sched.c 225 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. #ifdef CONFIG_SMP
  112. /*
  113. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  114. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  115. */
  116. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  117. {
  118. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  119. }
  120. /*
  121. * Each time a sched group cpu_power is changed,
  122. * we must compute its reciprocal value
  123. */
  124. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  125. {
  126. sg->__cpu_power += val;
  127. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  128. }
  129. #endif
  130. static inline int rt_policy(int policy)
  131. {
  132. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  133. return 1;
  134. return 0;
  135. }
  136. static inline int task_has_rt_policy(struct task_struct *p)
  137. {
  138. return rt_policy(p->policy);
  139. }
  140. /*
  141. * This is the priority-queue data structure of the RT scheduling class:
  142. */
  143. struct rt_prio_array {
  144. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  145. struct list_head queue[MAX_RT_PRIO];
  146. };
  147. struct rt_bandwidth {
  148. /* nests inside the rq lock: */
  149. spinlock_t rt_runtime_lock;
  150. ktime_t rt_period;
  151. u64 rt_runtime;
  152. struct hrtimer rt_period_timer;
  153. };
  154. static struct rt_bandwidth def_rt_bandwidth;
  155. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  156. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  157. {
  158. struct rt_bandwidth *rt_b =
  159. container_of(timer, struct rt_bandwidth, rt_period_timer);
  160. ktime_t now;
  161. int overrun;
  162. int idle = 0;
  163. for (;;) {
  164. now = hrtimer_cb_get_time(timer);
  165. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  166. if (!overrun)
  167. break;
  168. idle = do_sched_rt_period_timer(rt_b, overrun);
  169. }
  170. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  171. }
  172. static
  173. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  174. {
  175. rt_b->rt_period = ns_to_ktime(period);
  176. rt_b->rt_runtime = runtime;
  177. spin_lock_init(&rt_b->rt_runtime_lock);
  178. hrtimer_init(&rt_b->rt_period_timer,
  179. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  180. rt_b->rt_period_timer.function = sched_rt_period_timer;
  181. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  182. }
  183. static inline int rt_bandwidth_enabled(void)
  184. {
  185. return sysctl_sched_rt_runtime >= 0;
  186. }
  187. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  188. {
  189. ktime_t now;
  190. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  191. return;
  192. if (hrtimer_active(&rt_b->rt_period_timer))
  193. return;
  194. spin_lock(&rt_b->rt_runtime_lock);
  195. for (;;) {
  196. if (hrtimer_active(&rt_b->rt_period_timer))
  197. break;
  198. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  199. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  200. hrtimer_start_expires(&rt_b->rt_period_timer,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. /*
  212. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  213. * detach_destroy_domains and partition_sched_domains.
  214. */
  215. static DEFINE_MUTEX(sched_domains_mutex);
  216. #ifdef CONFIG_GROUP_SCHED
  217. #include <linux/cgroup.h>
  218. struct cfs_rq;
  219. static LIST_HEAD(task_groups);
  220. /* task group related information */
  221. struct task_group {
  222. #ifdef CONFIG_CGROUP_SCHED
  223. struct cgroup_subsys_state css;
  224. #endif
  225. #ifdef CONFIG_FAIR_GROUP_SCHED
  226. /* schedulable entities of this group on each cpu */
  227. struct sched_entity **se;
  228. /* runqueue "owned" by this group on each cpu */
  229. struct cfs_rq **cfs_rq;
  230. unsigned long shares;
  231. #endif
  232. #ifdef CONFIG_RT_GROUP_SCHED
  233. struct sched_rt_entity **rt_se;
  234. struct rt_rq **rt_rq;
  235. struct rt_bandwidth rt_bandwidth;
  236. #endif
  237. struct rcu_head rcu;
  238. struct list_head list;
  239. struct task_group *parent;
  240. struct list_head siblings;
  241. struct list_head children;
  242. };
  243. #ifdef CONFIG_USER_SCHED
  244. /*
  245. * Root task group.
  246. * Every UID task group (including init_task_group aka UID-0) will
  247. * be a child to this group.
  248. */
  249. struct task_group root_task_group;
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. /* Default task group's sched entity on each cpu */
  252. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  253. /* Default task group's cfs_rq on each cpu */
  254. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. #ifdef CONFIG_RT_GROUP_SCHED
  257. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  258. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  259. #endif /* CONFIG_RT_GROUP_SCHED */
  260. #else /* !CONFIG_USER_SCHED */
  261. #define root_task_group init_task_group
  262. #endif /* CONFIG_USER_SCHED */
  263. /* task_group_lock serializes add/remove of task groups and also changes to
  264. * a task group's cpu shares.
  265. */
  266. static DEFINE_SPINLOCK(task_group_lock);
  267. #ifdef CONFIG_FAIR_GROUP_SCHED
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. tg = p->user->tg;
  295. #elif defined(CONFIG_CGROUP_SCHED)
  296. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  297. struct task_group, css);
  298. #else
  299. tg = &init_task_group;
  300. #endif
  301. return tg;
  302. }
  303. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  304. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  305. {
  306. #ifdef CONFIG_FAIR_GROUP_SCHED
  307. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  308. p->se.parent = task_group(p)->se[cpu];
  309. #endif
  310. #ifdef CONFIG_RT_GROUP_SCHED
  311. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  312. p->rt.parent = task_group(p)->rt_se[cpu];
  313. #endif
  314. }
  315. #else
  316. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  317. static inline struct task_group *task_group(struct task_struct *p)
  318. {
  319. return NULL;
  320. }
  321. #endif /* CONFIG_GROUP_SCHED */
  322. /* CFS-related fields in a runqueue */
  323. struct cfs_rq {
  324. struct load_weight load;
  325. unsigned long nr_running;
  326. u64 exec_clock;
  327. u64 min_vruntime;
  328. struct rb_root tasks_timeline;
  329. struct rb_node *rb_leftmost;
  330. struct list_head tasks;
  331. struct list_head *balance_iterator;
  332. /*
  333. * 'curr' points to currently running entity on this cfs_rq.
  334. * It is set to NULL otherwise (i.e when none are currently running).
  335. */
  336. struct sched_entity *curr, *next, *last;
  337. unsigned int nr_spread_over;
  338. #ifdef CONFIG_FAIR_GROUP_SCHED
  339. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  340. /*
  341. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  342. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  343. * (like users, containers etc.)
  344. *
  345. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  346. * list is used during load balance.
  347. */
  348. struct list_head leaf_cfs_rq_list;
  349. struct task_group *tg; /* group that "owns" this runqueue */
  350. #ifdef CONFIG_SMP
  351. /*
  352. * the part of load.weight contributed by tasks
  353. */
  354. unsigned long task_weight;
  355. /*
  356. * h_load = weight * f(tg)
  357. *
  358. * Where f(tg) is the recursive weight fraction assigned to
  359. * this group.
  360. */
  361. unsigned long h_load;
  362. /*
  363. * this cpu's part of tg->shares
  364. */
  365. unsigned long shares;
  366. /*
  367. * load.weight at the time we set shares
  368. */
  369. unsigned long rq_weight;
  370. #endif
  371. #endif
  372. };
  373. /* Real-Time classes' related field in a runqueue: */
  374. struct rt_rq {
  375. struct rt_prio_array active;
  376. unsigned long rt_nr_running;
  377. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  378. int highest_prio; /* highest queued rt task prio */
  379. #endif
  380. #ifdef CONFIG_SMP
  381. unsigned long rt_nr_migratory;
  382. int overloaded;
  383. #endif
  384. int rt_throttled;
  385. u64 rt_time;
  386. u64 rt_runtime;
  387. /* Nests inside the rq lock: */
  388. spinlock_t rt_runtime_lock;
  389. #ifdef CONFIG_RT_GROUP_SCHED
  390. unsigned long rt_nr_boosted;
  391. struct rq *rq;
  392. struct list_head leaf_rt_rq_list;
  393. struct task_group *tg;
  394. struct sched_rt_entity *rt_se;
  395. #endif
  396. };
  397. #ifdef CONFIG_SMP
  398. /*
  399. * We add the notion of a root-domain which will be used to define per-domain
  400. * variables. Each exclusive cpuset essentially defines an island domain by
  401. * fully partitioning the member cpus from any other cpuset. Whenever a new
  402. * exclusive cpuset is created, we also create and attach a new root-domain
  403. * object.
  404. *
  405. */
  406. struct root_domain {
  407. atomic_t refcount;
  408. cpumask_t span;
  409. cpumask_t online;
  410. /*
  411. * The "RT overload" flag: it gets set if a CPU has more than
  412. * one runnable RT task.
  413. */
  414. cpumask_t rto_mask;
  415. atomic_t rto_count;
  416. #ifdef CONFIG_SMP
  417. struct cpupri cpupri;
  418. #endif
  419. };
  420. /*
  421. * By default the system creates a single root-domain with all cpus as
  422. * members (mimicking the global state we have today).
  423. */
  424. static struct root_domain def_root_domain;
  425. #endif
  426. /*
  427. * This is the main, per-CPU runqueue data structure.
  428. *
  429. * Locking rule: those places that want to lock multiple runqueues
  430. * (such as the load balancing or the thread migration code), lock
  431. * acquire operations must be ordered by ascending &runqueue.
  432. */
  433. struct rq {
  434. /* runqueue lock: */
  435. spinlock_t lock;
  436. /*
  437. * nr_running and cpu_load should be in the same cacheline because
  438. * remote CPUs use both these fields when doing load calculation.
  439. */
  440. unsigned long nr_running;
  441. #define CPU_LOAD_IDX_MAX 5
  442. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  443. unsigned char idle_at_tick;
  444. #ifdef CONFIG_NO_HZ
  445. unsigned long last_tick_seen;
  446. unsigned char in_nohz_recently;
  447. #endif
  448. /* capture load from *all* tasks on this cpu: */
  449. struct load_weight load;
  450. unsigned long nr_load_updates;
  451. u64 nr_switches;
  452. struct cfs_rq cfs;
  453. struct rt_rq rt;
  454. #ifdef CONFIG_FAIR_GROUP_SCHED
  455. /* list of leaf cfs_rq on this cpu: */
  456. struct list_head leaf_cfs_rq_list;
  457. #endif
  458. #ifdef CONFIG_RT_GROUP_SCHED
  459. struct list_head leaf_rt_rq_list;
  460. #endif
  461. /*
  462. * This is part of a global counter where only the total sum
  463. * over all CPUs matters. A task can increase this counter on
  464. * one CPU and if it got migrated afterwards it may decrease
  465. * it on another CPU. Always updated under the runqueue lock:
  466. */
  467. unsigned long nr_uninterruptible;
  468. struct task_struct *curr, *idle;
  469. unsigned long next_balance;
  470. struct mm_struct *prev_mm;
  471. u64 clock;
  472. atomic_t nr_iowait;
  473. #ifdef CONFIG_SMP
  474. struct root_domain *rd;
  475. struct sched_domain *sd;
  476. /* For active balancing */
  477. int active_balance;
  478. int push_cpu;
  479. /* cpu of this runqueue: */
  480. int cpu;
  481. int online;
  482. unsigned long avg_load_per_task;
  483. struct task_struct *migration_thread;
  484. struct list_head migration_queue;
  485. #endif
  486. #ifdef CONFIG_SCHED_HRTICK
  487. #ifdef CONFIG_SMP
  488. int hrtick_csd_pending;
  489. struct call_single_data hrtick_csd;
  490. #endif
  491. struct hrtimer hrtick_timer;
  492. #endif
  493. #ifdef CONFIG_SCHEDSTATS
  494. /* latency stats */
  495. struct sched_info rq_sched_info;
  496. /* sys_sched_yield() stats */
  497. unsigned int yld_exp_empty;
  498. unsigned int yld_act_empty;
  499. unsigned int yld_both_empty;
  500. unsigned int yld_count;
  501. /* schedule() stats */
  502. unsigned int sched_switch;
  503. unsigned int sched_count;
  504. unsigned int sched_goidle;
  505. /* try_to_wake_up() stats */
  506. unsigned int ttwu_count;
  507. unsigned int ttwu_local;
  508. /* BKL stats */
  509. unsigned int bkl_count;
  510. #endif
  511. };
  512. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  513. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  514. {
  515. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  516. }
  517. static inline int cpu_of(struct rq *rq)
  518. {
  519. #ifdef CONFIG_SMP
  520. return rq->cpu;
  521. #else
  522. return 0;
  523. #endif
  524. }
  525. /*
  526. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  527. * See detach_destroy_domains: synchronize_sched for details.
  528. *
  529. * The domain tree of any CPU may only be accessed from within
  530. * preempt-disabled sections.
  531. */
  532. #define for_each_domain(cpu, __sd) \
  533. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  534. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  535. #define this_rq() (&__get_cpu_var(runqueues))
  536. #define task_rq(p) cpu_rq(task_cpu(p))
  537. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  538. static inline void update_rq_clock(struct rq *rq)
  539. {
  540. rq->clock = sched_clock_cpu(cpu_of(rq));
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /**
  551. * runqueue_is_locked
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(void)
  558. {
  559. int cpu = get_cpu();
  560. struct rq *rq = cpu_rq(cpu);
  561. int ret;
  562. ret = spin_is_locked(&rq->lock);
  563. put_cpu();
  564. return ret;
  565. }
  566. /*
  567. * Debugging: various feature bits
  568. */
  569. #define SCHED_FEAT(name, enabled) \
  570. __SCHED_FEAT_##name ,
  571. enum {
  572. #include "sched_features.h"
  573. };
  574. #undef SCHED_FEAT
  575. #define SCHED_FEAT(name, enabled) \
  576. (1UL << __SCHED_FEAT_##name) * enabled |
  577. const_debug unsigned int sysctl_sched_features =
  578. #include "sched_features.h"
  579. 0;
  580. #undef SCHED_FEAT
  581. #ifdef CONFIG_SCHED_DEBUG
  582. #define SCHED_FEAT(name, enabled) \
  583. #name ,
  584. static __read_mostly char *sched_feat_names[] = {
  585. #include "sched_features.h"
  586. NULL
  587. };
  588. #undef SCHED_FEAT
  589. static int sched_feat_open(struct inode *inode, struct file *filp)
  590. {
  591. filp->private_data = inode->i_private;
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_read(struct file *filp, char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char *buf;
  599. int r = 0;
  600. int len = 0;
  601. int i;
  602. for (i = 0; sched_feat_names[i]; i++) {
  603. len += strlen(sched_feat_names[i]);
  604. len += 4;
  605. }
  606. buf = kmalloc(len + 2, GFP_KERNEL);
  607. if (!buf)
  608. return -ENOMEM;
  609. for (i = 0; sched_feat_names[i]; i++) {
  610. if (sysctl_sched_features & (1UL << i))
  611. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  612. else
  613. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  614. }
  615. r += sprintf(buf + r, "\n");
  616. WARN_ON(r >= len + 2);
  617. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  618. kfree(buf);
  619. return r;
  620. }
  621. static ssize_t
  622. sched_feat_write(struct file *filp, const char __user *ubuf,
  623. size_t cnt, loff_t *ppos)
  624. {
  625. char buf[64];
  626. char *cmp = buf;
  627. int neg = 0;
  628. int i;
  629. if (cnt > 63)
  630. cnt = 63;
  631. if (copy_from_user(&buf, ubuf, cnt))
  632. return -EFAULT;
  633. buf[cnt] = 0;
  634. if (strncmp(buf, "NO_", 3) == 0) {
  635. neg = 1;
  636. cmp += 3;
  637. }
  638. for (i = 0; sched_feat_names[i]; i++) {
  639. int len = strlen(sched_feat_names[i]);
  640. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  641. if (neg)
  642. sysctl_sched_features &= ~(1UL << i);
  643. else
  644. sysctl_sched_features |= (1UL << i);
  645. break;
  646. }
  647. }
  648. if (!sched_feat_names[i])
  649. return -EINVAL;
  650. filp->f_pos += cnt;
  651. return cnt;
  652. }
  653. static struct file_operations sched_feat_fops = {
  654. .open = sched_feat_open,
  655. .read = sched_feat_read,
  656. .write = sched_feat_write,
  657. };
  658. static __init int sched_init_debug(void)
  659. {
  660. debugfs_create_file("sched_features", 0644, NULL, NULL,
  661. &sched_feat_fops);
  662. return 0;
  663. }
  664. late_initcall(sched_init_debug);
  665. #endif
  666. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  667. /*
  668. * Number of tasks to iterate in a single balance run.
  669. * Limited because this is done with IRQs disabled.
  670. */
  671. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  672. /*
  673. * ratelimit for updating the group shares.
  674. * default: 0.25ms
  675. */
  676. unsigned int sysctl_sched_shares_ratelimit = 250000;
  677. /*
  678. * Inject some fuzzyness into changing the per-cpu group shares
  679. * this avoids remote rq-locks at the expense of fairness.
  680. * default: 4
  681. */
  682. unsigned int sysctl_sched_shares_thresh = 4;
  683. /*
  684. * period over which we measure -rt task cpu usage in us.
  685. * default: 1s
  686. */
  687. unsigned int sysctl_sched_rt_period = 1000000;
  688. static __read_mostly int scheduler_running;
  689. /*
  690. * part of the period that we allow rt tasks to run in us.
