greth.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640
  1. /*
  2. * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
  3. *
  4. * 2005-2009 (c) Aeroflex Gaisler AB
  5. *
  6. * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
  7. * available in the GRLIB VHDL IP core library.
  8. *
  9. * Full documentation of both cores can be found here:
  10. * http://www.gaisler.com/products/grlib/grip.pdf
  11. *
  12. * The Gigabit version supports scatter/gather DMA, any alignment of
  13. * buffers and checksum offloading.
  14. *
  15. * This program is free software; you can redistribute it and/or modify it
  16. * under the terms of the GNU General Public License as published by the
  17. * Free Software Foundation; either version 2 of the License, or (at your
  18. * option) any later version.
  19. *
  20. * Contributors: Kristoffer Glembo
  21. * Daniel Hellstrom
  22. * Marko Isomaki
  23. */
  24. #include <linux/module.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/init.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/io.h>
  32. #include <linux/crc32.h>
  33. #include <linux/mii.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_platform.h>
  36. #include <linux/slab.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/byteorder.h>
  39. #ifdef CONFIG_SPARC
  40. #include <asm/idprom.h>
  41. #endif
  42. #include "greth.h"
  43. #define GRETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_DRV | \
  45. NETIF_MSG_PROBE | \
  46. NETIF_MSG_LINK | \
  47. NETIF_MSG_IFDOWN | \
  48. NETIF_MSG_IFUP | \
  49. NETIF_MSG_RX_ERR | \
  50. NETIF_MSG_TX_ERR)
  51. static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
  52. module_param(greth_debug, int, 0);
  53. MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
  54. /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  55. static int macaddr[6];
  56. module_param_array(macaddr, int, NULL, 0);
  57. MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
  58. static int greth_edcl = 1;
  59. module_param(greth_edcl, int, 0);
  60. MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
  61. static int greth_open(struct net_device *dev);
  62. static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
  63. struct net_device *dev);
  64. static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
  65. struct net_device *dev);
  66. static int greth_rx(struct net_device *dev, int limit);
  67. static int greth_rx_gbit(struct net_device *dev, int limit);
  68. static void greth_clean_tx(struct net_device *dev);
  69. static void greth_clean_tx_gbit(struct net_device *dev);
  70. static irqreturn_t greth_interrupt(int irq, void *dev_id);
  71. static int greth_close(struct net_device *dev);
  72. static int greth_set_mac_add(struct net_device *dev, void *p);
  73. static void greth_set_multicast_list(struct net_device *dev);
  74. #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
  75. #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
  76. #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
  77. #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
  78. #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
  79. #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
  80. #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
  81. static void greth_print_rx_packet(void *addr, int len)
  82. {
  83. print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
  84. addr, len, true);
  85. }
  86. static void greth_print_tx_packet(struct sk_buff *skb)
  87. {
  88. int i;
  89. int length;
  90. if (skb_shinfo(skb)->nr_frags == 0)
  91. length = skb->len;
  92. else
  93. length = skb_headlen(skb);
  94. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  95. skb->data, length, true);
  96. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  97. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  98. phys_to_virt(page_to_phys(skb_shinfo(skb)->frags[i].page)) +
  99. skb_shinfo(skb)->frags[i].page_offset,
  100. length, true);
  101. }
  102. }
  103. static inline void greth_enable_tx(struct greth_private *greth)
  104. {
  105. wmb();
  106. GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
  107. }
  108. static inline void greth_disable_tx(struct greth_private *greth)
  109. {
  110. GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
  111. }
  112. static inline void greth_enable_rx(struct greth_private *greth)
  113. {
  114. wmb();
  115. GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
  116. }
  117. static inline void greth_disable_rx(struct greth_private *greth)
  118. {
  119. GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
  120. }
  121. static inline void greth_enable_irqs(struct greth_private *greth)
  122. {
  123. GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
  124. }
  125. static inline void greth_disable_irqs(struct greth_private *greth)
  126. {
  127. GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
  128. }
  129. static inline void greth_write_bd(u32 *bd, u32 val)
  130. {
  131. __raw_writel(cpu_to_be32(val), bd);
  132. }
  133. static inline u32 greth_read_bd(u32 *bd)
  134. {
  135. return be32_to_cpu(__raw_readl(bd));
  136. }
  137. static void greth_clean_rings(struct greth_private *greth)
  138. {
  139. int i;
  140. struct greth_bd *rx_bdp = greth->rx_bd_base;
  141. struct greth_bd *tx_bdp = greth->tx_bd_base;
  142. if (greth->gbit_mac) {
  143. /* Free and unmap RX buffers */
  144. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  145. if (greth->rx_skbuff[i] != NULL) {
  146. dev_kfree_skb(greth->rx_skbuff[i]);
  147. dma_unmap_single(greth->dev,
  148. greth_read_bd(&rx_bdp->addr),
  149. MAX_FRAME_SIZE+NET_IP_ALIGN,
  150. DMA_FROM_DEVICE);
  151. }
  152. }
  153. /* TX buffers */
  154. while (greth->tx_free < GRETH_TXBD_NUM) {
