eeprom.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869
  1. /*
  2. * Copyright (c) 2008 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static void ath9k_hw_analog_shift_rmw(struct ath_hw *ah,
  18. u32 reg, u32 mask,
  19. u32 shift, u32 val)
  20. {
  21. u32 regVal;
  22. regVal = REG_READ(ah, reg) & ~mask;
  23. regVal |= (val << shift) & mask;
  24. REG_WRITE(ah, reg, regVal);
  25. if (ah->config.analog_shiftreg)
  26. udelay(100);
  27. return;
  28. }
  29. static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
  30. {
  31. if (fbin == AR5416_BCHAN_UNUSED)
  32. return fbin;
  33. return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
  34. }
  35. static inline int16_t ath9k_hw_interpolate(u16 target,
  36. u16 srcLeft, u16 srcRight,
  37. int16_t targetLeft,
  38. int16_t targetRight)
  39. {
  40. int16_t rv;
  41. if (srcRight == srcLeft) {
  42. rv = targetLeft;
  43. } else {
  44. rv = (int16_t) (((target - srcLeft) * targetRight +
  45. (srcRight - target) * targetLeft) /
  46. (srcRight - srcLeft));
  47. }
  48. return rv;
  49. }
  50. static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
  51. u16 listSize, u16 *indexL,
  52. u16 *indexR)
  53. {
  54. u16 i;
  55. if (target <= pList[0]) {
  56. *indexL = *indexR = 0;
  57. return true;
  58. }
  59. if (target >= pList[listSize - 1]) {
  60. *indexL = *indexR = (u16) (listSize - 1);
  61. return true;
  62. }
  63. for (i = 0; i < listSize - 1; i++) {
  64. if (pList[i] == target) {
  65. *indexL = *indexR = i;
  66. return true;
  67. }
  68. if (target < pList[i + 1]) {
  69. *indexL = i;
  70. *indexR = (u16) (i + 1);
  71. return false;
  72. }
  73. }
  74. return false;
  75. }
  76. static inline bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
  77. {
  78. struct ath_softc *sc = ah->ah_sc;
  79. return sc->bus_ops->eeprom_read(ah, off, data);
  80. }
  81. static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
  82. u8 *pVpdList, u16 numIntercepts,
  83. u8 *pRetVpdList)
  84. {
  85. u16 i, k;
  86. u8 currPwr = pwrMin;
  87. u16 idxL = 0, idxR = 0;
  88. for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
  89. ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
  90. numIntercepts, &(idxL),
  91. &(idxR));
  92. if (idxR < 1)
  93. idxR = 1;
  94. if (idxL == numIntercepts - 1)
  95. idxL = (u16) (numIntercepts - 2);
  96. if (pPwrList[idxL] == pPwrList[idxR])
  97. k = pVpdList[idxL];
  98. else
  99. k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
  100. (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
  101. (pPwrList[idxR] - pPwrList[idxL]));
  102. pRetVpdList[i] = (u8) k;
  103. currPwr += 2;
  104. }
  105. return true;
  106. }
  107. static void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
  108. struct ath9k_channel *chan,
  109. struct cal_target_power_leg *powInfo,
  110. u16 numChannels,
  111. struct cal_target_power_leg *pNewPower,
  112. u16 numRates, bool isExtTarget)
  113. {
  114. struct chan_centers centers;
  115. u16 clo, chi;
  116. int i;
  117. int matchIndex = -1, lowIndex = -1;
  118. u16 freq;
  119. ath9k_hw_get_channel_centers(ah, chan, &centers);
  120. freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
  121. if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
  122. IS_CHAN_2GHZ(chan))) {
  123. matchIndex = 0;
  124. } else {
  125. for (i = 0; (i < numChannels) &&
  126. (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  127. if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
  128. IS_CHAN_2GHZ(chan))) {
  129. matchIndex = i;
  130. break;
  131. } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
  132. IS_CHAN_2GHZ(chan))) &&
  133. (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
  134. IS_CHAN_2GHZ(chan)))) {
  135. lowIndex = i - 1;
  136. break;
  137. }
  138. }
  139. if ((matchIndex == -1) && (lowIndex == -1))
  140. matchIndex = i - 1;
  141. }
  142. if (matchIndex != -1) {
  143. *pNewPower = powInfo[matchIndex];
  144. } else {
  145. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  146. IS_CHAN_2GHZ(chan));
  147. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  148. IS_CHAN_2GHZ(chan));
  149. for (i = 0; i < numRates; i++) {
  150. pNewPower->tPow2x[i] =
  151. (u8)ath9k_hw_interpolate(freq, clo, chi,
  152. powInfo[lowIndex].tPow2x[i],
  153. powInfo[lowIndex + 1].tPow2x[i]);
  154. }
  155. }
  156. }
  157. static void ath9k_get_txgain_index(struct ath_hw *ah,
  158. struct ath9k_channel *chan,
  159. struct calDataPerFreqOpLoop *rawDatasetOpLoop,
  160. u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
  161. {
  162. u8 pcdac, i = 0;
  163. u16 idxL = 0, idxR = 0, numPiers;
  164. bool match;
  165. struct chan_centers centers;
  166. ath9k_hw_get_channel_centers(ah, chan, &centers);
  167. for (numPiers = 0; numPiers < availPiers; numPiers++)
  168. if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
  169. break;
  170. match = ath9k_hw_get_lower_upper_index(
  171. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  172. calChans, numPiers, &idxL, &idxR);
  173. if (match) {
  174. pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
  175. *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
  176. } else {
  177. pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
  178. *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
  179. rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  180. }
  181. while (pcdac > ah->originalGain[i] &&
  182. i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
  183. i++;
  184. *pcdacIdx = i;
  185. return;
  186. }
  187. static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
  188. u32 initTxGain,
  189. int txPower,
  190. u8 *pPDADCValues)
  191. {
  192. u32 i;
  193. u32 offset;
  194. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
  195. AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  196. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
  197. AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  198. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
  199. AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
  200. offset = txPower;
  201. for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
  202. if (i < offset)
  203. pPDADCValues[i] = 0x0;
  204. else
  205. pPDADCValues[i] = 0xFF;
  206. }
  207. static void ath9k_hw_get_target_powers(struct ath_hw *ah,
  208. struct ath9k_channel *chan,
  209. struct cal_target_power_ht *powInfo,
  210. u16 numChannels,
  211. struct cal_target_power_ht *pNewPower,
  212. u16 numRates, bool isHt40Target)
  213. {
  214. struct chan_centers centers;
  215. u16 clo, chi;
  216. int i;
  217. int matchIndex = -1, lowIndex = -1;
  218. u16 freq;
  219. ath9k_hw_get_channel_centers(ah, chan, &centers);
  220. freq = isHt40Target ? centers.synth_center : centers.ctl_center;
  221. if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
  222. matchIndex = 0;
  223. } else {
  224. for (i = 0; (i < numChannels) &&
  225. (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  226. if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
  227. IS_CHAN_2GHZ(chan))) {
  228. matchIndex = i;
  229. break;
  230. } else
  231. if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
  232. IS_CHAN_2GHZ(chan))) &&
  233. (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
  234. IS_CHAN_2GHZ(chan)))) {
  235. lowIndex = i - 1;
  236. break;
  237. }
  238. }
  239. if ((matchIndex == -1) && (lowIndex == -1))
  240. matchIndex = i - 1;
  241. }
  242. if (matchIndex != -1) {
  243. *pNewPower = powInfo[matchIndex];
  244. } else {
  245. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  246. IS_CHAN_2GHZ(chan));
  247. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  248. IS_CHAN_2GHZ(chan));
  249. for (i = 0; i < numRates; i++) {
  250. pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
  251. clo, chi,
  252. powInfo[lowIndex].tPow2x[i],
  253. powInfo[lowIndex + 1].tPow2x[i]);
  254. }
  255. }
  256. }
  257. static u16 ath9k_hw_get_max_edge_power(u16 freq,
  258. struct cal_ctl_edges *pRdEdgesPower,
  259. bool is2GHz, int num_band_edges)
  260. {
  261. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  262. int i;
  263. for (i = 0; (i < num_band_edges) &&
  264. (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  265. if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
  266. twiceMaxEdgePower = pRdEdgesPower[i].tPower;
  267. break;
  268. } else if ((i > 0) &&
  269. (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
  270. is2GHz))) {
  271. if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
  272. is2GHz) < freq &&
  273. pRdEdgesPower[i - 1].flag) {
  274. twiceMaxEdgePower =
  275. pRdEdgesPower[i - 1].tPower;
  276. }
  277. break;
  278. }
  279. }
  280. return twiceMaxEdgePower;
  281. }
  282. /****************************************/
  283. /* EEPROM Operations for 4K sized cards */
  284. /****************************************/
  285. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  286. {
  287. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  288. }
  289. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  290. {
  291. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  292. }
  293. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  294. {
  295. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  296. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  297. u16 *eep_data;
  298. int addr, eep_start_loc = 0;
  299. eep_start_loc = 64;
  300. if (!ath9k_hw_use_flash(ah)) {
  301. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  302. "Reading from EEPROM, not flash\n");
  303. }
  304. eep_data = (u16 *)eep;
  305. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  306. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
  307. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  308. "Unable to read eeprom region \n");
  309. return false;
  310. }
  311. eep_data++;
  312. }
  313. return true;
  314. #undef SIZE_EEPROM_4K
  315. }
  316. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  317. {
  318. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  319. struct ar5416_eeprom_4k *eep =
  320. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  321. u16 *eepdata, temp, magic, magic2;
  322. u32 sum = 0, el;
  323. bool need_swap = false;
  324. int i, addr;
  325. if (!ath9k_hw_use_flash(ah)) {
  326. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
  327. &magic)) {
  328. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  329. "Reading Magic # failed\n");
  330. return false;
  331. }
  332. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  333. "Read Magic = 0x%04X\n", magic);
  334. if (magic != AR5416_EEPROM_MAGIC) {
  335. magic2 = swab16(magic);
  336. if (magic2 == AR5416_EEPROM_MAGIC) {
  337. need_swap = true;
  338. eepdata = (u16 *) (&ah->eeprom);
  339. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  340. temp = swab16(*eepdata);
  341. *eepdata = temp;
  342. eepdata++;
  343. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  344. "0x%04X ", *eepdata);
  345. if (((addr + 1) % 6) == 0)
  346. DPRINTF(ah->ah_sc,
  347. ATH_DBG_EEPROM, "\n");
  348. }
  349. } else {
  350. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  351. "Invalid EEPROM Magic. "
  352. "endianness mismatch.\n");
  353. return -EINVAL;
  354. }
  355. }
  356. }
  357. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  358. need_swap ? "True" : "False");
  359. if (need_swap)
  360. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  361. else
  362. el = ah->eeprom.map4k.baseEepHeader.length;
  363. if (el > sizeof(struct ar5416_eeprom_def))
  364. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  365. else
  366. el = el / sizeof(u16);
  367. eepdata = (u16 *)(&ah->eeprom);
  368. for (i = 0; i < el; i++)
