main.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906
  1. /*
  2. * Copyright (c) 2008 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/nl80211.h>
  17. #include "ath9k.h"
  18. #define ATH_PCI_VERSION "0.1"
  19. static char *dev_info = "ath9k";
  20. MODULE_AUTHOR("Atheros Communications");
  21. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  22. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  23. MODULE_LICENSE("Dual BSD/GPL");
  24. static int modparam_nohwcrypt;
  25. module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
  26. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
  27. /* We use the hw_value as an index into our private channel structure */
  28. #define CHAN2G(_freq, _idx) { \
  29. .center_freq = (_freq), \
  30. .hw_value = (_idx), \
  31. .max_power = 30, \
  32. }
  33. #define CHAN5G(_freq, _idx) { \
  34. .band = IEEE80211_BAND_5GHZ, \
  35. .center_freq = (_freq), \
  36. .hw_value = (_idx), \
  37. .max_power = 30, \
  38. }
  39. /* Some 2 GHz radios are actually tunable on 2312-2732
  40. * on 5 MHz steps, we support the channels which we know
  41. * we have calibration data for all cards though to make
  42. * this static */
  43. static struct ieee80211_channel ath9k_2ghz_chantable[] = {
  44. CHAN2G(2412, 0), /* Channel 1 */
  45. CHAN2G(2417, 1), /* Channel 2 */
  46. CHAN2G(2422, 2), /* Channel 3 */
  47. CHAN2G(2427, 3), /* Channel 4 */
  48. CHAN2G(2432, 4), /* Channel 5 */
  49. CHAN2G(2437, 5), /* Channel 6 */
  50. CHAN2G(2442, 6), /* Channel 7 */
  51. CHAN2G(2447, 7), /* Channel 8 */
  52. CHAN2G(2452, 8), /* Channel 9 */
  53. CHAN2G(2457, 9), /* Channel 10 */
  54. CHAN2G(2462, 10), /* Channel 11 */
  55. CHAN2G(2467, 11), /* Channel 12 */
  56. CHAN2G(2472, 12), /* Channel 13 */
  57. CHAN2G(2484, 13), /* Channel 14 */
  58. };
  59. /* Some 5 GHz radios are actually tunable on XXXX-YYYY
  60. * on 5 MHz steps, we support the channels which we know
  61. * we have calibration data for all cards though to make
  62. * this static */
  63. static struct ieee80211_channel ath9k_5ghz_chantable[] = {
  64. /* _We_ call this UNII 1 */
  65. CHAN5G(5180, 14), /* Channel 36 */
  66. CHAN5G(5200, 15), /* Channel 40 */
  67. CHAN5G(5220, 16), /* Channel 44 */
  68. CHAN5G(5240, 17), /* Channel 48 */
  69. /* _We_ call this UNII 2 */
  70. CHAN5G(5260, 18), /* Channel 52 */
  71. CHAN5G(5280, 19), /* Channel 56 */
  72. CHAN5G(5300, 20), /* Channel 60 */
  73. CHAN5G(5320, 21), /* Channel 64 */
  74. /* _We_ call this "Middle band" */
  75. CHAN5G(5500, 22), /* Channel 100 */
  76. CHAN5G(5520, 23), /* Channel 104 */
  77. CHAN5G(5540, 24), /* Channel 108 */
  78. CHAN5G(5560, 25), /* Channel 112 */
  79. CHAN5G(5580, 26), /* Channel 116 */
  80. CHAN5G(5600, 27), /* Channel 120 */
  81. CHAN5G(5620, 28), /* Channel 124 */
  82. CHAN5G(5640, 29), /* Channel 128 */
  83. CHAN5G(5660, 30), /* Channel 132 */
  84. CHAN5G(5680, 31), /* Channel 136 */
  85. CHAN5G(5700, 32), /* Channel 140 */
  86. /* _We_ call this UNII 3 */
  87. CHAN5G(5745, 33), /* Channel 149 */
  88. CHAN5G(5765, 34), /* Channel 153 */
  89. CHAN5G(5785, 35), /* Channel 157 */
  90. CHAN5G(5805, 36), /* Channel 161 */
  91. CHAN5G(5825, 37), /* Channel 165 */
  92. };
  93. static void ath_cache_conf_rate(struct ath_softc *sc,
  94. struct ieee80211_conf *conf)
  95. {
  96. switch (conf->channel->band) {
  97. case IEEE80211_BAND_2GHZ:
  98. if (conf_is_ht20(conf))
  99. sc->cur_rate_table =
  100. sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
  101. else if (conf_is_ht40_minus(conf))
  102. sc->cur_rate_table =
  103. sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
  104. else if (conf_is_ht40_plus(conf))
  105. sc->cur_rate_table =
  106. sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
  107. else
  108. sc->cur_rate_table =
  109. sc->hw_rate_table[ATH9K_MODE_11G];
  110. break;
  111. case IEEE80211_BAND_5GHZ:
  112. if (conf_is_ht20(conf))
  113. sc->cur_rate_table =
  114. sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
  115. else if (conf_is_ht40_minus(conf))
  116. sc->cur_rate_table =
  117. sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
  118. else if (conf_is_ht40_plus(conf))
  119. sc->cur_rate_table =
  120. sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
  121. else
  122. sc->cur_rate_table =
  123. sc->hw_rate_table[ATH9K_MODE_11A];
  124. break;
  125. default:
  126. BUG_ON(1);
  127. break;
  128. }
  129. }
  130. static void ath_update_txpow(struct ath_softc *sc)
  131. {
  132. struct ath_hw *ah = sc->sc_ah;
  133. u32 txpow;
  134. if (sc->curtxpow != sc->config.txpowlimit) {
  135. ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
  136. /* read back in case value is clamped */
  137. ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
  138. sc->curtxpow = txpow;
  139. }
  140. }
  141. static u8 parse_mpdudensity(u8 mpdudensity)
  142. {
  143. /*
  144. * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
  145. * 0 for no restriction
  146. * 1 for 1/4 us
  147. * 2 for 1/2 us
  148. * 3 for 1 us
  149. * 4 for 2 us
  150. * 5 for 4 us
  151. * 6 for 8 us
  152. * 7 for 16 us
  153. */
  154. switch (mpdudensity) {
  155. case 0:
  156. return 0;
  157. case 1:
  158. case 2:
  159. case 3:
  160. /* Our lower layer calculations limit our precision to
  161. 1 microsecond */
  162. return 1;
  163. case 4:
  164. return 2;
  165. case 5:
  166. return 4;
  167. case 6:
  168. return 8;
  169. case 7:
  170. return 16;
  171. default:
  172. return 0;
  173. }
  174. }
  175. static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
  176. {
  177. struct ath_rate_table *rate_table = NULL;
  178. struct ieee80211_supported_band *sband;
  179. struct ieee80211_rate *rate;
  180. int i, maxrates;
  181. switch (band) {
  182. case IEEE80211_BAND_2GHZ:
  183. rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
  184. break;
  185. case IEEE80211_BAND_5GHZ:
  186. rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
  187. break;
  188. default:
  189. break;
  190. }
  191. if (rate_table == NULL)
  192. return;
  193. sband = &sc->sbands[band];
  194. rate = sc->rates[band];
  195. if (rate_table->rate_cnt > ATH_RATE_MAX)
  196. maxrates = ATH_RATE_MAX;
  197. else
  198. maxrates = rate_table->rate_cnt;
  199. for (i = 0; i < maxrates; i++) {
  200. rate[i].bitrate = rate_table->info[i].ratekbps / 100;
  201. rate[i].hw_value = rate_table->info[i].ratecode;
  202. if (rate_table->info[i].short_preamble) {
  203. rate[i].hw_value_short = rate_table->info[i].ratecode |
  204. rate_table->info[i].short_preamble;
  205. rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
  206. }
  207. sband->n_bitrates++;
  208. DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
  209. rate[i].bitrate / 10, rate[i].hw_value);
  210. }
  211. }
  212. /*
  213. * Set/change channels. If the channel is really being changed, it's done
  214. * by reseting the chip. To accomplish this we must first cleanup any pending
  215. * DMA, then restart stuff.
  216. */
  217. int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
  218. struct ath9k_channel *hchan)
  219. {
  220. struct ath_hw *ah = sc->sc_ah;
  221. bool fastcc = true, stopped;
  222. struct ieee80211_channel *channel = hw->conf.channel;
  223. int r;
  224. if (sc->sc_flags & SC_OP_INVALID)
  225. return -EIO;
  226. ath9k_ps_wakeup(sc);
  227. /*
  228. * This is only performed if the channel settings have
  229. * actually changed.
  230. *
  231. * To switch channels clear any pending DMA operations;
  232. * wait long enough for the RX fifo to drain, reset the
  233. * hardware at the new frequency, and then re-enable
  234. * the relevant bits of the h/w.
  235. */
  236. ath9k_hw_set_interrupts(ah, 0);
  237. ath_drain_all_txq(sc, false);
  238. stopped = ath_stoprecv(sc);
  239. /* XXX: do not flush receive queue here. We don't want
  240. * to flush data frames already in queue because of
  241. * changing channel. */
  242. if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
  243. fastcc = false;
  244. DPRINTF(sc, ATH_DBG_CONFIG,
  245. "(%u MHz) -> (%u MHz), chanwidth: %d\n",
  246. sc->sc_ah->curchan->channel,
  247. channel->center_freq, sc->tx_chan_width);
  248. spin_lock_bh(&sc->sc_resetlock);
  249. r = ath9k_hw_reset(ah, hchan, fastcc);
  250. if (r) {
  251. DPRINTF(sc, ATH_DBG_FATAL,
  252. "Unable to reset channel (%u Mhz) "
  253. "reset status %u\n",
  254. channel->center_freq, r);
  255. spin_unlock_bh(&sc->sc_resetlock);
  256. return r;
  257. }
  258. spin_unlock_bh(&sc->sc_resetlock);
  259. sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
  260. sc->sc_flags &= ~SC_OP_FULL_RESET;
  261. if (ath_startrecv(sc) != 0) {
  262. DPRINTF(sc, ATH_DBG_FATAL,
  263. "Unable to restart recv logic\n");
  264. return -EIO;
  265. }
  266. ath_cache_conf_rate(sc, &hw->conf);
  267. ath_update_txpow(sc);
  268. ath9k_hw_set_interrupts(ah, sc->imask);
  269. ath9k_ps_restore(sc);
  270. return 0;
  271. }
  272. /*
  273. * This routine performs the periodic noise floor calibration function
  274. * that is used to adjust and optimize the chip performance. This
  275. * takes environmental changes (location, temperature) into account.
  276. * When the task is complete, it reschedules itself depending on the
  277. * appropriate interval that was calculated.
  278. */
  279. static void ath_ani_calibrate(unsigned long data)
  280. {
  281. struct ath_softc *sc = (struct ath_softc *)data;
  282. struct ath_hw *ah = sc->sc_ah;
  283. bool longcal = false;
  284. bool shortcal = false;
  285. bool aniflag = false;
  286. unsigned int timestamp = jiffies_to_msecs(jiffies);
  287. u32 cal_interval, short_cal_interval;
  288. short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
  289. ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
  290. /*
  291. * don't calibrate when we're scanning.
  292. * we are most likely not on our home channel.