  155. struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
  156. int nr_frags = skb_shinfo(skb)->nr_frags;
  157. tx_bdp = greth->tx_bd_base + greth->tx_last;
  158. greth->tx_last = NEXT_TX(greth->tx_last);
  159. dma_unmap_single(greth->dev,
  160. greth_read_bd(&tx_bdp->addr),
  161. skb_headlen(skb),
  162. DMA_TO_DEVICE);
  163. for (i = 0; i < nr_frags; i++) {
  164. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  165. tx_bdp = greth->tx_bd_base + greth->tx_last;
  166. dma_unmap_page(greth->dev,
  167. greth_read_bd(&tx_bdp->addr),
  168. frag->size,
  169. DMA_TO_DEVICE);
  170. greth->tx_last = NEXT_TX(greth->tx_last);
  171. }
  172. greth->tx_free += nr_frags+1;
  173. dev_kfree_skb(skb);
  174. }
  175. } else { /* 10/100 Mbps MAC */
  176. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  177. kfree(greth->rx_bufs[i]);
  178. dma_unmap_single(greth->dev,
  179. greth_read_bd(&rx_bdp->addr),
  180. MAX_FRAME_SIZE,
  181. DMA_FROM_DEVICE);
  182. }
  183. for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
  184. kfree(greth->tx_bufs[i]);
  185. dma_unmap_single(greth->dev,
  186. greth_read_bd(&tx_bdp->addr),
  187. MAX_FRAME_SIZE,
  188. DMA_TO_DEVICE);
  189. }
  190. }
  191. }
  192. static int greth_init_rings(struct greth_private *greth)
  193. {
  194. struct sk_buff *skb;
  195. struct greth_bd *rx_bd, *tx_bd;
  196. u32 dma_addr;
  197. int i;
  198. rx_bd = greth->rx_bd_base;
  199. tx_bd = greth->tx_bd_base;
  200. /* Initialize descriptor rings and buffers */
  201. if (greth->gbit_mac) {
  202. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  203. skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
  204. if (skb == NULL) {
  205. if (netif_msg_ifup(greth))
  206. dev_err(greth->dev, "Error allocating DMA ring.\n");
  207. goto cleanup;
  208. }
  209. skb_reserve(skb, NET_IP_ALIGN);
  210. dma_addr = dma_map_single(greth->dev,
  211. skb->data,
  212. MAX_FRAME_SIZE+NET_IP_ALIGN,
  213. DMA_FROM_DEVICE);
  214. if (dma_mapping_error(greth->dev, dma_addr)) {
  215. if (netif_msg_ifup(greth))
  216. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  217. goto cleanup;
  218. }
  219. greth->rx_skbuff[i] = skb;
  220. greth_write_bd(&rx_bd[i].addr, dma_addr);
  221. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  222. }
  223. } else {
  224. /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
  225. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  226. greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  227. if (greth->rx_bufs[i] == NULL) {
  228. if (netif_msg_ifup(greth))
  229. dev_err(greth->dev, "Error allocating DMA ring.\n");
  230. goto cleanup;
  231. }
  232. dma_addr = dma_map_single(greth->dev,
  233. greth->rx_bufs[i],
  234. MAX_FRAME_SIZE,
  235. DMA_FROM_DEVICE);
  236. if (dma_mapping_error(greth->dev, dma_addr)) {
  237. if (netif_msg_ifup(greth))
  238. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  239. goto cleanup;
  240. }
  241. greth_write_bd(&rx_bd[i].addr, dma_addr);
  242. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  243. }
  244. for (i = 0; i < GRETH_TXBD_NUM; i++) {
  245. greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  246. if (greth->tx_bufs[i] == NULL) {
  247. if (netif_msg_ifup(greth))
  248. dev_err(greth->dev, "Error allocating DMA ring.\n");
  249. goto cleanup;
  250. }
  251. dma_addr = dma_map_single(greth->dev,
  252. greth->tx_bufs[i],
  253. MAX_FRAME_SIZE,
  254. DMA_TO_DEVICE);
  255. if (dma_mapping_error(greth->dev, dma_addr)) {
  256. if (netif_msg_ifup(greth))
  257. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  258. goto cleanup;
  259. }
  260. greth_write_bd(&tx_bd[i].addr, dma_addr);
  261. greth_write_bd(&tx_bd[i].stat, 0);
  262. }
  263. }
  264. greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
  265. greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
  266. /* Initialize pointers. */
  267. greth->rx_cur = 0;
  268. greth->tx_next = 0;
  269. greth->tx_last = 0;
  270. greth->tx_free = GRETH_TXBD_NUM;
  271. /* Initialize descriptor base address */
  272. GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
  273. GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
  274. return 0;
  275. cleanup:
  276. greth_clean_rings(greth);
  277. return -ENOMEM;
  278. }
  279. static int greth_open(struct net_device *dev)
  280. {
  281. struct greth_private *greth = netdev_priv(dev);
  282. int err;
  283. err = greth_init_rings(greth);
  284. if (err) {
  285. if (netif_msg_ifup(greth))
  286. dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
  287. return err;
  288. }
  289. err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
  290. if (err) {
  291. if (netif_msg_ifup(greth))
  292. dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
  293. greth_clean_rings(greth);
  294. return err;
  295. }
  296. if (netif_msg_ifup(greth))
  297. dev_dbg(&dev->dev, " starting queue\n");
  298. netif_start_queue(dev);
  299. GRETH_REGSAVE(greth->regs->status, 0xFF);
  300. napi_enable(&greth->napi);
  301. greth_enable_irqs(greth);
  302. greth_enable_tx(greth);
  303. greth_enable_rx(greth);
  304. return 0;
  305. }
  306. static int greth_close(struct net_device *dev)
  307. {
  308. struct greth_private *greth = netdev_priv(dev);
  309. napi_disable(&greth->napi);
  310. greth_disable_irqs(greth);
  311. greth_disable_tx(greth);
  312. greth_disable_rx(greth);
  313. netif_stop_queue(dev);
  314. free_irq(greth->irq, (void *) dev);
  315. greth_clean_rings(greth);
  316. return 0;
  317. }
  318. static netdev_tx_t
  319. greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  320. {
  321. struct greth_private *greth = netdev_priv(dev);
  322. struct greth_bd *bdp;
  323. int err = NETDEV_TX_OK;
  324. u32 status, dma_addr;
  325. bdp = greth->tx_bd_base + greth->tx_next;
