md.c 222 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  134. struct mddev *mddev)
  135. {
  136. struct bio *b;
  137. if (!mddev || !mddev->bio_set)
  138. return bio_alloc(gfp_mask, nr_iovecs);
  139. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  140. if (!b)
  141. return NULL;
  142. return b;
  143. }
  144. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  145. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  146. struct mddev *mddev)
  147. {
  148. if (!mddev || !mddev->bio_set)
  149. return bio_clone(bio, gfp_mask);
  150. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  151. }
  152. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  153. void md_trim_bio(struct bio *bio, int offset, int size)
  154. {
  155. /* 'bio' is a cloned bio which we need to trim to match
  156. * the given offset and size.
  157. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  158. */
  159. int i;
  160. struct bio_vec *bvec;
  161. int sofar = 0;
  162. size <<= 9;
  163. if (offset == 0 && size == bio->bi_size)
  164. return;
  165. bio->bi_sector += offset;
  166. bio->bi_size = size;
  167. offset <<= 9;
  168. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  169. while (bio->bi_idx < bio->bi_vcnt &&
  170. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  171. /* remove this whole bio_vec */
  172. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  173. bio->bi_idx++;
  174. }
  175. if (bio->bi_idx < bio->bi_vcnt) {
  176. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  177. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  178. }
  179. /* avoid any complications with bi_idx being non-zero*/
  180. if (bio->bi_idx) {
  181. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  182. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  183. bio->bi_vcnt -= bio->bi_idx;
  184. bio->bi_idx = 0;
  185. }
  186. /* Make sure vcnt and last bv are not too big */
  187. bio_for_each_segment(bvec, bio, i) {
  188. if (sofar + bvec->bv_len > size)
  189. bvec->bv_len = size - sofar;
  190. if (bvec->bv_len == 0) {
  191. bio->bi_vcnt = i;
  192. break;
  193. }
  194. sofar += bvec->bv_len;
  195. }
  196. }
  197. EXPORT_SYMBOL_GPL(md_trim_bio);
  198. /*
  199. * We have a system wide 'event count' that is incremented
  200. * on any 'interesting' event, and readers of /proc/mdstat
  201. * can use 'poll' or 'select' to find out when the event
  202. * count increases.
  203. *
  204. * Events are:
  205. * start array, stop array, error, add device, remove device,
  206. * start build, activate spare
  207. */
  208. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  209. static atomic_t md_event_count;
  210. void md_new_event(struct mddev *mddev)
  211. {
  212. atomic_inc(&md_event_count);
  213. wake_up(&md_event_waiters);
  214. }
  215. EXPORT_SYMBOL_GPL(md_new_event);
  216. /* Alternate version that can be called from interrupts
  217. * when calling sysfs_notify isn't needed.
  218. */
  219. static void md_new_event_inintr(struct mddev *mddev)
  220. {
  221. atomic_inc(&md_event_count);
  222. wake_up(&md_event_waiters);
  223. }
  224. /*
  225. * Enables to iterate over all existing md arrays
  226. * all_mddevs_lock protects this list.
  227. */
  228. static LIST_HEAD(all_mddevs);
  229. static DEFINE_SPINLOCK(all_mddevs_lock);
  230. /*
  231. * iterates through all used mddevs in the system.
  232. * We take care to grab the all_mddevs_lock whenever navigating
  233. * the list, and to always hold a refcount when unlocked.
  234. * Any code which breaks out of this loop while own
  235. * a reference to the current mddev and must mddev_put it.
  236. */
  237. #define for_each_mddev(_mddev,_tmp) \
  238. \
  239. for (({ spin_lock(&all_mddevs_lock); \
  240. _tmp = all_mddevs.next; \
  241. _mddev = NULL;}); \
  242. ({ if (_tmp != &all_mddevs) \
  243. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  244. spin_unlock(&all_mddevs_lock); \
  245. if (_mddev) mddev_put(_mddev); \
  246. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  247. _tmp != &all_mddevs;}); \
  248. ({ spin_lock(&all_mddevs_lock); \
  249. _tmp = _tmp->next;}) \
  250. )
  251. /* Rather than calling directly into the personality make_request function,
  252. * IO requests come here first so that we can check if the device is
  253. * being suspended pending a reconfiguration.
  254. * We hold a refcount over the call to ->make_request. By the time that
  255. * call has finished, the bio has been linked into some internal structure
  256. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  257. */
  258. static void md_make_request(struct request_queue *q, struct bio *bio)
  259. {
  260. const int rw = bio_data_dir(bio);
  261. struct mddev *mddev = q->queuedata;
  262. int cpu;
  263. unsigned int sectors;
  264. if (mddev == NULL || mddev->pers == NULL
  265. || !mddev->ready) {
  266. bio_io_error(bio);
  267. return;
  268. }
  269. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  270. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  271. return;
  272. }
  273. smp_rmb(); /* Ensure implications of 'active' are visible */
  274. rcu_read_lock();
  275. if (mddev->suspended) {
  276. DEFINE_WAIT(__wait);
  277. for (;;) {
  278. prepare_to_wait(&mddev->sb_wait, &__wait,
  279. TASK_UNINTERRUPTIBLE);
  280. if (!mddev->suspended)
  281. break;
  282. rcu_read_unlock();
  283. schedule();
  284. rcu_read_lock();
  285. }
  286. finish_wait(&mddev->sb_wait, &__wait);
  287. }
  288. atomic_inc(&mddev->active_io);
  289. rcu_read_unlock();
  290. /*
  291. * save the sectors now since our bio can
  292. * go away inside make_request
  293. */
  294. sectors = bio_sectors(bio);
  295. mddev->pers->make_request(mddev, bio);
  296. cpu = part_stat_lock();
  297. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  298. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  299. part_stat_unlock();
  300. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  301. wake_up(&mddev->sb_wait);
  302. }
  303. /* mddev_suspend makes sure no new requests are submitted
  304. * to the device, and that any requests that have been submitted
  305. * are completely handled.
  306. * Once ->stop is called and completes, the module will be completely
  307. * unused.
  308. */
  309. void mddev_suspend(struct mddev *mddev)
  310. {
  311. BUG_ON(mddev->suspended);
  312. mddev->suspended = 1;
  313. synchronize_rcu();
  314. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  315. mddev->pers->quiesce(mddev, 1);
  316. del_timer_sync(&mddev->safemode_timer);
  317. }
  318. EXPORT_SYMBOL_GPL(mddev_suspend);
  319. void mddev_resume(struct mddev *mddev)
  320. {
  321. mddev->suspended = 0;
  322. wake_up(&mddev->sb_wait);
  323. mddev->pers->quiesce(mddev, 0);
  324. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  325. md_wakeup_thread(mddev->thread);
  326. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  327. }
  328. EXPORT_SYMBOL_GPL(mddev_resume);
  329. int mddev_congested(struct mddev *mddev, int bits)
  330. {
  331. return mddev->suspended;
  332. }
  333. EXPORT_SYMBOL(mddev_congested);
  334. /*
  335. * Generic flush handling for md
  336. */
  337. static void md_end_flush(struct bio *bio, int err)
  338. {
  339. struct md_rdev *rdev = bio->bi_private;
  340. struct mddev *mddev = rdev->mddev;
  341. rdev_dec_pending(rdev, mddev);
  342. if (atomic_dec_and_test(&mddev->flush_pending)) {
  343. /* The pre-request flush has finished */
  344. queue_work(md_wq, &mddev->flush_work);
  345. }
  346. bio_put(bio);
  347. }
  348. static void md_submit_flush_data(struct work_struct *ws);
  349. static void submit_flushes(struct work_struct *ws)
  350. {
  351. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  352. struct md_rdev *rdev;
  353. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  354. atomic_set(&mddev->flush_pending, 1);
  355. rcu_read_lock();
  356. rdev_for_each_rcu(rdev, mddev)
  357. if (rdev->raid_disk >= 0 &&
  358. !test_bit(Faulty, &rdev->flags)) {
  359. /* Take two references, one is dropped
  360. * when request finishes, one after
  361. * we reclaim rcu_read_lock
  362. */
  363. struct bio *bi;
  364. atomic_inc(&rdev->nr_pending);
  365. atomic_inc(&rdev->nr_pending);
  366. rcu_read_unlock();
  367. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  368. bi->bi_end_io = md_end_flush;
  369. bi->bi_private = rdev;
  370. bi->bi_bdev = rdev->bdev;
  371. atomic_inc(&mddev->flush_pending);
  372. submit_bio(WRITE_FLUSH, bi);
  373. rcu_read_lock();
  374. rdev_dec_pending(rdev, mddev);
  375. }
  376. rcu_read_unlock();
  377. if (atomic_dec_and_test(&mddev->flush_pending))
  378. queue_work(md_wq, &mddev->flush_work);
  379. }
  380. static void md_submit_flush_data(struct work_struct *ws)
  381. {
  382. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  383. struct bio *bio = mddev->flush_bio;
  384. if (bio->bi_size == 0)
  385. /* an empty barrier - all done */
  386. bio_endio(bio, 0);
  387. else {
  388. bio->bi_rw &= ~REQ_FLUSH;
  389. mddev->pers->make_request(mddev, bio);
  390. }
  391. mddev->flush_bio = NULL;
  392. wake_up(&mddev->sb_wait);
  393. }
  394. void md_flush_request(struct mddev *mddev, struct bio *bio)
  395. {
  396. spin_lock_irq(&mddev->write_lock);
  397. wait_event_lock_irq(mddev->sb_wait,
  398. !mddev->flush_bio,
  399. mddev->write_lock);
  400. mddev->flush_bio = bio;
  401. spin_unlock_irq(&mddev->write_lock);
  402. INIT_WORK(&mddev->flush_work, submit_flushes);
  403. queue_work(md_wq, &mddev->flush_work);
  404. }
  405. EXPORT_SYMBOL(md_flush_request);
  406. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  407. {
  408. struct mddev *mddev = cb->data;
  409. md_wakeup_thread(mddev->thread);
  410. kfree(cb);
  411. }
  412. EXPORT_SYMBOL(md_unplug);
  413. static inline struct mddev *mddev_get(struct mddev *mddev)
  414. {
  415. atomic_inc(&mddev->active);
  416. return mddev;
  417. }
  418. static void mddev_delayed_delete(struct work_struct *ws);
  419. static void mddev_put(struct mddev *mddev)
  420. {
  421. struct bio_set *bs = NULL;
  422. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  423. return;
  424. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  425. mddev->ctime == 0 && !mddev->hold_active) {
  426. /* Array is not configured at all, and not held active,
  427. * so destroy it */
  428. list_del_init(&mddev->all_mddevs);
  429. bs = mddev->bio_set;
  430. mddev->bio_set = NULL;
  431. if (mddev->gendisk) {
  432. /* We did a probe so need to clean up. Call
  433. * queue_work inside the spinlock so that
  434. * flush_workqueue() after mddev_find will
  435. * succeed in waiting for the work to be done.
  436. */
  437. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  438. queue_work(md_misc_wq, &mddev->del_work);
  439. } else
  440. kfree(mddev);
  441. }
  442. spin_unlock(&all_mddevs_lock);
  443. if (bs)
  444. bioset_free(bs);
  445. }
  446. void mddev_init(struct mddev *mddev)
  447. {
  448. mutex_init(&mddev->open_mutex);
  449. mutex_init(&mddev->reconfig_mutex);
  450. mutex_init(&mddev->bitmap_info.mutex);
  451. INIT_LIST_HEAD(&mddev->disks);
  452. INIT_LIST_HEAD(&mddev->all_mddevs);
  453. init_timer(&mddev->safemode_timer);
  454. atomic_set(&mddev->active, 1);
  455. atomic_set(&mddev->openers, 0);
  456. atomic_set(&mddev->active_io, 0);
  457. spin_lock_init(&mddev->write_lock);
  458. atomic_set(&mddev->flush_pending, 0);
  459. init_waitqueue_head(&mddev->sb_wait);
  460. init_waitqueue_head(&mddev->recovery_wait);
  461. mddev->reshape_position = MaxSector;
  462. mddev->reshape_backwards = 0;
  463. mddev->resync_min = 0;
  464. mddev->resync_max = MaxSector;
  465. mddev->level = LEVEL_NONE;
  466. }
  467. EXPORT_SYMBOL_GPL(mddev_init);
  468. static struct mddev * mddev_find(dev_t unit)
  469. {
  470. struct mddev *mddev, *new = NULL;
  471. if (unit && MAJOR(unit) != MD_MAJOR)
  472. unit &= ~((1<<MdpMinorShift)-1);
  473. retry:
  474. spin_lock(&all_mddevs_lock);
  475. if (unit) {
  476. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  477. if (mddev->unit == unit) {
  478. mddev_get(mddev);
  479. spin_unlock(&all_mddevs_lock);
  480. kfree(new);
  481. return mddev;
  482. }
  483. if (new) {
  484. list_add(&new->all_mddevs, &all_mddevs);
  485. spin_unlock(&all_mddevs_lock);
  486. new->hold_active = UNTIL_IOCTL;
  487. return new;
  488. }
  489. } else if (new) {
  490. /* find an unused unit number */
  491. static int next_minor = 512;
  492. int start = next_minor;
  493. int is_free = 0;
  494. int dev = 0;
  495. while (!is_free) {
  496. dev = MKDEV(MD_MAJOR, next_minor);
  497. next_minor++;
  498. if (next_minor > MINORMASK)
  499. next_minor = 0;
  500. if (next_minor == start) {
  501. /* Oh dear, all in use. */
  502. spin_unlock(&all_mddevs_lock);
  503. kfree(new);
  504. return NULL;
  505. }
  506. is_free = 1;
  507. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  508. if (mddev->unit == dev) {
  509. is_free = 0;
  510. break;
  511. }
  512. }
  513. new->unit = dev;
  514. new->md_minor = MINOR(dev);
  515. new->hold_active = UNTIL_STOP;
  516. list_add(&new->all_mddevs, &all_mddevs);
  517. spin_unlock(&all_mddevs_lock);
  518. return new;
  519. }
  520. spin_unlock(&all_mddevs_lock);
  521. new = kzalloc(sizeof(*new), GFP_KERNEL);
  522. if (!new)
  523. return NULL;
  524. new->unit = unit;
  525. if (MAJOR(unit) == MD_MAJOR)
  526. new->md_minor = MINOR(unit);
  527. else
  528. new->md_minor = MINOR(unit) >> MdpMinorShift;
  529. mddev_init(new);
  530. goto retry;
  531. }
  532. static inline int mddev_lock(struct mddev * mddev)
  533. {
  534. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  535. }
  536. static inline int mddev_is_locked(struct mddev *mddev)
  537. {
  538. return mutex_is_locked(&mddev->reconfig_mutex);
  539. }
  540. static inline int mddev_trylock(struct mddev * mddev)
  541. {
  542. return mutex_trylock(&mddev->reconfig_mutex);
  543. }
  544. static struct attribute_group md_redundancy_group;
  545. static void mddev_unlock(struct mddev * mddev)
  546. {
  547. if (mddev->to_remove) {
  548. /* These cannot be removed under reconfig_mutex as
  549. * an access to the files will try to take reconfig_mutex
  550. * while holding the file unremovable, which leads to
  551. * a deadlock.
  552. * So hold set sysfs_active while the remove in happeing,
  553. * and anything else which might set ->to_remove or my
  554. * otherwise change the sysfs namespace will fail with
  555. * -EBUSY if sysfs_active is still set.
  556. * We set sysfs_active under reconfig_mutex and elsewhere
  557. * test it under the same mutex to ensure its correct value
  558. * is seen.
  559. */
  560. struct attribute_group *to_remove = mddev->to_remove;
  561. mddev->to_remove = NULL;
  562. mddev->sysfs_active = 1;
  563. mutex_unlock(&mddev->reconfig_mutex);
  564. if (mddev->kobj.sd) {
  565. if (to_remove != &md_redundancy_group)
  566. sysfs_remove_group(&mddev->kobj, to_remove);
  567. if (mddev->pers == NULL ||
  568. mddev->pers->sync_request == NULL) {
  569. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  570. if (mddev->sysfs_action)
  571. sysfs_put(mddev->sysfs_action);
  572. mddev->sysfs_action = NULL;
  573. }
  574. }
  575. mddev->sysfs_active = 0;
  576. } else
  577. mutex_unlock(&mddev->reconfig_mutex);
  578. /* As we've dropped the mutex we need a spinlock to
  579. * make sure the thread doesn't disappear
  580. */
  581. spin_lock(&pers_lock);
  582. md_wakeup_thread(mddev->thread);
  583. spin_unlock(&pers_lock);
  584. }
  585. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  586. {
  587. struct md_rdev *rdev;
  588. rdev_for_each(rdev, mddev)
  589. if (rdev->desc_nr == nr)
  590. return rdev;
  591. return NULL;
  592. }
  593. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  594. {
  595. struct md_rdev *rdev;
  596. rdev_for_each_rcu(rdev, mddev)
  597. if (rdev->desc_nr == nr)
  598. return rdev;
  599. return NULL;
  600. }
  601. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  602. {
  603. struct md_rdev *rdev;
  604. rdev_for_each(rdev, mddev)
  605. if (rdev->bdev->bd_dev == dev)
  606. return rdev;
  607. return NULL;
  608. }
  609. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  610. {
  611. struct md_rdev *rdev;
  612. rdev_for_each_rcu(rdev, mddev)
  613. if (rdev->bdev->bd_dev == dev)
  614. return rdev;
  615. return NULL;
  616. }
  617. static struct md_personality *find_pers(int level, char *clevel)
  618. {
  619. struct md_personality *pers;
  620. list_for_each_entry(pers, &pers_list, list) {
  621. if (level != LEVEL_NONE && pers->level == level)
  622. return pers;
  623. if (strcmp(pers->name, clevel)==0)
  624. return pers;
  625. }
  626. return NULL;
  627. }
  628. /* return the offset of the super block in 512byte sectors */
  629. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  630. {
  631. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  632. return MD_NEW_SIZE_SECTORS(num_sectors);
  633. }
  634. static int alloc_disk_sb(struct md_rdev * rdev)
  635. {
  636. if (rdev->sb_page)
  637. MD_BUG();
  638. rdev->sb_page = alloc_page(GFP_KERNEL);
  639. if (!rdev->sb_page) {
  640. printk(KERN_ALERT "md: out of memory.\n");
  641. return -ENOMEM;
  642. }
  643. return 0;
  644. }
  645. void md_rdev_clear(struct md_rdev *rdev)
  646. {
  647. if (rdev->sb_page) {
  648. put_page(rdev->sb_page);
  649. rdev->sb_loaded = 0;
  650. rdev->sb_page = NULL;
  651. rdev->sb_start = 0;
  652. rdev->sectors = 0;
  653. }
  654. if (rdev->bb_page) {
  655. put_page(rdev->bb_page);
  656. rdev->bb_page = NULL;
  657. }
  658. kfree(rdev->badblocks.page);
  659. rdev->badblocks.page = NULL;
  660. }
  661. EXPORT_SYMBOL_GPL(md_rdev_clear);
  662. static void super_written(struct bio *bio, int error)
  663. {
  664. struct md_rdev *rdev = bio->bi_private;
  665. struct mddev *mddev = rdev->mddev;
  666. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  667. printk("md: super_written gets error=%d, uptodate=%d\n",
  668. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  669. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  670. md_error(mddev, rdev);
  671. }
  672. if (atomic_dec_and_test(&mddev->pending_writes))
  673. wake_up(&mddev->sb_wait);
  674. bio_put(bio);
  675. }
  676. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  677. sector_t sector, int size, struct page *page)
  678. {
  679. /* write first size bytes of page to sector of rdev
  680. * Increment mddev->pending_writes before returning
  681. * and decrement it on completion, waking up sb_wait
  682. * if zero is reached.
  683. * If an error occurred, call md_error
  684. */
  685. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  686. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  687. bio->bi_sector = sector;
  688. bio_add_page(bio, page, size, 0);
  689. bio->bi_private = rdev;
  690. bio->bi_end_io = super_written;
  691. atomic_inc(&mddev->pending_writes);
  692. submit_bio(WRITE_FLUSH_FUA, bio);
  693. }
  694. void md_super_wait(struct mddev *mddev)
  695. {
  696. /* wait for all superblock writes that were scheduled to complete */
  697. DEFINE_WAIT(wq);
  698. for(;;) {
  699. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  700. if (atomic_read(&mddev->pending_writes)==0)
  701. break;
  702. schedule();
  703. }
  704. finish_wait(&mddev->sb_wait, &wq);
  705. }
  706. static void bi_complete(struct bio *bio, int error)
  707. {
  708. complete((struct completion*)bio->bi_private);
  709. }
  710. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  711. struct page *page, int rw, bool metadata_op)
  712. {
  713. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  714. struct completion event;
  715. int ret;
  716. rw |= REQ_SYNC;
  717. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  718. rdev->meta_bdev : rdev->bdev;
  719. if (metadata_op)
  720. bio->bi_sector = sector + rdev->sb_start;
  721. else if (rdev->mddev->reshape_position != MaxSector &&
  722. (rdev->mddev->reshape_backwards ==
  723. (sector >= rdev->mddev->reshape_position)))
  724. bio->bi_sector = sector + rdev->new_data_offset;
  725. else
  726. bio->bi_sector = sector + rdev->data_offset;
  727. bio_add_page(bio, page, size, 0);
  728. init_completion(&event);
  729. bio->bi_private = &event;
  730. bio->bi_end_io = bi_complete;
  731. submit_bio(rw, bio);
  732. wait_for_completion(&event);
  733. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  734. bio_put(bio);
  735. return ret;
  736. }
  737. EXPORT_SYMBOL_GPL(sync_page_io);
  738. static int read_disk_sb(struct md_rdev * rdev, int size)
  739. {
  740. char b[BDEVNAME_SIZE];
  741. if (!rdev->sb_page) {
  742. MD_BUG();
  743. return -EINVAL;
  744. }
  745. if (rdev->sb_loaded)
  746. return 0;
  747. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  748. goto fail;
  749. rdev->sb_loaded = 1;
  750. return 0;
  751. fail:
  752. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  753. bdevname(rdev->bdev,b));
  754. return -EINVAL;
  755. }
  756. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  757. {
  758. return sb1->set_uuid0 == sb2->set_uuid0 &&
  759. sb1->set_uuid1 == sb2->set_uuid1 &&
  760. sb1->set_uuid2 == sb2->set_uuid2 &&
  761. sb1->set_uuid3 == sb2->set_uuid3;
  762. }
  763. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  764. {
  765. int ret;
  766. mdp_super_t *tmp1, *tmp2;
  767. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  768. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  769. if (!tmp1 || !tmp2) {
  770. ret = 0;
  771. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  772. goto abort;
  773. }
  774. *tmp1 = *sb1;
  775. *tmp2 = *sb2;
  776. /*
  777. * nr_disks is not constant
  778. */
  779. tmp1->nr_disks = 0;
  780. tmp2->nr_disks = 0;
  781. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  782. abort:
  783. kfree(tmp1);
  784. kfree(tmp2);
  785. return ret;
  786. }
  787. static u32 md_csum_fold(u32 csum)
  788. {
  789. csum = (csum & 0xffff) + (csum >> 16);
  790. return (csum & 0xffff) + (csum >> 16);
  791. }
  792. static unsigned int calc_sb_csum(mdp_super_t * sb)
  793. {
  794. u64 newcsum = 0;
  795. u32 *sb32 = (u32*)sb;
  796. int i;
  797. unsigned int disk_csum, csum;
  798. disk_csum = sb->sb_csum;
  799. sb->sb_csum = 0;
  800. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  801. newcsum += sb32[i];
  802. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  803. #ifdef CONFIG_ALPHA
  804. /* This used to use csum_partial, which was wrong for several
  805. * reasons including that different results are returned on
  806. * different architectures. It isn't critical that we get exactly
  807. * the same return value as before (we always csum_fold before
  808. * testing, and that removes any differences). However as we
  809. * know that csum_partial always returned a 16bit value on
  810. * alphas, do a fold to maximise conformity to previous behaviour.
  811. */
  812. sb->sb_csum = md_csum_fold(disk_csum);
  813. #else
  814. sb->sb_csum = disk_csum;
  815. #endif
  816. return csum;
  817. }
  818. /*
  819. * Handle superblock details.
  820. * We want to be able to handle multiple superblock formats
  821. * so we have a common interface to them all, and an array of
  822. * different handlers.
  823. * We rely on user-space to write the initial superblock, and support
  824. * reading and updating of superblocks.
  825. * Interface methods are:
  826. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  827. * loads and validates a superblock on dev.
  828. * if refdev != NULL, compare superblocks on both devices
  829. * Return:
  830. * 0 - dev has a superblock that is compatible with refdev
  831. * 1 - dev has a superblock that is compatible and newer than refdev
  832. * so dev should be used as the refdev in future
  833. * -EINVAL superblock incompatible or invalid
  834. * -othererror e.g. -EIO
  835. *
  836. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  837. * Verify that dev is acceptable into mddev.
  838. * The first time, mddev->raid_disks will be 0, and data from
  839. * dev should be merged in. Subsequent calls check that dev
  840. * is new enough. Return 0 or -EINVAL
  841. *
  842. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  843. * Update the superblock for rdev with data in mddev
  844. * This does not write to disc.
  845. *
  846. */
  847. struct super_type {
  848. char *name;
  849. struct module *owner;
  850. int (*load_super)(struct md_rdev *rdev,
  851. struct md_rdev *refdev,
  852. int minor_version);
  853. int (*validate_super)(struct mddev *mddev,
  854. struct md_rdev *rdev);
  855. void (*sync_super)(struct mddev *mddev,
  856. struct md_rdev *rdev);
  857. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  858. sector_t num_sectors);
  859. int (*allow_new_offset)(struct md_rdev *rdev,
  860. unsigned long long new_offset);
  861. };
  862. /*
  863. * Check that the given mddev has no bitmap.
  864. *
  865. * This function is called from the run method of all personalities that do not
  866. * support bitmaps. It prints an error message and returns non-zero if mddev
  867. * has a bitmap. Otherwise, it returns 0.
  868. *
  869. */
  870. int md_check_no_bitmap(struct mddev *mddev)
  871. {
  872. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  873. return 0;
  874. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  875. mdname(mddev), mddev->pers->name);
  876. return 1;
  877. }
  878. EXPORT_SYMBOL(md_check_no_bitmap);
  879. /*
  880. * load_super for 0.90.0
  881. */
  882. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  883. {
  884. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  885. mdp_super_t *sb;
  886. int ret;
  887. /*
  888. * Calculate the position of the superblock (512byte sectors),
  889. * it's at the end of the disk.
  890. *
  891. * It also happens to be a multiple of 4Kb.
  892. */
  893. rdev->sb_start = calc_dev_sboffset(rdev);
  894. ret = read_disk_sb(rdev, MD_SB_BYTES);
  895. if (ret) return ret;
  896. ret = -EINVAL;
  897. bdevname(rdev->bdev, b);
  898. sb = page_address(rdev->sb_page);
  899. if (sb->md_magic != MD_SB_MAGIC) {
  900. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  901. b);
  902. goto abort;
  903. }
  904. if (sb->major_version != 0 ||
  905. sb->minor_version < 90 ||
  906. sb->minor_version > 91) {
  907. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  908. sb->major_version, sb->minor_version,
  909. b);
  910. goto abort;
  911. }
  912. if (sb->raid_disks <= 0)
  913. goto abort;
  914. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  915. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  916. b);
  917. goto abort;
  918. }
  919. rdev->preferred_minor = sb->md_minor;
  920. rdev->data_offset = 0;
  921. rdev->new_data_offset = 0;
  922. rdev->sb_size = MD_SB_BYTES;
  923. rdev->badblocks.shift = -1;
  924. if (sb->level == LEVEL_MULTIPATH)
  925. rdev->desc_nr = -1;
  926. else
  927. rdev->desc_nr = sb->this_disk.number;
  928. if (!refdev) {
  929. ret = 1;
  930. } else {
  931. __u64 ev1, ev2;
  932. mdp_super_t *refsb = page_address(refdev->sb_page);
  933. if (!uuid_equal(refsb, sb)) {
  934. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  935. b, bdevname(refdev->bdev,b2));
  936. goto abort;
  937. }
  938. if (!sb_equal(refsb, sb)) {
  939. printk(KERN_WARNING "md: %s has same UUID"
  940. " but different superblock to %s\n",
  941. b, bdevname(refdev->bdev, b2));
  942. goto abort;
  943. }
  944. ev1 = md_event(sb);
  945. ev2 = md_event(refsb);
  946. if (ev1 > ev2)
  947. ret = 1;
  948. else
  949. ret = 0;
  950. }
  951. rdev->sectors = rdev->sb_start;
  952. /* Limit to 4TB as metadata cannot record more than that.
  953. * (not needed for Linear and RAID0 as metadata doesn't
  954. * record this size)
  955. */
  956. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  957. rdev->sectors = (2ULL << 32) - 2;
  958. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  959. /* "this cannot possibly happen" ... */
  960. ret = -EINVAL;
  961. abort:
  962. return ret;
  963. }
  964. /*
  965. * validate_super for 0.90.0
  966. */
  967. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  968. {
  969. mdp_disk_t *desc;
  970. mdp_super_t *sb = page_address(rdev->sb_page);
  971. __u64 ev1 = md_event(sb);
  972. rdev->raid_disk = -1;
  973. clear_bit(Faulty, &rdev->flags);
  974. clear_bit(In_sync, &rdev->flags);
  975. clear_bit(WriteMostly, &rdev->flags);
  976. if (mddev->raid_disks == 0) {
  977. mddev->major_version = 0;
  978. mddev->minor_version = sb->minor_version;
  979. mddev->patch_version = sb->patch_version;
  980. mddev->external = 0;
  981. mddev->chunk_sectors = sb->chunk_size >> 9;
  982. mddev->ctime = sb->ctime;
  983. mddev->utime = sb->utime;
  984. mddev->level = sb->level;
  985. mddev->clevel[0] = 0;
  986. mddev->layout = sb->layout;
  987. mddev->raid_disks = sb->raid_disks;
  988. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  989. mddev->events = ev1;
  990. mddev->bitmap_info.offset = 0;
  991. mddev->bitmap_info.space = 0;
  992. /* bitmap can use 60 K after the 4K superblocks */
  993. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  994. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  995. mddev->reshape_backwards = 0;
  996. if (mddev->minor_version >= 91) {
  997. mddev->reshape_position = sb->reshape_position;
  998. mddev->delta_disks = sb->delta_disks;
  999. mddev->new_level = sb->new_level;
  1000. mddev->new_layout = sb->new_layout;
  1001. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1002. if (mddev->delta_disks < 0)
  1003. mddev->reshape_backwards = 1;
  1004. } else {
  1005. mddev->reshape_position = MaxSector;
  1006. mddev->delta_disks = 0;
  1007. mddev->new_level = mddev->level;
  1008. mddev->new_layout = mddev->layout;
  1009. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1010. }
  1011. if (sb->state & (1<<MD_SB_CLEAN))
  1012. mddev->recovery_cp = MaxSector;
  1013. else {
  1014. if (sb->events_hi == sb->cp_events_hi &&
  1015. sb->events_lo == sb->cp_events_lo) {
  1016. mddev->recovery_cp = sb->recovery_cp;
  1017. } else
  1018. mddev->recovery_cp = 0;
  1019. }
  1020. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1021. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1022. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1023. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1024. mddev->max_disks = MD_SB_DISKS;
  1025. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1026. mddev->bitmap_info.file == NULL) {
  1027. mddev->bitmap_info.offset =
  1028. mddev->bitmap_info.default_offset;
  1029. mddev->bitmap_info.space =
  1030. mddev->bitmap_info.space;
  1031. }
  1032. } else if (mddev->pers == NULL) {
  1033. /* Insist on good event counter while assembling, except
  1034. * for spares (which don't need an event count) */
  1035. ++ev1;
  1036. if (sb->disks[rdev->desc_nr].state & (
  1037. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1038. if (ev1 < mddev->events)
  1039. return -EINVAL;
  1040. } else if (mddev->bitmap) {
  1041. /* if adding to array with a bitmap, then we can accept an
  1042. * older device ... but not too old.
  1043. */
  1044. if (ev1 < mddev->bitmap->events_cleared)
  1045. return 0;
  1046. } else {
  1047. if (ev1 < mddev->events)
  1048. /* just a hot-add of a new device, leave raid_disk at -1 */
  1049. return 0;
  1050. }
  1051. if (mddev->level != LEVEL_MULTIPATH) {
  1052. desc = sb->disks + rdev->desc_nr;
  1053. if (desc->state & (1<<MD_DISK_FAULTY))
  1054. set_bit(Faulty, &rdev->flags);
  1055. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1056. desc->raid_disk < mddev->raid_disks */) {
  1057. set_bit(In_sync, &rdev->flags);
  1058. rdev->raid_disk = desc->raid_disk;
  1059. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1060. /* active but not in sync implies recovery up to
  1061. * reshape position. We don't know exactly where
  1062. * that is, so set to zero for now */
  1063. if (mddev->minor_version >= 91) {
  1064. rdev->recovery_offset = 0;
  1065. rdev->raid_disk = desc->raid_disk;
  1066. }
  1067. }
  1068. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1069. set_bit(WriteMostly, &rdev->flags);
  1070. } else /* MULTIPATH are always insync */
  1071. set_bit(In_sync, &rdev->flags);
  1072. return 0;
  1073. }
  1074. /*
  1075. * sync_super for 0.90.0
  1076. */
  1077. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1078. {
  1079. mdp_super_t *sb;
  1080. struct md_rdev *rdev2;
  1081. int next_spare = mddev->raid_disks;
  1082. /* make rdev->sb match mddev data..
