kvm_main.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  58. static struct kvm_stats_debugfs_item {
  59. const char *name;
  60. int offset;
  61. struct dentry *dentry;
  62. } debugfs_entries[] = {
  63. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  64. { "pf_guest", STAT_OFFSET(pf_guest) },
  65. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  66. { "invlpg", STAT_OFFSET(invlpg) },
  67. { "exits", STAT_OFFSET(exits) },
  68. { "io_exits", STAT_OFFSET(io_exits) },
  69. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  70. { "signal_exits", STAT_OFFSET(signal_exits) },
  71. { "irq_window", STAT_OFFSET(irq_window_exits) },
  72. { "halt_exits", STAT_OFFSET(halt_exits) },
  73. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  74. { "request_irq", STAT_OFFSET(request_irq_exits) },
  75. { "irq_exits", STAT_OFFSET(irq_exits) },
  76. { "light_exits", STAT_OFFSET(light_exits) },
  77. { "efer_reload", STAT_OFFSET(efer_reload) },
  78. { NULL }
  79. };
  80. static struct dentry *debugfs_dir;
  81. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  82. unsigned long arg);
  83. static inline int valid_vcpu(int n)
  84. {
  85. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  86. }
  87. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  88. {
  89. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  90. return;
  91. vcpu->guest_fpu_loaded = 1;
  92. fx_save(&vcpu->host_fx_image);
  93. fx_restore(&vcpu->guest_fx_image);
  94. }
  95. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  96. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  97. {
  98. if (!vcpu->guest_fpu_loaded)
  99. return;
  100. vcpu->guest_fpu_loaded = 0;
  101. fx_save(&vcpu->guest_fx_image);
  102. fx_restore(&vcpu->host_fx_image);
  103. }
  104. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  105. /*
  106. * Switches to specified vcpu, until a matching vcpu_put()
  107. */
  108. void vcpu_load(struct kvm_vcpu *vcpu)
  109. {
  110. int cpu;
  111. mutex_lock(&vcpu->mutex);
  112. cpu = get_cpu();
  113. preempt_notifier_register(&vcpu->preempt_notifier);
  114. kvm_arch_vcpu_load(vcpu, cpu);
  115. put_cpu();
  116. }
  117. void vcpu_put(struct kvm_vcpu *vcpu)
  118. {
  119. preempt_disable();
  120. kvm_arch_vcpu_put(vcpu);
  121. preempt_notifier_unregister(&vcpu->preempt_notifier);
  122. preempt_enable();
  123. mutex_unlock(&vcpu->mutex);
  124. }
  125. static void ack_flush(void *_completed)
  126. {
  127. }
  128. void kvm_flush_remote_tlbs(struct kvm *kvm)
  129. {
  130. int i, cpu;
  131. cpumask_t cpus;
  132. struct kvm_vcpu *vcpu;
  133. cpus_clear(cpus);
  134. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  135. vcpu = kvm->vcpus[i];
  136. if (!vcpu)
  137. continue;
  138. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  139. continue;
  140. cpu = vcpu->cpu;
  141. if (cpu != -1 && cpu != raw_smp_processor_id())
  142. cpu_set(cpu, cpus);
  143. }
  144. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  145. }
  146. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  147. {
  148. struct page *page;
  149. int r;
  150. mutex_init(&vcpu->mutex);
  151. vcpu->cpu = -1;
  152. vcpu->mmu.root_hpa = INVALID_PAGE;
  153. vcpu->kvm = kvm;
  154. vcpu->vcpu_id = id;
  155. if (!irqchip_in_kernel(kvm) || id == 0)
  156. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  157. else
  158. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  159. init_waitqueue_head(&vcpu->wq);
  160. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  161. if (!page) {
  162. r = -ENOMEM;
  163. goto fail;
  164. }
  165. vcpu->run = page_address(page);
  166. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  167. if (!page) {
  168. r = -ENOMEM;
  169. goto fail_free_run;
  170. }
  171. vcpu->pio_data = page_address(page);
  172. r = kvm_mmu_create(vcpu);
  173. if (r < 0)
  174. goto fail_free_pio_data;
  175. if (irqchip_in_kernel(kvm)) {
  176. r = kvm_create_lapic(vcpu);
  177. if (r < 0)
  178. goto fail_mmu_destroy;
  179. }
  180. return 0;
  181. fail_mmu_destroy:
  182. kvm_mmu_destroy(vcpu);
  183. fail_free_pio_data:
  184. free_page((unsigned long)vcpu->pio_data);
  185. fail_free_run:
  186. free_page((unsigned long)vcpu->run);
  187. fail:
  188. return r;
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  191. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  192. {
  193. kvm_free_lapic(vcpu);
  194. kvm_mmu_destroy(vcpu);
  195. free_page((unsigned long)vcpu->pio_data);
  196. free_page((unsigned long)vcpu->run);
  197. }
  198. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  199. static struct kvm *kvm_create_vm(void)
  200. {
  201. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  202. if (!kvm)
  203. return ERR_PTR(-ENOMEM);
  204. kvm_io_bus_init(&kvm->pio_bus);
  205. mutex_init(&kvm->lock);
  206. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  207. kvm_io_bus_init(&kvm->mmio_bus);
  208. spin_lock(&kvm_lock);
  209. list_add(&kvm->vm_list, &vm_list);
  210. spin_unlock(&kvm_lock);
  211. return kvm;
  212. }
  213. /*
  214. * Free any memory in @free but not in @dont.
  215. */
  216. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  217. struct kvm_memory_slot *dont)
  218. {
  219. if (!dont || free->rmap != dont->rmap)
  220. vfree(free->rmap);
  221. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  222. vfree(free->dirty_bitmap);
  223. free->npages = 0;
  224. free->dirty_bitmap = NULL;
  225. free->rmap = NULL;
  226. }
  227. static void kvm_free_physmem(struct kvm *kvm)
  228. {
  229. int i;
  230. for (i = 0; i < kvm->nmemslots; ++i)
  231. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  232. }
  233. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  234. {
  235. int i;
  236. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  237. if (vcpu->pio.guest_pages[i]) {
  238. kvm_release_page(vcpu->pio.guest_pages[i]);
  239. vcpu->pio.guest_pages[i] = NULL;
  240. }
  241. }
  242. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  243. {
  244. vcpu_load(vcpu);
  245. kvm_mmu_unload(vcpu);
  246. vcpu_put(vcpu);
  247. }
  248. static void kvm_free_vcpus(struct kvm *kvm)
  249. {
  250. unsigned int i;
  251. /*
  252. * Unpin any mmu pages first.
  253. */
  254. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  255. if (kvm->vcpus[i])
  256. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  257. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  258. if (kvm->vcpus[i]) {
  259. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  260. kvm->vcpus[i] = NULL;
  261. }
  262. }
  263. }
  264. static void kvm_destroy_vm(struct kvm *kvm)
  265. {
  266. spin_lock(&kvm_lock);
  267. list_del(&kvm->vm_list);
  268. spin_unlock(&kvm_lock);
  269. kvm_io_bus_destroy(&kvm->pio_bus);
  270. kvm_io_bus_destroy(&kvm->mmio_bus);
  271. kfree(kvm->vpic);
  272. kfree(kvm->vioapic);
  273. kvm_free_vcpus(kvm);
  274. kvm_free_physmem(kvm);
  275. kfree(kvm);
  276. }
  277. static int kvm_vm_release(struct inode *inode, struct file *filp)
  278. {
  279. struct kvm *kvm = filp->private_data;
  280. kvm_destroy_vm(kvm);
  281. return 0;
  282. }
  283. static void inject_gp(struct kvm_vcpu *vcpu)
  284. {
  285. kvm_x86_ops->inject_gp(vcpu, 0);
  286. }
  287. void fx_init(struct kvm_vcpu *vcpu)
  288. {
  289. unsigned after_mxcsr_mask;
  290. /* Initialize guest FPU by resetting ours and saving into guest's */
  291. preempt_disable();
  292. fx_save(&vcpu->host_fx_image);
  293. fpu_init();
  294. fx_save(&vcpu->guest_fx_image);
  295. fx_restore(&vcpu->host_fx_image);
  296. preempt_enable();
  297. vcpu->cr0 |= X86_CR0_ET;
  298. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  299. vcpu->guest_fx_image.mxcsr = 0x1f80;
  300. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  301. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  302. }
  303. EXPORT_SYMBOL_GPL(fx_init);
  304. /*
  305. * Allocate some memory and give it an address in the guest physical address
  306. * space.
  307. *
  308. * Discontiguous memory is allowed, mostly for framebuffers.
  309. *
  310. * Must be called holding kvm->lock.