  691. * default: 0.95s
  692. */
  693. int sysctl_sched_rt_runtime = 950000;
  694. static inline u64 global_rt_period(void)
  695. {
  696. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  697. }
  698. static inline u64 global_rt_runtime(void)
  699. {
  700. if (sysctl_sched_rt_runtime < 0)
  701. return RUNTIME_INF;
  702. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  703. }
  704. #ifndef prepare_arch_switch
  705. # define prepare_arch_switch(next) do { } while (0)
  706. #endif
  707. #ifndef finish_arch_switch
  708. # define finish_arch_switch(prev) do { } while (0)
  709. #endif
  710. static inline int task_current(struct rq *rq, struct task_struct *p)
  711. {
  712. return rq->curr == p;
  713. }
  714. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  715. static inline int task_running(struct rq *rq, struct task_struct *p)
  716. {
  717. return task_current(rq, p);
  718. }
  719. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  720. {
  721. }
  722. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  723. {
  724. #ifdef CONFIG_DEBUG_SPINLOCK
  725. /* this is a valid case when another task releases the spinlock */
  726. rq->lock.owner = current;
  727. #endif
  728. /*
  729. * If we are tracking spinlock dependencies then we have to
  730. * fix up the runqueue lock - which gets 'carried over' from
  731. * prev into current:
  732. */
  733. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  734. spin_unlock_irq(&rq->lock);
  735. }
  736. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  737. static inline int task_running(struct rq *rq, struct task_struct *p)
  738. {
  739. #ifdef CONFIG_SMP
  740. return p->oncpu;
  741. #else
  742. return task_current(rq, p);
  743. #endif
  744. }
  745. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  746. {
  747. #ifdef CONFIG_SMP
  748. /*
  749. * We can optimise this out completely for !SMP, because the
  750. * SMP rebalancing from interrupt is the only thing that cares
  751. * here.
  752. */
  753. next->oncpu = 1;
  754. #endif
  755. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  756. spin_unlock_irq(&rq->lock);
  757. #else
  758. spin_unlock(&rq->lock);
  759. #endif
  760. }
  761. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  762. {
  763. #ifdef CONFIG_SMP
  764. /*
  765. * After ->oncpu is cleared, the task can be moved to a different CPU.
  766. * We must ensure this doesn't happen until the switch is completely
  767. * finished.
  768. */
  769. smp_wmb();
  770. prev->oncpu = 0;
  771. #endif
  772. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  773. local_irq_enable();
  774. #endif
  775. }
  776. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  777. /*
  778. * __task_rq_lock - lock the runqueue a given task resides on.
  779. * Must be called interrupts disabled.
  780. */
  781. static inline struct rq *__task_rq_lock(struct task_struct *p)
  782. __acquires(rq->lock)
  783. {
  784. for (;;) {
  785. struct rq *rq = task_rq(p);
  786. spin_lock(&rq->lock);
  787. if (likely(rq == task_rq(p)))
  788. return rq;
  789. spin_unlock(&rq->lock);
  790. }
  791. }
  792. /*
  793. * task_rq_lock - lock the runqueue a given task resides on and disable
  794. * interrupts. Note the ordering: we can safely lookup the task_rq without
  795. * explicitly disabling preemption.
  796. */
  797. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  798. __acquires(rq->lock)
  799. {
  800. struct rq *rq;
  801. for (;;) {
  802. local_irq_save(*flags);
  803. rq = task_rq(p);
  804. spin_lock(&rq->lock);
  805. if (likely(rq == task_rq(p)))
  806. return rq;
  807. spin_unlock_irqrestore(&rq->lock, *flags);
  808. }
  809. }
  810. void task_rq_unlock_wait(struct task_struct *p)
  811. {
  812. struct rq *rq = task_rq(p);
  813. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  814. spin_unlock_wait(&rq->lock);
  815. }
  816. static void __task_rq_unlock(struct rq *rq)
  817. __releases(rq->lock)
  818. {
  819. spin_unlock(&rq->lock);
  820. }
  821. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  822. __releases(rq->lock)
  823. {
  824. spin_unlock_irqrestore(&rq->lock, *flags);
  825. }
  826. /*
  827. * this_rq_lock - lock this runqueue and disable interrupts.
  828. */
  829. static struct rq *this_rq_lock(void)
  830. __acquires(rq->lock)
  831. {
  832. struct rq *rq;
  833. local_irq_disable();
  834. rq = this_rq();
  835. spin_lock(&rq->lock);
  836. return rq;
  837. }
  838. #ifdef CONFIG_SCHED_HRTICK
  839. /*
  840. * Use HR-timers to deliver accurate preemption points.
  841. *
  842. * Its all a bit involved since we cannot program an hrt while holding the
  843. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  844. * reschedule event.
  845. *
  846. * When we get rescheduled we reprogram the hrtick_timer outside of the
  847. * rq->lock.
  848. */
  849. /*
  850. * Use hrtick when:
  851. * - enabled by features
  852. * - hrtimer is actually high res
  853. */
  854. static inline int hrtick_enabled(struct rq *rq)
  855. {
  856. if (!sched_feat(HRTICK))
  857. return 0;
  858. if (!cpu_active(cpu_of(rq)))
  859. return 0;
  860. return hrtimer_is_hres_active(&rq->hrtick_timer);
  861. }
  862. static void hrtick_clear(struct rq *rq)
  863. {
  864. if (hrtimer_active(&rq->hrtick_timer))
  865. hrtimer_cancel(&rq->hrtick_timer);
  866. }
  867. /*
  868. * High-resolution timer tick.
  869. * Runs from hardirq context with interrupts disabled.
  870. */
  871. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  872. {
  873. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  874. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  875. spin_lock(&rq->lock);
  876. update_rq_clock(rq);
  877. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  878. spin_unlock(&rq->lock);
  879. return HRTIMER_NORESTART;
  880. }
  881. #ifdef CONFIG_SMP
  882. /*
  883. * called from hardirq (IPI) context
  884. */
  885. static void __hrtick_start(void *arg)
  886. {
  887. struct rq *rq = arg;
  888. spin_lock(&rq->lock);
  889. hrtimer_restart(&rq->hrtick_timer);
  890. rq->hrtick_csd_pending = 0;
  891. spin_unlock(&rq->lock);
  892. }
  893. /*
  894. * Called to set the hrtick timer state.
  895. *
  896. * called with rq->lock held and irqs disabled
  897. */
  898. static void hrtick_start(struct rq *rq, u64 delay)
  899. {
  900. struct hrtimer *timer = &rq->hrtick_timer;
  901. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  902. hrtimer_set_expires(timer, time);
  903. if (rq == this_rq()) {
  904. hrtimer_restart(timer);
  905. } else if (!rq->hrtick_csd_pending) {
  906. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  907. rq->hrtick_csd_pending = 1;
  908. }
  909. }
  910. static int
  911. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  912. {
  913. int cpu = (int)(long)hcpu;
  914. switch (action) {
  915. case CPU_UP_CANCELED:
  916. case CPU_UP_CANCELED_FROZEN:
  917. case CPU_DOWN_PREPARE:
  918. case CPU_DOWN_PREPARE_FROZEN:
  919. case CPU_DEAD:
  920. case CPU_DEAD_FROZEN:
  921. hrtick_clear(cpu_rq(cpu));
  922. return NOTIFY_OK;
  923. }
  924. return NOTIFY_DONE;
  925. }
  926. static __init void init_hrtick(void)
  927. {
  928. hotcpu_notifier(hotplug_hrtick, 0);
  929. }
  930. #else
  931. /*
  932. * Called to set the hrtick timer state.
  933. *
  934. * called with rq->lock held and irqs disabled
  935. */
  936. static void hrtick_start(struct rq *rq, u64 delay)
  937. {
  938. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  939. }
  940. static inline void init_hrtick(void)
  941. {
  942. }
  943. #endif /* CONFIG_SMP */
  944. static void init_rq_hrtick(struct rq *rq)
  945. {
  946. #ifdef CONFIG_SMP
  947. rq->hrtick_csd_pending = 0;
  948. rq->hrtick_csd.flags = 0;
  949. rq->hrtick_csd.func = __hrtick_start;
  950. rq->hrtick_csd.info = rq;
  951. #endif
  952. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  953. rq->hrtick_timer.function = hrtick;
  954. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  955. }
  956. #else /* CONFIG_SCHED_HRTICK */
  957. static inline void hrtick_clear(struct rq *rq)
  958. {
  959. }
  960. static inline void init_rq_hrtick(struct rq *rq)
  961. {
  962. }
  963. static inline void init_hrtick(void)
  964. {
  965. }
  966. #endif /* CONFIG_SCHED_HRTICK */
  967. /*
  968. * resched_task - mark a task 'to be rescheduled now'.
  969. *
  970. * On UP this means the setting of the need_resched flag, on SMP it
  971. * might also involve a cross-CPU call to trigger the scheduler on
  972. * the target CPU.
  973. */
  974. #ifdef CONFIG_SMP
  975. #ifndef tsk_is_polling
  976. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  977. #endif
  978. static void resched_task(struct task_struct *p)
  979. {
  980. int cpu;
  981. assert_spin_locked(&task_rq(p)->lock);
  982. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  983. return;
  984. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  985. cpu = task_cpu(p);
  986. if (cpu == smp_processor_id())
  987. return;
  988. /* NEED_RESCHED must be visible before we test polling */
  989. smp_mb();
  990. if (!tsk_is_polling(p))
  991. smp_send_reschedule(cpu);
  992. }
  993. static void resched_cpu(int cpu)
  994. {
  995. struct rq *rq = cpu_rq(cpu);
  996. unsigned long flags;
  997. if (!spin_trylock_irqsave(&rq->lock, flags))
  998. return;
  999. resched_task(cpu_curr(cpu));
  1000. spin_unlock_irqrestore(&rq->lock, flags);
  1001. }
  1002. #ifdef CONFIG_NO_HZ
  1003. /*
  1004. * When add_timer_on() enqueues a timer into the timer wheel of an
  1005. * idle CPU then this timer might expire before the next timer event
  1006. * which is scheduled to wake up that CPU. In case of a completely
  1007. * idle system the next event might even be infinite time into the
  1008. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1009. * leaves the inner idle loop so the newly added timer is taken into
  1010. * account when the CPU goes back to idle and evaluates the timer
  1011. * wheel for the next timer event.
  1012. */
  1013. void wake_up_idle_cpu(int cpu)
  1014. {
  1015. struct rq *rq = cpu_rq(cpu);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /*
  1019. * This is safe, as this function is called with the timer
  1020. * wheel base lock of (cpu) held. When the CPU is on the way
  1021. * to idle and has not yet set rq->curr to idle then it will
  1022. * be serialized on the timer wheel base lock and take the new
  1023. * timer into account automatically.
  1024. */
  1025. if (rq->curr != rq->idle)
  1026. return;
  1027. /*
  1028. * We can set TIF_RESCHED on the idle task of the other CPU
  1029. * lockless. The worst case is that the other CPU runs the
  1030. * idle task through an additional NOOP schedule()
  1031. */
  1032. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1033. /* NEED_RESCHED must be visible before we test polling */
  1034. smp_mb();
  1035. if (!tsk_is_polling(rq->idle))
  1036. smp_send_reschedule(cpu);
  1037. }
  1038. #endif /* CONFIG_NO_HZ */
  1039. #else /* !CONFIG_SMP */
  1040. static void resched_task(struct task_struct *p)
  1041. {
  1042. assert_spin_locked(&task_rq(p)->lock);
  1043. set_tsk_need_resched(p);
  1044. }
  1045. #endif /* CONFIG_SMP */
  1046. #if BITS_PER_LONG == 32
  1047. # define WMULT_CONST (~0UL)
  1048. #else
  1049. # define WMULT_CONST (1UL << 32)
  1050. #endif
  1051. #define WMULT_SHIFT 32
  1052. /*
  1053. * Shift right and round:
  1054. */
  1055. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1056. /*
  1057. * delta *= weight / lw
  1058. */
  1059. static unsigned long
  1060. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1061. struct load_weight *lw)
  1062. {
  1063. u64 tmp;
  1064. if (!lw->inv_weight) {
  1065. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1066. lw->inv_weight = 1;
  1067. else
  1068. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1069. / (lw->weight+1);
  1070. }
  1071. tmp = (u64)delta_exec * weight;
  1072. /*
  1073. * Check whether we'd overflow the 64-bit multiplication:
  1074. */
  1075. if (unlikely(tmp > WMULT_CONST))
  1076. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1077. WMULT_SHIFT/2);
  1078. else
  1079. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1080. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1081. }
  1082. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1083. {
  1084. lw->weight += inc;
  1085. lw->inv_weight = 0;
  1086. }
  1087. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1088. {
  1089. lw->weight -= dec;
  1090. lw->inv_weight = 0;
  1091. }
  1092. /*
  1093. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1094. * of tasks with abnormal "nice" values across CPUs the contribution that
  1095. * each task makes to its run queue's load is weighted according to its
  1096. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1097. * scaled version of the new time slice allocation that they receive on time
  1098. * slice expiry etc.
  1099. */
  1100. #define WEIGHT_IDLEPRIO 2
  1101. #define WMULT_IDLEPRIO (1 << 31)
  1102. /*
  1103. * Nice levels are multiplicative, with a gentle 10% change for every
  1104. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1105. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1106. * that remained on nice 0.
  1107. *
  1108. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1109. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1110. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1111. * If a task goes up by ~10% and another task goes down by ~10% then
  1112. * the relative distance between them is ~25%.)
  1113. */
  1114. static const int prio_to_weight[40] = {
  1115. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1116. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1117. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1118. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1119. /* 0 */ 1024, 820, 655, 526, 423,
  1120. /* 5 */ 335, 272, 215, 172, 137,
  1121. /* 10 */ 110, 87, 70, 56, 45,
  1122. /* 15 */ 36, 29, 23, 18, 15,
  1123. };
  1124. /*
  1125. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1126. *
  1127. * In cases where the weight does not change often, we can use the
  1128. * precalculated inverse to speed up arithmetics by turning divisions
  1129. * into multiplications:
  1130. */
  1131. static const u32 prio_to_wmult[40] = {
  1132. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1133. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1134. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1135. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1136. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1137. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1138. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1139. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1140. };
  1141. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1142. /*
  1143. * runqueue iterator, to support SMP load-balancing between different
  1144. * scheduling classes, without having to expose their internal data
  1145. * structures to the load-balancing proper:
  1146. */
  1147. struct rq_iterator {
  1148. void *arg;
  1149. struct task_struct *(*start)(void *);
  1150. struct task_struct *(*next)(void *);
  1151. };
  1152. #ifdef CONFIG_SMP
  1153. static unsigned long
  1154. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1155. unsigned long max_load_move, struct sched_domain *sd,
  1156. enum cpu_idle_type idle, int *all_pinned,
  1157. int *this_best_prio, struct rq_iterator *iterator);
  1158. static int
  1159. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1160. struct sched_domain *sd, enum cpu_idle_type idle,
  1161. struct rq_iterator *iterator);
  1162. #endif
  1163. #ifdef CONFIG_CGROUP_CPUACCT
  1164. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1165. #else
  1166. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1167. #endif
  1168. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1169. {
  1170. update_load_add(&rq->load, load);
  1171. }
  1172. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1173. {
  1174. update_load_sub(&rq->load, load);
  1175. }
  1176. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1177. typedef int (*tg_visitor)(struct task_group *, void *);
  1178. /*
  1179. * Iterate the full tree, calling @down when first entering a node and @up when
  1180. * leaving it for the final time.
  1181. */
  1182. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1183. {
  1184. struct task_group *parent, *child;
  1185. int ret;
  1186. rcu_read_lock();
  1187. parent = &root_task_group;
  1188. down:
  1189. ret = (*down)(parent, data);
  1190. if (ret)
  1191. goto out_unlock;
  1192. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1193. parent = child;
  1194. goto down;
  1195. up:
  1196. continue;
  1197. }
  1198. ret = (*up)(parent, data);
  1199. if (ret)
  1200. goto out_unlock;
  1201. child = parent;
  1202. parent = parent->parent;
  1203. if (parent)
  1204. goto up;
  1205. out_unlock:
  1206. rcu_read_unlock();
  1207. return ret;
  1208. }
  1209. static int tg_nop(struct task_group *tg, void *data)
  1210. {
  1211. return 0;
  1212. }
  1213. #endif
  1214. #ifdef CONFIG_SMP
  1215. static unsigned long source_load(int cpu, int type);
  1216. static unsigned long target_load(int cpu, int type);
  1217. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1218. static unsigned long cpu_avg_load_per_task(int cpu)
  1219. {
  1220. struct rq *rq = cpu_rq(cpu);
  1221. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1222. if (nr_running)
  1223. rq->avg_load_per_task = rq->load.weight / nr_running;
  1224. else
  1225. rq->avg_load_per_task = 0;
  1226. return rq->avg_load_per_task;
  1227. }
  1228. #ifdef CONFIG_FAIR_GROUP_SCHED
  1229. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1230. /*
  1231. * Calculate and set the cpu's group shares.
  1232. */
  1233. static void
  1234. update_group_shares_cpu(struct task_group *tg, int cpu,
  1235. unsigned long sd_shares, unsigned long sd_rq_weight)
  1236. {
  1237. int boost = 0;
  1238. unsigned long shares;
  1239. unsigned long rq_weight;
  1240. if (!tg->se[cpu])
  1241. return;
  1242. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1243. /*
  1244. * If there are currently no tasks on the cpu pretend there is one of
  1245. * average load so that when a new task gets to run here it will not
  1246. * get delayed by group starvation.
  1247. */
  1248. if (!rq_weight) {
  1249. boost = 1;
  1250. rq_weight = NICE_0_LOAD;
  1251. }
  1252. if (unlikely(rq_weight > sd_rq_weight))
  1253. rq_weight = sd_rq_weight;
  1254. /*
  1255. * \Sum shares * rq_weight
  1256. * shares = -----------------------
  1257. * \Sum rq_weight
  1258. *
  1259. */
  1260. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1261. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1262. if (abs(shares - tg->se[cpu]->load.weight) >
  1263. sysctl_sched_shares_thresh) {
  1264. struct rq *rq = cpu_rq(cpu);
  1265. unsigned long flags;
  1266. spin_lock_irqsave(&rq->lock, flags);
  1267. /*
  1268. * record the actual number of shares, not the boosted amount.