  369. sum ^= *eepdata++;
  370. if (need_swap) {
  371. u32 integer;
  372. u16 word;
  373. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  374. "EEPROM Endianness is not native.. Changing \n");
  375. word = swab16(eep->baseEepHeader.length);
  376. eep->baseEepHeader.length = word;
  377. word = swab16(eep->baseEepHeader.checksum);
  378. eep->baseEepHeader.checksum = word;
  379. word = swab16(eep->baseEepHeader.version);
  380. eep->baseEepHeader.version = word;
  381. word = swab16(eep->baseEepHeader.regDmn[0]);
  382. eep->baseEepHeader.regDmn[0] = word;
  383. word = swab16(eep->baseEepHeader.regDmn[1]);
  384. eep->baseEepHeader.regDmn[1] = word;
  385. word = swab16(eep->baseEepHeader.rfSilent);
  386. eep->baseEepHeader.rfSilent = word;
  387. word = swab16(eep->baseEepHeader.blueToothOptions);
  388. eep->baseEepHeader.blueToothOptions = word;
  389. word = swab16(eep->baseEepHeader.deviceCap);
  390. eep->baseEepHeader.deviceCap = word;
  391. integer = swab32(eep->modalHeader.antCtrlCommon);
  392. eep->modalHeader.antCtrlCommon = integer;
  393. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  394. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  395. eep->modalHeader.antCtrlChain[i] = integer;
  396. }
  397. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  398. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  399. eep->modalHeader.spurChans[i].spurChan = word;
  400. }
  401. }
  402. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  403. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  404. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  405. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  406. sum, ah->eep_ops->get_eeprom_ver(ah));
  407. return -EINVAL;
  408. }
  409. return 0;
  410. #undef EEPROM_4K_SIZE
  411. }
  412. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  413. enum eeprom_param param)
  414. {
  415. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  416. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  417. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  418. switch (param) {
  419. case EEP_NFTHRESH_2:
  420. return pModal->noiseFloorThreshCh[0];
  421. case AR_EEPROM_MAC(0):
  422. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  423. case AR_EEPROM_MAC(1):
  424. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  425. case AR_EEPROM_MAC(2):
  426. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  427. case EEP_REG_0:
  428. return pBase->regDmn[0];
  429. case EEP_REG_1:
  430. return pBase->regDmn[1];
  431. case EEP_OP_CAP:
  432. return pBase->deviceCap;
  433. case EEP_OP_MODE:
  434. return pBase->opCapFlags;
  435. case EEP_RF_SILENT:
  436. return pBase->rfSilent;
  437. case EEP_OB_2:
  438. return pModal->ob_01;
  439. case EEP_DB_2:
  440. return pModal->db1_01;
  441. case EEP_MINOR_REV:
  442. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  443. case EEP_TX_MASK:
  444. return pBase->txMask;
  445. case EEP_RX_MASK:
  446. return pBase->rxMask;
  447. case EEP_FRAC_N_5G:
  448. return 0;
  449. default:
  450. return 0;
  451. }
  452. }
  453. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  454. struct ath9k_channel *chan,
  455. struct cal_data_per_freq_4k *pRawDataSet,
  456. u8 *bChans, u16 availPiers,
  457. u16 tPdGainOverlap, int16_t *pMinCalPower,
  458. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  459. u16 numXpdGains)
  460. {
  461. #define TMP_VAL_VPD_TABLE \
  462. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  463. int i, j, k;
  464. int16_t ss;
  465. u16 idxL = 0, idxR = 0, numPiers;
  466. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  467. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  468. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  469. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  470. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  471. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  472. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  473. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  474. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  475. int16_t vpdStep;
  476. int16_t tmpVal;
  477. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  478. bool match;
  479. int16_t minDelta = 0;
  480. struct chan_centers centers;
  481. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  482. ath9k_hw_get_channel_centers(ah, chan, &centers);
  483. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  484. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  485. break;
  486. }
  487. match = ath9k_hw_get_lower_upper_index(
  488. (u8)FREQ2FBIN(centers.synth_center,
  489. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  490. &idxL, &idxR);
  491. if (match) {
  492. for (i = 0; i < numXpdGains; i++) {
  493. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  494. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  495. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  496. pRawDataSet[idxL].pwrPdg[i],
  497. pRawDataSet[idxL].vpdPdg[i],
  498. AR5416_EEP4K_PD_GAIN_ICEPTS,
  499. vpdTableI[i]);
  500. }
  501. } else {
  502. for (i = 0; i < numXpdGains; i++) {
  503. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  504. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  505. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  506. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  507. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  508. maxPwrT4[i] =
  509. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  510. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  511. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  512. pPwrL, pVpdL,
  513. AR5416_EEP4K_PD_GAIN_ICEPTS,
  514. vpdTableL[i]);
  515. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  516. pPwrR, pVpdR,
  517. AR5416_EEP4K_PD_GAIN_ICEPTS,
  518. vpdTableR[i]);
  519. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  520. vpdTableI[i][j] =
  521. (u8)(ath9k_hw_interpolate((u16)
  522. FREQ2FBIN(centers.
  523. synth_center,
  524. IS_CHAN_2GHZ
  525. (chan)),
  526. bChans[idxL], bChans[idxR],
  527. vpdTableL[i][j], vpdTableR[i][j]));
  528. }
  529. }
  530. }
  531. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  532. k = 0;
  533. for (i = 0; i < numXpdGains; i++) {
  534. if (i == (numXpdGains - 1))
  535. pPdGainBoundaries[i] =
  536. (u16)(maxPwrT4[i] / 2);
  537. else
  538. pPdGainBoundaries[i] =
  539. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  540. pPdGainBoundaries[i] =
  541. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  542. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  543. minDelta = pPdGainBoundaries[0] - 23;
  544. pPdGainBoundaries[0] = 23;
  545. } else {
  546. minDelta = 0;
  547. }
  548. if (i == 0) {
  549. if (AR_SREV_9280_10_OR_LATER(ah))
  550. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  551. else
  552. ss = 0;
  553. } else {
  554. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  555. (minPwrT4[i] / 2)) -
  556. tPdGainOverlap + 1 + minDelta);
  557. }
  558. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  559. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  560. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  561. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  562. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  563. ss++;
  564. }
  565. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  566. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  567. (minPwrT4[i] / 2));
  568. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  569. tgtIndex : sizeCurrVpdTable;
  570. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  571. pPDADCValues[k++] = vpdTableI[i][ss++];
  572. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  573. vpdTableI[i][sizeCurrVpdTable - 2]);
  574. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  575. if (tgtIndex >= maxIndex) {
  576. while ((ss <= tgtIndex) &&
  577. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  578. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  579. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  580. 255 : tmpVal);
  581. ss++;
  582. }
  583. }
  584. }
  585. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  586. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  587. i++;
  588. }
  589. while (k < AR5416_NUM_PDADC_VALUES) {
  590. pPDADCValues[k] = pPDADCValues[k - 1];
  591. k++;
  592. }
  593. return;
  594. #undef TMP_VAL_VPD_TABLE
  595. }
  596. static bool ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  597. struct ath9k_channel *chan,
  598. int16_t *pTxPowerIndexOffset)
  599. {
  600. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  601. struct cal_data_per_freq_4k *pRawDataset;
  602. u8 *pCalBChans = NULL;
  603. u16 pdGainOverlap_t2;
  604. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  605. u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
  606. u16 numPiers, i, j;
  607. int16_t tMinCalPower;
  608. u16 numXpdGain, xpdMask;
  609. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  610. u32 reg32, regOffset, regChainOffset;
  611. xpdMask = pEepData->modalHeader.xpdGain;
  612. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  613. AR5416_EEP_MINOR_VER_2) {
  614. pdGainOverlap_t2 =
  615. pEepData->modalHeader.pdGainOverlap;
  616. } else {
  617. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  618. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  619. }
  620. pCalBChans = pEepData->calFreqPier2G;
  621. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  622. numXpdGain = 0;
  623. for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
  624. if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
  625. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  626. break;
  627. xpdGainValues[numXpdGain] =
  628. (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
  629. numXpdGain++;
  630. }
  631. }
  632. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  633. (numXpdGain - 1) & 0x3);
  634. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  635. xpdGainValues[0]);
  636. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  637. xpdGainValues[1]);
  638. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  639. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  640. if (AR_SREV_5416_20_OR_LATER(ah) &&
  641. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  642. (i != 0)) {
  643. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  644. } else
  645. regChainOffset = i * 0x1000;
  646. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  647. pRawDataset = pEepData->calPierData2G[i];
  648. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  649. pRawDataset, pCalBChans,
  650. numPiers, pdGainOverlap_t2,
  651. &tMinCalPower, gainBoundaries,
  652. pdadcValues, numXpdGain);
  653. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  654. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  655. SM(pdGainOverlap_t2,
  656. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  657. | SM(gainBoundaries[0],
  658. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  659. | SM(gainBoundaries[1],
  660. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  661. | SM(gainBoundaries[2],
  662. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  663. | SM(gainBoundaries[3],
  664. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  665. }
  666. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  667. for (j = 0; j < 32; j++) {
  668. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  669. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  670. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  671. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  672. REG_WRITE(ah, regOffset, reg32);