  311. */
  312. int __kvm_set_memory_region(struct kvm *kvm,
  313. struct kvm_userspace_memory_region *mem,
  314. int user_alloc)
  315. {
  316. int r;
  317. gfn_t base_gfn;
  318. unsigned long npages;
  319. unsigned long i;
  320. struct kvm_memory_slot *memslot;
  321. struct kvm_memory_slot old, new;
  322. r = -EINVAL;
  323. /* General sanity checks */
  324. if (mem->memory_size & (PAGE_SIZE - 1))
  325. goto out;
  326. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  327. goto out;
  328. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  329. goto out;
  330. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  331. goto out;
  332. memslot = &kvm->memslots[mem->slot];
  333. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  334. npages = mem->memory_size >> PAGE_SHIFT;
  335. if (!npages)
  336. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  337. new = old = *memslot;
  338. new.base_gfn = base_gfn;
  339. new.npages = npages;
  340. new.flags = mem->flags;
  341. /* Disallow changing a memory slot's size. */
  342. r = -EINVAL;
  343. if (npages && old.npages && npages != old.npages)
  344. goto out_free;
  345. /* Check for overlaps */
  346. r = -EEXIST;
  347. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  348. struct kvm_memory_slot *s = &kvm->memslots[i];
  349. if (s == memslot)
  350. continue;
  351. if (!((base_gfn + npages <= s->base_gfn) ||
  352. (base_gfn >= s->base_gfn + s->npages)))
  353. goto out_free;
  354. }
  355. /* Free page dirty bitmap if unneeded */
  356. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  357. new.dirty_bitmap = NULL;
  358. r = -ENOMEM;
  359. /* Allocate if a slot is being created */
  360. if (npages && !new.rmap) {
  361. new.rmap = vmalloc(npages * sizeof(struct page *));
  362. if (!new.rmap)
  363. goto out_free;
  364. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  365. new.user_alloc = user_alloc;
  366. if (user_alloc)
  367. new.userspace_addr = mem->userspace_addr;
  368. else {
  369. down_write(&current->mm->mmap_sem);
  370. new.userspace_addr = do_mmap(NULL, 0,
  371. npages * PAGE_SIZE,
  372. PROT_READ | PROT_WRITE,
  373. MAP_SHARED | MAP_ANONYMOUS,
  374. 0);
  375. up_write(&current->mm->mmap_sem);
  376. if (IS_ERR((void *)new.userspace_addr))
  377. goto out_free;
  378. }
  379. } else {
  380. if (!old.user_alloc && old.rmap) {
  381. int ret;
  382. down_write(&current->mm->mmap_sem);
  383. ret = do_munmap(current->mm, old.userspace_addr,
  384. old.npages * PAGE_SIZE);
  385. up_write(&current->mm->mmap_sem);
  386. if (ret < 0)
  387. printk(KERN_WARNING
  388. "kvm_vm_ioctl_set_memory_region: "
  389. "failed to munmap memory\n");
  390. }
  391. }
  392. /* Allocate page dirty bitmap if needed */
  393. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  394. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  395. new.dirty_bitmap = vmalloc(dirty_bytes);
  396. if (!new.dirty_bitmap)
  397. goto out_free;
  398. memset(new.dirty_bitmap, 0, dirty_bytes);
  399. }
  400. if (mem->slot >= kvm->nmemslots)
  401. kvm->nmemslots = mem->slot + 1;
  402. if (!kvm->n_requested_mmu_pages) {
  403. unsigned int n_pages;
  404. if (npages) {
  405. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  406. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  407. n_pages);
  408. } else {
  409. unsigned int nr_mmu_pages;
  410. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  411. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  412. nr_mmu_pages = max(nr_mmu_pages,
  413. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  414. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  415. }
  416. }
  417. *memslot = new;
  418. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  419. kvm_flush_remote_tlbs(kvm);
  420. kvm_free_physmem_slot(&old, &new);
  421. return 0;
  422. out_free:
  423. kvm_free_physmem_slot(&new, &old);
  424. out:
  425. return r;
  426. }
  427. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  428. int kvm_set_memory_region(struct kvm *kvm,
  429. struct kvm_userspace_memory_region *mem,
  430. int user_alloc)
  431. {
  432. int r;
  433. mutex_lock(&kvm->lock);
  434. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  435. mutex_unlock(&kvm->lock);
  436. return r;
  437. }
  438. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  439. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  440. struct
  441. kvm_userspace_memory_region *mem,
  442. int user_alloc)
  443. {
  444. if (mem->slot >= KVM_MEMORY_SLOTS)
  445. return -EINVAL;
  446. return kvm_set_memory_region(kvm, mem, user_alloc);
  447. }
  448. /*
  449. * Get (and clear) the dirty memory log for a memory slot.
  450. */
  451. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  452. struct kvm_dirty_log *log)
  453. {
  454. struct kvm_memory_slot *memslot;
  455. int r, i;
  456. int n;
  457. unsigned long any = 0;
  458. mutex_lock(&kvm->lock);
  459. r = -EINVAL;
  460. if (log->slot >= KVM_MEMORY_SLOTS)
  461. goto out;
  462. memslot = &kvm->memslots[log->slot];
  463. r = -ENOENT;
  464. if (!memslot->dirty_bitmap)
  465. goto out;
  466. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  467. for (i = 0; !any && i < n/sizeof(long); ++i)
  468. any = memslot->dirty_bitmap[i];
  469. r = -EFAULT;
  470. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  471. goto out;
  472. /* If nothing is dirty, don't bother messing with page tables. */
  473. if (any) {
  474. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  475. kvm_flush_remote_tlbs(kvm);
  476. memset(memslot->dirty_bitmap, 0, n);
  477. }
  478. r = 0;
  479. out:
  480. mutex_unlock(&kvm->lock);
  481. return r;
  482. }
  483. int is_error_page(struct page *page)
  484. {
  485. return page == bad_page;
  486. }
  487. EXPORT_SYMBOL_GPL(is_error_page);
  488. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  489. {
  490. int i;
  491. struct kvm_mem_alias *alias;
  492. for (i = 0; i < kvm->naliases; ++i) {
  493. alias = &kvm->aliases[i];
  494. if (gfn >= alias->base_gfn
  495. && gfn < alias->base_gfn + alias->npages)
  496. return alias->target_gfn + gfn - alias->base_gfn;
  497. }
  498. return gfn;
  499. }
  500. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  501. {
  502. int i;
  503. for (i = 0; i < kvm->nmemslots; ++i) {
  504. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  505. if (gfn >= memslot->base_gfn
  506. && gfn < memslot->base_gfn + memslot->npages)
  507. return memslot;
  508. }
  509. return NULL;
  510. }
  511. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  512. {
  513. gfn = unalias_gfn(kvm, gfn);
  514. return __gfn_to_memslot(kvm, gfn);
  515. }
  516. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  517. {
  518. int i;
  519. gfn = unalias_gfn(kvm, gfn);
  520. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  521. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  522. if (gfn >= memslot->base_gfn
  523. && gfn < memslot->base_gfn + memslot->npages)
  524. return 1;
  525. }
  526. return 0;
  527. }
  528. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  529. /*
  530. * Requires current->mm->mmap_sem to be held
  531. */
  532. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  533. {
  534. struct kvm_memory_slot *slot;
  535. struct page *page[1];
  536. int npages;
  537. might_sleep();
  538. gfn = unalias_gfn(kvm, gfn);
  539. slot = __gfn_to_memslot(kvm, gfn);
  540. if (!slot) {
  541. get_page(bad_page);
  542. return bad_page;
  543. }
  544. npages = get_user_pages(current, current->mm,
  545. slot->userspace_addr
  546. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  547. 1, 1, page, NULL);
  548. if (npages != 1) {
  549. get_page(bad_page);
  550. return bad_page;
  551. }
  552. return page[0];
  553. }
  554. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  555. {
  556. struct page *page;
  557. down_read(&current->mm->mmap_sem);
  558. page = __gfn_to_page(kvm, gfn);
  559. up_read(&current->mm->mmap_sem);
  560. return page;
  561. }
  562. EXPORT_SYMBOL_GPL(gfn_to_page);
  563. void kvm_release_page(struct page *page)
  564. {
  565. if (!PageReserved(page))
  566. SetPageDirty(page);
  567. put_page(page);
  568. }
  569. EXPORT_SYMBOL_GPL(kvm_release_page);
  570. static int next_segment(unsigned long len, int offset)
  571. {
  572. if (len > PAGE_SIZE - offset)
  573. return PAGE_SIZE - offset;
  574. else
  575. return len;
  576. }
  577. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  578. int len)