  326. if (unlikely(greth->tx_free <= 0)) {
  327. netif_stop_queue(dev);
  328. return NETDEV_TX_BUSY;
  329. }
  330. if (netif_msg_pktdata(greth))
  331. greth_print_tx_packet(skb);
  332. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  333. dev->stats.tx_errors++;
  334. goto out;
  335. }
  336. dma_addr = greth_read_bd(&bdp->addr);
  337. memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
  338. dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
  339. status = GRETH_BD_EN | (skb->len & GRETH_BD_LEN);
  340. /* Wrap around descriptor ring */
  341. if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
  342. status |= GRETH_BD_WR;
  343. }
  344. greth->tx_next = NEXT_TX(greth->tx_next);
  345. greth->tx_free--;
  346. /* No more descriptors */
  347. if (unlikely(greth->tx_free == 0)) {
  348. /* Free transmitted descriptors */
  349. greth_clean_tx(dev);
  350. /* If nothing was cleaned, stop queue & wait for irq */
  351. if (unlikely(greth->tx_free == 0)) {
  352. status |= GRETH_BD_IE;
  353. netif_stop_queue(dev);
  354. }
  355. }
  356. /* Write descriptor control word and enable transmission */
  357. greth_write_bd(&bdp->stat, status);
  358. greth_enable_tx(greth);
  359. out:
  360. dev_kfree_skb(skb);
  361. return err;
  362. }
  363. static netdev_tx_t
  364. greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
  365. {
  366. struct greth_private *greth = netdev_priv(dev);
  367. struct greth_bd *bdp;
  368. u32 status = 0, dma_addr;
  369. int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
  370. nr_frags = skb_shinfo(skb)->nr_frags;
  371. if (greth->tx_free < nr_frags + 1) {
  372. netif_stop_queue(dev);
  373. err = NETDEV_TX_BUSY;
  374. goto out;
  375. }
  376. if (netif_msg_pktdata(greth))
  377. greth_print_tx_packet(skb);
  378. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  379. dev->stats.tx_errors++;
  380. goto out;
  381. }
  382. /* Save skb pointer. */
  383. greth->tx_skbuff[greth->tx_next] = skb;
  384. /* Linear buf */
  385. if (nr_frags != 0)
  386. status = GRETH_TXBD_MORE;
  387. status |= GRETH_TXBD_CSALL;
  388. status |= skb_headlen(skb) & GRETH_BD_LEN;
  389. if (greth->tx_next == GRETH_TXBD_NUM_MASK)
  390. status |= GRETH_BD_WR;
  391. bdp = greth->tx_bd_base + greth->tx_next;
  392. greth_write_bd(&bdp->stat, status);
  393. dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
  394. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  395. goto map_error;
  396. greth_write_bd(&bdp->addr, dma_addr);
  397. curr_tx = NEXT_TX(greth->tx_next);
  398. /* Frags */
  399. for (i = 0; i < nr_frags; i++) {
  400. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  401. greth->tx_skbuff[curr_tx] = NULL;
  402. bdp = greth->tx_bd_base + curr_tx;
  403. status = GRETH_TXBD_CSALL;
  404. status |= frag->size & GRETH_BD_LEN;
  405. /* Wrap around descriptor ring */
  406. if (curr_tx == GRETH_TXBD_NUM_MASK)
  407. status |= GRETH_BD_WR;
  408. /* More fragments left */
  409. if (i < nr_frags - 1)
  410. status |= GRETH_TXBD_MORE;
  411. /* ... last fragment, check if out of descriptors */
  412. else if (greth->tx_free - nr_frags - 1 < (MAX_SKB_FRAGS + 1)) {
  413. /* Enable interrupts and stop queue */
  414. status |= GRETH_BD_IE;
  415. netif_stop_queue(dev);
  416. }
  417. greth_write_bd(&bdp->stat, status);
  418. dma_addr = dma_map_page(greth->dev,
  419. frag->page,
  420. frag->page_offset,
  421. frag->size,
  422. DMA_TO_DEVICE);
  423. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  424. goto frag_map_error;
  425. greth_write_bd(&bdp->addr, dma_addr);
  426. curr_tx = NEXT_TX(curr_tx);
  427. }
  428. wmb();
  429. /* Enable the descriptors that we configured ... */
  430. for (i = 0; i < nr_frags + 1; i++) {
  431. bdp = greth->tx_bd_base + greth->tx_next;
  432. greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
  433. greth->tx_next = NEXT_TX(greth->tx_next);
  434. greth->tx_free--;
  435. }
  436. greth_enable_tx(greth);
  437. return NETDEV_TX_OK;
  438. frag_map_error:
  439. /* Unmap SKB mappings that succeeded */
  440. for (i = 0; greth->tx_next + i != curr_tx; i++) {
  441. bdp = greth->tx_bd_base + greth->tx_next + i;
  442. dma_unmap_single(greth->dev,
  443. greth_read_bd(&bdp->addr),
  444. greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
  445. DMA_TO_DEVICE);
  446. }
  447. map_error:
  448. if (net_ratelimit())
  449. dev_warn(greth->dev, "Could not create TX DMA mapping\n");
  450. dev_kfree_skb(skb);
  451. out:
  452. return err;
  453. }
  454. static irqreturn_t greth_interrupt(int irq, void *dev_id)
  455. {
  456. struct net_device *dev = dev_id;
  457. struct greth_private *greth;
  458. u32 status;
  459. irqreturn_t retval = IRQ_NONE;
  460. greth = netdev_priv(dev);
  461. spin_lock(&greth->devlock);
  462. /* Get the interrupt events that caused us to be here. */
  463. status = GRETH_REGLOAD(greth->regs->status);
  464. /* Handle rx and tx interrupts through poll */
  465. if (status & (GRETH_INT_RX | GRETH_INT_TX)) {
  466. /* Clear interrupt status */
  467. GRETH_REGORIN(greth->regs->status,
  468. status & (GRETH_INT_RX | GRETH_INT_TX));
  469. retval = IRQ_HANDLED;
  470. /* Disable interrupts and schedule poll() */
  471. greth_disable_irqs(greth);
  472. napi_schedule(&greth->napi);
  473. }
  474. mmiowb();
  475. spin_unlock(&greth->devlock);
  476. return retval;
  477. }
  478. static void greth_clean_tx(struct net_device *dev)
  479. {
  480. struct greth_private *greth;
  481. struct greth_bd *bdp;
  482. u32 stat;
  483. greth = netdev_priv(dev);
  484. while (1) {
  485. bdp = greth->tx_bd_base + greth->tx_last;
  486. stat = greth_read_bd(&bdp->stat);
  487. if (unlikely(stat & GRETH_BD_EN))
  488. break;
  489. if (greth->tx_free == GRETH_TXBD_NUM)
  490. break;
  491. /* Check status for errors */