  1083. *
  1084. * 1/ zero out disks
  1085. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1086. * 3/ any empty disks < next_spare become removed
  1087. *
  1088. * disks[0] gets initialised to REMOVED because
  1089. * we cannot be sure from other fields if it has
  1090. * been initialised or not.
  1091. */
  1092. int i;
  1093. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1094. rdev->sb_size = MD_SB_BYTES;
  1095. sb = page_address(rdev->sb_page);
  1096. memset(sb, 0, sizeof(*sb));
  1097. sb->md_magic = MD_SB_MAGIC;
  1098. sb->major_version = mddev->major_version;
  1099. sb->patch_version = mddev->patch_version;
  1100. sb->gvalid_words = 0; /* ignored */
  1101. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1102. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1103. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1104. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1105. sb->ctime = mddev->ctime;
  1106. sb->level = mddev->level;
  1107. sb->size = mddev->dev_sectors / 2;
  1108. sb->raid_disks = mddev->raid_disks;
  1109. sb->md_minor = mddev->md_minor;
  1110. sb->not_persistent = 0;
  1111. sb->utime = mddev->utime;
  1112. sb->state = 0;
  1113. sb->events_hi = (mddev->events>>32);
  1114. sb->events_lo = (u32)mddev->events;
  1115. if (mddev->reshape_position == MaxSector)
  1116. sb->minor_version = 90;
  1117. else {
  1118. sb->minor_version = 91;
  1119. sb->reshape_position = mddev->reshape_position;
  1120. sb->new_level = mddev->new_level;
  1121. sb->delta_disks = mddev->delta_disks;
  1122. sb->new_layout = mddev->new_layout;
  1123. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1124. }
  1125. mddev->minor_version = sb->minor_version;
  1126. if (mddev->in_sync)
  1127. {
  1128. sb->recovery_cp = mddev->recovery_cp;
  1129. sb->cp_events_hi = (mddev->events>>32);
  1130. sb->cp_events_lo = (u32)mddev->events;
  1131. if (mddev->recovery_cp == MaxSector)
  1132. sb->state = (1<< MD_SB_CLEAN);
  1133. } else
  1134. sb->recovery_cp = 0;
  1135. sb->layout = mddev->layout;
  1136. sb->chunk_size = mddev->chunk_sectors << 9;
  1137. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1138. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1139. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1140. rdev_for_each(rdev2, mddev) {
  1141. mdp_disk_t *d;
  1142. int desc_nr;
  1143. int is_active = test_bit(In_sync, &rdev2->flags);
  1144. if (rdev2->raid_disk >= 0 &&
  1145. sb->minor_version >= 91)
  1146. /* we have nowhere to store the recovery_offset,
  1147. * but if it is not below the reshape_position,
  1148. * we can piggy-back on that.
  1149. */
  1150. is_active = 1;
  1151. if (rdev2->raid_disk < 0 ||
  1152. test_bit(Faulty, &rdev2->flags))
  1153. is_active = 0;
  1154. if (is_active)
  1155. desc_nr = rdev2->raid_disk;
  1156. else
  1157. desc_nr = next_spare++;
  1158. rdev2->desc_nr = desc_nr;
  1159. d = &sb->disks[rdev2->desc_nr];
  1160. nr_disks++;
  1161. d->number = rdev2->desc_nr;
  1162. d->major = MAJOR(rdev2->bdev->bd_dev);
  1163. d->minor = MINOR(rdev2->bdev->bd_dev);
  1164. if (is_active)
  1165. d->raid_disk = rdev2->raid_disk;
  1166. else
  1167. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1168. if (test_bit(Faulty, &rdev2->flags))
  1169. d->state = (1<<MD_DISK_FAULTY);
  1170. else if (is_active) {
  1171. d->state = (1<<MD_DISK_ACTIVE);
  1172. if (test_bit(In_sync, &rdev2->flags))
  1173. d->state |= (1<<MD_DISK_SYNC);
  1174. active++;
  1175. working++;
  1176. } else {
  1177. d->state = 0;
  1178. spare++;
  1179. working++;
  1180. }
  1181. if (test_bit(WriteMostly, &rdev2->flags))
  1182. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1183. }
  1184. /* now set the "removed" and "faulty" bits on any missing devices */
  1185. for (i=0 ; i < mddev->raid_disks ; i++) {
  1186. mdp_disk_t *d = &sb->disks[i];
  1187. if (d->state == 0 && d->number == 0) {
  1188. d->number = i;
  1189. d->raid_disk = i;
  1190. d->state = (1<<MD_DISK_REMOVED);
  1191. d->state |= (1<<MD_DISK_FAULTY);
  1192. failed++;
  1193. }
  1194. }
  1195. sb->nr_disks = nr_disks;
  1196. sb->active_disks = active;
  1197. sb->working_disks = working;
  1198. sb->failed_disks = failed;
  1199. sb->spare_disks = spare;
  1200. sb->this_disk = sb->disks[rdev->desc_nr];
  1201. sb->sb_csum = calc_sb_csum(sb);
  1202. }
  1203. /*
  1204. * rdev_size_change for 0.90.0
  1205. */
  1206. static unsigned long long
  1207. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1208. {
  1209. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1210. return 0; /* component must fit device */
  1211. if (rdev->mddev->bitmap_info.offset)
  1212. return 0; /* can't move bitmap */
  1213. rdev->sb_start = calc_dev_sboffset(rdev);
  1214. if (!num_sectors || num_sectors > rdev->sb_start)
  1215. num_sectors = rdev->sb_start;
  1216. /* Limit to 4TB as metadata cannot record more than that.
  1217. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1218. */
  1219. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1220. num_sectors = (2ULL << 32) - 2;
  1221. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1222. rdev->sb_page);
  1223. md_super_wait(rdev->mddev);
  1224. return num_sectors;
  1225. }
  1226. static int
  1227. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1228. {
  1229. /* non-zero offset changes not possible with v0.90 */
  1230. return new_offset == 0;
  1231. }
  1232. /*
  1233. * version 1 superblock
  1234. */
  1235. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1236. {
  1237. __le32 disk_csum;
  1238. u32 csum;
  1239. unsigned long long newcsum;
  1240. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1241. __le32 *isuper = (__le32*)sb;
  1242. disk_csum = sb->sb_csum;
  1243. sb->sb_csum = 0;
  1244. newcsum = 0;
  1245. for (; size >= 4; size -= 4)
  1246. newcsum += le32_to_cpu(*isuper++);
  1247. if (size == 2)
  1248. newcsum += le16_to_cpu(*(__le16*) isuper);
  1249. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1250. sb->sb_csum = disk_csum;
  1251. return cpu_to_le32(csum);
  1252. }
  1253. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1254. int acknowledged);
  1255. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1256. {
  1257. struct mdp_superblock_1 *sb;
  1258. int ret;
  1259. sector_t sb_start;
  1260. sector_t sectors;
  1261. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1262. int bmask;
  1263. /*
  1264. * Calculate the position of the superblock in 512byte sectors.
  1265. * It is always aligned to a 4K boundary and
  1266. * depeding on minor_version, it can be:
  1267. * 0: At least 8K, but less than 12K, from end of device
  1268. * 1: At start of device
  1269. * 2: 4K from start of device.
  1270. */
  1271. switch(minor_version) {
  1272. case 0:
  1273. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1274. sb_start -= 8*2;
  1275. sb_start &= ~(sector_t)(4*2-1);
  1276. break;
  1277. case 1:
  1278. sb_start = 0;
  1279. break;
  1280. case 2:
  1281. sb_start = 8;
  1282. break;
  1283. default:
  1284. return -EINVAL;
  1285. }
  1286. rdev->sb_start = sb_start;
  1287. /* superblock is rarely larger than 1K, but it can be larger,
  1288. * and it is safe to read 4k, so we do that
  1289. */
  1290. ret = read_disk_sb(rdev, 4096);
  1291. if (ret) return ret;
  1292. sb = page_address(rdev->sb_page);
  1293. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1294. sb->major_version != cpu_to_le32(1) ||
  1295. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1296. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1297. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1298. return -EINVAL;
  1299. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1300. printk("md: invalid superblock checksum on %s\n",
  1301. bdevname(rdev->bdev,b));
  1302. return -EINVAL;
  1303. }
  1304. if (le64_to_cpu(sb->data_size) < 10) {
  1305. printk("md: data_size too small on %s\n",
  1306. bdevname(rdev->bdev,b));
  1307. return -EINVAL;
  1308. }
  1309. if (sb->pad0 ||
  1310. sb->pad3[0] ||
  1311. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1312. /* Some padding is non-zero, might be a new feature */
  1313. return -EINVAL;
  1314. rdev->preferred_minor = 0xffff;
  1315. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1316. rdev->new_data_offset = rdev->data_offset;
  1317. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1318. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1319. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1320. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1321. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1322. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1323. if (rdev->sb_size & bmask)
  1324. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1325. if (minor_version
  1326. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1327. return -EINVAL;
  1328. if (minor_version
  1329. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1330. return -EINVAL;
  1331. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1332. rdev->desc_nr = -1;
  1333. else
  1334. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1335. if (!rdev->bb_page) {
  1336. rdev->bb_page = alloc_page(GFP_KERNEL);
  1337. if (!rdev->bb_page)
  1338. return -ENOMEM;
  1339. }
  1340. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1341. rdev->badblocks.count == 0) {
  1342. /* need to load the bad block list.
  1343. * Currently we limit it to one page.
  1344. */
  1345. s32 offset;
  1346. sector_t bb_sector;
  1347. u64 *bbp;
  1348. int i;
  1349. int sectors = le16_to_cpu(sb->bblog_size);
  1350. if (sectors > (PAGE_SIZE / 512))
  1351. return -EINVAL;
  1352. offset = le32_to_cpu(sb->bblog_offset);
  1353. if (offset == 0)
  1354. return -EINVAL;
  1355. bb_sector = (long long)offset;
  1356. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1357. rdev->bb_page, READ, true))
  1358. return -EIO;
  1359. bbp = (u64 *)page_address(rdev->bb_page);
  1360. rdev->badblocks.shift = sb->bblog_shift;
  1361. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1362. u64 bb = le64_to_cpu(*bbp);
  1363. int count = bb & (0x3ff);
  1364. u64 sector = bb >> 10;
  1365. sector <<= sb->bblog_shift;
  1366. count <<= sb->bblog_shift;
  1367. if (bb + 1 == 0)
  1368. break;
  1369. if (md_set_badblocks(&rdev->badblocks,
  1370. sector, count, 1) == 0)
  1371. return -EINVAL;
  1372. }
  1373. } else if (sb->bblog_offset == 0)
  1374. rdev->badblocks.shift = -1;
  1375. if (!refdev) {
  1376. ret = 1;
  1377. } else {
  1378. __u64 ev1, ev2;
  1379. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1380. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1381. sb->level != refsb->level ||
  1382. sb->layout != refsb->layout ||
  1383. sb->chunksize != refsb->chunksize) {
  1384. printk(KERN_WARNING "md: %s has strangely different"
  1385. " superblock to %s\n",
  1386. bdevname(rdev->bdev,b),
  1387. bdevname(refdev->bdev,b2));
  1388. return -EINVAL;
  1389. }
  1390. ev1 = le64_to_cpu(sb->events);
  1391. ev2 = le64_to_cpu(refsb->events);
  1392. if (ev1 > ev2)
  1393. ret = 1;
  1394. else
  1395. ret = 0;
  1396. }
  1397. if (minor_version) {
  1398. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1399. sectors -= rdev->data_offset;
  1400. } else
  1401. sectors = rdev->sb_start;
  1402. if (sectors < le64_to_cpu(sb->data_size))
  1403. return -EINVAL;
  1404. rdev->sectors = le64_to_cpu(sb->data_size);
  1405. return ret;
  1406. }
  1407. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1408. {
  1409. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1410. __u64 ev1 = le64_to_cpu(sb->events);
  1411. rdev->raid_disk = -1;
  1412. clear_bit(Faulty, &rdev->flags);
  1413. clear_bit(In_sync, &rdev->flags);
  1414. clear_bit(WriteMostly, &rdev->flags);
  1415. if (mddev->raid_disks == 0) {
  1416. mddev->major_version = 1;
  1417. mddev->patch_version = 0;
  1418. mddev->external = 0;
  1419. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1420. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1421. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1422. mddev->level = le32_to_cpu(sb->level);
  1423. mddev->clevel[0] = 0;
  1424. mddev->layout = le32_to_cpu(sb->layout);
  1425. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1426. mddev->dev_sectors = le64_to_cpu(sb->size);
  1427. mddev->events = ev1;
  1428. mddev->bitmap_info.offset = 0;
  1429. mddev->bitmap_info.space = 0;
  1430. /* Default location for bitmap is 1K after superblock
  1431. * using 3K - total of 4K
  1432. */
  1433. mddev->bitmap_info.default_offset = 1024 >> 9;
  1434. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1435. mddev->reshape_backwards = 0;
  1436. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1437. memcpy(mddev->uuid, sb->set_uuid, 16);
  1438. mddev->max_disks = (4096-256)/2;
  1439. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1440. mddev->bitmap_info.file == NULL) {
  1441. mddev->bitmap_info.offset =
  1442. (__s32)le32_to_cpu(sb->bitmap_offset);
  1443. /* Metadata doesn't record how much space is available.
  1444. * For 1.0, we assume we can use up to the superblock
  1445. * if before, else to 4K beyond superblock.
  1446. * For others, assume no change is possible.
  1447. */
  1448. if (mddev->minor_version > 0)
  1449. mddev->bitmap_info.space = 0;
  1450. else if (mddev->bitmap_info.offset > 0)
  1451. mddev->bitmap_info.space =
  1452. 8 - mddev->bitmap_info.offset;
  1453. else
  1454. mddev->bitmap_info.space =
  1455. -mddev->bitmap_info.offset;
  1456. }
  1457. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1458. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1459. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1460. mddev->new_level = le32_to_cpu(sb->new_level);
  1461. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1462. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1463. if (mddev->delta_disks < 0 ||
  1464. (mddev->delta_disks == 0 &&
  1465. (le32_to_cpu(sb->feature_map)
  1466. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1467. mddev->reshape_backwards = 1;
  1468. } else {
  1469. mddev->reshape_position = MaxSector;
  1470. mddev->delta_disks = 0;
  1471. mddev->new_level = mddev->level;
  1472. mddev->new_layout = mddev->layout;
  1473. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1474. }
  1475. } else if (mddev->pers == NULL) {
  1476. /* Insist of good event counter while assembling, except for
  1477. * spares (which don't need an event count) */
  1478. ++ev1;
  1479. if (rdev->desc_nr >= 0 &&
  1480. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1481. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1482. if (ev1 < mddev->events)
  1483. return -EINVAL;
  1484. } else if (mddev->bitmap) {
  1485. /* If adding to array with a bitmap, then we can accept an
  1486. * older device, but not too old.
  1487. */
  1488. if (ev1 < mddev->bitmap->events_cleared)
  1489. return 0;
  1490. } else {
  1491. if (ev1 < mddev->events)
  1492. /* just a hot-add of a new device, leave raid_disk at -1 */
  1493. return 0;
  1494. }
  1495. if (mddev->level != LEVEL_MULTIPATH) {
  1496. int role;
  1497. if (rdev->desc_nr < 0 ||
  1498. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1499. role = 0xffff;
  1500. rdev->desc_nr = -1;
  1501. } else
  1502. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1503. switch(role) {
  1504. case 0xffff: /* spare */
  1505. break;
  1506. case 0xfffe: /* faulty */
  1507. set_bit(Faulty, &rdev->flags);
  1508. break;
  1509. default:
  1510. if ((le32_to_cpu(sb->feature_map) &
  1511. MD_FEATURE_RECOVERY_OFFSET))
  1512. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1513. else
  1514. set_bit(In_sync, &rdev->flags);
  1515. rdev->raid_disk = role;
  1516. break;
  1517. }
  1518. if (sb->devflags & WriteMostly1)
  1519. set_bit(WriteMostly, &rdev->flags);
  1520. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1521. set_bit(Replacement, &rdev->flags);
  1522. } else /* MULTIPATH are always insync */
  1523. set_bit(In_sync, &rdev->flags);
  1524. return 0;
  1525. }
  1526. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1527. {
  1528. struct mdp_superblock_1 *sb;
  1529. struct md_rdev *rdev2;
  1530. int max_dev, i;
  1531. /* make rdev->sb match mddev and rdev data. */
  1532. sb = page_address(rdev->sb_page);
  1533. sb->feature_map = 0;
  1534. sb->pad0 = 0;
  1535. sb->recovery_offset = cpu_to_le64(0);
  1536. memset(sb->pad3, 0, sizeof(sb->pad3));
  1537. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1538. sb->events = cpu_to_le64(mddev->events);
  1539. if (mddev->in_sync)
  1540. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1541. else
  1542. sb->resync_offset = cpu_to_le64(0);
  1543. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1544. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1545. sb->size = cpu_to_le64(mddev->dev_sectors);
  1546. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1547. sb->level = cpu_to_le32(mddev->level);
  1548. sb->layout = cpu_to_le32(mddev->layout);
  1549. if (test_bit(WriteMostly, &rdev->flags))
  1550. sb->devflags |= WriteMostly1;
  1551. else
  1552. sb->devflags &= ~WriteMostly1;
  1553. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1554. sb->data_size = cpu_to_le64(rdev->sectors);
  1555. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1556. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1557. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1558. }
  1559. if (rdev->raid_disk >= 0 &&
  1560. !test_bit(In_sync, &rdev->flags)) {
  1561. sb->feature_map |=
  1562. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1563. sb->recovery_offset =
  1564. cpu_to_le64(rdev->recovery_offset);
  1565. }
  1566. if (test_bit(Replacement, &rdev->flags))
  1567. sb->feature_map |=
  1568. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1569. if (mddev->reshape_position != MaxSector) {
  1570. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1571. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1572. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1573. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1574. sb->new_level = cpu_to_le32(mddev->new_level);
  1575. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1576. if (mddev->delta_disks == 0 &&
  1577. mddev->reshape_backwards)
  1578. sb->feature_map
  1579. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1580. if (rdev->new_data_offset != rdev->data_offset) {
  1581. sb->feature_map
  1582. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1583. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1584. - rdev->data_offset));
  1585. }
  1586. }
  1587. if (rdev->badblocks.count == 0)
  1588. /* Nothing to do for bad blocks*/ ;
  1589. else if (sb->bblog_offset == 0)
  1590. /* Cannot record bad blocks on this device */
  1591. md_error(mddev, rdev);
  1592. else {
  1593. struct badblocks *bb = &rdev->badblocks;
  1594. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1595. u64 *p = bb->page;
  1596. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1597. if (bb->changed) {
  1598. unsigned seq;
  1599. retry:
  1600. seq = read_seqbegin(&bb->lock);
  1601. memset(bbp, 0xff, PAGE_SIZE);
  1602. for (i = 0 ; i < bb->count ; i++) {
  1603. u64 internal_bb = p[i];
  1604. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1605. | BB_LEN(internal_bb));
  1606. bbp[i] = cpu_to_le64(store_bb);
  1607. }
  1608. bb->changed = 0;
  1609. if (read_seqretry(&bb->lock, seq))
  1610. goto retry;
  1611. bb->sector = (rdev->sb_start +
  1612. (int)le32_to_cpu(sb->bblog_offset));
  1613. bb->size = le16_to_cpu(sb->bblog_size);
  1614. }
  1615. }
  1616. max_dev = 0;
  1617. rdev_for_each(rdev2, mddev)
  1618. if (rdev2->desc_nr+1 > max_dev)
  1619. max_dev = rdev2->desc_nr+1;
  1620. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1621. int bmask;
  1622. sb->max_dev = cpu_to_le32(max_dev);
  1623. rdev->sb_size = max_dev * 2 + 256;
  1624. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1625. if (rdev->sb_size & bmask)
  1626. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1627. } else
  1628. max_dev = le32_to_cpu(sb->max_dev);
  1629. for (i=0; i<max_dev;i++)
  1630. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1631. rdev_for_each(rdev2, mddev) {
  1632. i = rdev2->desc_nr;
  1633. if (test_bit(Faulty, &rdev2->flags))
  1634. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1635. else if (test_bit(In_sync, &rdev2->flags))
  1636. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1637. else if (rdev2->raid_disk >= 0)
  1638. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1639. else
  1640. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1641. }
  1642. sb->sb_csum = calc_sb_1_csum(sb);
  1643. }
  1644. static unsigned long long
  1645. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1646. {
  1647. struct mdp_superblock_1 *sb;
  1648. sector_t max_sectors;
  1649. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1650. return 0; /* component must fit device */
  1651. if (rdev->data_offset != rdev->new_data_offset)
  1652. return 0; /* too confusing */
  1653. if (rdev->sb_start < rdev->data_offset) {
  1654. /* minor versions 1 and 2; superblock before data */
  1655. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1656. max_sectors -= rdev->data_offset;
  1657. if (!num_sectors || num_sectors > max_sectors)
  1658. num_sectors = max_sectors;
  1659. } else if (rdev->mddev->bitmap_info.offset) {
  1660. /* minor version 0 with bitmap we can't move */
  1661. return 0;
  1662. } else {
  1663. /* minor version 0; superblock after data */
  1664. sector_t sb_start;
  1665. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1666. sb_start &= ~(sector_t)(4*2 - 1);
  1667. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1668. if (!num_sectors || num_sectors > max_sectors)
  1669. num_sectors = max_sectors;
  1670. rdev->sb_start = sb_start;
  1671. }
  1672. sb = page_address(rdev->sb_page);
  1673. sb->data_size = cpu_to_le64(num_sectors);
  1674. sb->super_offset = rdev->sb_start;
  1675. sb->sb_csum = calc_sb_1_csum(sb);
  1676. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1677. rdev->sb_page);
  1678. md_super_wait(rdev->mddev);
  1679. return num_sectors;
  1680. }
  1681. static int
  1682. super_1_allow_new_offset(struct md_rdev *rdev,
  1683. unsigned long long new_offset)
  1684. {
  1685. /* All necessary checks on new >= old have been done */
  1686. struct bitmap *bitmap;
  1687. if (new_offset >= rdev->data_offset)
  1688. return 1;
  1689. /* with 1.0 metadata, there is no metadata to tread on
  1690. * so we can always move back */
  1691. if (rdev->mddev->minor_version == 0)
  1692. return 1;
  1693. /* otherwise we must be sure not to step on
  1694. * any metadata, so stay:
  1695. * 36K beyond start of superblock
  1696. * beyond end of badblocks
  1697. * beyond write-intent bitmap
  1698. */
  1699. if (rdev->sb_start + (32+4)*2 > new_offset)
  1700. return 0;
  1701. bitmap = rdev->mddev->bitmap;
  1702. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1703. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1704. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1705. return 0;
  1706. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1707. return 0;
  1708. return 1;
  1709. }
  1710. static struct super_type super_types[] = {
  1711. [0] = {
  1712. .name = "0.90.0",
  1713. .owner = THIS_MODULE,
  1714. .load_super = super_90_load,
  1715. .validate_super = super_90_validate,
  1716. .sync_super = super_90_sync,
  1717. .rdev_size_change = super_90_rdev_size_change,
  1718. .allow_new_offset = super_90_allow_new_offset,
  1719. },
  1720. [1] = {
  1721. .name = "md-1",
  1722. .owner = THIS_MODULE,
  1723. .load_super = super_1_load,
  1724. .validate_super = super_1_validate,
  1725. .sync_super = super_1_sync,
  1726. .rdev_size_change = super_1_rdev_size_change,
  1727. .allow_new_offset = super_1_allow_new_offset,
  1728. },
  1729. };
  1730. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1731. {
  1732. if (mddev->sync_super) {
  1733. mddev->sync_super(mddev, rdev);
  1734. return;
  1735. }
  1736. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1737. super_types[mddev->major_version].sync_super(mddev, rdev);
  1738. }
  1739. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1740. {
  1741. struct md_rdev *rdev, *rdev2;
  1742. rcu_read_lock();
  1743. rdev_for_each_rcu(rdev, mddev1)
  1744. rdev_for_each_rcu(rdev2, mddev2)
  1745. if (rdev->bdev->bd_contains ==
  1746. rdev2->bdev->bd_contains) {
  1747. rcu_read_unlock();
  1748. return 1;
  1749. }
  1750. rcu_read_unlock();
  1751. return 0;
  1752. }
  1753. static LIST_HEAD(pending_raid_disks);
  1754. /*
  1755. * Try to register data integrity profile for an mddev
  1756. *
  1757. * This is called when an array is started and after a disk has been kicked
  1758. * from the array. It only succeeds if all working and active component devices
  1759. * are integrity capable with matching profiles.
  1760. */
  1761. int md_integrity_register(struct mddev *mddev)
  1762. {
  1763. struct md_rdev *rdev, *reference = NULL;
  1764. if (list_empty(&mddev->disks))
  1765. return 0; /* nothing to do */
  1766. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1767. return 0; /* shouldn't register, or already is */
  1768. rdev_for_each(rdev, mddev) {
  1769. /* skip spares and non-functional disks */
  1770. if (test_bit(Faulty, &rdev->flags))
  1771. continue;
  1772. if (rdev->raid_disk < 0)
  1773. continue;
  1774. if (!reference) {
  1775. /* Use the first rdev as the reference */
  1776. reference = rdev;
  1777. continue;
  1778. }
  1779. /* does this rdev's profile match the reference profile? */
  1780. if (blk_integrity_compare(reference->bdev->bd_disk,
  1781. rdev->bdev->bd_disk) < 0)
  1782. return -EINVAL;
  1783. }
  1784. if (!reference || !bdev_get_integrity(reference->bdev))
  1785. return 0;
  1786. /*
  1787. * All component devices are integrity capable and have matching
  1788. * profiles, register the common profile for the md device.
  1789. */
  1790. if (blk_integrity_register(mddev->gendisk,
  1791. bdev_get_integrity(reference->bdev)) != 0) {
  1792. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1793. mdname(mddev));
  1794. return -EINVAL;
  1795. }
  1796. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1797. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1798. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1799. mdname(mddev));
  1800. return -EINVAL;
  1801. }
  1802. return 0;
  1803. }
  1804. EXPORT_SYMBOL(md_integrity_register);
  1805. /* Disable data integrity if non-capable/non-matching disk is being added */
  1806. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1807. {
  1808. struct blk_integrity *bi_rdev;
  1809. struct blk_integrity *bi_mddev;
  1810. if (!mddev->gendisk)
  1811. return;
  1812. bi_rdev = bdev_get_integrity(rdev->bdev);
  1813. bi_mddev = blk_get_integrity(mddev->gendisk);
  1814. if (!bi_mddev) /* nothing to do */
  1815. return;
  1816. if (rdev->raid_disk < 0) /* skip spares */
  1817. return;
  1818. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1819. rdev->bdev->bd_disk) >= 0)
  1820. return;
  1821. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1822. blk_integrity_unregister(mddev->gendisk);
  1823. }
  1824. EXPORT_SYMBOL(md_integrity_add_rdev);
  1825. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1826. {
  1827. char b[BDEVNAME_SIZE];
  1828. struct kobject *ko;
  1829. char *s;
  1830. int err;
  1831. if (rdev->mddev) {
  1832. MD_BUG();
  1833. return -EINVAL;
  1834. }
  1835. /* prevent duplicates */
  1836. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1837. return -EEXIST;
  1838. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1839. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1840. rdev->sectors < mddev->dev_sectors)) {
  1841. if (mddev->pers) {
  1842. /* Cannot change size, so fail
  1843. * If mddev->level <= 0, then we don't care
  1844. * about aligning sizes (e.g. linear)
  1845. */
  1846. if (mddev->level > 0)
  1847. return -ENOSPC;
  1848. } else
  1849. mddev->dev_sectors = rdev->sectors;
  1850. }
  1851. /* Verify rdev->desc_nr is unique.
  1852. * If it is -1, assign a free number, else
  1853. * check number is not in use
  1854. */
  1855. if (rdev->desc_nr < 0) {
  1856. int choice = 0;
  1857. if (mddev->pers) choice = mddev->raid_disks;
  1858. while (find_rdev_nr(mddev, choice))
  1859. choice++;
  1860. rdev->desc_nr = choice;
  1861. } else {
  1862. if (find_rdev_nr(mddev, rdev->desc_nr))
  1863. return -EBUSY;
  1864. }
  1865. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1866. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1867. mdname(mddev), mddev->max_disks);
  1868. return -EBUSY;
  1869. }
  1870. bdevname(rdev->bdev,b);
  1871. while ( (s=strchr(b, '/')) != NULL)
  1872. *s = '!';
  1873. rdev->mddev = mddev;
  1874. printk(KERN_INFO "md: bind<%s>\n", b);
  1875. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1876. goto fail;
  1877. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1878. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1879. /* failure here is OK */;
  1880. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1881. list_add_rcu(&rdev->same_set, &mddev->disks);
  1882. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1883. /* May as well allow recovery to be retried once */
  1884. mddev->recovery_disabled++;
  1885. return 0;
  1886. fail:
  1887. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1888. b, mdname(mddev));
  1889. return err;
  1890. }
  1891. static void md_delayed_delete(struct work_struct *ws)
  1892. {
  1893. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1894. kobject_del(&rdev->kobj);
  1895. kobject_put(&rdev->kobj);
  1896. }
  1897. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1898. {
  1899. char b[BDEVNAME_SIZE];
  1900. if (!rdev->mddev) {
  1901. MD_BUG();
  1902. return;
  1903. }
  1904. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1905. list_del_rcu(&rdev->same_set);
  1906. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1907. rdev->mddev = NULL;
  1908. sysfs_remove_link(&rdev->kobj, "block");
  1909. sysfs_put(rdev->sysfs_state);
  1910. rdev->sysfs_state = NULL;
  1911. rdev->badblocks.count = 0;
  1912. /* We need to delay this, otherwise we can deadlock when
  1913. * writing to 'remove' to "dev/state". We also need
  1914. * to delay it due to rcu usage.
  1915. */
  1916. synchronize_rcu();
  1917. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1918. kobject_get(&rdev->kobj);
  1919. queue_work(md_misc_wq, &rdev->del_work);
  1920. }
  1921. /*
  1922. * prevent the device from being mounted, repartitioned or
  1923. * otherwise reused by a RAID array (or any other kernel
  1924. * subsystem), by bd_claiming the device.