  1269. */
  1270. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1271. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1272. __set_se_shares(tg->se[cpu], shares);
  1273. spin_unlock_irqrestore(&rq->lock, flags);
  1274. }
  1275. }
  1276. /*
  1277. * Re-compute the task group their per cpu shares over the given domain.
  1278. * This needs to be done in a bottom-up fashion because the rq weight of a
  1279. * parent group depends on the shares of its child groups.
  1280. */
  1281. static int tg_shares_up(struct task_group *tg, void *data)
  1282. {
  1283. unsigned long rq_weight = 0;
  1284. unsigned long shares = 0;
  1285. struct sched_domain *sd = data;
  1286. int i;
  1287. for_each_cpu_mask(i, sd->span) {
  1288. rq_weight += tg->cfs_rq[i]->load.weight;
  1289. shares += tg->cfs_rq[i]->shares;
  1290. }
  1291. if ((!shares && rq_weight) || shares > tg->shares)
  1292. shares = tg->shares;
  1293. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1294. shares = tg->shares;
  1295. if (!rq_weight)
  1296. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1297. for_each_cpu_mask(i, sd->span)
  1298. update_group_shares_cpu(tg, i, shares, rq_weight);
  1299. return 0;
  1300. }
  1301. /*
  1302. * Compute the cpu's hierarchical load factor for each task group.
  1303. * This needs to be done in a top-down fashion because the load of a child
  1304. * group is a fraction of its parents load.
  1305. */
  1306. static int tg_load_down(struct task_group *tg, void *data)
  1307. {
  1308. unsigned long load;
  1309. long cpu = (long)data;
  1310. if (!tg->parent) {
  1311. load = cpu_rq(cpu)->load.weight;
  1312. } else {
  1313. load = tg->parent->cfs_rq[cpu]->h_load;
  1314. load *= tg->cfs_rq[cpu]->shares;
  1315. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1316. }
  1317. tg->cfs_rq[cpu]->h_load = load;
  1318. return 0;
  1319. }
  1320. static void update_shares(struct sched_domain *sd)
  1321. {
  1322. u64 now = cpu_clock(raw_smp_processor_id());
  1323. s64 elapsed = now - sd->last_update;
  1324. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1325. sd->last_update = now;
  1326. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1327. }
  1328. }
  1329. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1330. {
  1331. spin_unlock(&rq->lock);
  1332. update_shares(sd);
  1333. spin_lock(&rq->lock);
  1334. }
  1335. static void update_h_load(long cpu)
  1336. {
  1337. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1338. }
  1339. #else
  1340. static inline void update_shares(struct sched_domain *sd)
  1341. {
  1342. }
  1343. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1344. {
  1345. }
  1346. #endif
  1347. #endif
  1348. #ifdef CONFIG_FAIR_GROUP_SCHED
  1349. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1350. {
  1351. #ifdef CONFIG_SMP
  1352. cfs_rq->shares = shares;
  1353. #endif
  1354. }
  1355. #endif
  1356. #include "sched_stats.h"
  1357. #include "sched_idletask.c"
  1358. #include "sched_fair.c"
  1359. #include "sched_rt.c"
  1360. #ifdef CONFIG_SCHED_DEBUG
  1361. # include "sched_debug.c"
  1362. #endif
  1363. #define sched_class_highest (&rt_sched_class)
  1364. #define for_each_class(class) \
  1365. for (class = sched_class_highest; class; class = class->next)
  1366. static void inc_nr_running(struct rq *rq)
  1367. {
  1368. rq->nr_running++;
  1369. }
  1370. static void dec_nr_running(struct rq *rq)
  1371. {
  1372. rq->nr_running--;
  1373. }
  1374. static void set_load_weight(struct task_struct *p)
  1375. {
  1376. if (task_has_rt_policy(p)) {
  1377. p->se.load.weight = prio_to_weight[0] * 2;
  1378. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1379. return;
  1380. }
  1381. /*
  1382. * SCHED_IDLE tasks get minimal weight:
  1383. */
  1384. if (p->policy == SCHED_IDLE) {
  1385. p->se.load.weight = WEIGHT_IDLEPRIO;
  1386. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1387. return;
  1388. }
  1389. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1390. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1391. }
  1392. static void update_avg(u64 *avg, u64 sample)
  1393. {
  1394. s64 diff = sample - *avg;
  1395. *avg += diff >> 3;
  1396. }
  1397. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1398. {
  1399. sched_info_queued(p);
  1400. p->sched_class->enqueue_task(rq, p, wakeup);
  1401. p->se.on_rq = 1;
  1402. }
  1403. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1404. {
  1405. if (sleep && p->se.last_wakeup) {
  1406. update_avg(&p->se.avg_overlap,
  1407. p->se.sum_exec_runtime - p->se.last_wakeup);
  1408. p->se.last_wakeup = 0;
  1409. }
  1410. sched_info_dequeued(p);
  1411. p->sched_class->dequeue_task(rq, p, sleep);
  1412. p->se.on_rq = 0;
  1413. }
  1414. /*
  1415. * __normal_prio - return the priority that is based on the static prio
  1416. */
  1417. static inline int __normal_prio(struct task_struct *p)
  1418. {
  1419. return p->static_prio;
  1420. }
  1421. /*
  1422. * Calculate the expected normal priority: i.e. priority
  1423. * without taking RT-inheritance into account. Might be
  1424. * boosted by interactivity modifiers. Changes upon fork,
  1425. * setprio syscalls, and whenever the interactivity
  1426. * estimator recalculates.
  1427. */
  1428. static inline int normal_prio(struct task_struct *p)
  1429. {
  1430. int prio;
  1431. if (task_has_rt_policy(p))
  1432. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1433. else
  1434. prio = __normal_prio(p);
  1435. return prio;
  1436. }
  1437. /*
  1438. * Calculate the current priority, i.e. the priority
  1439. * taken into account by the scheduler. This value might
  1440. * be boosted by RT tasks, or might be boosted by
  1441. * interactivity modifiers. Will be RT if the task got
  1442. * RT-boosted. If not then it returns p->normal_prio.
  1443. */
  1444. static int effective_prio(struct task_struct *p)
  1445. {
  1446. p->normal_prio = normal_prio(p);
  1447. /*
  1448. * If we are RT tasks or we were boosted to RT priority,
  1449. * keep the priority unchanged. Otherwise, update priority
  1450. * to the normal priority:
  1451. */
  1452. if (!rt_prio(p->prio))
  1453. return p->normal_prio;
  1454. return p->prio;
  1455. }
  1456. /*
  1457. * activate_task - move a task to the runqueue.
  1458. */
  1459. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1460. {
  1461. if (task_contributes_to_load(p))
  1462. rq->nr_uninterruptible--;
  1463. enqueue_task(rq, p, wakeup);
  1464. inc_nr_running(rq);
  1465. }
  1466. /*
  1467. * deactivate_task - remove a task from the runqueue.
  1468. */
  1469. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1470. {
  1471. if (task_contributes_to_load(p))
  1472. rq->nr_uninterruptible++;
  1473. dequeue_task(rq, p, sleep);
  1474. dec_nr_running(rq);
  1475. }
  1476. /**
  1477. * task_curr - is this task currently executing on a CPU?
  1478. * @p: the task in question.
  1479. */
  1480. inline int task_curr(const struct task_struct *p)
  1481. {
  1482. return cpu_curr(task_cpu(p)) == p;
  1483. }
  1484. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1485. {
  1486. set_task_rq(p, cpu);
  1487. #ifdef CONFIG_SMP
  1488. /*
  1489. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1490. * successfuly executed on another CPU. We must ensure that updates of
  1491. * per-task data have been completed by this moment.
  1492. */
  1493. smp_wmb();
  1494. task_thread_info(p)->cpu = cpu;
  1495. #endif
  1496. }
  1497. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1498. const struct sched_class *prev_class,
  1499. int oldprio, int running)
  1500. {
  1501. if (prev_class != p->sched_class) {
  1502. if (prev_class->switched_from)
  1503. prev_class->switched_from(rq, p, running);
  1504. p->sched_class->switched_to(rq, p, running);
  1505. } else
  1506. p->sched_class->prio_changed(rq, p, oldprio, running);
  1507. }
  1508. #ifdef CONFIG_SMP
  1509. /* Used instead of source_load when we know the type == 0 */
  1510. static unsigned long weighted_cpuload(const int cpu)
  1511. {
  1512. return cpu_rq(cpu)->load.weight;
  1513. }
  1514. /*
  1515. * Is this task likely cache-hot:
  1516. */
  1517. static int
  1518. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1519. {
  1520. s64 delta;
  1521. /*
  1522. * Buddy candidates are cache hot:
  1523. */
  1524. if (sched_feat(CACHE_HOT_BUDDY) &&
  1525. (&p->se == cfs_rq_of(&p->se)->next ||
  1526. &p->se == cfs_rq_of(&p->se)->last))
  1527. return 1;
  1528. if (p->sched_class != &fair_sched_class)
  1529. return 0;
  1530. if (sysctl_sched_migration_cost == -1)
  1531. return 1;
  1532. if (sysctl_sched_migration_cost == 0)
  1533. return 0;
  1534. delta = now - p->se.exec_start;
  1535. return delta < (s64)sysctl_sched_migration_cost;
  1536. }
  1537. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1538. {
  1539. int old_cpu = task_cpu(p);
  1540. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1541. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1542. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1543. u64 clock_offset;
  1544. clock_offset = old_rq->clock - new_rq->clock;
  1545. #ifdef CONFIG_SCHEDSTATS
  1546. if (p->se.wait_start)
  1547. p->se.wait_start -= clock_offset;
  1548. if (p->se.sleep_start)
  1549. p->se.sleep_start -= clock_offset;
  1550. if (p->se.block_start)
  1551. p->se.block_start -= clock_offset;
  1552. if (old_cpu != new_cpu) {
  1553. schedstat_inc(p, se.nr_migrations);
  1554. if (task_hot(p, old_rq->clock, NULL))
  1555. schedstat_inc(p, se.nr_forced2_migrations);
  1556. }
  1557. #endif
  1558. p->se.vruntime -= old_cfsrq->min_vruntime -
  1559. new_cfsrq->min_vruntime;
  1560. __set_task_cpu(p, new_cpu);
  1561. }
  1562. struct migration_req {
  1563. struct list_head list;
  1564. struct task_struct *task;
  1565. int dest_cpu;
  1566. struct completion done;
  1567. };
  1568. /*
  1569. * The task's runqueue lock must be held.
  1570. * Returns true if you have to wait for migration thread.
  1571. */
  1572. static int
  1573. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1574. {
  1575. struct rq *rq = task_rq(p);
  1576. /*
  1577. * If the task is not on a runqueue (and not running), then
  1578. * it is sufficient to simply update the task's cpu field.
  1579. */
  1580. if (!p->se.on_rq && !task_running(rq, p)) {
  1581. set_task_cpu(p, dest_cpu);
  1582. return 0;
  1583. }
  1584. init_completion(&req->done);
  1585. req->task = p;
  1586. req->dest_cpu = dest_cpu;
  1587. list_add(&req->list, &rq->migration_queue);
  1588. return 1;
  1589. }
  1590. /*
  1591. * wait_task_inactive - wait for a thread to unschedule.
  1592. *
  1593. * If @match_state is nonzero, it's the @p->state value just checked and
  1594. * not expected to change. If it changes, i.e. @p might have woken up,
  1595. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1596. * we return a positive number (its total switch count). If a second call
  1597. * a short while later returns the same number, the caller can be sure that
  1598. * @p has remained unscheduled the whole time.
  1599. *
  1600. * The caller must ensure that the task *will* unschedule sometime soon,
  1601. * else this function might spin for a *long* time. This function can't
  1602. * be called with interrupts off, or it may introduce deadlock with
  1603. * smp_call_function() if an IPI is sent by the same process we are
  1604. * waiting to become inactive.
  1605. */
  1606. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1607. {
  1608. unsigned long flags;
  1609. int running, on_rq;
  1610. unsigned long ncsw;
  1611. struct rq *rq;
  1612. for (;;) {
  1613. /*
  1614. * We do the initial early heuristics without holding
  1615. * any task-queue locks at all. We'll only try to get
  1616. * the runqueue lock when things look like they will
  1617. * work out!
  1618. */
  1619. rq = task_rq(p);
  1620. /*
  1621. * If the task is actively running on another CPU
  1622. * still, just relax and busy-wait without holding
  1623. * any locks.
  1624. *
  1625. * NOTE! Since we don't hold any locks, it's not
  1626. * even sure that "rq" stays as the right runqueue!
  1627. * But we don't care, since "task_running()" will
  1628. * return false if the runqueue has changed and p
  1629. * is actually now running somewhere else!
  1630. */
  1631. while (task_running(rq, p)) {
  1632. if (match_state && unlikely(p->state != match_state))
  1633. return 0;
  1634. cpu_relax();
  1635. }
  1636. /*
  1637. * Ok, time to look more closely! We need the rq
  1638. * lock now, to be *sure*. If we're wrong, we'll
  1639. * just go back and repeat.
  1640. */
  1641. rq = task_rq_lock(p, &flags);
  1642. trace_sched_wait_task(rq, p);
  1643. running = task_running(rq, p);
  1644. on_rq = p->se.on_rq;
  1645. ncsw = 0;
  1646. if (!match_state || p->state == match_state)
  1647. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1648. task_rq_unlock(rq, &flags);
  1649. /*
  1650. * If it changed from the expected state, bail out now.
  1651. */
  1652. if (unlikely(!ncsw))
  1653. break;
  1654. /*
  1655. * Was it really running after all now that we
  1656. * checked with the proper locks actually held?
  1657. *
  1658. * Oops. Go back and try again..
  1659. */
  1660. if (unlikely(running)) {
  1661. cpu_relax();
  1662. continue;
  1663. }
  1664. /*
  1665. * It's not enough that it's not actively running,
  1666. * it must be off the runqueue _entirely_, and not
  1667. * preempted!
  1668. *
  1669. * So if it wa still runnable (but just not actively
  1670. * running right now), it's preempted, and we should
  1671. * yield - it could be a while.
  1672. */
  1673. if (unlikely(on_rq)) {
  1674. schedule_timeout_uninterruptible(1);
  1675. continue;
  1676. }
  1677. /*
  1678. * Ahh, all good. It wasn't running, and it wasn't
  1679. * runnable, which means that it will never become
  1680. * running in the future either. We're all done!
  1681. */
  1682. break;
  1683. }
  1684. return ncsw;
  1685. }
  1686. /***
  1687. * kick_process - kick a running thread to enter/exit the kernel
  1688. * @p: the to-be-kicked thread
  1689. *
  1690. * Cause a process which is running on another CPU to enter
  1691. * kernel-mode, without any delay. (to get signals handled.)
  1692. *
  1693. * NOTE: this function doesnt have to take the runqueue lock,
  1694. * because all it wants to ensure is that the remote task enters
  1695. * the kernel. If the IPI races and the task has been migrated
  1696. * to another CPU then no harm is done and the purpose has been
  1697. * achieved as well.
  1698. */
  1699. void kick_process(struct task_struct *p)
  1700. {
  1701. int cpu;
  1702. preempt_disable();
  1703. cpu = task_cpu(p);
  1704. if ((cpu != smp_processor_id()) && task_curr(p))
  1705. smp_send_reschedule(cpu);
  1706. preempt_enable();
  1707. }
  1708. /*
  1709. * Return a low guess at the load of a migration-source cpu weighted
  1710. * according to the scheduling class and "nice" value.
  1711. *
  1712. * We want to under-estimate the load of migration sources, to
  1713. * balance conservatively.
  1714. */
  1715. static unsigned long source_load(int cpu, int type)
  1716. {
  1717. struct rq *rq = cpu_rq(cpu);
  1718. unsigned long total = weighted_cpuload(cpu);
  1719. if (type == 0 || !sched_feat(LB_BIAS))
  1720. return total;
  1721. return min(rq->cpu_load[type-1], total);
  1722. }
  1723. /*
  1724. * Return a high guess at the load of a migration-target cpu weighted
  1725. * according to the scheduling class and "nice" value.
  1726. */
  1727. static unsigned long target_load(int cpu, int type)
  1728. {
  1729. struct rq *rq = cpu_rq(cpu);
  1730. unsigned long total = weighted_cpuload(cpu);
  1731. if (type == 0 || !sched_feat(LB_BIAS))
  1732. return total;
  1733. return max(rq->cpu_load[type-1], total);
  1734. }
  1735. /*
  1736. * find_idlest_group finds and returns the least busy CPU group within the
  1737. * domain.