  492. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  493. dev->stats.tx_errors++;
  494. if (stat & GRETH_TXBD_ERR_AL)
  495. dev->stats.tx_aborted_errors++;
  496. if (stat & GRETH_TXBD_ERR_UE)
  497. dev->stats.tx_fifo_errors++;
  498. }
  499. dev->stats.tx_packets++;
  500. greth->tx_last = NEXT_TX(greth->tx_last);
  501. greth->tx_free++;
  502. }
  503. if (greth->tx_free > 0) {
  504. netif_wake_queue(dev);
  505. }
  506. }
  507. static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
  508. {
  509. /* Check status for errors */
  510. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  511. dev->stats.tx_errors++;
  512. if (stat & GRETH_TXBD_ERR_AL)
  513. dev->stats.tx_aborted_errors++;
  514. if (stat & GRETH_TXBD_ERR_UE)
  515. dev->stats.tx_fifo_errors++;
  516. if (stat & GRETH_TXBD_ERR_LC)
  517. dev->stats.tx_aborted_errors++;
  518. }
  519. dev->stats.tx_packets++;
  520. }
  521. static void greth_clean_tx_gbit(struct net_device *dev)
  522. {
  523. struct greth_private *greth;
  524. struct greth_bd *bdp, *bdp_last_frag;
  525. struct sk_buff *skb;
  526. u32 stat;
  527. int nr_frags, i;
  528. greth = netdev_priv(dev);
  529. while (greth->tx_free < GRETH_TXBD_NUM) {
  530. skb = greth->tx_skbuff[greth->tx_last];
  531. nr_frags = skb_shinfo(skb)->nr_frags;
  532. /* We only clean fully completed SKBs */
  533. bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
  534. stat = bdp_last_frag->stat;
  535. if (stat & GRETH_BD_EN)
  536. break;
  537. greth->tx_skbuff[greth->tx_last] = NULL;
  538. greth_update_tx_stats(dev, stat);
  539. bdp = greth->tx_bd_base + greth->tx_last;
  540. greth->tx_last = NEXT_TX(greth->tx_last);
  541. dma_unmap_single(greth->dev,
  542. greth_read_bd(&bdp->addr),
  543. skb_headlen(skb),
  544. DMA_TO_DEVICE);
  545. for (i = 0; i < nr_frags; i++) {
  546. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  547. bdp = greth->tx_bd_base + greth->tx_last;
  548. dma_unmap_page(greth->dev,
  549. greth_read_bd(&bdp->addr),
  550. frag->size,
  551. DMA_TO_DEVICE);
  552. greth->tx_last = NEXT_TX(greth->tx_last);
  553. }
  554. greth->tx_free += nr_frags+1;
  555. dev_kfree_skb(skb);
  556. }
  557. if (greth->tx_free > (MAX_SKB_FRAGS + 1)) {
  558. netif_wake_queue(dev);
  559. }
  560. }
  561. static int greth_pending_packets(struct greth_private *greth)
  562. {
  563. struct greth_bd *bdp;
  564. u32 status;
  565. bdp = greth->rx_bd_base + greth->rx_cur;
  566. status = greth_read_bd(&bdp->stat);
  567. if (status & GRETH_BD_EN)
  568. return 0;
  569. else
  570. return 1;
  571. }
  572. static int greth_rx(struct net_device *dev, int limit)
  573. {
  574. struct greth_private *greth;
  575. struct greth_bd *bdp;
  576. struct sk_buff *skb;
  577. int pkt_len;
  578. int bad, count;
  579. u32 status, dma_addr;
  580. greth = netdev_priv(dev);
  581. for (count = 0; count < limit; ++count) {
  582. bdp = greth->rx_bd_base + greth->rx_cur;
  583. status = greth_read_bd(&bdp->stat);
  584. dma_addr = greth_read_bd(&bdp->addr);
  585. bad = 0;
  586. if (unlikely(status & GRETH_BD_EN)) {
  587. break;
  588. }
  589. /* Check status for errors. */
  590. if (unlikely(status & GRETH_RXBD_STATUS)) {
  591. if (status & GRETH_RXBD_ERR_FT) {
  592. dev->stats.rx_length_errors++;
  593. bad = 1;
  594. }
  595. if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
  596. dev->stats.rx_frame_errors++;
  597. bad = 1;
  598. }
  599. if (status & GRETH_RXBD_ERR_CRC) {
  600. dev->stats.rx_crc_errors++;
  601. bad = 1;
  602. }
  603. }
  604. if (unlikely(bad)) {
  605. dev->stats.rx_errors++;
  606. } else {
  607. pkt_len = status & GRETH_BD_LEN;
  608. skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
  609. if (unlikely(skb == NULL)) {
  610. if (net_ratelimit())
  611. dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
  612. dev->stats.rx_dropped++;
  613. } else {
  614. skb_reserve(skb, NET_IP_ALIGN);
  615. skb->dev = dev;
  616. dma_sync_single_for_cpu(greth->dev,
  617. dma_addr,
  618. pkt_len,
  619. DMA_FROM_DEVICE);
  620. if (netif_msg_pktdata(greth))
  621. greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
  622. memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
  623. skb->protocol = eth_type_trans(skb, dev);
  624. dev->stats.rx_packets++;
  625. netif_receive_skb(skb);
  626. }
  627. }
  628. status = GRETH_BD_EN | GRETH_BD_IE;
  629. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  630. status |= GRETH_BD_WR;
  631. }
  632. wmb();
  633. greth_write_bd(&bdp->stat, status);
  634. dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
  635. greth_enable_rx(greth);
  636. greth->rx_cur = NEXT_RX(greth->rx_cur);
  637. }
  638. return count;
  639. }
  640. static inline int hw_checksummed(u32 status)
  641. {
  642. if (status & GRETH_RXBD_IP_FRAG)
  643. return 0;
  644. if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
  645. return 0;
  646. if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
  647. return 0;
  648. if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
  649. return 0;
  650. return 1;
  651. }
  652. static int greth_rx_gbit(struct net_device *dev, int limit)
  653. {
  654. struct greth_private *greth;
  655. struct greth_bd *bdp;
  656. struct sk_buff *skb, *newskb;
  657. int pkt_len;
  658. int bad, count = 0;
  659. u32 status, dma_addr;
  660. greth = netdev_priv(dev);
  661. for (count = 0; count < limit; ++count) {
  662. bdp = greth->rx_bd_base + greth->rx_cur;
  663. skb = greth->rx_skbuff[greth->rx_cur];
  664. status = greth_read_bd(&bdp->stat);
  665. bad = 0;
  666. if (status & GRETH_BD_EN)
  667. break;
  668. /* Check status for errors. */
  669. if (unlikely(status & GRETH_RXBD_STATUS)) {
  670. if (status & GRETH_RXBD_ERR_FT) {
  671. dev->stats.rx_length_errors++;
  672. bad = 1;
  673. } else if (status &