  579. {
  580. void *page_virt;
  581. struct page *page;
  582. page = gfn_to_page(kvm, gfn);
  583. if (is_error_page(page)) {
  584. kvm_release_page(page);
  585. return -EFAULT;
  586. }
  587. page_virt = kmap_atomic(page, KM_USER0);
  588. memcpy(data, page_virt + offset, len);
  589. kunmap_atomic(page_virt, KM_USER0);
  590. kvm_release_page(page);
  591. return 0;
  592. }
  593. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  594. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  595. {
  596. gfn_t gfn = gpa >> PAGE_SHIFT;
  597. int seg;
  598. int offset = offset_in_page(gpa);
  599. int ret;
  600. while ((seg = next_segment(len, offset)) != 0) {
  601. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  602. if (ret < 0)
  603. return ret;
  604. offset = 0;
  605. len -= seg;
  606. data += seg;
  607. ++gfn;
  608. }
  609. return 0;
  610. }
  611. EXPORT_SYMBOL_GPL(kvm_read_guest);
  612. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  613. int offset, int len)
  614. {
  615. void *page_virt;
  616. struct page *page;
  617. page = gfn_to_page(kvm, gfn);
  618. if (is_error_page(page)) {
  619. kvm_release_page(page);
  620. return -EFAULT;
  621. }
  622. page_virt = kmap_atomic(page, KM_USER0);
  623. memcpy(page_virt + offset, data, len);
  624. kunmap_atomic(page_virt, KM_USER0);
  625. mark_page_dirty(kvm, gfn);
  626. kvm_release_page(page);
  627. return 0;
  628. }
  629. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  630. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  631. unsigned long len)
  632. {
  633. gfn_t gfn = gpa >> PAGE_SHIFT;
  634. int seg;
  635. int offset = offset_in_page(gpa);
  636. int ret;
  637. while ((seg = next_segment(len, offset)) != 0) {
  638. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  639. if (ret < 0)
  640. return ret;
  641. offset = 0;
  642. len -= seg;
  643. data += seg;
  644. ++gfn;
  645. }
  646. return 0;
  647. }
  648. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  649. {
  650. void *page_virt;
  651. struct page *page;
  652. page = gfn_to_page(kvm, gfn);
  653. if (is_error_page(page)) {
  654. kvm_release_page(page);
  655. return -EFAULT;
  656. }
  657. page_virt = kmap_atomic(page, KM_USER0);
  658. memset(page_virt + offset, 0, len);
  659. kunmap_atomic(page_virt, KM_USER0);
  660. kvm_release_page(page);
  661. return 0;
  662. }
  663. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  664. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  665. {
  666. gfn_t gfn = gpa >> PAGE_SHIFT;
  667. int seg;
  668. int offset = offset_in_page(gpa);
  669. int ret;
  670. while ((seg = next_segment(len, offset)) != 0) {
  671. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  672. if (ret < 0)
  673. return ret;
  674. offset = 0;
  675. len -= seg;
  676. ++gfn;
  677. }
  678. return 0;
  679. }
  680. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  681. /* WARNING: Does not work on aliased pages. */
  682. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  683. {
  684. struct kvm_memory_slot *memslot;
  685. memslot = __gfn_to_memslot(kvm, gfn);
  686. if (memslot && memslot->dirty_bitmap) {
  687. unsigned long rel_gfn = gfn - memslot->base_gfn;
  688. /* avoid RMW */
  689. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  690. set_bit(rel_gfn, memslot->dirty_bitmap);
  691. }
  692. }
  693. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  694. gpa_t addr)
  695. {
  696. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  697. }
  698. /*
  699. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  700. */
  701. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  702. {
  703. DECLARE_WAITQUEUE(wait, current);
  704. add_wait_queue(&vcpu->wq, &wait);
  705. /*
  706. * We will block until either an interrupt or a signal wakes us up
  707. */
  708. while (!kvm_cpu_has_interrupt(vcpu)
  709. && !signal_pending(current)
  710. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  711. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  712. set_current_state(TASK_INTERRUPTIBLE);
  713. vcpu_put(vcpu);
  714. schedule();
  715. vcpu_load(vcpu);
  716. }
  717. __set_current_state(TASK_RUNNING);
  718. remove_wait_queue(&vcpu->wq, &wait);
  719. }
  720. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  721. {
  722. ++vcpu->stat.halt_exits;
  723. if (irqchip_in_kernel(vcpu->kvm)) {
  724. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  725. kvm_vcpu_block(vcpu);
  726. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  727. return -EINTR;
  728. return 1;
  729. } else {
  730. vcpu->run->exit_reason = KVM_EXIT_HLT;
  731. return 0;
  732. }
  733. }
  734. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  735. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  736. {
  737. unsigned long nr, a0, a1, a2, a3, ret;
  738. kvm_x86_ops->cache_regs(vcpu);
  739. nr = vcpu->regs[VCPU_REGS_RAX];
  740. a0 = vcpu->regs[VCPU_REGS_RBX];
  741. a1 = vcpu->regs[VCPU_REGS_RCX];
  742. a2 = vcpu->regs[VCPU_REGS_RDX];
  743. a3 = vcpu->regs[VCPU_REGS_RSI];
  744. if (!is_long_mode(vcpu)) {
  745. nr &= 0xFFFFFFFF;
  746. a0 &= 0xFFFFFFFF;
  747. a1 &= 0xFFFFFFFF;
  748. a2 &= 0xFFFFFFFF;
  749. a3 &= 0xFFFFFFFF;
  750. }
  751. switch (nr) {
  752. default:
  753. ret = -KVM_ENOSYS;
  754. break;
  755. }
  756. vcpu->regs[VCPU_REGS_RAX] = ret;
  757. kvm_x86_ops->decache_regs(vcpu);
  758. return 0;
  759. }
  760. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  761. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  762. {
  763. char instruction[3];
  764. int ret = 0;
  765. mutex_lock(&vcpu->kvm->lock);
  766. /*
  767. * Blow out the MMU to ensure that no other VCPU has an active mapping
  768. * to ensure that the updated hypercall appears atomically across all
  769. * VCPUs.
  770. */
  771. kvm_mmu_zap_all(vcpu->kvm);
  772. kvm_x86_ops->cache_regs(vcpu);
  773. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  774. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  775. != X86EMUL_CONTINUE)
  776. ret = -EFAULT;
  777. mutex_unlock(&vcpu->kvm->lock);
  778. return ret;
  779. }
  780. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  781. {
  782. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  783. }
  784. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  785. {
  786. struct descriptor_table dt = { limit, base };
  787. kvm_x86_ops->set_gdt(vcpu, &dt);
  788. }
  789. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  790. {
  791. struct descriptor_table dt = { limit, base };
  792. kvm_x86_ops->set_idt(vcpu, &dt);
  793. }
  794. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  795. unsigned long *rflags)
  796. {
  797. lmsw(vcpu, msw);
  798. *rflags = kvm_x86_ops->get_rflags(vcpu);
  799. }
  800. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  801. {
  802. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  803. switch (cr) {
  804. case 0:
  805. return vcpu->cr0;
  806. case 2:
  807. return vcpu->cr2;
  808. case 3:
  809. return vcpu->cr3;
  810. case 4:
  811. return vcpu->cr4;
  812. default:
  813. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  814. return 0;
  815. }
  816. }
  817. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  818. unsigned long *rflags)
  819. {
  820. switch (cr) {
  821. case 0:
  822. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  823. *rflags = kvm_x86_ops->get_rflags(vcpu);
  824. break;
  825. case 2:
  826. vcpu->cr2 = val;
  827. break;
  828. case 3:
  829. set_cr3(vcpu, val);
  830. break;
  831. case 4:
  832. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  833. break;
  834. default:
  835. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  836. }
  837. }
  838. void kvm_resched(struct kvm_vcpu *vcpu)
  839. {
  840. if (!need_resched())
  841. return;
  842. cond_resched();
  843. }
  844. EXPORT_SYMBOL_GPL(kvm_resched);
  845. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  846. {
  847. int i;
  848. u32 function;
  849. struct kvm_cpuid_entry *e, *best;
  850. kvm_x86_ops->cache_regs(vcpu);
  851. function = vcpu->regs[VCPU_REGS_RAX];
  852. vcpu->regs[VCPU_REGS_RAX] = 0;
  853. vcpu->regs[VCPU_REGS_RBX] = 0;
  854. vcpu->regs[VCPU_REGS_RCX] = 0;
  855. vcpu->regs[VCPU_REGS_RDX] = 0;
  856. best = NULL;
  857. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  858. e = &vcpu->cpuid_entries[i];
  859. if (e->function == function) {
  860. best = e;
  861. break;
  862. }
  863. /*
  864. * Both basic or both extended?