  293. */
  294. if (sc->sc_flags & SC_OP_SCANNING)
  295. goto set_timer;
  296. /* Long calibration runs independently of short calibration. */
  297. if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
  298. longcal = true;
  299. DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
  300. sc->ani.longcal_timer = timestamp;
  301. }
  302. /* Short calibration applies only while caldone is false */
  303. if (!sc->ani.caldone) {
  304. if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
  305. shortcal = true;
  306. DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
  307. sc->ani.shortcal_timer = timestamp;
  308. sc->ani.resetcal_timer = timestamp;
  309. }
  310. } else {
  311. if ((timestamp - sc->ani.resetcal_timer) >=
  312. ATH_RESTART_CALINTERVAL) {
  313. sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
  314. if (sc->ani.caldone)
  315. sc->ani.resetcal_timer = timestamp;
  316. }
  317. }
  318. /* Verify whether we must check ANI */
  319. if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
  320. aniflag = true;
  321. sc->ani.checkani_timer = timestamp;
  322. }
  323. /* Skip all processing if there's nothing to do. */
  324. if (longcal || shortcal || aniflag) {
  325. /* Call ANI routine if necessary */
  326. if (aniflag)
  327. ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
  328. /* Perform calibration if necessary */
  329. if (longcal || shortcal) {
  330. bool iscaldone = false;
  331. if (ath9k_hw_calibrate(ah, ah->curchan,
  332. sc->rx_chainmask, longcal,
  333. &iscaldone)) {
  334. if (longcal)
  335. sc->ani.noise_floor =
  336. ath9k_hw_getchan_noise(ah,
  337. ah->curchan);
  338. DPRINTF(sc, ATH_DBG_ANI,
  339. "calibrate chan %u/%x nf: %d\n",
  340. ah->curchan->channel,
  341. ah->curchan->channelFlags,
  342. sc->ani.noise_floor);
  343. } else {
  344. DPRINTF(sc, ATH_DBG_ANY,
  345. "calibrate chan %u/%x failed\n",
  346. ah->curchan->channel,
  347. ah->curchan->channelFlags);
  348. }
  349. sc->ani.caldone = iscaldone;
  350. }
  351. }
  352. set_timer:
  353. /*
  354. * Set timer interval based on previous results.
  355. * The interval must be the shortest necessary to satisfy ANI,
  356. * short calibration and long calibration.
  357. */
  358. cal_interval = ATH_LONG_CALINTERVAL;
  359. if (sc->sc_ah->config.enable_ani)
  360. cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
  361. if (!sc->ani.caldone)
  362. cal_interval = min(cal_interval, (u32)short_cal_interval);
  363. mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
  364. }
  365. /*
  366. * Update tx/rx chainmask. For legacy association,
  367. * hard code chainmask to 1x1, for 11n association, use
  368. * the chainmask configuration, for bt coexistence, use
  369. * the chainmask configuration even in legacy mode.
  370. */
  371. void ath_update_chainmask(struct ath_softc *sc, int is_ht)
  372. {
  373. sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
  374. if (is_ht ||
  375. (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
  376. sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
  377. sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
  378. } else {
  379. sc->tx_chainmask = 1;
  380. sc->rx_chainmask = 1;
  381. }
  382. DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
  383. sc->tx_chainmask, sc->rx_chainmask);
  384. }
  385. static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
  386. {
  387. struct ath_node *an;
  388. an = (struct ath_node *)sta->drv_priv;
  389. if (sc->sc_flags & SC_OP_TXAGGR)
  390. ath_tx_node_init(sc, an);
  391. an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
  392. sta->ht_cap.ampdu_factor);
  393. an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
  394. }
  395. static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
  396. {
  397. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  398. if (sc->sc_flags & SC_OP_TXAGGR)
  399. ath_tx_node_cleanup(sc, an);
  400. }
  401. static void ath9k_tasklet(unsigned long data)
  402. {
  403. struct ath_softc *sc = (struct ath_softc *)data;
  404. u32 status = sc->intrstatus;
  405. if (status & ATH9K_INT_FATAL) {
  406. /* need a chip reset */
  407. ath_reset(sc, false);
  408. return;
  409. } else {
  410. if (status &
  411. (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
  412. spin_lock_bh(&sc->rx.rxflushlock);
  413. ath_rx_tasklet(sc, 0);
  414. spin_unlock_bh(&sc->rx.rxflushlock);
  415. }
  416. /* XXX: optimize this */
  417. if (status & ATH9K_INT_TX)
  418. ath_tx_tasklet(sc);
  419. }
  420. /* re-enable hardware interrupt */
  421. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  422. }
  423. irqreturn_t ath_isr(int irq, void *dev)
  424. {
  425. struct ath_softc *sc = dev;
  426. struct ath_hw *ah = sc->sc_ah;
  427. enum ath9k_int status;
  428. bool sched = false;
  429. do {
  430. if (sc->sc_flags & SC_OP_INVALID) {
  431. /*
  432. * The hardware is not ready/present, don't
  433. * touch anything. Note this can happen early
  434. * on if the IRQ is shared.
  435. */
  436. return IRQ_NONE;
  437. }
  438. if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
  439. return IRQ_NONE;
  440. }
  441. /*
  442. * Figure out the reason(s) for the interrupt. Note
  443. * that the hal returns a pseudo-ISR that may include
  444. * bits we haven't explicitly enabled so we mask the
  445. * value to insure we only process bits we requested.
  446. */
  447. ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
  448. status &= sc->imask; /* discard unasked-for bits */
  449. /*
  450. * If there are no status bits set, then this interrupt was not
  451. * for me (should have been caught above).
  452. */
  453. if (!status)
  454. return IRQ_NONE;
  455. sc->intrstatus = status;
  456. ath9k_ps_wakeup(sc);
  457. if (status & ATH9K_INT_FATAL) {
  458. /* need a chip reset */
  459. sched = true;
  460. } else if (status & ATH9K_INT_RXORN) {
  461. /* need a chip reset */
  462. sched = true;
  463. } else {
  464. if (status & ATH9K_INT_SWBA) {
  465. /* schedule a tasklet for beacon handling */
  466. tasklet_schedule(&sc->bcon_tasklet);
  467. }
  468. if (status & ATH9K_INT_RXEOL) {
  469. /*
  470. * NB: the hardware should re-read the link when
  471. * RXE bit is written, but it doesn't work
  472. * at least on older hardware revs.
  473. */
  474. sched = true;
  475. }
  476. if (status & ATH9K_INT_TXURN)
  477. /* bump tx trigger level */
  478. ath9k_hw_updatetxtriglevel(ah, true);
  479. /* XXX: optimize this */
  480. if (status & ATH9K_INT_RX)
  481. sched = true;
  482. if (status & ATH9K_INT_TX)
  483. sched = true;
  484. if (status & ATH9K_INT_BMISS)
  485. sched = true;
  486. /* carrier sense timeout */
  487. if (status & ATH9K_INT_CST)
  488. sched = true;
  489. if (status & ATH9K_INT_MIB) {
  490. /*
  491. * Disable interrupts until we service the MIB
  492. * interrupt; otherwise it will continue to
  493. * fire.
  494. */
  495. ath9k_hw_set_interrupts(ah, 0);
  496. /*
  497. * Let the hal handle the event. We assume
  498. * it will clear whatever condition caused
  499. * the interrupt.
  500. */
  501. ath9k_hw_procmibevent(ah, &sc->nodestats);
  502. ath9k_hw_set_interrupts(ah, sc->imask);
  503. }
  504. if (status & ATH9K_INT_TIM_TIMER) {
  505. if (!(ah->caps.hw_caps &
  506. ATH9K_HW_CAP_AUTOSLEEP)) {
  507. /* Clear RxAbort bit so that we can
  508. * receive frames */
  509. ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
  510. ath9k_hw_setrxabort(ah, 0);
  511. sched = true;
  512. sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
  513. }
  514. }
  515. if (status & ATH9K_INT_TSFOOR) {
  516. /* FIXME: Handle this interrupt for power save */
  517. sched = true;
  518. }
  519. }
  520. ath9k_ps_restore(sc);
  521. } while (0);
  522. ath_debug_stat_interrupt(sc, status);
  523. if (sched) {
  524. /* turn off every interrupt except SWBA */
  525. ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
  526. tasklet_schedule(&sc->intr_tq);
  527. }
  528. return IRQ_HANDLED;
  529. }
  530. static u32 ath_get_extchanmode(struct ath_softc *sc,
  531. struct ieee80211_channel *chan,
  532. enum nl80211_channel_type channel_type)
  533. {
  534. u32 chanmode = 0;
  535. switch (chan->band) {
  536. case IEEE80211_BAND_2GHZ:
  537. switch(channel_type) {
  538. case NL80211_CHAN_NO_HT:
  539. case NL80211_CHAN_HT20:
  540. chanmode = CHANNEL_G_HT20;
  541. break;
  542. case NL80211_CHAN_HT40PLUS:
  543. chanmode = CHANNEL_G_HT40PLUS;
  544. break;
  545. case NL80211_CHAN_HT40MINUS:
  546. chanmode = CHANNEL_G_HT40MINUS;
  547. break;
  548. }
  549. break;
  550. case IEEE80211_BAND_5GHZ:
  551. switch(channel_type) {
  552. case NL80211_CHAN_NO_HT:
  553. case NL80211_CHAN_HT20:
  554. chanmode = CHANNEL_A_HT20;
  555. break;
  556. case NL80211_CHAN_HT40PLUS:
  557. chanmode = CHANNEL_A_HT40PLUS;
  558. break;
  559. case NL80211_CHAN_HT40MINUS:
  560. chanmode = CHANNEL_A_HT40MINUS;
  561. break;
  562. }
  563. break;
  564. default:
  565. break;
  566. }
  567. return chanmode;
  568. }
  569. static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
  570. struct ath9k_keyval *hk, const u8 *addr,
  571. bool authenticator)
  572. {
  573. const u8 *key_rxmic;
  574. const u8 *key_txmic;
  575. key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
  576. key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
  577. if (addr == NULL) {
  578. /*
  579. * Group key installation - only two key cache entries are used
  580. * regardless of splitmic capability since group key is only
  581. * used either for TX or RX.