  1738. */
  1739. static struct sched_group *
  1740. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1741. {
  1742. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1743. unsigned long min_load = ULONG_MAX, this_load = 0;
  1744. int load_idx = sd->forkexec_idx;
  1745. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1746. do {
  1747. unsigned long load, avg_load;
  1748. int local_group;
  1749. int i;
  1750. /* Skip over this group if it has no CPUs allowed */
  1751. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1752. continue;
  1753. local_group = cpu_isset(this_cpu, group->cpumask);
  1754. /* Tally up the load of all CPUs in the group */
  1755. avg_load = 0;
  1756. for_each_cpu_mask_nr(i, group->cpumask) {
  1757. /* Bias balancing toward cpus of our domain */
  1758. if (local_group)
  1759. load = source_load(i, load_idx);
  1760. else
  1761. load = target_load(i, load_idx);
  1762. avg_load += load;
  1763. }
  1764. /* Adjust by relative CPU power of the group */
  1765. avg_load = sg_div_cpu_power(group,
  1766. avg_load * SCHED_LOAD_SCALE);
  1767. if (local_group) {
  1768. this_load = avg_load;
  1769. this = group;
  1770. } else if (avg_load < min_load) {
  1771. min_load = avg_load;
  1772. idlest = group;
  1773. }
  1774. } while (group = group->next, group != sd->groups);
  1775. if (!idlest || 100*this_load < imbalance*min_load)
  1776. return NULL;
  1777. return idlest;
  1778. }
  1779. /*
  1780. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1781. */
  1782. static int
  1783. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1784. cpumask_t *tmp)
  1785. {
  1786. unsigned long load, min_load = ULONG_MAX;
  1787. int idlest = -1;
  1788. int i;
  1789. /* Traverse only the allowed CPUs */
  1790. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1791. for_each_cpu_mask_nr(i, *tmp) {
  1792. load = weighted_cpuload(i);
  1793. if (load < min_load || (load == min_load && i == this_cpu)) {
  1794. min_load = load;
  1795. idlest = i;
  1796. }
  1797. }
  1798. return idlest;
  1799. }
  1800. /*
  1801. * sched_balance_self: balance the current task (running on cpu) in domains
  1802. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1803. * SD_BALANCE_EXEC.
  1804. *
  1805. * Balance, ie. select the least loaded group.
  1806. *
  1807. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1808. *
  1809. * preempt must be disabled.
  1810. */
  1811. static int sched_balance_self(int cpu, int flag)
  1812. {
  1813. struct task_struct *t = current;
  1814. struct sched_domain *tmp, *sd = NULL;
  1815. for_each_domain(cpu, tmp) {
  1816. /*
  1817. * If power savings logic is enabled for a domain, stop there.
  1818. */
  1819. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1820. break;
  1821. if (tmp->flags & flag)
  1822. sd = tmp;
  1823. }
  1824. if (sd)
  1825. update_shares(sd);
  1826. while (sd) {
  1827. cpumask_t span, tmpmask;
  1828. struct sched_group *group;
  1829. int new_cpu, weight;
  1830. if (!(sd->flags & flag)) {
  1831. sd = sd->child;
  1832. continue;
  1833. }
  1834. span = sd->span;
  1835. group = find_idlest_group(sd, t, cpu);
  1836. if (!group) {
  1837. sd = sd->child;
  1838. continue;
  1839. }
  1840. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1841. if (new_cpu == -1 || new_cpu == cpu) {
  1842. /* Now try balancing at a lower domain level of cpu */
  1843. sd = sd->child;
  1844. continue;
  1845. }
  1846. /* Now try balancing at a lower domain level of new_cpu */
  1847. cpu = new_cpu;
  1848. sd = NULL;
  1849. weight = cpus_weight(span);
  1850. for_each_domain(cpu, tmp) {
  1851. if (weight <= cpus_weight(tmp->span))
  1852. break;
  1853. if (tmp->flags & flag)
  1854. sd = tmp;
  1855. }
  1856. /* while loop will break here if sd == NULL */
  1857. }
  1858. return cpu;
  1859. }
  1860. #endif /* CONFIG_SMP */
  1861. /***
  1862. * try_to_wake_up - wake up a thread
  1863. * @p: the to-be-woken-up thread
  1864. * @state: the mask of task states that can be woken
  1865. * @sync: do a synchronous wakeup?
  1866. *
  1867. * Put it on the run-queue if it's not already there. The "current"
  1868. * thread is always on the run-queue (except when the actual
  1869. * re-schedule is in progress), and as such you're allowed to do
  1870. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1871. * runnable without the overhead of this.
  1872. *
  1873. * returns failure only if the task is already active.
  1874. */
  1875. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1876. {
  1877. int cpu, orig_cpu, this_cpu, success = 0;
  1878. unsigned long flags;
  1879. long old_state;
  1880. struct rq *rq;
  1881. if (!sched_feat(SYNC_WAKEUPS))
  1882. sync = 0;
  1883. #ifdef CONFIG_SMP
  1884. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1885. struct sched_domain *sd;
  1886. this_cpu = raw_smp_processor_id();
  1887. cpu = task_cpu(p);
  1888. for_each_domain(this_cpu, sd) {
  1889. if (cpu_isset(cpu, sd->span)) {
  1890. update_shares(sd);
  1891. break;
  1892. }
  1893. }
  1894. }
  1895. #endif
  1896. smp_wmb();
  1897. rq = task_rq_lock(p, &flags);
  1898. old_state = p->state;
  1899. if (!(old_state & state))
  1900. goto out;
  1901. if (p->se.on_rq)
  1902. goto out_running;
  1903. cpu = task_cpu(p);
  1904. orig_cpu = cpu;
  1905. this_cpu = smp_processor_id();
  1906. #ifdef CONFIG_SMP
  1907. if (unlikely(task_running(rq, p)))
  1908. goto out_activate;
  1909. cpu = p->sched_class->select_task_rq(p, sync);
  1910. if (cpu != orig_cpu) {
  1911. set_task_cpu(p, cpu);
  1912. task_rq_unlock(rq, &flags);
  1913. /* might preempt at this point */
  1914. rq = task_rq_lock(p, &flags);
  1915. old_state = p->state;
  1916. if (!(old_state & state))
  1917. goto out;
  1918. if (p->se.on_rq)
  1919. goto out_running;
  1920. this_cpu = smp_processor_id();
  1921. cpu = task_cpu(p);
  1922. }
  1923. #ifdef CONFIG_SCHEDSTATS
  1924. schedstat_inc(rq, ttwu_count);
  1925. if (cpu == this_cpu)
  1926. schedstat_inc(rq, ttwu_local);
  1927. else {
  1928. struct sched_domain *sd;
  1929. for_each_domain(this_cpu, sd) {
  1930. if (cpu_isset(cpu, sd->span)) {
  1931. schedstat_inc(sd, ttwu_wake_remote);
  1932. break;
  1933. }
  1934. }
  1935. }
  1936. #endif /* CONFIG_SCHEDSTATS */
  1937. out_activate:
  1938. #endif /* CONFIG_SMP */
  1939. schedstat_inc(p, se.nr_wakeups);
  1940. if (sync)
  1941. schedstat_inc(p, se.nr_wakeups_sync);
  1942. if (orig_cpu != cpu)
  1943. schedstat_inc(p, se.nr_wakeups_migrate);
  1944. if (cpu == this_cpu)
  1945. schedstat_inc(p, se.nr_wakeups_local);
  1946. else
  1947. schedstat_inc(p, se.nr_wakeups_remote);
  1948. update_rq_clock(rq);
  1949. activate_task(rq, p, 1);
  1950. success = 1;
  1951. out_running:
  1952. trace_sched_wakeup(rq, p);
  1953. check_preempt_curr(rq, p, sync);
  1954. p->state = TASK_RUNNING;
  1955. #ifdef CONFIG_SMP
  1956. if (p->sched_class->task_wake_up)
  1957. p->sched_class->task_wake_up(rq, p);
  1958. #endif
  1959. out:
  1960. current->se.last_wakeup = current->se.sum_exec_runtime;
  1961. task_rq_unlock(rq, &flags);
  1962. return success;
  1963. }
  1964. int wake_up_process(struct task_struct *p)
  1965. {
  1966. return try_to_wake_up(p, TASK_ALL, 0);
  1967. }
  1968. EXPORT_SYMBOL(wake_up_process);
  1969. int wake_up_state(struct task_struct *p, unsigned int state)
  1970. {
  1971. return try_to_wake_up(p, state, 0);
  1972. }
  1973. /*
  1974. * Perform scheduler related setup for a newly forked process p.
  1975. * p is forked by current.
  1976. *
  1977. * __sched_fork() is basic setup used by init_idle() too:
  1978. */
  1979. static void __sched_fork(struct task_struct *p)
  1980. {
  1981. p->se.exec_start = 0;
  1982. p->se.sum_exec_runtime = 0;
  1983. p->se.prev_sum_exec_runtime = 0;
  1984. p->se.last_wakeup = 0;
  1985. p->se.avg_overlap = 0;
  1986. #ifdef CONFIG_SCHEDSTATS
  1987. p->se.wait_start = 0;
  1988. p->se.sum_sleep_runtime = 0;
  1989. p->se.sleep_start = 0;
  1990. p->se.block_start = 0;
  1991. p->se.sleep_max = 0;
  1992. p->se.block_max = 0;
  1993. p->se.exec_max = 0;
  1994. p->se.slice_max = 0;
  1995. p->se.wait_max = 0;
  1996. #endif
  1997. INIT_LIST_HEAD(&p->rt.run_list);
  1998. p->se.on_rq = 0;
  1999. INIT_LIST_HEAD(&p->se.group_node);
  2000. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2001. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2002. #endif
  2003. /*
  2004. * We mark the process as running here, but have not actually
  2005. * inserted it onto the runqueue yet. This guarantees that
  2006. * nobody will actually run it, and a signal or other external
  2007. * event cannot wake it up and insert it on the runqueue either.
  2008. */
  2009. p->state = TASK_RUNNING;
  2010. }
  2011. /*
  2012. * fork()/clone()-time setup:
  2013. */
  2014. void sched_fork(struct task_struct *p, int clone_flags)
  2015. {
  2016. int cpu = get_cpu();
  2017. __sched_fork(p);
  2018. #ifdef CONFIG_SMP
  2019. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2020. #endif
  2021. set_task_cpu(p, cpu);
  2022. /*
  2023. * Make sure we do not leak PI boosting priority to the child:
  2024. */
  2025. p->prio = current->normal_prio;
  2026. if (!rt_prio(p->prio))
  2027. p->sched_class = &fair_sched_class;
  2028. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2029. if (likely(sched_info_on()))
  2030. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2031. #endif
  2032. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2033. p->oncpu = 0;
  2034. #endif
  2035. #ifdef CONFIG_PREEMPT
  2036. /* Want to start with kernel preemption disabled. */
  2037. task_thread_info(p)->preempt_count = 1;
  2038. #endif
  2039. put_cpu();
  2040. }
  2041. /*
  2042. * wake_up_new_task - wake up a newly created task for the first time.
  2043. *
  2044. * This function will do some initial scheduler statistics housekeeping
  2045. * that must be done for every newly created context, then puts the task
  2046. * on the runqueue and wakes it.
  2047. */
  2048. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2049. {
  2050. unsigned long flags;
  2051. struct rq *rq;
  2052. rq = task_rq_lock(p, &flags);
  2053. BUG_ON(p->state != TASK_RUNNING);
  2054. update_rq_clock(rq);
  2055. p->prio = effective_prio(p);
  2056. if (!p->sched_class->task_new || !current->se.on_rq) {
  2057. activate_task(rq, p, 0);
  2058. } else {
  2059. /*
  2060. * Let the scheduling class do new task startup
  2061. * management (if any):
  2062. */
  2063. p->sched_class->task_new(rq, p);
  2064. inc_nr_running(rq);
  2065. }
  2066. trace_sched_wakeup_new(rq, p);
  2067. check_preempt_curr(rq, p, 0);
  2068. #ifdef CONFIG_SMP
  2069. if (p->sched_class->task_wake_up)
  2070. p->sched_class->task_wake_up(rq, p);
  2071. #endif
  2072. task_rq_unlock(rq, &flags);
  2073. }
  2074. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2075. /**
  2076. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2077. * @notifier: notifier struct to register
  2078. */
  2079. void preempt_notifier_register(struct preempt_notifier *notifier)
  2080. {
  2081. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2082. }
  2083. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2084. /**
  2085. * preempt_notifier_unregister - no longer interested in preemption notifications
  2086. * @notifier: notifier struct to unregister
  2087. *
  2088. * This is safe to call from within a preemption notifier.
  2089. */
  2090. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2091. {
  2092. hlist_del(&notifier->link);
  2093. }
  2094. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2095. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2096. {
  2097. struct preempt_notifier *notifier;
  2098. struct hlist_node *node;
  2099. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2100. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2101. }
  2102. static void
  2103. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2104. struct task_struct *next)
  2105. {
  2106. struct preempt_notifier *notifier;
  2107. struct hlist_node *node;
  2108. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2109. notifier->ops->sched_out(notifier, next);
  2110. }
  2111. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2112. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2113. {
  2114. }
  2115. static void
  2116. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2117. struct task_struct *next)
  2118. {
  2119. }
  2120. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2121. /**
  2122. * prepare_task_switch - prepare to switch tasks
  2123. * @rq: the runqueue preparing to switch
  2124. * @prev: the current task that is being switched out
  2125. * @next: the task we are going to switch to.
  2126. *
  2127. * This is called with the rq lock held and interrupts off. It must
  2128. * be paired with a subsequent finish_task_switch after the context
  2129. * switch.
  2130. *
  2131. * prepare_task_switch sets up locking and calls architecture specific
  2132. * hooks.
  2133. */
  2134. static inline void
  2135. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2136. struct task_struct *next)
  2137. {
  2138. fire_sched_out_preempt_notifiers(prev, next);
  2139. prepare_lock_switch(rq, next);
  2140. prepare_arch_switch(next);
  2141. }
  2142. /**
  2143. * finish_task_switch - clean up after a task-switch
  2144. * @rq: runqueue associated with task-switch
  2145. * @prev: the thread we just switched away from.
  2146. *
  2147. * finish_task_switch must be called after the context switch, paired
  2148. * with a prepare_task_switch call before the context switch.
  2149. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2150. * and do any other architecture-specific cleanup actions.
  2151. *
  2152. * Note that we may have delayed dropping an mm in context_switch(). If
  2153. * so, we finish that here outside of the runqueue lock. (Doing it
  2154. * with the lock held can cause deadlocks; see schedule() for
  2155. * details.)
  2156. */
  2157. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2158. __releases(rq->lock)
  2159. {
  2160. struct mm_struct *mm = rq->prev_mm;
  2161. long prev_state;
  2162. rq->prev_mm = NULL;
  2163. /*
  2164. * A task struct has one reference for the use as "current".
  2165. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2166. * schedule one last time. The schedule call will never return, and
  2167. * the scheduled task must drop that reference.
  2168. * The test for TASK_DEAD must occur while the runqueue locks are
  2169. * still held, otherwise prev could be scheduled on another cpu, die
  2170. * there before we look at prev->state, and then the reference would
  2171. * be dropped twice.
  2172. * Manfred Spraul <manfred@colorfullife.com>
  2173. */
  2174. prev_state = prev->state;
  2175. finish_arch_switch(prev);
  2176. finish_lock_switch(rq, prev);
  2177. #ifdef CONFIG_SMP
  2178. if (current->sched_class->post_schedule)
  2179. current->sched_class->post_schedule(rq);
  2180. #endif
  2181. fire_sched_in_preempt_notifiers(current);
  2182. if (mm)
  2183. mmdrop(mm);
  2184. if (unlikely(prev_state == TASK_DEAD)) {
  2185. /*
  2186. * Remove function-return probe instances associated with this
  2187. * task and put them back on the free list.
  2188. */
  2189. kprobe_flush_task(prev);
  2190. put_task_struct(prev);
  2191. }
  2192. }
  2193. /**
  2194. * schedule_tail - first thing a freshly forked thread must call.
  2195. * @prev: the thread we just switched away from.
  2196. */
  2197. asmlinkage void schedule_tail(struct task_struct *prev)
  2198. __releases(rq->lock)
  2199. {
  2200. struct rq *rq = this_rq();
  2201. finish_task_switch(rq, prev);
  2202. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2203. /* In this case, finish_task_switch does not reenable preemption */
  2204. preempt_enable();
  2205. #endif
  2206. if (current->set_child_tid)
  2207. put_user(task_pid_vnr(current), current->set_child_tid);
  2208. }
  2209. /*
  2210. * context_switch - switch to the new MM and the new
  2211. * thread's register state.
  2212. */
  2213. static inline void
  2214. context_switch(struct rq *rq, struct task_struct *prev,
  2215. struct task_struct *next)
  2216. {
  2217. struct mm_struct *mm, *oldmm;
  2218. prepare_task_switch(rq, prev, next);
  2219. trace_sched_switch(rq, prev, next);
  2220. mm = next->mm;
  2221. oldmm = prev->active_mm;
  2222. /*
  2223. * For paravirt, this is coupled with an exit in switch_to to
  2224. * combine the page table reload and the switch backend into
  2225. * one hypercall.
  2226. */
  2227. arch_enter_lazy_cpu_mode();
  2228. if (unlikely(!mm)) {
  2229. next->active_mm = oldmm;
  2230. atomic_inc(&oldmm->mm_count);
  2231. enter_lazy_tlb(oldmm, next);
  2232. } else
  2233. switch_mm(oldmm, mm, next);
  2234. if (unlikely(!prev->mm)) {
  2235. prev->active_mm = NULL;
  2236. rq->prev_mm = oldmm;
  2237. }
  2238. /*
  2239. * Since the runqueue lock will be released by the next
  2240. * task (which is an invalid locking op but in the case
  2241. * of the scheduler it's an obvious special-case), so we
  2242. * do an early lockdep release here:
  2243. */
  2244. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2245. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2246. #endif
  2247. /* Here we just switch the register state and the stack. */
  2248. switch_to(prev, next, prev);
  2249. barrier();
  2250. /*
  2251. * this_rq must be evaluated again because prev may have moved
  2252. * CPUs since it called schedule(), thus the 'rq' on its stack
  2253. * frame will be invalid.
  2254. */
  2255. finish_task_switch(this_rq(), prev);
  2256. }
  2257. /*
  2258. * nr_running, nr_uninterruptible and nr_context_switches:
  2259. *
  2260. * externally visible scheduler statistics: current number of runnable
  2261. * threads, current number of uninterruptible-sleeping threads, total
  2262. * number of context switches performed since bootup.