  1925. */
  1926. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1927. {
  1928. int err = 0;
  1929. struct block_device *bdev;
  1930. char b[BDEVNAME_SIZE];
  1931. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1932. shared ? (struct md_rdev *)lock_rdev : rdev);
  1933. if (IS_ERR(bdev)) {
  1934. printk(KERN_ERR "md: could not open %s.\n",
  1935. __bdevname(dev, b));
  1936. return PTR_ERR(bdev);
  1937. }
  1938. rdev->bdev = bdev;
  1939. return err;
  1940. }
  1941. static void unlock_rdev(struct md_rdev *rdev)
  1942. {
  1943. struct block_device *bdev = rdev->bdev;
  1944. rdev->bdev = NULL;
  1945. if (!bdev)
  1946. MD_BUG();
  1947. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1948. }
  1949. void md_autodetect_dev(dev_t dev);
  1950. static void export_rdev(struct md_rdev * rdev)
  1951. {
  1952. char b[BDEVNAME_SIZE];
  1953. printk(KERN_INFO "md: export_rdev(%s)\n",
  1954. bdevname(rdev->bdev,b));
  1955. if (rdev->mddev)
  1956. MD_BUG();
  1957. md_rdev_clear(rdev);
  1958. #ifndef MODULE
  1959. if (test_bit(AutoDetected, &rdev->flags))
  1960. md_autodetect_dev(rdev->bdev->bd_dev);
  1961. #endif
  1962. unlock_rdev(rdev);
  1963. kobject_put(&rdev->kobj);
  1964. }
  1965. static void kick_rdev_from_array(struct md_rdev * rdev)
  1966. {
  1967. unbind_rdev_from_array(rdev);
  1968. export_rdev(rdev);
  1969. }
  1970. static void export_array(struct mddev *mddev)
  1971. {
  1972. struct md_rdev *rdev, *tmp;
  1973. rdev_for_each_safe(rdev, tmp, mddev) {
  1974. if (!rdev->mddev) {
  1975. MD_BUG();
  1976. continue;
  1977. }
  1978. kick_rdev_from_array(rdev);
  1979. }
  1980. if (!list_empty(&mddev->disks))
  1981. MD_BUG();
  1982. mddev->raid_disks = 0;
  1983. mddev->major_version = 0;
  1984. }
  1985. static void print_desc(mdp_disk_t *desc)
  1986. {
  1987. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1988. desc->major,desc->minor,desc->raid_disk,desc->state);
  1989. }
  1990. static void print_sb_90(mdp_super_t *sb)
  1991. {
  1992. int i;
  1993. printk(KERN_INFO
  1994. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1995. sb->major_version, sb->minor_version, sb->patch_version,
  1996. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1997. sb->ctime);
  1998. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1999. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  2000. sb->md_minor, sb->layout, sb->chunk_size);
  2001. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  2002. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2003. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2004. sb->failed_disks, sb->spare_disks,
  2005. sb->sb_csum, (unsigned long)sb->events_lo);
  2006. printk(KERN_INFO);
  2007. for (i = 0; i < MD_SB_DISKS; i++) {
  2008. mdp_disk_t *desc;
  2009. desc = sb->disks + i;
  2010. if (desc->number || desc->major || desc->minor ||
  2011. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2012. printk(" D %2d: ", i);
  2013. print_desc(desc);
  2014. }
  2015. }
  2016. printk(KERN_INFO "md: THIS: ");
  2017. print_desc(&sb->this_disk);
  2018. }
  2019. static void print_sb_1(struct mdp_superblock_1 *sb)
  2020. {
  2021. __u8 *uuid;
  2022. uuid = sb->set_uuid;
  2023. printk(KERN_INFO
  2024. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2025. "md: Name: \"%s\" CT:%llu\n",
  2026. le32_to_cpu(sb->major_version),
  2027. le32_to_cpu(sb->feature_map),
  2028. uuid,
  2029. sb->set_name,
  2030. (unsigned long long)le64_to_cpu(sb->ctime)
  2031. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2032. uuid = sb->device_uuid;
  2033. printk(KERN_INFO
  2034. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2035. " RO:%llu\n"
  2036. "md: Dev:%08x UUID: %pU\n"
  2037. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2038. "md: (MaxDev:%u) \n",
  2039. le32_to_cpu(sb->level),
  2040. (unsigned long long)le64_to_cpu(sb->size),
  2041. le32_to_cpu(sb->raid_disks),
  2042. le32_to_cpu(sb->layout),
  2043. le32_to_cpu(sb->chunksize),
  2044. (unsigned long long)le64_to_cpu(sb->data_offset),
  2045. (unsigned long long)le64_to_cpu(sb->data_size),
  2046. (unsigned long long)le64_to_cpu(sb->super_offset),
  2047. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2048. le32_to_cpu(sb->dev_number),
  2049. uuid,
  2050. sb->devflags,
  2051. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2052. (unsigned long long)le64_to_cpu(sb->events),
  2053. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2054. le32_to_cpu(sb->sb_csum),
  2055. le32_to_cpu(sb->max_dev)
  2056. );
  2057. }
  2058. static void print_rdev(struct md_rdev *rdev, int major_version)
  2059. {
  2060. char b[BDEVNAME_SIZE];
  2061. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2062. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2063. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2064. rdev->desc_nr);
  2065. if (rdev->sb_loaded) {
  2066. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2067. switch (major_version) {
  2068. case 0:
  2069. print_sb_90(page_address(rdev->sb_page));
  2070. break;
  2071. case 1:
  2072. print_sb_1(page_address(rdev->sb_page));
  2073. break;
  2074. }
  2075. } else
  2076. printk(KERN_INFO "md: no rdev superblock!\n");
  2077. }
  2078. static void md_print_devices(void)
  2079. {
  2080. struct list_head *tmp;
  2081. struct md_rdev *rdev;
  2082. struct mddev *mddev;
  2083. char b[BDEVNAME_SIZE];
  2084. printk("\n");
  2085. printk("md: **********************************\n");
  2086. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2087. printk("md: **********************************\n");
  2088. for_each_mddev(mddev, tmp) {
  2089. if (mddev->bitmap)
  2090. bitmap_print_sb(mddev->bitmap);
  2091. else
  2092. printk("%s: ", mdname(mddev));
  2093. rdev_for_each(rdev, mddev)
  2094. printk("<%s>", bdevname(rdev->bdev,b));
  2095. printk("\n");
  2096. rdev_for_each(rdev, mddev)
  2097. print_rdev(rdev, mddev->major_version);
  2098. }
  2099. printk("md: **********************************\n");
  2100. printk("\n");
  2101. }
  2102. static void sync_sbs(struct mddev * mddev, int nospares)
  2103. {
  2104. /* Update each superblock (in-memory image), but
  2105. * if we are allowed to, skip spares which already
  2106. * have the right event counter, or have one earlier
  2107. * (which would mean they aren't being marked as dirty
  2108. * with the rest of the array)
  2109. */
  2110. struct md_rdev *rdev;
  2111. rdev_for_each(rdev, mddev) {
  2112. if (rdev->sb_events == mddev->events ||
  2113. (nospares &&
  2114. rdev->raid_disk < 0 &&
  2115. rdev->sb_events+1 == mddev->events)) {
  2116. /* Don't update this superblock */
  2117. rdev->sb_loaded = 2;
  2118. } else {
  2119. sync_super(mddev, rdev);
  2120. rdev->sb_loaded = 1;
  2121. }
  2122. }
  2123. }
  2124. static void md_update_sb(struct mddev * mddev, int force_change)
  2125. {
  2126. struct md_rdev *rdev;
  2127. int sync_req;
  2128. int nospares = 0;
  2129. int any_badblocks_changed = 0;
  2130. repeat:
  2131. /* First make sure individual recovery_offsets are correct */
  2132. rdev_for_each(rdev, mddev) {
  2133. if (rdev->raid_disk >= 0 &&
  2134. mddev->delta_disks >= 0 &&
  2135. !test_bit(In_sync, &rdev->flags) &&
  2136. mddev->curr_resync_completed > rdev->recovery_offset)
  2137. rdev->recovery_offset = mddev->curr_resync_completed;
  2138. }
  2139. if (!mddev->persistent) {
  2140. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2141. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2142. if (!mddev->external) {
  2143. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2144. rdev_for_each(rdev, mddev) {
  2145. if (rdev->badblocks.changed) {
  2146. rdev->badblocks.changed = 0;
  2147. md_ack_all_badblocks(&rdev->badblocks);
  2148. md_error(mddev, rdev);
  2149. }
  2150. clear_bit(Blocked, &rdev->flags);
  2151. clear_bit(BlockedBadBlocks, &rdev->flags);
  2152. wake_up(&rdev->blocked_wait);
  2153. }
  2154. }
  2155. wake_up(&mddev->sb_wait);
  2156. return;
  2157. }
  2158. spin_lock_irq(&mddev->write_lock);
  2159. mddev->utime = get_seconds();
  2160. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2161. force_change = 1;
  2162. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2163. /* just a clean<-> dirty transition, possibly leave spares alone,
  2164. * though if events isn't the right even/odd, we will have to do
  2165. * spares after all
  2166. */
  2167. nospares = 1;
  2168. if (force_change)
  2169. nospares = 0;
  2170. if (mddev->degraded)
  2171. /* If the array is degraded, then skipping spares is both
  2172. * dangerous and fairly pointless.
  2173. * Dangerous because a device that was removed from the array
  2174. * might have a event_count that still looks up-to-date,
  2175. * so it can be re-added without a resync.
  2176. * Pointless because if there are any spares to skip,
  2177. * then a recovery will happen and soon that array won't
  2178. * be degraded any more and the spare can go back to sleep then.
  2179. */
  2180. nospares = 0;
  2181. sync_req = mddev->in_sync;
  2182. /* If this is just a dirty<->clean transition, and the array is clean
  2183. * and 'events' is odd, we can roll back to the previous clean state */
  2184. if (nospares
  2185. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2186. && mddev->can_decrease_events
  2187. && mddev->events != 1) {
  2188. mddev->events--;
  2189. mddev->can_decrease_events = 0;
  2190. } else {
  2191. /* otherwise we have to go forward and ... */
  2192. mddev->events ++;
  2193. mddev->can_decrease_events = nospares;
  2194. }
  2195. if (!mddev->events) {
  2196. /*
  2197. * oops, this 64-bit counter should never wrap.
  2198. * Either we are in around ~1 trillion A.C., assuming
  2199. * 1 reboot per second, or we have a bug:
  2200. */
  2201. MD_BUG();
  2202. mddev->events --;
  2203. }
  2204. rdev_for_each(rdev, mddev) {
  2205. if (rdev->badblocks.changed)
  2206. any_badblocks_changed++;
  2207. if (test_bit(Faulty, &rdev->flags))
  2208. set_bit(FaultRecorded, &rdev->flags);
  2209. }
  2210. sync_sbs(mddev, nospares);
  2211. spin_unlock_irq(&mddev->write_lock);
  2212. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2213. mdname(mddev), mddev->in_sync);
  2214. bitmap_update_sb(mddev->bitmap);
  2215. rdev_for_each(rdev, mddev) {
  2216. char b[BDEVNAME_SIZE];
  2217. if (rdev->sb_loaded != 1)
  2218. continue; /* no noise on spare devices */
  2219. if (!test_bit(Faulty, &rdev->flags) &&
  2220. rdev->saved_raid_disk == -1) {
  2221. md_super_write(mddev,rdev,
  2222. rdev->sb_start, rdev->sb_size,
  2223. rdev->sb_page);
  2224. pr_debug("md: (write) %s's sb offset: %llu\n",
  2225. bdevname(rdev->bdev, b),
  2226. (unsigned long long)rdev->sb_start);
  2227. rdev->sb_events = mddev->events;
  2228. if (rdev->badblocks.size) {
  2229. md_super_write(mddev, rdev,
  2230. rdev->badblocks.sector,
  2231. rdev->badblocks.size << 9,
  2232. rdev->bb_page);
  2233. rdev->badblocks.size = 0;
  2234. }
  2235. } else if (test_bit(Faulty, &rdev->flags))
  2236. pr_debug("md: %s (skipping faulty)\n",
  2237. bdevname(rdev->bdev, b));
  2238. else
  2239. pr_debug("(skipping incremental s/r ");
  2240. if (mddev->level == LEVEL_MULTIPATH)
  2241. /* only need to write one superblock... */
  2242. break;
  2243. }
  2244. md_super_wait(mddev);
  2245. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2246. spin_lock_irq(&mddev->write_lock);
  2247. if (mddev->in_sync != sync_req ||
  2248. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2249. /* have to write it out again */
  2250. spin_unlock_irq(&mddev->write_lock);
  2251. goto repeat;
  2252. }
  2253. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2254. spin_unlock_irq(&mddev->write_lock);
  2255. wake_up(&mddev->sb_wait);
  2256. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2257. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2258. rdev_for_each(rdev, mddev) {
  2259. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2260. clear_bit(Blocked, &rdev->flags);
  2261. if (any_badblocks_changed)
  2262. md_ack_all_badblocks(&rdev->badblocks);
  2263. clear_bit(BlockedBadBlocks, &rdev->flags);
  2264. wake_up(&rdev->blocked_wait);
  2265. }
  2266. }
  2267. /* words written to sysfs files may, or may not, be \n terminated.
  2268. * We want to accept with case. For this we use cmd_match.
  2269. */
  2270. static int cmd_match(const char *cmd, const char *str)
  2271. {
  2272. /* See if cmd, written into a sysfs file, matches
  2273. * str. They must either be the same, or cmd can
  2274. * have a trailing newline
  2275. */
  2276. while (*cmd && *str && *cmd == *str) {
  2277. cmd++;
  2278. str++;
  2279. }
  2280. if (*cmd == '\n')
  2281. cmd++;
  2282. if (*str || *cmd)
  2283. return 0;
  2284. return 1;
  2285. }
  2286. struct rdev_sysfs_entry {
  2287. struct attribute attr;
  2288. ssize_t (*show)(struct md_rdev *, char *);
  2289. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2290. };
  2291. static ssize_t
  2292. state_show(struct md_rdev *rdev, char *page)
  2293. {
  2294. char *sep = "";
  2295. size_t len = 0;
  2296. if (test_bit(Faulty, &rdev->flags) ||
  2297. rdev->badblocks.unacked_exist) {
  2298. len+= sprintf(page+len, "%sfaulty",sep);
  2299. sep = ",";
  2300. }
  2301. if (test_bit(In_sync, &rdev->flags)) {
  2302. len += sprintf(page+len, "%sin_sync",sep);
  2303. sep = ",";
  2304. }
  2305. if (test_bit(WriteMostly, &rdev->flags)) {
  2306. len += sprintf(page+len, "%swrite_mostly",sep);
  2307. sep = ",";
  2308. }
  2309. if (test_bit(Blocked, &rdev->flags) ||
  2310. (rdev->badblocks.unacked_exist
  2311. && !test_bit(Faulty, &rdev->flags))) {
  2312. len += sprintf(page+len, "%sblocked", sep);
  2313. sep = ",";
  2314. }
  2315. if (!test_bit(Faulty, &rdev->flags) &&
  2316. !test_bit(In_sync, &rdev->flags)) {
  2317. len += sprintf(page+len, "%sspare", sep);
  2318. sep = ",";
  2319. }
  2320. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2321. len += sprintf(page+len, "%swrite_error", sep);
  2322. sep = ",";
  2323. }
  2324. if (test_bit(WantReplacement, &rdev->flags)) {
  2325. len += sprintf(page+len, "%swant_replacement", sep);
  2326. sep = ",";
  2327. }
  2328. if (test_bit(Replacement, &rdev->flags)) {
  2329. len += sprintf(page+len, "%sreplacement", sep);
  2330. sep = ",";
  2331. }
  2332. return len+sprintf(page+len, "\n");
  2333. }
  2334. static ssize_t
  2335. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2336. {
  2337. /* can write
  2338. * faulty - simulates an error
  2339. * remove - disconnects the device
  2340. * writemostly - sets write_mostly
  2341. * -writemostly - clears write_mostly
  2342. * blocked - sets the Blocked flags
  2343. * -blocked - clears the Blocked and possibly simulates an error
  2344. * insync - sets Insync providing device isn't active
  2345. * write_error - sets WriteErrorSeen
  2346. * -write_error - clears WriteErrorSeen
  2347. */
  2348. int err = -EINVAL;
  2349. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2350. md_error(rdev->mddev, rdev);
  2351. if (test_bit(Faulty, &rdev->flags))
  2352. err = 0;
  2353. else
  2354. err = -EBUSY;
  2355. } else if (cmd_match(buf, "remove")) {
  2356. if (rdev->raid_disk >= 0)
  2357. err = -EBUSY;
  2358. else {
  2359. struct mddev *mddev = rdev->mddev;
  2360. kick_rdev_from_array(rdev);
  2361. if (mddev->pers)
  2362. md_update_sb(mddev, 1);
  2363. md_new_event(mddev);
  2364. err = 0;
  2365. }
  2366. } else if (cmd_match(buf, "writemostly")) {
  2367. set_bit(WriteMostly, &rdev->flags);
  2368. err = 0;
  2369. } else if (cmd_match(buf, "-writemostly")) {
  2370. clear_bit(WriteMostly, &rdev->flags);
  2371. err = 0;
  2372. } else if (cmd_match(buf, "blocked")) {
  2373. set_bit(Blocked, &rdev->flags);
  2374. err = 0;
  2375. } else if (cmd_match(buf, "-blocked")) {
  2376. if (!test_bit(Faulty, &rdev->flags) &&
  2377. rdev->badblocks.unacked_exist) {
  2378. /* metadata handler doesn't understand badblocks,
  2379. * so we need to fail the device
  2380. */
  2381. md_error(rdev->mddev, rdev);
  2382. }
  2383. clear_bit(Blocked, &rdev->flags);
  2384. clear_bit(BlockedBadBlocks, &rdev->flags);
  2385. wake_up(&rdev->blocked_wait);
  2386. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2387. md_wakeup_thread(rdev->mddev->thread);
  2388. err = 0;
  2389. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2390. set_bit(In_sync, &rdev->flags);
  2391. err = 0;
  2392. } else if (cmd_match(buf, "write_error")) {
  2393. set_bit(WriteErrorSeen, &rdev->flags);
  2394. err = 0;
  2395. } else if (cmd_match(buf, "-write_error")) {
  2396. clear_bit(WriteErrorSeen, &rdev->flags);
  2397. err = 0;
  2398. } else if (cmd_match(buf, "want_replacement")) {
  2399. /* Any non-spare device that is not a replacement can
  2400. * become want_replacement at any time, but we then need to
  2401. * check if recovery is needed.
  2402. */
  2403. if (rdev->raid_disk >= 0 &&
  2404. !test_bit(Replacement, &rdev->flags))
  2405. set_bit(WantReplacement, &rdev->flags);
  2406. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2407. md_wakeup_thread(rdev->mddev->thread);
  2408. err = 0;
  2409. } else if (cmd_match(buf, "-want_replacement")) {
  2410. /* Clearing 'want_replacement' is always allowed.
  2411. * Once replacements starts it is too late though.
  2412. */
  2413. err = 0;
  2414. clear_bit(WantReplacement, &rdev->flags);
  2415. } else if (cmd_match(buf, "replacement")) {
  2416. /* Can only set a device as a replacement when array has not
  2417. * yet been started. Once running, replacement is automatic
  2418. * from spares, or by assigning 'slot'.
  2419. */
  2420. if (rdev->mddev->pers)
  2421. err = -EBUSY;
  2422. else {
  2423. set_bit(Replacement, &rdev->flags);
  2424. err = 0;
  2425. }
  2426. } else if (cmd_match(buf, "-replacement")) {
  2427. /* Similarly, can only clear Replacement before start */
  2428. if (rdev->mddev->pers)
  2429. err = -EBUSY;
  2430. else {
  2431. clear_bit(Replacement, &rdev->flags);
  2432. err = 0;
  2433. }
  2434. }
  2435. if (!err)
  2436. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2437. return err ? err : len;
  2438. }
  2439. static struct rdev_sysfs_entry rdev_state =
  2440. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2441. static ssize_t
  2442. errors_show(struct md_rdev *rdev, char *page)
  2443. {
  2444. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2445. }
  2446. static ssize_t
  2447. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2448. {
  2449. char *e;
  2450. unsigned long n = simple_strtoul(buf, &e, 10);
  2451. if (*buf && (*e == 0 || *e == '\n')) {
  2452. atomic_set(&rdev->corrected_errors, n);
  2453. return len;
  2454. }
  2455. return -EINVAL;
  2456. }
  2457. static struct rdev_sysfs_entry rdev_errors =
  2458. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2459. static ssize_t
  2460. slot_show(struct md_rdev *rdev, char *page)
  2461. {
  2462. if (rdev->raid_disk < 0)
  2463. return sprintf(page, "none\n");
  2464. else
  2465. return sprintf(page, "%d\n", rdev->raid_disk);
  2466. }
  2467. static ssize_t
  2468. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2469. {
  2470. char *e;
  2471. int err;
  2472. int slot = simple_strtoul(buf, &e, 10);
  2473. if (strncmp(buf, "none", 4)==0)
  2474. slot = -1;
  2475. else if (e==buf || (*e && *e!= '\n'))
  2476. return -EINVAL;
  2477. if (rdev->mddev->pers && slot == -1) {
  2478. /* Setting 'slot' on an active array requires also
  2479. * updating the 'rd%d' link, and communicating
  2480. * with the personality with ->hot_*_disk.
  2481. * For now we only support removing
  2482. * failed/spare devices. This normally happens automatically,
  2483. * but not when the metadata is externally managed.
  2484. */
  2485. if (rdev->raid_disk == -1)
  2486. return -EEXIST;
  2487. /* personality does all needed checks */
  2488. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2489. return -EINVAL;
  2490. err = rdev->mddev->pers->
  2491. hot_remove_disk(rdev->mddev, rdev);
  2492. if (err)
  2493. return err;
  2494. sysfs_unlink_rdev(rdev->mddev, rdev);
  2495. rdev->raid_disk = -1;
  2496. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2497. md_wakeup_thread(rdev->mddev->thread);
  2498. } else if (rdev->mddev->pers) {
  2499. /* Activating a spare .. or possibly reactivating
  2500. * if we ever get bitmaps working here.
  2501. */
  2502. if (rdev->raid_disk != -1)
  2503. return -EBUSY;
  2504. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2505. return -EBUSY;
  2506. if (rdev->mddev->pers->hot_add_disk == NULL)
  2507. return -EINVAL;
  2508. if (slot >= rdev->mddev->raid_disks &&
  2509. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2510. return -ENOSPC;
  2511. rdev->raid_disk = slot;
  2512. if (test_bit(In_sync, &rdev->flags))
  2513. rdev->saved_raid_disk = slot;
  2514. else
  2515. rdev->saved_raid_disk = -1;
  2516. clear_bit(In_sync, &rdev->flags);
  2517. err = rdev->mddev->pers->
  2518. hot_add_disk(rdev->mddev, rdev);
  2519. if (err) {
  2520. rdev->raid_disk = -1;
  2521. return err;
  2522. } else
  2523. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2524. if (sysfs_link_rdev(rdev->mddev, rdev))
  2525. /* failure here is OK */;
  2526. /* don't wakeup anyone, leave that to userspace. */
  2527. } else {
  2528. if (slot >= rdev->mddev->raid_disks &&
  2529. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2530. return -ENOSPC;
  2531. rdev->raid_disk = slot;
  2532. /* assume it is working */
  2533. clear_bit(Faulty, &rdev->flags);
  2534. clear_bit(WriteMostly, &rdev->flags);
  2535. set_bit(In_sync, &rdev->flags);
  2536. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2537. }
  2538. return len;
  2539. }
  2540. static struct rdev_sysfs_entry rdev_slot =
  2541. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2542. static ssize_t
  2543. offset_show(struct md_rdev *rdev, char *page)
  2544. {
  2545. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2546. }
  2547. static ssize_t
  2548. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2549. {
  2550. unsigned long long offset;
  2551. if (strict_strtoull(buf, 10, &offset) < 0)
  2552. return -EINVAL;
  2553. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2554. return -EBUSY;
  2555. if (rdev->sectors && rdev->mddev->external)
  2556. /* Must set offset before size, so overlap checks
  2557. * can be sane */
  2558. return -EBUSY;
  2559. rdev->data_offset = offset;
  2560. rdev->new_data_offset = offset;
  2561. return len;
  2562. }
  2563. static struct rdev_sysfs_entry rdev_offset =
  2564. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2565. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2566. {
  2567. return sprintf(page, "%llu\n",
  2568. (unsigned long long)rdev->new_data_offset);
  2569. }
  2570. static ssize_t new_offset_store(struct md_rdev *rdev,
  2571. const char *buf, size_t len)
  2572. {
  2573. unsigned long long new_offset;
  2574. struct mddev *mddev = rdev->mddev;
  2575. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2576. return -EINVAL;
  2577. if (mddev->sync_thread)
  2578. return -EBUSY;
  2579. if (new_offset == rdev->data_offset)
  2580. /* reset is always permitted */
  2581. ;
  2582. else if (new_offset > rdev->data_offset) {
  2583. /* must not push array size beyond rdev_sectors */
  2584. if (new_offset - rdev->data_offset
  2585. + mddev->dev_sectors > rdev->sectors)
  2586. return -E2BIG;
  2587. }
  2588. /* Metadata worries about other space details. */
  2589. /* decreasing the offset is inconsistent with a backwards
  2590. * reshape.
  2591. */
  2592. if (new_offset < rdev->data_offset &&
  2593. mddev->reshape_backwards)
  2594. return -EINVAL;
  2595. /* Increasing offset is inconsistent with forwards
  2596. * reshape. reshape_direction should be set to
  2597. * 'backwards' first.
  2598. */
  2599. if (new_offset > rdev->data_offset &&
  2600. !mddev->reshape_backwards)
  2601. return -EINVAL;
  2602. if (mddev->pers && mddev->persistent &&
  2603. !super_types[mddev->major_version]
  2604. .allow_new_offset(rdev, new_offset))
  2605. return -E2BIG;
  2606. rdev->new_data_offset = new_offset;
  2607. if (new_offset > rdev->data_offset)
  2608. mddev->reshape_backwards = 1;
  2609. else if (new_offset < rdev->data_offset)
  2610. mddev->reshape_backwards = 0;
  2611. return len;
  2612. }
  2613. static struct rdev_sysfs_entry rdev_new_offset =
  2614. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2615. static ssize_t
  2616. rdev_size_show(struct md_rdev *rdev, char *page)
  2617. {
  2618. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2619. }
  2620. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2621. {
  2622. /* check if two start/length pairs overlap */
  2623. if (s1+l1 <= s2)
  2624. return 0;
  2625. if (s2+l2 <= s1)
  2626. return 0;
  2627. return 1;
  2628. }
  2629. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2630. {
  2631. unsigned long long blocks;
  2632. sector_t new;
  2633. if (strict_strtoull(buf, 10, &blocks) < 0)
  2634. return -EINVAL;
  2635. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2636. return -EINVAL; /* sector conversion overflow */
  2637. new = blocks * 2;
  2638. if (new != blocks * 2)
  2639. return -EINVAL; /* unsigned long long to sector_t overflow */
  2640. *sectors = new;
  2641. return 0;
  2642. }
  2643. static ssize_t
  2644. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2645. {
  2646. struct mddev *my_mddev = rdev->mddev;
  2647. sector_t oldsectors = rdev->sectors;
  2648. sector_t sectors;
  2649. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2650. return -EINVAL;
  2651. if (rdev->data_offset != rdev->new_data_offset)
  2652. return -EINVAL; /* too confusing */
  2653. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2654. if (my_mddev->persistent) {
  2655. sectors = super_types[my_mddev->major_version].
  2656. rdev_size_change(rdev, sectors);
  2657. if (!sectors)
  2658. return -EBUSY;
  2659. } else if (!sectors)
  2660. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2661. rdev->data_offset;
  2662. }
  2663. if (sectors < my_mddev->dev_sectors)
  2664. return -EINVAL; /* component must fit device */
  2665. rdev->sectors = sectors;
  2666. if (sectors > oldsectors && my_mddev->external) {
  2667. /* need to check that all other rdevs with the same ->bdev
  2668. * do not overlap. We need to unlock the mddev to avoid
  2669. * a deadlock. We have already changed rdev->sectors, and if
  2670. * we have to change it back, we will have the lock again.
  2671. */
  2672. struct mddev *mddev;
  2673. int overlap = 0;
  2674. struct list_head *tmp;
  2675. mddev_unlock(my_mddev);
  2676. for_each_mddev(mddev, tmp) {
  2677. struct md_rdev *rdev2;
  2678. mddev_lock(mddev);
  2679. rdev_for_each(rdev2, mddev)
  2680. if (rdev->bdev == rdev2->bdev &&
  2681. rdev != rdev2 &&
  2682. overlaps(rdev->data_offset, rdev->sectors,
  2683. rdev2->data_offset,
  2684. rdev2->sectors)) {
  2685. overlap = 1;
  2686. break;
  2687. }
  2688. mddev_unlock(mddev);
  2689. if (overlap) {
  2690. mddev_put(mddev);
  2691. break;
  2692. }
  2693. }
  2694. mddev_lock(my_mddev);
  2695. if (overlap) {
  2696. /* Someone else could have slipped in a size
  2697. * change here, but doing so is just silly.
  2698. * We put oldsectors back because we *know* it is
  2699. * safe, and trust userspace not to race with
  2700. * itself
  2701. */
  2702. rdev->sectors = oldsectors;
  2703. return -EBUSY;
  2704. }
  2705. }
  2706. return len;
  2707. }
  2708. static struct rdev_sysfs_entry rdev_size =
  2709. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2710. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2711. {
  2712. unsigned long long recovery_start = rdev->recovery_offset;
  2713. if (test_bit(In_sync, &rdev->flags) ||
  2714. recovery_start == MaxSector)
  2715. return sprintf(page, "none\n");
  2716. return sprintf(page, "%llu\n", recovery_start);
  2717. }
  2718. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2719. {
  2720. unsigned long long recovery_start;
  2721. if (cmd_match(buf, "none"))
  2722. recovery_start = MaxSector;
  2723. else if (strict_strtoull(buf, 10, &recovery_start))
  2724. return -EINVAL;
  2725. if (rdev->mddev->pers &&
  2726. rdev->raid_disk >= 0)
  2727. return -EBUSY;
  2728. rdev->recovery_offset = recovery_start;
  2729. if (recovery_start == MaxSector)
  2730. set_bit(In_sync, &rdev->flags);
  2731. else
  2732. clear_bit(In_sync, &rdev->flags);
  2733. return len;
  2734. }
  2735. static struct rdev_sysfs_entry rdev_recovery_start =
  2736. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2737. static ssize_t
  2738. badblocks_show(struct badblocks *bb, char *page, int unack);
  2739. static ssize_t
  2740. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2741. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2742. {
  2743. return badblocks_show(&rdev->badblocks, page, 0);
  2744. }
  2745. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2746. {
  2747. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2748. /* Maybe that ack was all we needed */
  2749. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2750. wake_up(&rdev->blocked_wait);
  2751. return rv;
  2752. }
  2753. static struct rdev_sysfs_entry rdev_bad_blocks =
  2754. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2755. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2756. {
  2757. return badblocks_show(&rdev->badblocks, page, 1);
  2758. }
  2759. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2760. {
  2761. return badblocks_store(&rdev->badblocks, page, len, 1);
  2762. }
  2763. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2764. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2765. static struct attribute *rdev_default_attrs[] = {
  2766. &rdev_state.attr,
  2767. &rdev_errors.attr,
  2768. &rdev_slot.attr,
  2769. &rdev_offset.attr,
  2770. &rdev_new_offset.attr,
  2771. &rdev_size.attr,
  2772. &rdev_recovery_start.attr,
  2773. &rdev_bad_blocks.attr,
  2774. &rdev_unack_bad_blocks.attr,
  2775. NULL,
  2776. };
  2777. static ssize_t
  2778. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2779. {
  2780. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2781. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2782. struct mddev *mddev = rdev->mddev;
  2783. ssize_t rv;
  2784. if (!entry->show)
  2785. return -EIO;
  2786. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2787. if (!rv) {
  2788. if (rdev->mddev == NULL)
  2789. rv = -EBUSY;
  2790. else
  2791. rv = entry->show(rdev, page);
  2792. mddev_unlock(mddev);
  2793. }
  2794. return rv;
  2795. }
  2796. static ssize_t
  2797. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2798. const char *page, size_t length)
  2799. {
  2800. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2801. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2802. ssize_t rv;
  2803. struct mddev *mddev = rdev->mddev;
  2804. if (!entry->store)
  2805. return -EIO;
  2806. if (!capable(CAP_SYS_ADMIN))
  2807. return -EACCES;
  2808. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2809. if (!rv) {
  2810. if (rdev->mddev == NULL)
  2811. rv = -EBUSY;
  2812. else
  2813. rv = entry->store(rdev, page, length);
  2814. mddev_unlock(mddev);
  2815. }
  2816. return rv;
  2817. }
  2818. static void rdev_free(struct kobject *ko)
  2819. {
  2820. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2821. kfree(rdev);
  2822. }
  2823. static const struct sysfs_ops rdev_sysfs_ops = {
  2824. .show = rdev_attr_show,
  2825. .store = rdev_attr_store,
  2826. };
  2827. static struct kobj_type rdev_ktype = {
  2828. .release = rdev_free,
  2829. .sysfs_ops = &rdev_sysfs_ops,
  2830. .default_attrs = rdev_default_attrs,
  2831. };
  2832. int md_rdev_init(struct md_rdev *rdev)
  2833. {
  2834. rdev->desc_nr = -1;
  2835. rdev->saved_raid_disk = -1;
  2836. rdev->raid_disk = -1;
  2837. rdev->flags = 0;
  2838. rdev->data_offset = 0;
  2839. rdev->new_data_offset = 0;
  2840. rdev->sb_events = 0;
  2841. rdev->last_read_error.tv_sec = 0;
  2842. rdev->last_read_error.tv_nsec = 0;
  2843. rdev->sb_loaded = 0;
  2844. rdev->bb_page = NULL;
  2845. atomic_set(&rdev->nr_pending, 0);
  2846. atomic_set(&rdev->read_errors, 0);
  2847. atomic_set(&rdev->corrected_errors, 0);
  2848. INIT_LIST_HEAD(&rdev->same_set);
  2849. init_waitqueue_head(&rdev->blocked_wait);
  2850. /* Add space to store bad block list.
  2851. * This reserves the space even on arrays where it cannot
  2852. * be used - I wonder if that matters
  2853. */
  2854. rdev->badblocks.count = 0;
  2855. rdev->badblocks.shift = 0;
  2856. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2857. seqlock_init(&rdev->badblocks.lock);
  2858. if (rdev->badblocks.page == NULL)
  2859. return -ENOMEM;
  2860. return 0;
  2861. }
  2862. EXPORT_SYMBOL_GPL(md_rdev_init);
  2863. /*
  2864. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2865. *
  2866. * mark the device faulty if:
  2867. *
  2868. * - the device is nonexistent (zero size)
  2869. * - the device has no valid superblock
  2870. *
  2871. * a faulty rdev _never_ has rdev->sb set.
  2872. */
  2873. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2874. {
  2875. char b[BDEVNAME_SIZE];
  2876. int err;
  2877. struct md_rdev *rdev;
  2878. sector_t size;
  2879. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2880. if (!rdev) {
  2881. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2882. return ERR_PTR(-ENOMEM);
  2883. }
  2884. err = md_rdev_init(rdev);
  2885. if (err)
  2886. goto abort_free;
  2887. err = alloc_disk_sb(rdev);
  2888. if (err)
  2889. goto abort_free;
  2890. err = lock_rdev(rdev, newdev, super_format == -2);
  2891. if (err)
  2892. goto abort_free;
  2893. kobject_init(&rdev->kobj, &rdev_ktype);
  2894. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2895. if (!size) {
  2896. printk(KERN_WARNING
  2897. "md: %s has zero or unknown size, marking faulty!\n",
  2898. bdevname(rdev->bdev,b));
  2899. err = -EINVAL;
  2900. goto abort_free;
  2901. }
  2902. if (super_format >= 0) {
  2903. err = super_types[super_format].