  582. */
  583. if (authenticator) {
  584. memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
  585. memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
  586. } else {
  587. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  588. memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
  589. }
  590. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
  591. }
  592. if (!sc->splitmic) {
  593. /* TX and RX keys share the same key cache entry. */
  594. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  595. memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
  596. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
  597. }
  598. /* Separate key cache entries for TX and RX */
  599. /* TX key goes at first index, RX key at +32. */
  600. memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
  601. if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
  602. /* TX MIC entry failed. No need to proceed further */
  603. DPRINTF(sc, ATH_DBG_KEYCACHE,
  604. "Setting TX MIC Key Failed\n");
  605. return 0;
  606. }
  607. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  608. /* XXX delete tx key on failure? */
  609. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
  610. }
  611. static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
  612. {
  613. int i;
  614. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
  615. if (test_bit(i, sc->keymap) ||
  616. test_bit(i + 64, sc->keymap))
  617. continue; /* At least one part of TKIP key allocated */
  618. if (sc->splitmic &&
  619. (test_bit(i + 32, sc->keymap) ||
  620. test_bit(i + 64 + 32, sc->keymap)))
  621. continue; /* At least one part of TKIP key allocated */
  622. /* Found a free slot for a TKIP key */
  623. return i;
  624. }
  625. return -1;
  626. }
  627. static int ath_reserve_key_cache_slot(struct ath_softc *sc)
  628. {
  629. int i;
  630. /* First, try to find slots that would not be available for TKIP. */
  631. if (sc->splitmic) {
  632. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
  633. if (!test_bit(i, sc->keymap) &&
  634. (test_bit(i + 32, sc->keymap) ||
  635. test_bit(i + 64, sc->keymap) ||
  636. test_bit(i + 64 + 32, sc->keymap)))
  637. return i;
  638. if (!test_bit(i + 32, sc->keymap) &&
  639. (test_bit(i, sc->keymap) ||
  640. test_bit(i + 64, sc->keymap) ||
  641. test_bit(i + 64 + 32, sc->keymap)))
  642. return i + 32;
  643. if (!test_bit(i + 64, sc->keymap) &&
  644. (test_bit(i , sc->keymap) ||
  645. test_bit(i + 32, sc->keymap) ||
  646. test_bit(i + 64 + 32, sc->keymap)))
  647. return i + 64;
  648. if (!test_bit(i + 64 + 32, sc->keymap) &&
  649. (test_bit(i, sc->keymap) ||
  650. test_bit(i + 32, sc->keymap) ||
  651. test_bit(i + 64, sc->keymap)))
  652. return i + 64 + 32;
  653. }
  654. } else {
  655. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
  656. if (!test_bit(i, sc->keymap) &&
  657. test_bit(i + 64, sc->keymap))
  658. return i;
  659. if (test_bit(i, sc->keymap) &&
  660. !test_bit(i + 64, sc->keymap))
  661. return i + 64;
  662. }
  663. }
  664. /* No partially used TKIP slots, pick any available slot */
  665. for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
  666. /* Do not allow slots that could be needed for TKIP group keys
  667. * to be used. This limitation could be removed if we know that
  668. * TKIP will not be used. */
  669. if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
  670. continue;
  671. if (sc->splitmic) {
  672. if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
  673. continue;
  674. if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
  675. continue;
  676. }
  677. if (!test_bit(i, sc->keymap))
  678. return i; /* Found a free slot for a key */
  679. }
  680. /* No free slot found */
  681. return -1;
  682. }
  683. static int ath_key_config(struct ath_softc *sc,
  684. struct ieee80211_vif *vif,
  685. struct ieee80211_sta *sta,
  686. struct ieee80211_key_conf *key)
  687. {
  688. struct ath9k_keyval hk;
  689. const u8 *mac = NULL;
  690. int ret = 0;
  691. int idx;
  692. memset(&hk, 0, sizeof(hk));
  693. switch (key->alg) {
  694. case ALG_WEP:
  695. hk.kv_type = ATH9K_CIPHER_WEP;
  696. break;
  697. case ALG_TKIP:
  698. hk.kv_type = ATH9K_CIPHER_TKIP;
  699. break;
  700. case ALG_CCMP:
  701. hk.kv_type = ATH9K_CIPHER_AES_CCM;
  702. break;
  703. default:
  704. return -EOPNOTSUPP;
  705. }
  706. hk.kv_len = key->keylen;
  707. memcpy(hk.kv_val, key->key, key->keylen);
  708. if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
  709. /* For now, use the default keys for broadcast keys. This may
  710. * need to change with virtual interfaces. */
  711. idx = key->keyidx;
  712. } else if (key->keyidx) {
  713. if (WARN_ON(!sta))
  714. return -EOPNOTSUPP;
  715. mac = sta->addr;
  716. if (vif->type != NL80211_IFTYPE_AP) {
  717. /* Only keyidx 0 should be used with unicast key, but
  718. * allow this for client mode for now. */
  719. idx = key->keyidx;
  720. } else
  721. return -EIO;
  722. } else {
  723. if (WARN_ON(!sta))
  724. return -EOPNOTSUPP;
  725. mac = sta->addr;
  726. if (key->alg == ALG_TKIP)
  727. idx = ath_reserve_key_cache_slot_tkip(sc);
  728. else
  729. idx = ath_reserve_key_cache_slot(sc);
  730. if (idx < 0)
  731. return -ENOSPC; /* no free key cache entries */
  732. }
  733. if (key->alg == ALG_TKIP)
  734. ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
  735. vif->type == NL80211_IFTYPE_AP);
  736. else
  737. ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
  738. if (!ret)
  739. return -EIO;
  740. set_bit(idx, sc->keymap);
  741. if (key->alg == ALG_TKIP) {
  742. set_bit(idx + 64, sc->keymap);
  743. if (sc->splitmic) {
  744. set_bit(idx + 32, sc->keymap);
  745. set_bit(idx + 64 + 32, sc->keymap);
  746. }
  747. }
  748. return idx;
  749. }
  750. static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
  751. {
  752. ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
  753. if (key->hw_key_idx < IEEE80211_WEP_NKID)
  754. return;
  755. clear_bit(key->hw_key_idx, sc->keymap);
  756. if (key->alg != ALG_TKIP)
  757. return;
  758. clear_bit(key->hw_key_idx + 64, sc->keymap);
  759. if (sc->splitmic) {
  760. clear_bit(key->hw_key_idx + 32, sc->keymap);
  761. clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
  762. }
  763. }
  764. static void setup_ht_cap(struct ath_softc *sc,
  765. struct ieee80211_sta_ht_cap *ht_info)
  766. {
  767. #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
  768. #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
  769. ht_info->ht_supported = true;
  770. ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  771. IEEE80211_HT_CAP_SM_PS |
  772. IEEE80211_HT_CAP_SGI_40 |
  773. IEEE80211_HT_CAP_DSSSCCK40;
  774. ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
  775. ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
  776. /* set up supported mcs set */
  777. memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
  778. switch(sc->rx_chainmask) {
  779. case 1:
  780. ht_info->mcs.rx_mask[0] = 0xff;
  781. break;
  782. case 3:
  783. case 5:
  784. case 7:
  785. default:
  786. ht_info->mcs.rx_mask[0] = 0xff;
  787. ht_info->mcs.rx_mask[1] = 0xff;
  788. break;
  789. }
  790. ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
  791. }
  792. static void ath9k_bss_assoc_info(struct ath_softc *sc,
  793. struct ieee80211_vif *vif,
  794. struct ieee80211_bss_conf *bss_conf)
  795. {
  796. struct ath_vif *avp = (void *)vif->drv_priv;
  797. if (bss_conf->assoc) {
  798. DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
  799. bss_conf->aid, sc->curbssid);
  800. /* New association, store aid */
  801. if (avp->av_opmode == NL80211_IFTYPE_STATION) {
  802. sc->curaid = bss_conf->aid;
  803. ath9k_hw_write_associd(sc);
  804. }
  805. /* Configure the beacon */
  806. ath_beacon_config(sc, vif);
  807. /* Reset rssi stats */
  808. sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
  809. sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
  810. sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
  811. sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
  812. /* Start ANI */
  813. mod_timer(&sc->ani.timer,
  814. jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
  815. } else {
  816. DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
  817. sc->curaid = 0;
  818. }
  819. }
  820. /********************************/
  821. /* LED functions */
  822. /********************************/
  823. static void ath_led_blink_work(struct work_struct *work)
  824. {
  825. struct ath_softc *sc = container_of(work, struct ath_softc,
  826. ath_led_blink_work.work);
  827. if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
  828. return;
  829. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
  830. (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
  831. queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
  832. (sc->sc_flags & SC_OP_LED_ON) ?
  833. msecs_to_jiffies(sc->led_off_duration) :
  834. msecs_to_jiffies(sc->led_on_duration));
  835. sc->led_on_duration =
  836. max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25);
  837. sc->led_off_duration =
  838. max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10);
  839. sc->led_on_cnt = sc->led_off_cnt = 0;
  840. if (sc->sc_flags & SC_OP_LED_ON)
  841. sc->sc_flags &= ~SC_OP_LED_ON;
  842. else
  843. sc->sc_flags |= SC_OP_LED_ON;
  844. }
  845. static void ath_led_brightness(struct led_classdev *led_cdev,
  846. enum led_brightness brightness)
  847. {
  848. struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
  849. struct ath_softc *sc = led->sc;
  850. switch (brightness) {
  851. case LED_OFF:
  852. if (led->led_type == ATH_LED_ASSOC ||
  853. led->led_type == ATH_LED_RADIO) {
  854. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
  855. (led->led_type == ATH_LED_RADIO));
  856. sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
  857. if (led->led_type == ATH_LED_RADIO)
  858. sc->sc_flags &= ~SC_OP_LED_ON;
  859. } else {
  860. sc->led_off_cnt++;
  861. }
  862. break;
  863. case LED_FULL:
  864. if (led->led_type == ATH_LED_ASSOC) {
  865. sc->sc_flags |= SC_OP_LED_ASSOCIATED;
  866. queue_delayed_work(sc->hw->workqueue,
  867. &sc->ath_led_blink_work, 0);
  868. } else if (led->led_type == ATH_LED_RADIO) {
  869. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
  870. sc->sc_flags |= SC_OP_LED_ON;
  871. } else {
  872. sc->led_on_cnt++;
  873. }
  874. break;
  875. default:
  876. break;
  877. }
  878. }
  879. static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
  880. char *trigger)
  881. {
  882. int ret;
  883. led->sc = sc;
  884. led->led_cdev.name = led->name;
  885. led->led_cdev.default_trigger = trigger;
  886. led->led_cdev.brightness_set = ath_led_brightness;
  887. ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
  888. if (ret)
  889. DPRINTF(sc, ATH_DBG_FATAL,
  890. "Failed to register led:%s", led->name);
  891. else
  892. led->registered = 1;
  893. return ret;
  894. }
  895. static void ath_unregister_led(struct ath_led *led)
  896. {
  897. if (led->registered) {
  898. led_classdev_unregister(&led->led_cdev);
  899. led->registered = 0;
  900. }
  901. }
  902. static void ath_deinit_leds(struct ath_softc *sc)
  903. {
  904. cancel_delayed_work_sync(&sc->ath_led_blink_work);
  905. ath_unregister_led(&sc->assoc_led);
  906. sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
  907. ath_unregister_led(&sc->tx_led);
  908. ath_unregister_led(&sc->rx_led);
  909. ath_unregister_led(&sc->radio_led);
  910. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
  911. }
  912. static void ath_init_leds(struct ath_softc *sc)
  913. {
  914. char *trigger;
  915. int ret;
  916. /* Configure gpio 1 for output */
  917. ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
  918. AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  919. /* LED off, active low */
  920. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
  921. INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
  922. trigger = ieee80211_get_radio_led_name(sc->hw);
  923. snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
  924. "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
  925. ret = ath_register_led(sc, &sc->radio_led, trigger);
  926. sc->radio_led.led_type = ATH_LED_RADIO;
  927. if (ret)
  928. goto fail;
  929. trigger = ieee80211_get_assoc_led_name(sc->hw);
  930. snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
  931. "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
  932. ret = ath_register_led(sc, &sc->assoc_led, trigger);
  933. sc->assoc_led.led_type = ATH_LED_ASSOC;
  934. if (ret)
  935. goto fail;
