  563. struct hrtimer *timer = &timr->it.real.timer;
  564. memset(cur_setting, 0, sizeof(struct itimerspec));
  565. iv = timr->it.real.interval;
  566. /* interval timer ? */
  567. if (iv.tv64)
  568. cur_setting->it_interval = ktime_to_timespec(iv);
  569. else if (!hrtimer_active(timer) &&
  570. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  571. return;
  572. now = timer->base->get_time();
  573. /*
  574. * When a requeue is pending or this is a SIGEV_NONE
  575. * timer move the expiry time forward by intervals, so
  576. * expiry is > now.
  577. */
  578. if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
  579. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
  580. timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
  581. remaining = ktime_sub(hrtimer_get_expires(timer), now);
  582. /* Return 0 only, when the timer is expired and not pending */
  583. if (remaining.tv64 <= 0) {
  584. /*
  585. * A single shot SIGEV_NONE timer must return 0, when
  586. * it is expired !
  587. */
  588. if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  589. cur_setting->it_value.tv_nsec = 1;
  590. } else
  591. cur_setting->it_value = ktime_to_timespec(remaining);
  592. }
  593. /* Get the time remaining on a POSIX.1b interval timer. */
  594. SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
  595. struct itimerspec __user *, setting)
  596. {
  597. struct k_itimer *timr;
  598. struct itimerspec cur_setting;
  599. unsigned long flags;
  600. timr = lock_timer(timer_id, &flags);
  601. if (!timr)
  602. return -EINVAL;
  603. CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
  604. unlock_timer(timr, flags);
  605. if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
  606. return -EFAULT;
  607. return 0;
  608. }
  609. /*
  610. * Get the number of overruns of a POSIX.1b interval timer. This is to
  611. * be the overrun of the timer last delivered. At the same time we are
  612. * accumulating overruns on the next timer. The overrun is frozen when
  613. * the signal is delivered, either at the notify time (if the info block
  614. * is not queued) or at the actual delivery time (as we are informed by
  615. * the call back to do_schedule_next_timer(). So all we need to do is
  616. * to pick up the frozen overrun.
  617. */
  618. SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
  619. {
  620. struct k_itimer *timr;
  621. int overrun;
  622. unsigned long flags;
  623. timr = lock_timer(timer_id, &flags);
  624. if (!timr)
  625. return -EINVAL;
  626. overrun = timr->it_overrun_last;
  627. unlock_timer(timr, flags);
  628. return overrun;
  629. }
  630. /* Set a POSIX.1b interval timer. */
  631. /* timr->it_lock is taken. */
  632. static int
  633. common_timer_set(struct k_itimer *timr, int flags,
  634. struct itimerspec *new_setting, struct itimerspec *old_setting)
  635. {
  636. struct hrtimer *timer = &timr->it.real.timer;
  637. enum hrtimer_mode mode;
  638. if (old_setting)
  639. common_timer_get(timr, old_setting);
  640. /* disable the timer */
  641. timr->it.real.interval.tv64 = 0;
  642. /*
  643. * careful here. If smp we could be in the "fire" routine which will
  644. * be spinning as we hold the lock. But this is ONLY an SMP issue.
  645. */
  646. if (hrtimer_try_to_cancel(timer) < 0)
  647. return TIMER_RETRY;
  648. timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
  649. ~REQUEUE_PENDING;
  650. timr->it_overrun_last = 0;
  651. /* switch off the timer when it_value is zero */
  652. if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
  653. return 0;
  654. mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
  655. hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
  656. timr->it.real.timer.function = posix_timer_fn;
  657. hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
  658. /* Convert interval */
  659. timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
  660. /* SIGEV_NONE timers are not queued ! See common_timer_get */
  661. if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
  662. /* Setup correct expiry time for relative timers */
  663. if (mode == HRTIMER_MODE_REL) {
  664. hrtimer_add_expires(timer, timer->base->get_time());
  665. }
  666. return 0;
  667. }
  668. hrtimer_start_expires(timer, mode);
  669. return 0;
  670. }
  671. /* Set a POSIX.1b interval timer */
  672. SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
  673. const struct itimerspec __user *, new_setting,
  674. struct itimerspec __user *, old_setting)
  675. {
  676. struct k_itimer *timr;
  677. struct itimerspec new_spec, old_spec;
  678. int error = 0;
  679. unsigned long flag;
  680. struct itimerspec *rtn = old_setting ? &old_spec : NULL;
  681. if (!new_setting)
  682. return -EINVAL;
  683. if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
  684. return -EFAULT;
  685. if (!timespec_valid(&new_spec.it_interval) ||
  686. !timespec_valid(&new_spec.it_value))
  687. return -EINVAL;
  688. retry:
  689. timr = lock_timer(timer_id, &flag);
  690. if (!timr)
  691. return -EINVAL;
  692. error = CLOCK_DISPATCH(timr->it_clock, timer_set,
  693. (timr, flags, &new_spec, rtn));
  694. unlock_timer(timr, flag);
  695. if (error == TIMER_RETRY) {
  696. rtn = NULL; // We already got the old time...