  2904. load_super(rdev, NULL, super_minor);
  2905. if (err == -EINVAL) {
  2906. printk(KERN_WARNING
  2907. "md: %s does not have a valid v%d.%d "
  2908. "superblock, not importing!\n",
  2909. bdevname(rdev->bdev,b),
  2910. super_format, super_minor);
  2911. goto abort_free;
  2912. }
  2913. if (err < 0) {
  2914. printk(KERN_WARNING
  2915. "md: could not read %s's sb, not importing!\n",
  2916. bdevname(rdev->bdev,b));
  2917. goto abort_free;
  2918. }
  2919. }
  2920. if (super_format == -1)
  2921. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2922. rdev->badblocks.shift = -1;
  2923. return rdev;
  2924. abort_free:
  2925. if (rdev->bdev)
  2926. unlock_rdev(rdev);
  2927. md_rdev_clear(rdev);
  2928. kfree(rdev);
  2929. return ERR_PTR(err);
  2930. }
  2931. /*
  2932. * Check a full RAID array for plausibility
  2933. */
  2934. static void analyze_sbs(struct mddev * mddev)
  2935. {
  2936. int i;
  2937. struct md_rdev *rdev, *freshest, *tmp;
  2938. char b[BDEVNAME_SIZE];
  2939. freshest = NULL;
  2940. rdev_for_each_safe(rdev, tmp, mddev)
  2941. switch (super_types[mddev->major_version].
  2942. load_super(rdev, freshest, mddev->minor_version)) {
  2943. case 1:
  2944. freshest = rdev;
  2945. break;
  2946. case 0:
  2947. break;
  2948. default:
  2949. printk( KERN_ERR \
  2950. "md: fatal superblock inconsistency in %s"
  2951. " -- removing from array\n",
  2952. bdevname(rdev->bdev,b));
  2953. kick_rdev_from_array(rdev);
  2954. }
  2955. super_types[mddev->major_version].
  2956. validate_super(mddev, freshest);
  2957. i = 0;
  2958. rdev_for_each_safe(rdev, tmp, mddev) {
  2959. if (mddev->max_disks &&
  2960. (rdev->desc_nr >= mddev->max_disks ||
  2961. i > mddev->max_disks)) {
  2962. printk(KERN_WARNING
  2963. "md: %s: %s: only %d devices permitted\n",
  2964. mdname(mddev), bdevname(rdev->bdev, b),
  2965. mddev->max_disks);
  2966. kick_rdev_from_array(rdev);
  2967. continue;
  2968. }
  2969. if (rdev != freshest)
  2970. if (super_types[mddev->major_version].
  2971. validate_super(mddev, rdev)) {
  2972. printk(KERN_WARNING "md: kicking non-fresh %s"
  2973. " from array!\n",
  2974. bdevname(rdev->bdev,b));
  2975. kick_rdev_from_array(rdev);
  2976. continue;
  2977. }
  2978. if (mddev->level == LEVEL_MULTIPATH) {
  2979. rdev->desc_nr = i++;
  2980. rdev->raid_disk = rdev->desc_nr;
  2981. set_bit(In_sync, &rdev->flags);
  2982. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2983. rdev->raid_disk = -1;
  2984. clear_bit(In_sync, &rdev->flags);
  2985. }
  2986. }
  2987. }
  2988. /* Read a fixed-point number.
  2989. * Numbers in sysfs attributes should be in "standard" units where
  2990. * possible, so time should be in seconds.
  2991. * However we internally use a a much smaller unit such as
  2992. * milliseconds or jiffies.
  2993. * This function takes a decimal number with a possible fractional
  2994. * component, and produces an integer which is the result of
  2995. * multiplying that number by 10^'scale'.
  2996. * all without any floating-point arithmetic.
  2997. */
  2998. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2999. {
  3000. unsigned long result = 0;
  3001. long decimals = -1;
  3002. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3003. if (*cp == '.')
  3004. decimals = 0;
  3005. else if (decimals < scale) {
  3006. unsigned int value;
  3007. value = *cp - '0';
  3008. result = result * 10 + value;
  3009. if (decimals >= 0)
  3010. decimals++;
  3011. }
  3012. cp++;
  3013. }
  3014. if (*cp == '\n')
  3015. cp++;
  3016. if (*cp)
  3017. return -EINVAL;
  3018. if (decimals < 0)
  3019. decimals = 0;
  3020. while (decimals < scale) {
  3021. result *= 10;
  3022. decimals ++;
  3023. }
  3024. *res = result;
  3025. return 0;
  3026. }
  3027. static void md_safemode_timeout(unsigned long data);
  3028. static ssize_t
  3029. safe_delay_show(struct mddev *mddev, char *page)
  3030. {
  3031. int msec = (mddev->safemode_delay*1000)/HZ;
  3032. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3033. }
  3034. static ssize_t
  3035. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3036. {
  3037. unsigned long msec;
  3038. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3039. return -EINVAL;
  3040. if (msec == 0)
  3041. mddev->safemode_delay = 0;
  3042. else {
  3043. unsigned long old_delay = mddev->safemode_delay;
  3044. mddev->safemode_delay = (msec*HZ)/1000;
  3045. if (mddev->safemode_delay == 0)
  3046. mddev->safemode_delay = 1;
  3047. if (mddev->safemode_delay < old_delay)
  3048. md_safemode_timeout((unsigned long)mddev);
  3049. }
  3050. return len;
  3051. }
  3052. static struct md_sysfs_entry md_safe_delay =
  3053. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3054. static ssize_t
  3055. level_show(struct mddev *mddev, char *page)
  3056. {
  3057. struct md_personality *p = mddev->pers;
  3058. if (p)
  3059. return sprintf(page, "%s\n", p->name);
  3060. else if (mddev->clevel[0])
  3061. return sprintf(page, "%s\n", mddev->clevel);
  3062. else if (mddev->level != LEVEL_NONE)
  3063. return sprintf(page, "%d\n", mddev->level);
  3064. else
  3065. return 0;
  3066. }
  3067. static ssize_t
  3068. level_store(struct mddev *mddev, const char *buf, size_t len)
  3069. {
  3070. char clevel[16];
  3071. ssize_t rv = len;
  3072. struct md_personality *pers;
  3073. long level;
  3074. void *priv;
  3075. struct md_rdev *rdev;
  3076. if (mddev->pers == NULL) {
  3077. if (len == 0)
  3078. return 0;
  3079. if (len >= sizeof(mddev->clevel))
  3080. return -ENOSPC;
  3081. strncpy(mddev->clevel, buf, len);
  3082. if (mddev->clevel[len-1] == '\n')
  3083. len--;
  3084. mddev->clevel[len] = 0;
  3085. mddev->level = LEVEL_NONE;
  3086. return rv;
  3087. }
  3088. /* request to change the personality. Need to ensure:
  3089. * - array is not engaged in resync/recovery/reshape
  3090. * - old personality can be suspended
  3091. * - new personality will access other array.
  3092. */
  3093. if (mddev->sync_thread ||
  3094. mddev->reshape_position != MaxSector ||
  3095. mddev->sysfs_active)
  3096. return -EBUSY;
  3097. if (!mddev->pers->quiesce) {
  3098. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3099. mdname(mddev), mddev->pers->name);
  3100. return -EINVAL;
  3101. }
  3102. /* Now find the new personality */
  3103. if (len == 0 || len >= sizeof(clevel))
  3104. return -EINVAL;
  3105. strncpy(clevel, buf, len);
  3106. if (clevel[len-1] == '\n')
  3107. len--;
  3108. clevel[len] = 0;
  3109. if (strict_strtol(clevel, 10, &level))
  3110. level = LEVEL_NONE;
  3111. if (request_module("md-%s", clevel) != 0)
  3112. request_module("md-level-%s", clevel);
  3113. spin_lock(&pers_lock);
  3114. pers = find_pers(level, clevel);
  3115. if (!pers || !try_module_get(pers->owner)) {
  3116. spin_unlock(&pers_lock);
  3117. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3118. return -EINVAL;
  3119. }
  3120. spin_unlock(&pers_lock);
  3121. if (pers == mddev->pers) {
  3122. /* Nothing to do! */
  3123. module_put(pers->owner);
  3124. return rv;
  3125. }
  3126. if (!pers->takeover) {
  3127. module_put(pers->owner);
  3128. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3129. mdname(mddev), clevel);
  3130. return -EINVAL;
  3131. }
  3132. rdev_for_each(rdev, mddev)
  3133. rdev->new_raid_disk = rdev->raid_disk;
  3134. /* ->takeover must set new_* and/or delta_disks
  3135. * if it succeeds, and may set them when it fails.
  3136. */
  3137. priv = pers->takeover(mddev);
  3138. if (IS_ERR(priv)) {
  3139. mddev->new_level = mddev->level;
  3140. mddev->new_layout = mddev->layout;
  3141. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3142. mddev->raid_disks -= mddev->delta_disks;
  3143. mddev->delta_disks = 0;
  3144. mddev->reshape_backwards = 0;
  3145. module_put(pers->owner);
  3146. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3147. mdname(mddev), clevel);
  3148. return PTR_ERR(priv);
  3149. }
  3150. /* Looks like we have a winner */
  3151. mddev_suspend(mddev);
  3152. mddev->pers->stop(mddev);
  3153. if (mddev->pers->sync_request == NULL &&
  3154. pers->sync_request != NULL) {
  3155. /* need to add the md_redundancy_group */
  3156. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3157. printk(KERN_WARNING
  3158. "md: cannot register extra attributes for %s\n",
  3159. mdname(mddev));
  3160. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3161. }
  3162. if (mddev->pers->sync_request != NULL &&
  3163. pers->sync_request == NULL) {
  3164. /* need to remove the md_redundancy_group */
  3165. if (mddev->to_remove == NULL)
  3166. mddev->to_remove = &md_redundancy_group;
  3167. }
  3168. if (mddev->pers->sync_request == NULL &&
  3169. mddev->external) {
  3170. /* We are converting from a no-redundancy array
  3171. * to a redundancy array and metadata is managed
  3172. * externally so we need to be sure that writes
  3173. * won't block due to a need to transition
  3174. * clean->dirty
  3175. * until external management is started.
  3176. */
  3177. mddev->in_sync = 0;
  3178. mddev->safemode_delay = 0;
  3179. mddev->safemode = 0;
  3180. }
  3181. rdev_for_each(rdev, mddev) {
  3182. if (rdev->raid_disk < 0)
  3183. continue;
  3184. if (rdev->new_raid_disk >= mddev->raid_disks)
  3185. rdev->new_raid_disk = -1;
  3186. if (rdev->new_raid_disk == rdev->raid_disk)
  3187. continue;
  3188. sysfs_unlink_rdev(mddev, rdev);
  3189. }
  3190. rdev_for_each(rdev, mddev) {
  3191. if (rdev->raid_disk < 0)
  3192. continue;
  3193. if (rdev->new_raid_disk == rdev->raid_disk)
  3194. continue;
  3195. rdev->raid_disk = rdev->new_raid_disk;
  3196. if (rdev->raid_disk < 0)
  3197. clear_bit(In_sync, &rdev->flags);
  3198. else {
  3199. if (sysfs_link_rdev(mddev, rdev))
  3200. printk(KERN_WARNING "md: cannot register rd%d"
  3201. " for %s after level change\n",
  3202. rdev->raid_disk, mdname(mddev));
  3203. }
  3204. }
  3205. module_put(mddev->pers->owner);
  3206. mddev->pers = pers;
  3207. mddev->private = priv;
  3208. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3209. mddev->level = mddev->new_level;
  3210. mddev->layout = mddev->new_layout;
  3211. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3212. mddev->delta_disks = 0;
  3213. mddev->reshape_backwards = 0;
  3214. mddev->degraded = 0;
  3215. if (mddev->pers->sync_request == NULL) {
  3216. /* this is now an array without redundancy, so
  3217. * it must always be in_sync
  3218. */
  3219. mddev->in_sync = 1;
  3220. del_timer_sync(&mddev->safemode_timer);
  3221. }
  3222. pers->run(mddev);
  3223. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3224. mddev_resume(mddev);
  3225. sysfs_notify(&mddev->kobj, NULL, "level");
  3226. md_new_event(mddev);
  3227. return rv;
  3228. }
  3229. static struct md_sysfs_entry md_level =
  3230. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3231. static ssize_t
  3232. layout_show(struct mddev *mddev, char *page)
  3233. {
  3234. /* just a number, not meaningful for all levels */
  3235. if (mddev->reshape_position != MaxSector &&
  3236. mddev->layout != mddev->new_layout)
  3237. return sprintf(page, "%d (%d)\n",
  3238. mddev->new_layout, mddev->layout);
  3239. return sprintf(page, "%d\n", mddev->layout);
  3240. }
  3241. static ssize_t
  3242. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3243. {
  3244. char *e;
  3245. unsigned long n = simple_strtoul(buf, &e, 10);
  3246. if (!*buf || (*e && *e != '\n'))
  3247. return -EINVAL;
  3248. if (mddev->pers) {
  3249. int err;
  3250. if (mddev->pers->check_reshape == NULL)
  3251. return -EBUSY;
  3252. mddev->new_layout = n;
  3253. err = mddev->pers->check_reshape(mddev);
  3254. if (err) {
  3255. mddev->new_layout = mddev->layout;
  3256. return err;
  3257. }
  3258. } else {
  3259. mddev->new_layout = n;
  3260. if (mddev->reshape_position == MaxSector)
  3261. mddev->layout = n;
  3262. }
  3263. return len;
  3264. }
  3265. static struct md_sysfs_entry md_layout =
  3266. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3267. static ssize_t
  3268. raid_disks_show(struct mddev *mddev, char *page)
  3269. {
  3270. if (mddev->raid_disks == 0)
  3271. return 0;
  3272. if (mddev->reshape_position != MaxSector &&
  3273. mddev->delta_disks != 0)
  3274. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3275. mddev->raid_disks - mddev->delta_disks);
  3276. return sprintf(page, "%d\n", mddev->raid_disks);
  3277. }
  3278. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3279. static ssize_t
  3280. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3281. {
  3282. char *e;
  3283. int rv = 0;
  3284. unsigned long n = simple_strtoul(buf, &e, 10);
  3285. if (!*buf || (*e && *e != '\n'))
  3286. return -EINVAL;
  3287. if (mddev->pers)
  3288. rv = update_raid_disks(mddev, n);
  3289. else if (mddev->reshape_position != MaxSector) {
  3290. struct md_rdev *rdev;
  3291. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3292. rdev_for_each(rdev, mddev) {
  3293. if (olddisks < n &&
  3294. rdev->data_offset < rdev->new_data_offset)
  3295. return -EINVAL;
  3296. if (olddisks > n &&
  3297. rdev->data_offset > rdev->new_data_offset)
  3298. return -EINVAL;
  3299. }
  3300. mddev->delta_disks = n - olddisks;
  3301. mddev->raid_disks = n;
  3302. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3303. } else
  3304. mddev->raid_disks = n;
  3305. return rv ? rv : len;
  3306. }
  3307. static struct md_sysfs_entry md_raid_disks =
  3308. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3309. static ssize_t
  3310. chunk_size_show(struct mddev *mddev, char *page)
  3311. {
  3312. if (mddev->reshape_position != MaxSector &&
  3313. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3314. return sprintf(page, "%d (%d)\n",
  3315. mddev->new_chunk_sectors << 9,
  3316. mddev->chunk_sectors << 9);
  3317. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3318. }
  3319. static ssize_t
  3320. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3321. {
  3322. char *e;
  3323. unsigned long n = simple_strtoul(buf, &e, 10);
  3324. if (!*buf || (*e && *e != '\n'))
  3325. return -EINVAL;
  3326. if (mddev->pers) {
  3327. int err;
  3328. if (mddev->pers->check_reshape == NULL)
  3329. return -EBUSY;
  3330. mddev->new_chunk_sectors = n >> 9;
  3331. err = mddev->pers->check_reshape(mddev);
  3332. if (err) {
  3333. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3334. return err;
  3335. }
  3336. } else {
  3337. mddev->new_chunk_sectors = n >> 9;
  3338. if (mddev->reshape_position == MaxSector)
  3339. mddev->chunk_sectors = n >> 9;
  3340. }
  3341. return len;
  3342. }
  3343. static struct md_sysfs_entry md_chunk_size =
  3344. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3345. static ssize_t
  3346. resync_start_show(struct mddev *mddev, char *page)
  3347. {
  3348. if (mddev->recovery_cp == MaxSector)
  3349. return sprintf(page, "none\n");
  3350. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3351. }
  3352. static ssize_t
  3353. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3354. {
  3355. char *e;
  3356. unsigned long long n = simple_strtoull(buf, &e, 10);
  3357. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3358. return -EBUSY;
  3359. if (cmd_match(buf, "none"))
  3360. n = MaxSector;
  3361. else if (!*buf || (*e && *e != '\n'))
  3362. return -EINVAL;
  3363. mddev->recovery_cp = n;
  3364. if (mddev->pers)
  3365. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3366. return len;
  3367. }
  3368. static struct md_sysfs_entry md_resync_start =
  3369. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3370. /*
  3371. * The array state can be:
  3372. *
  3373. * clear
  3374. * No devices, no size, no level
  3375. * Equivalent to STOP_ARRAY ioctl
  3376. * inactive
  3377. * May have some settings, but array is not active
  3378. * all IO results in error
  3379. * When written, doesn't tear down array, but just stops it
  3380. * suspended (not supported yet)
  3381. * All IO requests will block. The array can be reconfigured.
  3382. * Writing this, if accepted, will block until array is quiescent
  3383. * readonly
  3384. * no resync can happen. no superblocks get written.
  3385. * write requests fail
  3386. * read-auto
  3387. * like readonly, but behaves like 'clean' on a write request.
  3388. *
  3389. * clean - no pending writes, but otherwise active.
  3390. * When written to inactive array, starts without resync
  3391. * If a write request arrives then
  3392. * if metadata is known, mark 'dirty' and switch to 'active'.
  3393. * if not known, block and switch to write-pending
  3394. * If written to an active array that has pending writes, then fails.
  3395. * active
  3396. * fully active: IO and resync can be happening.
  3397. * When written to inactive array, starts with resync
  3398. *
  3399. * write-pending
  3400. * clean, but writes are blocked waiting for 'active' to be written.
  3401. *
  3402. * active-idle
  3403. * like active, but no writes have been seen for a while (100msec).
  3404. *
  3405. */
  3406. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3407. write_pending, active_idle, bad_word};
  3408. static char *array_states[] = {
  3409. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3410. "write-pending", "active-idle", NULL };
  3411. static int match_word(const char *word, char **list)
  3412. {
  3413. int n;
  3414. for (n=0; list[n]; n++)
  3415. if (cmd_match(word, list[n]))
  3416. break;
  3417. return n;
  3418. }
  3419. static ssize_t
  3420. array_state_show(struct mddev *mddev, char *page)
  3421. {
  3422. enum array_state st = inactive;
  3423. if (mddev->pers)
  3424. switch(mddev->ro) {
  3425. case 1:
  3426. st = readonly;
  3427. break;
  3428. case 2:
  3429. st = read_auto;
  3430. break;
  3431. case 0:
  3432. if (mddev->in_sync)
  3433. st = clean;
  3434. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3435. st = write_pending;
  3436. else if (mddev->safemode)
  3437. st = active_idle;
  3438. else
  3439. st = active;
  3440. }
  3441. else {
  3442. if (list_empty(&mddev->disks) &&
  3443. mddev->raid_disks == 0 &&
  3444. mddev->dev_sectors == 0)
  3445. st = clear;
  3446. else
  3447. st = inactive;
  3448. }
  3449. return sprintf(page, "%s\n", array_states[st]);
  3450. }
  3451. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3452. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3453. static int do_md_run(struct mddev * mddev);
  3454. static int restart_array(struct mddev *mddev);
  3455. static ssize_t
  3456. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3457. {
  3458. int err = -EINVAL;
  3459. enum array_state st = match_word(buf, array_states);
  3460. switch(st) {
  3461. case bad_word:
  3462. break;
  3463. case clear:
  3464. /* stopping an active array */
  3465. err = do_md_stop(mddev, 0, NULL);
  3466. break;
  3467. case inactive:
  3468. /* stopping an active array */
  3469. if (mddev->pers)
  3470. err = do_md_stop(mddev, 2, NULL);
  3471. else
  3472. err = 0; /* already inactive */
  3473. break;
  3474. case suspended:
  3475. break; /* not supported yet */
  3476. case readonly:
  3477. if (mddev->pers)
  3478. err = md_set_readonly(mddev, NULL);
  3479. else {
  3480. mddev->ro = 1;
  3481. set_disk_ro(mddev->gendisk, 1);
  3482. err = do_md_run(mddev);
  3483. }
  3484. break;
  3485. case read_auto:
  3486. if (mddev->pers) {
  3487. if (mddev->ro == 0)
  3488. err = md_set_readonly(mddev, NULL);
  3489. else if (mddev->ro == 1)
  3490. err = restart_array(mddev);
  3491. if (err == 0) {
  3492. mddev->ro = 2;
  3493. set_disk_ro(mddev->gendisk, 0);
  3494. }
  3495. } else {
  3496. mddev->ro = 2;
  3497. err = do_md_run(mddev);
  3498. }
  3499. break;
  3500. case clean:
  3501. if (mddev->pers) {
  3502. restart_array(mddev);
  3503. spin_lock_irq(&mddev->write_lock);
  3504. if (atomic_read(&mddev->writes_pending) == 0) {
  3505. if (mddev->in_sync == 0) {
  3506. mddev->in_sync = 1;
  3507. if (mddev->safemode == 1)
  3508. mddev->safemode = 0;
  3509. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3510. }
  3511. err = 0;
  3512. } else
  3513. err = -EBUSY;
  3514. spin_unlock_irq(&mddev->write_lock);
  3515. } else
  3516. err = -EINVAL;
  3517. break;
  3518. case active:
  3519. if (mddev->pers) {
  3520. restart_array(mddev);
  3521. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3522. wake_up(&mddev->sb_wait);
  3523. err = 0;
  3524. } else {
  3525. mddev->ro = 0;
  3526. set_disk_ro(mddev->gendisk, 0);
  3527. err = do_md_run(mddev);
  3528. }
  3529. break;
  3530. case write_pending:
  3531. case active_idle:
  3532. /* these cannot be set */
  3533. break;
  3534. }
  3535. if (err)
  3536. return err;
  3537. else {
  3538. if (mddev->hold_active == UNTIL_IOCTL)
  3539. mddev->hold_active = 0;
  3540. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3541. return len;
  3542. }
  3543. }
  3544. static struct md_sysfs_entry md_array_state =
  3545. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3546. static ssize_t
  3547. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3548. return sprintf(page, "%d\n",
  3549. atomic_read(&mddev->max_corr_read_errors));
  3550. }
  3551. static ssize_t
  3552. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3553. {
  3554. char *e;
  3555. unsigned long n = simple_strtoul(buf, &e, 10);
  3556. if (*buf && (*e == 0 || *e == '\n')) {
  3557. atomic_set(&mddev->max_corr_read_errors, n);
  3558. return len;
  3559. }
  3560. return -EINVAL;
  3561. }
  3562. static struct md_sysfs_entry max_corr_read_errors =
  3563. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3564. max_corrected_read_errors_store);
  3565. static ssize_t
  3566. null_show(struct mddev *mddev, char *page)
  3567. {
  3568. return -EINVAL;
  3569. }
  3570. static ssize_t
  3571. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3572. {
  3573. /* buf must be %d:%d\n? giving major and minor numbers */
  3574. /* The new device is added to the array.
  3575. * If the array has a persistent superblock, we read the
  3576. * superblock to initialise info and check validity.
  3577. * Otherwise, only checking done is that in bind_rdev_to_array,
  3578. * which mainly checks size.
  3579. */
  3580. char *e;
  3581. int major = simple_strtoul(buf, &e, 10);
  3582. int minor;
  3583. dev_t dev;
  3584. struct md_rdev *rdev;
  3585. int err;
  3586. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3587. return -EINVAL;
  3588. minor = simple_strtoul(e+1, &e, 10);
  3589. if (*e && *e != '\n')
  3590. return -EINVAL;
  3591. dev = MKDEV(major, minor);
  3592. if (major != MAJOR(dev) ||
  3593. minor != MINOR(dev))
  3594. return -EOVERFLOW;
  3595. if (mddev->persistent) {
  3596. rdev = md_import_device(dev, mddev->major_version,
  3597. mddev->minor_version);
  3598. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3599. struct md_rdev *rdev0
  3600. = list_entry(mddev->disks.next,
  3601. struct md_rdev, same_set);
  3602. err = super_types[mddev->major_version]
  3603. .load_super(rdev, rdev0, mddev->minor_version);
  3604. if (err < 0)
  3605. goto out;
  3606. }
  3607. } else if (mddev->external)
  3608. rdev = md_import_device(dev, -2, -1);
  3609. else
  3610. rdev = md_import_device(dev, -1, -1);
  3611. if (IS_ERR(rdev))
  3612. return PTR_ERR(rdev);
  3613. err = bind_rdev_to_array(rdev, mddev);
  3614. out:
  3615. if (err)
  3616. export_rdev(rdev);
  3617. return err ? err : len;
  3618. }
  3619. static struct md_sysfs_entry md_new_device =
  3620. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3621. static ssize_t
  3622. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3623. {
  3624. char *end;
  3625. unsigned long chunk, end_chunk;
  3626. if (!mddev->bitmap)
  3627. goto out;
  3628. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3629. while (*buf) {
  3630. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3631. if (buf == end) break;
  3632. if (*end == '-') { /* range */
  3633. buf = end + 1;
  3634. end_chunk = simple_strtoul(buf, &end, 0);
  3635. if (buf == end) break;
  3636. }
  3637. if (*end && !isspace(*end)) break;
  3638. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3639. buf = skip_spaces(end);
  3640. }
  3641. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3642. out:
  3643. return len;
  3644. }
  3645. static struct md_sysfs_entry md_bitmap =
  3646. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3647. static ssize_t
  3648. size_show(struct mddev *mddev, char *page)
  3649. {
  3650. return sprintf(page, "%llu\n",
  3651. (unsigned long long)mddev->dev_sectors / 2);
  3652. }
  3653. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3654. static ssize_t
  3655. size_store(struct mddev *mddev, const char *buf, size_t len)
  3656. {
  3657. /* If array is inactive, we can reduce the component size, but
  3658. * not increase it (except from 0).
  3659. * If array is active, we can try an on-line resize
  3660. */
  3661. sector_t sectors;
  3662. int err = strict_blocks_to_sectors(buf, &sectors);
  3663. if (err < 0)
  3664. return err;
  3665. if (mddev->pers) {
  3666. err = update_size(mddev, sectors);
  3667. md_update_sb(mddev, 1);
  3668. } else {
  3669. if (mddev->dev_sectors == 0 ||
  3670. mddev->dev_sectors > sectors)
  3671. mddev->dev_sectors = sectors;
  3672. else
  3673. err = -ENOSPC;
  3674. }
  3675. return err ? err : len;
  3676. }
  3677. static struct md_sysfs_entry md_size =
  3678. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3679. /* Metadata version.
  3680. * This is one of
  3681. * 'none' for arrays with no metadata (good luck...)
  3682. * 'external' for arrays with externally managed metadata,
  3683. * or N.M for internally known formats
  3684. */
  3685. static ssize_t
  3686. metadata_show(struct mddev *mddev, char *page)
  3687. {
  3688. if (mddev->persistent)
  3689. return sprintf(page, "%d.%d\n",
  3690. mddev->major_version, mddev->minor_version);
  3691. else if (mddev->external)
  3692. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3693. else
  3694. return sprintf(page, "none\n");
  3695. }
  3696. static ssize_t
  3697. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3698. {
  3699. int major, minor;
  3700. char *e;
  3701. /* Changing the details of 'external' metadata is
  3702. * always permitted. Otherwise there must be
  3703. * no devices attached to the array.
  3704. */
  3705. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3706. ;
  3707. else if (!list_empty(&mddev->disks))
  3708. return -EBUSY;
  3709. if (cmd_match(buf, "none")) {
  3710. mddev->persistent = 0;
  3711. mddev->external = 0;
  3712. mddev->major_version = 0;
  3713. mddev->minor_version = 90;
  3714. return len;
  3715. }
  3716. if (strncmp(buf, "external:", 9) == 0) {
  3717. size_t namelen = len-9;
  3718. if (namelen >= sizeof(mddev->metadata_type))
  3719. namelen = sizeof(mddev->metadata_type)-1;
  3720. strncpy(mddev->metadata_type, buf+9, namelen);
  3721. mddev->metadata_type[namelen] = 0;
  3722. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3723. mddev->metadata_type[--namelen] = 0;
  3724. mddev->persistent = 0;
  3725. mddev->external = 1;
  3726. mddev->major_version = 0;
  3727. mddev->minor_version = 90;
  3728. return len;
  3729. }
  3730. major = simple_strtoul(buf, &e, 10);
  3731. if (e==buf || *e != '.')