  936. trigger = ieee80211_get_tx_led_name(sc->hw);
  937. snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
  938. "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
  939. ret = ath_register_led(sc, &sc->tx_led, trigger);
  940. sc->tx_led.led_type = ATH_LED_TX;
  941. if (ret)
  942. goto fail;
  943. trigger = ieee80211_get_rx_led_name(sc->hw);
  944. snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
  945. "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
  946. ret = ath_register_led(sc, &sc->rx_led, trigger);
  947. sc->rx_led.led_type = ATH_LED_RX;
  948. if (ret)
  949. goto fail;
  950. return;
  951. fail:
  952. ath_deinit_leds(sc);
  953. }
  954. void ath_radio_enable(struct ath_softc *sc)
  955. {
  956. struct ath_hw *ah = sc->sc_ah;
  957. struct ieee80211_channel *channel = sc->hw->conf.channel;
  958. int r;
  959. ath9k_ps_wakeup(sc);
  960. spin_lock_bh(&sc->sc_resetlock);
  961. r = ath9k_hw_reset(ah, ah->curchan, false);
  962. if (r) {
  963. DPRINTF(sc, ATH_DBG_FATAL,
  964. "Unable to reset channel %u (%uMhz) ",
  965. "reset status %u\n",
  966. channel->center_freq, r);
  967. }
  968. spin_unlock_bh(&sc->sc_resetlock);
  969. ath_update_txpow(sc);
  970. if (ath_startrecv(sc) != 0) {
  971. DPRINTF(sc, ATH_DBG_FATAL,
  972. "Unable to restart recv logic\n");
  973. return;
  974. }
  975. if (sc->sc_flags & SC_OP_BEACONS)
  976. ath_beacon_config(sc, NULL); /* restart beacons */
  977. /* Re-Enable interrupts */
  978. ath9k_hw_set_interrupts(ah, sc->imask);
  979. /* Enable LED */
  980. ath9k_hw_cfg_output(ah, ATH_LED_PIN,
  981. AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  982. ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
  983. ieee80211_wake_queues(sc->hw);
  984. ath9k_ps_restore(sc);
  985. }
  986. void ath_radio_disable(struct ath_softc *sc)
  987. {
  988. struct ath_hw *ah = sc->sc_ah;
  989. struct ieee80211_channel *channel = sc->hw->conf.channel;
  990. int r;
  991. ath9k_ps_wakeup(sc);
  992. ieee80211_stop_queues(sc->hw);
  993. /* Disable LED */
  994. ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
  995. ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
  996. /* Disable interrupts */
  997. ath9k_hw_set_interrupts(ah, 0);
  998. ath_drain_all_txq(sc, false); /* clear pending tx frames */
  999. ath_stoprecv(sc); /* turn off frame recv */
  1000. ath_flushrecv(sc); /* flush recv queue */
  1001. spin_lock_bh(&sc->sc_resetlock);
  1002. r = ath9k_hw_reset(ah, ah->curchan, false);
  1003. if (r) {
  1004. DPRINTF(sc, ATH_DBG_FATAL,
  1005. "Unable to reset channel %u (%uMhz) "
  1006. "reset status %u\n",
  1007. channel->center_freq, r);
  1008. }
  1009. spin_unlock_bh(&sc->sc_resetlock);
  1010. ath9k_hw_phy_disable(ah);
  1011. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  1012. ath9k_ps_restore(sc);
  1013. }
  1014. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1015. /*******************/
  1016. /* Rfkill */
  1017. /*******************/
  1018. static bool ath_is_rfkill_set(struct ath_softc *sc)
  1019. {
  1020. struct ath_hw *ah = sc->sc_ah;
  1021. return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
  1022. ah->rfkill_polarity;
  1023. }
  1024. /* h/w rfkill poll function */
  1025. static void ath_rfkill_poll(struct work_struct *work)
  1026. {
  1027. struct ath_softc *sc = container_of(work, struct ath_softc,
  1028. rf_kill.rfkill_poll.work);
  1029. bool radio_on;
  1030. if (sc->sc_flags & SC_OP_INVALID)
  1031. return;
  1032. radio_on = !ath_is_rfkill_set(sc);
  1033. /*
  1034. * enable/disable radio only when there is a
  1035. * state change in RF switch
  1036. */
  1037. if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
  1038. enum rfkill_state state;
  1039. if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
  1040. state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
  1041. : RFKILL_STATE_HARD_BLOCKED;
  1042. } else if (radio_on) {
  1043. ath_radio_enable(sc);
  1044. state = RFKILL_STATE_UNBLOCKED;
  1045. } else {
  1046. ath_radio_disable(sc);
  1047. state = RFKILL_STATE_HARD_BLOCKED;
  1048. }
  1049. if (state == RFKILL_STATE_HARD_BLOCKED)
  1050. sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
  1051. else
  1052. sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
  1053. rfkill_force_state(sc->rf_kill.rfkill, state);
  1054. }
  1055. queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
  1056. msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
  1057. }
  1058. /* s/w rfkill handler */
  1059. static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
  1060. {
  1061. struct ath_softc *sc = data;
  1062. switch (state) {
  1063. case RFKILL_STATE_SOFT_BLOCKED:
  1064. if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
  1065. SC_OP_RFKILL_SW_BLOCKED)))
  1066. ath_radio_disable(sc);
  1067. sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
  1068. return 0;
  1069. case RFKILL_STATE_UNBLOCKED:
  1070. if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
  1071. sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
  1072. if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
  1073. DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
  1074. "radio as it is disabled by h/w\n");
  1075. return -EPERM;
  1076. }
  1077. ath_radio_enable(sc);
  1078. }
  1079. return 0;
  1080. default:
  1081. return -EINVAL;
  1082. }
  1083. }
  1084. /* Init s/w rfkill */
  1085. static int ath_init_sw_rfkill(struct ath_softc *sc)
  1086. {
  1087. sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
  1088. RFKILL_TYPE_WLAN);
  1089. if (!sc->rf_kill.rfkill) {
  1090. DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
  1091. return -ENOMEM;
  1092. }
  1093. snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
  1094. "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
  1095. sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
  1096. sc->rf_kill.rfkill->data = sc;
  1097. sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
  1098. sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
  1099. sc->rf_kill.rfkill->user_claim_unsupported = 1;
  1100. return 0;
  1101. }
  1102. /* Deinitialize rfkill */
  1103. static void ath_deinit_rfkill(struct ath_softc *sc)
  1104. {
  1105. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1106. cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
  1107. if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
  1108. rfkill_unregister(sc->rf_kill.rfkill);
  1109. sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
  1110. sc->rf_kill.rfkill = NULL;
  1111. }
  1112. }
  1113. static int ath_start_rfkill_poll(struct ath_softc *sc)
  1114. {
  1115. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1116. queue_delayed_work(sc->hw->workqueue,
  1117. &sc->rf_kill.rfkill_poll, 0);
  1118. if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
  1119. if (rfkill_register(sc->rf_kill.rfkill)) {
  1120. DPRINTF(sc, ATH_DBG_FATAL,
  1121. "Unable to register rfkill\n");
  1122. rfkill_free(sc->rf_kill.rfkill);
  1123. /* Deinitialize the device */
  1124. ath_cleanup(sc);
  1125. return -EIO;
  1126. } else {
  1127. sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
  1128. }
  1129. }
  1130. return 0;
  1131. }
  1132. #endif /* CONFIG_RFKILL */
  1133. void ath_cleanup(struct ath_softc *sc)
  1134. {
  1135. ath_detach(sc);
  1136. free_irq(sc->irq, sc);
  1137. ath_bus_cleanup(sc);
  1138. kfree(sc->sec_wiphy);
  1139. ieee80211_free_hw(sc->hw);
  1140. }
  1141. void ath_detach(struct ath_softc *sc)
  1142. {
  1143. struct ieee80211_hw *hw = sc->hw;
  1144. int i = 0;
  1145. ath9k_ps_wakeup(sc);
  1146. DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
  1147. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1148. ath_deinit_rfkill(sc);
  1149. #endif
  1150. ath_deinit_leds(sc);
  1151. cancel_work_sync(&sc->chan_work);
  1152. cancel_delayed_work_sync(&sc->wiphy_work);
  1153. for (i = 0; i < sc->num_sec_wiphy; i++) {
  1154. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  1155. if (aphy == NULL)
  1156. continue;
  1157. sc->sec_wiphy[i] = NULL;
  1158. ieee80211_unregister_hw(aphy->hw);
  1159. ieee80211_free_hw(aphy->hw);
  1160. }
  1161. ieee80211_unregister_hw(hw);
  1162. ath_rx_cleanup(sc);
  1163. ath_tx_cleanup(sc);
  1164. tasklet_kill(&sc->intr_tq);
  1165. tasklet_kill(&sc->bcon_tasklet);
  1166. if (!(sc->sc_flags & SC_OP_INVALID))
  1167. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
  1168. /* cleanup tx queues */
  1169. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1170. if (ATH_TXQ_SETUP(sc, i))
  1171. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1172. ath9k_hw_detach(sc->sc_ah);
  1173. ath9k_exit_debug(sc);
  1174. ath9k_ps_restore(sc);
  1175. }
  1176. static int ath_init(u16 devid, struct ath_softc *sc)
  1177. {
  1178. struct ath_hw *ah = NULL;
  1179. int status;
  1180. int error = 0, i;
  1181. int csz = 0;
  1182. /* XXX: hardware will not be ready until ath_open() being called */
  1183. sc->sc_flags |= SC_OP_INVALID;
  1184. if (ath9k_init_debug(sc) < 0)
  1185. printk(KERN_ERR "Unable to create debugfs files\n");
  1186. spin_lock_init(&sc->wiphy_lock);
  1187. spin_lock_init(&sc->sc_resetlock);
  1188. spin_lock_init(&sc->sc_serial_rw);
  1189. mutex_init(&sc->mutex);
  1190. tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
  1191. tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
  1192. (unsigned long)sc);
  1193. /*
  1194. * Cache line size is used to size and align various
  1195. * structures used to communicate with the hardware.
  1196. */
  1197. ath_read_cachesize(sc, &csz);
  1198. /* XXX assert csz is non-zero */
  1199. sc->cachelsz = csz << 2; /* convert to bytes */
  1200. ah = ath9k_hw_attach(devid, sc, &status);
  1201. if (ah == NULL) {
  1202. DPRINTF(sc, ATH_DBG_FATAL,
  1203. "Unable to attach hardware; HAL status %d\n", status);
  1204. error = -ENXIO;
  1205. goto bad;
  1206. }
  1207. sc->sc_ah = ah;
  1208. /* Get the hardware key cache size. */
  1209. sc->keymax = ah->caps.keycache_size;
  1210. if (sc->keymax > ATH_KEYMAX) {
  1211. DPRINTF(sc, ATH_DBG_KEYCACHE,
  1212. "Warning, using only %u entries in %u key cache\n",
  1213. ATH_KEYMAX, sc->keymax);
  1214. sc->keymax = ATH_KEYMAX;
  1215. }
  1216. /*
  1217. * Reset the key cache since some parts do not
  1218. * reset the contents on initial power up.
  1219. */
  1220. for (i = 0; i < sc->keymax; i++)
  1221. ath9k_hw_keyreset(ah, (u16) i);
  1222. if (ath9k_regd_init(sc->sc_ah))
  1223. goto bad;
  1224. /* default to MONITOR mode */
  1225. sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
  1226. /* Setup rate tables */
  1227. ath_rate_attach(sc);
  1228. ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
  1229. ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
  1230. /*
  1231. * Allocate hardware transmit queues: one queue for
  1232. * beacon frames and one data queue for each QoS
  1233. * priority. Note that the hal handles reseting
  1234. * these queues at the needed time.
  1235. */
  1236. sc->beacon.beaconq = ath_beaconq_setup(ah);
  1237. if (sc->beacon.beaconq == -1) {
  1238. DPRINTF(sc, ATH_DBG_FATAL,
  1239. "Unable to setup a beacon xmit queue\n");
  1240. error = -EIO;
  1241. goto bad2;
  1242. }
  1243. sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
  1244. if (sc->beacon.cabq == NULL) {
  1245. DPRINTF(sc, ATH_DBG_FATAL,
  1246. "Unable to setup CAB xmit queue\n");
  1247. error = -EIO;
  1248. goto bad2;
  1249. }
  1250. sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
  1251. ath_cabq_update(sc);
  1252. for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
  1253. sc->tx.hwq_map[i] = -1;
  1254. /* Setup data queues */
  1255. /* NB: ensure BK queue is the lowest priority h/w queue */
  1256. if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
  1257. DPRINTF(sc, ATH_DBG_FATAL,
  1258. "Unable to setup xmit queue for BK traffic\n");
  1259. error = -EIO;
  1260. goto bad2;
  1261. }
  1262. if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
  1263. DPRINTF(sc, ATH_DBG_FATAL,
  1264. "Unable to setup xmit queue for BE traffic\n");
  1265. error = -EIO;
  1266. goto bad2;
  1267. }
  1268. if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
  1269. DPRINTF(sc, ATH_DBG_FATAL,
  1270. "Unable to setup xmit queue for VI traffic\n");
  1271. error = -EIO;
  1272. goto bad2;
  1273. }
  1274. if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
  1275. DPRINTF(sc, ATH_DBG_FATAL,
  1276. "Unable to setup xmit queue for VO traffic\n");
  1277. error = -EIO;
  1278. goto bad2;
  1279. }
  1280. /* Initializes the noise floor to a reasonable default value.