  2263. */
  2264. unsigned long nr_running(void)
  2265. {
  2266. unsigned long i, sum = 0;
  2267. for_each_online_cpu(i)
  2268. sum += cpu_rq(i)->nr_running;
  2269. return sum;
  2270. }
  2271. unsigned long nr_uninterruptible(void)
  2272. {
  2273. unsigned long i, sum = 0;
  2274. for_each_possible_cpu(i)
  2275. sum += cpu_rq(i)->nr_uninterruptible;
  2276. /*
  2277. * Since we read the counters lockless, it might be slightly
  2278. * inaccurate. Do not allow it to go below zero though:
  2279. */
  2280. if (unlikely((long)sum < 0))
  2281. sum = 0;
  2282. return sum;
  2283. }
  2284. unsigned long long nr_context_switches(void)
  2285. {
  2286. int i;
  2287. unsigned long long sum = 0;
  2288. for_each_possible_cpu(i)
  2289. sum += cpu_rq(i)->nr_switches;
  2290. return sum;
  2291. }
  2292. unsigned long nr_iowait(void)
  2293. {
  2294. unsigned long i, sum = 0;
  2295. for_each_possible_cpu(i)
  2296. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2297. return sum;
  2298. }
  2299. unsigned long nr_active(void)
  2300. {
  2301. unsigned long i, running = 0, uninterruptible = 0;
  2302. for_each_online_cpu(i) {
  2303. running += cpu_rq(i)->nr_running;
  2304. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2305. }
  2306. if (unlikely((long)uninterruptible < 0))
  2307. uninterruptible = 0;
  2308. return running + uninterruptible;
  2309. }
  2310. /*
  2311. * Update rq->cpu_load[] statistics. This function is usually called every
  2312. * scheduler tick (TICK_NSEC).
  2313. */
  2314. static void update_cpu_load(struct rq *this_rq)
  2315. {
  2316. unsigned long this_load = this_rq->load.weight;
  2317. int i, scale;
  2318. this_rq->nr_load_updates++;
  2319. /* Update our load: */
  2320. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2321. unsigned long old_load, new_load;
  2322. /* scale is effectively 1 << i now, and >> i divides by scale */
  2323. old_load = this_rq->cpu_load[i];
  2324. new_load = this_load;
  2325. /*
  2326. * Round up the averaging division if load is increasing. This
  2327. * prevents us from getting stuck on 9 if the load is 10, for
  2328. * example.
  2329. */
  2330. if (new_load > old_load)
  2331. new_load += scale-1;
  2332. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2333. }
  2334. }
  2335. #ifdef CONFIG_SMP
  2336. /*
  2337. * double_rq_lock - safely lock two runqueues
  2338. *
  2339. * Note this does not disable interrupts like task_rq_lock,
  2340. * you need to do so manually before calling.
  2341. */
  2342. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2343. __acquires(rq1->lock)
  2344. __acquires(rq2->lock)
  2345. {
  2346. BUG_ON(!irqs_disabled());
  2347. if (rq1 == rq2) {
  2348. spin_lock(&rq1->lock);
  2349. __acquire(rq2->lock); /* Fake it out ;) */
  2350. } else {
  2351. if (rq1 < rq2) {
  2352. spin_lock(&rq1->lock);
  2353. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2354. } else {
  2355. spin_lock(&rq2->lock);
  2356. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2357. }
  2358. }
  2359. update_rq_clock(rq1);
  2360. update_rq_clock(rq2);
  2361. }
  2362. /*
  2363. * double_rq_unlock - safely unlock two runqueues
  2364. *
  2365. * Note this does not restore interrupts like task_rq_unlock,
  2366. * you need to do so manually after calling.
  2367. */
  2368. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2369. __releases(rq1->lock)
  2370. __releases(rq2->lock)
  2371. {
  2372. spin_unlock(&rq1->lock);
  2373. if (rq1 != rq2)
  2374. spin_unlock(&rq2->lock);
  2375. else
  2376. __release(rq2->lock);
  2377. }
  2378. /*
  2379. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2380. */
  2381. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2382. __releases(this_rq->lock)
  2383. __acquires(busiest->lock)
  2384. __acquires(this_rq->lock)
  2385. {
  2386. int ret = 0;
  2387. if (unlikely(!irqs_disabled())) {
  2388. /* printk() doesn't work good under rq->lock */
  2389. spin_unlock(&this_rq->lock);
  2390. BUG_ON(1);
  2391. }
  2392. if (unlikely(!spin_trylock(&busiest->lock))) {
  2393. if (busiest < this_rq) {
  2394. spin_unlock(&this_rq->lock);
  2395. spin_lock(&busiest->lock);
  2396. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2397. ret = 1;
  2398. } else
  2399. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2400. }
  2401. return ret;
  2402. }
  2403. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2404. __releases(busiest->lock)
  2405. {
  2406. spin_unlock(&busiest->lock);
  2407. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2408. }
  2409. /*
  2410. * If dest_cpu is allowed for this process, migrate the task to it.
  2411. * This is accomplished by forcing the cpu_allowed mask to only
  2412. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2413. * the cpu_allowed mask is restored.
  2414. */
  2415. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2416. {
  2417. struct migration_req req;
  2418. unsigned long flags;
  2419. struct rq *rq;
  2420. rq = task_rq_lock(p, &flags);
  2421. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2422. || unlikely(!cpu_active(dest_cpu)))
  2423. goto out;
  2424. trace_sched_migrate_task(rq, p, dest_cpu);
  2425. /* force the process onto the specified CPU */
  2426. if (migrate_task(p, dest_cpu, &req)) {
  2427. /* Need to wait for migration thread (might exit: take ref). */
  2428. struct task_struct *mt = rq->migration_thread;
  2429. get_task_struct(mt);
  2430. task_rq_unlock(rq, &flags);
  2431. wake_up_process(mt);
  2432. put_task_struct(mt);
  2433. wait_for_completion(&req.done);
  2434. return;
  2435. }
  2436. out:
  2437. task_rq_unlock(rq, &flags);
  2438. }
  2439. /*
  2440. * sched_exec - execve() is a valuable balancing opportunity, because at
  2441. * this point the task has the smallest effective memory and cache footprint.
  2442. */
  2443. void sched_exec(void)
  2444. {
  2445. int new_cpu, this_cpu = get_cpu();
  2446. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2447. put_cpu();
  2448. if (new_cpu != this_cpu)
  2449. sched_migrate_task(current, new_cpu);
  2450. }
  2451. /*
  2452. * pull_task - move a task from a remote runqueue to the local runqueue.
  2453. * Both runqueues must be locked.
  2454. */
  2455. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2456. struct rq *this_rq, int this_cpu)
  2457. {
  2458. deactivate_task(src_rq, p, 0);
  2459. set_task_cpu(p, this_cpu);
  2460. activate_task(this_rq, p, 0);
  2461. /*
  2462. * Note that idle threads have a prio of MAX_PRIO, for this test
  2463. * to be always true for them.
  2464. */
  2465. check_preempt_curr(this_rq, p, 0);
  2466. }
  2467. /*
  2468. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2469. */
  2470. static
  2471. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2472. struct sched_domain *sd, enum cpu_idle_type idle,
  2473. int *all_pinned)
  2474. {
  2475. /*
  2476. * We do not migrate tasks that are:
  2477. * 1) running (obviously), or
  2478. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2479. * 3) are cache-hot on their current CPU.
  2480. */
  2481. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2482. schedstat_inc(p, se.nr_failed_migrations_affine);
  2483. return 0;
  2484. }
  2485. *all_pinned = 0;
  2486. if (task_running(rq, p)) {
  2487. schedstat_inc(p, se.nr_failed_migrations_running);
  2488. return 0;
  2489. }
  2490. /*
  2491. * Aggressive migration if:
  2492. * 1) task is cache cold, or
  2493. * 2) too many balance attempts have failed.
  2494. */
  2495. if (!task_hot(p, rq->clock, sd) ||
  2496. sd->nr_balance_failed > sd->cache_nice_tries) {
  2497. #ifdef CONFIG_SCHEDSTATS
  2498. if (task_hot(p, rq->clock, sd)) {
  2499. schedstat_inc(sd, lb_hot_gained[idle]);
  2500. schedstat_inc(p, se.nr_forced_migrations);
  2501. }
  2502. #endif
  2503. return 1;
  2504. }
  2505. if (task_hot(p, rq->clock, sd)) {
  2506. schedstat_inc(p, se.nr_failed_migrations_hot);
  2507. return 0;
  2508. }
  2509. return 1;
  2510. }
  2511. static unsigned long
  2512. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2513. unsigned long max_load_move, struct sched_domain *sd,
  2514. enum cpu_idle_type idle, int *all_pinned,
  2515. int *this_best_prio, struct rq_iterator *iterator)
  2516. {
  2517. int loops = 0, pulled = 0, pinned = 0;
  2518. struct task_struct *p;
  2519. long rem_load_move = max_load_move;
  2520. if (max_load_move == 0)
  2521. goto out;
  2522. pinned = 1;
  2523. /*
  2524. * Start the load-balancing iterator:
  2525. */
  2526. p = iterator->start(iterator->arg);
  2527. next:
  2528. if (!p || loops++ > sysctl_sched_nr_migrate)
  2529. goto out;
  2530. if ((p->se.load.weight >> 1) > rem_load_move ||
  2531. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2532. p = iterator->next(iterator->arg);
  2533. goto next;
  2534. }
  2535. pull_task(busiest, p, this_rq, this_cpu);
  2536. pulled++;
  2537. rem_load_move -= p->se.load.weight;
  2538. /*
  2539. * We only want to steal up to the prescribed amount of weighted load.
  2540. */
  2541. if (rem_load_move > 0) {
  2542. if (p->prio < *this_best_prio)
  2543. *this_best_prio = p->prio;
  2544. p = iterator->next(iterator->arg);
  2545. goto next;
  2546. }
  2547. out:
  2548. /*
  2549. * Right now, this is one of only two places pull_task() is called,
  2550. * so we can safely collect pull_task() stats here rather than
  2551. * inside pull_task().
  2552. */
  2553. schedstat_add(sd, lb_gained[idle], pulled);
  2554. if (all_pinned)
  2555. *all_pinned = pinned;
  2556. return max_load_move - rem_load_move;
  2557. }
  2558. /*
  2559. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2560. * this_rq, as part of a balancing operation within domain "sd".
  2561. * Returns 1 if successful and 0 otherwise.
  2562. *
  2563. * Called with both runqueues locked.
  2564. */
  2565. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2566. unsigned long max_load_move,
  2567. struct sched_domain *sd, enum cpu_idle_type idle,
  2568. int *all_pinned)
  2569. {
  2570. const struct sched_class *class = sched_class_highest;
  2571. unsigned long total_load_moved = 0;
  2572. int this_best_prio = this_rq->curr->prio;
  2573. do {
  2574. total_load_moved +=
  2575. class->load_balance(this_rq, this_cpu, busiest,
  2576. max_load_move - total_load_moved,
  2577. sd, idle, all_pinned, &this_best_prio);
  2578. class = class->next;
  2579. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2580. break;
  2581. } while (class && max_load_move > total_load_moved);
  2582. return total_load_moved > 0;
  2583. }
  2584. static int
  2585. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2586. struct sched_domain *sd, enum cpu_idle_type idle,
  2587. struct rq_iterator *iterator)
  2588. {
  2589. struct task_struct *p = iterator->start(iterator->arg);
  2590. int pinned = 0;
  2591. while (p) {
  2592. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2593. pull_task(busiest, p, this_rq, this_cpu);
  2594. /*
  2595. * Right now, this is only the second place pull_task()
  2596. * is called, so we can safely collect pull_task()
  2597. * stats here rather than inside pull_task().
  2598. */
  2599. schedstat_inc(sd, lb_gained[idle]);
  2600. return 1;
  2601. }
  2602. p = iterator->next(iterator->arg);
  2603. }
  2604. return 0;
  2605. }
  2606. /*
  2607. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2608. * part of active balancing operations within "domain".
  2609. * Returns 1 if successful and 0 otherwise.
  2610. *
  2611. * Called with both runqueues locked.
  2612. */
  2613. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2614. struct sched_domain *sd, enum cpu_idle_type idle)
  2615. {
  2616. const struct sched_class *class;
  2617. for (class = sched_class_highest; class; class = class->next)
  2618. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2619. return 1;
  2620. return 0;
  2621. }
  2622. /*
  2623. * find_busiest_group finds and returns the busiest CPU group within the
  2624. * domain. It calculates and returns the amount of weighted load which
  2625. * should be moved to restore balance via the imbalance parameter.
  2626. */
  2627. static struct sched_group *
  2628. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2629. unsigned long *imbalance, enum cpu_idle_type idle,
  2630. int *sd_idle, const cpumask_t *cpus, int *balance)
  2631. {
  2632. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2633. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2634. unsigned long max_pull;
  2635. unsigned long busiest_load_per_task, busiest_nr_running;
  2636. unsigned long this_load_per_task, this_nr_running;
  2637. int load_idx, group_imb = 0;
  2638. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2639. int power_savings_balance = 1;
  2640. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2641. unsigned long min_nr_running = ULONG_MAX;
  2642. struct sched_group *group_min = NULL, *group_leader = NULL;
  2643. #endif
  2644. max_load = this_load = total_load = total_pwr = 0;
  2645. busiest_load_per_task = busiest_nr_running = 0;
  2646. this_load_per_task = this_nr_running = 0;
  2647. if (idle == CPU_NOT_IDLE)
  2648. load_idx = sd->busy_idx;
  2649. else if (idle == CPU_NEWLY_IDLE)
  2650. load_idx = sd->newidle_idx;
  2651. else
  2652. load_idx = sd->idle_idx;
  2653. do {
  2654. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2655. int local_group;
  2656. int i;
  2657. int __group_imb = 0;
  2658. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2659. unsigned long sum_nr_running, sum_weighted_load;
  2660. unsigned long sum_avg_load_per_task;
  2661. unsigned long avg_load_per_task;
  2662. local_group = cpu_isset(this_cpu, group->cpumask);
  2663. if (local_group)
  2664. balance_cpu = first_cpu(group->cpumask);
  2665. /* Tally up the load of all CPUs in the group */
  2666. sum_weighted_load = sum_nr_running = avg_load = 0;
  2667. sum_avg_load_per_task = avg_load_per_task = 0;
  2668. max_cpu_load = 0;
  2669. min_cpu_load = ~0UL;
  2670. for_each_cpu_mask_nr(i, group->cpumask) {
  2671. struct rq *rq;
  2672. if (!cpu_isset(i, *cpus))
  2673. continue;
  2674. rq = cpu_rq(i);
  2675. if (*sd_idle && rq->nr_running)
  2676. *sd_idle = 0;
  2677. /* Bias balancing toward cpus of our domain */
  2678. if (local_group) {
  2679. if (idle_cpu(i) && !first_idle_cpu) {
  2680. first_idle_cpu = 1;
  2681. balance_cpu = i;
  2682. }
  2683. load = target_load(i, load_idx);
  2684. } else {
  2685. load = source_load(i, load_idx);
  2686. if (load > max_cpu_load)
  2687. max_cpu_load = load;
  2688. if (min_cpu_load > load)
  2689. min_cpu_load = load;
  2690. }
  2691. avg_load += load;
  2692. sum_nr_running += rq->nr_running;
  2693. sum_weighted_load += weighted_cpuload(i);
  2694. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2695. }
  2696. /*
  2697. * First idle cpu or the first cpu(busiest) in this sched group
  2698. * is eligible for doing load balancing at this and above
  2699. * domains. In the newly idle case, we will allow all the cpu's
  2700. * to do the newly idle load balance.
  2701. */
  2702. if (idle != CPU_NEWLY_IDLE && local_group &&
  2703. balance_cpu != this_cpu && balance) {
  2704. *balance = 0;
  2705. goto ret;
  2706. }
  2707. total_load += avg_load;
  2708. total_pwr += group->__cpu_power;
  2709. /* Adjust by relative CPU power of the group */
  2710. avg_load = sg_div_cpu_power(group,
  2711. avg_load * SCHED_LOAD_SCALE);
  2712. /*
  2713. * Consider the group unbalanced when the imbalance is larger
  2714. * than the average weight of two tasks.
  2715. *
  2716. * APZ: with cgroup the avg task weight can vary wildly and
  2717. * might not be a suitable number - should we keep a
  2718. * normalized nr_running number somewhere that negates
  2719. * the hierarchy?
  2720. */
  2721. avg_load_per_task = sg_div_cpu_power(group,
  2722. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2723. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2724. __group_imb = 1;
  2725. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2726. if (local_group) {
  2727. this_load = avg_load;
  2728. this = group;
  2729. this_nr_running = sum_nr_running;
  2730. this_load_per_task = sum_weighted_load;
  2731. } else if (avg_load > max_load &&
  2732. (sum_nr_running > group_capacity || __group_imb)) {
  2733. max_load = avg_load;
  2734. busiest = group;
  2735. busiest_nr_running = sum_nr_running;
  2736. busiest_load_per_task = sum_weighted_load;
  2737. group_imb = __group_imb;
  2738. }
  2739. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2740. /*
  2741. * Busy processors will not participate in power savings
  2742. * balance.
  2743. */
  2744. if (idle == CPU_NOT_IDLE ||
  2745. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2746. goto group_next;
  2747. /*
  2748. * If the local group is idle or completely loaded
  2749. * no need to do power savings balance at this domain
  2750. */
  2751. if (local_group && (this_nr_running >= group_capacity ||
  2752. !this_nr_running))
  2753. power_savings_balance = 0;
  2754. /*
  2755. * If a group is already running at full capacity or idle,
  2756. * don't include that group in power savings calculations
  2757. */
  2758. if (!power_savings_balance || sum_nr_running >= group_capacity
  2759. || !sum_nr_running)
  2760. goto group_next;
  2761. /*
  2762. * Calculate the group which has the least non-idle load.