  3732. return -EINVAL;
  3733. buf = e+1;
  3734. minor = simple_strtoul(buf, &e, 10);
  3735. if (e==buf || (*e && *e != '\n') )
  3736. return -EINVAL;
  3737. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3738. return -ENOENT;
  3739. mddev->major_version = major;
  3740. mddev->minor_version = minor;
  3741. mddev->persistent = 1;
  3742. mddev->external = 0;
  3743. return len;
  3744. }
  3745. static struct md_sysfs_entry md_metadata =
  3746. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3747. static ssize_t
  3748. action_show(struct mddev *mddev, char *page)
  3749. {
  3750. char *type = "idle";
  3751. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3752. type = "frozen";
  3753. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3754. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3755. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3756. type = "reshape";
  3757. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3758. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3759. type = "resync";
  3760. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3761. type = "check";
  3762. else
  3763. type = "repair";
  3764. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3765. type = "recover";
  3766. }
  3767. return sprintf(page, "%s\n", type);
  3768. }
  3769. static void reap_sync_thread(struct mddev *mddev);
  3770. static ssize_t
  3771. action_store(struct mddev *mddev, const char *page, size_t len)
  3772. {
  3773. if (!mddev->pers || !mddev->pers->sync_request)
  3774. return -EINVAL;
  3775. if (cmd_match(page, "frozen"))
  3776. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3777. else
  3778. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3779. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3780. if (mddev->sync_thread) {
  3781. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3782. reap_sync_thread(mddev);
  3783. }
  3784. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3785. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3786. return -EBUSY;
  3787. else if (cmd_match(page, "resync"))
  3788. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3789. else if (cmd_match(page, "recover")) {
  3790. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3791. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3792. } else if (cmd_match(page, "reshape")) {
  3793. int err;
  3794. if (mddev->pers->start_reshape == NULL)
  3795. return -EINVAL;
  3796. err = mddev->pers->start_reshape(mddev);
  3797. if (err)
  3798. return err;
  3799. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3800. } else {
  3801. if (cmd_match(page, "check"))
  3802. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3803. else if (!cmd_match(page, "repair"))
  3804. return -EINVAL;
  3805. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3806. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3807. }
  3808. if (mddev->ro == 2) {
  3809. /* A write to sync_action is enough to justify
  3810. * canceling read-auto mode
  3811. */
  3812. mddev->ro = 0;
  3813. md_wakeup_thread(mddev->sync_thread);
  3814. }
  3815. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3816. md_wakeup_thread(mddev->thread);
  3817. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3818. return len;
  3819. }
  3820. static ssize_t
  3821. mismatch_cnt_show(struct mddev *mddev, char *page)
  3822. {
  3823. return sprintf(page, "%llu\n",
  3824. (unsigned long long)
  3825. atomic64_read(&mddev->resync_mismatches));
  3826. }
  3827. static struct md_sysfs_entry md_scan_mode =
  3828. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3829. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3830. static ssize_t
  3831. sync_min_show(struct mddev *mddev, char *page)
  3832. {
  3833. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3834. mddev->sync_speed_min ? "local": "system");
  3835. }
  3836. static ssize_t
  3837. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3838. {
  3839. int min;
  3840. char *e;
  3841. if (strncmp(buf, "system", 6)==0) {
  3842. mddev->sync_speed_min = 0;
  3843. return len;
  3844. }
  3845. min = simple_strtoul(buf, &e, 10);
  3846. if (buf == e || (*e && *e != '\n') || min <= 0)
  3847. return -EINVAL;
  3848. mddev->sync_speed_min = min;
  3849. return len;
  3850. }
  3851. static struct md_sysfs_entry md_sync_min =
  3852. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3853. static ssize_t
  3854. sync_max_show(struct mddev *mddev, char *page)
  3855. {
  3856. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3857. mddev->sync_speed_max ? "local": "system");
  3858. }
  3859. static ssize_t
  3860. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3861. {
  3862. int max;
  3863. char *e;
  3864. if (strncmp(buf, "system", 6)==0) {
  3865. mddev->sync_speed_max = 0;
  3866. return len;
  3867. }
  3868. max = simple_strtoul(buf, &e, 10);
  3869. if (buf == e || (*e && *e != '\n') || max <= 0)
  3870. return -EINVAL;
  3871. mddev->sync_speed_max = max;
  3872. return len;
  3873. }
  3874. static struct md_sysfs_entry md_sync_max =
  3875. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3876. static ssize_t
  3877. degraded_show(struct mddev *mddev, char *page)
  3878. {
  3879. return sprintf(page, "%d\n", mddev->degraded);
  3880. }
  3881. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3882. static ssize_t
  3883. sync_force_parallel_show(struct mddev *mddev, char *page)
  3884. {
  3885. return sprintf(page, "%d\n", mddev->parallel_resync);
  3886. }
  3887. static ssize_t
  3888. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3889. {
  3890. long n;
  3891. if (strict_strtol(buf, 10, &n))
  3892. return -EINVAL;
  3893. if (n != 0 && n != 1)
  3894. return -EINVAL;
  3895. mddev->parallel_resync = n;
  3896. if (mddev->sync_thread)
  3897. wake_up(&resync_wait);
  3898. return len;
  3899. }
  3900. /* force parallel resync, even with shared block devices */
  3901. static struct md_sysfs_entry md_sync_force_parallel =
  3902. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3903. sync_force_parallel_show, sync_force_parallel_store);
  3904. static ssize_t
  3905. sync_speed_show(struct mddev *mddev, char *page)
  3906. {
  3907. unsigned long resync, dt, db;
  3908. if (mddev->curr_resync == 0)
  3909. return sprintf(page, "none\n");
  3910. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3911. dt = (jiffies - mddev->resync_mark) / HZ;
  3912. if (!dt) dt++;
  3913. db = resync - mddev->resync_mark_cnt;
  3914. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3915. }
  3916. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3917. static ssize_t
  3918. sync_completed_show(struct mddev *mddev, char *page)
  3919. {
  3920. unsigned long long max_sectors, resync;
  3921. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3922. return sprintf(page, "none\n");
  3923. if (mddev->curr_resync == 1 ||
  3924. mddev->curr_resync == 2)
  3925. return sprintf(page, "delayed\n");
  3926. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3927. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3928. max_sectors = mddev->resync_max_sectors;
  3929. else
  3930. max_sectors = mddev->dev_sectors;
  3931. resync = mddev->curr_resync_completed;
  3932. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3933. }
  3934. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3935. static ssize_t
  3936. min_sync_show(struct mddev *mddev, char *page)
  3937. {
  3938. return sprintf(page, "%llu\n",
  3939. (unsigned long long)mddev->resync_min);
  3940. }
  3941. static ssize_t
  3942. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3943. {
  3944. unsigned long long min;
  3945. if (strict_strtoull(buf, 10, &min))
  3946. return -EINVAL;
  3947. if (min > mddev->resync_max)
  3948. return -EINVAL;
  3949. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3950. return -EBUSY;
  3951. /* Must be a multiple of chunk_size */
  3952. if (mddev->chunk_sectors) {
  3953. sector_t temp = min;
  3954. if (sector_div(temp, mddev->chunk_sectors))
  3955. return -EINVAL;
  3956. }
  3957. mddev->resync_min = min;
  3958. return len;
  3959. }
  3960. static struct md_sysfs_entry md_min_sync =
  3961. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3962. static ssize_t
  3963. max_sync_show(struct mddev *mddev, char *page)
  3964. {
  3965. if (mddev->resync_max == MaxSector)
  3966. return sprintf(page, "max\n");
  3967. else
  3968. return sprintf(page, "%llu\n",
  3969. (unsigned long long)mddev->resync_max);
  3970. }
  3971. static ssize_t
  3972. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3973. {
  3974. if (strncmp(buf, "max", 3) == 0)
  3975. mddev->resync_max = MaxSector;
  3976. else {
  3977. unsigned long long max;
  3978. if (strict_strtoull(buf, 10, &max))
  3979. return -EINVAL;
  3980. if (max < mddev->resync_min)
  3981. return -EINVAL;
  3982. if (max < mddev->resync_max &&
  3983. mddev->ro == 0 &&
  3984. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3985. return -EBUSY;
  3986. /* Must be a multiple of chunk_size */
  3987. if (mddev->chunk_sectors) {
  3988. sector_t temp = max;
  3989. if (sector_div(temp, mddev->chunk_sectors))
  3990. return -EINVAL;
  3991. }
  3992. mddev->resync_max = max;
  3993. }
  3994. wake_up(&mddev->recovery_wait);
  3995. return len;
  3996. }
  3997. static struct md_sysfs_entry md_max_sync =
  3998. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3999. static ssize_t
  4000. suspend_lo_show(struct mddev *mddev, char *page)
  4001. {
  4002. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4003. }
  4004. static ssize_t
  4005. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4006. {
  4007. char *e;
  4008. unsigned long long new = simple_strtoull(buf, &e, 10);
  4009. unsigned long long old = mddev->suspend_lo;
  4010. if (mddev->pers == NULL ||
  4011. mddev->pers->quiesce == NULL)
  4012. return -EINVAL;
  4013. if (buf == e || (*e && *e != '\n'))
  4014. return -EINVAL;
  4015. mddev->suspend_lo = new;
  4016. if (new >= old)
  4017. /* Shrinking suspended region */
  4018. mddev->pers->quiesce(mddev, 2);
  4019. else {
  4020. /* Expanding suspended region - need to wait */
  4021. mddev->pers->quiesce(mddev, 1);
  4022. mddev->pers->quiesce(mddev, 0);
  4023. }
  4024. return len;
  4025. }
  4026. static struct md_sysfs_entry md_suspend_lo =
  4027. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4028. static ssize_t
  4029. suspend_hi_show(struct mddev *mddev, char *page)
  4030. {
  4031. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4032. }
  4033. static ssize_t
  4034. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4035. {
  4036. char *e;
  4037. unsigned long long new = simple_strtoull(buf, &e, 10);
  4038. unsigned long long old = mddev->suspend_hi;
  4039. if (mddev->pers == NULL ||
  4040. mddev->pers->quiesce == NULL)
  4041. return -EINVAL;
  4042. if (buf == e || (*e && *e != '\n'))
  4043. return -EINVAL;
  4044. mddev->suspend_hi = new;
  4045. if (new <= old)
  4046. /* Shrinking suspended region */
  4047. mddev->pers->quiesce(mddev, 2);
  4048. else {
  4049. /* Expanding suspended region - need to wait */
  4050. mddev->pers->quiesce(mddev, 1);
  4051. mddev->pers->quiesce(mddev, 0);
  4052. }
  4053. return len;
  4054. }
  4055. static struct md_sysfs_entry md_suspend_hi =
  4056. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4057. static ssize_t
  4058. reshape_position_show(struct mddev *mddev, char *page)
  4059. {
  4060. if (mddev->reshape_position != MaxSector)
  4061. return sprintf(page, "%llu\n",
  4062. (unsigned long long)mddev->reshape_position);
  4063. strcpy(page, "none\n");
  4064. return 5;
  4065. }
  4066. static ssize_t
  4067. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4068. {
  4069. struct md_rdev *rdev;
  4070. char *e;
  4071. unsigned long long new = simple_strtoull(buf, &e, 10);
  4072. if (mddev->pers)
  4073. return -EBUSY;
  4074. if (buf == e || (*e && *e != '\n'))
  4075. return -EINVAL;
  4076. mddev->reshape_position = new;
  4077. mddev->delta_disks = 0;
  4078. mddev->reshape_backwards = 0;
  4079. mddev->new_level = mddev->level;
  4080. mddev->new_layout = mddev->layout;
  4081. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4082. rdev_for_each(rdev, mddev)
  4083. rdev->new_data_offset = rdev->data_offset;
  4084. return len;
  4085. }
  4086. static struct md_sysfs_entry md_reshape_position =
  4087. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4088. reshape_position_store);
  4089. static ssize_t
  4090. reshape_direction_show(struct mddev *mddev, char *page)
  4091. {
  4092. return sprintf(page, "%s\n",
  4093. mddev->reshape_backwards ? "backwards" : "forwards");
  4094. }
  4095. static ssize_t
  4096. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4097. {
  4098. int backwards = 0;
  4099. if (cmd_match(buf, "forwards"))
  4100. backwards = 0;
  4101. else if (cmd_match(buf, "backwards"))
  4102. backwards = 1;
  4103. else
  4104. return -EINVAL;
  4105. if (mddev->reshape_backwards == backwards)
  4106. return len;
  4107. /* check if we are allowed to change */
  4108. if (mddev->delta_disks)
  4109. return -EBUSY;
  4110. if (mddev->persistent &&
  4111. mddev->major_version == 0)
  4112. return -EINVAL;
  4113. mddev->reshape_backwards = backwards;
  4114. return len;
  4115. }
  4116. static struct md_sysfs_entry md_reshape_direction =
  4117. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4118. reshape_direction_store);
  4119. static ssize_t
  4120. array_size_show(struct mddev *mddev, char *page)
  4121. {
  4122. if (mddev->external_size)
  4123. return sprintf(page, "%llu\n",
  4124. (unsigned long long)mddev->array_sectors/2);
  4125. else
  4126. return sprintf(page, "default\n");
  4127. }
  4128. static ssize_t
  4129. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4130. {
  4131. sector_t sectors;
  4132. if (strncmp(buf, "default", 7) == 0) {
  4133. if (mddev->pers)
  4134. sectors = mddev->pers->size(mddev, 0, 0);
  4135. else
  4136. sectors = mddev->array_sectors;
  4137. mddev->external_size = 0;
  4138. } else {
  4139. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4140. return -EINVAL;
  4141. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4142. return -E2BIG;
  4143. mddev->external_size = 1;
  4144. }
  4145. mddev->array_sectors = sectors;
  4146. if (mddev->pers) {
  4147. set_capacity(mddev->gendisk, mddev->array_sectors);
  4148. revalidate_disk(mddev->gendisk);
  4149. }
  4150. return len;
  4151. }
  4152. static struct md_sysfs_entry md_array_size =
  4153. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4154. array_size_store);
  4155. static struct attribute *md_default_attrs[] = {
  4156. &md_level.attr,
  4157. &md_layout.attr,
  4158. &md_raid_disks.attr,
  4159. &md_chunk_size.attr,
  4160. &md_size.attr,
  4161. &md_resync_start.attr,
  4162. &md_metadata.attr,
  4163. &md_new_device.attr,
  4164. &md_safe_delay.attr,
  4165. &md_array_state.attr,
  4166. &md_reshape_position.attr,
  4167. &md_reshape_direction.attr,
  4168. &md_array_size.attr,
  4169. &max_corr_read_errors.attr,
  4170. NULL,
  4171. };
  4172. static struct attribute *md_redundancy_attrs[] = {
  4173. &md_scan_mode.attr,
  4174. &md_mismatches.attr,
  4175. &md_sync_min.attr,
  4176. &md_sync_max.attr,
  4177. &md_sync_speed.attr,
  4178. &md_sync_force_parallel.attr,
  4179. &md_sync_completed.attr,
  4180. &md_min_sync.attr,
  4181. &md_max_sync.attr,
  4182. &md_suspend_lo.attr,
  4183. &md_suspend_hi.attr,
  4184. &md_bitmap.attr,
  4185. &md_degraded.attr,
  4186. NULL,
  4187. };
  4188. static struct attribute_group md_redundancy_group = {
  4189. .name = NULL,
  4190. .attrs = md_redundancy_attrs,
  4191. };
  4192. static ssize_t
  4193. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4194. {
  4195. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4196. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4197. ssize_t rv;
  4198. if (!entry->show)
  4199. return -EIO;
  4200. spin_lock(&all_mddevs_lock);
  4201. if (list_empty(&mddev->all_mddevs)) {
  4202. spin_unlock(&all_mddevs_lock);
  4203. return -EBUSY;
  4204. }
  4205. mddev_get(mddev);
  4206. spin_unlock(&all_mddevs_lock);
  4207. rv = mddev_lock(mddev);
  4208. if (!rv) {
  4209. rv = entry->show(mddev, page);
  4210. mddev_unlock(mddev);
  4211. }
  4212. mddev_put(mddev);
  4213. return rv;
  4214. }
  4215. static ssize_t
  4216. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4217. const char *page, size_t length)
  4218. {
  4219. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4220. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4221. ssize_t rv;
  4222. if (!entry->store)
  4223. return -EIO;
  4224. if (!capable(CAP_SYS_ADMIN))
  4225. return -EACCES;
  4226. spin_lock(&all_mddevs_lock);
  4227. if (list_empty(&mddev->all_mddevs)) {
  4228. spin_unlock(&all_mddevs_lock);
  4229. return -EBUSY;
  4230. }
  4231. mddev_get(mddev);
  4232. spin_unlock(&all_mddevs_lock);
  4233. if (entry->store == new_dev_store)
  4234. flush_workqueue(md_misc_wq);
  4235. rv = mddev_lock(mddev);
  4236. if (!rv) {
  4237. rv = entry->store(mddev, page, length);
  4238. mddev_unlock(mddev);
  4239. }
  4240. mddev_put(mddev);
  4241. return rv;
  4242. }
  4243. static void md_free(struct kobject *ko)
  4244. {
  4245. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4246. if (mddev->sysfs_state)
  4247. sysfs_put(mddev->sysfs_state);
  4248. if (mddev->gendisk) {
  4249. del_gendisk(mddev->gendisk);
  4250. put_disk(mddev->gendisk);
  4251. }
  4252. if (mddev->queue)
  4253. blk_cleanup_queue(mddev->queue);
  4254. kfree(mddev);
  4255. }
  4256. static const struct sysfs_ops md_sysfs_ops = {
  4257. .show = md_attr_show,
  4258. .store = md_attr_store,
  4259. };
  4260. static struct kobj_type md_ktype = {
  4261. .release = md_free,
  4262. .sysfs_ops = &md_sysfs_ops,
  4263. .default_attrs = md_default_attrs,
  4264. };
  4265. int mdp_major = 0;
  4266. static void mddev_delayed_delete(struct work_struct *ws)
  4267. {
  4268. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4269. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4270. kobject_del(&mddev->kobj);
  4271. kobject_put(&mddev->kobj);
  4272. }
  4273. static int md_alloc(dev_t dev, char *name)
  4274. {
  4275. static DEFINE_MUTEX(disks_mutex);
  4276. struct mddev *mddev = mddev_find(dev);
  4277. struct gendisk *disk;
  4278. int partitioned;
  4279. int shift;
  4280. int unit;
  4281. int error;
  4282. if (!mddev)
  4283. return -ENODEV;
  4284. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4285. shift = partitioned ? MdpMinorShift : 0;
  4286. unit = MINOR(mddev->unit) >> shift;
  4287. /* wait for any previous instance of this device to be
  4288. * completely removed (mddev_delayed_delete).
  4289. */
  4290. flush_workqueue(md_misc_wq);
  4291. mutex_lock(&disks_mutex);
  4292. error = -EEXIST;
  4293. if (mddev->gendisk)
  4294. goto abort;
  4295. if (name) {
  4296. /* Need to ensure that 'name' is not a duplicate.
  4297. */
  4298. struct mddev *mddev2;
  4299. spin_lock(&all_mddevs_lock);
  4300. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4301. if (mddev2->gendisk &&
  4302. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4303. spin_unlock(&all_mddevs_lock);
  4304. goto abort;
  4305. }
  4306. spin_unlock(&all_mddevs_lock);
  4307. }
  4308. error = -ENOMEM;
  4309. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4310. if (!mddev->queue)
  4311. goto abort;
  4312. mddev->queue->queuedata = mddev;
  4313. blk_queue_make_request(mddev->queue, md_make_request);
  4314. blk_set_stacking_limits(&mddev->queue->limits);
  4315. disk = alloc_disk(1 << shift);
  4316. if (!disk) {
  4317. blk_cleanup_queue(mddev->queue);
  4318. mddev->queue = NULL;
  4319. goto abort;
  4320. }
  4321. disk->major = MAJOR(mddev->unit);
  4322. disk->first_minor = unit << shift;
  4323. if (name)
  4324. strcpy(disk->disk_name, name);
  4325. else if (partitioned)
  4326. sprintf(disk->disk_name, "md_d%d", unit);
  4327. else
  4328. sprintf(disk->disk_name, "md%d", unit);
  4329. disk->fops = &md_fops;
  4330. disk->private_data = mddev;
  4331. disk->queue = mddev->queue;
  4332. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4333. /* Allow extended partitions. This makes the
  4334. * 'mdp' device redundant, but we can't really
  4335. * remove it now.
  4336. */
  4337. disk->flags |= GENHD_FL_EXT_DEVT;
  4338. mddev->gendisk = disk;
  4339. /* As soon as we call add_disk(), another thread could get
  4340. * through to md_open, so make sure it doesn't get too far
  4341. */
  4342. mutex_lock(&mddev->open_mutex);
  4343. add_disk(disk);
  4344. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4345. &disk_to_dev(disk)->kobj, "%s", "md");
  4346. if (error) {
  4347. /* This isn't possible, but as kobject_init_and_add is marked
  4348. * __must_check, we must do something with the result
  4349. */
  4350. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4351. disk->disk_name);
  4352. error = 0;
  4353. }
  4354. if (mddev->kobj.sd &&
  4355. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4356. printk(KERN_DEBUG "pointless warning\n");
  4357. mutex_unlock(&mddev->open_mutex);
  4358. abort:
  4359. mutex_unlock(&disks_mutex);
  4360. if (!error && mddev->kobj.sd) {
  4361. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4362. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4363. }
  4364. mddev_put(mddev);
  4365. return error;
  4366. }
  4367. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4368. {
  4369. md_alloc(dev, NULL);
  4370. return NULL;
  4371. }
  4372. static int add_named_array(const char *val, struct kernel_param *kp)
  4373. {
  4374. /* val must be "md_*" where * is not all digits.
  4375. * We allocate an array with a large free minor number, and
  4376. * set the name to val. val must not already be an active name.
  4377. */
  4378. int len = strlen(val);
  4379. char buf[DISK_NAME_LEN];
  4380. while (len && val[len-1] == '\n')
  4381. len--;
  4382. if (len >= DISK_NAME_LEN)
  4383. return -E2BIG;
  4384. strlcpy(buf, val, len+1);
  4385. if (strncmp(buf, "md_", 3) != 0)
  4386. return -EINVAL;
  4387. return md_alloc(0, buf);
  4388. }
  4389. static void md_safemode_timeout(unsigned long data)
  4390. {
  4391. struct mddev *mddev = (struct mddev *) data;
  4392. if (!atomic_read(&mddev->writes_pending)) {
  4393. mddev->safemode = 1;
  4394. if (mddev->external)
  4395. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4396. }
  4397. md_wakeup_thread(mddev->thread);
  4398. }
  4399. static int start_dirty_degraded;
  4400. int md_run(struct mddev *mddev)
  4401. {
  4402. int err;
  4403. struct md_rdev *rdev;
  4404. struct md_personality *pers;
  4405. if (list_empty(&mddev->disks))
  4406. /* cannot run an array with no devices.. */
  4407. return -EINVAL;
  4408. if (mddev->pers)
  4409. return -EBUSY;
  4410. /* Cannot run until previous stop completes properly */
  4411. if (mddev->sysfs_active)
  4412. return -EBUSY;
  4413. /*
  4414. * Analyze all RAID superblock(s)
  4415. */
  4416. if (!mddev->raid_disks) {
  4417. if (!mddev->persistent)
  4418. return -EINVAL;
  4419. analyze_sbs(mddev);
  4420. }
  4421. if (mddev->level != LEVEL_NONE)
  4422. request_module("md-level-%d", mddev->level);
  4423. else if (mddev->clevel[0])
  4424. request_module("md-%s", mddev->clevel);
  4425. /*
  4426. * Drop all container device buffers, from now on
  4427. * the only valid external interface is through the md
  4428. * device.
  4429. */
  4430. rdev_for_each(rdev, mddev) {
  4431. if (test_bit(Faulty, &rdev->flags))
  4432. continue;
  4433. sync_blockdev(rdev->bdev);
  4434. invalidate_bdev(rdev->bdev);
  4435. /* perform some consistency tests on the device.
  4436. * We don't want the data to overlap the metadata,
  4437. * Internal Bitmap issues have been handled elsewhere.
  4438. */
  4439. if (rdev->meta_bdev) {
  4440. /* Nothing to check */;
  4441. } else if (rdev->data_offset < rdev->sb_start) {
  4442. if (mddev->dev_sectors &&
  4443. rdev->data_offset + mddev->dev_sectors
  4444. > rdev->sb_start) {
  4445. printk("md: %s: data overlaps metadata\n",
  4446. mdname(mddev));
  4447. return -EINVAL;
  4448. }
  4449. } else {
  4450. if (rdev->sb_start + rdev->sb_size/512
  4451. > rdev->data_offset) {
  4452. printk("md: %s: metadata overlaps data\n",
  4453. mdname(mddev));
  4454. return -EINVAL;
  4455. }
  4456. }
  4457. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4458. }
  4459. if (mddev->bio_set == NULL)
  4460. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4461. spin_lock(&pers_lock);
  4462. pers = find_pers(mddev->level, mddev->clevel);
  4463. if (!pers || !try_module_get(pers->owner)) {
  4464. spin_unlock(&pers_lock);
  4465. if (mddev->level != LEVEL_NONE)
  4466. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4467. mddev->level);
  4468. else
  4469. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4470. mddev->clevel);
  4471. return -EINVAL;
  4472. }
  4473. mddev->pers = pers;
  4474. spin_unlock(&pers_lock);
  4475. if (mddev->level != pers->level) {
  4476. mddev->level = pers->level;
  4477. mddev->new_level = pers->level;
  4478. }
  4479. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4480. if (mddev->reshape_position != MaxSector &&
  4481. pers->start_reshape == NULL) {
  4482. /* This personality cannot handle reshaping... */
  4483. mddev->pers = NULL;
  4484. module_put(pers->owner);
  4485. return -EINVAL;
  4486. }
  4487. if (pers->sync_request) {
  4488. /* Warn if this is a potentially silly
  4489. * configuration.
  4490. */
  4491. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4492. struct md_rdev *rdev2;
  4493. int warned = 0;
  4494. rdev_for_each(rdev, mddev)
  4495. rdev_for_each(rdev2, mddev) {
  4496. if (rdev < rdev2 &&
  4497. rdev->bdev->bd_contains ==
  4498. rdev2->bdev->bd_contains) {
  4499. printk(KERN_WARNING
  4500. "%s: WARNING: %s appears to be"
  4501. " on the same physical disk as"
  4502. " %s.\n",
  4503. mdname(mddev),
  4504. bdevname(rdev->bdev,b),
  4505. bdevname(rdev2->bdev,b2));
  4506. warned = 1;
  4507. }
  4508. }
  4509. if (warned)
  4510. printk(KERN_WARNING
  4511. "True protection against single-disk"
  4512. " failure might be compromised.\n");
  4513. }
  4514. mddev->recovery = 0;
  4515. /* may be over-ridden by personality */
  4516. mddev->resync_max_sectors = mddev->dev_sectors;
  4517. mddev->ok_start_degraded = start_dirty_degraded;
  4518. if (start_readonly && mddev->ro == 0)
  4519. mddev->ro = 2; /* read-only, but switch on first write */
  4520. err = mddev->pers->run(mddev);
  4521. if (err)
  4522. printk(KERN_ERR "md: pers->run() failed ...\n");
  4523. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4524. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4525. " but 'external_size' not in effect?\n", __func__);
  4526. printk(KERN_ERR
  4527. "md: invalid array_size %llu > default size %llu\n",
  4528. (unsigned long long)mddev->array_sectors / 2,
  4529. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4530. err = -EINVAL;
  4531. mddev->pers->stop(mddev);
  4532. }
  4533. if (err == 0 && mddev->pers->sync_request &&
  4534. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4535. err = bitmap_create(mddev);
  4536. if (err) {
  4537. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4538. mdname(mddev), err);
  4539. mddev->pers->stop(mddev);
  4540. }
  4541. }
  4542. if (err) {
  4543. module_put(mddev->pers->owner);
  4544. mddev->pers = NULL;
  4545. bitmap_destroy(mddev);
  4546. return err;
  4547. }
  4548. if (mddev->pers->sync_request) {
  4549. if (mddev->kobj.sd &&
  4550. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4551. printk(KERN_WARNING
  4552. "md: cannot register extra attributes for %s\n",
  4553. mdname(mddev));
  4554. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4555. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4556. mddev->ro = 0;
  4557. atomic_set(&mddev->writes_pending,0);
  4558. atomic_set(&mddev->max_corr_read_errors,
  4559. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4560. mddev->safemode = 0;
  4561. mddev->safemode_timer.function = md_safemode_timeout;
  4562. mddev->safemode_timer.data = (unsigned long) mddev;
  4563. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4564. mddev->in_sync = 1;
  4565. smp_wmb();
  4566. mddev->ready = 1;
  4567. rdev_for_each(rdev, mddev)
  4568. if (rdev->raid_disk >= 0)
  4569. if (sysfs_link_rdev(mddev, rdev))
  4570. /* failure here is OK */;
  4571. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4572. if (mddev->flags)
  4573. md_update_sb(mddev, 0);
  4574. md_new_event(mddev);
  4575. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4576. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4577. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4578. return 0;
  4579. }
  4580. EXPORT_SYMBOL_GPL(md_run);
  4581. static int do_md_run(struct mddev *mddev)
  4582. {
  4583. int err;
  4584. err = md_run(mddev);
  4585. if (err)
  4586. goto out;
  4587. err = bitmap_load(mddev);
  4588. if (err) {
  4589. bitmap_destroy(mddev);
  4590. goto out;
  4591. }
  4592. md_wakeup_thread(mddev->thread);
  4593. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4594. set_capacity(mddev->gendisk, mddev->array_sectors);
  4595. revalidate_disk(mddev->gendisk);
  4596. mddev->changed = 1;
  4597. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4598. out:
  4599. return err;
  4600. }
  4601. static int restart_array(struct mddev *mddev)
  4602. {
  4603. struct gendisk *disk = mddev->gendisk;
  4604. /* Complain if it has no devices */
  4605. if (list_empty(&mddev->disks))
  4606. return -ENXIO;
  4607. if (!mddev->pers)
  4608. return -EINVAL;
  4609. if (!mddev->ro)
  4610. return -EBUSY;
  4611. mddev->safemode = 0;
  4612. mddev->ro = 0;
  4613. set_disk_ro(disk, 0);
  4614. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4615. mdname(mddev));
  4616. /* Kick recovery or resync if necessary */
  4617. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4618. md_wakeup_thread(mddev->thread);
  4619. md_wakeup_thread(mddev->sync_thread);
  4620. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4621. return 0;
  4622. }
  4623. /* similar to deny_write_access, but accounts for our holding a reference
  4624. * to the file ourselves */
  4625. static int deny_bitmap_write_access(struct file * file)
  4626. {
  4627. struct inode *inode = file->f_mapping->host;
  4628. spin_lock(&inode->i_lock);
  4629. if (atomic_read(&inode->i_writecount) > 1) {
  4630. spin_unlock(&inode->i_lock);
  4631. return -ETXTBSY;
  4632. }
  4633. atomic_set(&inode->i_writecount, -1);
  4634. spin_unlock(&inode->i_lock);
  4635. return 0;
  4636. }
  4637. void restore_bitmap_write_access(struct file *file)
  4638. {
  4639. struct inode *inode = file->f_mapping->host;
  4640. spin_lock(&inode->i_lock);
  4641. atomic_set(&inode->i_writecount, 1);
  4642. spin_unlock(&inode->i_lock);
  4643. }
  4644. static void md_clean(struct mddev *mddev)
  4645. {
  4646. mddev->array_sectors = 0;
  4647. mddev->external_size = 0;
  4648. mddev->dev_sectors = 0;
  4649. mddev->raid_disks = 0;
  4650. mddev->recovery_cp = 0;
  4651. mddev->resync_min = 0;
  4652. mddev->resync_max = MaxSector;
  4653. mddev->reshape_position = MaxSector;
  4654. mddev->external = 0;
  4655. mddev->persistent = 0;
  4656. mddev->level = LEVEL_NONE;
  4657. mddev->clevel[0] = 0;
  4658. mddev->flags = 0;
  4659. mddev->ro = 0;
  4660. mddev->metadata_type[0] = 0;
  4661. mddev->chunk_sectors = 0;
  4662. mddev->ctime = mddev->utime = 0;
  4663. mddev->layout = 0;
  4664. mddev->max_disks = 0;
  4665. mddev->events = 0;
  4666. mddev->can_decrease_events = 0;
  4667. mddev->delta_disks = 0;
  4668. mddev->reshape_backwards = 0;
  4669. mddev->new_level = LEVEL_NONE;
  4670. mddev->new_layout = 0;
  4671. mddev->new_chunk_sectors = 0;
  4672. mddev->curr_resync = 0;
  4673. atomic64_set(&mddev->resync_mismatches, 0);
  4674. mddev->suspend_lo = mddev->suspend_hi = 0;
  4675. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4676. mddev->recovery = 0;
  4677. mddev->in_sync = 0;
  4678. mddev->changed = 0;
  4679. mddev->degraded = 0;
  4680. mddev->safemode = 0;
  4681. mddev->merge_check_needed = 0;
  4682. mddev->bitmap_info.offset = 0;
  4683. mddev->bitmap_info.default_offset = 0;
  4684. mddev->bitmap_info.default_space = 0;
  4685. mddev->bitmap_info.chunksize = 0;
  4686. mddev->bitmap_info.daemon_sleep = 0;
  4687. mddev->bitmap_info.max_write_behind = 0;
  4688. }
  4689. static void __md_stop_writes(struct mddev *mddev)
  4690. {
  4691. if (mddev->sync_thread) {
  4692. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4693. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4694. reap_sync_thread(mddev);
  4695. }
  4696. del_timer_sync(&mddev->safemode_timer);
  4697. bitmap_flush(mddev);
  4698. md_super_wait(mddev);
  4699. if (!mddev->in_sync || mddev->flags) {
  4700. /* mark array as shutdown cleanly */
  4701. mddev->in_sync = 1;
  4702. md_update_sb(mddev, 1);
  4703. }
  4704. }
  4705. void md_stop_writes(struct mddev *mddev)
  4706. {
  4707. mddev_lock(mddev);
  4708. __md_stop_writes(mddev);
  4709. mddev_unlock(mddev);
  4710. }
  4711. EXPORT_SYMBOL_GPL(md_stop_writes);
  4712. static void __md_stop(struct mddev *mddev)
  4713. {
  4714. mddev->ready = 0;
  4715. mddev->pers->stop(mddev);
  4716. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4717. mddev->to_remove = &md_redundancy_group;
  4718. module_put(mddev->pers->owner);
  4719. mddev->pers = NULL;
  4720. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4721. }
  4722. void md_stop(struct mddev *mddev)
  4723. {
  4724. /* stop the array and free an attached data structures.
  4725. * This is called from dm-raid
  4726. */
  4727. __md_stop(mddev);
  4728. bitmap_destroy(mddev);
  4729. if (mddev->bio_set)
  4730. bioset_free(mddev->bio_set);
  4731. }
  4732. EXPORT_SYMBOL_GPL(md_stop);
  4733. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4734. {
  4735. int err = 0;
  4736. mutex_lock(&mddev->open_mutex);
  4737. if (atomic_read(&mddev->openers) > !!bdev) {
  4738. printk("md: %s still in use.\n",mdname(mddev));
  4739. err = -EBUSY;
  4740. goto out;
  4741. }
  4742. if (bdev)
  4743. sync_blockdev(bdev);
  4744. if (mddev->pers) {
  4745. __md_stop_writes(mddev);
  4746. err = -ENXIO;
  4747. if (mddev->ro==1)
  4748. goto out;
  4749. mddev->ro = 1;
  4750. set_disk_ro(mddev->gendisk, 1);
  4751. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4752. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4753. err = 0;
  4754. }
  4755. out:
  4756. mutex_unlock(&mddev->open_mutex);
  4757. return err;
  4758. }
  4759. /* mode:
  4760. * 0 - completely stop and dis-assemble array
  4761. * 2 - stop but do not disassemble array
  4762. */
  4763. static int do_md_stop(struct mddev * mddev, int mode,
  4764. struct block_device *bdev)
  4765. {
  4766. struct gendisk *disk = mddev->gendisk;
  4767. struct md_rdev *rdev;
  4768. mutex_lock(&mddev->open_mutex);
  4769. if (atomic_read(&mddev->openers) > !!bdev ||
  4770. mddev->sysfs_active) {
  4771. printk("md: %s still in use.\n",mdname(mddev));
  4772. mutex_unlock(&mddev->open_mutex);
  4773. return -EBUSY;
  4774. }
  4775. if (bdev)
  4776. /* It is possible IO was issued on some other
  4777. * open file which was closed before we took ->open_mutex.
  4778. * As that was not the last close __blkdev_put will not
  4779. * have called sync_blockdev, so we must.
  4780. */
  4781. sync_blockdev(bdev);
  4782. if (mddev->pers) {
  4783. if (mddev->ro)
  4784. set_disk_ro(disk, 0);
  4785. __md_stop_writes(mddev);
  4786. __md_stop(mddev);
  4787. mddev->queue->merge_bvec_fn = NULL;
  4788. mddev->queue->backing_dev_info.congested_fn = NULL;
  4789. /* tell userspace to handle 'inactive' */
  4790. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4791. rdev_for_each(rdev, mddev)
  4792. if (rdev->raid_disk >= 0)
  4793. sysfs_unlink_rdev(mddev, rdev);
  4794. set_capacity(disk, 0);
  4795. mutex_unlock(&mddev->open_mutex);
  4796. mddev->changed = 1;
  4797. revalidate_disk(disk);
  4798. if (mddev->ro)
  4799. mddev->ro = 0;
  4800. } else
  4801. mutex_unlock(&mddev->open_mutex);
  4802. /*
  4803. * Free resources if final stop
  4804. */
  4805. if (mode == 0) {
  4806. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4807. bitmap_destroy(mddev);
  4808. if (mddev->bitmap_info.file) {
  4809. restore_bitmap_write_access(mddev->bitmap_info.file);
  4810. fput(mddev->bitmap_info.file);
  4811. mddev->bitmap_info.file = NULL;
  4812. }
  4813. mddev->bitmap_info.offset = 0;
  4814. export_array(mddev);
  4815. md_clean(mddev);
  4816. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4817. if (mddev->hold_active == UNTIL_STOP)
  4818. mddev->hold_active = 0;
  4819. }
  4820. blk_integrity_unregister(disk);
  4821. md_new_event(mddev);
  4822. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4823. return 0;
  4824. }
  4825. #ifndef MODULE
  4826. static void autorun_array(struct mddev *mddev)
  4827. {
  4828. struct md_rdev *rdev;
  4829. int err;
  4830. if (list_empty(&mddev->disks))
  4831. return;
  4832. printk(KERN_INFO "md: running: ");
  4833. rdev_for_each(rdev, mddev) {
  4834. char b[BDEVNAME_SIZE];
  4835. printk("<%s>", bdevname(rdev->bdev,b));
  4836. }
  4837. printk("\n");
  4838. err = do_md_run(mddev);
  4839. if (err) {
  4840. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4841. do_md_stop(mddev, 0, NULL);
  4842. }
  4843. }
  4844. /*
  4845. * lets try to run arrays based on all disks that have arrived
  4846. * until now. (those are in pending_raid_disks)
  4847. *
  4848. * the method: pick the first pending disk, collect all disks with
  4849. * the same UUID, remove all from the pending list and put them into
  4850. * the 'same_array' list. Then order this list based on superblock
  4851. * update time (freshest comes first), kick out 'old' disks and
  4852. * compare superblocks. If everything's fine then run it.