  1281. * Later on this will be updated during ANI processing. */
  1282. sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
  1283. setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
  1284. if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1285. ATH9K_CIPHER_TKIP, NULL)) {
  1286. /*
  1287. * Whether we should enable h/w TKIP MIC.
  1288. * XXX: if we don't support WME TKIP MIC, then we wouldn't
  1289. * report WMM capable, so it's always safe to turn on
  1290. * TKIP MIC in this case.
  1291. */
  1292. ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
  1293. 0, 1, NULL);
  1294. }
  1295. /*
  1296. * Check whether the separate key cache entries
  1297. * are required to handle both tx+rx MIC keys.
  1298. * With split mic keys the number of stations is limited
  1299. * to 27 otherwise 59.
  1300. */
  1301. if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1302. ATH9K_CIPHER_TKIP, NULL)
  1303. && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1304. ATH9K_CIPHER_MIC, NULL)
  1305. && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
  1306. 0, NULL))
  1307. sc->splitmic = 1;
  1308. /* turn on mcast key search if possible */
  1309. if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
  1310. (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
  1311. 1, NULL);
  1312. sc->config.txpowlimit = ATH_TXPOWER_MAX;
  1313. /* 11n Capabilities */
  1314. if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  1315. sc->sc_flags |= SC_OP_TXAGGR;
  1316. sc->sc_flags |= SC_OP_RXAGGR;
  1317. }
  1318. sc->tx_chainmask = ah->caps.tx_chainmask;
  1319. sc->rx_chainmask = ah->caps.rx_chainmask;
  1320. ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
  1321. sc->rx.defant = ath9k_hw_getdefantenna(ah);
  1322. if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  1323. memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
  1324. sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
  1325. /* initialize beacon slots */
  1326. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  1327. sc->beacon.bslot[i] = NULL;
  1328. sc->beacon.bslot_aphy[i] = NULL;
  1329. }
  1330. /* save MISC configurations */
  1331. sc->config.swBeaconProcess = 1;
  1332. /* setup channels and rates */
  1333. sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
  1334. sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
  1335. sc->rates[IEEE80211_BAND_2GHZ];
  1336. sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
  1337. sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
  1338. ARRAY_SIZE(ath9k_2ghz_chantable);
  1339. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
  1340. sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
  1341. sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
  1342. sc->rates[IEEE80211_BAND_5GHZ];
  1343. sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
  1344. sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
  1345. ARRAY_SIZE(ath9k_5ghz_chantable);
  1346. }
  1347. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
  1348. ath9k_hw_btcoex_enable(sc->sc_ah);
  1349. return 0;
  1350. bad2:
  1351. /* cleanup tx queues */
  1352. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1353. if (ATH_TXQ_SETUP(sc, i))
  1354. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1355. bad:
  1356. if (ah)
  1357. ath9k_hw_detach(ah);
  1358. ath9k_exit_debug(sc);
  1359. return error;
  1360. }
  1361. void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
  1362. {
  1363. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  1364. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1365. IEEE80211_HW_SIGNAL_DBM |
  1366. IEEE80211_HW_AMPDU_AGGREGATION |
  1367. IEEE80211_HW_SUPPORTS_PS |
  1368. IEEE80211_HW_PS_NULLFUNC_STACK |
  1369. IEEE80211_HW_SPECTRUM_MGMT;
  1370. if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
  1371. hw->flags |= IEEE80211_HW_MFP_CAPABLE;
  1372. hw->wiphy->interface_modes =
  1373. BIT(NL80211_IFTYPE_AP) |
  1374. BIT(NL80211_IFTYPE_STATION) |
  1375. BIT(NL80211_IFTYPE_ADHOC);
  1376. hw->wiphy->reg_notifier = ath9k_reg_notifier;
  1377. hw->wiphy->strict_regulatory = true;
  1378. hw->queues = 4;
  1379. hw->max_rates = 4;
  1380. hw->channel_change_time = 5000;
  1381. hw->max_listen_interval = 10;
  1382. hw->max_rate_tries = ATH_11N_TXMAXTRY;
  1383. hw->sta_data_size = sizeof(struct ath_node);
  1384. hw->vif_data_size = sizeof(struct ath_vif);
  1385. hw->rate_control_algorithm = "ath9k_rate_control";
  1386. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  1387. &sc->sbands[IEEE80211_BAND_2GHZ];
  1388. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  1389. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  1390. &sc->sbands[IEEE80211_BAND_5GHZ];
  1391. }
  1392. int ath_attach(u16 devid, struct ath_softc *sc)
  1393. {
  1394. struct ieee80211_hw *hw = sc->hw;
  1395. const struct ieee80211_regdomain *regd;
  1396. int error = 0, i;
  1397. DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
  1398. error = ath_init(devid, sc);
  1399. if (error != 0)
  1400. return error;
  1401. /* get mac address from hardware and set in mac80211 */
  1402. SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
  1403. ath_set_hw_capab(sc, hw);
  1404. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  1405. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
  1406. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  1407. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
  1408. }
  1409. /* initialize tx/rx engine */
  1410. error = ath_tx_init(sc, ATH_TXBUF);
  1411. if (error != 0)
  1412. goto error_attach;
  1413. error = ath_rx_init(sc, ATH_RXBUF);
  1414. if (error != 0)
  1415. goto error_attach;
  1416. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1417. /* Initialze h/w Rfkill */
  1418. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1419. INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
  1420. /* Initialize s/w rfkill */
  1421. error = ath_init_sw_rfkill(sc);
  1422. if (error)
  1423. goto error_attach;
  1424. #endif
  1425. if (ath9k_is_world_regd(sc->sc_ah)) {
  1426. /* Anything applied here (prior to wiphy registration) gets
  1427. * saved on the wiphy orig_* parameters */
  1428. regd = ath9k_world_regdomain(sc->sc_ah);
  1429. hw->wiphy->custom_regulatory = true;
  1430. hw->wiphy->strict_regulatory = false;
  1431. } else {
  1432. /* This gets applied in the case of the absense of CRDA,
  1433. * it's our own custom world regulatory domain, similar to
  1434. * cfg80211's but we enable passive scanning */
  1435. regd = ath9k_default_world_regdomain();
  1436. }
  1437. wiphy_apply_custom_regulatory(hw->wiphy, regd);
  1438. ath9k_reg_apply_radar_flags(hw->wiphy);
  1439. ath9k_reg_apply_world_flags(hw->wiphy, NL80211_REGDOM_SET_BY_DRIVER);
  1440. INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
  1441. INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
  1442. sc->wiphy_scheduler_int = msecs_to_jiffies(500);
  1443. error = ieee80211_register_hw(hw);
  1444. if (!ath9k_is_world_regd(sc->sc_ah)) {
  1445. error = regulatory_hint(hw->wiphy,
  1446. sc->sc_ah->regulatory.alpha2);
  1447. if (error)
  1448. goto error_attach;
  1449. }
  1450. /* Initialize LED control */
  1451. ath_init_leds(sc);
  1452. return 0;
  1453. error_attach:
  1454. /* cleanup tx queues */
  1455. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1456. if (ATH_TXQ_SETUP(sc, i))
  1457. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1458. ath9k_hw_detach(sc->sc_ah);
  1459. ath9k_exit_debug(sc);
  1460. return error;
  1461. }
  1462. int ath_reset(struct ath_softc *sc, bool retry_tx)
  1463. {
  1464. struct ath_hw *ah = sc->sc_ah;
  1465. struct ieee80211_hw *hw = sc->hw;
  1466. int r;
  1467. ath9k_hw_set_interrupts(ah, 0);
  1468. ath_drain_all_txq(sc, retry_tx);
  1469. ath_stoprecv(sc);
  1470. ath_flushrecv(sc);
  1471. spin_lock_bh(&sc->sc_resetlock);
  1472. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
  1473. if (r)
  1474. DPRINTF(sc, ATH_DBG_FATAL,
  1475. "Unable to reset hardware; reset status %u\n", r);
  1476. spin_unlock_bh(&sc->sc_resetlock);
  1477. if (ath_startrecv(sc) != 0)
  1478. DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
  1479. /*
  1480. * We may be doing a reset in response to a request
  1481. * that changes the channel so update any state that
  1482. * might change as a result.
  1483. */
  1484. ath_cache_conf_rate(sc, &hw->conf);
  1485. ath_update_txpow(sc);
  1486. if (sc->sc_flags & SC_OP_BEACONS)
  1487. ath_beacon_config(sc, NULL); /* restart beacons */
  1488. ath9k_hw_set_interrupts(ah, sc->imask);
  1489. if (retry_tx) {
  1490. int i;
  1491. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1492. if (ATH_TXQ_SETUP(sc, i)) {
  1493. spin_lock_bh(&sc->tx.txq[i].axq_lock);
  1494. ath_txq_schedule(sc, &sc->tx.txq[i]);
  1495. spin_unlock_bh(&sc->tx.txq[i].axq_lock);
  1496. }
  1497. }
  1498. }
  1499. return r;
  1500. }
  1501. /*
  1502. * This function will allocate both the DMA descriptor structure, and the
  1503. * buffers it contains. These are used to contain the descriptors used
  1504. * by the system.
  1505. */
  1506. int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
  1507. struct list_head *head, const char *name,
  1508. int nbuf, int ndesc)
  1509. {
  1510. #define DS2PHYS(_dd, _ds) \
  1511. ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
  1512. #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
  1513. #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
  1514. struct ath_desc *ds;
  1515. struct ath_buf *bf;
  1516. int i, bsize, error;
  1517. DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
  1518. name, nbuf, ndesc);
  1519. INIT_LIST_HEAD(head);
  1520. /* ath_desc must be a multiple of DWORDs */
  1521. if ((sizeof(struct ath_desc) % 4) != 0) {
  1522. DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
  1523. ASSERT((sizeof(struct ath_desc) % 4) == 0);
  1524. error = -ENOMEM;
  1525. goto fail;
  1526. }
  1527. dd->dd_name = name;
  1528. dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
  1529. /*
  1530. * Need additional DMA memory because we can't use
  1531. * descriptors that cross the 4K page boundary. Assume
  1532. * one skipped descriptor per 4K page.
  1533. */
  1534. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  1535. u32 ndesc_skipped =
  1536. ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
  1537. u32 dma_len;
  1538. while (ndesc_skipped) {
  1539. dma_len = ndesc_skipped * sizeof(struct ath_desc);
  1540. dd->dd_desc_len += dma_len;
  1541. ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
  1542. };
  1543. }
  1544. /* allocate descriptors */
  1545. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1546. &dd->dd_desc_paddr, GFP_KERNEL);
  1547. if (dd->dd_desc == NULL) {
  1548. error = -ENOMEM;
  1549. goto fail;
  1550. }
  1551. ds = dd->dd_desc;
  1552. DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
  1553. dd->dd_name, ds, (u32) dd->dd_desc_len,
  1554. ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
  1555. /* allocate buffers */
  1556. bsize = sizeof(struct ath_buf) * nbuf;
  1557. bf = kzalloc(bsize, GFP_KERNEL);
  1558. if (bf == NULL) {
  1559. error = -ENOMEM;
  1560. goto fail2;
  1561. }
  1562. dd->dd_bufptr = bf;
  1563. for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
  1564. bf->bf_desc = ds;
  1565. bf->bf_daddr = DS2PHYS(dd, ds);
  1566. if (!(sc->sc_ah->caps.hw_caps &
  1567. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  1568. /*
  1569. * Skip descriptor addresses which can cause 4KB
  1570. * boundary crossing (addr + length) with a 32 dword
  1571. * descriptor fetch.