  865. */
  866. if (((e->function ^ function) & 0x80000000) == 0)
  867. if (!best || e->function > best->function)
  868. best = e;
  869. }
  870. if (best) {
  871. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  872. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  873. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  874. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  875. }
  876. kvm_x86_ops->decache_regs(vcpu);
  877. kvm_x86_ops->skip_emulated_instruction(vcpu);
  878. }
  879. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  880. static int pio_copy_data(struct kvm_vcpu *vcpu)
  881. {
  882. void *p = vcpu->pio_data;
  883. void *q;
  884. unsigned bytes;
  885. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  886. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  887. PAGE_KERNEL);
  888. if (!q) {
  889. free_pio_guest_pages(vcpu);
  890. return -ENOMEM;
  891. }
  892. q += vcpu->pio.guest_page_offset;
  893. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  894. if (vcpu->pio.in)
  895. memcpy(q, p, bytes);
  896. else
  897. memcpy(p, q, bytes);
  898. q -= vcpu->pio.guest_page_offset;
  899. vunmap(q);
  900. free_pio_guest_pages(vcpu);
  901. return 0;
  902. }
  903. static int complete_pio(struct kvm_vcpu *vcpu)
  904. {
  905. struct kvm_pio_request *io = &vcpu->pio;
  906. long delta;
  907. int r;
  908. kvm_x86_ops->cache_regs(vcpu);
  909. if (!io->string) {
  910. if (io->in)
  911. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  912. io->size);
  913. } else {
  914. if (io->in) {
  915. r = pio_copy_data(vcpu);
  916. if (r) {
  917. kvm_x86_ops->cache_regs(vcpu);
  918. return r;
  919. }
  920. }
  921. delta = 1;
  922. if (io->rep) {
  923. delta *= io->cur_count;
  924. /*
  925. * The size of the register should really depend on
  926. * current address size.
  927. */
  928. vcpu->regs[VCPU_REGS_RCX] -= delta;
  929. }
  930. if (io->down)
  931. delta = -delta;
  932. delta *= io->size;
  933. if (io->in)
  934. vcpu->regs[VCPU_REGS_RDI] += delta;
  935. else
  936. vcpu->regs[VCPU_REGS_RSI] += delta;
  937. }
  938. kvm_x86_ops->decache_regs(vcpu);
  939. io->count -= io->cur_count;
  940. io->cur_count = 0;
  941. return 0;
  942. }
  943. static void kernel_pio(struct kvm_io_device *pio_dev,
  944. struct kvm_vcpu *vcpu,
  945. void *pd)
  946. {
  947. /* TODO: String I/O for in kernel device */
  948. mutex_lock(&vcpu->kvm->lock);
  949. if (vcpu->pio.in)
  950. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  951. vcpu->pio.size,
  952. pd);
  953. else
  954. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  955. vcpu->pio.size,
  956. pd);
  957. mutex_unlock(&vcpu->kvm->lock);
  958. }
  959. static void pio_string_write(struct kvm_io_device *pio_dev,
  960. struct kvm_vcpu *vcpu)
  961. {
  962. struct kvm_pio_request *io = &vcpu->pio;
  963. void *pd = vcpu->pio_data;
  964. int i;
  965. mutex_lock(&vcpu->kvm->lock);
  966. for (i = 0; i < io->cur_count; i++) {
  967. kvm_iodevice_write(pio_dev, io->port,
  968. io->size,
  969. pd);
  970. pd += io->size;
  971. }
  972. mutex_unlock(&vcpu->kvm->lock);
  973. }
  974. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  975. int size, unsigned port)
  976. {
  977. struct kvm_io_device *pio_dev;
  978. vcpu->run->exit_reason = KVM_EXIT_IO;
  979. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  980. vcpu->run->io.size = vcpu->pio.size = size;
  981. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  982. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  983. vcpu->run->io.port = vcpu->pio.port = port;
  984. vcpu->pio.in = in;
  985. vcpu->pio.string = 0;
  986. vcpu->pio.down = 0;
  987. vcpu->pio.guest_page_offset = 0;
  988. vcpu->pio.rep = 0;
  989. kvm_x86_ops->cache_regs(vcpu);
  990. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  991. kvm_x86_ops->decache_regs(vcpu);
  992. kvm_x86_ops->skip_emulated_instruction(vcpu);
  993. pio_dev = vcpu_find_pio_dev(vcpu, port);
  994. if (pio_dev) {
  995. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  996. complete_pio(vcpu);
  997. return 1;
  998. }
  999. return 0;
  1000. }
  1001. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1002. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1003. int size, unsigned long count, int down,
  1004. gva_t address, int rep, unsigned port)
  1005. {
  1006. unsigned now, in_page;
  1007. int i, ret = 0;
  1008. int nr_pages = 1;
  1009. struct page *page;
  1010. struct kvm_io_device *pio_dev;
  1011. vcpu->run->exit_reason = KVM_EXIT_IO;
  1012. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1013. vcpu->run->io.size = vcpu->pio.size = size;
  1014. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1015. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1016. vcpu->run->io.port = vcpu->pio.port = port;
  1017. vcpu->pio.in = in;
  1018. vcpu->pio.string = 1;
  1019. vcpu->pio.down = down;
  1020. vcpu->pio.guest_page_offset = offset_in_page(address);
  1021. vcpu->pio.rep = rep;
  1022. if (!count) {
  1023. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1024. return 1;
  1025. }
  1026. if (!down)
  1027. in_page = PAGE_SIZE - offset_in_page(address);
  1028. else
  1029. in_page = offset_in_page(address) + size;
  1030. now = min(count, (unsigned long)in_page / size);
  1031. if (!now) {
  1032. /*
  1033. * String I/O straddles page boundary. Pin two guest pages
  1034. * so that we satisfy atomicity constraints. Do just one
  1035. * transaction to avoid complexity.
  1036. */
  1037. nr_pages = 2;
  1038. now = 1;
  1039. }
  1040. if (down) {
  1041. /*
  1042. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1043. */
  1044. pr_unimpl(vcpu, "guest string pio down\n");
  1045. inject_gp(vcpu);
  1046. return 1;
  1047. }
  1048. vcpu->run->io.count = now;
  1049. vcpu->pio.cur_count = now;
  1050. if (vcpu->pio.cur_count == vcpu->pio.count)
  1051. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1052. for (i = 0; i < nr_pages; ++i) {
  1053. mutex_lock(&vcpu->kvm->lock);
  1054. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1055. vcpu->pio.guest_pages[i] = page;
  1056. mutex_unlock(&vcpu->kvm->lock);
  1057. if (!page) {
  1058. inject_gp(vcpu);
  1059. free_pio_guest_pages(vcpu);
  1060. return 1;
  1061. }
  1062. }
  1063. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1064. if (!vcpu->pio.in) {
  1065. /* string PIO write */
  1066. ret = pio_copy_data(vcpu);
  1067. if (ret >= 0 && pio_dev) {
  1068. pio_string_write(pio_dev, vcpu);
  1069. complete_pio(vcpu);
  1070. if (vcpu->pio.count == 0)
  1071. ret = 1;
  1072. }
  1073. } else if (pio_dev)
  1074. pr_unimpl(vcpu, "no string pio read support yet, "
  1075. "port %x size %d count %ld\n",
  1076. port, size, count);
  1077. return ret;
  1078. }
  1079. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1080. /*
  1081. * Check if userspace requested an interrupt window, and that the
  1082. * interrupt window is open.
  1083. *
  1084. * No need to exit to userspace if we already have an interrupt queued.
  1085. */
  1086. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1087. struct kvm_run *kvm_run)
  1088. {
  1089. return (!vcpu->irq_summary &&
  1090. kvm_run->request_interrupt_window &&
  1091. vcpu->interrupt_window_open &&
  1092. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1093. }
  1094. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1095. struct kvm_run *kvm_run)
  1096. {
  1097. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1098. kvm_run->cr8 = get_cr8(vcpu);
  1099. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1100. if (irqchip_in_kernel(vcpu->kvm))
  1101. kvm_run->ready_for_interrupt_injection = 1;
  1102. else
  1103. kvm_run->ready_for_interrupt_injection =
  1104. (vcpu->interrupt_window_open &&
  1105. vcpu->irq_summary == 0);
  1106. }
  1107. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1108. {
  1109. int r;
  1110. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1111. pr_debug("vcpu %d received sipi with vector # %x\n",
  1112. vcpu->vcpu_id, vcpu->sipi_vector);
  1113. kvm_lapic_reset(vcpu);
  1114. r = kvm_x86_ops->vcpu_reset(vcpu);
  1115. if (r)
  1116. return r;
  1117. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1118. }
  1119. preempted:
  1120. if (vcpu->guest_debug.enabled)
  1121. kvm_x86_ops->guest_debug_pre(vcpu);
  1122. again:
  1123. r = kvm_mmu_reload(vcpu);
  1124. if (unlikely(r))
  1125. goto out;
  1126. kvm_inject_pending_timer_irqs(vcpu);
  1127. preempt_disable();
  1128. kvm_x86_ops->prepare_guest_switch(vcpu);
  1129. kvm_load_guest_fpu(vcpu);
  1130. local_irq_disable();
  1131. if (signal_pending(current)) {
  1132. local_irq_enable();
  1133. preempt_enable();
  1134. r = -EINTR;
  1135. kvm_run->exit_reason = KVM_EXIT_INTR;
  1136. ++vcpu->stat.signal_exits;
  1137. goto out;
  1138. }
  1139. if (irqchip_in_kernel(vcpu->kvm))
  1140. kvm_x86_ops->inject_pending_irq(vcpu);
  1141. else if (!vcpu->mmio_read_completed)
  1142. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1143. vcpu->guest_mode = 1;
  1144. kvm_guest_enter();
  1145. if (vcpu->requests)
  1146. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1147. kvm_x86_ops->tlb_flush(vcpu);
  1148. kvm_x86_ops->run(vcpu, kvm_run);
  1149. vcpu->guest_mode = 0;
  1150. local_irq_enable();
  1151. ++vcpu->stat.exits;
  1152. /*
  1153. * We must have an instruction between local_irq_enable() and
  1154. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1155. * the interrupt shadow. The stat.exits increment will do nicely.