  674. (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
  675. dev->stats.rx_frame_errors++;
  676. bad = 1;
  677. } else if (status & GRETH_RXBD_ERR_CRC) {
  678. dev->stats.rx_crc_errors++;
  679. bad = 1;
  680. }
  681. }
  682. /* Allocate new skb to replace current */
  683. newskb = netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN);
  684. if (!bad && newskb) {
  685. skb_reserve(newskb, NET_IP_ALIGN);
  686. dma_addr = dma_map_single(greth->dev,
  687. newskb->data,
  688. MAX_FRAME_SIZE + NET_IP_ALIGN,
  689. DMA_FROM_DEVICE);
  690. if (!dma_mapping_error(greth->dev, dma_addr)) {
  691. /* Process the incoming frame. */
  692. pkt_len = status & GRETH_BD_LEN;
  693. dma_unmap_single(greth->dev,
  694. greth_read_bd(&bdp->addr),
  695. MAX_FRAME_SIZE + NET_IP_ALIGN,
  696. DMA_FROM_DEVICE);
  697. if (netif_msg_pktdata(greth))
  698. greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
  699. skb_put(skb, pkt_len);
  700. if (greth->flags & GRETH_FLAG_RX_CSUM && hw_checksummed(status))
  701. skb->ip_summed = CHECKSUM_UNNECESSARY;
  702. else
  703. skb_checksum_none_assert(skb);
  704. skb->protocol = eth_type_trans(skb, dev);
  705. dev->stats.rx_packets++;
  706. netif_receive_skb(skb);
  707. greth->rx_skbuff[greth->rx_cur] = newskb;
  708. greth_write_bd(&bdp->addr, dma_addr);
  709. } else {
  710. if (net_ratelimit())
  711. dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
  712. dev_kfree_skb(newskb);
  713. dev->stats.rx_dropped++;
  714. }
  715. } else {
  716. if (net_ratelimit())
  717. dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
  718. dev->stats.rx_dropped++;
  719. }
  720. status = GRETH_BD_EN | GRETH_BD_IE;
  721. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  722. status |= GRETH_BD_WR;
  723. }
  724. wmb();
  725. greth_write_bd(&bdp->stat, status);
  726. greth_enable_rx(greth);
  727. greth->rx_cur = NEXT_RX(greth->rx_cur);
  728. }
  729. return count;
  730. }
  731. static int greth_poll(struct napi_struct *napi, int budget)
  732. {
  733. struct greth_private *greth;
  734. int work_done = 0;
  735. greth = container_of(napi, struct greth_private, napi);
  736. if (greth->gbit_mac) {
  737. greth_clean_tx_gbit(greth->netdev);
  738. } else {
  739. greth_clean_tx(greth->netdev);
  740. }
  741. restart_poll:
  742. if (greth->gbit_mac) {
  743. work_done += greth_rx_gbit(greth->netdev, budget - work_done);
  744. } else {
  745. work_done += greth_rx(greth->netdev, budget - work_done);
  746. }
  747. if (work_done < budget) {
  748. napi_complete(napi);
  749. if (greth_pending_packets(greth)) {
  750. napi_reschedule(napi);
  751. goto restart_poll;
  752. }
  753. }
  754. greth_enable_irqs(greth);
  755. return work_done;
  756. }
  757. static int greth_set_mac_add(struct net_device *dev, void *p)
  758. {
  759. struct sockaddr *addr = p;
  760. struct greth_private *greth;
  761. struct greth_regs *regs;
  762. greth = netdev_priv(dev);
  763. regs = (struct greth_regs *) greth->regs;
  764. if (!is_valid_ether_addr(addr->sa_data))
  765. return -EINVAL;
  766. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  767. GRETH_REGSAVE(regs->esa_msb, addr->sa_data[0] << 8 | addr->sa_data[1]);
  768. GRETH_REGSAVE(regs->esa_lsb,
  769. addr->sa_data[2] << 24 | addr->
  770. sa_data[3] << 16 | addr->sa_data[4] << 8 | addr->sa_data[5]);
  771. return 0;
  772. }
  773. static u32 greth_hash_get_index(__u8 *addr)
  774. {
  775. return (ether_crc(6, addr)) & 0x3F;
  776. }
  777. static void greth_set_hash_filter(struct net_device *dev)
  778. {
  779. struct netdev_hw_addr *ha;
  780. struct greth_private *greth = netdev_priv(dev);
  781. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  782. u32 mc_filter[2];
  783. unsigned int bitnr;
  784. mc_filter[0] = mc_filter[1] = 0;
  785. netdev_for_each_mc_addr(ha, dev) {
  786. bitnr = greth_hash_get_index(ha->addr);
  787. mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
  788. }
  789. GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
  790. GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
  791. }
  792. static void greth_set_multicast_list(struct net_device *dev)
  793. {
  794. int cfg;
  795. struct greth_private *greth = netdev_priv(dev);
  796. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  797. cfg = GRETH_REGLOAD(regs->control);
  798. if (dev->flags & IFF_PROMISC)
  799. cfg |= GRETH_CTRL_PR;
  800. else
  801. cfg &= ~GRETH_CTRL_PR;
  802. if (greth->multicast) {
  803. if (dev->flags & IFF_ALLMULTI) {
  804. GRETH_REGSAVE(regs->hash_msb, -1);
  805. GRETH_REGSAVE(regs->hash_lsb, -1);
  806. cfg |= GRETH_CTRL_MCEN;
  807. GRETH_REGSAVE(regs->control, cfg);
  808. return;
  809. }
  810. if (netdev_mc_empty(dev)) {
  811. cfg &= ~GRETH_CTRL_MCEN;
  812. GRETH_REGSAVE(regs->control, cfg);
  813. return;
  814. }
  815. /* Setup multicast filter */
  816. greth_set_hash_filter(dev);
  817. cfg |= GRETH_CTRL_MCEN;
  818. }
  819. GRETH_REGSAVE(regs->control, cfg);
  820. }
  821. static u32 greth_get_msglevel(struct net_device *dev)
  822. {
  823. struct greth_private *greth = netdev_priv(dev);
  824. return greth->msg_enable;
  825. }
  826. static void greth_set_msglevel(struct net_device *dev, u32 value)
  827. {
  828. struct greth_private *greth = netdev_priv(dev);
  829. greth->msg_enable = value;
  830. }
  831. static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  832. {
  833. struct greth_private *greth = netdev_priv(dev);
  834. struct phy_device *phy = greth->phy;
  835. if (!phy)
  836. return -ENODEV;
  837. return phy_ethtool_gset(phy, cmd);
  838. }
  839. static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  840. {
  841. struct greth_private *greth = netdev_priv(dev);
  842. struct phy_device *phy = greth->phy;
  843. if (!phy)
  844. return -ENODEV;