  1572. */
  1573. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  1574. ASSERT((caddr_t) bf->bf_desc <
  1575. ((caddr_t) dd->dd_desc +
  1576. dd->dd_desc_len));
  1577. ds += ndesc;
  1578. bf->bf_desc = ds;
  1579. bf->bf_daddr = DS2PHYS(dd, ds);
  1580. }
  1581. }
  1582. list_add_tail(&bf->list, head);
  1583. }
  1584. return 0;
  1585. fail2:
  1586. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1587. dd->dd_desc_paddr);
  1588. fail:
  1589. memset(dd, 0, sizeof(*dd));
  1590. return error;
  1591. #undef ATH_DESC_4KB_BOUND_CHECK
  1592. #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
  1593. #undef DS2PHYS
  1594. }
  1595. void ath_descdma_cleanup(struct ath_softc *sc,
  1596. struct ath_descdma *dd,
  1597. struct list_head *head)
  1598. {
  1599. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1600. dd->dd_desc_paddr);
  1601. INIT_LIST_HEAD(head);
  1602. kfree(dd->dd_bufptr);
  1603. memset(dd, 0, sizeof(*dd));
  1604. }
  1605. int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
  1606. {
  1607. int qnum;
  1608. switch (queue) {
  1609. case 0:
  1610. qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
  1611. break;
  1612. case 1:
  1613. qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
  1614. break;
  1615. case 2:
  1616. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
  1617. break;
  1618. case 3:
  1619. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
  1620. break;
  1621. default:
  1622. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
  1623. break;
  1624. }
  1625. return qnum;
  1626. }
  1627. int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
  1628. {
  1629. int qnum;
  1630. switch (queue) {
  1631. case ATH9K_WME_AC_VO:
  1632. qnum = 0;
  1633. break;
  1634. case ATH9K_WME_AC_VI:
  1635. qnum = 1;
  1636. break;
  1637. case ATH9K_WME_AC_BE:
  1638. qnum = 2;
  1639. break;
  1640. case ATH9K_WME_AC_BK:
  1641. qnum = 3;
  1642. break;
  1643. default:
  1644. qnum = -1;
  1645. break;
  1646. }
  1647. return qnum;
  1648. }
  1649. /* XXX: Remove me once we don't depend on ath9k_channel for all
  1650. * this redundant data */
  1651. void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
  1652. struct ath9k_channel *ichan)
  1653. {
  1654. struct ieee80211_channel *chan = hw->conf.channel;
  1655. struct ieee80211_conf *conf = &hw->conf;
  1656. ichan->channel = chan->center_freq;
  1657. ichan->chan = chan;
  1658. if (chan->band == IEEE80211_BAND_2GHZ) {
  1659. ichan->chanmode = CHANNEL_G;
  1660. ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
  1661. } else {
  1662. ichan->chanmode = CHANNEL_A;
  1663. ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
  1664. }
  1665. sc->tx_chan_width = ATH9K_HT_MACMODE_20;
  1666. if (conf_is_ht(conf)) {
  1667. if (conf_is_ht40(conf))
  1668. sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
  1669. ichan->chanmode = ath_get_extchanmode(sc, chan,
  1670. conf->channel_type);
  1671. }
  1672. }
  1673. /**********************/
  1674. /* mac80211 callbacks */
  1675. /**********************/
  1676. static int ath9k_start(struct ieee80211_hw *hw)
  1677. {
  1678. struct ath_wiphy *aphy = hw->priv;
  1679. struct ath_softc *sc = aphy->sc;
  1680. struct ieee80211_channel *curchan = hw->conf.channel;
  1681. struct ath9k_channel *init_channel;
  1682. int r, pos;
  1683. DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
  1684. "initial channel: %d MHz\n", curchan->center_freq);
  1685. mutex_lock(&sc->mutex);
  1686. if (ath9k_wiphy_started(sc)) {
  1687. if (sc->chan_idx == curchan->hw_value) {
  1688. /*
  1689. * Already on the operational channel, the new wiphy
  1690. * can be marked active.
  1691. */
  1692. aphy->state = ATH_WIPHY_ACTIVE;
  1693. ieee80211_wake_queues(hw);
  1694. } else {
  1695. /*
  1696. * Another wiphy is on another channel, start the new
  1697. * wiphy in paused state.
  1698. */
  1699. aphy->state = ATH_WIPHY_PAUSED;
  1700. ieee80211_stop_queues(hw);
  1701. }
  1702. mutex_unlock(&sc->mutex);
  1703. return 0;
  1704. }
  1705. aphy->state = ATH_WIPHY_ACTIVE;
  1706. /* setup initial channel */
  1707. pos = curchan->hw_value;
  1708. sc->chan_idx = pos;
  1709. init_channel = &sc->sc_ah->channels[pos];
  1710. ath9k_update_ichannel(sc, hw, init_channel);
  1711. /* Reset SERDES registers */
  1712. ath9k_hw_configpcipowersave(sc->sc_ah, 0);
  1713. /*
  1714. * The basic interface to setting the hardware in a good
  1715. * state is ``reset''. On return the hardware is known to
  1716. * be powered up and with interrupts disabled. This must
  1717. * be followed by initialization of the appropriate bits
  1718. * and then setup of the interrupt mask.
  1719. */
  1720. spin_lock_bh(&sc->sc_resetlock);
  1721. r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
  1722. if (r) {
  1723. DPRINTF(sc, ATH_DBG_FATAL,
  1724. "Unable to reset hardware; reset status %u "
  1725. "(freq %u MHz)\n", r,
  1726. curchan->center_freq);
  1727. spin_unlock_bh(&sc->sc_resetlock);
  1728. goto mutex_unlock;
  1729. }
  1730. spin_unlock_bh(&sc->sc_resetlock);
  1731. /*
  1732. * This is needed only to setup initial state
  1733. * but it's best done after a reset.
  1734. */
  1735. ath_update_txpow(sc);
  1736. /*
  1737. * Setup the hardware after reset:
  1738. * The receive engine is set going.
  1739. * Frame transmit is handled entirely
  1740. * in the frame output path; there's nothing to do
  1741. * here except setup the interrupt mask.
  1742. */
  1743. if (ath_startrecv(sc) != 0) {
  1744. DPRINTF(sc, ATH_DBG_FATAL,
  1745. "Unable to start recv logic\n");
  1746. r = -EIO;
  1747. goto mutex_unlock;
  1748. }
  1749. /* Setup our intr mask. */
  1750. sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
  1751. | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
  1752. | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
  1753. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
  1754. sc->imask |= ATH9K_INT_GTT;
  1755. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1756. sc->imask |= ATH9K_INT_CST;
  1757. ath_cache_conf_rate(sc, &hw->conf);
  1758. sc->sc_flags &= ~SC_OP_INVALID;
  1759. /* Disable BMISS interrupt when we're not associated */
  1760. sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
  1761. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  1762. ieee80211_wake_queues(hw);
  1763. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1764. r = ath_start_rfkill_poll(sc);
  1765. #endif
  1766. mutex_unlock:
  1767. mutex_unlock(&sc->mutex);
  1768. return r;
  1769. }
  1770. static int ath9k_tx(struct ieee80211_hw *hw,
  1771. struct sk_buff *skb)
  1772. {
  1773. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1774. struct ath_wiphy *aphy = hw->priv;
  1775. struct ath_softc *sc = aphy->sc;
  1776. struct ath_tx_control txctl;
  1777. int hdrlen, padsize;
  1778. if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
  1779. printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
  1780. "%d\n", wiphy_name(hw->wiphy), aphy->state);
  1781. goto exit;
  1782. }
  1783. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1784. /*
  1785. * As a temporary workaround, assign seq# here; this will likely need
  1786. * to be cleaned up to work better with Beacon transmission and virtual
  1787. * BSSes.
  1788. */
  1789. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1790. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1791. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1792. sc->tx.seq_no += 0x10;
  1793. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1794. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1795. }
  1796. /* Add the padding after the header if this is not already done */
  1797. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1798. if (hdrlen & 3) {
  1799. padsize = hdrlen % 4;
  1800. if (skb_headroom(skb) < padsize)
  1801. return -1;
  1802. skb_push(skb, padsize);
  1803. memmove(skb->data, skb->data + padsize, hdrlen);
  1804. }
  1805. /* Check if a tx queue is available */
  1806. txctl.txq = ath_test_get_txq(sc, skb);
  1807. if (!txctl.txq)
  1808. goto exit;
  1809. DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
  1810. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1811. DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
  1812. goto exit;
  1813. }
  1814. return 0;
  1815. exit:
  1816. dev_kfree_skb_any(skb);
  1817. return 0;
  1818. }
  1819. static void ath9k_stop(struct ieee80211_hw *hw)
  1820. {
  1821. struct ath_wiphy *aphy = hw->priv;
  1822. struct ath_softc *sc = aphy->sc;
  1823. aphy->state = ATH_WIPHY_INACTIVE;
  1824. if (sc->sc_flags & SC_OP_INVALID) {
  1825. DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
  1826. return;
  1827. }
  1828. mutex_lock(&sc->mutex);
  1829. ieee80211_stop_queues(hw);
  1830. if (ath9k_wiphy_started(sc)) {
  1831. mutex_unlock(&sc->mutex);
  1832. return; /* another wiphy still in use */
  1833. }
  1834. /* make sure h/w will not generate any interrupt
  1835. * before setting the invalid flag. */
  1836. ath9k_hw_set_interrupts(sc->sc_ah, 0);
  1837. if (!(sc->sc_flags & SC_OP_INVALID)) {
  1838. ath_drain_all_txq(sc, false);
  1839. ath_stoprecv(sc);
  1840. ath9k_hw_phy_disable(sc->sc_ah);
  1841. } else
  1842. sc->rx.rxlink = NULL;
  1843. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1844. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1845. cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
  1846. #endif
  1847. /* disable HAL and put h/w to sleep */
  1848. ath9k_hw_disable(sc->sc_ah);
  1849. ath9k_hw_configpcipowersave(sc->sc_ah, 1);
  1850. sc->sc_flags |= SC_OP_INVALID;
  1851. mutex_unlock(&sc->mutex);
  1852. DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
  1853. }
  1854. static int ath9k_add_interface(struct ieee80211_hw *hw,
  1855. struct ieee80211_if_init_conf *conf)
  1856. {
  1857. struct ath_wiphy *aphy = hw->priv;
  1858. struct ath_softc *sc = aphy->sc;
  1859. struct ath_vif *avp = (void *)conf->vif->drv_priv;
  1860. enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
  1861. int ret = 0;
  1862. mutex_lock(&sc->mutex);
  1863. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
  1864. sc->nvifs > 0) {
  1865. ret = -ENOBUFS;
  1866. goto out;
  1867. }
  1868. switch (conf->type) {
  1869. case NL80211_IFTYPE_STATION:
  1870. ic_opmode = NL80211_IFTYPE_STATION;
  1871. break;
  1872. case NL80211_IFTYPE_ADHOC:
  1873. if (sc->nbcnvifs >= ATH_BCBUF) {
  1874. ret = -ENOBUFS;
  1875. goto out;
  1876. }
  1877. ic_opmode = NL80211_IFTYPE_ADHOC;
  1878. break;
  1879. case NL80211_IFTYPE_AP:
  1880. if (sc->nbcnvifs >= ATH_BCBUF) {
  1881. ret = -ENOBUFS;
  1882. goto out;
  1883. }
  1884. ic_opmode = NL80211_IFTYPE_AP;
  1885. break;
  1886. default:
  1887. DPRINTF(sc, ATH_DBG_FATAL,
  1888. "Interface type %d not yet supported\n", conf->type);
  1889. ret = -EOPNOTSUPP;
  1890. goto out;
  1891. }
  1892. DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
  1893. /* Set the VIF opmode */
  1894. avp->av_opmode = ic_opmode;
  1895. avp->av_bslot = -1;
  1896. sc->nvifs++;
  1897. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  1898. ath9k_set_bssid_mask(hw);
  1899. if (sc->nvifs > 1)
  1900. goto out; /* skip global settings for secondary vif */
  1901. if (ic_opmode == NL80211_IFTYPE_AP) {
  1902. ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
  1903. sc->sc_flags |= SC_OP_TSF_RESET;
  1904. }
  1905. /* Set the device opmode */
  1906. sc->sc_ah->opmode = ic_opmode;
  1907. /*
  1908. * Enable MIB interrupts when there are hardware phy counters.
