sun4m_irq.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /*
  2. * sun4m irq support
  3. *
  4. * djhr: Hacked out of irq.c into a CPU dependent version.
  5. *
  6. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  7. * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  8. * Copyright (C) 1995 Pete A. Zaitcev (zaitcev@yahoo.com)
  9. * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
  10. */
  11. #include <asm/timer.h>
  12. #include <asm/traps.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/pgtable.h>
  15. #include <asm/irq.h>
  16. #include <asm/io.h>
  17. #include <asm/cacheflush.h>
  18. #include "irq.h"
  19. #include "kernel.h"
  20. /* Sample sun4m IRQ layout:
  21. *
  22. * 0x22 - Power
  23. * 0x24 - ESP SCSI
  24. * 0x26 - Lance ethernet
  25. * 0x2b - Floppy
  26. * 0x2c - Zilog uart
  27. * 0x32 - SBUS level 0
  28. * 0x33 - Parallel port, SBUS level 1
  29. * 0x35 - SBUS level 2
  30. * 0x37 - SBUS level 3
  31. * 0x39 - Audio, Graphics card, SBUS level 4
  32. * 0x3b - SBUS level 5
  33. * 0x3d - SBUS level 6
  34. *
  35. * Each interrupt source has a mask bit in the interrupt registers.
  36. * When the mask bit is set, this blocks interrupt deliver. So you
  37. * clear the bit to enable the interrupt.
  38. *
  39. * Interrupts numbered less than 0x10 are software triggered interrupts
  40. * and unused by Linux.
  41. *
  42. * Interrupt level assignment on sun4m:
  43. *
  44. * level source
  45. * ------------------------------------------------------------
  46. * 1 softint-1
  47. * 2 softint-2, VME/SBUS level 1
  48. * 3 softint-3, VME/SBUS level 2
  49. * 4 softint-4, onboard SCSI
  50. * 5 softint-5, VME/SBUS level 3
  51. * 6 softint-6, onboard ETHERNET
  52. * 7 softint-7, VME/SBUS level 4
  53. * 8 softint-8, onboard VIDEO
  54. * 9 softint-9, VME/SBUS level 5, Module Interrupt
  55. * 10 softint-10, system counter/timer
  56. * 11 softint-11, VME/SBUS level 6, Floppy
  57. * 12 softint-12, Keyboard/Mouse, Serial
  58. * 13 softint-13, VME/SBUS level 7, ISDN Audio
  59. * 14 softint-14, per-processor counter/timer
  60. * 15 softint-15, Asynchronous Errors (broadcast)
  61. *
  62. * Each interrupt source is masked distinctly in the sun4m interrupt
  63. * registers. The PIL level alone is therefore ambiguous, since multiple
  64. * interrupt sources map to a single PIL.
  65. *
  66. * This ambiguity is resolved in the 'intr' property for device nodes
  67. * in the OF device tree. Each 'intr' property entry is composed of
  68. * two 32-bit words. The first word is the IRQ priority value, which
  69. * is what we're intersted in. The second word is the IRQ vector, which
  70. * is unused.
  71. *
  72. * The low 4 bits of the IRQ priority indicate the PIL, and the upper
  73. * 4 bits indicate onboard vs. SBUS leveled vs. VME leveled. 0x20
  74. * means onboard, 0x30 means SBUS leveled, and 0x40 means VME leveled.
  75. *
  76. * For example, an 'intr' IRQ priority value of 0x24 is onboard SCSI
  77. * whereas a value of 0x33 is SBUS level 2. Here are some sample
  78. * 'intr' property IRQ priority values from ss4, ss5, ss10, ss20, and
  79. * Tadpole S3 GX systems.
  80. *
  81. * esp: 0x24 onboard ESP SCSI
  82. * le: 0x26 onboard Lance ETHERNET
  83. * p9100: 0x32 SBUS level 1 P9100 video
  84. * bpp: 0x33 SBUS level 2 BPP parallel port device
  85. * DBRI: 0x39 SBUS level 5 DBRI ISDN audio
  86. * SUNW,leo: 0x39 SBUS level 5 LEO video
  87. * pcmcia: 0x3b SBUS level 6 PCMCIA controller
  88. * uctrl: 0x3b SBUS level 6 UCTRL device
  89. * modem: 0x3d SBUS level 7 MODEM
  90. * zs: 0x2c onboard keyboard/mouse/serial
  91. * floppy: 0x2b onboard Floppy
  92. * power: 0x22 onboard power device (XXX unknown mask bit XXX)
  93. */
  94. struct sun4m_irq_percpu {
  95. u32 pending;
  96. u32 clear;
  97. u32 set;
  98. };
  99. struct sun4m_irq_global {
  100. u32 pending;
  101. u32 mask;
  102. u32 mask_clear;
  103. u32 mask_set;
  104. u32 interrupt_target;
  105. };
  106. /* Code in entry.S needs to get at these register mappings. */
  107. struct sun4m_irq_percpu __iomem *sun4m_irq_percpu[SUN4M_NCPUS];
  108. struct sun4m_irq_global __iomem *sun4m_irq_global;
  109. /* Dave Redman (djhr@tadpole.co.uk)
  110. * The sun4m interrupt registers.