  4853. *
  4854. * If "unit" is allocated, then bump its reference count
  4855. */
  4856. static void autorun_devices(int part)
  4857. {
  4858. struct md_rdev *rdev0, *rdev, *tmp;
  4859. struct mddev *mddev;
  4860. char b[BDEVNAME_SIZE];
  4861. printk(KERN_INFO "md: autorun ...\n");
  4862. while (!list_empty(&pending_raid_disks)) {
  4863. int unit;
  4864. dev_t dev;
  4865. LIST_HEAD(candidates);
  4866. rdev0 = list_entry(pending_raid_disks.next,
  4867. struct md_rdev, same_set);
  4868. printk(KERN_INFO "md: considering %s ...\n",
  4869. bdevname(rdev0->bdev,b));
  4870. INIT_LIST_HEAD(&candidates);
  4871. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4872. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4873. printk(KERN_INFO "md: adding %s ...\n",
  4874. bdevname(rdev->bdev,b));
  4875. list_move(&rdev->same_set, &candidates);
  4876. }
  4877. /*
  4878. * now we have a set of devices, with all of them having
  4879. * mostly sane superblocks. It's time to allocate the
  4880. * mddev.
  4881. */
  4882. if (part) {
  4883. dev = MKDEV(mdp_major,
  4884. rdev0->preferred_minor << MdpMinorShift);
  4885. unit = MINOR(dev) >> MdpMinorShift;
  4886. } else {
  4887. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4888. unit = MINOR(dev);
  4889. }
  4890. if (rdev0->preferred_minor != unit) {
  4891. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4892. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4893. break;
  4894. }
  4895. md_probe(dev, NULL, NULL);
  4896. mddev = mddev_find(dev);
  4897. if (!mddev || !mddev->gendisk) {
  4898. if (mddev)
  4899. mddev_put(mddev);
  4900. printk(KERN_ERR
  4901. "md: cannot allocate memory for md drive.\n");
  4902. break;
  4903. }
  4904. if (mddev_lock(mddev))
  4905. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4906. mdname(mddev));
  4907. else if (mddev->raid_disks || mddev->major_version
  4908. || !list_empty(&mddev->disks)) {
  4909. printk(KERN_WARNING
  4910. "md: %s already running, cannot run %s\n",
  4911. mdname(mddev), bdevname(rdev0->bdev,b));
  4912. mddev_unlock(mddev);
  4913. } else {
  4914. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4915. mddev->persistent = 1;
  4916. rdev_for_each_list(rdev, tmp, &candidates) {
  4917. list_del_init(&rdev->same_set);
  4918. if (bind_rdev_to_array(rdev, mddev))
  4919. export_rdev(rdev);
  4920. }
  4921. autorun_array(mddev);
  4922. mddev_unlock(mddev);
  4923. }
  4924. /* on success, candidates will be empty, on error
  4925. * it won't...
  4926. */
  4927. rdev_for_each_list(rdev, tmp, &candidates) {
  4928. list_del_init(&rdev->same_set);
  4929. export_rdev(rdev);
  4930. }
  4931. mddev_put(mddev);
  4932. }
  4933. printk(KERN_INFO "md: ... autorun DONE.\n");
  4934. }
  4935. #endif /* !MODULE */
  4936. static int get_version(void __user * arg)
  4937. {
  4938. mdu_version_t ver;
  4939. ver.major = MD_MAJOR_VERSION;
  4940. ver.minor = MD_MINOR_VERSION;
  4941. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4942. if (copy_to_user(arg, &ver, sizeof(ver)))
  4943. return -EFAULT;
  4944. return 0;
  4945. }
  4946. static int get_array_info(struct mddev * mddev, void __user * arg)
  4947. {
  4948. mdu_array_info_t info;
  4949. int nr,working,insync,failed,spare;
  4950. struct md_rdev *rdev;
  4951. nr = working = insync = failed = spare = 0;
  4952. rcu_read_lock();
  4953. rdev_for_each_rcu(rdev, mddev) {
  4954. nr++;
  4955. if (test_bit(Faulty, &rdev->flags))
  4956. failed++;
  4957. else {
  4958. working++;
  4959. if (test_bit(In_sync, &rdev->flags))
  4960. insync++;
  4961. else
  4962. spare++;
  4963. }
  4964. }
  4965. rcu_read_unlock();
  4966. info.major_version = mddev->major_version;
  4967. info.minor_version = mddev->minor_version;
  4968. info.patch_version = MD_PATCHLEVEL_VERSION;
  4969. info.ctime = mddev->ctime;
  4970. info.level = mddev->level;
  4971. info.size = mddev->dev_sectors / 2;
  4972. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4973. info.size = -1;
  4974. info.nr_disks = nr;
  4975. info.raid_disks = mddev->raid_disks;
  4976. info.md_minor = mddev->md_minor;
  4977. info.not_persistent= !mddev->persistent;
  4978. info.utime = mddev->utime;
  4979. info.state = 0;
  4980. if (mddev->in_sync)
  4981. info.state = (1<<MD_SB_CLEAN);
  4982. if (mddev->bitmap && mddev->bitmap_info.offset)
  4983. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4984. info.active_disks = insync;
  4985. info.working_disks = working;
  4986. info.failed_disks = failed;
  4987. info.spare_disks = spare;
  4988. info.layout = mddev->layout;
  4989. info.chunk_size = mddev->chunk_sectors << 9;
  4990. if (copy_to_user(arg, &info, sizeof(info)))
  4991. return -EFAULT;
  4992. return 0;
  4993. }
  4994. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4995. {
  4996. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4997. char *ptr, *buf = NULL;
  4998. int err = -ENOMEM;
  4999. if (md_allow_write(mddev))
  5000. file = kmalloc(sizeof(*file), GFP_NOIO);
  5001. else
  5002. file = kmalloc(sizeof(*file), GFP_KERNEL);
  5003. if (!file)
  5004. goto out;
  5005. /* bitmap disabled, zero the first byte and copy out */
  5006. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  5007. file->pathname[0] = '\0';
  5008. goto copy_out;
  5009. }
  5010. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5011. if (!buf)
  5012. goto out;
  5013. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  5014. buf, sizeof(file->pathname));
  5015. if (IS_ERR(ptr))
  5016. goto out;
  5017. strcpy(file->pathname, ptr);
  5018. copy_out:
  5019. err = 0;
  5020. if (copy_to_user(arg, file, sizeof(*file)))
  5021. err = -EFAULT;
  5022. out:
  5023. kfree(buf);
  5024. kfree(file);
  5025. return err;
  5026. }
  5027. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5028. {
  5029. mdu_disk_info_t info;
  5030. struct md_rdev *rdev;
  5031. if (copy_from_user(&info, arg, sizeof(info)))
  5032. return -EFAULT;
  5033. rcu_read_lock();
  5034. rdev = find_rdev_nr_rcu(mddev, info.number);
  5035. if (rdev) {
  5036. info.major = MAJOR(rdev->bdev->bd_dev);
  5037. info.minor = MINOR(rdev->bdev->bd_dev);
  5038. info.raid_disk = rdev->raid_disk;
  5039. info.state = 0;
  5040. if (test_bit(Faulty, &rdev->flags))
  5041. info.state |= (1<<MD_DISK_FAULTY);
  5042. else if (test_bit(In_sync, &rdev->flags)) {
  5043. info.state |= (1<<MD_DISK_ACTIVE);
  5044. info.state |= (1<<MD_DISK_SYNC);
  5045. }
  5046. if (test_bit(WriteMostly, &rdev->flags))
  5047. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5048. } else {
  5049. info.major = info.minor = 0;
  5050. info.raid_disk = -1;
  5051. info.state = (1<<MD_DISK_REMOVED);
  5052. }
  5053. rcu_read_unlock();
  5054. if (copy_to_user(arg, &info, sizeof(info)))
  5055. return -EFAULT;
  5056. return 0;
  5057. }
  5058. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5059. {
  5060. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5061. struct md_rdev *rdev;
  5062. dev_t dev = MKDEV(info->major,info->minor);
  5063. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5064. return -EOVERFLOW;
  5065. if (!mddev->raid_disks) {
  5066. int err;
  5067. /* expecting a device which has a superblock */
  5068. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5069. if (IS_ERR(rdev)) {
  5070. printk(KERN_WARNING
  5071. "md: md_import_device returned %ld\n",
  5072. PTR_ERR(rdev));
  5073. return PTR_ERR(rdev);
  5074. }
  5075. if (!list_empty(&mddev->disks)) {
  5076. struct md_rdev *rdev0
  5077. = list_entry(mddev->disks.next,
  5078. struct md_rdev, same_set);
  5079. err = super_types[mddev->major_version]
  5080. .load_super(rdev, rdev0, mddev->minor_version);
  5081. if (err < 0) {
  5082. printk(KERN_WARNING
  5083. "md: %s has different UUID to %s\n",
  5084. bdevname(rdev->bdev,b),
  5085. bdevname(rdev0->bdev,b2));
  5086. export_rdev(rdev);
  5087. return -EINVAL;
  5088. }
  5089. }
  5090. err = bind_rdev_to_array(rdev, mddev);
  5091. if (err)
  5092. export_rdev(rdev);
  5093. return err;
  5094. }
  5095. /*
  5096. * add_new_disk can be used once the array is assembled
  5097. * to add "hot spares". They must already have a superblock
  5098. * written
  5099. */
  5100. if (mddev->pers) {
  5101. int err;
  5102. if (!mddev->pers->hot_add_disk) {
  5103. printk(KERN_WARNING
  5104. "%s: personality does not support diskops!\n",
  5105. mdname(mddev));
  5106. return -EINVAL;
  5107. }
  5108. if (mddev->persistent)
  5109. rdev = md_import_device(dev, mddev->major_version,
  5110. mddev->minor_version);
  5111. else
  5112. rdev = md_import_device(dev, -1, -1);
  5113. if (IS_ERR(rdev)) {
  5114. printk(KERN_WARNING
  5115. "md: md_import_device returned %ld\n",
  5116. PTR_ERR(rdev));
  5117. return PTR_ERR(rdev);
  5118. }
  5119. /* set saved_raid_disk if appropriate */
  5120. if (!mddev->persistent) {
  5121. if (info->state & (1<<MD_DISK_SYNC) &&
  5122. info->raid_disk < mddev->raid_disks) {
  5123. rdev->raid_disk = info->raid_disk;
  5124. set_bit(In_sync, &rdev->flags);
  5125. } else
  5126. rdev->raid_disk = -1;
  5127. } else
  5128. super_types[mddev->major_version].
  5129. validate_super(mddev, rdev);
  5130. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5131. rdev->raid_disk != info->raid_disk) {
  5132. /* This was a hot-add request, but events doesn't
  5133. * match, so reject it.
  5134. */
  5135. export_rdev(rdev);
  5136. return -EINVAL;
  5137. }
  5138. if (test_bit(In_sync, &rdev->flags))
  5139. rdev->saved_raid_disk = rdev->raid_disk;
  5140. else
  5141. rdev->saved_raid_disk = -1;
  5142. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5143. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5144. set_bit(WriteMostly, &rdev->flags);
  5145. else
  5146. clear_bit(WriteMostly, &rdev->flags);
  5147. rdev->raid_disk = -1;
  5148. err = bind_rdev_to_array(rdev, mddev);
  5149. if (!err && !mddev->pers->hot_remove_disk) {
  5150. /* If there is hot_add_disk but no hot_remove_disk
  5151. * then added disks for geometry changes,
  5152. * and should be added immediately.
  5153. */
  5154. super_types[mddev->major_version].
  5155. validate_super(mddev, rdev);
  5156. err = mddev->pers->hot_add_disk(mddev, rdev);
  5157. if (err)
  5158. unbind_rdev_from_array(rdev);
  5159. }
  5160. if (err)
  5161. export_rdev(rdev);
  5162. else
  5163. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5164. md_update_sb(mddev, 1);
  5165. if (mddev->degraded)
  5166. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5167. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5168. if (!err)
  5169. md_new_event(mddev);
  5170. md_wakeup_thread(mddev->thread);
  5171. return err;
  5172. }
  5173. /* otherwise, add_new_disk is only allowed
  5174. * for major_version==0 superblocks
  5175. */
  5176. if (mddev->major_version != 0) {
  5177. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5178. mdname(mddev));
  5179. return -EINVAL;
  5180. }
  5181. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5182. int err;
  5183. rdev = md_import_device(dev, -1, 0);
  5184. if (IS_ERR(rdev)) {
  5185. printk(KERN_WARNING
  5186. "md: error, md_import_device() returned %ld\n",
  5187. PTR_ERR(rdev));
  5188. return PTR_ERR(rdev);
  5189. }
  5190. rdev->desc_nr = info->number;
  5191. if (info->raid_disk < mddev->raid_disks)
  5192. rdev->raid_disk = info->raid_disk;
  5193. else
  5194. rdev->raid_disk = -1;
  5195. if (rdev->raid_disk < mddev->raid_disks)
  5196. if (info->state & (1<<MD_DISK_SYNC))
  5197. set_bit(In_sync, &rdev->flags);
  5198. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5199. set_bit(WriteMostly, &rdev->flags);
  5200. if (!mddev->persistent) {
  5201. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5202. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5203. } else
  5204. rdev->sb_start = calc_dev_sboffset(rdev);
  5205. rdev->sectors = rdev->sb_start;
  5206. err = bind_rdev_to_array(rdev, mddev);
  5207. if (err) {
  5208. export_rdev(rdev);
  5209. return err;
  5210. }
  5211. }
  5212. return 0;
  5213. }
  5214. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5215. {
  5216. char b[BDEVNAME_SIZE];
  5217. struct md_rdev *rdev;
  5218. rdev = find_rdev(mddev, dev);
  5219. if (!rdev)
  5220. return -ENXIO;
  5221. if (rdev->raid_disk >= 0)
  5222. goto busy;
  5223. kick_rdev_from_array(rdev);
  5224. md_update_sb(mddev, 1);
  5225. md_new_event(mddev);
  5226. return 0;
  5227. busy:
  5228. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5229. bdevname(rdev->bdev,b), mdname(mddev));
  5230. return -EBUSY;
  5231. }
  5232. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5233. {
  5234. char b[BDEVNAME_SIZE];
  5235. int err;
  5236. struct md_rdev *rdev;
  5237. if (!mddev->pers)
  5238. return -ENODEV;
  5239. if (mddev->major_version != 0) {
  5240. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5241. " version-0 superblocks.\n",
  5242. mdname(mddev));
  5243. return -EINVAL;
  5244. }
  5245. if (!mddev->pers->hot_add_disk) {
  5246. printk(KERN_WARNING
  5247. "%s: personality does not support diskops!\n",
  5248. mdname(mddev));
  5249. return -EINVAL;
  5250. }
  5251. rdev = md_import_device(dev, -1, 0);
  5252. if (IS_ERR(rdev)) {
  5253. printk(KERN_WARNING
  5254. "md: error, md_import_device() returned %ld\n",
  5255. PTR_ERR(rdev));
  5256. return -EINVAL;
  5257. }
  5258. if (mddev->persistent)
  5259. rdev->sb_start = calc_dev_sboffset(rdev);
  5260. else
  5261. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5262. rdev->sectors = rdev->sb_start;
  5263. if (test_bit(Faulty, &rdev->flags)) {
  5264. printk(KERN_WARNING
  5265. "md: can not hot-add faulty %s disk to %s!\n",
  5266. bdevname(rdev->bdev,b), mdname(mddev));
  5267. err = -EINVAL;
  5268. goto abort_export;
  5269. }
  5270. clear_bit(In_sync, &rdev->flags);
  5271. rdev->desc_nr = -1;
  5272. rdev->saved_raid_disk = -1;
  5273. err = bind_rdev_to_array(rdev, mddev);
  5274. if (err)
  5275. goto abort_export;
  5276. /*
  5277. * The rest should better be atomic, we can have disk failures
  5278. * noticed in interrupt contexts ...
  5279. */
  5280. rdev->raid_disk = -1;
  5281. md_update_sb(mddev, 1);
  5282. /*
  5283. * Kick recovery, maybe this spare has to be added to the
  5284. * array immediately.
  5285. */
  5286. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5287. md_wakeup_thread(mddev->thread);
  5288. md_new_event(mddev);
  5289. return 0;
  5290. abort_export:
  5291. export_rdev(rdev);
  5292. return err;
  5293. }
  5294. static int set_bitmap_file(struct mddev *mddev, int fd)
  5295. {
  5296. int err;
  5297. if (mddev->pers) {
  5298. if (!mddev->pers->quiesce)
  5299. return -EBUSY;
  5300. if (mddev->recovery || mddev->sync_thread)
  5301. return -EBUSY;
  5302. /* we should be able to change the bitmap.. */
  5303. }
  5304. if (fd >= 0) {
  5305. if (mddev->bitmap)
  5306. return -EEXIST; /* cannot add when bitmap is present */
  5307. mddev->bitmap_info.file = fget(fd);
  5308. if (mddev->bitmap_info.file == NULL) {
  5309. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5310. mdname(mddev));
  5311. return -EBADF;
  5312. }
  5313. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5314. if (err) {
  5315. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5316. mdname(mddev));
  5317. fput(mddev->bitmap_info.file);
  5318. mddev->bitmap_info.file = NULL;
  5319. return err;
  5320. }
  5321. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5322. } else if (mddev->bitmap == NULL)
  5323. return -ENOENT; /* cannot remove what isn't there */
  5324. err = 0;
  5325. if (mddev->pers) {
  5326. mddev->pers->quiesce(mddev, 1);
  5327. if (fd >= 0) {
  5328. err = bitmap_create(mddev);
  5329. if (!err)
  5330. err = bitmap_load(mddev);
  5331. }
  5332. if (fd < 0 || err) {
  5333. bitmap_destroy(mddev);
  5334. fd = -1; /* make sure to put the file */
  5335. }
  5336. mddev->pers->quiesce(mddev, 0);
  5337. }
  5338. if (fd < 0) {
  5339. if (mddev->bitmap_info.file) {
  5340. restore_bitmap_write_access(mddev->bitmap_info.file);
  5341. fput(mddev->bitmap_info.file);
  5342. }
  5343. mddev->bitmap_info.file = NULL;
  5344. }
  5345. return err;
  5346. }
  5347. /*
  5348. * set_array_info is used two different ways
  5349. * The original usage is when creating a new array.
  5350. * In this usage, raid_disks is > 0 and it together with
  5351. * level, size, not_persistent,layout,chunksize determine the
  5352. * shape of the array.
  5353. * This will always create an array with a type-0.90.0 superblock.
  5354. * The newer usage is when assembling an array.
  5355. * In this case raid_disks will be 0, and the major_version field is
  5356. * use to determine which style super-blocks are to be found on the devices.
  5357. * The minor and patch _version numbers are also kept incase the
  5358. * super_block handler wishes to interpret them.
  5359. */
  5360. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5361. {
  5362. if (info->raid_disks == 0) {
  5363. /* just setting version number for superblock loading */
  5364. if (info->major_version < 0 ||
  5365. info->major_version >= ARRAY_SIZE(super_types) ||
  5366. super_types[info->major_version].name == NULL) {
  5367. /* maybe try to auto-load a module? */
  5368. printk(KERN_INFO
  5369. "md: superblock version %d not known\n",
  5370. info->major_version);
  5371. return -EINVAL;
  5372. }
  5373. mddev->major_version = info->major_version;
  5374. mddev->minor_version = info->minor_version;
  5375. mddev->patch_version = info->patch_version;
  5376. mddev->persistent = !info->not_persistent;
  5377. /* ensure mddev_put doesn't delete this now that there
  5378. * is some minimal configuration.
  5379. */
  5380. mddev->ctime = get_seconds();
  5381. return 0;
  5382. }
  5383. mddev->major_version = MD_MAJOR_VERSION;
  5384. mddev->minor_version = MD_MINOR_VERSION;
  5385. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5386. mddev->ctime = get_seconds();
  5387. mddev->level = info->level;
  5388. mddev->clevel[0] = 0;
  5389. mddev->dev_sectors = 2 * (sector_t)info->size;
  5390. mddev->raid_disks = info->raid_disks;
  5391. /* don't set md_minor, it is determined by which /dev/md* was
  5392. * openned
  5393. */
  5394. if (info->state & (1<<MD_SB_CLEAN))
  5395. mddev->recovery_cp = MaxSector;
  5396. else
  5397. mddev->recovery_cp = 0;
  5398. mddev->persistent = ! info->not_persistent;
  5399. mddev->external = 0;
  5400. mddev->layout = info->layout;
  5401. mddev->chunk_sectors = info->chunk_size >> 9;
  5402. mddev->max_disks = MD_SB_DISKS;
  5403. if (mddev->persistent)
  5404. mddev->flags = 0;
  5405. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5406. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5407. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5408. mddev->bitmap_info.offset = 0;
  5409. mddev->reshape_position = MaxSector;
  5410. /*
  5411. * Generate a 128 bit UUID
  5412. */
  5413. get_random_bytes(mddev->uuid, 16);
  5414. mddev->new_level = mddev->level;
  5415. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5416. mddev->new_layout = mddev->layout;
  5417. mddev->delta_disks = 0;
  5418. mddev->reshape_backwards = 0;
  5419. return 0;
  5420. }
  5421. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5422. {
  5423. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5424. if (mddev->external_size)
  5425. return;
  5426. mddev->array_sectors = array_sectors;
  5427. }
  5428. EXPORT_SYMBOL(md_set_array_sectors);
  5429. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5430. {
  5431. struct md_rdev *rdev;
  5432. int rv;
  5433. int fit = (num_sectors == 0);
  5434. if (mddev->pers->resize == NULL)
  5435. return -EINVAL;
  5436. /* The "num_sectors" is the number of sectors of each device that
  5437. * is used. This can only make sense for arrays with redundancy.
  5438. * linear and raid0 always use whatever space is available. We can only
  5439. * consider changing this number if no resync or reconstruction is
  5440. * happening, and if the new size is acceptable. It must fit before the
  5441. * sb_start or, if that is <data_offset, it must fit before the size
  5442. * of each device. If num_sectors is zero, we find the largest size
  5443. * that fits.
  5444. */
  5445. if (mddev->sync_thread)
  5446. return -EBUSY;
  5447. rdev_for_each(rdev, mddev) {
  5448. sector_t avail = rdev->sectors;
  5449. if (fit && (num_sectors == 0 || num_sectors > avail))
  5450. num_sectors = avail;
  5451. if (avail < num_sectors)
  5452. return -ENOSPC;
  5453. }
  5454. rv = mddev->pers->resize(mddev, num_sectors);
  5455. if (!rv)
  5456. revalidate_disk(mddev->gendisk);
  5457. return rv;
  5458. }
  5459. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5460. {
  5461. int rv;
  5462. struct md_rdev *rdev;
  5463. /* change the number of raid disks */
  5464. if (mddev->pers->check_reshape == NULL)
  5465. return -EINVAL;
  5466. if (raid_disks <= 0 ||
  5467. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5468. return -EINVAL;
  5469. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5470. return -EBUSY;
  5471. rdev_for_each(rdev, mddev) {
  5472. if (mddev->raid_disks < raid_disks &&
  5473. rdev->data_offset < rdev->new_data_offset)
  5474. return -EINVAL;
  5475. if (mddev->raid_disks > raid_disks &&
  5476. rdev->data_offset > rdev->new_data_offset)
  5477. return -EINVAL;
  5478. }
  5479. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5480. if (mddev->delta_disks < 0)
  5481. mddev->reshape_backwards = 1;
  5482. else if (mddev->delta_disks > 0)
  5483. mddev->reshape_backwards = 0;
  5484. rv = mddev->pers->check_reshape(mddev);
  5485. if (rv < 0) {
  5486. mddev->delta_disks = 0;
  5487. mddev->reshape_backwards = 0;
  5488. }
  5489. return rv;
  5490. }
  5491. /*
  5492. * update_array_info is used to change the configuration of an
  5493. * on-line array.
  5494. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5495. * fields in the info are checked against the array.
  5496. * Any differences that cannot be handled will cause an error.
  5497. * Normally, only one change can be managed at a time.
  5498. */
  5499. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5500. {
  5501. int rv = 0;
  5502. int cnt = 0;
  5503. int state = 0;
  5504. /* calculate expected state,ignoring low bits */
  5505. if (mddev->bitmap && mddev->bitmap_info.offset)
  5506. state |= (1 << MD_SB_BITMAP_PRESENT);
  5507. if (mddev->major_version != info->major_version ||
  5508. mddev->minor_version != info->minor_version ||
  5509. /* mddev->patch_version != info->patch_version || */
  5510. mddev->ctime != info->ctime ||
  5511. mddev->level != info->level ||
  5512. /* mddev->layout != info->layout || */
  5513. !mddev->persistent != info->not_persistent||
  5514. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5515. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5516. ((state^info->state) & 0xfffffe00)
  5517. )
  5518. return -EINVAL;
  5519. /* Check there is only one change */
  5520. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5521. cnt++;
  5522. if (mddev->raid_disks != info->raid_disks)
  5523. cnt++;
  5524. if (mddev->layout != info->layout)
  5525. cnt++;
  5526. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5527. cnt++;
  5528. if (cnt == 0)
  5529. return 0;
  5530. if (cnt > 1)
  5531. return -EINVAL;
  5532. if (mddev->layout != info->layout) {
  5533. /* Change layout
  5534. * we don't need to do anything at the md level, the
  5535. * personality will take care of it all.
  5536. */
  5537. if (mddev->pers->check_reshape == NULL)
  5538. return -EINVAL;
  5539. else {
  5540. mddev->new_layout = info->layout;
  5541. rv = mddev->pers->check_reshape(mddev);
  5542. if (rv)
  5543. mddev->new_layout = mddev->layout;
  5544. return rv;
  5545. }
  5546. }
  5547. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5548. rv = update_size(mddev, (sector_t)info->size * 2);
  5549. if (mddev->raid_disks != info->raid_disks)
  5550. rv = update_raid_disks(mddev, info->raid_disks);
  5551. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5552. if (mddev->pers->quiesce == NULL)
  5553. return -EINVAL;
  5554. if (mddev->recovery || mddev->sync_thread)
  5555. return -EBUSY;
  5556. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5557. /* add the bitmap */
  5558. if (mddev->bitmap)
  5559. return -EEXIST;
  5560. if (mddev->bitmap_info.default_offset == 0)
  5561. return -EINVAL;
  5562. mddev->bitmap_info.offset =
  5563. mddev->bitmap_info.default_offset;
  5564. mddev->bitmap_info.space =
  5565. mddev->bitmap_info.default_space;
  5566. mddev->pers->quiesce(mddev, 1);
  5567. rv = bitmap_create(mddev);
  5568. if (!rv)
  5569. rv = bitmap_load(mddev);
  5570. if (rv)
  5571. bitmap_destroy(mddev);
  5572. mddev->pers->quiesce(mddev, 0);
  5573. } else {
  5574. /* remove the bitmap */
  5575. if (!mddev->bitmap)
  5576. return -ENOENT;
  5577. if (mddev->bitmap->storage.file)
  5578. return -EINVAL;
  5579. mddev->pers->quiesce(mddev, 1);
  5580. bitmap_destroy(mddev);
  5581. mddev->pers->quiesce(mddev, 0);
  5582. mddev->bitmap_info.offset = 0;
  5583. }
  5584. }
  5585. md_update_sb(mddev, 1);
  5586. return rv;
  5587. }
  5588. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5589. {
  5590. struct md_rdev *rdev;
  5591. int err = 0;
  5592. if (mddev->pers == NULL)
  5593. return -ENODEV;
  5594. rcu_read_lock();
  5595. rdev = find_rdev_rcu(mddev, dev);
  5596. if (!rdev)
  5597. err = -ENODEV;
  5598. else {
  5599. md_error(mddev, rdev);
  5600. if (!test_bit(Faulty, &rdev->flags))
  5601. err = -EBUSY;
  5602. }
  5603. rcu_read_unlock();
  5604. return err;
  5605. }
  5606. /*
  5607. * We have a problem here : there is no easy way to give a CHS
  5608. * virtual geometry. We currently pretend that we have a 2 heads
  5609. * 4 sectors (with a BIG number of cylinders...). This drives
  5610. * dosfs just mad... ;-)
  5611. */
  5612. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5613. {
  5614. struct mddev *mddev = bdev->bd_disk->private_data;
  5615. geo->heads = 2;
  5616. geo->sectors = 4;
  5617. geo->cylinders = mddev->array_sectors / 8;
  5618. return 0;
  5619. }
  5620. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5621. unsigned int cmd, unsigned long arg)
  5622. {
  5623. int err = 0;
  5624. void __user *argp = (void __user *)arg;
  5625. struct mddev *mddev = NULL;
  5626. int ro;
  5627. switch (cmd) {
  5628. case RAID_VERSION:
  5629. case GET_ARRAY_INFO:
  5630. case GET_DISK_INFO:
  5631. break;
  5632. default:
  5633. if (!capable(CAP_SYS_ADMIN))
  5634. return -EACCES;
  5635. }
  5636. /*
  5637. * Commands dealing with the RAID driver but not any
  5638. * particular array:
  5639. */
  5640. switch (cmd) {
  5641. case RAID_VERSION:
  5642. err = get_version(argp);
  5643. goto done;
  5644. case PRINT_RAID_DEBUG:
  5645. err = 0;
  5646. md_print_devices();
  5647. goto done;
  5648. #ifndef MODULE
  5649. case RAID_AUTORUN:
  5650. err = 0;
  5651. autostart_arrays(arg);
  5652. goto done;
  5653. #endif
  5654. default:;
  5655. }
  5656. /*
  5657. * Commands creating/starting a new array:
  5658. */
  5659. mddev = bdev->bd_disk->private_data;
  5660. if (!mddev) {
  5661. BUG();
  5662. goto abort;
  5663. }
  5664. /* Some actions do not requires the mutex */
  5665. switch (cmd) {
  5666. case GET_ARRAY_INFO:
  5667. if (!mddev->raid_disks && !mddev->external)
  5668. err = -ENODEV;
  5669. else
  5670. err = get_array_info(mddev, argp);
  5671. goto abort;
  5672. case GET_DISK_INFO:
  5673. if (!mddev->raid_disks && !mddev->external)
  5674. err = -ENODEV;
  5675. else
  5676. err = get_disk_info(mddev, argp);
  5677. goto abort;
  5678. case SET_DISK_FAULTY:
  5679. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5680. goto abort;
  5681. }
  5682. if (cmd == ADD_NEW_DISK)
  5683. /* need to ensure md_delayed_delete() has completed */
  5684. flush_workqueue(md_misc_wq);
  5685. err = mddev_lock(mddev);
  5686. if (err) {
  5687. printk(KERN_INFO
  5688. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5689. err, cmd);
  5690. goto abort;
  5691. }
  5692. if (cmd == SET_ARRAY_INFO) {
  5693. mdu_array_info_t info;
  5694. if (!arg)
  5695. memset(&info, 0, sizeof(info));
  5696. else if (copy_from_user(&info, argp, sizeof(info))) {
  5697. err = -EFAULT;
  5698. goto abort_unlock;
  5699. }
  5700. if (mddev->pers) {
  5701. err = update_array_info(mddev, &info);
  5702. if (err) {
  5703. printk(KERN_WARNING "md: couldn't update"
  5704. " array info. %d\n", err);
  5705. goto abort_unlock;
  5706. }
  5707. goto done_unlock;
  5708. }
  5709. if (!list_empty(&mddev->disks)) {
  5710. printk(KERN_WARNING
  5711. "md: array %s already has disks!\n",
  5712. mdname(mddev));
  5713. err = -EBUSY;
  5714. goto abort_unlock;
  5715. }
  5716. if (mddev->raid_disks) {
  5717. printk(KERN_WARNING
  5718. "md: array %s already initialised!\n",
  5719. mdname(mddev));
  5720. err = -EBUSY;
  5721. goto abort_unlock;
  5722. }
  5723. err = set_array_info(mddev, &info);
  5724. if (err) {
  5725. printk(KERN_WARNING "md: couldn't set"
  5726. " array info. %d\n", err);
  5727. goto abort_unlock;
  5728. }
  5729. goto done_unlock;
  5730. }
  5731. /*
  5732. * Commands querying/configuring an existing array:
  5733. */
  5734. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5735. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5736. if ((!mddev->raid_disks && !mddev->external)
  5737. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5738. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5739. && cmd != GET_BITMAP_FILE) {
  5740. err = -ENODEV;
  5741. goto abort_unlock;
  5742. }
  5743. /*
  5744. * Commands even a read-only array can execute:
  5745. */
  5746. switch (cmd) {
  5747. case GET_BITMAP_FILE:
  5748. err = get_bitmap_file(mddev, argp);
  5749. goto done_unlock;
  5750. case RESTART_ARRAY_RW:
  5751. err = restart_array(mddev);
  5752. goto done_unlock;
  5753. case STOP_ARRAY:
  5754. err = do_md_stop(mddev, 0, bdev);
  5755. goto done_unlock;
  5756. case STOP_ARRAY_RO:
  5757. err = md_set_readonly(mddev, bdev);
  5758. goto done_unlock;
  5759. case BLKROSET:
  5760. if (get_user(ro, (int __user *)(arg))) {
  5761. err = -EFAULT;
  5762. goto done_unlock;
  5763. }
  5764. err = -EINVAL;
  5765. /* if the bdev is going readonly the value of mddev->ro
  5766. * does not matter, no writes are coming
  5767. */
  5768. if (ro)
  5769. goto done_unlock;
  5770. /* are we are already prepared for writes? */
  5771. if (mddev->ro != 1)
  5772. goto done_unlock;
  5773. /* transitioning to readauto need only happen for
  5774. * arrays that call md_write_start
  5775. */
  5776. if (mddev->pers) {
  5777. err = restart_array(mddev);
  5778. if (err == 0) {
  5779. mddev->ro = 2;
  5780. set_disk_ro(mddev->gendisk, 0);
  5781. }
  5782. }
  5783. goto done_unlock;
  5784. }
  5785. /*
  5786. * The remaining ioctls are changing the state of the
  5787. * superblock, so we do not allow them on read-only arrays.