  1909. * Note we only do this (at the moment) for station mode.
  1910. */
  1911. if ((conf->type == NL80211_IFTYPE_STATION) ||
  1912. (conf->type == NL80211_IFTYPE_ADHOC)) {
  1913. if (ath9k_hw_phycounters(sc->sc_ah))
  1914. sc->imask |= ATH9K_INT_MIB;
  1915. sc->imask |= ATH9K_INT_TSFOOR;
  1916. }
  1917. /*
  1918. * Some hardware processes the TIM IE and fires an
  1919. * interrupt when the TIM bit is set. For hardware
  1920. * that does, if not overridden by configuration,
  1921. * enable the TIM interrupt when operating as station.
  1922. */
  1923. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
  1924. (conf->type == NL80211_IFTYPE_STATION) &&
  1925. !sc->config.swBeaconProcess)
  1926. sc->imask |= ATH9K_INT_TIM;
  1927. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  1928. if (conf->type == NL80211_IFTYPE_AP) {
  1929. /* TODO: is this a suitable place to start ANI for AP mode? */
  1930. /* Start ANI */
  1931. mod_timer(&sc->ani.timer,
  1932. jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
  1933. }
  1934. out:
  1935. mutex_unlock(&sc->mutex);
  1936. return ret;
  1937. }
  1938. static void ath9k_remove_interface(struct ieee80211_hw *hw,
  1939. struct ieee80211_if_init_conf *conf)
  1940. {
  1941. struct ath_wiphy *aphy = hw->priv;
  1942. struct ath_softc *sc = aphy->sc;
  1943. struct ath_vif *avp = (void *)conf->vif->drv_priv;
  1944. int i;
  1945. DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
  1946. mutex_lock(&sc->mutex);
  1947. /* Stop ANI */
  1948. del_timer_sync(&sc->ani.timer);
  1949. /* Reclaim beacon resources */
  1950. if (sc->sc_ah->opmode == NL80211_IFTYPE_AP ||
  1951. sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) {
  1952. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  1953. ath_beacon_return(sc, avp);
  1954. }
  1955. sc->sc_flags &= ~SC_OP_BEACONS;
  1956. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  1957. if (sc->beacon.bslot[i] == conf->vif) {
  1958. printk(KERN_DEBUG "%s: vif had allocated beacon "
  1959. "slot\n", __func__);
  1960. sc->beacon.bslot[i] = NULL;
  1961. sc->beacon.bslot_aphy[i] = NULL;
  1962. }
  1963. }
  1964. sc->nvifs--;
  1965. mutex_unlock(&sc->mutex);
  1966. }
  1967. static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
  1968. {
  1969. struct ath_wiphy *aphy = hw->priv;
  1970. struct ath_softc *sc = aphy->sc;
  1971. struct ieee80211_conf *conf = &hw->conf;
  1972. mutex_lock(&sc->mutex);
  1973. if (changed & IEEE80211_CONF_CHANGE_PS) {
  1974. if (conf->flags & IEEE80211_CONF_PS) {
  1975. if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
  1976. sc->imask |= ATH9K_INT_TIM_TIMER;
  1977. ath9k_hw_set_interrupts(sc->sc_ah,
  1978. sc->imask);
  1979. }
  1980. ath9k_hw_setrxabort(sc->sc_ah, 1);
  1981. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
  1982. } else {
  1983. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
  1984. ath9k_hw_setrxabort(sc->sc_ah, 0);
  1985. sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
  1986. if (sc->imask & ATH9K_INT_TIM_TIMER) {
  1987. sc->imask &= ~ATH9K_INT_TIM_TIMER;
  1988. ath9k_hw_set_interrupts(sc->sc_ah,
  1989. sc->imask);
  1990. }
  1991. }
  1992. }
  1993. if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
  1994. struct ieee80211_channel *curchan = hw->conf.channel;
  1995. int pos = curchan->hw_value;
  1996. aphy->chan_idx = pos;
  1997. aphy->chan_is_ht = conf_is_ht(conf);
  1998. if (aphy->state == ATH_WIPHY_SCAN ||
  1999. aphy->state == ATH_WIPHY_ACTIVE)
  2000. ath9k_wiphy_pause_all_forced(sc, aphy);
  2001. else {
  2002. /*
  2003. * Do not change operational channel based on a paused
  2004. * wiphy changes.
  2005. */
  2006. goto skip_chan_change;
  2007. }
  2008. DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
  2009. curchan->center_freq);
  2010. /* XXX: remove me eventualy */
  2011. ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
  2012. ath_update_chainmask(sc, conf_is_ht(conf));
  2013. if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
  2014. DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
  2015. mutex_unlock(&sc->mutex);
  2016. return -EINVAL;
  2017. }
  2018. }
  2019. skip_chan_change:
  2020. if (changed & IEEE80211_CONF_CHANGE_POWER)
  2021. sc->config.txpowlimit = 2 * conf->power_level;
  2022. /*
  2023. * The HW TSF has to be reset when the beacon interval changes.
  2024. * We set the flag here, and ath_beacon_config_ap() would take this
  2025. * into account when it gets called through the subsequent
  2026. * config_interface() call - with IFCC_BEACON in the changed field.
  2027. */
  2028. if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  2029. sc->sc_flags |= SC_OP_TSF_RESET;
  2030. mutex_unlock(&sc->mutex);
  2031. return 0;
  2032. }
  2033. static int ath9k_config_interface(struct ieee80211_hw *hw,
  2034. struct ieee80211_vif *vif,
  2035. struct ieee80211_if_conf *conf)
  2036. {
  2037. struct ath_wiphy *aphy = hw->priv;
  2038. struct ath_softc *sc = aphy->sc;
  2039. struct ath_hw *ah = sc->sc_ah;
  2040. struct ath_vif *avp = (void *)vif->drv_priv;
  2041. u32 rfilt = 0;
  2042. int error, i;
  2043. mutex_lock(&sc->mutex);
  2044. /* TODO: Need to decide which hw opmode to use for multi-interface
  2045. * cases */
  2046. if (vif->type == NL80211_IFTYPE_AP &&
  2047. ah->opmode != NL80211_IFTYPE_AP) {
  2048. ah->opmode = NL80211_IFTYPE_STATION;
  2049. ath9k_hw_setopmode(ah);
  2050. memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
  2051. sc->curaid = 0;
  2052. ath9k_hw_write_associd(sc);
  2053. /* Request full reset to get hw opmode changed properly */
  2054. sc->sc_flags |= SC_OP_FULL_RESET;
  2055. }
  2056. if ((conf->changed & IEEE80211_IFCC_BSSID) &&
  2057. !is_zero_ether_addr(conf->bssid)) {
  2058. switch (vif->type) {
  2059. case NL80211_IFTYPE_STATION:
  2060. case NL80211_IFTYPE_ADHOC:
  2061. /* Set BSSID */
  2062. memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
  2063. memcpy(avp->bssid, conf->bssid, ETH_ALEN);
  2064. sc->curaid = 0;
  2065. ath9k_hw_write_associd(sc);
  2066. /* Set aggregation protection mode parameters */
  2067. sc->config.ath_aggr_prot = 0;
  2068. DPRINTF(sc, ATH_DBG_CONFIG,
  2069. "RX filter 0x%x bssid %pM aid 0x%x\n",
  2070. rfilt, sc->curbssid, sc->curaid);
  2071. /* need to reconfigure the beacon */
  2072. sc->sc_flags &= ~SC_OP_BEACONS ;
  2073. break;
  2074. default:
  2075. break;
  2076. }
  2077. }
  2078. if ((vif->type == NL80211_IFTYPE_ADHOC) ||
  2079. (vif->type == NL80211_IFTYPE_AP)) {
  2080. if ((conf->changed & IEEE80211_IFCC_BEACON) ||
  2081. (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
  2082. conf->enable_beacon)) {
  2083. /*
  2084. * Allocate and setup the beacon frame.
  2085. *
  2086. * Stop any previous beacon DMA. This may be
  2087. * necessary, for example, when an ibss merge
  2088. * causes reconfiguration; we may be called
  2089. * with beacon transmission active.