  111. */
  112. #define SUN4M_INT_ENABLE 0x80000000
  113. #define SUN4M_INT_E14 0x00000080
  114. #define SUN4M_INT_E10 0x00080000
  115. #define SUN4M_HARD_INT(x) (0x000000001 << (x))
  116. #define SUN4M_SOFT_INT(x) (0x000010000 << (x))
  117. #define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */
  118. #define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */
  119. #define SUN4M_INT_M2S_WRITE_ERR 0x20000000 /* write buffer error */
  120. #define SUN4M_INT_ECC_ERR 0x10000000 /* ecc memory error */
  121. #define SUN4M_INT_VME_ERR 0x08000000 /* vme async error */
  122. #define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */
  123. #define SUN4M_INT_MODULE 0x00200000 /* module interrupt */
  124. #define SUN4M_INT_VIDEO 0x00100000 /* onboard video */
  125. #define SUN4M_INT_REALTIME 0x00080000 /* system timer */
  126. #define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */
  127. #define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */
  128. #define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */
  129. #define SUN4M_INT_SERIAL 0x00008000 /* serial ports */
  130. #define SUN4M_INT_KBDMS 0x00004000 /* keyboard/mouse */
  131. #define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */
  132. #define SUN4M_INT_VMEBITS 0x0000007F /* vme int bits */
  133. #define SUN4M_INT_ERROR (SUN4M_INT_MODULE_ERR | \
  134. SUN4M_INT_M2S_WRITE_ERR | \
  135. SUN4M_INT_ECC_ERR | \
  136. SUN4M_INT_VME_ERR)
  137. #define SUN4M_INT_SBUS(x) (1 << (x+7))
  138. #define SUN4M_INT_VME(x) (1 << (x))
  139. /* Interrupt levels used by OBP */
  140. #define OBP_INT_LEVEL_SOFT 0x10
  141. #define OBP_INT_LEVEL_ONBOARD 0x20
  142. #define OBP_INT_LEVEL_SBUS 0x30
  143. #define OBP_INT_LEVEL_VME 0x40
  144. static unsigned long irq_mask[0x50] = {
  145. /* SMP */
  146. 0, SUN4M_SOFT_INT(1),
  147. SUN4M_SOFT_INT(2), SUN4M_SOFT_INT(3),
  148. SUN4M_SOFT_INT(4), SUN4M_SOFT_INT(5),
  149. SUN4M_SOFT_INT(6), SUN4M_SOFT_INT(7),
  150. SUN4M_SOFT_INT(8), SUN4M_SOFT_INT(9),
  151. SUN4M_SOFT_INT(10), SUN4M_SOFT_INT(11),
  152. SUN4M_SOFT_INT(12), SUN4M_SOFT_INT(13),
  153. SUN4M_SOFT_INT(14), SUN4M_SOFT_INT(15),
  154. /* soft */
  155. 0, SUN4M_SOFT_INT(1),
  156. SUN4M_SOFT_INT(2), SUN4M_SOFT_INT(3),
  157. SUN4M_SOFT_INT(4), SUN4M_SOFT_INT(5),
  158. SUN4M_SOFT_INT(6), SUN4M_SOFT_INT(7),
  159. SUN4M_SOFT_INT(8), SUN4M_SOFT_INT(9),
  160. SUN4M_SOFT_INT(10), SUN4M_SOFT_INT(11),
  161. SUN4M_SOFT_INT(12), SUN4M_SOFT_INT(13),
  162. SUN4M_SOFT_INT(14), SUN4M_SOFT_INT(15),
  163. /* onboard */
  164. 0, 0, 0, 0,
  165. SUN4M_INT_SCSI, 0, SUN4M_INT_ETHERNET, 0,
  166. SUN4M_INT_VIDEO, SUN4M_INT_MODULE,
  167. SUN4M_INT_REALTIME, SUN4M_INT_FLOPPY,
  168. (SUN4M_INT_SERIAL | SUN4M_INT_KBDMS),
  169. SUN4M_INT_AUDIO, 0, SUN4M_INT_MODULE_ERR,