  1156. * But we need to prevent reordering, hence this barrier():
  1157. */
  1158. barrier();
  1159. kvm_guest_exit();
  1160. preempt_enable();
  1161. /*
  1162. * Profile KVM exit RIPs:
  1163. */
  1164. if (unlikely(prof_on == KVM_PROFILING)) {
  1165. kvm_x86_ops->cache_regs(vcpu);
  1166. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1167. }
  1168. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1169. if (r > 0) {
  1170. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1171. r = -EINTR;
  1172. kvm_run->exit_reason = KVM_EXIT_INTR;
  1173. ++vcpu->stat.request_irq_exits;
  1174. goto out;
  1175. }
  1176. if (!need_resched()) {
  1177. ++vcpu->stat.light_exits;
  1178. goto again;
  1179. }
  1180. }
  1181. out:
  1182. if (r > 0) {
  1183. kvm_resched(vcpu);
  1184. goto preempted;
  1185. }
  1186. post_kvm_run_save(vcpu, kvm_run);
  1187. return r;
  1188. }
  1189. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1190. {
  1191. int r;
  1192. sigset_t sigsaved;
  1193. vcpu_load(vcpu);
  1194. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1195. kvm_vcpu_block(vcpu);
  1196. vcpu_put(vcpu);
  1197. return -EAGAIN;
  1198. }
  1199. if (vcpu->sigset_active)
  1200. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1201. /* re-sync apic's tpr */
  1202. if (!irqchip_in_kernel(vcpu->kvm))
  1203. set_cr8(vcpu, kvm_run->cr8);
  1204. if (vcpu->pio.cur_count) {
  1205. r = complete_pio(vcpu);
  1206. if (r)
  1207. goto out;
  1208. }
  1209. #if CONFIG_HAS_IOMEM
  1210. if (vcpu->mmio_needed) {
  1211. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1212. vcpu->mmio_read_completed = 1;
  1213. vcpu->mmio_needed = 0;
  1214. r = emulate_instruction(vcpu, kvm_run,
  1215. vcpu->mmio_fault_cr2, 0, 1);
  1216. if (r == EMULATE_DO_MMIO) {
  1217. /*
  1218. * Read-modify-write. Back to userspace.
  1219. */
  1220. r = 0;
  1221. goto out;
  1222. }
  1223. }
  1224. #endif
  1225. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1226. kvm_x86_ops->cache_regs(vcpu);
  1227. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1228. kvm_x86_ops->decache_regs(vcpu);
  1229. }
  1230. r = __vcpu_run(vcpu, kvm_run);
  1231. out:
  1232. if (vcpu->sigset_active)
  1233. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1234. vcpu_put(vcpu);
  1235. return r;
  1236. }
  1237. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1238. struct kvm_regs *regs)
  1239. {
  1240. vcpu_load(vcpu);
  1241. kvm_x86_ops->cache_regs(vcpu);
  1242. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1243. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1244. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1245. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1246. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1247. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1248. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1249. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1250. #ifdef CONFIG_X86_64
  1251. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1252. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1253. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1254. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1255. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1256. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1257. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1258. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1259. #endif
  1260. regs->rip = vcpu->rip;
  1261. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1262. /*
  1263. * Don't leak debug flags in case they were set for guest debugging
  1264. */
  1265. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1266. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1267. vcpu_put(vcpu);
  1268. return 0;
  1269. }
  1270. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1271. struct kvm_regs *regs)
  1272. {
  1273. vcpu_load(vcpu);
  1274. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1275. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1276. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1277. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1278. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1279. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1280. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1281. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1282. #ifdef CONFIG_X86_64
  1283. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1284. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1285. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1286. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1287. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1288. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1289. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1290. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1291. #endif
  1292. vcpu->rip = regs->rip;
  1293. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1294. kvm_x86_ops->decache_regs(vcpu);
  1295. vcpu_put(vcpu);
  1296. return 0;
  1297. }
  1298. static void get_segment(struct kvm_vcpu *vcpu,
  1299. struct kvm_segment *var, int seg)
  1300. {
  1301. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1302. }
  1303. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1304. struct kvm_sregs *sregs)
  1305. {
  1306. struct descriptor_table dt;
  1307. int pending_vec;
  1308. vcpu_load(vcpu);
  1309. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1310. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1311. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1312. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1313. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1314. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1315. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1316. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1317. kvm_x86_ops->get_idt(vcpu, &dt);
  1318. sregs->idt.limit = dt.limit;
  1319. sregs->idt.base = dt.base;
  1320. kvm_x86_ops->get_gdt(vcpu, &dt);
  1321. sregs->gdt.limit = dt.limit;
  1322. sregs->gdt.base = dt.base;
  1323. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1324. sregs->cr0 = vcpu->cr0;
  1325. sregs->cr2 = vcpu->cr2;
  1326. sregs->cr3 = vcpu->cr3;
  1327. sregs->cr4 = vcpu->cr4;
  1328. sregs->cr8 = get_cr8(vcpu);
  1329. sregs->efer = vcpu->shadow_efer;
  1330. sregs->apic_base = kvm_get_apic_base(vcpu);
  1331. if (irqchip_in_kernel(vcpu->kvm)) {
  1332. memset(sregs->interrupt_bitmap, 0,
  1333. sizeof sregs->interrupt_bitmap);
  1334. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1335. if (pending_vec >= 0)
  1336. set_bit(pending_vec,
  1337. (unsigned long *)sregs->interrupt_bitmap);
  1338. } else
  1339. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1340. sizeof sregs->interrupt_bitmap);
  1341. vcpu_put(vcpu);
  1342. return 0;
  1343. }
  1344. static void set_segment(struct kvm_vcpu *vcpu,
  1345. struct kvm_segment *var, int seg)
  1346. {
  1347. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1348. }
  1349. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1350. struct kvm_sregs *sregs)
  1351. {
  1352. int mmu_reset_needed = 0;
  1353. int i, pending_vec, max_bits;
  1354. struct descriptor_table dt;
  1355. vcpu_load(vcpu);
  1356. dt.limit = sregs->idt.limit;
  1357. dt.base = sregs->idt.base;
  1358. kvm_x86_ops->set_idt(vcpu, &dt);
  1359. dt.limit = sregs->gdt.limit;
  1360. dt.base = sregs->gdt.base;
  1361. kvm_x86_ops->set_gdt(vcpu, &dt);
  1362. vcpu->cr2 = sregs->cr2;
  1363. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1364. vcpu->cr3 = sregs->cr3;
  1365. set_cr8(vcpu, sregs->cr8);
  1366. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1367. #ifdef CONFIG_X86_64
  1368. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1369. #endif
  1370. kvm_set_apic_base(vcpu, sregs->apic_base);
  1371. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1372. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1373. vcpu->cr0 = sregs->cr0;
  1374. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1375. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1376. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1377. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1378. load_pdptrs(vcpu, vcpu->cr3);
  1379. if (mmu_reset_needed)
  1380. kvm_mmu_reset_context(vcpu);
  1381. if (!irqchip_in_kernel(vcpu->kvm)) {
  1382. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1383. sizeof vcpu->irq_pending);
  1384. vcpu->irq_summary = 0;
  1385. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1386. if (vcpu->irq_pending[i])
  1387. __set_bit(i, &vcpu->irq_summary);
  1388. } else {
  1389. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1390. pending_vec = find_first_bit(
  1391. (const unsigned long *)sregs->interrupt_bitmap,
  1392. max_bits);
  1393. /* Only pending external irq is handled here */
  1394. if (pending_vec < max_bits) {
  1395. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1396. pr_debug("Set back pending irq %d\n",
  1397. pending_vec);
  1398. }
  1399. }
  1400. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1401. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1402. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1403. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1404. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1405. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1406. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1407. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1408. vcpu_put(vcpu);
  1409. return 0;
  1410. }
  1411. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1412. {
  1413. struct kvm_segment cs;
  1414. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1415. *db = cs.db;
  1416. *l = cs.l;
  1417. }
  1418. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1419. /*
  1420. * Translate a guest virtual address to a guest physical address.