  673. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  674. "PDADC (%d,%4x): %4.4x %8.8x\n",
  675. i, regChainOffset, regOffset,
  676. reg32);
  677. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  678. "PDADC: Chain %d | "
  679. "PDADC %3d Value %3d | "
  680. "PDADC %3d Value %3d | "
  681. "PDADC %3d Value %3d | "
  682. "PDADC %3d Value %3d |\n",
  683. i, 4 * j, pdadcValues[4 * j],
  684. 4 * j + 1, pdadcValues[4 * j + 1],
  685. 4 * j + 2, pdadcValues[4 * j + 2],
  686. 4 * j + 3,
  687. pdadcValues[4 * j + 3]);
  688. regOffset += 4;
  689. }
  690. }
  691. }
  692. *pTxPowerIndexOffset = 0;
  693. return true;
  694. }
  695. static bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  696. struct ath9k_channel *chan,
  697. int16_t *ratesArray,
  698. u16 cfgCtl,
  699. u16 AntennaReduction,
  700. u16 twiceMaxRegulatoryPower,
  701. u16 powerLimit)
  702. {
  703. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  704. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  705. static const u16 tpScaleReductionTable[5] =
  706. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  707. int i;
  708. int16_t twiceLargestAntenna;
  709. struct cal_ctl_data_4k *rep;
  710. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  711. 0, { 0, 0, 0, 0}
  712. };
  713. struct cal_target_power_leg targetPowerOfdmExt = {
  714. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  715. 0, { 0, 0, 0, 0 }
  716. };
  717. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  718. 0, {0, 0, 0, 0}
  719. };
  720. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  721. u16 ctlModesFor11g[] =
  722. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  723. CTL_2GHT40
  724. };
  725. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  726. struct chan_centers centers;
  727. int tx_chainmask;
  728. u16 twiceMinEdgePower;
  729. tx_chainmask = ah->txchainmask;
  730. ath9k_hw_get_channel_centers(ah, chan, &centers);
  731. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  732. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  733. twiceLargestAntenna, 0);
  734. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  735. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
  736. maxRegAllowedPower -=
  737. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  738. }
  739. scaledPower = min(powerLimit, maxRegAllowedPower);
  740. scaledPower = max((u16)0, scaledPower);
  741. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  742. pCtlMode = ctlModesFor11g;
  743. ath9k_hw_get_legacy_target_powers(ah, chan,
  744. pEepData->calTargetPowerCck,
  745. AR5416_NUM_2G_CCK_TARGET_POWERS,
  746. &targetPowerCck, 4, false);
  747. ath9k_hw_get_legacy_target_powers(ah, chan,
  748. pEepData->calTargetPower2G,
  749. AR5416_NUM_2G_20_TARGET_POWERS,
  750. &targetPowerOfdm, 4, false);
  751. ath9k_hw_get_target_powers(ah, chan,
  752. pEepData->calTargetPower2GHT20,
  753. AR5416_NUM_2G_20_TARGET_POWERS,
  754. &targetPowerHt20, 8, false);
  755. if (IS_CHAN_HT40(chan)) {
  756. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  757. ath9k_hw_get_target_powers(ah, chan,
  758. pEepData->calTargetPower2GHT40,
  759. AR5416_NUM_2G_40_TARGET_POWERS,
  760. &targetPowerHt40, 8, true);
  761. ath9k_hw_get_legacy_target_powers(ah, chan,
  762. pEepData->calTargetPowerCck,
  763. AR5416_NUM_2G_CCK_TARGET_POWERS,
  764. &targetPowerCckExt, 4, true);
  765. ath9k_hw_get_legacy_target_powers(ah, chan,
  766. pEepData->calTargetPower2G,
  767. AR5416_NUM_2G_20_TARGET_POWERS,
  768. &targetPowerOfdmExt, 4, true);
  769. }
  770. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  771. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  772. (pCtlMode[ctlMode] == CTL_2GHT40);
  773. if (isHt40CtlMode)
  774. freq = centers.synth_center;
  775. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  776. freq = centers.ext_center;
  777. else
  778. freq = centers.ctl_center;
  779. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  780. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  781. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  782. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  783. "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
  784. "EXT_ADDITIVE %d\n",
  785. ctlMode, numCtlModes, isHt40CtlMode,
  786. (pCtlMode[ctlMode] & EXT_ADDITIVE));
  787. for (i = 0; (i < AR5416_NUM_CTLS) &&
  788. pEepData->ctlIndex[i]; i++) {
  789. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  790. " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
  791. "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
  792. "chan %d\n",
  793. i, cfgCtl, pCtlMode[ctlMode],
  794. pEepData->ctlIndex[i], chan->channel);
  795. if ((((cfgCtl & ~CTL_MODE_M) |
  796. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  797. pEepData->ctlIndex[i]) ||
  798. (((cfgCtl & ~CTL_MODE_M) |
  799. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  800. ((pEepData->ctlIndex[i] & CTL_MODE_M) |
  801. SD_NO_CTL))) {
  802. rep = &(pEepData->ctlData[i]);
  803. twiceMinEdgePower =
  804. ath9k_hw_get_max_edge_power(freq,
  805. rep->ctlEdges[ar5416_get_ntxchains
  806. (tx_chainmask) - 1],
  807. IS_CHAN_2GHZ(chan),
  808. AR5416_EEP4K_NUM_BAND_EDGES);
  809. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  810. " MATCH-EE_IDX %d: ch %d is2 %d "
  811. "2xMinEdge %d chainmask %d chains %d\n",
  812. i, freq, IS_CHAN_2GHZ(chan),
  813. twiceMinEdgePower, tx_chainmask,
  814. ar5416_get_ntxchains
  815. (tx_chainmask));
  816. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  817. twiceMaxEdgePower =
  818. min(twiceMaxEdgePower,
  819. twiceMinEdgePower);
  820. } else {
  821. twiceMaxEdgePower = twiceMinEdgePower;
  822. break;
  823. }
  824. }
  825. }
  826. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  827. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  828. " SEL-Min ctlMode %d pCtlMode %d "
  829. "2xMaxEdge %d sP %d minCtlPwr %d\n",
  830. ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
  831. scaledPower, minCtlPower);
  832. switch (pCtlMode[ctlMode]) {
  833. case CTL_11B:
  834. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
  835. i++) {
  836. targetPowerCck.tPow2x[i] =
  837. min((u16)targetPowerCck.tPow2x[i],
  838. minCtlPower);
  839. }
  840. break;
  841. case CTL_11G:
  842. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
  843. i++) {
  844. targetPowerOfdm.tPow2x[i] =
  845. min((u16)targetPowerOfdm.tPow2x[i],
  846. minCtlPower);
  847. }
  848. break;
  849. case CTL_2GHT20:
  850. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
  851. i++) {
  852. targetPowerHt20.tPow2x[i] =
  853. min((u16)targetPowerHt20.tPow2x[i],
  854. minCtlPower);
  855. }
  856. break;
  857. case CTL_11B_EXT:
  858. targetPowerCckExt.tPow2x[0] = min((u16)
  859. targetPowerCckExt.tPow2x[0],
  860. minCtlPower);
  861. break;
  862. case CTL_11G_EXT:
  863. targetPowerOfdmExt.tPow2x[0] = min((u16)
  864. targetPowerOfdmExt.tPow2x[0],
  865. minCtlPower);
  866. break;
  867. case CTL_2GHT40:
  868. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
  869. i++) {
  870. targetPowerHt40.tPow2x[i] =
  871. min((u16)targetPowerHt40.tPow2x[i],
  872. minCtlPower);
  873. }
  874. break;
  875. default:
  876. break;
  877. }
  878. }
  879. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  880. ratesArray[rate18mb] = ratesArray[rate24mb] =
  881. targetPowerOfdm.tPow2x[0];
  882. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  883. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  884. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  885. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  886. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  887. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  888. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  889. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  890. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  891. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  892. if (IS_CHAN_HT40(chan)) {
  893. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  894. ratesArray[rateHt40_0 + i] =
  895. targetPowerHt40.tPow2x[i];
  896. }
  897. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  898. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  899. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  900. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  901. }
  902. return true;
  903. }
  904. static int ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  905. struct ath9k_channel *chan,
  906. u16 cfgCtl,
  907. u8 twiceAntennaReduction,
  908. u8 twiceMaxRegulatoryPower,
  909. u8 powerLimit)
  910. {
  911. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  912. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  913. int16_t ratesArray[Ar5416RateSize];
  914. int16_t txPowerIndexOffset = 0;
  915. u8 ht40PowerIncForPdadc = 2;
  916. int i;
  917. memset(ratesArray, 0, sizeof(ratesArray));
  918. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  919. AR5416_EEP_MINOR_VER_2) {
  920. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  921. }
  922. if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  923. &ratesArray[0], cfgCtl,
  924. twiceAntennaReduction,
  925. twiceMaxRegulatoryPower,
  926. powerLimit)) {
  927. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  928. "ath9k_hw_set_txpower: unable to set "
  929. "tx power per rate table\n");
  930. return -EIO;
  931. }
  932. if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) {
  933. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  934. "ath9k_hw_set_txpower: unable to set power table\n");
  935. return -EIO;
  936. }
  937. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  938. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  939. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  940. ratesArray[i] = AR5416_MAX_RATE_POWER;
  941. }
  942. if (AR_SREV_9280_10_OR_LATER(ah)) {
  943. for (i = 0; i < Ar5416RateSize; i++)
  944. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  945. }
  946. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  947. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  948. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  949. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  950. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  951. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  952. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  953. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  954. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  955. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  956. if (IS_CHAN_2GHZ(chan)) {
  957. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  958. ATH9K_POW_SM(ratesArray[rate2s], 24)
  959. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  960. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  961. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  962. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  963. ATH9K_POW_SM(ratesArray[rate11s], 24)
  964. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  965. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  966. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  967. }
  968. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  969. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  970. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  971. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  972. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  973. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  974. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  975. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  976. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  977. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  978. if (IS_CHAN_HT40(chan)) {