  845. return phy_ethtool_sset(phy, cmd);
  846. }
  847. static int greth_get_regs_len(struct net_device *dev)
  848. {
  849. return sizeof(struct greth_regs);
  850. }
  851. static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  852. {
  853. struct greth_private *greth = netdev_priv(dev);
  854. strncpy(info->driver, dev_driver_string(greth->dev), 32);
  855. strncpy(info->version, "revision: 1.0", 32);
  856. strncpy(info->bus_info, greth->dev->bus->name, 32);
  857. strncpy(info->fw_version, "N/A", 32);
  858. info->eedump_len = 0;
  859. info->regdump_len = sizeof(struct greth_regs);
  860. }
  861. static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
  862. {
  863. int i;
  864. struct greth_private *greth = netdev_priv(dev);
  865. u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
  866. u32 *buff = p;
  867. for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
  868. buff[i] = greth_read_bd(&greth_regs[i]);
  869. }
  870. static u32 greth_get_rx_csum(struct net_device *dev)
  871. {
  872. struct greth_private *greth = netdev_priv(dev);
  873. return (greth->flags & GRETH_FLAG_RX_CSUM) != 0;
  874. }
  875. static int greth_set_rx_csum(struct net_device *dev, u32 data)
  876. {
  877. struct greth_private *greth = netdev_priv(dev);
  878. spin_lock_bh(&greth->devlock);
  879. if (data)
  880. greth->flags |= GRETH_FLAG_RX_CSUM;
  881. else
  882. greth->flags &= ~GRETH_FLAG_RX_CSUM;
  883. spin_unlock_bh(&greth->devlock);
  884. return 0;
  885. }
  886. static u32 greth_get_tx_csum(struct net_device *dev)
  887. {
  888. return (dev->features & NETIF_F_IP_CSUM) != 0;
  889. }
  890. static int greth_set_tx_csum(struct net_device *dev, u32 data)
  891. {
  892. netif_tx_lock_bh(dev);
  893. ethtool_op_set_tx_csum(dev, data);
  894. netif_tx_unlock_bh(dev);
  895. return 0;
  896. }
  897. static const struct ethtool_ops greth_ethtool_ops = {
  898. .get_msglevel = greth_get_msglevel,
  899. .set_msglevel = greth_set_msglevel,
  900. .get_settings = greth_get_settings,
  901. .set_settings = greth_set_settings,
  902. .get_drvinfo = greth_get_drvinfo,
  903. .get_regs_len = greth_get_regs_len,
  904. .get_regs = greth_get_regs,
  905. .get_rx_csum = greth_get_rx_csum,
  906. .set_rx_csum = greth_set_rx_csum,
  907. .get_tx_csum = greth_get_tx_csum,
  908. .set_tx_csum = greth_set_tx_csum,
  909. .get_link = ethtool_op_get_link,
  910. };
  911. static struct net_device_ops greth_netdev_ops = {
  912. .ndo_open = greth_open,
  913. .ndo_stop = greth_close,
  914. .ndo_start_xmit = greth_start_xmit,
  915. .ndo_set_mac_address = greth_set_mac_add,
  916. .ndo_validate_addr = eth_validate_addr,
  917. };
  918. static inline int wait_for_mdio(struct greth_private *greth)
  919. {
  920. unsigned long timeout = jiffies + 4*HZ/100;
  921. while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
  922. if (time_after(jiffies, timeout))
  923. return 0;
  924. }
  925. return 1;
  926. }
  927. static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
  928. {
  929. struct greth_private *greth = bus->priv;
  930. int data;
  931. if (!wait_for_mdio(greth))
  932. return -EBUSY;
  933. GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
  934. if (!wait_for_mdio(greth))
  935. return -EBUSY;
  936. if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
  937. data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
  938. return data;
  939. } else {
  940. return -1;
  941. }
  942. }
  943. static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
  944. {
  945. struct greth_private *greth = bus->priv;
  946. if (!wait_for_mdio(greth))
  947. return -EBUSY;
  948. GRETH_REGSAVE(greth->regs->mdio,
  949. ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
  950. if (!wait_for_mdio(greth))
  951. return -EBUSY;
  952. return 0;
  953. }
  954. static int greth_mdio_reset(struct mii_bus *bus)
  955. {
  956. return 0;
  957. }
  958. static void greth_link_change(struct net_device *dev)
  959. {
  960. struct greth_private *greth = netdev_priv(dev);
  961. struct phy_device *phydev = greth->phy;
  962. unsigned long flags;
  963. int status_change = 0;
  964. spin_lock_irqsave(&greth->devlock, flags);
  965. if (phydev->link) {
  966. if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
  967. GRETH_REGANDIN(greth->regs->control,
  968. ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB));
  969. if (phydev->duplex)
  970. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_FD);
  971. if (phydev->speed == SPEED_100) {
  972. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_SP);
  973. }
  974. else if (phydev->speed == SPEED_1000)
  975. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_GB);
  976. greth->speed = phydev->speed;
  977. greth->duplex = phydev->duplex;
  978. status_change = 1;
  979. }
  980. }
  981. if (phydev->link != greth->link) {
  982. if (!phydev->link) {
  983. greth->speed = 0;
  984. greth->duplex = -1;
  985. }
  986. greth->link = phydev->link;
  987. status_change = 1;
  988. }
  989. spin_unlock_irqrestore(&greth->devlock, flags);
  990. if (status_change) {
  991. if (phydev->link)
  992. pr_debug("%s: link up (%d/%s)\n",
  993. dev->name, phydev->speed,
  994. DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
  995. else
  996. pr_debug("%s: link down\n", dev->name);
  997. }
  998. }
  999. static int greth_mdio_probe(struct net_device *dev)
  1000. {
  1001. struct greth_private *greth = netdev_priv(dev);
  1002. struct phy_device *phy = NULL;
  1003. int ret;
  1004. /* Find the first PHY */
  1005. phy = phy_find_first(greth->mdio);
  1006. if (!phy) {
  1007. if (netif_msg_probe(greth))
  1008. dev_err(&dev->dev, "no PHY found\n");
  1009. return -ENXIO;
  1010. }
  1011. ret = phy_connect_direct(dev, phy, &greth_link_change,
  1012. 0, greth->gbit_mac ?