  1421. */
  1422. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1423. struct kvm_translation *tr)
  1424. {
  1425. unsigned long vaddr = tr->linear_address;
  1426. gpa_t gpa;
  1427. vcpu_load(vcpu);
  1428. mutex_lock(&vcpu->kvm->lock);
  1429. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1430. tr->physical_address = gpa;
  1431. tr->valid = gpa != UNMAPPED_GVA;
  1432. tr->writeable = 1;
  1433. tr->usermode = 0;
  1434. mutex_unlock(&vcpu->kvm->lock);
  1435. vcpu_put(vcpu);
  1436. return 0;
  1437. }
  1438. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1439. struct kvm_interrupt *irq)
  1440. {
  1441. if (irq->irq < 0 || irq->irq >= 256)
  1442. return -EINVAL;
  1443. if (irqchip_in_kernel(vcpu->kvm))
  1444. return -ENXIO;
  1445. vcpu_load(vcpu);
  1446. set_bit(irq->irq, vcpu->irq_pending);
  1447. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1448. vcpu_put(vcpu);
  1449. return 0;
  1450. }
  1451. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1452. struct kvm_debug_guest *dbg)
  1453. {
  1454. int r;
  1455. vcpu_load(vcpu);
  1456. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  1457. vcpu_put(vcpu);
  1458. return r;
  1459. }
  1460. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1461. unsigned long address,
  1462. int *type)
  1463. {
  1464. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1465. unsigned long pgoff;
  1466. struct page *page;
  1467. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1468. if (pgoff == 0)
  1469. page = virt_to_page(vcpu->run);
  1470. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1471. page = virt_to_page(vcpu->pio_data);
  1472. else
  1473. return NOPAGE_SIGBUS;
  1474. get_page(page);
  1475. if (type != NULL)
  1476. *type = VM_FAULT_MINOR;
  1477. return page;
  1478. }
  1479. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1480. .nopage = kvm_vcpu_nopage,
  1481. };
  1482. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1483. {
  1484. vma->vm_ops = &kvm_vcpu_vm_ops;
  1485. return 0;
  1486. }
  1487. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1488. {
  1489. struct kvm_vcpu *vcpu = filp->private_data;
  1490. fput(vcpu->kvm->filp);
  1491. return 0;
  1492. }
  1493. static struct file_operations kvm_vcpu_fops = {
  1494. .release = kvm_vcpu_release,
  1495. .unlocked_ioctl = kvm_vcpu_ioctl,
  1496. .compat_ioctl = kvm_vcpu_ioctl,
  1497. .mmap = kvm_vcpu_mmap,
  1498. };
  1499. /*
  1500. * Allocates an inode for the vcpu.
  1501. */
  1502. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1503. {
  1504. int fd, r;
  1505. struct inode *inode;
  1506. struct file *file;
  1507. r = anon_inode_getfd(&fd, &inode, &file,
  1508. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1509. if (r)
  1510. return r;
  1511. atomic_inc(&vcpu->kvm->filp->f_count);
  1512. return fd;
  1513. }
  1514. /*
  1515. * Creates some virtual cpus. Good luck creating more than one.
  1516. */
  1517. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1518. {
  1519. int r;
  1520. struct kvm_vcpu *vcpu;
  1521. if (!valid_vcpu(n))
  1522. return -EINVAL;
  1523. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  1524. if (IS_ERR(vcpu))
  1525. return PTR_ERR(vcpu);
  1526. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1527. /* We do fxsave: this must be aligned. */
  1528. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1529. vcpu_load(vcpu);
  1530. r = kvm_x86_ops->vcpu_reset(vcpu);
  1531. if (r == 0)
  1532. r = kvm_mmu_setup(vcpu);
  1533. vcpu_put(vcpu);
  1534. if (r < 0)
  1535. goto free_vcpu;
  1536. mutex_lock(&kvm->lock);
  1537. if (kvm->vcpus[n]) {
  1538. r = -EEXIST;
  1539. mutex_unlock(&kvm->lock);
  1540. goto mmu_unload;
  1541. }
  1542. kvm->vcpus[n] = vcpu;
  1543. mutex_unlock(&kvm->lock);
  1544. /* Now it's all set up, let userspace reach it */
  1545. r = create_vcpu_fd(vcpu);
  1546. if (r < 0)
  1547. goto unlink;
  1548. return r;
  1549. unlink:
  1550. mutex_lock(&kvm->lock);
  1551. kvm->vcpus[n] = NULL;
  1552. mutex_unlock(&kvm->lock);
  1553. mmu_unload:
  1554. vcpu_load(vcpu);
  1555. kvm_mmu_unload(vcpu);
  1556. vcpu_put(vcpu);
  1557. free_vcpu:
  1558. kvm_x86_ops->vcpu_free(vcpu);
  1559. return r;
  1560. }
  1561. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1562. {
  1563. if (sigset) {
  1564. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1565. vcpu->sigset_active = 1;
  1566. vcpu->sigset = *sigset;
  1567. } else
  1568. vcpu->sigset_active = 0;
  1569. return 0;
  1570. }
  1571. /*
  1572. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  1573. * we have asm/x86/processor.h
  1574. */
  1575. struct fxsave {
  1576. u16 cwd;
  1577. u16 swd;
  1578. u16 twd;
  1579. u16 fop;
  1580. u64 rip;
  1581. u64 rdp;
  1582. u32 mxcsr;
  1583. u32 mxcsr_mask;
  1584. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  1585. #ifdef CONFIG_X86_64
  1586. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  1587. #else
  1588. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  1589. #endif
  1590. };
  1591. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1592. {
  1593. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1594. vcpu_load(vcpu);
  1595. memcpy(fpu->fpr, fxsave->st_space, 128);
  1596. fpu->fcw = fxsave->cwd;
  1597. fpu->fsw = fxsave->swd;
  1598. fpu->ftwx = fxsave->twd;
  1599. fpu->last_opcode = fxsave->fop;
  1600. fpu->last_ip = fxsave->rip;
  1601. fpu->last_dp = fxsave->rdp;
  1602. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  1603. vcpu_put(vcpu);
  1604. return 0;
  1605. }
  1606. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1607. {
  1608. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1609. vcpu_load(vcpu);
  1610. memcpy(fxsave->st_space, fpu->fpr, 128);
  1611. fxsave->cwd = fpu->fcw;
  1612. fxsave->swd = fpu->fsw;
  1613. fxsave->twd = fpu->ftwx;
  1614. fxsave->fop = fpu->last_opcode;
  1615. fxsave->rip = fpu->last_ip;
  1616. fxsave->rdp = fpu->last_dp;
  1617. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  1618. vcpu_put(vcpu);
  1619. return 0;
  1620. }
  1621. static long kvm_vcpu_ioctl(struct file *filp,
  1622. unsigned int ioctl, unsigned long arg)
  1623. {
  1624. struct kvm_vcpu *vcpu = filp->private_data;
  1625. void __user *argp = (void __user *)arg;
  1626. int r;
  1627. switch (ioctl) {
  1628. case KVM_RUN:
  1629. r = -EINVAL;
  1630. if (arg)
  1631. goto out;
  1632. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  1633. break;
  1634. case KVM_GET_REGS: {
  1635. struct kvm_regs kvm_regs;
  1636. memset(&kvm_regs, 0, sizeof kvm_regs);
  1637. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  1638. if (r)
  1639. goto out;
  1640. r = -EFAULT;
  1641. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  1642. goto out;
  1643. r = 0;
  1644. break;
  1645. }
  1646. case KVM_SET_REGS: {
  1647. struct kvm_regs kvm_regs;
  1648. r = -EFAULT;
  1649. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1650. goto out;
  1651. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  1652. if (r)
  1653. goto out;
  1654. r = 0;
  1655. break;
  1656. }
  1657. case KVM_GET_SREGS: {
  1658. struct kvm_sregs kvm_sregs;
  1659. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  1660. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  1661. if (r)
  1662. goto out;
  1663. r = -EFAULT;
  1664. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  1665. goto out;
  1666. r = 0;
  1667. break;
  1668. }
  1669. case KVM_SET_SREGS: {
  1670. struct kvm_sregs kvm_sregs;
  1671. r = -EFAULT;
  1672. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1673. goto out;
  1674. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  1675. if (r)
  1676. goto out;
  1677. r = 0;
  1678. break;
  1679. }
  1680. case KVM_TRANSLATE: {
  1681. struct kvm_translation tr;
  1682. r = -EFAULT;
  1683. if (copy_from_user(&tr, argp, sizeof tr))
  1684. goto out;
  1685. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  1686. if (r)
  1687. goto out;
  1688. r = -EFAULT;
  1689. if (copy_to_user(argp, &tr, sizeof tr))
  1690. goto out;
  1691. r = 0;
  1692. break;
  1693. }
  1694. case KVM_INTERRUPT: {
  1695. struct kvm_interrupt irq;
  1696. r = -EFAULT;
  1697. if (copy_from_user(&irq, argp, sizeof irq))
  1698. goto out;