  979. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  980. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  981. ht40PowerIncForPdadc, 24)
  982. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  983. ht40PowerIncForPdadc, 16)
  984. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  985. ht40PowerIncForPdadc, 8)
  986. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  987. ht40PowerIncForPdadc, 0));
  988. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  989. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  990. ht40PowerIncForPdadc, 24)
  991. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  992. ht40PowerIncForPdadc, 16)
  993. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  994. ht40PowerIncForPdadc, 8)
  995. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  996. ht40PowerIncForPdadc, 0));
  997. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  998. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  999. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  1000. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  1001. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  1002. }
  1003. i = rate6mb;
  1004. if (IS_CHAN_HT40(chan))
  1005. i = rateHt40_0;
  1006. else if (IS_CHAN_HT20(chan))
  1007. i = rateHt20_0;
  1008. if (AR_SREV_9280_10_OR_LATER(ah))
  1009. ah->regulatory.max_power_level =
  1010. ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
  1011. else
  1012. ah->regulatory.max_power_level = ratesArray[i];
  1013. return 0;
  1014. }
  1015. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  1016. struct ath9k_channel *chan)
  1017. {
  1018. struct modal_eep_4k_header *pModal;
  1019. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  1020. u8 biaslevel;
  1021. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  1022. return;
  1023. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  1024. return;
  1025. pModal = &eep->modalHeader;
  1026. if (pModal->xpaBiasLvl != 0xff) {
  1027. biaslevel = pModal->xpaBiasLvl;
  1028. INI_RA(&ah->iniAddac, 7, 1) =
  1029. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  1030. }
  1031. }
  1032. static bool ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  1033. struct ath9k_channel *chan)
  1034. {
  1035. struct modal_eep_4k_header *pModal;
  1036. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  1037. int regChainOffset;
  1038. u8 txRxAttenLocal;
  1039. u8 ob[5], db1[5], db2[5];
  1040. u8 ant_div_control1, ant_div_control2;
  1041. u32 regVal;
  1042. pModal = &eep->modalHeader;
  1043. txRxAttenLocal = 23;
  1044. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  1045. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  1046. regChainOffset = 0;
  1047. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  1048. pModal->antCtrlChain[0]);
  1049. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  1050. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
  1051. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  1052. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  1053. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  1054. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  1055. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1056. AR5416_EEP_MINOR_VER_3) {
  1057. txRxAttenLocal = pModal->txRxAttenCh[0];
  1058. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  1059. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  1060. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  1061. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  1062. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  1063. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  1064. pModal->xatten2Margin[0]);
  1065. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  1066. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  1067. }
  1068. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  1069. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  1070. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  1071. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  1072. if (AR_SREV_9285_11(ah))
  1073. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  1074. /* Initialize Ant Diversity settings from EEPROM */
  1075. if (pModal->version == 3) {
  1076. ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
  1077. ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
  1078. regVal = REG_READ(ah, 0x99ac);
  1079. regVal &= (~(0x7f000000));
  1080. regVal |= ((ant_div_control1 & 0x1) << 24);
  1081. regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
  1082. regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
  1083. regVal |= ((ant_div_control2 & 0x3) << 25);
  1084. regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
  1085. REG_WRITE(ah, 0x99ac, regVal);
  1086. regVal = REG_READ(ah, 0x99ac);
  1087. regVal = REG_READ(ah, 0xa208);
  1088. regVal &= (~(0x1 << 13));
  1089. regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
  1090. REG_WRITE(ah, 0xa208, regVal);
  1091. regVal = REG_READ(ah, 0xa208);
  1092. }
  1093. if (pModal->version >= 2) {
  1094. ob[0] = (pModal->ob_01 & 0xf);
  1095. ob[1] = (pModal->ob_01 >> 4) & 0xf;
  1096. ob[2] = (pModal->ob_234 & 0xf);
  1097. ob[3] = ((pModal->ob_234 >> 4) & 0xf);
  1098. ob[4] = ((pModal->ob_234 >> 8) & 0xf);
  1099. db1[0] = (pModal->db1_01 & 0xf);
  1100. db1[1] = ((pModal->db1_01 >> 4) & 0xf);
  1101. db1[2] = (pModal->db1_234 & 0xf);
  1102. db1[3] = ((pModal->db1_234 >> 4) & 0xf);
  1103. db1[4] = ((pModal->db1_234 >> 8) & 0xf);
  1104. db2[0] = (pModal->db2_01 & 0xf);
  1105. db2[1] = ((pModal->db2_01 >> 4) & 0xf);
  1106. db2[2] = (pModal->db2_234 & 0xf);
  1107. db2[3] = ((pModal->db2_234 >> 4) & 0xf);
  1108. db2[4] = ((pModal->db2_234 >> 8) & 0xf);
  1109. } else if (pModal->version == 1) {
  1110. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1111. "EEPROM Model version is set to 1 \n");
  1112. ob[0] = (pModal->ob_01 & 0xf);
  1113. ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
  1114. db1[0] = (pModal->db1_01 & 0xf);
  1115. db1[1] = db1[2] = db1[3] =
  1116. db1[4] = ((pModal->db1_01 >> 4) & 0xf);
  1117. db2[0] = (pModal->db2_01 & 0xf);
  1118. db2[1] = db2[2] = db2[3] =
  1119. db2[4] = ((pModal->db2_01 >> 4) & 0xf);
  1120. } else {
  1121. int i;
  1122. for (i = 0; i < 5; i++) {
  1123. ob[i] = pModal->ob_01;
  1124. db1[i] = pModal->db1_01;
  1125. db2[i] = pModal->db1_01;
  1126. }
  1127. }
  1128. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1129. AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
  1130. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1131. AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
  1132. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1133. AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
  1134. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1135. AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
  1136. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1137. AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);
  1138. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1139. AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
  1140. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1141. AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
  1142. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1143. AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
  1144. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1145. AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
  1146. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1147. AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  1148. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1149. AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
  1150. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1151. AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
  1152. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1153. AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
  1154. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1155. AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
  1156. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1157. AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);
  1158. if (AR_SREV_9285_11(ah))
  1159. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  1160. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  1161. pModal->switchSettling);
  1162. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  1163. pModal->adcDesiredSize);
  1164. REG_WRITE(ah, AR_PHY_RF_CTL4,
  1165. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  1166. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  1167. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  1168. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  1169. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  1170. pModal->txEndToRxOn);
  1171. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  1172. pModal->thresh62);
  1173. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  1174. pModal->thresh62);
  1175. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1176. AR5416_EEP_MINOR_VER_2) {
  1177. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  1178. pModal->txFrameToDataStart);
  1179. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  1180. pModal->txFrameToPaOn);
  1181. }
  1182. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1183. AR5416_EEP_MINOR_VER_3) {
  1184. if (IS_CHAN_HT40(chan))
  1185. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  1186. AR_PHY_SETTLING_SWITCH,
  1187. pModal->swSettleHt40);
  1188. }
  1189. return true;
  1190. }
  1191. static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
  1192. struct ath9k_channel *chan)
  1193. {
  1194. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  1195. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  1196. return pModal->antCtrlCommon & 0xFFFF;
  1197. }
  1198. static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
  1199. enum ieee80211_band freq_band)
  1200. {
  1201. return 1;
  1202. }
  1203. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  1204. {
  1205. #define EEP_MAP4K_SPURCHAN \
  1206. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  1207. u16 spur_val = AR_NO_SPUR;
  1208. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1209. "Getting spur idx %d is2Ghz. %d val %x\n",
  1210. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1211. switch (ah->config.spurmode) {
  1212. case SPUR_DISABLE:
  1213. break;
  1214. case SPUR_ENABLE_IOCTL:
  1215. spur_val = ah->config.spurchans[i][is2GHz];
  1216. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1217. "Getting spur val from new loc. %d\n", spur_val);
  1218. break;
  1219. case SPUR_ENABLE_EEPROM:
  1220. spur_val = EEP_MAP4K_SPURCHAN;
  1221. break;
  1222. }
  1223. return spur_val;
  1224. #undef EEP_MAP4K_SPURCHAN
  1225. }
  1226. static struct eeprom_ops eep_4k_ops = {
  1227. .check_eeprom = ath9k_hw_4k_check_eeprom,
  1228. .get_eeprom = ath9k_hw_4k_get_eeprom,
  1229. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  1230. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  1231. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  1232. .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
  1233. .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
  1234. .set_board_values = ath9k_hw_4k_set_board_values,
  1235. .set_addac = ath9k_hw_4k_set_addac,
  1236. .set_txpower = ath9k_hw_4k_set_txpower,
  1237. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  1238. };
  1239. /************************************************/
  1240. /* EEPROM Operations for non-4K (Default) cards */
  1241. /************************************************/
  1242. static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
  1243. {