  1013. PHY_INTERFACE_MODE_GMII :
  1014. PHY_INTERFACE_MODE_MII);
  1015. if (ret) {
  1016. if (netif_msg_ifup(greth))
  1017. dev_err(&dev->dev, "could not attach to PHY\n");
  1018. return ret;
  1019. }
  1020. if (greth->gbit_mac)
  1021. phy->supported &= PHY_GBIT_FEATURES;
  1022. else
  1023. phy->supported &= PHY_BASIC_FEATURES;
  1024. phy->advertising = phy->supported;
  1025. greth->link = 0;
  1026. greth->speed = 0;
  1027. greth->duplex = -1;
  1028. greth->phy = phy;
  1029. return 0;
  1030. }
  1031. static inline int phy_aneg_done(struct phy_device *phydev)
  1032. {
  1033. int retval;
  1034. retval = phy_read(phydev, MII_BMSR);
  1035. return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
  1036. }
  1037. static int greth_mdio_init(struct greth_private *greth)
  1038. {
  1039. int ret, phy;
  1040. unsigned long timeout;
  1041. greth->mdio = mdiobus_alloc();
  1042. if (!greth->mdio) {
  1043. return -ENOMEM;
  1044. }
  1045. greth->mdio->name = "greth-mdio";
  1046. snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
  1047. greth->mdio->read = greth_mdio_read;
  1048. greth->mdio->write = greth_mdio_write;
  1049. greth->mdio->reset = greth_mdio_reset;
  1050. greth->mdio->priv = greth;
  1051. greth->mdio->irq = greth->mdio_irqs;
  1052. for (phy = 0; phy < PHY_MAX_ADDR; phy++)
  1053. greth->mdio->irq[phy] = PHY_POLL;
  1054. ret = mdiobus_register(greth->mdio);
  1055. if (ret) {
  1056. goto error;
  1057. }
  1058. ret = greth_mdio_probe(greth->netdev);
  1059. if (ret) {
  1060. if (netif_msg_probe(greth))
  1061. dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
  1062. goto unreg_mdio;
  1063. }
  1064. phy_start(greth->phy);
  1065. /* If Ethernet debug link is used make autoneg happen right away */
  1066. if (greth->edcl && greth_edcl == 1) {
  1067. phy_start_aneg(greth->phy);
  1068. timeout = jiffies + 6*HZ;
  1069. while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
  1070. }
  1071. genphy_read_status(greth->phy);
  1072. greth_link_change(greth->netdev);
  1073. }
  1074. return 0;
  1075. unreg_mdio:
  1076. mdiobus_unregister(greth->mdio);
  1077. error:
  1078. mdiobus_free(greth->mdio);
  1079. return ret;
  1080. }
  1081. /* Initialize the GRETH MAC */
  1082. static int __devinit greth_of_probe(struct platform_device *ofdev, const struct of_device_id *match)
  1083. {
  1084. struct net_device *dev;
  1085. struct greth_private *greth;
  1086. struct greth_regs *regs;
  1087. int i;
  1088. int err;
  1089. int tmp;
  1090. unsigned long timeout;
  1091. dev = alloc_etherdev(sizeof(struct greth_private));
  1092. if (dev == NULL)
  1093. return -ENOMEM;
  1094. greth = netdev_priv(dev);
  1095. greth->netdev = dev;
  1096. greth->dev = &ofdev->dev;
  1097. if (greth_debug > 0)
  1098. greth->msg_enable = greth_debug;
  1099. else
  1100. greth->msg_enable = GRETH_DEF_MSG_ENABLE;
  1101. spin_lock_init(&greth->devlock);
  1102. greth->regs = of_ioremap(&ofdev->resource[0], 0,
  1103. resource_size(&ofdev->resource[0]),
  1104. "grlib-greth regs");
  1105. if (greth->regs == NULL) {
  1106. if (netif_msg_probe(greth))
  1107. dev_err(greth->dev, "ioremap failure.\n");
  1108. err = -EIO;
  1109. goto error1;
  1110. }
  1111. regs = (struct greth_regs *) greth->regs;
  1112. greth->irq = ofdev->archdata.irqs[0];
  1113. dev_set_drvdata(greth->dev, dev);
  1114. SET_NETDEV_DEV(dev, greth->dev);
  1115. if (netif_msg_probe(greth))
  1116. dev_dbg(greth->dev, "reseting controller.\n");
  1117. /* Reset the controller. */
  1118. GRETH_REGSAVE(regs->control, GRETH_RESET);
  1119. /* Wait for MAC to reset itself */
  1120. timeout = jiffies + HZ/100;
  1121. while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
  1122. if (time_after(jiffies, timeout)) {
  1123. err = -EIO;
  1124. if (netif_msg_probe(greth))
  1125. dev_err(greth->dev, "timeout when waiting for reset.\n");
  1126. goto error2;
  1127. }
  1128. }
  1129. /* Get default PHY address */
  1130. greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
  1131. /* Check if we have GBIT capable MAC */
  1132. tmp = GRETH_REGLOAD(regs->control);
  1133. greth->gbit_mac = (tmp >> 27) & 1;
  1134. /* Check for multicast capability */
  1135. greth->multicast = (tmp >> 25) & 1;
  1136. greth->edcl = (tmp >> 31) & 1;
  1137. /* If we have EDCL we disable the EDCL speed-duplex FSM so
  1138. * it doesn't interfere with the software */
  1139. if (greth->edcl != 0)
  1140. GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
  1141. /* Check if MAC can handle MDIO interrupts */
  1142. greth->mdio_int_en = (tmp >> 26) & 1;
  1143. err = greth_mdio_init(greth);
  1144. if (err) {
  1145. if (netif_msg_probe(greth))
  1146. dev_err(greth->dev, "failed to register MDIO bus\n");
  1147. goto error2;
  1148. }