  1699. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1700. if (r)
  1701. goto out;
  1702. r = 0;
  1703. break;
  1704. }
  1705. case KVM_DEBUG_GUEST: {
  1706. struct kvm_debug_guest dbg;
  1707. r = -EFAULT;
  1708. if (copy_from_user(&dbg, argp, sizeof dbg))
  1709. goto out;
  1710. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1711. if (r)
  1712. goto out;
  1713. r = 0;
  1714. break;
  1715. }
  1716. case KVM_SET_SIGNAL_MASK: {
  1717. struct kvm_signal_mask __user *sigmask_arg = argp;
  1718. struct kvm_signal_mask kvm_sigmask;
  1719. sigset_t sigset, *p;
  1720. p = NULL;
  1721. if (argp) {
  1722. r = -EFAULT;
  1723. if (copy_from_user(&kvm_sigmask, argp,
  1724. sizeof kvm_sigmask))
  1725. goto out;
  1726. r = -EINVAL;
  1727. if (kvm_sigmask.len != sizeof sigset)
  1728. goto out;
  1729. r = -EFAULT;
  1730. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1731. sizeof sigset))
  1732. goto out;
  1733. p = &sigset;
  1734. }
  1735. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1736. break;
  1737. }
  1738. case KVM_GET_FPU: {
  1739. struct kvm_fpu fpu;
  1740. memset(&fpu, 0, sizeof fpu);
  1741. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  1742. if (r)
  1743. goto out;
  1744. r = -EFAULT;
  1745. if (copy_to_user(argp, &fpu, sizeof fpu))
  1746. goto out;
  1747. r = 0;
  1748. break;
  1749. }
  1750. case KVM_SET_FPU: {
  1751. struct kvm_fpu fpu;
  1752. r = -EFAULT;
  1753. if (copy_from_user(&fpu, argp, sizeof fpu))
  1754. goto out;
  1755. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  1756. if (r)
  1757. goto out;
  1758. r = 0;
  1759. break;
  1760. }
  1761. default:
  1762. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1763. }
  1764. out:
  1765. return r;
  1766. }
  1767. static long kvm_vm_ioctl(struct file *filp,
  1768. unsigned int ioctl, unsigned long arg)
  1769. {
  1770. struct kvm *kvm = filp->private_data;
  1771. void __user *argp = (void __user *)arg;
  1772. int r;
  1773. switch (ioctl) {
  1774. case KVM_CREATE_VCPU:
  1775. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1776. if (r < 0)
  1777. goto out;
  1778. break;
  1779. case KVM_SET_USER_MEMORY_REGION: {
  1780. struct kvm_userspace_memory_region kvm_userspace_mem;
  1781. r = -EFAULT;
  1782. if (copy_from_user(&kvm_userspace_mem, argp,
  1783. sizeof kvm_userspace_mem))
  1784. goto out;
  1785. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1786. if (r)
  1787. goto out;
  1788. break;
  1789. }
  1790. case KVM_GET_DIRTY_LOG: {
  1791. struct kvm_dirty_log log;
  1792. r = -EFAULT;
  1793. if (copy_from_user(&log, argp, sizeof log))
  1794. goto out;
  1795. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1796. if (r)
  1797. goto out;
  1798. break;
  1799. }
  1800. default:
  1801. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1802. }
  1803. out:
  1804. return r;
  1805. }
  1806. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  1807. unsigned long address,
  1808. int *type)
  1809. {
  1810. struct kvm *kvm = vma->vm_file->private_data;
  1811. unsigned long pgoff;
  1812. struct page *page;
  1813. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1814. if (!kvm_is_visible_gfn(kvm, pgoff))
  1815. return NOPAGE_SIGBUS;
  1816. /* current->mm->mmap_sem is already held so call lockless version */
  1817. page = __gfn_to_page(kvm, pgoff);
  1818. if (is_error_page(page)) {
  1819. kvm_release_page(page);
  1820. return NOPAGE_SIGBUS;
  1821. }
  1822. if (type != NULL)
  1823. *type = VM_FAULT_MINOR;
  1824. return page;
  1825. }
  1826. static struct vm_operations_struct kvm_vm_vm_ops = {
  1827. .nopage = kvm_vm_nopage,
  1828. };
  1829. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1830. {
  1831. vma->vm_ops = &kvm_vm_vm_ops;
  1832. return 0;
  1833. }
  1834. static struct file_operations kvm_vm_fops = {
  1835. .release = kvm_vm_release,
  1836. .unlocked_ioctl = kvm_vm_ioctl,
  1837. .compat_ioctl = kvm_vm_ioctl,
  1838. .mmap = kvm_vm_mmap,
  1839. };
  1840. static int kvm_dev_ioctl_create_vm(void)
  1841. {
  1842. int fd, r;
  1843. struct inode *inode;
  1844. struct file *file;
  1845. struct kvm *kvm;
  1846. kvm = kvm_create_vm();
  1847. if (IS_ERR(kvm))
  1848. return PTR_ERR(kvm);
  1849. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  1850. if (r) {
  1851. kvm_destroy_vm(kvm);
  1852. return r;
  1853. }
  1854. kvm->filp = file;
  1855. return fd;
  1856. }
  1857. static long kvm_dev_ioctl(struct file *filp,
  1858. unsigned int ioctl, unsigned long arg)
  1859. {
  1860. void __user *argp = (void __user *)arg;
  1861. long r = -EINVAL;
  1862. switch (ioctl) {
  1863. case KVM_GET_API_VERSION:
  1864. r = -EINVAL;
  1865. if (arg)
  1866. goto out;
  1867. r = KVM_API_VERSION;
  1868. break;
  1869. case KVM_CREATE_VM:
  1870. r = -EINVAL;
  1871. if (arg)
  1872. goto out;
  1873. r = kvm_dev_ioctl_create_vm();
  1874. break;
  1875. case KVM_CHECK_EXTENSION: {
  1876. int ext = (long)argp;
  1877. switch (ext) {
  1878. case KVM_CAP_IRQCHIP:
  1879. case KVM_CAP_HLT:
  1880. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1881. case KVM_CAP_USER_MEMORY:
  1882. case KVM_CAP_SET_TSS_ADDR:
  1883. r = 1;
  1884. break;
  1885. default:
  1886. r = 0;
  1887. break;
  1888. }
  1889. break;
  1890. }
  1891. case KVM_GET_VCPU_MMAP_SIZE:
  1892. r = -EINVAL;
  1893. if (arg)
  1894. goto out;
  1895. r = 2 * PAGE_SIZE;
  1896. break;
  1897. default:
  1898. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1899. }
  1900. out:
  1901. return r;
  1902. }
  1903. static struct file_operations kvm_chardev_ops = {
  1904. .unlocked_ioctl = kvm_dev_ioctl,
  1905. .compat_ioctl = kvm_dev_ioctl,
  1906. };
  1907. static struct miscdevice kvm_dev = {
  1908. KVM_MINOR,
  1909. "kvm",
  1910. &kvm_chardev_ops,
  1911. };
  1912. /*
  1913. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  1914. * cached on it.
  1915. */
  1916. static void decache_vcpus_on_cpu(int cpu)
  1917. {
  1918. struct kvm *vm;
  1919. struct kvm_vcpu *vcpu;
  1920. int i;
  1921. spin_lock(&kvm_lock);
  1922. list_for_each_entry(vm, &vm_list, vm_list)
  1923. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1924. vcpu = vm->vcpus[i];
  1925. if (!vcpu)
  1926. continue;
  1927. /*
  1928. * If the vcpu is locked, then it is running on some
  1929. * other cpu and therefore it is not cached on the
  1930. * cpu in question.
  1931. *
  1932. * If it's not locked, check the last cpu it executed
  1933. * on.
  1934. */
  1935. if (mutex_trylock(&vcpu->mutex)) {
  1936. if (vcpu->cpu == cpu) {
  1937. kvm_x86_ops->vcpu_decache(vcpu);
  1938. vcpu->cpu = -1;
  1939. }
  1940. mutex_unlock(&vcpu->mutex);
  1941. }
  1942. }
  1943. spin_unlock(&kvm_lock);
  1944. }
  1945. static void hardware_enable(void *junk)
  1946. {
  1947. int cpu = raw_smp_processor_id();
  1948. if (cpu_isset(cpu, cpus_hardware_enabled))
  1949. return;
  1950. cpu_set(cpu, cpus_hardware_enabled);
  1951. kvm_x86_ops->hardware_enable(NULL);
  1952. }
  1953. static void hardware_disable(void *junk)
  1954. {
  1955. int cpu = raw_smp_processor_id();
  1956. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1957. return;
  1958. cpu_clear(cpu, cpus_hardware_enabled);
  1959. decache_vcpus_on_cpu(cpu);
  1960. kvm_x86_ops->hardware_disable(NULL);
  1961. }
  1962. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1963. void *v)
  1964. {
  1965. int cpu = (long)v;
  1966. switch (val) {
  1967. case CPU_DYING:
  1968. case CPU_DYING_FROZEN:
  1969. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1970. cpu);
  1971. hardware_disable(NULL);
  1972. break;
  1973. case CPU_UP_CANCELED:
  1974. case CPU_UP_CANCELED_FROZEN:
  1975. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1976. cpu);
  1977. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1978. break;
  1979. case CPU_ONLINE:
  1980. case CPU_ONLINE_FROZEN:
  1981. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1982. cpu);
  1983. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1984. break;
  1985. }
  1986. return NOTIFY_OK;
  1987. }
  1988. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1989. void *v)
  1990. {
  1991. if (val == SYS_RESTART) {
  1992. /*
  1993. * Some (well, at least mine) BIOSes hang on reboot if
  1994. * in vmx root mode.