  2763. * This is the group from where we need to pick up the load
  2764. * for saving power
  2765. */
  2766. if ((sum_nr_running < min_nr_running) ||
  2767. (sum_nr_running == min_nr_running &&
  2768. first_cpu(group->cpumask) <
  2769. first_cpu(group_min->cpumask))) {
  2770. group_min = group;
  2771. min_nr_running = sum_nr_running;
  2772. min_load_per_task = sum_weighted_load /
  2773. sum_nr_running;
  2774. }
  2775. /*
  2776. * Calculate the group which is almost near its
  2777. * capacity but still has some space to pick up some load
  2778. * from other group and save more power
  2779. */
  2780. if (sum_nr_running <= group_capacity - 1) {
  2781. if (sum_nr_running > leader_nr_running ||
  2782. (sum_nr_running == leader_nr_running &&
  2783. first_cpu(group->cpumask) >
  2784. first_cpu(group_leader->cpumask))) {
  2785. group_leader = group;
  2786. leader_nr_running = sum_nr_running;
  2787. }
  2788. }
  2789. group_next:
  2790. #endif
  2791. group = group->next;
  2792. } while (group != sd->groups);
  2793. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2794. goto out_balanced;
  2795. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2796. if (this_load >= avg_load ||
  2797. 100*max_load <= sd->imbalance_pct*this_load)
  2798. goto out_balanced;
  2799. busiest_load_per_task /= busiest_nr_running;
  2800. if (group_imb)
  2801. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2802. /*
  2803. * We're trying to get all the cpus to the average_load, so we don't
  2804. * want to push ourselves above the average load, nor do we wish to
  2805. * reduce the max loaded cpu below the average load, as either of these
  2806. * actions would just result in more rebalancing later, and ping-pong
  2807. * tasks around. Thus we look for the minimum possible imbalance.
  2808. * Negative imbalances (*we* are more loaded than anyone else) will
  2809. * be counted as no imbalance for these purposes -- we can't fix that
  2810. * by pulling tasks to us. Be careful of negative numbers as they'll
  2811. * appear as very large values with unsigned longs.
  2812. */
  2813. if (max_load <= busiest_load_per_task)
  2814. goto out_balanced;
  2815. /*
  2816. * In the presence of smp nice balancing, certain scenarios can have
  2817. * max load less than avg load(as we skip the groups at or below
  2818. * its cpu_power, while calculating max_load..)
  2819. */
  2820. if (max_load < avg_load) {
  2821. *imbalance = 0;
  2822. goto small_imbalance;
  2823. }
  2824. /* Don't want to pull so many tasks that a group would go idle */
  2825. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2826. /* How much load to actually move to equalise the imbalance */
  2827. *imbalance = min(max_pull * busiest->__cpu_power,
  2828. (avg_load - this_load) * this->__cpu_power)
  2829. / SCHED_LOAD_SCALE;
  2830. /*
  2831. * if *imbalance is less than the average load per runnable task
  2832. * there is no gaurantee that any tasks will be moved so we'll have
  2833. * a think about bumping its value to force at least one task to be
  2834. * moved
  2835. */
  2836. if (*imbalance < busiest_load_per_task) {
  2837. unsigned long tmp, pwr_now, pwr_move;
  2838. unsigned int imbn;
  2839. small_imbalance:
  2840. pwr_move = pwr_now = 0;
  2841. imbn = 2;
  2842. if (this_nr_running) {
  2843. this_load_per_task /= this_nr_running;
  2844. if (busiest_load_per_task > this_load_per_task)
  2845. imbn = 1;
  2846. } else
  2847. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2848. if (max_load - this_load + busiest_load_per_task >=
  2849. busiest_load_per_task * imbn) {
  2850. *imbalance = busiest_load_per_task;
  2851. return busiest;
  2852. }
  2853. /*
  2854. * OK, we don't have enough imbalance to justify moving tasks,
  2855. * however we may be able to increase total CPU power used by
  2856. * moving them.
  2857. */
  2858. pwr_now += busiest->__cpu_power *
  2859. min(busiest_load_per_task, max_load);
  2860. pwr_now += this->__cpu_power *
  2861. min(this_load_per_task, this_load);
  2862. pwr_now /= SCHED_LOAD_SCALE;
  2863. /* Amount of load we'd subtract */
  2864. tmp = sg_div_cpu_power(busiest,
  2865. busiest_load_per_task * SCHED_LOAD_SCALE);
  2866. if (max_load > tmp)
  2867. pwr_move += busiest->__cpu_power *
  2868. min(busiest_load_per_task, max_load - tmp);
  2869. /* Amount of load we'd add */
  2870. if (max_load * busiest->__cpu_power <
  2871. busiest_load_per_task * SCHED_LOAD_SCALE)
  2872. tmp = sg_div_cpu_power(this,
  2873. max_load * busiest->__cpu_power);
  2874. else
  2875. tmp = sg_div_cpu_power(this,
  2876. busiest_load_per_task * SCHED_LOAD_SCALE);
  2877. pwr_move += this->__cpu_power *
  2878. min(this_load_per_task, this_load + tmp);
  2879. pwr_move /= SCHED_LOAD_SCALE;
  2880. /* Move if we gain throughput */
  2881. if (pwr_move > pwr_now)
  2882. *imbalance = busiest_load_per_task;
  2883. }
  2884. return busiest;
  2885. out_balanced:
  2886. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2887. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2888. goto ret;
  2889. if (this == group_leader && group_leader != group_min) {
  2890. *imbalance = min_load_per_task;
  2891. return group_min;
  2892. }
  2893. #endif
  2894. ret:
  2895. *imbalance = 0;
  2896. return NULL;
  2897. }
  2898. /*
  2899. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2900. */
  2901. static struct rq *
  2902. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2903. unsigned long imbalance, const cpumask_t *cpus)
  2904. {
  2905. struct rq *busiest = NULL, *rq;
  2906. unsigned long max_load = 0;
  2907. int i;
  2908. for_each_cpu_mask_nr(i, group->cpumask) {
  2909. unsigned long wl;
  2910. if (!cpu_isset(i, *cpus))
  2911. continue;
  2912. rq = cpu_rq(i);
  2913. wl = weighted_cpuload(i);
  2914. if (rq->nr_running == 1 && wl > imbalance)
  2915. continue;
  2916. if (wl > max_load) {
  2917. max_load = wl;
  2918. busiest = rq;
  2919. }
  2920. }
  2921. return busiest;
  2922. }
  2923. /*
  2924. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2925. * so long as it is large enough.
  2926. */
  2927. #define MAX_PINNED_INTERVAL 512
  2928. /*
  2929. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2930. * tasks if there is an imbalance.
  2931. */
  2932. static int load_balance(int this_cpu, struct rq *this_rq,
  2933. struct sched_domain *sd, enum cpu_idle_type idle,
  2934. int *balance, cpumask_t *cpus)
  2935. {
  2936. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2937. struct sched_group *group;
  2938. unsigned long imbalance;
  2939. struct rq *busiest;
  2940. unsigned long flags;
  2941. cpus_setall(*cpus);
  2942. /*
  2943. * When power savings policy is enabled for the parent domain, idle
  2944. * sibling can pick up load irrespective of busy siblings. In this case,
  2945. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2946. * portraying it as CPU_NOT_IDLE.
  2947. */
  2948. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2949. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2950. sd_idle = 1;
  2951. schedstat_inc(sd, lb_count[idle]);
  2952. redo:
  2953. update_shares(sd);
  2954. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2955. cpus, balance);
  2956. if (*balance == 0)
  2957. goto out_balanced;
  2958. if (!group) {
  2959. schedstat_inc(sd, lb_nobusyg[idle]);
  2960. goto out_balanced;
  2961. }
  2962. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2963. if (!busiest) {
  2964. schedstat_inc(sd, lb_nobusyq[idle]);
  2965. goto out_balanced;
  2966. }
  2967. BUG_ON(busiest == this_rq);
  2968. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2969. ld_moved = 0;
  2970. if (busiest->nr_running > 1) {
  2971. /*
  2972. * Attempt to move tasks. If find_busiest_group has found
  2973. * an imbalance but busiest->nr_running <= 1, the group is
  2974. * still unbalanced. ld_moved simply stays zero, so it is
  2975. * correctly treated as an imbalance.
  2976. */
  2977. local_irq_save(flags);
  2978. double_rq_lock(this_rq, busiest);
  2979. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2980. imbalance, sd, idle, &all_pinned);
  2981. double_rq_unlock(this_rq, busiest);
  2982. local_irq_restore(flags);
  2983. /*
  2984. * some other cpu did the load balance for us.
  2985. */
  2986. if (ld_moved && this_cpu != smp_processor_id())
  2987. resched_cpu(this_cpu);
  2988. /* All tasks on this runqueue were pinned by CPU affinity */
  2989. if (unlikely(all_pinned)) {
  2990. cpu_clear(cpu_of(busiest), *cpus);
  2991. if (!cpus_empty(*cpus))
  2992. goto redo;
  2993. goto out_balanced;
  2994. }
  2995. }
  2996. if (!ld_moved) {
  2997. schedstat_inc(sd, lb_failed[idle]);
  2998. sd->nr_balance_failed++;
  2999. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3000. spin_lock_irqsave(&busiest->lock, flags);
  3001. /* don't kick the migration_thread, if the curr
  3002. * task on busiest cpu can't be moved to this_cpu
  3003. */
  3004. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3005. spin_unlock_irqrestore(&busiest->lock, flags);
  3006. all_pinned = 1;
  3007. goto out_one_pinned;
  3008. }
  3009. if (!busiest->active_balance) {
  3010. busiest->active_balance = 1;
  3011. busiest->push_cpu = this_cpu;
  3012. active_balance = 1;
  3013. }
  3014. spin_unlock_irqrestore(&busiest->lock, flags);
  3015. if (active_balance)
  3016. wake_up_process(busiest->migration_thread);
  3017. /*
  3018. * We've kicked active balancing, reset the failure
  3019. * counter.
  3020. */
  3021. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3022. }
  3023. } else
  3024. sd->nr_balance_failed = 0;
  3025. if (likely(!active_balance)) {
  3026. /* We were unbalanced, so reset the balancing interval */
  3027. sd->balance_interval = sd->min_interval;
  3028. } else {
  3029. /*
  3030. * If we've begun active balancing, start to back off. This
  3031. * case may not be covered by the all_pinned logic if there
  3032. * is only 1 task on the busy runqueue (because we don't call
  3033. * move_tasks).
  3034. */
  3035. if (sd->balance_interval < sd->max_interval)
  3036. sd->balance_interval *= 2;
  3037. }
  3038. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3039. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3040. ld_moved = -1;
  3041. goto out;
  3042. out_balanced:
  3043. schedstat_inc(sd, lb_balanced[idle]);
  3044. sd->nr_balance_failed = 0;
  3045. out_one_pinned:
  3046. /* tune up the balancing interval */
  3047. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3048. (sd->balance_interval < sd->max_interval))
  3049. sd->balance_interval *= 2;
  3050. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3051. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3052. ld_moved = -1;
  3053. else
  3054. ld_moved = 0;
  3055. out:
  3056. if (ld_moved)
  3057. update_shares(sd);
  3058. return ld_moved;
  3059. }
  3060. /*
  3061. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3062. * tasks if there is an imbalance.
  3063. *
  3064. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3065. * this_rq is locked.
  3066. */
  3067. static int
  3068. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3069. cpumask_t *cpus)
  3070. {
  3071. struct sched_group *group;
  3072. struct rq *busiest = NULL;
  3073. unsigned long imbalance;
  3074. int ld_moved = 0;
  3075. int sd_idle = 0;
  3076. int all_pinned = 0;
  3077. cpus_setall(*cpus);
  3078. /*
  3079. * When power savings policy is enabled for the parent domain, idle
  3080. * sibling can pick up load irrespective of busy siblings. In this case,
  3081. * let the state of idle sibling percolate up as IDLE, instead of
  3082. * portraying it as CPU_NOT_IDLE.
  3083. */
  3084. if (sd->flags & SD_SHARE_CPUPOWER &&
  3085. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3086. sd_idle = 1;
  3087. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3088. redo:
  3089. update_shares_locked(this_rq, sd);
  3090. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3091. &sd_idle, cpus, NULL);
  3092. if (!group) {
  3093. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3094. goto out_balanced;
  3095. }
  3096. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3097. if (!busiest) {
  3098. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3099. goto out_balanced;
  3100. }
  3101. BUG_ON(busiest == this_rq);
  3102. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3103. ld_moved = 0;
  3104. if (busiest->nr_running > 1) {
  3105. /* Attempt to move tasks */
  3106. double_lock_balance(this_rq, busiest);
  3107. /* this_rq->clock is already updated */
  3108. update_rq_clock(busiest);
  3109. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3110. imbalance, sd, CPU_NEWLY_IDLE,
  3111. &all_pinned);
  3112. double_unlock_balance(this_rq, busiest);
  3113. if (unlikely(all_pinned)) {
  3114. cpu_clear(cpu_of(busiest), *cpus);
  3115. if (!cpus_empty(*cpus))
  3116. goto redo;
  3117. }
  3118. }
  3119. if (!ld_moved) {
  3120. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3121. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3122. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3123. return -1;
  3124. } else
  3125. sd->nr_balance_failed = 0;
  3126. update_shares_locked(this_rq, sd);
  3127. return ld_moved;
  3128. out_balanced:
  3129. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3130. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3131. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3132. return -1;
  3133. sd->nr_balance_failed = 0;
  3134. return 0;
  3135. }
  3136. /*
  3137. * idle_balance is called by schedule() if this_cpu is about to become
  3138. * idle. Attempts to pull tasks from other CPUs.
  3139. */
  3140. static void idle_balance(int this_cpu, struct rq *this_rq)
  3141. {
  3142. struct sched_domain *sd;
  3143. int pulled_task = -1;
  3144. unsigned long next_balance = jiffies + HZ;
  3145. cpumask_t tmpmask;
  3146. for_each_domain(this_cpu, sd) {
  3147. unsigned long interval;
  3148. if (!(sd->flags & SD_LOAD_BALANCE))
  3149. continue;
  3150. if (sd->flags & SD_BALANCE_NEWIDLE)
  3151. /* If we've pulled tasks over stop searching: */
  3152. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3153. sd, &tmpmask);
  3154. interval = msecs_to_jiffies(sd->balance_interval);
  3155. if (time_after(next_balance, sd->last_balance + interval))
  3156. next_balance = sd->last_balance + interval;
  3157. if (pulled_task)
  3158. break;
  3159. }
  3160. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3161. /*
  3162. * We are going idle. next_balance may be set based on
  3163. * a busy processor. So reset next_balance.
  3164. */
  3165. this_rq->next_balance = next_balance;
  3166. }
  3167. }
  3168. /*
  3169. * active_load_balance is run by migration threads. It pushes running tasks
  3170. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3171. * running on each physical CPU where possible, and avoids physical /
  3172. * logical imbalances.
  3173. *
  3174. * Called with busiest_rq locked.
  3175. */
  3176. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3177. {
  3178. int target_cpu = busiest_rq->push_cpu;
  3179. struct sched_domain *sd;
  3180. struct rq *target_rq;
  3181. /* Is there any task to move? */
  3182. if (busiest_rq->nr_running <= 1)
  3183. return;
  3184. target_rq = cpu_rq(target_cpu);
  3185. /*
  3186. * This condition is "impossible", if it occurs
  3187. * we need to fix it. Originally reported by
  3188. * Bjorn Helgaas on a 128-cpu setup.
  3189. */
  3190. BUG_ON(busiest_rq == target_rq);
  3191. /* move a task from busiest_rq to target_rq */
  3192. double_lock_balance(busiest_rq, target_rq);
  3193. update_rq_clock(busiest_rq);
  3194. update_rq_clock(target_rq);
  3195. /* Search for an sd spanning us and the target CPU. */
  3196. for_each_domain(target_cpu, sd) {
  3197. if ((sd->flags & SD_LOAD_BALANCE) &&
  3198. cpu_isset(busiest_cpu, sd->span))
  3199. break;
  3200. }
  3201. if (likely(sd)) {
  3202. schedstat_inc(sd, alb_count);
  3203. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3204. sd, CPU_IDLE))
  3205. schedstat_inc(sd, alb_pushed);
  3206. else
  3207. schedstat_inc(sd, alb_failed);
  3208. }
  3209. double_unlock_balance(busiest_rq, target_rq);
  3210. }
  3211. #ifdef CONFIG_NO_HZ
  3212. static struct {
  3213. atomic_t load_balancer;
  3214. cpumask_t cpu_mask;
  3215. } nohz ____cacheline_aligned = {
  3216. .load_balancer = ATOMIC_INIT(-1),
  3217. .cpu_mask = CPU_MASK_NONE,
  3218. };
  3219. /*
  3220. * This routine will try to nominate the ilb (idle load balancing)
  3221. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3222. * load balancing on behalf of all those cpus. If all the cpus in the system
  3223. * go into this tickless mode, then there will be no ilb owner (as there is
  3224. * no need for one) and all the cpus will sleep till the next wakeup event
  3225. * arrives...
  3226. *
  3227. * For the ilb owner, tick is not stopped. And this tick will be used
  3228. * for idle load balancing. ilb owner will still be part of
  3229. * nohz.cpu_mask..