  170. /* sbus */
  171. 0, 0, SUN4M_INT_SBUS(0), SUN4M_INT_SBUS(1),
  172. 0, SUN4M_INT_SBUS(2), 0, SUN4M_INT_SBUS(3),
  173. 0, SUN4M_INT_SBUS(4), 0, SUN4M_INT_SBUS(5),
  174. 0, SUN4M_INT_SBUS(6), 0, 0,
  175. /* vme */
  176. 0, 0, SUN4M_INT_VME(0), SUN4M_INT_VME(1),
  177. 0, SUN4M_INT_VME(2), 0, SUN4M_INT_VME(3),
  178. 0, SUN4M_INT_VME(4), 0, SUN4M_INT_VME(5),
  179. 0, SUN4M_INT_VME(6), 0, 0
  180. };
  181. static unsigned long sun4m_get_irqmask(unsigned int irq)
  182. {
  183. unsigned long mask;
  184. if (irq < 0x50)
  185. mask = irq_mask[irq];
  186. else
  187. mask = 0;
  188. if (!mask)
  189. printk(KERN_ERR "sun4m_get_irqmask: IRQ%d has no valid mask!\n",
  190. irq);
  191. return mask;
  192. }
  193. static void sun4m_disable_irq(unsigned int irq_nr)
  194. {
  195. unsigned long mask, flags;
  196. int cpu = smp_processor_id();
  197. mask = sun4m_get_irqmask(irq_nr);
  198. local_irq_save(flags);
  199. if (irq_nr > 15)
  200. sbus_writel(mask, &sun4m_irq_global->mask_set);
  201. else
  202. sbus_writel(mask, &sun4m_irq_percpu[cpu]->set);
  203. local_irq_restore(flags);
  204. }
  205. static void sun4m_enable_irq(unsigned int irq_nr)
  206. {
  207. unsigned long mask, flags;
  208. int cpu = smp_processor_id();
  209. /* Dreadful floppy hack. When we use 0x2b instead of
  210. * 0x0b the system blows (it starts to whistle!).
  211. * So we continue to use 0x0b. Fixme ASAP. --P3
  212. */
  213. if (irq_nr != 0x0b) {
  214. mask = sun4m_get_irqmask(irq_nr);
  215. local_irq_save(flags);
  216. if (irq_nr > 15)
  217. sbus_writel(mask, &sun4m_irq_global->mask_clear);
  218. else
  219. sbus_writel(mask, &sun4m_irq_percpu[cpu]->clear);
  220. local_irq_restore(flags);
  221. } else {
  222. local_irq_save(flags);
  223. sbus_writel(SUN4M_INT_FLOPPY, &sun4m_irq_global->mask_clear);
  224. local_irq_restore(flags);
  225. }
  226. }
  227. static unsigned long cpu_pil_to_imask[16] = {
  228. /*0*/ 0x00000000,
  229. /*1*/ 0x00000000,
  230. /*2*/ SUN4M_INT_SBUS(0) | SUN4M_INT_VME(0),
  231. /*3*/ SUN4M_INT_SBUS(1) | SUN4M_INT_VME(1),
  232. /*4*/ SUN4M_INT_SCSI,
  233. /*5*/ SUN4M_INT_SBUS(2) | SUN4M_INT_VME(2),
  234. /*6*/ SUN4M_INT_ETHERNET,
  235. /*7*/ SUN4M_INT_SBUS(3) | SUN4M_INT_VME(3),
  236. /*8*/ SUN4M_INT_VIDEO,
  237. /*9*/ SUN4M_INT_SBUS(4) | SUN4M_INT_VME(4) | SUN4M_INT_MODULE_ERR,
  238. /*10*/ SUN4M_INT_REALTIME,
  239. /*11*/ SUN4M_INT_SBUS(5) | SUN4M_INT_VME(5) | SUN4M_INT_FLOPPY,
  240. /*12*/ SUN4M_INT_SERIAL | SUN4M_INT_KBDMS,
  241. /*13*/ SUN4M_INT_SBUS(6) | SUN4M_INT_VME(6) | SUN4M_INT_AUDIO,
  242. /*14*/ SUN4M_INT_E14,
  243. /*15*/ SUN4M_INT_ERROR,
  244. };
  245. /* We assume the caller has disabled local interrupts when these are called,
  246. * or else very bizarre behavior will result.