  1995. */
  1996. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1997. on_each_cpu(hardware_disable, NULL, 0, 1);
  1998. }
  1999. return NOTIFY_OK;
  2000. }
  2001. static struct notifier_block kvm_reboot_notifier = {
  2002. .notifier_call = kvm_reboot,
  2003. .priority = 0,
  2004. };
  2005. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2006. {
  2007. memset(bus, 0, sizeof(*bus));
  2008. }
  2009. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2010. {
  2011. int i;
  2012. for (i = 0; i < bus->dev_count; i++) {
  2013. struct kvm_io_device *pos = bus->devs[i];
  2014. kvm_iodevice_destructor(pos);
  2015. }
  2016. }
  2017. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2018. {
  2019. int i;
  2020. for (i = 0; i < bus->dev_count; i++) {
  2021. struct kvm_io_device *pos = bus->devs[i];
  2022. if (pos->in_range(pos, addr))
  2023. return pos;
  2024. }
  2025. return NULL;
  2026. }
  2027. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2028. {
  2029. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2030. bus->devs[bus->dev_count++] = dev;
  2031. }
  2032. static struct notifier_block kvm_cpu_notifier = {
  2033. .notifier_call = kvm_cpu_hotplug,
  2034. .priority = 20, /* must be > scheduler priority */
  2035. };
  2036. static u64 stat_get(void *_offset)
  2037. {
  2038. unsigned offset = (long)_offset;
  2039. u64 total = 0;
  2040. struct kvm *kvm;
  2041. struct kvm_vcpu *vcpu;
  2042. int i;
  2043. spin_lock(&kvm_lock);
  2044. list_for_each_entry(kvm, &vm_list, vm_list)
  2045. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2046. vcpu = kvm->vcpus[i];
  2047. if (vcpu)
  2048. total += *(u32 *)((void *)vcpu + offset);
  2049. }
  2050. spin_unlock(&kvm_lock);
  2051. return total;
  2052. }
  2053. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2054. static __init void kvm_init_debug(void)
  2055. {
  2056. struct kvm_stats_debugfs_item *p;
  2057. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2058. for (p = debugfs_entries; p->name; ++p)
  2059. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2060. (void *)(long)p->offset,
  2061. &stat_fops);
  2062. }
  2063. static void kvm_exit_debug(void)
  2064. {
  2065. struct kvm_stats_debugfs_item *p;
  2066. for (p = debugfs_entries; p->name; ++p)
  2067. debugfs_remove(p->dentry);
  2068. debugfs_remove(debugfs_dir);
  2069. }
  2070. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2071. {
  2072. hardware_disable(NULL);
  2073. return 0;
  2074. }
  2075. static int kvm_resume(struct sys_device *dev)
  2076. {
  2077. hardware_enable(NULL);
  2078. return 0;
  2079. }
  2080. static struct sysdev_class kvm_sysdev_class = {
  2081. .name = "kvm",
  2082. .suspend = kvm_suspend,
  2083. .resume = kvm_resume,
  2084. };
  2085. static struct sys_device kvm_sysdev = {
  2086. .id = 0,
  2087. .cls = &kvm_sysdev_class,
  2088. };
  2089. struct page *bad_page;
  2090. static inline
  2091. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2092. {
  2093. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2094. }
  2095. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2096. {
  2097. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2098. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2099. }
  2100. static void kvm_sched_out(struct preempt_notifier *pn,
  2101. struct task_struct *next)
  2102. {
  2103. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2104. kvm_x86_ops->vcpu_put(vcpu);
  2105. }
  2106. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2107. struct module *module)
  2108. {
  2109. int r;
  2110. int cpu;
  2111. if (kvm_x86_ops) {
  2112. printk(KERN_ERR "kvm: already loaded the other module\n");
  2113. return -EEXIST;
  2114. }
  2115. if (!ops->cpu_has_kvm_support()) {
  2116. printk(KERN_ERR "kvm: no hardware support\n");
  2117. return -EOPNOTSUPP;
  2118. }
  2119. if (ops->disabled_by_bios()) {
  2120. printk(KERN_ERR "kvm: disabled by bios\n");
  2121. return -EOPNOTSUPP;
  2122. }
  2123. kvm_x86_ops = ops;
  2124. r = kvm_x86_ops->hardware_setup();
  2125. if (r < 0)
  2126. goto out;
  2127. for_each_online_cpu(cpu) {
  2128. smp_call_function_single(cpu,
  2129. kvm_x86_ops->check_processor_compatibility,
  2130. &r, 0, 1);
  2131. if (r < 0)
  2132. goto out_free_0;
  2133. }
  2134. on_each_cpu(hardware_enable, NULL, 0, 1);
  2135. r = register_cpu_notifier(&kvm_cpu_notifier);
  2136. if (r)
  2137. goto out_free_1;
  2138. register_reboot_notifier(&kvm_reboot_notifier);
  2139. r = sysdev_class_register(&kvm_sysdev_class);
  2140. if (r)
  2141. goto out_free_2;
  2142. r = sysdev_register(&kvm_sysdev);
  2143. if (r)
  2144. goto out_free_3;
  2145. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2146. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2147. __alignof__(struct kvm_vcpu), 0, 0);
  2148. if (!kvm_vcpu_cache) {
  2149. r = -ENOMEM;
  2150. goto out_free_4;
  2151. }
  2152. kvm_chardev_ops.owner = module;
  2153. r = misc_register(&kvm_dev);
  2154. if (r) {
  2155. printk(KERN_ERR "kvm: misc device register failed\n");
  2156. goto out_free;
  2157. }
  2158. kvm_preempt_ops.sched_in = kvm_sched_in;
  2159. kvm_preempt_ops.sched_out = kvm_sched_out;
  2160. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2161. return 0;
  2162. out_free:
  2163. kmem_cache_destroy(kvm_vcpu_cache);
  2164. out_free_4:
  2165. sysdev_unregister(&kvm_sysdev);
  2166. out_free_3:
  2167. sysdev_class_unregister(&kvm_sysdev_class);
  2168. out_free_2:
  2169. unregister_reboot_notifier(&kvm_reboot_notifier);
  2170. unregister_cpu_notifier(&kvm_cpu_notifier);
  2171. out_free_1:
  2172. on_each_cpu(hardware_disable, NULL, 0, 1);
  2173. out_free_0:
  2174. kvm_x86_ops->hardware_unsetup();
  2175. out:
  2176. kvm_x86_ops = NULL;
  2177. return r;
  2178. }
  2179. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2180. void kvm_exit_x86(void)
  2181. {
  2182. misc_deregister(&kvm_dev);
  2183. kmem_cache_destroy(kvm_vcpu_cache);
  2184. sysdev_unregister(&kvm_sysdev);
  2185. sysdev_class_unregister(&kvm_sysdev_class);
  2186. unregister_reboot_notifier(&kvm_reboot_notifier);
  2187. unregister_cpu_notifier(&kvm_cpu_notifier);
  2188. on_each_cpu(hardware_disable, NULL, 0, 1);
  2189. kvm_x86_ops->hardware_unsetup();
  2190. kvm_x86_ops = NULL;
  2191. }
  2192. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  2193. static __init int kvm_init(void)
  2194. {
  2195. int r;
  2196. r = kvm_mmu_module_init();
  2197. if (r)
  2198. goto out4;
  2199. kvm_init_debug();
  2200. kvm_arch_init();
  2201. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2202. if (bad_page == NULL) {
  2203. r = -ENOMEM;
  2204. goto out;
  2205. }
  2206. return 0;
  2207. out:
  2208. kvm_exit_debug();
  2209. kvm_mmu_module_exit();
  2210. out4:
  2211. return r;
  2212. }
  2213. static __exit void kvm_exit(void)
  2214. {
  2215. kvm_exit_debug();
  2216. __free_page(bad_page);
  2217. kvm_mmu_module_exit();
  2218. }
  2219. module_init(kvm_init)
  2220. module_exit(kvm_exit)