  5788. * However non-MD ioctls (e.g. get-size) will still come through
  5789. * here and hit the 'default' below, so only disallow
  5790. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5791. */
  5792. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5793. if (mddev->ro == 2) {
  5794. mddev->ro = 0;
  5795. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5796. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5797. md_wakeup_thread(mddev->thread);
  5798. } else {
  5799. err = -EROFS;
  5800. goto abort_unlock;
  5801. }
  5802. }
  5803. switch (cmd) {
  5804. case ADD_NEW_DISK:
  5805. {
  5806. mdu_disk_info_t info;
  5807. if (copy_from_user(&info, argp, sizeof(info)))
  5808. err = -EFAULT;
  5809. else
  5810. err = add_new_disk(mddev, &info);
  5811. goto done_unlock;
  5812. }
  5813. case HOT_REMOVE_DISK:
  5814. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5815. goto done_unlock;
  5816. case HOT_ADD_DISK:
  5817. err = hot_add_disk(mddev, new_decode_dev(arg));
  5818. goto done_unlock;
  5819. case RUN_ARRAY:
  5820. err = do_md_run(mddev);
  5821. goto done_unlock;
  5822. case SET_BITMAP_FILE:
  5823. err = set_bitmap_file(mddev, (int)arg);
  5824. goto done_unlock;
  5825. default:
  5826. err = -EINVAL;
  5827. goto abort_unlock;
  5828. }
  5829. done_unlock:
  5830. abort_unlock:
  5831. if (mddev->hold_active == UNTIL_IOCTL &&
  5832. err != -EINVAL)
  5833. mddev->hold_active = 0;
  5834. mddev_unlock(mddev);
  5835. return err;
  5836. done:
  5837. if (err)
  5838. MD_BUG();
  5839. abort:
  5840. return err;
  5841. }
  5842. #ifdef CONFIG_COMPAT
  5843. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5844. unsigned int cmd, unsigned long arg)
  5845. {
  5846. switch (cmd) {
  5847. case HOT_REMOVE_DISK:
  5848. case HOT_ADD_DISK:
  5849. case SET_DISK_FAULTY:
  5850. case SET_BITMAP_FILE:
  5851. /* These take in integer arg, do not convert */
  5852. break;
  5853. default:
  5854. arg = (unsigned long)compat_ptr(arg);
  5855. break;
  5856. }
  5857. return md_ioctl(bdev, mode, cmd, arg);
  5858. }
  5859. #endif /* CONFIG_COMPAT */
  5860. static int md_open(struct block_device *bdev, fmode_t mode)
  5861. {
  5862. /*
  5863. * Succeed if we can lock the mddev, which confirms that
  5864. * it isn't being stopped right now.
  5865. */
  5866. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5867. int err;
  5868. if (!mddev)
  5869. return -ENODEV;
  5870. if (mddev->gendisk != bdev->bd_disk) {
  5871. /* we are racing with mddev_put which is discarding this
  5872. * bd_disk.
  5873. */
  5874. mddev_put(mddev);
  5875. /* Wait until bdev->bd_disk is definitely gone */
  5876. flush_workqueue(md_misc_wq);
  5877. /* Then retry the open from the top */
  5878. return -ERESTARTSYS;
  5879. }
  5880. BUG_ON(mddev != bdev->bd_disk->private_data);
  5881. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5882. goto out;
  5883. err = 0;
  5884. atomic_inc(&mddev->openers);
  5885. mutex_unlock(&mddev->open_mutex);
  5886. check_disk_change(bdev);
  5887. out:
  5888. return err;
  5889. }
  5890. static int md_release(struct gendisk *disk, fmode_t mode)
  5891. {
  5892. struct mddev *mddev = disk->private_data;
  5893. BUG_ON(!mddev);
  5894. atomic_dec(&mddev->openers);
  5895. mddev_put(mddev);
  5896. return 0;
  5897. }
  5898. static int md_media_changed(struct gendisk *disk)
  5899. {
  5900. struct mddev *mddev = disk->private_data;
  5901. return mddev->changed;
  5902. }
  5903. static int md_revalidate(struct gendisk *disk)
  5904. {
  5905. struct mddev *mddev = disk->private_data;
  5906. mddev->changed = 0;
  5907. return 0;
  5908. }
  5909. static const struct block_device_operations md_fops =
  5910. {
  5911. .owner = THIS_MODULE,
  5912. .open = md_open,
  5913. .release = md_release,
  5914. .ioctl = md_ioctl,
  5915. #ifdef CONFIG_COMPAT
  5916. .compat_ioctl = md_compat_ioctl,
  5917. #endif
  5918. .getgeo = md_getgeo,
  5919. .media_changed = md_media_changed,
  5920. .revalidate_disk= md_revalidate,
  5921. };
  5922. static int md_thread(void * arg)
  5923. {
  5924. struct md_thread *thread = arg;
  5925. /*
  5926. * md_thread is a 'system-thread', it's priority should be very
  5927. * high. We avoid resource deadlocks individually in each
  5928. * raid personality. (RAID5 does preallocation) We also use RR and
  5929. * the very same RT priority as kswapd, thus we will never get
  5930. * into a priority inversion deadlock.
  5931. *
  5932. * we definitely have to have equal or higher priority than
  5933. * bdflush, otherwise bdflush will deadlock if there are too
  5934. * many dirty RAID5 blocks.
  5935. */
  5936. allow_signal(SIGKILL);
  5937. while (!kthread_should_stop()) {
  5938. /* We need to wait INTERRUPTIBLE so that
  5939. * we don't add to the load-average.
  5940. * That means we need to be sure no signals are
  5941. * pending
  5942. */
  5943. if (signal_pending(current))
  5944. flush_signals(current);
  5945. wait_event_interruptible_timeout
  5946. (thread->wqueue,
  5947. test_bit(THREAD_WAKEUP, &thread->flags)
  5948. || kthread_should_stop(),
  5949. thread->timeout);
  5950. clear_bit(THREAD_WAKEUP, &thread->flags);
  5951. if (!kthread_should_stop())
  5952. thread->run(thread);
  5953. }
  5954. return 0;
  5955. }
  5956. void md_wakeup_thread(struct md_thread *thread)
  5957. {
  5958. if (thread) {
  5959. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5960. set_bit(THREAD_WAKEUP, &thread->flags);
  5961. wake_up(&thread->wqueue);
  5962. }
  5963. }
  5964. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  5965. struct mddev *mddev, const char *name)
  5966. {
  5967. struct md_thread *thread;
  5968. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5969. if (!thread)
  5970. return NULL;
  5971. init_waitqueue_head(&thread->wqueue);
  5972. thread->run = run;
  5973. thread->mddev = mddev;
  5974. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5975. thread->tsk = kthread_run(md_thread, thread,
  5976. "%s_%s",
  5977. mdname(thread->mddev),
  5978. name);
  5979. if (IS_ERR(thread->tsk)) {
  5980. kfree(thread);
  5981. return NULL;
  5982. }
  5983. return thread;
  5984. }
  5985. void md_unregister_thread(struct md_thread **threadp)
  5986. {
  5987. struct md_thread *thread = *threadp;
  5988. if (!thread)
  5989. return;
  5990. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5991. /* Locking ensures that mddev_unlock does not wake_up a
  5992. * non-existent thread
  5993. */
  5994. spin_lock(&pers_lock);
  5995. *threadp = NULL;
  5996. spin_unlock(&pers_lock);
  5997. kthread_stop(thread->tsk);
  5998. kfree(thread);
  5999. }
  6000. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6001. {
  6002. if (!mddev) {
  6003. MD_BUG();
  6004. return;
  6005. }
  6006. if (!rdev || test_bit(Faulty, &rdev->flags))
  6007. return;
  6008. if (!mddev->pers || !mddev->pers->error_handler)
  6009. return;
  6010. mddev->pers->error_handler(mddev,rdev);
  6011. if (mddev->degraded)
  6012. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6013. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6014. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6015. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6016. md_wakeup_thread(mddev->thread);
  6017. if (mddev->event_work.func)
  6018. queue_work(md_misc_wq, &mddev->event_work);
  6019. md_new_event_inintr(mddev);
  6020. }
  6021. /* seq_file implementation /proc/mdstat */
  6022. static void status_unused(struct seq_file *seq)
  6023. {
  6024. int i = 0;
  6025. struct md_rdev *rdev;
  6026. seq_printf(seq, "unused devices: ");
  6027. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6028. char b[BDEVNAME_SIZE];
  6029. i++;
  6030. seq_printf(seq, "%s ",
  6031. bdevname(rdev->bdev,b));
  6032. }
  6033. if (!i)
  6034. seq_printf(seq, "<none>");
  6035. seq_printf(seq, "\n");
  6036. }
  6037. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6038. {
  6039. sector_t max_sectors, resync, res;
  6040. unsigned long dt, db;
  6041. sector_t rt;
  6042. int scale;
  6043. unsigned int per_milli;
  6044. if (mddev->curr_resync <= 3)
  6045. resync = 0;
  6046. else
  6047. resync = mddev->curr_resync
  6048. - atomic_read(&mddev->recovery_active);
  6049. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6050. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6051. max_sectors = mddev->resync_max_sectors;
  6052. else
  6053. max_sectors = mddev->dev_sectors;
  6054. /*
  6055. * Should not happen.
  6056. */
  6057. if (!max_sectors) {
  6058. MD_BUG();
  6059. return;
  6060. }
  6061. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6062. * in a sector_t, and (max_sectors>>scale) will fit in a
  6063. * u32, as those are the requirements for sector_div.
  6064. * Thus 'scale' must be at least 10
  6065. */
  6066. scale = 10;
  6067. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6068. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6069. scale++;
  6070. }
  6071. res = (resync>>scale)*1000;
  6072. sector_div(res, (u32)((max_sectors>>scale)+1));
  6073. per_milli = res;
  6074. {
  6075. int i, x = per_milli/50, y = 20-x;
  6076. seq_printf(seq, "[");
  6077. for (i = 0; i < x; i++)
  6078. seq_printf(seq, "=");
  6079. seq_printf(seq, ">");
  6080. for (i = 0; i < y; i++)
  6081. seq_printf(seq, ".");
  6082. seq_printf(seq, "] ");
  6083. }
  6084. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6085. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6086. "reshape" :
  6087. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6088. "check" :
  6089. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6090. "resync" : "recovery"))),
  6091. per_milli/10, per_milli % 10,
  6092. (unsigned long long) resync/2,
  6093. (unsigned long long) max_sectors/2);
  6094. /*
  6095. * dt: time from mark until now
  6096. * db: blocks written from mark until now
  6097. * rt: remaining time
  6098. *
  6099. * rt is a sector_t, so could be 32bit or 64bit.
  6100. * So we divide before multiply in case it is 32bit and close
  6101. * to the limit.
  6102. * We scale the divisor (db) by 32 to avoid losing precision
  6103. * near the end of resync when the number of remaining sectors
  6104. * is close to 'db'.
  6105. * We then divide rt by 32 after multiplying by db to compensate.
  6106. * The '+1' avoids division by zero if db is very small.
  6107. */
  6108. dt = ((jiffies - mddev->resync_mark) / HZ);
  6109. if (!dt) dt++;
  6110. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6111. - mddev->resync_mark_cnt;
  6112. rt = max_sectors - resync; /* number of remaining sectors */
  6113. sector_div(rt, db/32+1);
  6114. rt *= dt;
  6115. rt >>= 5;
  6116. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6117. ((unsigned long)rt % 60)/6);
  6118. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6119. }
  6120. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6121. {
  6122. struct list_head *tmp;
  6123. loff_t l = *pos;
  6124. struct mddev *mddev;
  6125. if (l >= 0x10000)
  6126. return NULL;
  6127. if (!l--)
  6128. /* header */
  6129. return (void*)1;
  6130. spin_lock(&all_mddevs_lock);
  6131. list_for_each(tmp,&all_mddevs)
  6132. if (!l--) {
  6133. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6134. mddev_get(mddev);
  6135. spin_unlock(&all_mddevs_lock);
  6136. return mddev;
  6137. }
  6138. spin_unlock(&all_mddevs_lock);
  6139. if (!l--)
  6140. return (void*)2;/* tail */
  6141. return NULL;
  6142. }
  6143. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6144. {
  6145. struct list_head *tmp;
  6146. struct mddev *next_mddev, *mddev = v;
  6147. ++*pos;
  6148. if (v == (void*)2)
  6149. return NULL;
  6150. spin_lock(&all_mddevs_lock);
  6151. if (v == (void*)1)
  6152. tmp = all_mddevs.next;
  6153. else
  6154. tmp = mddev->all_mddevs.next;
  6155. if (tmp != &all_mddevs)
  6156. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6157. else {
  6158. next_mddev = (void*)2;
  6159. *pos = 0x10000;
  6160. }
  6161. spin_unlock(&all_mddevs_lock);
  6162. if (v != (void*)1)
  6163. mddev_put(mddev);
  6164. return next_mddev;
  6165. }
  6166. static void md_seq_stop(struct seq_file *seq, void *v)
  6167. {
  6168. struct mddev *mddev = v;
  6169. if (mddev && v != (void*)1 && v != (void*)2)
  6170. mddev_put(mddev);
  6171. }
  6172. static int md_seq_show(struct seq_file *seq, void *v)
  6173. {
  6174. struct mddev *mddev = v;
  6175. sector_t sectors;
  6176. struct md_rdev *rdev;
  6177. if (v == (void*)1) {
  6178. struct md_personality *pers;
  6179. seq_printf(seq, "Personalities : ");
  6180. spin_lock(&pers_lock);
  6181. list_for_each_entry(pers, &pers_list, list)
  6182. seq_printf(seq, "[%s] ", pers->name);
  6183. spin_unlock(&pers_lock);
  6184. seq_printf(seq, "\n");
  6185. seq->poll_event = atomic_read(&md_event_count);
  6186. return 0;
  6187. }
  6188. if (v == (void*)2) {
  6189. status_unused(seq);
  6190. return 0;
  6191. }
  6192. if (mddev_lock(mddev) < 0)
  6193. return -EINTR;
  6194. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6195. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6196. mddev->pers ? "" : "in");
  6197. if (mddev->pers) {
  6198. if (mddev->ro==1)
  6199. seq_printf(seq, " (read-only)");
  6200. if (mddev->ro==2)
  6201. seq_printf(seq, " (auto-read-only)");
  6202. seq_printf(seq, " %s", mddev->pers->name);
  6203. }
  6204. sectors = 0;
  6205. rdev_for_each(rdev, mddev) {
  6206. char b[BDEVNAME_SIZE];
  6207. seq_printf(seq, " %s[%d]",
  6208. bdevname(rdev->bdev,b), rdev->desc_nr);
  6209. if (test_bit(WriteMostly, &rdev->flags))
  6210. seq_printf(seq, "(W)");
  6211. if (test_bit(Faulty, &rdev->flags)) {
  6212. seq_printf(seq, "(F)");
  6213. continue;
  6214. }
  6215. if (rdev->raid_disk < 0)
  6216. seq_printf(seq, "(S)"); /* spare */
  6217. if (test_bit(Replacement, &rdev->flags))
  6218. seq_printf(seq, "(R)");
  6219. sectors += rdev->sectors;
  6220. }
  6221. if (!list_empty(&mddev->disks)) {
  6222. if (mddev->pers)
  6223. seq_printf(seq, "\n %llu blocks",
  6224. (unsigned long long)
  6225. mddev->array_sectors / 2);
  6226. else
  6227. seq_printf(seq, "\n %llu blocks",
  6228. (unsigned long long)sectors / 2);
  6229. }
  6230. if (mddev->persistent) {
  6231. if (mddev->major_version != 0 ||
  6232. mddev->minor_version != 90) {
  6233. seq_printf(seq," super %d.%d",
  6234. mddev->major_version,
  6235. mddev->minor_version);
  6236. }
  6237. } else if (mddev->external)
  6238. seq_printf(seq, " super external:%s",
  6239. mddev->metadata_type);
  6240. else
  6241. seq_printf(seq, " super non-persistent");
  6242. if (mddev->pers) {
  6243. mddev->pers->status(seq, mddev);
  6244. seq_printf(seq, "\n ");
  6245. if (mddev->pers->sync_request) {
  6246. if (mddev->curr_resync > 2) {
  6247. status_resync(seq, mddev);
  6248. seq_printf(seq, "\n ");
  6249. } else if (mddev->curr_resync >= 1)
  6250. seq_printf(seq, "\tresync=DELAYED\n ");
  6251. else if (mddev->recovery_cp < MaxSector)
  6252. seq_printf(seq, "\tresync=PENDING\n ");
  6253. }
  6254. } else
  6255. seq_printf(seq, "\n ");
  6256. bitmap_status(seq, mddev->bitmap);
  6257. seq_printf(seq, "\n");
  6258. }
  6259. mddev_unlock(mddev);
  6260. return 0;
  6261. }
  6262. static const struct seq_operations md_seq_ops = {
  6263. .start = md_seq_start,
  6264. .next = md_seq_next,
  6265. .stop = md_seq_stop,
  6266. .show = md_seq_show,
  6267. };
  6268. static int md_seq_open(struct inode *inode, struct file *file)
  6269. {
  6270. struct seq_file *seq;
  6271. int error;
  6272. error = seq_open(file, &md_seq_ops);
  6273. if (error)
  6274. return error;
  6275. seq = file->private_data;
  6276. seq->poll_event = atomic_read(&md_event_count);
  6277. return error;
  6278. }
  6279. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6280. {
  6281. struct seq_file *seq = filp->private_data;
  6282. int mask;
  6283. poll_wait(filp, &md_event_waiters, wait);
  6284. /* always allow read */
  6285. mask = POLLIN | POLLRDNORM;
  6286. if (seq->poll_event != atomic_read(&md_event_count))
  6287. mask |= POLLERR | POLLPRI;
  6288. return mask;
  6289. }
  6290. static const struct file_operations md_seq_fops = {
  6291. .owner = THIS_MODULE,
  6292. .open = md_seq_open,
  6293. .read = seq_read,
  6294. .llseek = seq_lseek,
  6295. .release = seq_release_private,
  6296. .poll = mdstat_poll,
  6297. };
  6298. int register_md_personality(struct md_personality *p)
  6299. {
  6300. spin_lock(&pers_lock);
  6301. list_add_tail(&p->list, &pers_list);
  6302. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6303. spin_unlock(&pers_lock);
  6304. return 0;
  6305. }
  6306. int unregister_md_personality(struct md_personality *p)
  6307. {
  6308. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6309. spin_lock(&pers_lock);
  6310. list_del_init(&p->list);
  6311. spin_unlock(&pers_lock);
  6312. return 0;
  6313. }
  6314. static int is_mddev_idle(struct mddev *mddev, int init)
  6315. {
  6316. struct md_rdev * rdev;
  6317. int idle;
  6318. int curr_events;
  6319. idle = 1;
  6320. rcu_read_lock();
  6321. rdev_for_each_rcu(rdev, mddev) {
  6322. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6323. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6324. (int)part_stat_read(&disk->part0, sectors[1]) -
  6325. atomic_read(&disk->sync_io);
  6326. /* sync IO will cause sync_io to increase before the disk_stats
  6327. * as sync_io is counted when a request starts, and
  6328. * disk_stats is counted when it completes.
  6329. * So resync activity will cause curr_events to be smaller than
  6330. * when there was no such activity.
  6331. * non-sync IO will cause disk_stat to increase without
  6332. * increasing sync_io so curr_events will (eventually)
  6333. * be larger than it was before. Once it becomes
  6334. * substantially larger, the test below will cause
  6335. * the array to appear non-idle, and resync will slow
  6336. * down.
  6337. * If there is a lot of outstanding resync activity when
  6338. * we set last_event to curr_events, then all that activity
  6339. * completing might cause the array to appear non-idle
  6340. * and resync will be slowed down even though there might
  6341. * not have been non-resync activity. This will only
  6342. * happen once though. 'last_events' will soon reflect
  6343. * the state where there is little or no outstanding
  6344. * resync requests, and further resync activity will
  6345. * always make curr_events less than last_events.
  6346. *
  6347. */
  6348. if (init || curr_events - rdev->last_events > 64) {
  6349. rdev->last_events = curr_events;
  6350. idle = 0;
  6351. }
  6352. }
  6353. rcu_read_unlock();
  6354. return idle;
  6355. }
  6356. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6357. {
  6358. /* another "blocks" (512byte) blocks have been synced */
  6359. atomic_sub(blocks, &mddev->recovery_active);
  6360. wake_up(&mddev->recovery_wait);
  6361. if (!ok) {
  6362. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6363. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6364. md_wakeup_thread(mddev->thread);
  6365. // stop recovery, signal do_sync ....
  6366. }
  6367. }
  6368. /* md_write_start(mddev, bi)
  6369. * If we need to update some array metadata (e.g. 'active' flag
  6370. * in superblock) before writing, schedule a superblock update
  6371. * and wait for it to complete.
  6372. */
  6373. void md_write_start(struct mddev *mddev, struct bio *bi)
  6374. {
  6375. int did_change = 0;
  6376. if (bio_data_dir(bi) != WRITE)
  6377. return;
  6378. BUG_ON(mddev->ro == 1);
  6379. if (mddev->ro == 2) {
  6380. /* need to switch to read/write */
  6381. mddev->ro = 0;
  6382. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6383. md_wakeup_thread(mddev->thread);
  6384. md_wakeup_thread(mddev->sync_thread);
  6385. did_change = 1;
  6386. }
  6387. atomic_inc(&mddev->writes_pending);
  6388. if (mddev->safemode == 1)
  6389. mddev->safemode = 0;
  6390. if (mddev->in_sync) {
  6391. spin_lock_irq(&mddev->write_lock);
  6392. if (mddev->in_sync) {
  6393. mddev->in_sync = 0;
  6394. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6395. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6396. md_wakeup_thread(mddev->thread);
  6397. did_change = 1;
  6398. }
  6399. spin_unlock_irq(&mddev->write_lock);
  6400. }
  6401. if (did_change)
  6402. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6403. wait_event(mddev->sb_wait,
  6404. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6405. }
  6406. void md_write_end(struct mddev *mddev)
  6407. {
  6408. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6409. if (mddev->safemode == 2)
  6410. md_wakeup_thread(mddev->thread);
  6411. else if (mddev->safemode_delay)
  6412. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6413. }
  6414. }
  6415. /* md_allow_write(mddev)
  6416. * Calling this ensures that the array is marked 'active' so that writes
  6417. * may proceed without blocking. It is important to call this before
  6418. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6419. * Must be called with mddev_lock held.
  6420. *
  6421. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6422. * is dropped, so return -EAGAIN after notifying userspace.
  6423. */
  6424. int md_allow_write(struct mddev *mddev)
  6425. {
  6426. if (!mddev->pers)
  6427. return 0;
  6428. if (mddev->ro)
  6429. return 0;
  6430. if (!mddev->pers->sync_request)
  6431. return 0;
  6432. spin_lock_irq(&mddev->write_lock);
  6433. if (mddev->in_sync) {
  6434. mddev->in_sync = 0;
  6435. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6436. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6437. if (mddev->safemode_delay &&
  6438. mddev->safemode == 0)
  6439. mddev->safemode = 1;
  6440. spin_unlock_irq(&mddev->write_lock);
  6441. md_update_sb(mddev, 0);
  6442. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6443. } else
  6444. spin_unlock_irq(&mddev->write_lock);
  6445. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6446. return -EAGAIN;
  6447. else
  6448. return 0;
  6449. }
  6450. EXPORT_SYMBOL_GPL(md_allow_write);
  6451. #define SYNC_MARKS 10
  6452. #define SYNC_MARK_STEP (3*HZ)
  6453. #define UPDATE_FREQUENCY (5*60*HZ)
  6454. void md_do_sync(struct md_thread *thread)
  6455. {
  6456. struct mddev *mddev = thread->mddev;
  6457. struct mddev *mddev2;
  6458. unsigned int currspeed = 0,
  6459. window;
  6460. sector_t max_sectors,j, io_sectors;
  6461. unsigned long mark[SYNC_MARKS];
  6462. unsigned long update_time;
  6463. sector_t mark_cnt[SYNC_MARKS];
  6464. int last_mark,m;
  6465. struct list_head *tmp;
  6466. sector_t last_check;
  6467. int skipped = 0;
  6468. struct md_rdev *rdev;
  6469. char *desc;
  6470. struct blk_plug plug;
  6471. /* just incase thread restarts... */
  6472. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6473. return;
  6474. if (mddev->ro) /* never try to sync a read-only array */
  6475. return;
  6476. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6477. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6478. desc = "data-check";
  6479. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6480. desc = "requested-resync";
  6481. else
  6482. desc = "resync";
  6483. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6484. desc = "reshape";
  6485. else
  6486. desc = "recovery";
  6487. /* we overload curr_resync somewhat here.
  6488. * 0 == not engaged in resync at all
  6489. * 2 == checking that there is no conflict with another sync
  6490. * 1 == like 2, but have yielded to allow conflicting resync to
  6491. * commense
  6492. * other == active in resync - this many blocks
  6493. *
  6494. * Before starting a resync we must have set curr_resync to
  6495. * 2, and then checked that every "conflicting" array has curr_resync
  6496. * less than ours. When we find one that is the same or higher
  6497. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6498. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6499. * This will mean we have to start checking from the beginning again.
  6500. *
  6501. */
  6502. do {
  6503. mddev->curr_resync = 2;
  6504. try_again:
  6505. if (kthread_should_stop())
  6506. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6507. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6508. goto skip;
  6509. for_each_mddev(mddev2, tmp) {
  6510. if (mddev2 == mddev)
  6511. continue;
  6512. if (!mddev->parallel_resync
  6513. && mddev2->curr_resync
  6514. && match_mddev_units(mddev, mddev2)) {
  6515. DEFINE_WAIT(wq);
  6516. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6517. /* arbitrarily yield */
  6518. mddev->curr_resync = 1;
  6519. wake_up(&resync_wait);
  6520. }
  6521. if (mddev > mddev2 && mddev->curr_resync == 1)
  6522. /* no need to wait here, we can wait the next
  6523. * time 'round when curr_resync == 2
  6524. */
  6525. continue;
  6526. /* We need to wait 'interruptible' so as not to
  6527. * contribute to the load average, and not to
  6528. * be caught by 'softlockup'
  6529. */
  6530. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6531. if (!kthread_should_stop() &&
  6532. mddev2->curr_resync >= mddev->curr_resync) {
  6533. printk(KERN_INFO "md: delaying %s of %s"
  6534. " until %s has finished (they"
  6535. " share one or more physical units)\n",
  6536. desc, mdname(mddev), mdname(mddev2));
  6537. mddev_put(mddev2);
  6538. if (signal_pending(current))
  6539. flush_signals(current);
  6540. schedule();
  6541. finish_wait(&resync_wait, &wq);
  6542. goto try_again;
  6543. }
  6544. finish_wait(&resync_wait, &wq);
  6545. }
  6546. }
  6547. } while (mddev->curr_resync < 2);
  6548. j = 0;
  6549. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6550. /* resync follows the size requested by the personality,
  6551. * which defaults to physical size, but can be virtual size
  6552. */
  6553. max_sectors = mddev->resync_max_sectors;
  6554. atomic64_set(&mddev->resync_mismatches, 0);
  6555. /* we don't use the checkpoint if there's a bitmap */
  6556. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6557. j = mddev->resync_min;
  6558. else if (!mddev->bitmap)
  6559. j = mddev->recovery_cp;
  6560. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6561. max_sectors = mddev->resync_max_sectors;
  6562. else {
  6563. /* recovery follows the physical size of devices */
  6564. max_sectors = mddev->dev_sectors;
  6565. j = MaxSector;
  6566. rcu_read_lock();
  6567. rdev_for_each_rcu(rdev, mddev)
  6568. if (rdev->raid_disk >= 0 &&
  6569. !test_bit(Faulty, &rdev->flags) &&
  6570. !test_bit(In_sync, &rdev->flags) &&
  6571. rdev->recovery_offset < j)
  6572. j = rdev->recovery_offset;
  6573. rcu_read_unlock();
  6574. }
  6575. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6576. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6577. " %d KB/sec/disk.\n", speed_min(mddev));
  6578. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6579. "(but not more than %d KB/sec) for %s.\n",
  6580. speed_max(mddev), desc);
  6581. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6582. io_sectors = 0;
  6583. for (m = 0; m < SYNC_MARKS; m++) {
  6584. mark[m] = jiffies;
  6585. mark_cnt[m] = io_sectors;
  6586. }
  6587. last_mark = 0;
  6588. mddev->resync_mark = mark[last_mark];
  6589. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6590. /*
  6591. * Tune reconstruction:
  6592. */
  6593. window = 32*(PAGE_SIZE/512);
  6594. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6595. window/2, (unsigned long long)max_sectors/2);
  6596. atomic_set(&mddev->recovery_active, 0);
  6597. last_check = 0;
  6598. if (j>2) {
  6599. printk(KERN_INFO
  6600. "md: resuming %s of %s from checkpoint.\n",
  6601. desc, mdname(mddev));
  6602. mddev->curr_resync = j;
  6603. } else
  6604. mddev->curr_resync = 3; /* no longer delayed */
  6605. mddev->curr_resync_completed = j;
  6606. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6607. md_new_event(mddev);
  6608. update_time = jiffies;
  6609. blk_start_plug(&plug);
  6610. while (j < max_sectors) {
  6611. sector_t sectors;
  6612. skipped = 0;
  6613. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6614. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6615. (mddev->curr_resync - mddev->curr_resync_completed)
  6616. > (max_sectors >> 4)) ||
  6617. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6618. (j - mddev->curr_resync_completed)*2
  6619. >= mddev->resync_max - mddev->curr_resync_completed
  6620. )) {
  6621. /* time to update curr_resync_completed */
  6622. wait_event(mddev->recovery_wait,
  6623. atomic_read(&mddev->recovery_active) == 0);
  6624. mddev->curr_resync_completed = j;
  6625. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6626. j > mddev->recovery_cp)
  6627. mddev->recovery_cp = j;
  6628. update_time = jiffies;
  6629. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6630. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6631. }
  6632. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6633. /* As this condition is controlled by user-space,
  6634. * we can block indefinitely, so use '_interruptible'
  6635. * to avoid triggering warnings.
  6636. */
  6637. flush_signals(current); /* just in case */
  6638. wait_event_interruptible(mddev->recovery_wait,
  6639. mddev->resync_max > j
  6640. || kthread_should_stop());
  6641. }
  6642. if (kthread_should_stop())
  6643. goto interrupted;
  6644. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6645. currspeed < speed_min(mddev));
  6646. if (sectors == 0) {
  6647. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6648. goto out;
  6649. }
  6650. if (!skipped) { /* actual IO requested */
  6651. io_sectors += sectors;
  6652. atomic_add(sectors, &mddev->recovery_active);
  6653. }
  6654. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6655. break;
  6656. j += sectors;
  6657. if (j > 2)
  6658. mddev->curr_resync = j;
  6659. mddev->curr_mark_cnt = io_sectors;
  6660. if (last_check == 0)
  6661. /* this is the earliest that rebuild will be
  6662. * visible in /proc/mdstat
  6663. */
  6664. md_new_event(mddev);
  6665. if (last_check + window > io_sectors || j == max_sectors)
  6666. continue;
  6667. last_check = io_sectors;
  6668. repeat:
  6669. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6670. /* step marks */
  6671. int next = (last_mark+1) % SYNC_MARKS;
  6672. mddev->resync_mark = mark[next];
  6673. mddev->resync_mark_cnt = mark_cnt[next];
  6674. mark[next] = jiffies;
  6675. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6676. last_mark = next;
  6677. }
  6678. if (kthread_should_stop())
  6679. goto interrupted;
  6680. /*
  6681. * this loop exits only if either when we are slower than
  6682. * the 'hard' speed limit, or the system was IO-idle for
  6683. * a jiffy.