  1244. return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
  1245. }
  1246. static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
  1247. {
  1248. return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
  1249. }
  1250. static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
  1251. {
  1252. #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
  1253. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1254. u16 *eep_data;
  1255. int addr, ar5416_eep_start_loc = 0x100;
  1256. eep_data = (u16 *)eep;
  1257. for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
  1258. if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
  1259. eep_data)) {
  1260. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1261. "Unable to read eeprom region\n");
  1262. return false;
  1263. }
  1264. eep_data++;
  1265. }
  1266. return true;
  1267. #undef SIZE_EEPROM_DEF
  1268. }
  1269. static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
  1270. {
  1271. struct ar5416_eeprom_def *eep =
  1272. (struct ar5416_eeprom_def *) &ah->eeprom.def;
  1273. u16 *eepdata, temp, magic, magic2;
  1274. u32 sum = 0, el;
  1275. bool need_swap = false;
  1276. int i, addr, size;
  1277. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
  1278. &magic)) {
  1279. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1280. "Reading Magic # failed\n");
  1281. return false;
  1282. }
  1283. if (!ath9k_hw_use_flash(ah)) {
  1284. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1285. "Read Magic = 0x%04X\n", magic);
  1286. if (magic != AR5416_EEPROM_MAGIC) {
  1287. magic2 = swab16(magic);
  1288. if (magic2 == AR5416_EEPROM_MAGIC) {
  1289. size = sizeof(struct ar5416_eeprom_def);
  1290. need_swap = true;
  1291. eepdata = (u16 *) (&ah->eeprom);
  1292. for (addr = 0; addr < size / sizeof(u16); addr++) {
  1293. temp = swab16(*eepdata);
  1294. *eepdata = temp;
  1295. eepdata++;
  1296. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1297. "0x%04X ", *eepdata);
  1298. if (((addr + 1) % 6) == 0)
  1299. DPRINTF(ah->ah_sc,
  1300. ATH_DBG_EEPROM, "\n");
  1301. }
  1302. } else {
  1303. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1304. "Invalid EEPROM Magic. "
  1305. "endianness mismatch.\n");
  1306. return -EINVAL;
  1307. }
  1308. }
  1309. }
  1310. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  1311. need_swap ? "True" : "False");
  1312. if (need_swap)
  1313. el = swab16(ah->eeprom.def.baseEepHeader.length);
  1314. else
  1315. el = ah->eeprom.def.baseEepHeader.length;
  1316. if (el > sizeof(struct ar5416_eeprom_def))
  1317. el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
  1318. else
  1319. el = el / sizeof(u16);
  1320. eepdata = (u16 *)(&ah->eeprom);
  1321. for (i = 0; i < el; i++)
  1322. sum ^= *eepdata++;
  1323. if (need_swap) {
  1324. u32 integer, j;
  1325. u16 word;
  1326. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1327. "EEPROM Endianness is not native.. Changing \n");
  1328. word = swab16(eep->baseEepHeader.length);
  1329. eep->baseEepHeader.length = word;
  1330. word = swab16(eep->baseEepHeader.checksum);
  1331. eep->baseEepHeader.checksum = word;
  1332. word = swab16(eep->baseEepHeader.version);
  1333. eep->baseEepHeader.version = word;
  1334. word = swab16(eep->baseEepHeader.regDmn[0]);
  1335. eep->baseEepHeader.regDmn[0] = word;
  1336. word = swab16(eep->baseEepHeader.regDmn[1]);
  1337. eep->baseEepHeader.regDmn[1] = word;
  1338. word = swab16(eep->baseEepHeader.rfSilent);
  1339. eep->baseEepHeader.rfSilent = word;
  1340. word = swab16(eep->baseEepHeader.blueToothOptions);
  1341. eep->baseEepHeader.blueToothOptions = word;
  1342. word = swab16(eep->baseEepHeader.deviceCap);
  1343. eep->baseEepHeader.deviceCap = word;
  1344. for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
  1345. struct modal_eep_header *pModal =
  1346. &eep->modalHeader[j];
  1347. integer = swab32(pModal->antCtrlCommon);
  1348. pModal->antCtrlCommon = integer;
  1349. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  1350. integer = swab32(pModal->antCtrlChain[i]);
  1351. pModal->antCtrlChain[i] = integer;
  1352. }
  1353. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  1354. word = swab16(pModal->spurChans[i].spurChan);
  1355. pModal->spurChans[i].spurChan = word;
  1356. }
  1357. }
  1358. }
  1359. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  1360. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  1361. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1362. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  1363. sum, ah->eep_ops->get_eeprom_ver(ah));
  1364. return -EINVAL;
  1365. }
  1366. return 0;
  1367. }
  1368. static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
  1369. enum eeprom_param param)
  1370. {
  1371. #define AR5416_VER_MASK (pBase->version & AR5416_EEP_VER_MINOR_MASK)
  1372. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1373. struct modal_eep_header *pModal = eep->modalHeader;
  1374. struct base_eep_header *pBase = &eep->baseEepHeader;
  1375. switch (param) {
  1376. case EEP_NFTHRESH_5:
  1377. return pModal[0].noiseFloorThreshCh[0];
  1378. case EEP_NFTHRESH_2:
  1379. return pModal[1].noiseFloorThreshCh[0];
  1380. case AR_EEPROM_MAC(0):
  1381. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  1382. case AR_EEPROM_MAC(1):
  1383. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  1384. case AR_EEPROM_MAC(2):
  1385. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  1386. case EEP_REG_0:
  1387. return pBase->regDmn[0];
  1388. case EEP_REG_1:
  1389. return pBase->regDmn[1];
  1390. case EEP_OP_CAP:
  1391. return pBase->deviceCap;
  1392. case EEP_OP_MODE:
  1393. return pBase->opCapFlags;
  1394. case EEP_RF_SILENT:
  1395. return pBase->rfSilent;
  1396. case EEP_OB_5:
  1397. return pModal[0].ob;
  1398. case EEP_DB_5:
  1399. return pModal[0].db;
  1400. case EEP_OB_2:
  1401. return pModal[1].ob;
  1402. case EEP_DB_2:
  1403. return pModal[1].db;
  1404. case EEP_MINOR_REV:
  1405. return AR5416_VER_MASK;
  1406. case EEP_TX_MASK:
  1407. return pBase->txMask;
  1408. case EEP_RX_MASK:
  1409. return pBase->rxMask;
  1410. case EEP_RXGAIN_TYPE:
  1411. return pBase->rxGainType;
  1412. case EEP_TXGAIN_TYPE:
  1413. return pBase->txGainType;
  1414. case EEP_OL_PWRCTRL:
  1415. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
  1416. return pBase->openLoopPwrCntl ? true : false;
  1417. else
  1418. return false;
  1419. case EEP_RC_CHAIN_MASK:
  1420. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
  1421. return pBase->rcChainMask;
  1422. else
  1423. return 0;
  1424. case EEP_DAC_HPWR_5G:
  1425. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
  1426. return pBase->dacHiPwrMode_5G;
  1427. else
  1428. return 0;
  1429. case EEP_FRAC_N_5G:
  1430. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
  1431. return pBase->frac_n_5g;
  1432. else
  1433. return 0;
  1434. default:
  1435. return 0;
  1436. }
  1437. #undef AR5416_VER_MASK
  1438. }
  1439. /* XXX: Clean me up, make me more legible */
  1440. static bool ath9k_hw_def_set_board_values(struct ath_hw *ah,
  1441. struct ath9k_channel *chan)
  1442. {
  1443. #define AR5416_VER_MASK (eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK)
  1444. struct modal_eep_header *pModal;
  1445. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1446. int i, regChainOffset;
  1447. u8 txRxAttenLocal;
  1448. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  1449. txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
  1450. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  1451. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  1452. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  1453. if (AR_SREV_9280(ah)) {
  1454. if (i >= 2)
  1455. break;
  1456. }
  1457. if (AR_SREV_5416_20_OR_LATER(ah) &&
  1458. (ah->rxchainmask == 5 || ah->txchainmask == 5)
  1459. && (i != 0))
  1460. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  1461. else
  1462. regChainOffset = i * 0x1000;
  1463. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  1464. pModal->antCtrlChain[i]);
  1465. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  1466. (REG_READ(ah,
  1467. AR_PHY_TIMING_CTRL4(0) +
  1468. regChainOffset) &
  1469. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  1470. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  1471. SM(pModal->iqCalICh[i],
  1472. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  1473. SM(pModal->iqCalQCh[i],
  1474. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  1475. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  1476. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  1477. txRxAttenLocal = pModal->txRxAttenCh[i];
  1478. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1479. REG_RMW_FIELD(ah,
  1480. AR_PHY_GAIN_2GHZ +
  1481. regChainOffset,
  1482. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  1483. pModal->
  1484. bswMargin[i]);
  1485. REG_RMW_FIELD(ah,
  1486. AR_PHY_GAIN_2GHZ +
  1487. regChainOffset,
  1488. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  1489. pModal->
  1490. bswAtten[i]);
  1491. REG_RMW_FIELD(ah,
  1492. AR_PHY_GAIN_2GHZ +
  1493. regChainOffset,
  1494. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  1495. pModal->
  1496. xatten2Margin[i]);
  1497. REG_RMW_FIELD(ah,
  1498. AR_PHY_GAIN_2GHZ +
  1499. regChainOffset,
  1500. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  1501. pModal->
  1502. xatten2Db[i]);
  1503. } else {
  1504. REG_WRITE(ah,
  1505. AR_PHY_GAIN_2GHZ +
  1506. regChainOffset,
  1507. (REG_READ(ah,
  1508. AR_PHY_GAIN_2GHZ +
  1509. regChainOffset) &
  1510. ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
  1511. | SM(pModal->
  1512. bswMargin[i],
  1513. AR_PHY_GAIN_2GHZ_BSW_MARGIN));
  1514. REG_WRITE(ah,
  1515. AR_PHY_GAIN_2GHZ +
  1516. regChainOffset,
  1517. (REG_READ(ah,
  1518. AR_PHY_GAIN_2GHZ +
  1519. regChainOffset) &
  1520. ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
  1521. | SM(pModal->bswAtten[i],
  1522. AR_PHY_GAIN_2GHZ_BSW_ATTEN));
  1523. }
  1524. }
  1525. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1526. REG_RMW_FIELD(ah,
  1527. AR_PHY_RXGAIN +
  1528. regChainOffset,
  1529. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  1530. txRxAttenLocal);
  1531. REG_RMW_FIELD(ah,
  1532. AR_PHY_RXGAIN +
  1533. regChainOffset,
  1534. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  1535. pModal->rxTxMarginCh[i]);
  1536. } else {
  1537. REG_WRITE(ah,
  1538. AR_PHY_RXGAIN + regChainOffset,
  1539. (REG_READ(ah,
  1540. AR_PHY_RXGAIN +
  1541. regChainOffset) &
  1542. ~AR_PHY_RXGAIN_TXRX_ATTEN) |
  1543. SM(txRxAttenLocal,
  1544. AR_PHY_RXGAIN_TXRX_ATTEN));
  1545. REG_WRITE(ah,
  1546. AR_PHY_GAIN_2GHZ +
  1547. regChainOffset,
  1548. (REG_READ(ah,
  1549. AR_PHY_GAIN_2GHZ +
  1550. regChainOffset) &
  1551. ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
  1552. SM(pModal->rxTxMarginCh[i],
  1553. AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
  1554. }
  1555. }
  1556. }
  1557. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1558. if (IS_CHAN_2GHZ(chan)) {
  1559. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  1560. AR_AN_RF2G1_CH0_OB,
  1561. AR_AN_RF2G1_CH0_OB_S,
  1562. pModal->ob);
  1563. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  1564. AR_AN_RF2G1_CH0_DB,
  1565. AR_AN_RF2G1_CH0_DB_S,
  1566. pModal->db);
  1567. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  1568. AR_AN_RF2G1_CH1_OB,
  1569. AR_AN_RF2G1_CH1_OB_S,
  1570. pModal->ob_ch1);
  1571. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  1572. AR_AN_RF2G1_CH1_DB,
  1573. AR_AN_RF2G1_CH1_DB_S,
  1574. pModal->db_ch1);
  1575. } else {
  1576. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  1577. AR_AN_RF5G1_CH0_OB5,