  2090. */
  2091. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  2092. error = ath_beacon_alloc(aphy, vif);
  2093. if (error != 0) {
  2094. mutex_unlock(&sc->mutex);
  2095. return error;
  2096. }
  2097. ath_beacon_config(sc, vif);
  2098. }
  2099. }
  2100. /* Check for WLAN_CAPABILITY_PRIVACY ? */
  2101. if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
  2102. for (i = 0; i < IEEE80211_WEP_NKID; i++)
  2103. if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
  2104. ath9k_hw_keysetmac(sc->sc_ah,
  2105. (u16)i,
  2106. sc->curbssid);
  2107. }
  2108. /* Only legacy IBSS for now */
  2109. if (vif->type == NL80211_IFTYPE_ADHOC)
  2110. ath_update_chainmask(sc, 0);
  2111. mutex_unlock(&sc->mutex);
  2112. return 0;
  2113. }
  2114. #define SUPPORTED_FILTERS \
  2115. (FIF_PROMISC_IN_BSS | \
  2116. FIF_ALLMULTI | \
  2117. FIF_CONTROL | \
  2118. FIF_OTHER_BSS | \
  2119. FIF_BCN_PRBRESP_PROMISC | \
  2120. FIF_FCSFAIL)
  2121. /* FIXME: sc->sc_full_reset ? */
  2122. static void ath9k_configure_filter(struct ieee80211_hw *hw,
  2123. unsigned int changed_flags,
  2124. unsigned int *total_flags,
  2125. int mc_count,
  2126. struct dev_mc_list *mclist)
  2127. {
  2128. struct ath_wiphy *aphy = hw->priv;
  2129. struct ath_softc *sc = aphy->sc;
  2130. u32 rfilt;
  2131. changed_flags &= SUPPORTED_FILTERS;
  2132. *total_flags &= SUPPORTED_FILTERS;
  2133. sc->rx.rxfilter = *total_flags;
  2134. rfilt = ath_calcrxfilter(sc);
  2135. ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
  2136. DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
  2137. }
  2138. static void ath9k_sta_notify(struct ieee80211_hw *hw,
  2139. struct ieee80211_vif *vif,
  2140. enum sta_notify_cmd cmd,
  2141. struct ieee80211_sta *sta)
  2142. {
  2143. struct ath_wiphy *aphy = hw->priv;
  2144. struct ath_softc *sc = aphy->sc;
  2145. switch (cmd) {
  2146. case STA_NOTIFY_ADD:
  2147. ath_node_attach(sc, sta);
  2148. break;
  2149. case STA_NOTIFY_REMOVE:
  2150. ath_node_detach(sc, sta);
  2151. break;
  2152. default:
  2153. break;
  2154. }
  2155. }
  2156. static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
  2157. const struct ieee80211_tx_queue_params *params)
  2158. {
  2159. struct ath_wiphy *aphy = hw->priv;
  2160. struct ath_softc *sc = aphy->sc;
  2161. struct ath9k_tx_queue_info qi;
  2162. int ret = 0, qnum;
  2163. if (queue >= WME_NUM_AC)
  2164. return 0;
  2165. mutex_lock(&sc->mutex);
  2166. qi.tqi_aifs = params->aifs;
  2167. qi.tqi_cwmin = params->cw_min;
  2168. qi.tqi_cwmax = params->cw_max;
  2169. qi.tqi_burstTime = params->txop;
  2170. qnum = ath_get_hal_qnum(queue, sc);
  2171. DPRINTF(sc, ATH_DBG_CONFIG,
  2172. "Configure tx [queue/halq] [%d/%d], "
  2173. "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
  2174. queue, qnum, params->aifs, params->cw_min,
  2175. params->cw_max, params->txop);
  2176. ret = ath_txq_update(sc, qnum, &qi);
  2177. if (ret)
  2178. DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
  2179. mutex_unlock(&sc->mutex);
  2180. return ret;
  2181. }
  2182. static int ath9k_set_key(struct ieee80211_hw *hw,
  2183. enum set_key_cmd cmd,
  2184. struct ieee80211_vif *vif,
  2185. struct ieee80211_sta *sta,
  2186. struct ieee80211_key_conf *key)
  2187. {
  2188. struct ath_wiphy *aphy = hw->priv;
  2189. struct ath_softc *sc = aphy->sc;
  2190. int ret = 0;
  2191. if (modparam_nohwcrypt)
  2192. return -ENOSPC;
  2193. mutex_lock(&sc->mutex);
  2194. ath9k_ps_wakeup(sc);
  2195. DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
  2196. switch (cmd) {
  2197. case SET_KEY:
  2198. ret = ath_key_config(sc, vif, sta, key);
  2199. if (ret >= 0) {
  2200. key->hw_key_idx = ret;
  2201. /* push IV and Michael MIC generation to stack */
  2202. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  2203. if (key->alg == ALG_TKIP)
  2204. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  2205. if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
  2206. key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
  2207. ret = 0;
  2208. }
  2209. break;
  2210. case DISABLE_KEY:
  2211. ath_key_delete(sc, key);
  2212. break;
  2213. default:
  2214. ret = -EINVAL;
  2215. }
  2216. ath9k_ps_restore(sc);
  2217. mutex_unlock(&sc->mutex);
  2218. return ret;
  2219. }
  2220. static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
  2221. struct ieee80211_vif *vif,
  2222. struct ieee80211_bss_conf *bss_conf,
  2223. u32 changed)
  2224. {
  2225. struct ath_wiphy *aphy = hw->priv;
  2226. struct ath_softc *sc = aphy->sc;
  2227. mutex_lock(&sc->mutex);
  2228. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  2229. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
  2230. bss_conf->use_short_preamble);
  2231. if (bss_conf->use_short_preamble)
  2232. sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
  2233. else
  2234. sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
  2235. }
  2236. if (changed & BSS_CHANGED_ERP_CTS_PROT) {
  2237. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
  2238. bss_conf->use_cts_prot);
  2239. if (bss_conf->use_cts_prot &&
  2240. hw->conf.channel->band != IEEE80211_BAND_5GHZ)
  2241. sc->sc_flags |= SC_OP_PROTECT_ENABLE;
  2242. else
  2243. sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
  2244. }
  2245. if (changed & BSS_CHANGED_ASSOC) {
  2246. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
  2247. bss_conf->assoc);
  2248. ath9k_bss_assoc_info(sc, vif, bss_conf);
  2249. }
  2250. mutex_unlock(&sc->mutex);
  2251. }
  2252. static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
  2253. {
  2254. u64 tsf;
  2255. struct ath_wiphy *aphy = hw->priv;
  2256. struct ath_softc *sc = aphy->sc;
  2257. mutex_lock(&sc->mutex);
  2258. tsf = ath9k_hw_gettsf64(sc->sc_ah);
  2259. mutex_unlock(&sc->mutex);
  2260. return tsf;
  2261. }
  2262. static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
  2263. {
  2264. struct ath_wiphy *aphy = hw->priv;
  2265. struct ath_softc *sc = aphy->sc;
  2266. mutex_lock(&sc->mutex);
  2267. ath9k_hw_settsf64(sc->sc_ah, tsf);
  2268. mutex_unlock(&sc->mutex);
  2269. }
  2270. static void ath9k_reset_tsf(struct ieee80211_hw *hw)
  2271. {
  2272. struct ath_wiphy *aphy = hw->priv;
  2273. struct ath_softc *sc = aphy->sc;
  2274. mutex_lock(&sc->mutex);
  2275. ath9k_hw_reset_tsf(sc->sc_ah);
  2276. mutex_unlock(&sc->mutex);
  2277. }
  2278. static int ath9k_ampdu_action(struct ieee80211_hw *hw,
  2279. enum ieee80211_ampdu_mlme_action action,
  2280. struct ieee80211_sta *sta,
  2281. u16 tid, u16 *ssn)
  2282. {
  2283. struct ath_wiphy *aphy = hw->priv;
  2284. struct ath_softc *sc = aphy->sc;
  2285. int ret = 0;
  2286. switch (action) {
  2287. case IEEE80211_AMPDU_RX_START:
  2288. if (!(sc->sc_flags & SC_OP_RXAGGR))
  2289. ret = -ENOTSUPP;
  2290. break;
  2291. case IEEE80211_AMPDU_RX_STOP:
  2292. break;
  2293. case IEEE80211_AMPDU_TX_START:
  2294. ret = ath_tx_aggr_start(sc, sta, tid, ssn);
  2295. if (ret < 0)
  2296. DPRINTF(sc, ATH_DBG_FATAL,
  2297. "Unable to start TX aggregation\n");
  2298. else
  2299. ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
  2300. break;
  2301. case IEEE80211_AMPDU_TX_STOP:
  2302. ret = ath_tx_aggr_stop(sc, sta, tid);
  2303. if (ret < 0)
  2304. DPRINTF(sc, ATH_DBG_FATAL,
  2305. "Unable to stop TX aggregation\n");
  2306. ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
  2307. break;
  2308. case IEEE80211_AMPDU_TX_RESUME:
  2309. ath_tx_aggr_resume(sc, sta, tid);
  2310. break;
  2311. default:
  2312. DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
  2313. }
  2314. return ret;
  2315. }
  2316. static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
  2317. {
  2318. struct ath_wiphy *aphy = hw->priv;
  2319. struct ath_softc *sc = aphy->sc;
  2320. if (ath9k_wiphy_scanning(sc)) {
  2321. printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
  2322. "same time\n");
  2323. /*
  2324. * Do not allow the concurrent scanning state for now. This
  2325. * could be improved with scanning control moved into ath9k.
  2326. */
  2327. return;
  2328. }
  2329. aphy->state = ATH_WIPHY_SCAN;
  2330. ath9k_wiphy_pause_all_forced(sc, aphy);
  2331. mutex_lock(&sc->mutex);
  2332. sc->sc_flags |= SC_OP_SCANNING;
  2333. mutex_unlock(&sc->mutex);
  2334. }
  2335. static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
  2336. {
  2337. struct ath_wiphy *aphy = hw->priv;
  2338. struct ath_softc *sc = aphy->sc;
  2339. mutex_lock(&sc->mutex);
  2340. aphy->state = ATH_WIPHY_ACTIVE;
  2341. sc->sc_flags &= ~SC_OP_SCANNING;
  2342. mutex_unlock(&sc->mutex);
  2343. }
  2344. struct ieee80211_ops ath9k_ops = {
  2345. .tx = ath9k_tx,
  2346. .start = ath9k_start,
  2347. .stop = ath9k_stop,
  2348. .add_interface = ath9k_add_interface,
  2349. .remove_interface = ath9k_remove_interface,
  2350. .config = ath9k_config,
  2351. .config_interface = ath9k_config_interface,
  2352. .configure_filter = ath9k_configure_filter,
  2353. .sta_notify = ath9k_sta_notify,
  2354. .conf_tx = ath9k_conf_tx,
  2355. .bss_info_changed = ath9k_bss_info_changed,
  2356. .set_key = ath9k_set_key,
  2357. .get_tsf = ath9k_get_tsf,
  2358. .set_tsf = ath9k_set_tsf,
  2359. .reset_tsf = ath9k_reset_tsf,
  2360. .ampdu_action = ath9k_ampdu_action,
  2361. .sw_scan_start = ath9k_sw_scan_start,
  2362. .sw_scan_complete = ath9k_sw_scan_complete,
  2363. };
  2364. static struct {
  2365. u32 version;
  2366. const char * name;
  2367. } ath_mac_bb_names[] = {
  2368. { AR_SREV_VERSION_5416_PCI, "5416" },
  2369. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2370. { AR_SREV_VERSION_9100, "9100" },
  2371. { AR_SREV_VERSION_9160, "9160" },
  2372. { AR_SREV_VERSION_9280, "9280" },
  2373. { AR_SREV_VERSION_9285, "9285" }
  2374. };
  2375. static struct {
  2376. u16 version;
  2377. const char * name;
  2378. } ath_rf_names[] = {
  2379. { 0, "5133" },
  2380. { AR_RAD5133_SREV_MAJOR, "5133" },
  2381. { AR_RAD5122_SREV_MAJOR, "5122" },
  2382. { AR_RAD2133_SREV_MAJOR, "2133" },
  2383. { AR_RAD2122_SREV_MAJOR, "2122" }
  2384. };
  2385. /*
  2386. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2387. */
  2388. const char *
  2389. ath_mac_bb_name(u32 mac_bb_version)
  2390. {
  2391. int i;
  2392. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2393. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2394. return ath_mac_bb_names[i].name;
  2395. }
  2396. }
  2397. return "????";
  2398. }
  2399. /*
  2400. * Return the RF name. "????" is returned if the RF is unknown.
  2401. */
  2402. const char *
  2403. ath_rf_name(u16 rf_version)
  2404. {
  2405. int i;
  2406. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2407. if (ath_rf_names[i].version == rf_version) {
  2408. return ath_rf_names[i].name;
  2409. }
  2410. }
  2411. return "????";
  2412. }
  2413. static int __init ath9k_init(void)
  2414. {
  2415. int error;
  2416. /* Register rate control algorithm */
  2417. error = ath_rate_control_register();
  2418. if (error != 0) {
  2419. printk(KERN_ERR
  2420. "ath9k: Unable to register rate control "
  2421. "algorithm: %d\n",
  2422. error);
  2423. goto err_out;
  2424. }
  2425. error = ath9k_debug_create_root();
  2426. if (error) {
  2427. printk(KERN_ERR
  2428. "ath9k: Unable to create debugfs root: %d\n",
  2429. error);
  2430. goto err_rate_unregister;
  2431. }
  2432. error = ath_pci_init();
  2433. if (error < 0) {
  2434. printk(KERN_ERR
  2435. "ath9k: No PCI devices found, driver not installed.\n");
  2436. error = -ENODEV;
  2437. goto err_remove_root;
  2438. }
  2439. error = ath_ahb_init();
  2440. if (error < 0) {
  2441. error = -ENODEV;
  2442. goto err_pci_exit;
  2443. }
  2444. return 0;
  2445. err_pci_exit:
  2446. ath_pci_exit();
  2447. err_remove_root:
  2448. ath9k_debug_remove_root();
  2449. err_rate_unregister:
  2450. ath_rate_control_unregister();
  2451. err_out:
  2452. return error;
  2453. }
  2454. module_init(ath9k_init);
  2455. static void __exit ath9k_exit(void)
  2456. {
  2457. ath_ahb_exit();
  2458. ath_pci_exit();
  2459. ath9k_debug_remove_root();
  2460. ath_rate_control_unregister();
  2461. printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
  2462. }
  2463. module_exit(ath9k_exit);