  247. */
  248. static void sun4m_disable_pil_irq(unsigned int pil)
  249. {
  250. sbus_writel(cpu_pil_to_imask[pil], &sun4m_irq_global->mask_set);
  251. }
  252. static void sun4m_enable_pil_irq(unsigned int pil)
  253. {
  254. sbus_writel(cpu_pil_to_imask[pil], &sun4m_irq_global->mask_clear);
  255. }
  256. #ifdef CONFIG_SMP
  257. static void sun4m_send_ipi(int cpu, int level)
  258. {
  259. unsigned long mask = sun4m_get_irqmask(level);
  260. sbus_writel(mask, &sun4m_irq_percpu[cpu]->set);
  261. }
  262. static void sun4m_clear_ipi(int cpu, int level)
  263. {
  264. unsigned long mask = sun4m_get_irqmask(level);
  265. sbus_writel(mask, &sun4m_irq_percpu[cpu]->clear);
  266. }
  267. static void sun4m_set_udt(int cpu)
  268. {
  269. sbus_writel(cpu, &sun4m_irq_global->interrupt_target);
  270. }
  271. #endif
  272. struct sun4m_timer_percpu {
  273. u32 l14_limit;
  274. u32 l14_count;
  275. u32 l14_limit_noclear;
  276. u32 user_timer_start_stop;
  277. };
  278. static struct sun4m_timer_percpu __iomem *timers_percpu[SUN4M_NCPUS];
  279. struct sun4m_timer_global {
  280. u32 l10_limit;
  281. u32 l10_count;
  282. u32 l10_limit_noclear;
  283. u32 reserved;
  284. u32 timer_config;
  285. };
  286. static struct sun4m_timer_global __iomem *timers_global;
  287. #define TIMER_IRQ (OBP_INT_LEVEL_ONBOARD | 10)
  288. unsigned int lvl14_resolution = (((1000000/HZ) + 1) << 10);
  289. static void sun4m_clear_clock_irq(void)
  290. {
  291. sbus_readl(&timers_global->l10_limit);
  292. }
  293. void sun4m_nmi(struct pt_regs *regs)
  294. {
  295. unsigned long afsr, afar, si;
  296. printk(KERN_ERR "Aieee: sun4m NMI received!\n");
  297. /* XXX HyperSparc hack XXX */
  298. __asm__ __volatile__("mov 0x500, %%g1\n\t"
  299. "lda [%%g1] 0x4, %0\n\t"
  300. "mov 0x600, %%g1\n\t"
  301. "lda [%%g1] 0x4, %1\n\t" :
  302. "=r" (afsr), "=r" (afar));
  303. printk(KERN_ERR "afsr=%08lx afar=%08lx\n", afsr, afar);
  304. si = sbus_readl(&sun4m_irq_global->pending);
  305. printk(KERN_ERR "si=%08lx\n", si);
  306. if (si & SUN4M_INT_MODULE_ERR)
  307. printk(KERN_ERR "Module async error\n");
  308. if (si & SUN4M_INT_M2S_WRITE_ERR)
  309. printk(KERN_ERR "MBus/SBus async error\n");
  310. if (si & SUN4M_INT_ECC_ERR)
  311. printk(KERN_ERR "ECC memory error\n");
  312. if (si & SUN4M_INT_VME_ERR)
  313. printk(KERN_ERR "VME async error\n");
  314. printk(KERN_ERR "you lose buddy boy...\n");
  315. show_regs(regs);
  316. prom_halt();
  317. }
  318. /* Exported for sun4m_smp.c */
  319. void sun4m_clear_profile_irq(int cpu)
  320. {
  321. sbus_readl(&timers_percpu[cpu]->l14_limit);
  322. }
  323. static void sun4m_load_profile_irq(int cpu, unsigned int limit)
  324. {
  325. sbus_writel(limit, &timers_percpu[cpu]->l14_limit);
  326. }
  327. static void __init sun4m_init_timers(irq_handler_t counter_fn)
  328. {
  329. struct device_node *dp = of_find_node_by_name(NULL, "counter");
  330. int i, err, len, num_cpu_timers;
  331. const u32 *addr;
  332. if (!dp) {
  333. printk(KERN_ERR "sun4m_init_timers: No 'counter' node.\n");
  334. return;
  335. }
  336. addr = of_get_property(dp, "address", &len);
  337. of_node_put(dp);
  338. if (!addr) {
  339. printk(KERN_ERR "sun4m_init_timers: No 'address' prop.\n");
  340. return;
  341. }
  342. num_cpu_timers = (len / sizeof(u32)) - 1;
  343. for (i = 0; i < num_cpu_timers; i++) {
  344. timers_percpu[i] = (void __iomem *)
  345. (unsigned long) addr[i];
  346. }
  347. timers_global = (void __iomem *)
  348. (unsigned long) addr[num_cpu_timers];
  349. sbus_writel((((1000000/HZ) + 1) << 10), &timers_global->l10_limit);
  350. master_l10_counter = &timers_global->l10_count;
  351. err = request_irq(TIMER_IRQ, counter_fn,
  352. (IRQF_DISABLED | SA_STATIC_ALLOC), "timer", NULL);
  353. if (err) {
  354. printk(KERN_ERR "sun4m_init_timers: Register IRQ error %d.\n",
  355. err);
  356. return;
  357. }
  358. for (i = 0; i < num_cpu_timers; i++)
  359. sbus_writel(0, &timers_percpu[i]->l14_limit);
  360. if (num_cpu_timers == 4)
  361. sbus_writel(SUN4M_INT_E14, &sun4m_irq_global->mask_set);
  362. #ifdef CONFIG_SMP
  363. {
  364. unsigned long flags;
  365. struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)];
  366. /* For SMP we use the level 14 ticker, however the bootup code
  367. * has copied the firmware's level 14 vector into the boot cpu's
  368. * trap table, we must fix this now or we get squashed.