  6684. * the system might be non-idle CPU-wise, but we only care
  6685. * about not overloading the IO subsystem. (things like an
  6686. * e2fsck being done on the RAID array should execute fast)
  6687. */
  6688. cond_resched();
  6689. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6690. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6691. if (currspeed > speed_min(mddev)) {
  6692. if ((currspeed > speed_max(mddev)) ||
  6693. !is_mddev_idle(mddev, 0)) {
  6694. msleep(500);
  6695. goto repeat;
  6696. }
  6697. }
  6698. }
  6699. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6700. /*
  6701. * this also signals 'finished resyncing' to md_stop
  6702. */
  6703. out:
  6704. blk_finish_plug(&plug);
  6705. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6706. /* tell personality that we are finished */
  6707. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6708. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6709. mddev->curr_resync > 2) {
  6710. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6711. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6712. if (mddev->curr_resync >= mddev->recovery_cp) {
  6713. printk(KERN_INFO
  6714. "md: checkpointing %s of %s.\n",
  6715. desc, mdname(mddev));
  6716. if (test_bit(MD_RECOVERY_ERROR,
  6717. &mddev->recovery))
  6718. mddev->recovery_cp =
  6719. mddev->curr_resync_completed;
  6720. else
  6721. mddev->recovery_cp =
  6722. mddev->curr_resync;
  6723. }
  6724. } else
  6725. mddev->recovery_cp = MaxSector;
  6726. } else {
  6727. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6728. mddev->curr_resync = MaxSector;
  6729. rcu_read_lock();
  6730. rdev_for_each_rcu(rdev, mddev)
  6731. if (rdev->raid_disk >= 0 &&
  6732. mddev->delta_disks >= 0 &&
  6733. !test_bit(Faulty, &rdev->flags) &&
  6734. !test_bit(In_sync, &rdev->flags) &&
  6735. rdev->recovery_offset < mddev->curr_resync)
  6736. rdev->recovery_offset = mddev->curr_resync;
  6737. rcu_read_unlock();
  6738. }
  6739. }
  6740. skip:
  6741. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6742. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6743. /* We completed so min/max setting can be forgotten if used. */
  6744. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6745. mddev->resync_min = 0;
  6746. mddev->resync_max = MaxSector;
  6747. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6748. mddev->resync_min = mddev->curr_resync_completed;
  6749. mddev->curr_resync = 0;
  6750. wake_up(&resync_wait);
  6751. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6752. md_wakeup_thread(mddev->thread);
  6753. return;
  6754. interrupted:
  6755. /*
  6756. * got a signal, exit.
  6757. */
  6758. printk(KERN_INFO
  6759. "md: md_do_sync() got signal ... exiting\n");
  6760. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6761. goto out;
  6762. }
  6763. EXPORT_SYMBOL_GPL(md_do_sync);
  6764. static int remove_and_add_spares(struct mddev *mddev)
  6765. {
  6766. struct md_rdev *rdev;
  6767. int spares = 0;
  6768. int removed = 0;
  6769. rdev_for_each(rdev, mddev)
  6770. if (rdev->raid_disk >= 0 &&
  6771. !test_bit(Blocked, &rdev->flags) &&
  6772. (test_bit(Faulty, &rdev->flags) ||
  6773. ! test_bit(In_sync, &rdev->flags)) &&
  6774. atomic_read(&rdev->nr_pending)==0) {
  6775. if (mddev->pers->hot_remove_disk(
  6776. mddev, rdev) == 0) {
  6777. sysfs_unlink_rdev(mddev, rdev);
  6778. rdev->raid_disk = -1;
  6779. removed++;
  6780. }
  6781. }
  6782. if (removed)
  6783. sysfs_notify(&mddev->kobj, NULL,
  6784. "degraded");
  6785. rdev_for_each(rdev, mddev) {
  6786. if (rdev->raid_disk >= 0 &&
  6787. !test_bit(In_sync, &rdev->flags) &&
  6788. !test_bit(Faulty, &rdev->flags))
  6789. spares++;
  6790. if (rdev->raid_disk < 0
  6791. && !test_bit(Faulty, &rdev->flags)) {
  6792. rdev->recovery_offset = 0;
  6793. if (mddev->pers->
  6794. hot_add_disk(mddev, rdev) == 0) {
  6795. if (sysfs_link_rdev(mddev, rdev))
  6796. /* failure here is OK */;
  6797. spares++;
  6798. md_new_event(mddev);
  6799. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6800. }
  6801. }
  6802. }
  6803. if (removed)
  6804. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6805. return spares;
  6806. }
  6807. static void reap_sync_thread(struct mddev *mddev)
  6808. {
  6809. struct md_rdev *rdev;
  6810. /* resync has finished, collect result */
  6811. md_unregister_thread(&mddev->sync_thread);
  6812. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6813. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6814. /* success...*/
  6815. /* activate any spares */
  6816. if (mddev->pers->spare_active(mddev)) {
  6817. sysfs_notify(&mddev->kobj, NULL,
  6818. "degraded");
  6819. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6820. }
  6821. }
  6822. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6823. mddev->pers->finish_reshape)
  6824. mddev->pers->finish_reshape(mddev);
  6825. /* If array is no-longer degraded, then any saved_raid_disk
  6826. * information must be scrapped. Also if any device is now
  6827. * In_sync we must scrape the saved_raid_disk for that device
  6828. * do the superblock for an incrementally recovered device
  6829. * written out.
  6830. */
  6831. rdev_for_each(rdev, mddev)
  6832. if (!mddev->degraded ||
  6833. test_bit(In_sync, &rdev->flags))
  6834. rdev->saved_raid_disk = -1;
  6835. md_update_sb(mddev, 1);
  6836. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6837. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6838. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6839. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6840. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6841. /* flag recovery needed just to double check */
  6842. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6843. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6844. md_new_event(mddev);
  6845. if (mddev->event_work.func)
  6846. queue_work(md_misc_wq, &mddev->event_work);
  6847. }
  6848. /*
  6849. * This routine is regularly called by all per-raid-array threads to
  6850. * deal with generic issues like resync and super-block update.
  6851. * Raid personalities that don't have a thread (linear/raid0) do not
  6852. * need this as they never do any recovery or update the superblock.
  6853. *
  6854. * It does not do any resync itself, but rather "forks" off other threads
  6855. * to do that as needed.
  6856. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6857. * "->recovery" and create a thread at ->sync_thread.
  6858. * When the thread finishes it sets MD_RECOVERY_DONE
  6859. * and wakeups up this thread which will reap the thread and finish up.
  6860. * This thread also removes any faulty devices (with nr_pending == 0).
  6861. *
  6862. * The overall approach is:
  6863. * 1/ if the superblock needs updating, update it.
  6864. * 2/ If a recovery thread is running, don't do anything else.
  6865. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6866. * 4/ If there are any faulty devices, remove them.
  6867. * 5/ If array is degraded, try to add spares devices
  6868. * 6/ If array has spares or is not in-sync, start a resync thread.
  6869. */
  6870. void md_check_recovery(struct mddev *mddev)
  6871. {
  6872. if (mddev->suspended)
  6873. return;
  6874. if (mddev->bitmap)
  6875. bitmap_daemon_work(mddev);
  6876. if (signal_pending(current)) {
  6877. if (mddev->pers->sync_request && !mddev->external) {
  6878. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6879. mdname(mddev));
  6880. mddev->safemode = 2;
  6881. }
  6882. flush_signals(current);
  6883. }
  6884. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6885. return;
  6886. if ( ! (
  6887. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6888. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6889. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6890. (mddev->external == 0 && mddev->safemode == 1) ||
  6891. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6892. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6893. ))
  6894. return;
  6895. if (mddev_trylock(mddev)) {
  6896. int spares = 0;
  6897. if (mddev->ro) {
  6898. /* Only thing we do on a ro array is remove
  6899. * failed devices.
  6900. */
  6901. struct md_rdev *rdev;
  6902. rdev_for_each(rdev, mddev)
  6903. if (rdev->raid_disk >= 0 &&
  6904. !test_bit(Blocked, &rdev->flags) &&
  6905. test_bit(Faulty, &rdev->flags) &&
  6906. atomic_read(&rdev->nr_pending)==0) {
  6907. if (mddev->pers->hot_remove_disk(
  6908. mddev, rdev) == 0) {
  6909. sysfs_unlink_rdev(mddev, rdev);
  6910. rdev->raid_disk = -1;
  6911. }
  6912. }
  6913. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6914. goto unlock;
  6915. }
  6916. if (!mddev->external) {
  6917. int did_change = 0;
  6918. spin_lock_irq(&mddev->write_lock);
  6919. if (mddev->safemode &&
  6920. !atomic_read(&mddev->writes_pending) &&
  6921. !mddev->in_sync &&
  6922. mddev->recovery_cp == MaxSector) {
  6923. mddev->in_sync = 1;
  6924. did_change = 1;
  6925. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6926. }
  6927. if (mddev->safemode == 1)
  6928. mddev->safemode = 0;
  6929. spin_unlock_irq(&mddev->write_lock);
  6930. if (did_change)
  6931. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6932. }
  6933. if (mddev->flags)
  6934. md_update_sb(mddev, 0);
  6935. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6936. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6937. /* resync/recovery still happening */
  6938. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6939. goto unlock;
  6940. }
  6941. if (mddev->sync_thread) {
  6942. reap_sync_thread(mddev);
  6943. goto unlock;
  6944. }
  6945. /* Set RUNNING before clearing NEEDED to avoid
  6946. * any transients in the value of "sync_action".
  6947. */
  6948. mddev->curr_resync_completed = 0;
  6949. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6950. /* Clear some bits that don't mean anything, but
  6951. * might be left set
  6952. */
  6953. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6954. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6955. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6956. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6957. goto unlock;
  6958. /* no recovery is running.
  6959. * remove any failed drives, then
  6960. * add spares if possible.
  6961. * Spares are also removed and re-added, to allow
  6962. * the personality to fail the re-add.
  6963. */
  6964. if (mddev->reshape_position != MaxSector) {
  6965. if (mddev->pers->check_reshape == NULL ||
  6966. mddev->pers->check_reshape(mddev) != 0)
  6967. /* Cannot proceed */
  6968. goto unlock;
  6969. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6970. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6971. } else if ((spares = remove_and_add_spares(mddev))) {
  6972. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6973. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6974. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6975. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6976. } else if (mddev->recovery_cp < MaxSector) {
  6977. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6978. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6979. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6980. /* nothing to be done ... */
  6981. goto unlock;
  6982. if (mddev->pers->sync_request) {
  6983. if (spares) {
  6984. /* We are adding a device or devices to an array
  6985. * which has the bitmap stored on all devices.
  6986. * So make sure all bitmap pages get written
  6987. */
  6988. bitmap_write_all(mddev->bitmap);
  6989. }
  6990. mddev->sync_thread = md_register_thread(md_do_sync,
  6991. mddev,
  6992. "resync");
  6993. if (!mddev->sync_thread) {
  6994. printk(KERN_ERR "%s: could not start resync"
  6995. " thread...\n",
  6996. mdname(mddev));
  6997. /* leave the spares where they are, it shouldn't hurt */
  6998. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6999. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7000. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7001. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7002. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7003. } else
  7004. md_wakeup_thread(mddev->sync_thread);
  7005. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7006. md_new_event(mddev);
  7007. }
  7008. unlock:
  7009. if (!mddev->sync_thread) {
  7010. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7011. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7012. &mddev->recovery))
  7013. if (mddev->sysfs_action)
  7014. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7015. }
  7016. mddev_unlock(mddev);
  7017. }
  7018. }
  7019. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7020. {
  7021. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7022. wait_event_timeout(rdev->blocked_wait,
  7023. !test_bit(Blocked, &rdev->flags) &&
  7024. !test_bit(BlockedBadBlocks, &rdev->flags),
  7025. msecs_to_jiffies(5000));
  7026. rdev_dec_pending(rdev, mddev);
  7027. }
  7028. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7029. void md_finish_reshape(struct mddev *mddev)
  7030. {
  7031. /* called be personality module when reshape completes. */
  7032. struct md_rdev *rdev;
  7033. rdev_for_each(rdev, mddev) {
  7034. if (rdev->data_offset > rdev->new_data_offset)
  7035. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7036. else
  7037. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7038. rdev->data_offset = rdev->new_data_offset;
  7039. }
  7040. }
  7041. EXPORT_SYMBOL(md_finish_reshape);
  7042. /* Bad block management.
  7043. * We can record which blocks on each device are 'bad' and so just
  7044. * fail those blocks, or that stripe, rather than the whole device.
  7045. * Entries in the bad-block table are 64bits wide. This comprises:
  7046. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7047. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7048. * A 'shift' can be set so that larger blocks are tracked and
  7049. * consequently larger devices can be covered.
  7050. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7051. *
  7052. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7053. * might need to retry if it is very unlucky.
  7054. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7055. * so we use the write_seqlock_irq variant.
  7056. *
  7057. * When looking for a bad block we specify a range and want to
  7058. * know if any block in the range is bad. So we binary-search
  7059. * to the last range that starts at-or-before the given endpoint,
  7060. * (or "before the sector after the target range")
  7061. * then see if it ends after the given start.
  7062. * We return
  7063. * 0 if there are no known bad blocks in the range
  7064. * 1 if there are known bad block which are all acknowledged
  7065. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7066. * plus the start/length of the first bad section we overlap.
  7067. */
  7068. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7069. sector_t *first_bad, int *bad_sectors)
  7070. {
  7071. int hi;
  7072. int lo;
  7073. u64 *p = bb->page;
  7074. int rv;
  7075. sector_t target = s + sectors;
  7076. unsigned seq;
  7077. if (bb->shift > 0) {
  7078. /* round the start down, and the end up */
  7079. s >>= bb->shift;
  7080. target += (1<<bb->shift) - 1;
  7081. target >>= bb->shift;
  7082. sectors = target - s;
  7083. }
  7084. /* 'target' is now the first block after the bad range */
  7085. retry:
  7086. seq = read_seqbegin(&bb->lock);
  7087. lo = 0;
  7088. rv = 0;
  7089. hi = bb->count;
  7090. /* Binary search between lo and hi for 'target'
  7091. * i.e. for the last range that starts before 'target'
  7092. */
  7093. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7094. * are known not to be the last range before target.
  7095. * VARIANT: hi-lo is the number of possible
  7096. * ranges, and decreases until it reaches 1
  7097. */
  7098. while (hi - lo > 1) {
  7099. int mid = (lo + hi) / 2;
  7100. sector_t a = BB_OFFSET(p[mid]);
  7101. if (a < target)
  7102. /* This could still be the one, earlier ranges
  7103. * could not. */
  7104. lo = mid;
  7105. else
  7106. /* This and later ranges are definitely out. */
  7107. hi = mid;
  7108. }
  7109. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7110. if (hi > lo) {
  7111. /* need to check all range that end after 's' to see if
  7112. * any are unacknowledged.
  7113. */
  7114. while (lo >= 0 &&
  7115. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7116. if (BB_OFFSET(p[lo]) < target) {
  7117. /* starts before the end, and finishes after
  7118. * the start, so they must overlap
  7119. */
  7120. if (rv != -1 && BB_ACK(p[lo]))
  7121. rv = 1;
  7122. else
  7123. rv = -1;
  7124. *first_bad = BB_OFFSET(p[lo]);
  7125. *bad_sectors = BB_LEN(p[lo]);
  7126. }
  7127. lo--;
  7128. }
  7129. }
  7130. if (read_seqretry(&bb->lock, seq))
  7131. goto retry;
  7132. return rv;
  7133. }
  7134. EXPORT_SYMBOL_GPL(md_is_badblock);
  7135. /*
  7136. * Add a range of bad blocks to the table.
  7137. * This might extend the table, or might contract it
  7138. * if two adjacent ranges can be merged.
  7139. * We binary-search to find the 'insertion' point, then
  7140. * decide how best to handle it.
  7141. */
  7142. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7143. int acknowledged)
  7144. {
  7145. u64 *p;
  7146. int lo, hi;
  7147. int rv = 1;
  7148. if (bb->shift < 0)
  7149. /* badblocks are disabled */
  7150. return 0;
  7151. if (bb->shift) {
  7152. /* round the start down, and the end up */
  7153. sector_t next = s + sectors;
  7154. s >>= bb->shift;
  7155. next += (1<<bb->shift) - 1;
  7156. next >>= bb->shift;
  7157. sectors = next - s;
  7158. }
  7159. write_seqlock_irq(&bb->lock);
  7160. p = bb->page;
  7161. lo = 0;
  7162. hi = bb->count;
  7163. /* Find the last range that starts at-or-before 's' */
  7164. while (hi - lo > 1) {
  7165. int mid = (lo + hi) / 2;
  7166. sector_t a = BB_OFFSET(p[mid]);
  7167. if (a <= s)
  7168. lo = mid;
  7169. else
  7170. hi = mid;
  7171. }
  7172. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7173. hi = lo;
  7174. if (hi > lo) {
  7175. /* we found a range that might merge with the start
  7176. * of our new range
  7177. */
  7178. sector_t a = BB_OFFSET(p[lo]);
  7179. sector_t e = a + BB_LEN(p[lo]);
  7180. int ack = BB_ACK(p[lo]);
  7181. if (e >= s) {
  7182. /* Yes, we can merge with a previous range */
  7183. if (s == a && s + sectors >= e)
  7184. /* new range covers old */
  7185. ack = acknowledged;
  7186. else
  7187. ack = ack && acknowledged;
  7188. if (e < s + sectors)
  7189. e = s + sectors;
  7190. if (e - a <= BB_MAX_LEN) {
  7191. p[lo] = BB_MAKE(a, e-a, ack);
  7192. s = e;
  7193. } else {
  7194. /* does not all fit in one range,
  7195. * make p[lo] maximal
  7196. */
  7197. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7198. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7199. s = a + BB_MAX_LEN;
  7200. }
  7201. sectors = e - s;
  7202. }
  7203. }
  7204. if (sectors && hi < bb->count) {
  7205. /* 'hi' points to the first range that starts after 's'.
  7206. * Maybe we can merge with the start of that range */
  7207. sector_t a = BB_OFFSET(p[hi]);
  7208. sector_t e = a + BB_LEN(p[hi]);
  7209. int ack = BB_ACK(p[hi]);
  7210. if (a <= s + sectors) {
  7211. /* merging is possible */
  7212. if (e <= s + sectors) {
  7213. /* full overlap */
  7214. e = s + sectors;
  7215. ack = acknowledged;
  7216. } else
  7217. ack = ack && acknowledged;
  7218. a = s;
  7219. if (e - a <= BB_MAX_LEN) {
  7220. p[hi] = BB_MAKE(a, e-a, ack);
  7221. s = e;
  7222. } else {
  7223. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7224. s = a + BB_MAX_LEN;
  7225. }
  7226. sectors = e - s;
  7227. lo = hi;
  7228. hi++;
  7229. }
  7230. }
  7231. if (sectors == 0 && hi < bb->count) {
  7232. /* we might be able to combine lo and hi */
  7233. /* Note: 's' is at the end of 'lo' */
  7234. sector_t a = BB_OFFSET(p[hi]);
  7235. int lolen = BB_LEN(p[lo]);
  7236. int hilen = BB_LEN(p[hi]);
  7237. int newlen = lolen + hilen - (s - a);
  7238. if (s >= a && newlen < BB_MAX_LEN) {
  7239. /* yes, we can combine them */
  7240. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7241. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7242. memmove(p + hi, p + hi + 1,
  7243. (bb->count - hi - 1) * 8);
  7244. bb->count--;
  7245. }
  7246. }
  7247. while (sectors) {
  7248. /* didn't merge (it all).
  7249. * Need to add a range just before 'hi' */
  7250. if (bb->count >= MD_MAX_BADBLOCKS) {
  7251. /* No room for more */
  7252. rv = 0;
  7253. break;
  7254. } else {
  7255. int this_sectors = sectors;
  7256. memmove(p + hi + 1, p + hi,
  7257. (bb->count - hi) * 8);
  7258. bb->count++;
  7259. if (this_sectors > BB_MAX_LEN)
  7260. this_sectors = BB_MAX_LEN;
  7261. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7262. sectors -= this_sectors;
  7263. s += this_sectors;
  7264. }
  7265. }
  7266. bb->changed = 1;
  7267. if (!acknowledged)
  7268. bb->unacked_exist = 1;
  7269. write_sequnlock_irq(&bb->lock);
  7270. return rv;
  7271. }
  7272. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7273. int is_new)
  7274. {
  7275. int rv;
  7276. if (is_new)
  7277. s += rdev->new_data_offset;
  7278. else
  7279. s += rdev->data_offset;
  7280. rv = md_set_badblocks(&rdev->badblocks,
  7281. s, sectors, 0);
  7282. if (rv) {
  7283. /* Make sure they get written out promptly */
  7284. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7285. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7286. md_wakeup_thread(rdev->mddev->thread);
  7287. }
  7288. return rv;
  7289. }
  7290. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7291. /*
  7292. * Remove a range of bad blocks from the table.
  7293. * This may involve extending the table if we spilt a region,
  7294. * but it must not fail. So if the table becomes full, we just
  7295. * drop the remove request.
  7296. */
  7297. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7298. {
  7299. u64 *p;
  7300. int lo, hi;
  7301. sector_t target = s + sectors;
  7302. int rv = 0;
  7303. if (bb->shift > 0) {
  7304. /* When clearing we round the start up and the end down.
  7305. * This should not matter as the shift should align with
  7306. * the block size and no rounding should ever be needed.
  7307. * However it is better the think a block is bad when it
  7308. * isn't than to think a block is not bad when it is.
  7309. */
  7310. s += (1<<bb->shift) - 1;
  7311. s >>= bb->shift;
  7312. target >>= bb->shift;
  7313. sectors = target - s;
  7314. }
  7315. write_seqlock_irq(&bb->lock);
  7316. p = bb->page;
  7317. lo = 0;
  7318. hi = bb->count;
  7319. /* Find the last range that starts before 'target' */
  7320. while (hi - lo > 1) {
  7321. int mid = (lo + hi) / 2;
  7322. sector_t a = BB_OFFSET(p[mid]);
  7323. if (a < target)
  7324. lo = mid;
  7325. else
  7326. hi = mid;
  7327. }
  7328. if (hi > lo) {
  7329. /* p[lo] is the last range that could overlap the
  7330. * current range. Earlier ranges could also overlap,
  7331. * but only this one can overlap the end of the range.
  7332. */
  7333. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7334. /* Partial overlap, leave the tail of this range */
  7335. int ack = BB_ACK(p[lo]);
  7336. sector_t a = BB_OFFSET(p[lo]);
  7337. sector_t end = a + BB_LEN(p[lo]);
  7338. if (a < s) {
  7339. /* we need to split this range */
  7340. if (bb->count >= MD_MAX_BADBLOCKS) {
  7341. rv = 0;
  7342. goto out;
  7343. }
  7344. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7345. bb->count++;
  7346. p[lo] = BB_MAKE(a, s-a, ack);
  7347. lo++;
  7348. }
  7349. p[lo] = BB_MAKE(target, end - target, ack);
  7350. /* there is no longer an overlap */
  7351. hi = lo;
  7352. lo--;
  7353. }
  7354. while (lo >= 0 &&
  7355. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7356. /* This range does overlap */
  7357. if (BB_OFFSET(p[lo]) < s) {
  7358. /* Keep the early parts of this range. */
  7359. int ack = BB_ACK(p[lo]);
  7360. sector_t start = BB_OFFSET(p[lo]);
  7361. p[lo] = BB_MAKE(start, s - start, ack);
  7362. /* now low doesn't overlap, so.. */
  7363. break;
  7364. }
  7365. lo--;
  7366. }
  7367. /* 'lo' is strictly before, 'hi' is strictly after,
  7368. * anything between needs to be discarded
  7369. */
  7370. if (hi - lo > 1) {
  7371. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7372. bb->count -= (hi - lo - 1);
  7373. }
  7374. }
  7375. bb->changed = 1;
  7376. out:
  7377. write_sequnlock_irq(&bb->lock);
  7378. return rv;
  7379. }
  7380. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7381. int is_new)
  7382. {
  7383. if (is_new)
  7384. s += rdev->new_data_offset;
  7385. else
  7386. s += rdev->data_offset;
  7387. return md_clear_badblocks(&rdev->badblocks,
  7388. s, sectors);
  7389. }
  7390. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7391. /*
  7392. * Acknowledge all bad blocks in a list.
  7393. * This only succeeds if ->changed is clear. It is used by
  7394. * in-kernel metadata updates
  7395. */
  7396. void md_ack_all_badblocks(struct badblocks *bb)
  7397. {
  7398. if (bb->page == NULL || bb->changed)
  7399. /* no point even trying */
  7400. return;
  7401. write_seqlock_irq(&bb->lock);
  7402. if (bb->changed == 0 && bb->unacked_exist) {
  7403. u64 *p = bb->page;
  7404. int i;
  7405. for (i = 0; i < bb->count ; i++) {
  7406. if (!BB_ACK(p[i])) {
  7407. sector_t start = BB_OFFSET(p[i]);
  7408. int len = BB_LEN(p[i]);
  7409. p[i] = BB_MAKE(start, len, 1);
  7410. }
  7411. }
  7412. bb->unacked_exist = 0;
  7413. }
  7414. write_sequnlock_irq(&bb->lock);
  7415. }
  7416. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7417. /* sysfs access to bad-blocks list.
  7418. * We present two files.
  7419. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7420. * are recorded as bad. The list is truncated to fit within
  7421. * the one-page limit of sysfs.
  7422. * Writing "sector length" to this file adds an acknowledged
  7423. * bad block list.
  7424. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7425. * been acknowledged. Writing to this file adds bad blocks
  7426. * without acknowledging them. This is largely for testing.
  7427. */
  7428. static ssize_t
  7429. badblocks_show(struct badblocks *bb, char *page, int unack)
  7430. {
  7431. size_t len;
  7432. int i;
  7433. u64 *p = bb->page;
  7434. unsigned seq;
  7435. if (bb->shift < 0)
  7436. return 0;
  7437. retry:
  7438. seq = read_seqbegin(&bb->lock);
  7439. len = 0;
  7440. i = 0;
  7441. while (len < PAGE_SIZE && i < bb->count) {
  7442. sector_t s = BB_OFFSET(p[i]);
  7443. unsigned int length = BB_LEN(p[i]);
  7444. int ack = BB_ACK(p[i]);
  7445. i++;
  7446. if (unack && ack)
  7447. continue;
  7448. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7449. (unsigned long long)s << bb->shift,
  7450. length << bb->shift);
  7451. }
  7452. if (unack && len == 0)
  7453. bb->unacked_exist = 0;
  7454. if (read_seqretry(&bb->lock, seq))
  7455. goto retry;
  7456. return len;
  7457. }
  7458. #define DO_DEBUG 1
  7459. static ssize_t
  7460. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7461. {
  7462. unsigned long long sector;
  7463. int length;
  7464. char newline;
  7465. #ifdef DO_DEBUG
  7466. /* Allow clearing via sysfs *only* for testing/debugging.
  7467. * Normally only a successful write may clear a badblock
  7468. */
  7469. int clear = 0;
  7470. if (page[0] == '-') {
  7471. clear = 1;
  7472. page++;
  7473. }
  7474. #endif /* DO_DEBUG */
  7475. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7476. case 3:
  7477. if (newline != '\n')
  7478. return -EINVAL;
  7479. case 2:
  7480. if (length <= 0)
  7481. return -EINVAL;
  7482. break;
  7483. default:
  7484. return -EINVAL;
  7485. }
  7486. #ifdef DO_DEBUG
  7487. if (clear) {
  7488. md_clear_badblocks(bb, sector, length);
  7489. return len;
  7490. }
  7491. #endif /* DO_DEBUG */
  7492. if (md_set_badblocks(bb, sector, length, !unack))
  7493. return len;
  7494. else
  7495. return -ENOSPC;
  7496. }
  7497. static int md_notify_reboot(struct notifier_block *this,
  7498. unsigned long code, void *x)
  7499. {
  7500. struct list_head *tmp;
  7501. struct mddev *mddev;
  7502. int need_delay = 0;
  7503. for_each_mddev(mddev, tmp) {
  7504. if (mddev_trylock(mddev)) {
  7505. if (mddev->pers)
  7506. __md_stop_writes(mddev);
  7507. mddev->safemode = 2;
  7508. mddev_unlock(mddev);
  7509. }
  7510. need_delay = 1;
  7511. }
  7512. /*
  7513. * certain more exotic SCSI devices are known to be
  7514. * volatile wrt too early system reboots. While the
  7515. * right place to handle this issue is the given
  7516. * driver, we do want to have a safe RAID driver ...
  7517. */
  7518. if (need_delay)
  7519. mdelay(1000*1);
  7520. return NOTIFY_DONE;
  7521. }
  7522. static struct notifier_block md_notifier = {
  7523. .notifier_call = md_notify_reboot,
  7524. .next = NULL,
  7525. .priority = INT_MAX, /* before any real devices */
  7526. };
  7527. static void md_geninit(void)
  7528. {
  7529. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7530. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7531. }
  7532. static int __init md_init(void)
  7533. {
  7534. int ret = -ENOMEM;
  7535. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7536. if (!md_wq)
  7537. goto err_wq;
  7538. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7539. if (!md_misc_wq)
  7540. goto err_misc_wq;
  7541. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7542. goto err_md;
  7543. if ((ret = register_blkdev(0, "mdp")) < 0)
  7544. goto err_mdp;
  7545. mdp_major = ret;
  7546. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7547. md_probe, NULL, NULL);
  7548. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7549. md_probe, NULL, NULL);
  7550. register_reboot_notifier(&md_notifier);
  7551. raid_table_header = register_sysctl_table(raid_root_table);
  7552. md_geninit();
  7553. return 0;
  7554. err_mdp:
  7555. unregister_blkdev(MD_MAJOR, "md");
  7556. err_md:
  7557. destroy_workqueue(md_misc_wq);
  7558. err_misc_wq:
  7559. destroy_workqueue(md_wq);
  7560. err_wq:
  7561. return ret;
  7562. }
  7563. #ifndef MODULE
  7564. /*
  7565. * Searches all registered partitions for autorun RAID arrays
  7566. * at boot time.
  7567. */
  7568. static LIST_HEAD(all_detected_devices);
  7569. struct detected_devices_node {
  7570. struct list_head list;
  7571. dev_t dev;
  7572. };
  7573. void md_autodetect_dev(dev_t dev)
  7574. {
  7575. struct detected_devices_node *node_detected_dev;
  7576. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7577. if (node_detected_dev) {
  7578. node_detected_dev->dev = dev;
  7579. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7580. } else {
  7581. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7582. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7583. }
  7584. }
  7585. static void autostart_arrays(int part)
  7586. {
  7587. struct md_rdev *rdev;
  7588. struct detected_devices_node *node_detected_dev;
  7589. dev_t dev;
  7590. int i_scanned, i_passed;
  7591. i_scanned = 0;
  7592. i_passed = 0;
  7593. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7594. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7595. i_scanned++;
  7596. node_detected_dev = list_entry(all_detected_devices.next,
  7597. struct detected_devices_node, list);
  7598. list_del(&node_detected_dev->list);
  7599. dev = node_detected_dev->dev;
  7600. kfree(node_detected_dev);
  7601. rdev = md_import_device(dev,0, 90);
  7602. if (IS_ERR(rdev))
  7603. continue;
  7604. if (test_bit(Faulty, &rdev->flags)) {
  7605. MD_BUG();
  7606. continue;
  7607. }
  7608. set_bit(AutoDetected, &rdev->flags);
  7609. list_add(&rdev->same_set, &pending_raid_disks);
  7610. i_passed++;
  7611. }
  7612. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7613. i_scanned, i_passed);
  7614. autorun_devices(part);
  7615. }
  7616. #endif /* !MODULE */
  7617. static __exit void md_exit(void)
  7618. {
  7619. struct mddev *mddev;
  7620. struct list_head *tmp;
  7621. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7622. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7623. unregister_blkdev(MD_MAJOR,"md");
  7624. unregister_blkdev(mdp_major, "mdp");
  7625. unregister_reboot_notifier(&md_notifier);
  7626. unregister_sysctl_table(raid_table_header);
  7627. remove_proc_entry("mdstat", NULL);
  7628. for_each_mddev(mddev, tmp) {
  7629. export_array(mddev);
  7630. mddev->hold_active = 0;
  7631. }
  7632. destroy_workqueue(md_misc_wq);
  7633. destroy_workqueue(md_wq);
  7634. }
  7635. subsys_initcall(md_init);
  7636. module_exit(md_exit)
  7637. static int get_ro(char *buffer, struct kernel_param *kp)
  7638. {
  7639. return sprintf(buffer, "%d", start_readonly);
  7640. }
  7641. static int set_ro(const char *val, struct kernel_param *kp)
  7642. {
  7643. char *e;
  7644. int num = simple_strtoul(val, &e, 10);
  7645. if (*val && (*e == '\0' || *e == '\n')) {
  7646. start_readonly = num;
  7647. return 0;
  7648. }
  7649. return -EINVAL;
  7650. }
  7651. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7652. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7653. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7654. EXPORT_SYMBOL(register_md_personality);
  7655. EXPORT_SYMBOL(unregister_md_personality);
  7656. EXPORT_SYMBOL(md_error);
  7657. EXPORT_SYMBOL(md_done_sync);
  7658. EXPORT_SYMBOL(md_write_start);
  7659. EXPORT_SYMBOL(md_write_end);
  7660. EXPORT_SYMBOL(md_register_thread);
  7661. EXPORT_SYMBOL(md_unregister_thread);
  7662. EXPORT_SYMBOL(md_wakeup_thread);
  7663. EXPORT_SYMBOL(md_check_recovery);
  7664. MODULE_LICENSE("GPL");
  7665. MODULE_DESCRIPTION("MD RAID framework");
  7666. MODULE_ALIAS("md");
  7667. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);