  1149. /* Allocate TX descriptor ring in coherent memory */
  1150. greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1151. 1024,
  1152. &greth->tx_bd_base_phys,
  1153. GFP_KERNEL);
  1154. if (!greth->tx_bd_base) {
  1155. if (netif_msg_probe(greth))
  1156. dev_err(&dev->dev, "could not allocate descriptor memory.\n");
  1157. err = -ENOMEM;
  1158. goto error3;
  1159. }
  1160. memset(greth->tx_bd_base, 0, 1024);
  1161. /* Allocate RX descriptor ring in coherent memory */
  1162. greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1163. 1024,
  1164. &greth->rx_bd_base_phys,
  1165. GFP_KERNEL);
  1166. if (!greth->rx_bd_base) {
  1167. if (netif_msg_probe(greth))
  1168. dev_err(greth->dev, "could not allocate descriptor memory.\n");
  1169. err = -ENOMEM;
  1170. goto error4;
  1171. }
  1172. memset(greth->rx_bd_base, 0, 1024);
  1173. /* Get MAC address from: module param, OF property or ID prom */
  1174. for (i = 0; i < 6; i++) {
  1175. if (macaddr[i] != 0)
  1176. break;
  1177. }
  1178. if (i == 6) {
  1179. const unsigned char *addr;
  1180. int len;
  1181. addr = of_get_property(ofdev->dev.of_node, "local-mac-address",
  1182. &len);
  1183. if (addr != NULL && len == 6) {
  1184. for (i = 0; i < 6; i++)
  1185. macaddr[i] = (unsigned int) addr[i];
  1186. } else {
  1187. #ifdef CONFIG_SPARC
  1188. for (i = 0; i < 6; i++)
  1189. macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
  1190. #endif
  1191. }
  1192. }
  1193. for (i = 0; i < 6; i++)
  1194. dev->dev_addr[i] = macaddr[i];
  1195. macaddr[5]++;
  1196. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  1197. if (netif_msg_probe(greth))
  1198. dev_err(greth->dev, "no valid ethernet address, aborting.\n");
  1199. err = -EINVAL;
  1200. goto error5;
  1201. }
  1202. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  1203. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  1204. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  1205. /* Clear all pending interrupts except PHY irq */
  1206. GRETH_REGSAVE(regs->status, 0xFF);
  1207. if (greth->gbit_mac) {
  1208. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
  1209. greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
  1210. greth->flags = GRETH_FLAG_RX_CSUM;
  1211. }
  1212. if (greth->multicast) {
  1213. greth_netdev_ops.ndo_set_multicast_list = greth_set_multicast_list;
  1214. dev->flags |= IFF_MULTICAST;
  1215. } else {
  1216. dev->flags &= ~IFF_MULTICAST;
  1217. }
  1218. dev->netdev_ops = &greth_netdev_ops;
  1219. dev->ethtool_ops = &greth_ethtool_ops;
  1220. err = register_netdev(dev);
  1221. if (err) {
  1222. if (netif_msg_probe(greth))
  1223. dev_err(greth->dev, "netdevice registration failed.\n");
  1224. goto error5;
  1225. }
  1226. /* setup NAPI */
  1227. netif_napi_add(dev, &greth->napi, greth_poll, 64);
  1228. return 0;
  1229. error5:
  1230. dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1231. error4:
  1232. dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1233. error3:
  1234. mdiobus_unregister(greth->mdio);
  1235. error2:
  1236. of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
  1237. error1:
  1238. free_netdev(dev);
  1239. return err;
  1240. }
  1241. static int __devexit greth_of_remove(struct platform_device *of_dev)
  1242. {
  1243. struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
  1244. struct greth_private *greth = netdev_priv(ndev);
  1245. /* Free descriptor areas */
  1246. dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1247. dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1248. dev_set_drvdata(&of_dev->dev, NULL);
  1249. if (greth->phy)
  1250. phy_stop(greth->phy);
  1251. mdiobus_unregister(greth->mdio);
  1252. unregister_netdev(ndev);
  1253. free_netdev(ndev);
  1254. of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
  1255. return 0;
  1256. }
  1257. static struct of_device_id greth_of_match[] = {
  1258. {
  1259. .name = "GAISLER_ETHMAC",
  1260. },
  1261. {
  1262. .name = "01_01d",
  1263. },
  1264. {},
  1265. };
  1266. MODULE_DEVICE_TABLE(of, greth_of_match);
  1267. static struct of_platform_driver greth_of_driver = {
  1268. .driver = {
  1269. .name = "grlib-greth",
  1270. .owner = THIS_MODULE,
  1271. .of_match_table = greth_of_match,
  1272. },
  1273. .probe = greth_of_probe,
  1274. .remove = __devexit_p(greth_of_remove),
  1275. };
  1276. static int __init greth_init(void)
  1277. {
  1278. return of_register_platform_driver(&greth_of_driver);
  1279. }
  1280. static void __exit greth_cleanup(void)
  1281. {
  1282. of_unregister_platform_driver(&greth_of_driver);
  1283. }
  1284. module_init(greth_init);
  1285. module_exit(greth_cleanup);
  1286. MODULE_AUTHOR("Aeroflex Gaisler AB.");
  1287. MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
  1288. MODULE_LICENSE("GPL");