  369. */
  370. local_irq_save(flags);
  371. trap_table->inst_one = lvl14_save[0];
  372. trap_table->inst_two = lvl14_save[1];
  373. trap_table->inst_three = lvl14_save[2];
  374. trap_table->inst_four = lvl14_save[3];
  375. local_flush_cache_all();
  376. local_irq_restore(flags);
  377. }
  378. #endif
  379. }
  380. void __init sun4m_init_IRQ(void)
  381. {
  382. struct device_node *dp = of_find_node_by_name(NULL, "interrupt");
  383. int len, i, mid, num_cpu_iregs;
  384. const u32 *addr;
  385. if (!dp) {
  386. printk(KERN_ERR "sun4m_init_IRQ: No 'interrupt' node.\n");
  387. return;
  388. }
  389. addr = of_get_property(dp, "address", &len);
  390. of_node_put(dp);
  391. if (!addr) {
  392. printk(KERN_ERR "sun4m_init_IRQ: No 'address' prop.\n");
  393. return;
  394. }
  395. num_cpu_iregs = (len / sizeof(u32)) - 1;
  396. for (i = 0; i < num_cpu_iregs; i++) {
  397. sun4m_irq_percpu[i] = (void __iomem *)
  398. (unsigned long) addr[i];
  399. }
  400. sun4m_irq_global = (void __iomem *)
  401. (unsigned long) addr[num_cpu_iregs];
  402. local_irq_disable();
  403. sbus_writel(~SUN4M_INT_MASKALL, &sun4m_irq_global->mask_set);
  404. for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++)
  405. sbus_writel(~0x17fff, &sun4m_irq_percpu[mid]->clear);
  406. if (num_cpu_iregs == 4)
  407. sbus_writel(0, &sun4m_irq_global->interrupt_target);
  408. BTFIXUPSET_CALL(enable_irq, sun4m_enable_irq, BTFIXUPCALL_NORM);
  409. BTFIXUPSET_CALL(disable_irq, sun4m_disable_irq, BTFIXUPCALL_NORM);
  410. BTFIXUPSET_CALL(enable_pil_irq, sun4m_enable_pil_irq, BTFIXUPCALL_NORM);
  411. BTFIXUPSET_CALL(disable_pil_irq, sun4m_disable_pil_irq, BTFIXUPCALL_NORM);
  412. BTFIXUPSET_CALL(clear_clock_irq, sun4m_clear_clock_irq, BTFIXUPCALL_NORM);
  413. BTFIXUPSET_CALL(load_profile_irq, sun4m_load_profile_irq, BTFIXUPCALL_NORM);
  414. sparc_irq_config.init_timers = sun4m_init_timers;
  415. #ifdef CONFIG_SMP
  416. BTFIXUPSET_CALL(set_cpu_int, sun4m_send_ipi, BTFIXUPCALL_NORM);
  417. BTFIXUPSET_CALL(clear_cpu_int, sun4m_clear_ipi, BTFIXUPCALL_NORM);
  418. BTFIXUPSET_CALL(set_irq_udt, sun4m_set_udt, BTFIXUPCALL_NORM);
  419. #endif
  420. /* Cannot enable interrupts until OBP ticker is disabled. */
  421. }