  1578. AR_AN_RF5G1_CH0_OB5_S,
  1579. pModal->ob);
  1580. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  1581. AR_AN_RF5G1_CH0_DB5,
  1582. AR_AN_RF5G1_CH0_DB5_S,
  1583. pModal->db);
  1584. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  1585. AR_AN_RF5G1_CH1_OB5,
  1586. AR_AN_RF5G1_CH1_OB5_S,
  1587. pModal->ob_ch1);
  1588. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  1589. AR_AN_RF5G1_CH1_DB5,
  1590. AR_AN_RF5G1_CH1_DB5_S,
  1591. pModal->db_ch1);
  1592. }
  1593. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  1594. AR_AN_TOP2_XPABIAS_LVL,
  1595. AR_AN_TOP2_XPABIAS_LVL_S,
  1596. pModal->xpaBiasLvl);
  1597. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  1598. AR_AN_TOP2_LOCALBIAS,
  1599. AR_AN_TOP2_LOCALBIAS_S,
  1600. pModal->local_bias);
  1601. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n",
  1602. pModal->force_xpaon);
  1603. REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
  1604. pModal->force_xpaon);
  1605. }
  1606. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  1607. pModal->switchSettling);
  1608. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  1609. pModal->adcDesiredSize);
  1610. if (!AR_SREV_9280_10_OR_LATER(ah))
  1611. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  1612. AR_PHY_DESIRED_SZ_PGA,
  1613. pModal->pgaDesiredSize);
  1614. REG_WRITE(ah, AR_PHY_RF_CTL4,
  1615. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  1616. | SM(pModal->txEndToXpaOff,
  1617. AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  1618. | SM(pModal->txFrameToXpaOn,
  1619. AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  1620. | SM(pModal->txFrameToXpaOn,
  1621. AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  1622. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  1623. pModal->txEndToRxOn);
  1624. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1625. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  1626. pModal->thresh62);
  1627. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  1628. AR_PHY_EXT_CCA0_THRESH62,
  1629. pModal->thresh62);
  1630. } else {
  1631. REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
  1632. pModal->thresh62);
  1633. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  1634. AR_PHY_EXT_CCA_THRESH62,
  1635. pModal->thresh62);
  1636. }
  1637. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
  1638. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  1639. AR_PHY_TX_END_DATA_START,
  1640. pModal->txFrameToDataStart);
  1641. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  1642. pModal->txFrameToPaOn);
  1643. }
  1644. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  1645. if (IS_CHAN_HT40(chan))
  1646. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  1647. AR_PHY_SETTLING_SWITCH,
  1648. pModal->swSettleHt40);
  1649. }
  1650. if (AR_SREV_9280_20_OR_LATER(ah) &&
  1651. AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
  1652. REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
  1653. AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
  1654. pModal->miscBits);
  1655. if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
  1656. if (IS_CHAN_2GHZ(chan))
  1657. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  1658. eep->baseEepHeader.dacLpMode);
  1659. else if (eep->baseEepHeader.dacHiPwrMode_5G)
  1660. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
  1661. else
  1662. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  1663. eep->baseEepHeader.dacLpMode);
  1664. REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
  1665. pModal->miscBits >> 2);
  1666. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
  1667. AR_PHY_TX_DESIRED_SCALE_CCK,
  1668. eep->baseEepHeader.desiredScaleCCK);
  1669. }
  1670. return true;
  1671. #undef AR5416_VER_MASK
  1672. }
  1673. static void ath9k_hw_def_set_addac(struct ath_hw *ah,
  1674. struct ath9k_channel *chan)
  1675. {
  1676. #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
  1677. struct modal_eep_header *pModal;
  1678. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1679. u8 biaslevel;
  1680. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  1681. return;
  1682. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  1683. return;
  1684. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  1685. if (pModal->xpaBiasLvl != 0xff) {
  1686. biaslevel = pModal->xpaBiasLvl;
  1687. } else {
  1688. u16 resetFreqBin, freqBin, freqCount = 0;
  1689. struct chan_centers centers;
  1690. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1691. resetFreqBin = FREQ2FBIN(centers.synth_center,
  1692. IS_CHAN_2GHZ(chan));
  1693. freqBin = XPA_LVL_FREQ(0) & 0xff;
  1694. biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
  1695. freqCount++;
  1696. while (freqCount < 3) {
  1697. if (XPA_LVL_FREQ(freqCount) == 0x0)
  1698. break;
  1699. freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
  1700. if (resetFreqBin >= freqBin)
  1701. biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
  1702. else
  1703. break;
  1704. freqCount++;
  1705. }
  1706. }
  1707. if (IS_CHAN_2GHZ(chan)) {
  1708. INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
  1709. 7, 1) & (~0x18)) | biaslevel << 3;
  1710. } else {
  1711. INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
  1712. 6, 1) & (~0xc0)) | biaslevel << 6;
  1713. }
  1714. #undef XPA_LVL_FREQ
  1715. }
  1716. static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
  1717. struct ath9k_channel *chan,
  1718. struct cal_data_per_freq *pRawDataSet,
  1719. u8 *bChans, u16 availPiers,
  1720. u16 tPdGainOverlap, int16_t *pMinCalPower,
  1721. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  1722. u16 numXpdGains)
  1723. {
  1724. int i, j, k;
  1725. int16_t ss;
  1726. u16 idxL = 0, idxR = 0, numPiers;
  1727. static u8 vpdTableL[AR5416_NUM_PD_GAINS]
  1728. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  1729. static u8 vpdTableR[AR5416_NUM_PD_GAINS]
  1730. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  1731. static u8 vpdTableI[AR5416_NUM_PD_GAINS]
  1732. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  1733. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  1734. u8 minPwrT4[AR5416_NUM_PD_GAINS];
  1735. u8 maxPwrT4[AR5416_NUM_PD_GAINS];
  1736. int16_t vpdStep;
  1737. int16_t tmpVal;
  1738. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  1739. bool match;
  1740. int16_t minDelta = 0;
  1741. struct chan_centers centers;
  1742. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1743. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  1744. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  1745. break;
  1746. }
  1747. match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
  1748. IS_CHAN_2GHZ(chan)),
  1749. bChans, numPiers, &idxL, &idxR);
  1750. if (match) {
  1751. for (i = 0; i < numXpdGains; i++) {
  1752. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  1753. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  1754. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  1755. pRawDataSet[idxL].pwrPdg[i],
  1756. pRawDataSet[idxL].vpdPdg[i],
  1757. AR5416_PD_GAIN_ICEPTS,
  1758. vpdTableI[i]);
  1759. }
  1760. } else {
  1761. for (i = 0; i < numXpdGains; i++) {
  1762. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  1763. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  1764. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  1765. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  1766. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  1767. maxPwrT4[i] =
  1768. min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
  1769. pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
  1770. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  1771. pPwrL, pVpdL,
  1772. AR5416_PD_GAIN_ICEPTS,
  1773. vpdTableL[i]);
  1774. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  1775. pPwrR, pVpdR,
  1776. AR5416_PD_GAIN_ICEPTS,
  1777. vpdTableR[i]);
  1778. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  1779. vpdTableI[i][j] =
  1780. (u8)(ath9k_hw_interpolate((u16)
  1781. FREQ2FBIN(centers.
  1782. synth_center,
  1783. IS_CHAN_2GHZ
  1784. (chan)),
  1785. bChans[idxL], bChans[idxR],
  1786. vpdTableL[i][j], vpdTableR[i][j]));
  1787. }
  1788. }
  1789. }
  1790. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  1791. k = 0;
  1792. for (i = 0; i < numXpdGains; i++) {
  1793. if (i == (numXpdGains - 1))
  1794. pPdGainBoundaries[i] =
  1795. (u16)(maxPwrT4[i] / 2);
  1796. else
  1797. pPdGainBoundaries[i] =
  1798. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  1799. pPdGainBoundaries[i] =
  1800. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  1801. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  1802. minDelta = pPdGainBoundaries[0] - 23;
  1803. pPdGainBoundaries[0] = 23;
  1804. } else {
  1805. minDelta = 0;
  1806. }
  1807. if (i == 0) {
  1808. if (AR_SREV_9280_10_OR_LATER(ah))
  1809. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  1810. else
  1811. ss = 0;
  1812. } else {
  1813. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  1814. (minPwrT4[i] / 2)) -
  1815. tPdGainOverlap + 1 + minDelta);
  1816. }
  1817. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  1818. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  1819. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  1820. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  1821. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  1822. ss++;
  1823. }
  1824. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  1825. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  1826. (minPwrT4[i] / 2));
  1827. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  1828. tgtIndex : sizeCurrVpdTable;
  1829. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  1830. pPDADCValues[k++] = vpdTableI[i][ss++];
  1831. }
  1832. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  1833. vpdTableI[i][sizeCurrVpdTable - 2]);
  1834. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  1835. if (tgtIndex > maxIndex) {
  1836. while ((ss <= tgtIndex) &&
  1837. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  1838. tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
  1839. (ss - maxIndex + 1) * vpdStep));
  1840. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  1841. 255 : tmpVal);
  1842. ss++;
  1843. }
  1844. }
  1845. }
  1846. while (i < AR5416_PD_GAINS_IN_MASK) {
  1847. pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
  1848. i++;
  1849. }
  1850. while (k < AR5416_NUM_PDADC_VALUES) {
  1851. pPDADCValues[k] = pPDADCValues[k - 1];
  1852. k++;
  1853. }
  1854. return;
  1855. }
  1856. static bool ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
  1857. struct ath9k_channel *chan,
  1858. int16_t *pTxPowerIndexOffset)
  1859. {
  1860. #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
  1861. #define SM_PDGAIN_B(x, y) \
  1862. SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
  1863. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  1864. struct cal_data_per_freq *pRawDataset;
  1865. u8 *pCalBChans = NULL;
  1866. u16 pdGainOverlap_t2;
  1867. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  1868. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  1869. u16 numPiers, i, j;
  1870. int16_t tMinCalPower;
  1871. u16 numXpdGain, xpdMask;
  1872. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
  1873. u32 reg32, regOffset, regChainOffset;
  1874. int16_t modalIdx;
  1875. modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
  1876. xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
  1877. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1878. AR5416_EEP_MINOR_VER_2) {
  1879. pdGainOverlap_t2 =
  1880. pEepData->modalHeader[modalIdx].pdGainOverlap;
  1881. } else {