  3230. *
  3231. * While stopping the tick, this cpu will become the ilb owner if there
  3232. * is no other owner. And will be the owner till that cpu becomes busy
  3233. * or if all cpus in the system stop their ticks at which point
  3234. * there is no need for ilb owner.
  3235. *
  3236. * When the ilb owner becomes busy, it nominates another owner, during the
  3237. * next busy scheduler_tick()
  3238. */
  3239. int select_nohz_load_balancer(int stop_tick)
  3240. {
  3241. int cpu = smp_processor_id();
  3242. if (stop_tick) {
  3243. cpu_set(cpu, nohz.cpu_mask);
  3244. cpu_rq(cpu)->in_nohz_recently = 1;
  3245. /*
  3246. * If we are going offline and still the leader, give up!
  3247. */
  3248. if (!cpu_active(cpu) &&
  3249. atomic_read(&nohz.load_balancer) == cpu) {
  3250. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3251. BUG();
  3252. return 0;
  3253. }
  3254. /* time for ilb owner also to sleep */
  3255. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3256. if (atomic_read(&nohz.load_balancer) == cpu)
  3257. atomic_set(&nohz.load_balancer, -1);
  3258. return 0;
  3259. }
  3260. if (atomic_read(&nohz.load_balancer) == -1) {
  3261. /* make me the ilb owner */
  3262. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3263. return 1;
  3264. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3265. return 1;
  3266. } else {
  3267. if (!cpu_isset(cpu, nohz.cpu_mask))
  3268. return 0;
  3269. cpu_clear(cpu, nohz.cpu_mask);
  3270. if (atomic_read(&nohz.load_balancer) == cpu)
  3271. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3272. BUG();
  3273. }
  3274. return 0;
  3275. }
  3276. #endif
  3277. static DEFINE_SPINLOCK(balancing);
  3278. /*
  3279. * It checks each scheduling domain to see if it is due to be balanced,
  3280. * and initiates a balancing operation if so.
  3281. *
  3282. * Balancing parameters are set up in arch_init_sched_domains.
  3283. */
  3284. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3285. {
  3286. int balance = 1;
  3287. struct rq *rq = cpu_rq(cpu);
  3288. unsigned long interval;
  3289. struct sched_domain *sd;
  3290. /* Earliest time when we have to do rebalance again */
  3291. unsigned long next_balance = jiffies + 60*HZ;
  3292. int update_next_balance = 0;
  3293. int need_serialize;
  3294. cpumask_t tmp;
  3295. for_each_domain(cpu, sd) {
  3296. if (!(sd->flags & SD_LOAD_BALANCE))
  3297. continue;
  3298. interval = sd->balance_interval;
  3299. if (idle != CPU_IDLE)
  3300. interval *= sd->busy_factor;
  3301. /* scale ms to jiffies */
  3302. interval = msecs_to_jiffies(interval);
  3303. if (unlikely(!interval))
  3304. interval = 1;
  3305. if (interval > HZ*NR_CPUS/10)
  3306. interval = HZ*NR_CPUS/10;
  3307. need_serialize = sd->flags & SD_SERIALIZE;
  3308. if (need_serialize) {
  3309. if (!spin_trylock(&balancing))
  3310. goto out;
  3311. }
  3312. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3313. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3314. /*
  3315. * We've pulled tasks over so either we're no
  3316. * longer idle, or one of our SMT siblings is
  3317. * not idle.
  3318. */
  3319. idle = CPU_NOT_IDLE;
  3320. }
  3321. sd->last_balance = jiffies;
  3322. }
  3323. if (need_serialize)
  3324. spin_unlock(&balancing);
  3325. out:
  3326. if (time_after(next_balance, sd->last_balance + interval)) {
  3327. next_balance = sd->last_balance + interval;
  3328. update_next_balance = 1;
  3329. }
  3330. /*
  3331. * Stop the load balance at this level. There is another
  3332. * CPU in our sched group which is doing load balancing more
  3333. * actively.
  3334. */
  3335. if (!balance)
  3336. break;
  3337. }
  3338. /*
  3339. * next_balance will be updated only when there is a need.
  3340. * When the cpu is attached to null domain for ex, it will not be
  3341. * updated.
  3342. */
  3343. if (likely(update_next_balance))
  3344. rq->next_balance = next_balance;
  3345. }
  3346. /*
  3347. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3348. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3349. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3350. */
  3351. static void run_rebalance_domains(struct softirq_action *h)
  3352. {
  3353. int this_cpu = smp_processor_id();
  3354. struct rq *this_rq = cpu_rq(this_cpu);
  3355. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3356. CPU_IDLE : CPU_NOT_IDLE;
  3357. rebalance_domains(this_cpu, idle);
  3358. #ifdef CONFIG_NO_HZ
  3359. /*
  3360. * If this cpu is the owner for idle load balancing, then do the
  3361. * balancing on behalf of the other idle cpus whose ticks are
  3362. * stopped.
  3363. */
  3364. if (this_rq->idle_at_tick &&
  3365. atomic_read(&nohz.load_balancer) == this_cpu) {
  3366. cpumask_t cpus = nohz.cpu_mask;
  3367. struct rq *rq;
  3368. int balance_cpu;
  3369. cpu_clear(this_cpu, cpus);
  3370. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3371. /*
  3372. * If this cpu gets work to do, stop the load balancing
  3373. * work being done for other cpus. Next load
  3374. * balancing owner will pick it up.
  3375. */
  3376. if (need_resched())
  3377. break;
  3378. rebalance_domains(balance_cpu, CPU_IDLE);
  3379. rq = cpu_rq(balance_cpu);
  3380. if (time_after(this_rq->next_balance, rq->next_balance))
  3381. this_rq->next_balance = rq->next_balance;
  3382. }
  3383. }
  3384. #endif
  3385. }
  3386. /*
  3387. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3388. *
  3389. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3390. * idle load balancing owner or decide to stop the periodic load balancing,
  3391. * if the whole system is idle.
  3392. */
  3393. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3394. {
  3395. #ifdef CONFIG_NO_HZ
  3396. /*
  3397. * If we were in the nohz mode recently and busy at the current
  3398. * scheduler tick, then check if we need to nominate new idle
  3399. * load balancer.
  3400. */
  3401. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3402. rq->in_nohz_recently = 0;
  3403. if (atomic_read(&nohz.load_balancer) == cpu) {
  3404. cpu_clear(cpu, nohz.cpu_mask);
  3405. atomic_set(&nohz.load_balancer, -1);
  3406. }
  3407. if (atomic_read(&nohz.load_balancer) == -1) {
  3408. /*
  3409. * simple selection for now: Nominate the
  3410. * first cpu in the nohz list to be the next
  3411. * ilb owner.
  3412. *
  3413. * TBD: Traverse the sched domains and nominate
  3414. * the nearest cpu in the nohz.cpu_mask.
  3415. */
  3416. int ilb = first_cpu(nohz.cpu_mask);
  3417. if (ilb < nr_cpu_ids)
  3418. resched_cpu(ilb);
  3419. }
  3420. }
  3421. /*
  3422. * If this cpu is idle and doing idle load balancing for all the
  3423. * cpus with ticks stopped, is it time for that to stop?
  3424. */
  3425. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3426. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3427. resched_cpu(cpu);
  3428. return;
  3429. }
  3430. /*
  3431. * If this cpu is idle and the idle load balancing is done by
  3432. * someone else, then no need raise the SCHED_SOFTIRQ
  3433. */
  3434. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3435. cpu_isset(cpu, nohz.cpu_mask))
  3436. return;
  3437. #endif
  3438. if (time_after_eq(jiffies, rq->next_balance))
  3439. raise_softirq(SCHED_SOFTIRQ);
  3440. }
  3441. #else /* CONFIG_SMP */
  3442. /*
  3443. * on UP we do not need to balance between CPUs:
  3444. */
  3445. static inline void idle_balance(int cpu, struct rq *rq)
  3446. {
  3447. }
  3448. #endif
  3449. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3450. EXPORT_PER_CPU_SYMBOL(kstat);
  3451. /*
  3452. * Return any ns on the sched_clock that have not yet been banked in
  3453. * @p in case that task is currently running.
  3454. */
  3455. unsigned long long task_delta_exec(struct task_struct *p)
  3456. {
  3457. unsigned long flags;
  3458. struct rq *rq;
  3459. u64 ns = 0;
  3460. rq = task_rq_lock(p, &flags);
  3461. if (task_current(rq, p)) {
  3462. u64 delta_exec;
  3463. update_rq_clock(rq);
  3464. delta_exec = rq->clock - p->se.exec_start;
  3465. if ((s64)delta_exec > 0)
  3466. ns = delta_exec;
  3467. }
  3468. task_rq_unlock(rq, &flags);
  3469. return ns;
  3470. }
  3471. /*
  3472. * Account user cpu time to a process.
  3473. * @p: the process that the cpu time gets accounted to
  3474. * @cputime: the cpu time spent in user space since the last update
  3475. */
  3476. void account_user_time(struct task_struct *p, cputime_t cputime)
  3477. {
  3478. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3479. cputime64_t tmp;
  3480. p->utime = cputime_add(p->utime, cputime);
  3481. account_group_user_time(p, cputime);
  3482. /* Add user time to cpustat. */
  3483. tmp = cputime_to_cputime64(cputime);
  3484. if (TASK_NICE(p) > 0)
  3485. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3486. else
  3487. cpustat->user = cputime64_add(cpustat->user, tmp);
  3488. /* Account for user time used */
  3489. acct_update_integrals(p);
  3490. }
  3491. /*
  3492. * Account guest cpu time to a process.
  3493. * @p: the process that the cpu time gets accounted to
  3494. * @cputime: the cpu time spent in virtual machine since the last update
  3495. */
  3496. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3497. {
  3498. cputime64_t tmp;
  3499. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3500. tmp = cputime_to_cputime64(cputime);
  3501. p->utime = cputime_add(p->utime, cputime);
  3502. account_group_user_time(p, cputime);
  3503. p->gtime = cputime_add(p->gtime, cputime);
  3504. cpustat->user = cputime64_add(cpustat->user, tmp);
  3505. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3506. }
  3507. /*
  3508. * Account scaled user cpu time to a process.
  3509. * @p: the process that the cpu time gets accounted to
  3510. * @cputime: the cpu time spent in user space since the last update
  3511. */
  3512. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3513. {
  3514. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3515. }
  3516. /*
  3517. * Account system cpu time to a process.
  3518. * @p: the process that the cpu time gets accounted to
  3519. * @hardirq_offset: the offset to subtract from hardirq_count()
  3520. * @cputime: the cpu time spent in kernel space since the last update
  3521. */
  3522. void account_system_time(struct task_struct *p, int hardirq_offset,
  3523. cputime_t cputime)
  3524. {
  3525. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3526. struct rq *rq = this_rq();
  3527. cputime64_t tmp;
  3528. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3529. account_guest_time(p, cputime);
  3530. return;
  3531. }
  3532. p->stime = cputime_add(p->stime, cputime);
  3533. account_group_system_time(p, cputime);
  3534. /* Add system time to cpustat. */
  3535. tmp = cputime_to_cputime64(cputime);
  3536. if (hardirq_count() - hardirq_offset)
  3537. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3538. else if (softirq_count())
  3539. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3540. else if (p != rq->idle)
  3541. cpustat->system = cputime64_add(cpustat->system, tmp);
  3542. else if (atomic_read(&rq->nr_iowait) > 0)
  3543. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3544. else
  3545. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3546. /* Account for system time used */
  3547. acct_update_integrals(p);
  3548. }
  3549. /*
  3550. * Account scaled system cpu time to a process.
  3551. * @p: the process that the cpu time gets accounted to
  3552. * @hardirq_offset: the offset to subtract from hardirq_count()
  3553. * @cputime: the cpu time spent in kernel space since the last update
  3554. */
  3555. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3556. {
  3557. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3558. }
  3559. /*
  3560. * Account for involuntary wait time.
  3561. * @p: the process from which the cpu time has been stolen
  3562. * @steal: the cpu time spent in involuntary wait
  3563. */
  3564. void account_steal_time(struct task_struct *p, cputime_t steal)
  3565. {
  3566. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3567. cputime64_t tmp = cputime_to_cputime64(steal);
  3568. struct rq *rq = this_rq();
  3569. if (p == rq->idle) {
  3570. p->stime = cputime_add(p->stime, steal);
  3571. account_group_system_time(p, steal);
  3572. if (atomic_read(&rq->nr_iowait) > 0)
  3573. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3574. else
  3575. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3576. } else
  3577. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3578. }
  3579. /*
  3580. * Use precise platform statistics if available:
  3581. */
  3582. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3583. cputime_t task_utime(struct task_struct *p)
  3584. {
  3585. return p->utime;
  3586. }
  3587. cputime_t task_stime(struct task_struct *p)
  3588. {
  3589. return p->stime;
  3590. }
  3591. #else
  3592. cputime_t task_utime(struct task_struct *p)
  3593. {
  3594. clock_t utime = cputime_to_clock_t(p->utime),
  3595. total = utime + cputime_to_clock_t(p->stime);
  3596. u64 temp;
  3597. /*
  3598. * Use CFS's precise accounting:
  3599. */
  3600. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3601. if (total) {
  3602. temp *= utime;
  3603. do_div(temp, total);
  3604. }
  3605. utime = (clock_t)temp;
  3606. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3607. return p->prev_utime;
  3608. }
  3609. cputime_t task_stime(struct task_struct *p)
  3610. {
  3611. clock_t stime;
  3612. /*
  3613. * Use CFS's precise accounting. (we subtract utime from
  3614. * the total, to make sure the total observed by userspace
  3615. * grows monotonically - apps rely on that):
  3616. */
  3617. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3618. cputime_to_clock_t(task_utime(p));
  3619. if (stime >= 0)
  3620. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3621. return p->prev_stime;
  3622. }
  3623. #endif
  3624. inline cputime_t task_gtime(struct task_struct *p)
  3625. {
  3626. return p->gtime;
  3627. }
  3628. /*
  3629. * This function gets called by the timer code, with HZ frequency.
  3630. * We call it with interrupts disabled.
  3631. *
  3632. * It also gets called by the fork code, when changing the parent's
  3633. * timeslices.
  3634. */
  3635. void scheduler_tick(void)
  3636. {
  3637. int cpu = smp_processor_id();
  3638. struct rq *rq = cpu_rq(cpu);
  3639. struct task_struct *curr = rq->curr;
  3640. sched_clock_tick();
  3641. spin_lock(&rq->lock);
  3642. update_rq_clock(rq);
  3643. update_cpu_load(rq);
  3644. curr->sched_class->task_tick(rq, curr, 0);
  3645. spin_unlock(&rq->lock);
  3646. #ifdef CONFIG_SMP
  3647. rq->idle_at_tick = idle_cpu(cpu);
  3648. trigger_load_balance(rq, cpu);
  3649. #endif
  3650. }
  3651. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3652. defined(CONFIG_PREEMPT_TRACER))
  3653. static inline unsigned long get_parent_ip(unsigned long addr)
  3654. {
  3655. if (in_lock_functions(addr)) {
  3656. addr = CALLER_ADDR2;
  3657. if (in_lock_functions(addr))
  3658. addr = CALLER_ADDR3;
  3659. }
  3660. return addr;
  3661. }
  3662. void __kprobes add_preempt_count(int val)
  3663. {
  3664. #ifdef CONFIG_DEBUG_PREEMPT
  3665. /*
  3666. * Underflow?
  3667. */
  3668. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3669. return;
  3670. #endif
  3671. preempt_count() += val;
  3672. #ifdef CONFIG_DEBUG_PREEMPT
  3673. /*
  3674. * Spinlock count overflowing soon?
  3675. */
  3676. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3677. PREEMPT_MASK - 10);
  3678. #endif
  3679. if (preempt_count() == val)
  3680. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3681. }
  3682. EXPORT_SYMBOL(add_preempt_count);
  3683. void __kprobes sub_preempt_count(int val)
  3684. {
  3685. #ifdef CONFIG_DEBUG_PREEMPT
  3686. /*
  3687. * Underflow?
  3688. */
  3689. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3690. return;
  3691. /*
  3692. * Is the spinlock portion underflowing?
  3693. */
  3694. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3695. !(preempt_count() & PREEMPT_MASK)))
  3696. return;
  3697. #endif
  3698. if (preempt_count() == val)
  3699. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3700. preempt_count() -= val;
  3701. }
  3702. EXPORT_SYMBOL(sub_preempt_count);
  3703. #endif
  3704. /*
  3705. * Print scheduling while atomic bug:
  3706. */
  3707. static noinline void __schedule_bug(struct task_struct *prev)
  3708. {
  3709. struct pt_regs *regs = get_irq_regs();
  3710. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3711. prev->comm, prev->pid, preempt_count());
  3712. debug_show_held_locks(prev);
  3713. print_modules();
  3714. if (irqs_disabled())
  3715. print_irqtrace_events(prev);
  3716. if (regs)
  3717. show_regs(regs);
  3718. else
  3719. dump_stack();
  3720. }
  3721. /*
  3722. * Various schedule()-time debugging checks and statistics:
  3723. */
  3724. static inline void schedule_debug(struct task_struct *prev)
  3725. {
  3726. /*
  3727. * Test if we are atomic. Since do_exit() needs to call into
  3728. * schedule() atomically, we ignore that path for now.
  3729. * Otherwise, whine if we are scheduling when we should not be.