  697. goto retry;
  698. }
  699. if (old_setting && !error &&
  700. copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
  701. error = -EFAULT;
  702. return error;
  703. }
  704. static inline int common_timer_del(struct k_itimer *timer)
  705. {
  706. timer->it.real.interval.tv64 = 0;
  707. if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
  708. return TIMER_RETRY;
  709. return 0;
  710. }
  711. static inline int timer_delete_hook(struct k_itimer *timer)
  712. {
  713. return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
  714. }
  715. /* Delete a POSIX.1b interval timer. */
  716. SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
  717. {
  718. struct k_itimer *timer;
  719. unsigned long flags;
  720. retry_delete:
  721. timer = lock_timer(timer_id, &flags);
  722. if (!timer)
  723. return -EINVAL;
  724. if (timer_delete_hook(timer) == TIMER_RETRY) {
  725. unlock_timer(timer, flags);
  726. goto retry_delete;
  727. }
  728. spin_lock(&current->sighand->siglock);
  729. list_del(&timer->list);
  730. spin_unlock(&current->sighand->siglock);
  731. /*
  732. * This keeps any tasks waiting on the spin lock from thinking
  733. * they got something (see the lock code above).
  734. */
  735. timer->it_signal = NULL;
  736. unlock_timer(timer, flags);
  737. release_posix_timer(timer, IT_ID_SET);
  738. return 0;
  739. }
  740. /*
  741. * return timer owned by the process, used by exit_itimers
  742. */
  743. static void itimer_delete(struct k_itimer *timer)
  744. {
  745. unsigned long flags;
  746. retry_delete:
  747. spin_lock_irqsave(&timer->it_lock, flags);
  748. if (timer_delete_hook(timer) == TIMER_RETRY) {
  749. unlock_timer(timer, flags);
  750. goto retry_delete;
  751. }
  752. list_del(&timer->list);
  753. /*
  754. * This keeps any tasks waiting on the spin lock from thinking
  755. * they got something (see the lock code above).
  756. */
  757. timer->it_signal = NULL;
  758. unlock_timer(timer, flags);
  759. release_posix_timer(timer, IT_ID_SET);
  760. }
  761. /*
  762. * This is called by do_exit or de_thread, only when there are no more
  763. * references to the shared signal_struct.
  764. */
  765. void exit_itimers(struct signal_struct *sig)
  766. {
  767. struct k_itimer *tmr;
  768. while (!list_empty(&sig->posix_timers)) {
  769. tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
  770. itimer_delete(tmr);
  771. }
  772. }
  773. /* Not available / possible... functions */
  774. int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
  775. {
  776. return -EINVAL;
  777. }
  778. EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
  779. int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
  780. struct timespec *t, struct timespec __user *r)
  781. {
  782. #ifndef ENOTSUP
  783. return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
  784. #else /* parisc does define it separately. */
  785. return -ENOTSUP;
  786. #endif
  787. }
  788. EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
  789. SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
  790. const struct timespec __user *, tp)
  791. {
  792. struct timespec new_tp;
  793. if (invalid_clockid(which_clock))
  794. return -EINVAL;
  795. if (copy_from_user(&new_tp, tp, sizeof (*tp)))
  796. return -EFAULT;
  797. return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
  798. }
  799. SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
  800. struct timespec __user *,tp)
  801. {
  802. struct timespec kernel_tp;
  803. int error;
  804. if (invalid_clockid(which_clock))
  805. return -EINVAL;
  806. error = CLOCK_DISPATCH(which_clock, clock_get,
  807. (which_clock, &kernel_tp));
  808. if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
  809. error = -EFAULT;
  810. return error;
  811. }
  812. SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
  813. struct timespec __user *, tp)
  814. {
  815. struct timespec rtn_tp;
  816. int error;
  817. if (invalid_clockid(which_clock))
  818. return -EINVAL;
  819. error = CLOCK_DISPATCH(which_clock, clock_getres,
  820. (which_clock, &rtn_tp));
  821. if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
  822. error = -EFAULT;
  823. }
  824. return error;
  825. }
  826. /*
  827. * nanosleep for monotonic and realtime clocks
  828. */
  829. static int common_nsleep(const clockid_t which_clock, int flags,
  830. struct timespec *tsave, struct timespec __user *rmtp)
  831. {
  832. return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
  833. HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
  834. which_clock);
  835. }
  836. SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
  837. const struct timespec __user *, rqtp,
  838. struct timespec __user *, rmtp)
  839. {
  840. struct timespec t;
  841. if (invalid_clockid(which_clock))
  842. return -EINVAL;
  843. if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
  844. return -EFAULT;
  845. if (!timespec_valid(&t))
  846. return -EINVAL;
  847. return CLOCK_DISPATCH(which_clock, nsleep,
  848. (which_clock, flags, &t, rmtp));
  849. }
  850. /*
  851. * nanosleep_restart for monotonic and realtime clocks
  852. */
  853. static int common_nsleep_restart(struct restart_block *restart_block)
  854. {
  855. return hrtimer_nanosleep_restart(restart_block);
  856. }
  857. /*
  858. * This will restart clock_nanosleep. This is required only by
  859. * compat_clock_nanosleep_restart for now.
  860. */
  861. long
  862. clock_nanosleep_restart(struct restart_block *restart_block)
  863. {
  864. clockid_t which_clock = restart_block->arg0;
  865. return CLOCK_DISPATCH(which_clock, nsleep_restart,
  866. (restart_block));
  867. }