  1882. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  1883. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  1884. }
  1885. if (IS_CHAN_2GHZ(chan)) {
  1886. pCalBChans = pEepData->calFreqPier2G;
  1887. numPiers = AR5416_NUM_2G_CAL_PIERS;
  1888. } else {
  1889. pCalBChans = pEepData->calFreqPier5G;
  1890. numPiers = AR5416_NUM_5G_CAL_PIERS;
  1891. }
  1892. if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
  1893. pRawDataset = pEepData->calPierData2G[0];
  1894. ah->initPDADC = ((struct calDataPerFreqOpLoop *)
  1895. pRawDataset)->vpdPdg[0][0];
  1896. }
  1897. numXpdGain = 0;
  1898. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  1899. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  1900. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  1901. break;
  1902. xpdGainValues[numXpdGain] =
  1903. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  1904. numXpdGain++;
  1905. }
  1906. }
  1907. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  1908. (numXpdGain - 1) & 0x3);
  1909. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  1910. xpdGainValues[0]);
  1911. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  1912. xpdGainValues[1]);
  1913. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  1914. xpdGainValues[2]);
  1915. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  1916. if (AR_SREV_5416_20_OR_LATER(ah) &&
  1917. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  1918. (i != 0)) {
  1919. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  1920. } else
  1921. regChainOffset = i * 0x1000;
  1922. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  1923. if (IS_CHAN_2GHZ(chan))
  1924. pRawDataset = pEepData->calPierData2G[i];
  1925. else
  1926. pRawDataset = pEepData->calPierData5G[i];
  1927. if (OLC_FOR_AR9280_20_LATER) {
  1928. u8 pcdacIdx;
  1929. u8 txPower;
  1930. ath9k_get_txgain_index(ah, chan,
  1931. (struct calDataPerFreqOpLoop *)pRawDataset,
  1932. pCalBChans, numPiers, &txPower, &pcdacIdx);
  1933. ath9k_olc_get_pdadcs(ah, pcdacIdx,
  1934. txPower/2, pdadcValues);
  1935. } else {
  1936. ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
  1937. chan, pRawDataset,
  1938. pCalBChans, numPiers,
  1939. pdGainOverlap_t2,
  1940. &tMinCalPower,
  1941. gainBoundaries,
  1942. pdadcValues,
  1943. numXpdGain);
  1944. }
  1945. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  1946. if (OLC_FOR_AR9280_20_LATER) {
  1947. REG_WRITE(ah,
  1948. AR_PHY_TPCRG5 + regChainOffset,
  1949. SM(0x6,
  1950. AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
  1951. SM_PD_GAIN(1) | SM_PD_GAIN(2) |
  1952. SM_PD_GAIN(3) | SM_PD_GAIN(4));
  1953. } else {
  1954. REG_WRITE(ah,
  1955. AR_PHY_TPCRG5 + regChainOffset,
  1956. SM(pdGainOverlap_t2,
  1957. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
  1958. SM_PDGAIN_B(0, 1) |
  1959. SM_PDGAIN_B(1, 2) |
  1960. SM_PDGAIN_B(2, 3) |
  1961. SM_PDGAIN_B(3, 4));
  1962. }
  1963. }
  1964. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  1965. for (j = 0; j < 32; j++) {
  1966. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  1967. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  1968. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  1969. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  1970. REG_WRITE(ah, regOffset, reg32);
  1971. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  1972. "PDADC (%d,%4x): %4.4x %8.8x\n",
  1973. i, regChainOffset, regOffset,
  1974. reg32);
  1975. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  1976. "PDADC: Chain %d | PDADC %3d "
  1977. "Value %3d | PDADC %3d Value %3d | "
  1978. "PDADC %3d Value %3d | PDADC %3d "
  1979. "Value %3d |\n",
  1980. i, 4 * j, pdadcValues[4 * j],
  1981. 4 * j + 1, pdadcValues[4 * j + 1],
  1982. 4 * j + 2, pdadcValues[4 * j + 2],
  1983. 4 * j + 3,
  1984. pdadcValues[4 * j + 3]);
  1985. regOffset += 4;
  1986. }
  1987. }
  1988. }
  1989. *pTxPowerIndexOffset = 0;
  1990. return true;
  1991. #undef SM_PD_GAIN
  1992. #undef SM_PDGAIN_B
  1993. }
  1994. static bool ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
  1995. struct ath9k_channel *chan,
  1996. int16_t *ratesArray,
  1997. u16 cfgCtl,
  1998. u16 AntennaReduction,
  1999. u16 twiceMaxRegulatoryPower,
  2000. u16 powerLimit)
  2001. {
  2002. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
  2003. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
  2004. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  2005. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  2006. static const u16 tpScaleReductionTable[5] =
  2007. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  2008. int i;
  2009. int16_t twiceLargestAntenna;
  2010. struct cal_ctl_data *rep;
  2011. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  2012. 0, { 0, 0, 0, 0}
  2013. };
  2014. struct cal_target_power_leg targetPowerOfdmExt = {
  2015. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  2016. 0, { 0, 0, 0, 0 }
  2017. };
  2018. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  2019. 0, {0, 0, 0, 0}
  2020. };
  2021. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  2022. u16 ctlModesFor11a[] =
  2023. { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
  2024. u16 ctlModesFor11g[] =
  2025. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  2026. CTL_2GHT40
  2027. };
  2028. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  2029. struct chan_centers centers;
  2030. int tx_chainmask;
  2031. u16 twiceMinEdgePower;
  2032. tx_chainmask = ah->txchainmask;
  2033. ath9k_hw_get_channel_centers(ah, chan, &centers);
  2034. twiceLargestAntenna = max(
  2035. pEepData->modalHeader
  2036. [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
  2037. pEepData->modalHeader
  2038. [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
  2039. twiceLargestAntenna = max((u8)twiceLargestAntenna,
  2040. pEepData->modalHeader
  2041. [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
  2042. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  2043. twiceLargestAntenna, 0);
  2044. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  2045. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
  2046. maxRegAllowedPower -=
  2047. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  2048. }
  2049. scaledPower = min(powerLimit, maxRegAllowedPower);
  2050. switch (ar5416_get_ntxchains(tx_chainmask)) {
  2051. case 1:
  2052. break;
  2053. case 2:
  2054. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  2055. break;
  2056. case 3:
  2057. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  2058. break;
  2059. }
  2060. scaledPower = max((u16)0, scaledPower);
  2061. if (IS_CHAN_2GHZ(chan)) {
  2062. numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
  2063. SUB_NUM_CTL_MODES_AT_2G_40;
  2064. pCtlMode = ctlModesFor11g;
  2065. ath9k_hw_get_legacy_target_powers(ah, chan,
  2066. pEepData->calTargetPowerCck,
  2067. AR5416_NUM_2G_CCK_TARGET_POWERS,
  2068. &targetPowerCck, 4, false);
  2069. ath9k_hw_get_legacy_target_powers(ah, chan,
  2070. pEepData->calTargetPower2G,
  2071. AR5416_NUM_2G_20_TARGET_POWERS,
  2072. &targetPowerOfdm, 4, false);
  2073. ath9k_hw_get_target_powers(ah, chan,
  2074. pEepData->calTargetPower2GHT20,
  2075. AR5416_NUM_2G_20_TARGET_POWERS,
  2076. &targetPowerHt20, 8, false);
  2077. if (IS_CHAN_HT40(chan)) {
  2078. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  2079. ath9k_hw_get_target_powers(ah, chan,
  2080. pEepData->calTargetPower2GHT40,
  2081. AR5416_NUM_2G_40_TARGET_POWERS,
  2082. &targetPowerHt40, 8, true);
  2083. ath9k_hw_get_legacy_target_powers(ah, chan,
  2084. pEepData->calTargetPowerCck,
  2085. AR5416_NUM_2G_CCK_TARGET_POWERS,
  2086. &targetPowerCckExt, 4, true);
  2087. ath9k_hw_get_legacy_target_powers(ah, chan,
  2088. pEepData->calTargetPower2G,
  2089. AR5416_NUM_2G_20_TARGET_POWERS,
  2090. &targetPowerOfdmExt, 4, true);
  2091. }
  2092. } else {
  2093. numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
  2094. SUB_NUM_CTL_MODES_AT_5G_40;
  2095. pCtlMode = ctlModesFor11a;
  2096. ath9k_hw_get_legacy_target_powers(ah, chan,
  2097. pEepData->calTargetPower5G,
  2098. AR5416_NUM_5G_20_TARGET_POWERS,
  2099. &targetPowerOfdm, 4, false);
  2100. ath9k_hw_get_target_powers(ah, chan,
  2101. pEepData->calTargetPower5GHT20,
  2102. AR5416_NUM_5G_20_TARGET_POWERS,
  2103. &targetPowerHt20, 8, false);
  2104. if (IS_CHAN_HT40(chan)) {
  2105. numCtlModes = ARRAY_SIZE(ctlModesFor11a);
  2106. ath9k_hw_get_target_powers(ah, chan,
  2107. pEepData->calTargetPower5GHT40,
  2108. AR5416_NUM_5G_40_TARGET_POWERS,
  2109. &targetPowerHt40, 8, true);
  2110. ath9k_hw_get_legacy_target_powers(ah, chan,
  2111. pEepData->calTargetPower5G,
  2112. AR5416_NUM_5G_20_TARGET_POWERS,
  2113. &targetPowerOfdmExt, 4, true);
  2114. }
  2115. }
  2116. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  2117. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  2118. (pCtlMode[ctlMode] == CTL_2GHT40);
  2119. if (isHt40CtlMode)
  2120. freq = centers.synth_center;
  2121. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  2122. freq = centers.ext_center;
  2123. else
  2124. freq = centers.ctl_center;
  2125. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  2126. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  2127. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  2128. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2129. "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
  2130. "EXT_ADDITIVE %d\n",
  2131. ctlMode, numCtlModes, isHt40CtlMode,
  2132. (pCtlMode[ctlMode] & EXT_ADDITIVE));
  2133. for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  2134. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2135. " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
  2136. "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
  2137. "chan %d\n",
  2138. i, cfgCtl, pCtlMode[ctlMode],
  2139. pEepData->ctlIndex[i], chan->channel);
  2140. if ((((cfgCtl & ~CTL_MODE_M) |
  2141. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  2142. pEepData->ctlIndex[i]) ||
  2143. (((cfgCtl & ~CTL_MODE_M) |
  2144. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  2145. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
  2146. rep = &(pEepData->ctlData[i]);
  2147. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  2148. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
  2149. IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
  2150. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2151. " MATCH-EE_IDX %d: ch %d is2 %d "
  2152. "2xMinEdge %d chainmask %d chains %d\n",
  2153. i, freq, IS_CHAN_2GHZ(chan),
  2154. twiceMinEdgePower, tx_chainmask,
  2155. ar5416_get_ntxchains
  2156. (tx_chainmask));
  2157. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  2158. twiceMaxEdgePower = min(twiceMaxEdgePower,
  2159. twiceMinEdgePower);
  2160. } else {
  2161. twiceMaxEdgePower = twiceMinEdgePower;
  2162. break;
  2163. }
  2164. }
  2165. }
  2166. minCtlPower = min(twiceMaxEdgePower, scaledPower);
  2167. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2168. " SEL-Min ctlMode %d pCtlMode %d "
  2169. "2xMaxEdge %d sP %d minCtlPwr %d\n",
  2170. ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
  2171. scaledPower, minCtlPower);
  2172. switch (pCtlMode[ctlMode]) {
  2173. case CTL_11B:
  2174. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  2175. targetPowerCck.tPow2x[i] =
  2176. min((u16)targetPowerCck.tPow2x[i],
  2177. minCtlPower);
  2178. }
  2179. break;
  2180. case CTL_11A:
  2181. case CTL_11G:
  2182. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  2183. targetPowerOfdm.tPow2x[i] =
  2184. min((u16)targetPowerOfdm.tPow2x[i],
  2185. minCtlPower);
  2186. }
  2187. break;
  2188. case CTL_5GHT20:
  2189. case CTL_2GHT20:
  2190. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  2191. targetPowerHt20.tPow2x[i] =
  2192. min((u16)targetPowerHt20.tPow2x[i],
  2193. minCtlPower);
  2194. }
  2195. break;
  2196. case CTL_11B_EXT:
  2197. targetPowerCckExt.tPow2x[0] = min((u16)
  2198. targetPowerCckExt.tPow2x[0],
  2199. minCtlPower);
  2200. break;
  2201. case CTL_11A_EXT:
  2202. case CTL_11G_EXT:
  2203. targetPowerOfdmExt.tPow2x[0] = min((u16)
  2204. targetPowerOfdmExt.tPow2x[0],
  2205. minCtlPower);
  2206. break;
  2207. case CTL_5GHT40:
  2208. case CTL_2GHT40:
  2209. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  2210. targetPowerHt40.tPow2x[i] =
  2211. min((u16)targetPowerHt40.tPow2x[i],
  2212. minCtlPower);
  2213. }
  2214. break;
  2215. default:
  2216. break;
  2217. }
  2218. }
  2219. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  2220. ratesArray[rate18mb] = ratesArray[rate24mb] =
  2221. targetPowerOfdm.tPow2x[0];
  2222. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  2223. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  2224. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  2225. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  2226. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  2227. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  2228. if (IS_CHAN_2GHZ(chan)) {
  2229. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  2230. ratesArray[rate2s] = ratesArray[rate2l] =
  2231. targetPowerCck.tPow2x[1];
  2232. ratesArray[rate5_5s] = ratesArray[rate5_5l] =
  2233. targetPowerCck.tPow2x[2];
  2234. ;
  2235. ratesArray[rate11s] = ratesArray[rate11l] =
  2236. targetPowerCck.tPow2x[3];
  2237. ;
  2238. }
  2239. if (IS_CHAN_HT40(chan)) {
  2240. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  2241. ratesArray[rateHt40_0 + i] =
  2242. targetPowerHt40.tPow2x[i];
  2243. }
  2244. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  2245. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  2246. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  2247. if (IS_CHAN_2GHZ(chan)) {
  2248. ratesArray[rateExtCck] =
  2249. targetPowerCckExt.tPow2x[0];
  2250. }
  2251. }
  2252. return true;
  2253. }
  2254. static int ath9k_hw_def_set_txpower(struct ath_hw *ah,
  2255. struct ath9k_channel *chan,
  2256. u16 cfgCtl,
  2257. u8 twiceAntennaReduction,
  2258. u8 twiceMaxRegulatoryPower,
  2259. u8 powerLimit)
  2260. {
  2261. #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
  2262. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  2263. struct modal_eep_header *pModal =
  2264. &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
  2265. int16_t ratesArray[Ar5416RateSize];
  2266. int16_t txPowerIndexOffset = 0;
  2267. u8 ht40PowerIncForPdadc = 2;
  2268. int i, cck_ofdm_delta = 0;
  2269. memset(ratesArray, 0, sizeof(ratesArray));
  2270. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  2271. AR5416_EEP_MINOR_VER_2) {
  2272. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  2273. }
  2274. if (!ath9k_hw_set_def_power_per_rate_table(ah, chan,
  2275. &ratesArray[0], cfgCtl,
  2276. twiceAntennaReduction,
  2277. twiceMaxRegulatoryPower,
  2278. powerLimit)) {
  2279. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  2280. "ath9k_hw_set_txpower: unable to set "
  2281. "tx power per rate table\n");
  2282. return -EIO;
  2283. }
  2284. if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) {
  2285. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  2286. "ath9k_hw_set_txpower: unable to set power table\n");
  2287. return -EIO;
  2288. }
  2289. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  2290. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  2291. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  2292. ratesArray[i] = AR5416_MAX_RATE_POWER;
  2293. }
  2294. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2295. for (i = 0; i < Ar5416RateSize; i++)
  2296. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  2297. }
  2298. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  2299. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  2300. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  2301. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  2302. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  2303. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  2304. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  2305. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  2306. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  2307. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  2308. if (IS_CHAN_2GHZ(chan)) {
  2309. if (OLC_FOR_AR9280_20_LATER) {
  2310. cck_ofdm_delta = 2;
  2311. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  2312. ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
  2313. | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
  2314. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  2315. | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
  2316. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  2317. ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
  2318. | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
  2319. | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
  2320. | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
  2321. } else {
  2322. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  2323. ATH9K_POW_SM(ratesArray[rate2s], 24)
  2324. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  2325. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  2326. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  2327. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  2328. ATH9K_POW_SM(ratesArray[rate11s], 24)
  2329. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  2330. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  2331. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  2332. }
  2333. }
  2334. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  2335. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  2336. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  2337. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  2338. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  2339. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  2340. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  2341. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  2342. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  2343. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  2344. if (IS_CHAN_HT40(chan)) {
  2345. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  2346. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  2347. ht40PowerIncForPdadc, 24)
  2348. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  2349. ht40PowerIncForPdadc, 16)
  2350. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  2351. ht40PowerIncForPdadc, 8)
  2352. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  2353. ht40PowerIncForPdadc, 0));
  2354. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  2355. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  2356. ht40PowerIncForPdadc, 24)
  2357. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  2358. ht40PowerIncForPdadc, 16)
  2359. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  2360. ht40PowerIncForPdadc, 8)
  2361. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  2362. ht40PowerIncForPdadc, 0));
  2363. if (OLC_FOR_AR9280_20_LATER) {
  2364. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  2365. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  2366. | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
  2367. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  2368. | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
  2369. } else {
  2370. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  2371. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  2372. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  2373. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  2374. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  2375. }
  2376. }
  2377. REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
  2378. ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
  2379. | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
  2380. i = rate6mb;
  2381. if (IS_CHAN_HT40(chan))
  2382. i = rateHt40_0;
  2383. else if (IS_CHAN_HT20(chan))
  2384. i = rateHt20_0;
  2385. if (AR_SREV_9280_10_OR_LATER(ah))
  2386. ah->regulatory.max_power_level =
  2387. ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
  2388. else
  2389. ah->regulatory.max_power_level = ratesArray[i];
  2390. switch(ar5416_get_ntxchains(ah->txchainmask)) {
  2391. case 1:
  2392. break;
  2393. case 2:
  2394. ah->regulatory.max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
  2395. break;
  2396. case 3:
  2397. ah->regulatory.max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
  2398. break;
  2399. default:
  2400. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  2401. "Invalid chainmask configuration\n");
  2402. break;
  2403. }
  2404. return 0;
  2405. }
  2406. static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
  2407. enum ieee80211_band freq_band)
  2408. {
  2409. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  2410. struct modal_eep_header *pModal =
  2411. &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
  2412. struct base_eep_header *pBase = &eep->baseEepHeader;
  2413. u8 num_ant_config;
  2414. num_ant_config = 1;
  2415. if (pBase->version >= 0x0E0D)
  2416. if (pModal->useAnt1)
  2417. num_ant_config += 1;
  2418. return num_ant_config;
  2419. }
  2420. static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
  2421. struct ath9k_channel *chan)
  2422. {
  2423. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  2424. struct modal_eep_header *pModal =
  2425. &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  2426. return pModal->antCtrlCommon & 0xFFFF;
  2427. }
  2428. static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  2429. {
  2430. #define EEP_DEF_SPURCHAN \
  2431. (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
  2432. u16 spur_val = AR_NO_SPUR;
  2433. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2434. "Getting spur idx %d is2Ghz. %d val %x\n",
  2435. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  2436. switch (ah->config.spurmode) {
  2437. case SPUR_DISABLE:
  2438. break;
  2439. case SPUR_ENABLE_IOCTL:
  2440. spur_val = ah->config.spurchans[i][is2GHz];
  2441. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2442. "Getting spur val from new loc. %d\n", spur_val);
  2443. break;
  2444. case SPUR_ENABLE_EEPROM:
  2445. spur_val = EEP_DEF_SPURCHAN;
  2446. break;
  2447. }
  2448. return spur_val;
  2449. #undef EEP_DEF_SPURCHAN
  2450. }
  2451. static struct eeprom_ops eep_def_ops = {
  2452. .check_eeprom = ath9k_hw_def_check_eeprom,
  2453. .get_eeprom = ath9k_hw_def_get_eeprom,
  2454. .fill_eeprom = ath9k_hw_def_fill_eeprom,
  2455. .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
  2456. .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
  2457. .get_num_ant_config = ath9k_hw_def_get_num_ant_config,
  2458. .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
  2459. .set_board_values = ath9k_hw_def_set_board_values,
  2460. .set_addac = ath9k_hw_def_set_addac,
  2461. .set_txpower = ath9k_hw_def_set_txpower,
  2462. .get_spur_channel = ath9k_hw_def_get_spur_channel
  2463. };
  2464. int ath9k_hw_eeprom_attach(struct ath_hw *ah)
  2465. {
  2466. int status;
  2467. if (AR_SREV_9285(ah)) {
  2468. ah->eep_map = EEP_MAP_4KBITS;
  2469. ah->eep_ops = &eep_4k_ops;
  2470. } else {
  2471. ah->eep_map = EEP_MAP_DEFAULT;
  2472. ah->eep_ops = &eep_def_ops;
  2473. }
  2474. if (!ah->eep_ops->fill_eeprom(ah))
  2475. return -EIO;
  2476. status = ah->eep_ops->check_eeprom(ah);
  2477. return status;
  2478. }