  3730. */
  3731. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3732. __schedule_bug(prev);
  3733. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3734. schedstat_inc(this_rq(), sched_count);
  3735. #ifdef CONFIG_SCHEDSTATS
  3736. if (unlikely(prev->lock_depth >= 0)) {
  3737. schedstat_inc(this_rq(), bkl_count);
  3738. schedstat_inc(prev, sched_info.bkl_count);
  3739. }
  3740. #endif
  3741. }
  3742. /*
  3743. * Pick up the highest-prio task:
  3744. */
  3745. static inline struct task_struct *
  3746. pick_next_task(struct rq *rq, struct task_struct *prev)
  3747. {
  3748. const struct sched_class *class;
  3749. struct task_struct *p;
  3750. /*
  3751. * Optimization: we know that if all tasks are in
  3752. * the fair class we can call that function directly:
  3753. */
  3754. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3755. p = fair_sched_class.pick_next_task(rq);
  3756. if (likely(p))
  3757. return p;
  3758. }
  3759. class = sched_class_highest;
  3760. for ( ; ; ) {
  3761. p = class->pick_next_task(rq);
  3762. if (p)
  3763. return p;
  3764. /*
  3765. * Will never be NULL as the idle class always
  3766. * returns a non-NULL p:
  3767. */
  3768. class = class->next;
  3769. }
  3770. }
  3771. /*
  3772. * schedule() is the main scheduler function.
  3773. */
  3774. asmlinkage void __sched schedule(void)
  3775. {
  3776. struct task_struct *prev, *next;
  3777. unsigned long *switch_count;
  3778. struct rq *rq;
  3779. int cpu;
  3780. need_resched:
  3781. preempt_disable();
  3782. cpu = smp_processor_id();
  3783. rq = cpu_rq(cpu);
  3784. rcu_qsctr_inc(cpu);
  3785. prev = rq->curr;
  3786. switch_count = &prev->nivcsw;
  3787. release_kernel_lock(prev);
  3788. need_resched_nonpreemptible:
  3789. schedule_debug(prev);
  3790. if (sched_feat(HRTICK))
  3791. hrtick_clear(rq);
  3792. spin_lock_irq(&rq->lock);
  3793. update_rq_clock(rq);
  3794. clear_tsk_need_resched(prev);
  3795. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3796. if (unlikely(signal_pending_state(prev->state, prev)))
  3797. prev->state = TASK_RUNNING;
  3798. else
  3799. deactivate_task(rq, prev, 1);
  3800. switch_count = &prev->nvcsw;
  3801. }
  3802. #ifdef CONFIG_SMP
  3803. if (prev->sched_class->pre_schedule)
  3804. prev->sched_class->pre_schedule(rq, prev);
  3805. #endif
  3806. if (unlikely(!rq->nr_running))
  3807. idle_balance(cpu, rq);
  3808. prev->sched_class->put_prev_task(rq, prev);
  3809. next = pick_next_task(rq, prev);
  3810. if (likely(prev != next)) {
  3811. sched_info_switch(prev, next);
  3812. rq->nr_switches++;
  3813. rq->curr = next;
  3814. ++*switch_count;
  3815. context_switch(rq, prev, next); /* unlocks the rq */
  3816. /*
  3817. * the context switch might have flipped the stack from under
  3818. * us, hence refresh the local variables.
  3819. */
  3820. cpu = smp_processor_id();
  3821. rq = cpu_rq(cpu);
  3822. } else
  3823. spin_unlock_irq(&rq->lock);
  3824. if (unlikely(reacquire_kernel_lock(current) < 0))
  3825. goto need_resched_nonpreemptible;
  3826. preempt_enable_no_resched();
  3827. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3828. goto need_resched;
  3829. }
  3830. EXPORT_SYMBOL(schedule);
  3831. #ifdef CONFIG_PREEMPT
  3832. /*
  3833. * this is the entry point to schedule() from in-kernel preemption
  3834. * off of preempt_enable. Kernel preemptions off return from interrupt
  3835. * occur there and call schedule directly.
  3836. */
  3837. asmlinkage void __sched preempt_schedule(void)
  3838. {
  3839. struct thread_info *ti = current_thread_info();
  3840. /*
  3841. * If there is a non-zero preempt_count or interrupts are disabled,
  3842. * we do not want to preempt the current task. Just return..
  3843. */
  3844. if (likely(ti->preempt_count || irqs_disabled()))
  3845. return;
  3846. do {
  3847. add_preempt_count(PREEMPT_ACTIVE);
  3848. schedule();
  3849. sub_preempt_count(PREEMPT_ACTIVE);
  3850. /*
  3851. * Check again in case we missed a preemption opportunity
  3852. * between schedule and now.
  3853. */
  3854. barrier();
  3855. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3856. }
  3857. EXPORT_SYMBOL(preempt_schedule);
  3858. /*
  3859. * this is the entry point to schedule() from kernel preemption
  3860. * off of irq context.
  3861. * Note, that this is called and return with irqs disabled. This will
  3862. * protect us against recursive calling from irq.
  3863. */
  3864. asmlinkage void __sched preempt_schedule_irq(void)
  3865. {
  3866. struct thread_info *ti = current_thread_info();
  3867. /* Catch callers which need to be fixed */
  3868. BUG_ON(ti->preempt_count || !irqs_disabled());
  3869. do {
  3870. add_preempt_count(PREEMPT_ACTIVE);
  3871. local_irq_enable();
  3872. schedule();
  3873. local_irq_disable();
  3874. sub_preempt_count(PREEMPT_ACTIVE);
  3875. /*
  3876. * Check again in case we missed a preemption opportunity
  3877. * between schedule and now.
  3878. */
  3879. barrier();
  3880. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3881. }
  3882. #endif /* CONFIG_PREEMPT */
  3883. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3884. void *key)
  3885. {
  3886. return try_to_wake_up(curr->private, mode, sync);
  3887. }
  3888. EXPORT_SYMBOL(default_wake_function);
  3889. /*
  3890. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3891. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3892. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3893. *
  3894. * There are circumstances in which we can try to wake a task which has already
  3895. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3896. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3897. */
  3898. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3899. int nr_exclusive, int sync, void *key)
  3900. {
  3901. wait_queue_t *curr, *next;
  3902. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3903. unsigned flags = curr->flags;
  3904. if (curr->func(curr, mode, sync, key) &&
  3905. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3906. break;
  3907. }
  3908. }
  3909. /**
  3910. * __wake_up - wake up threads blocked on a waitqueue.
  3911. * @q: the waitqueue
  3912. * @mode: which threads
  3913. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3914. * @key: is directly passed to the wakeup function
  3915. */
  3916. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3917. int nr_exclusive, void *key)
  3918. {
  3919. unsigned long flags;
  3920. spin_lock_irqsave(&q->lock, flags);
  3921. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3922. spin_unlock_irqrestore(&q->lock, flags);
  3923. }
  3924. EXPORT_SYMBOL(__wake_up);
  3925. /*
  3926. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3927. */
  3928. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3929. {
  3930. __wake_up_common(q, mode, 1, 0, NULL);
  3931. }
  3932. /**
  3933. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3934. * @q: the waitqueue
  3935. * @mode: which threads
  3936. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3937. *
  3938. * The sync wakeup differs that the waker knows that it will schedule
  3939. * away soon, so while the target thread will be woken up, it will not
  3940. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3941. * with each other. This can prevent needless bouncing between CPUs.
  3942. *
  3943. * On UP it can prevent extra preemption.
  3944. */
  3945. void
  3946. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3947. {
  3948. unsigned long flags;
  3949. int sync = 1;
  3950. if (unlikely(!q))
  3951. return;
  3952. if (unlikely(!nr_exclusive))
  3953. sync = 0;
  3954. spin_lock_irqsave(&q->lock, flags);
  3955. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3956. spin_unlock_irqrestore(&q->lock, flags);
  3957. }
  3958. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3959. /**
  3960. * complete: - signals a single thread waiting on this completion
  3961. * @x: holds the state of this particular completion
  3962. *
  3963. * This will wake up a single thread waiting on this completion. Threads will be
  3964. * awakened in the same order in which they were queued.
  3965. *
  3966. * See also complete_all(), wait_for_completion() and related routines.
  3967. */
  3968. void complete(struct completion *x)
  3969. {
  3970. unsigned long flags;
  3971. spin_lock_irqsave(&x->wait.lock, flags);
  3972. x->done++;
  3973. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3974. spin_unlock_irqrestore(&x->wait.lock, flags);
  3975. }
  3976. EXPORT_SYMBOL(complete);
  3977. /**
  3978. * complete_all: - signals all threads waiting on this completion
  3979. * @x: holds the state of this particular completion
  3980. *
  3981. * This will wake up all threads waiting on this particular completion event.
  3982. */
  3983. void complete_all(struct completion *x)
  3984. {
  3985. unsigned long flags;
  3986. spin_lock_irqsave(&x->wait.lock, flags);
  3987. x->done += UINT_MAX/2;
  3988. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3989. spin_unlock_irqrestore(&x->wait.lock, flags);
  3990. }
  3991. EXPORT_SYMBOL(complete_all);
  3992. static inline long __sched
  3993. do_wait_for_common(struct completion *x, long timeout, int state)
  3994. {
  3995. if (!x->done) {
  3996. DECLARE_WAITQUEUE(wait, current);
  3997. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3998. __add_wait_queue_tail(&x->wait, &wait);
  3999. do {
  4000. if (signal_pending_state(state, current)) {
  4001. timeout = -ERESTARTSYS;
  4002. break;
  4003. }
  4004. __set_current_state(state);
  4005. spin_unlock_irq(&x->wait.lock);
  4006. timeout = schedule_timeout(timeout);
  4007. spin_lock_irq(&x->wait.lock);
  4008. } while (!x->done && timeout);
  4009. __remove_wait_queue(&x->wait, &wait);
  4010. if (!x->done)
  4011. return timeout;
  4012. }
  4013. x->done--;
  4014. return timeout ?: 1;
  4015. }
  4016. static long __sched
  4017. wait_for_common(struct completion *x, long timeout, int state)
  4018. {
  4019. might_sleep();
  4020. spin_lock_irq(&x->wait.lock);
  4021. timeout = do_wait_for_common(x, timeout, state);
  4022. spin_unlock_irq(&x->wait.lock);
  4023. return timeout;
  4024. }
  4025. /**
  4026. * wait_for_completion: - waits for completion of a task
  4027. * @x: holds the state of this particular completion
  4028. *
  4029. * This waits to be signaled for completion of a specific task. It is NOT
  4030. * interruptible and there is no timeout.
  4031. *
  4032. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4033. * and interrupt capability. Also see complete().
  4034. */
  4035. void __sched wait_for_completion(struct completion *x)
  4036. {
  4037. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4038. }
  4039. EXPORT_SYMBOL(wait_for_completion);
  4040. /**
  4041. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4042. * @x: holds the state of this particular completion
  4043. * @timeout: timeout value in jiffies
  4044. *
  4045. * This waits for either a completion of a specific task to be signaled or for a
  4046. * specified timeout to expire. The timeout is in jiffies. It is not
  4047. * interruptible.
  4048. */
  4049. unsigned long __sched
  4050. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4051. {
  4052. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4053. }
  4054. EXPORT_SYMBOL(wait_for_completion_timeout);
  4055. /**
  4056. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4057. * @x: holds the state of this particular completion
  4058. *
  4059. * This waits for completion of a specific task to be signaled. It is
  4060. * interruptible.
  4061. */
  4062. int __sched wait_for_completion_interruptible(struct completion *x)
  4063. {
  4064. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4065. if (t == -ERESTARTSYS)
  4066. return t;
  4067. return 0;
  4068. }
  4069. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4070. /**
  4071. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4072. * @x: holds the state of this particular completion
  4073. * @timeout: timeout value in jiffies
  4074. *
  4075. * This waits for either a completion of a specific task to be signaled or for a
  4076. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4077. */
  4078. unsigned long __sched
  4079. wait_for_completion_interruptible_timeout(struct completion *x,
  4080. unsigned long timeout)
  4081. {
  4082. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4083. }
  4084. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4085. /**
  4086. * wait_for_completion_killable: - waits for completion of a task (killable)
  4087. * @x: holds the state of this particular completion
  4088. *
  4089. * This waits to be signaled for completion of a specific task. It can be
  4090. * interrupted by a kill signal.
  4091. */
  4092. int __sched wait_for_completion_killable(struct completion *x)
  4093. {
  4094. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4095. if (t == -ERESTARTSYS)
  4096. return t;
  4097. return 0;
  4098. }
  4099. EXPORT_SYMBOL(wait_for_completion_killable);
  4100. /**
  4101. * try_wait_for_completion - try to decrement a completion without blocking
  4102. * @x: completion structure
  4103. *
  4104. * Returns: 0 if a decrement cannot be done without blocking
  4105. * 1 if a decrement succeeded.
  4106. *
  4107. * If a completion is being used as a counting completion,
  4108. * attempt to decrement the counter without blocking. This
  4109. * enables us to avoid waiting if the resource the completion
  4110. * is protecting is not available.
  4111. */
  4112. bool try_wait_for_completion(struct completion *x)
  4113. {
  4114. int ret = 1;
  4115. spin_lock_irq(&x->wait.lock);
  4116. if (!x->done)
  4117. ret = 0;
  4118. else
  4119. x->done--;
  4120. spin_unlock_irq(&x->wait.lock);
  4121. return ret;
  4122. }
  4123. EXPORT_SYMBOL(try_wait_for_completion);
  4124. /**
  4125. * completion_done - Test to see if a completion has any waiters
  4126. * @x: completion structure
  4127. *
  4128. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4129. * 1 if there are no waiters.
  4130. *
  4131. */
  4132. bool completion_done(struct completion *x)
  4133. {
  4134. int ret = 1;
  4135. spin_lock_irq(&x->wait.lock);
  4136. if (!x->done)
  4137. ret = 0;
  4138. spin_unlock_irq(&x->wait.lock);
  4139. return ret;
  4140. }
  4141. EXPORT_SYMBOL(completion_done);
  4142. static long __sched
  4143. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4144. {
  4145. unsigned long flags;
  4146. wait_queue_t wait;
  4147. init_waitqueue_entry(&wait, current);
  4148. __set_current_state(state);
  4149. spin_lock_irqsave(&q->lock, flags);
  4150. __add_wait_queue(q, &wait);
  4151. spin_unlock(&q->lock);
  4152. timeout = schedule_timeout(timeout);
  4153. spin_lock_irq(&q->lock);
  4154. __remove_wait_queue(q, &wait);
  4155. spin_unlock_irqrestore(&q->lock, flags);
  4156. return timeout;
  4157. }
  4158. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4159. {
  4160. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4161. }
  4162. EXPORT_SYMBOL(interruptible_sleep_on);
  4163. long __sched
  4164. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4165. {
  4166. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4167. }
  4168. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4169. void __sched sleep_on(wait_queue_head_t *q)
  4170. {
  4171. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4172. }
  4173. EXPORT_SYMBOL(sleep_on);
  4174. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4175. {
  4176. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4177. }
  4178. EXPORT_SYMBOL(sleep_on_timeout);
  4179. #ifdef CONFIG_RT_MUTEXES
  4180. /*
  4181. * rt_mutex_setprio - set the current priority of a task
  4182. * @p: task
  4183. * @prio: prio value (kernel-internal form)
  4184. *
  4185. * This function changes the 'effective' priority of a task. It does
  4186. * not touch ->normal_prio like __setscheduler().
  4187. *
  4188. * Used by the rt_mutex code to implement priority inheritance logic.
  4189. */
  4190. void rt_mutex_setprio(struct task_struct *p, int prio)
  4191. {
  4192. unsigned long flags;
  4193. int oldprio, on_rq, running;
  4194. struct rq *rq;
  4195. const struct sched_class *prev_class = p->sched_class;
  4196. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4197. rq = task_rq_lock(p, &flags);
  4198. update_rq_clock(rq);
  4199. oldprio = p->prio;
  4200. on_rq = p->se.on_rq;
  4201. running = task_current(rq, p);
  4202. if (on_rq)
  4203. dequeue_task(rq, p, 0);
  4204. if (running)
  4205. p->sched_class->put_prev_task(rq, p);
  4206. if (rt_prio(prio))
  4207. p->sched_class = &rt_sched_class;
  4208. else
  4209. p->sched_class = &fair_sched_class;
  4210. p->prio = prio;
  4211. if (running)
  4212. p->sched_class->set_curr_task(rq);
  4213. if (on_rq) {
  4214. enqueue_task(rq, p, 0);
  4215. check_class_changed(rq, p, prev_class, oldprio, running);
  4216. }
  4217. task_rq_unlock(rq, &flags);
  4218. }
  4219. #endif
  4220. void set_user_nice(struct task_struct *p, long nice)
  4221. {
  4222. int old_prio, delta, on_rq;
  4223. unsigned long flags;
  4224. struct rq *rq;
  4225. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4226. return;
  4227. /*
  4228. * We have to be careful, if called from sys_setpriority(),
  4229. * the task might be in the middle of scheduling on another CPU.
  4230. */
  4231. rq = task_rq_lock(p, &flags);
  4232. update_rq_clock(rq);
  4233. /*
  4234. * The RT priorities are set via sched_setscheduler(), but we still
  4235. * allow the 'normal' nice value to be set - but as expected
  4236. * it wont have any effect on scheduling until the task is
  4237. * SCHED_FIFO/SCHED_RR:
  4238. */
  4239. if (task_has_rt_policy(p)) {
  4240. p->static_prio = NICE_TO_PRIO(nice);
  4241. goto out_unlock;
  4242. }
  4243. on_rq = p->se.on_rq;
  4244. if (on_rq)
  4245. dequeue_task(rq, p, 0);
  4246. p->static_prio = NICE_TO_PRIO(nice);
  4247. set_load_weight(p);
  4248. old_prio = p->prio;
  4249. p->prio = effective_prio(p);
  4250. delta = p->prio - old_prio;
  4251. if (on_rq) {
  4252. enqueue_task(rq, p, 0);
  4253. /*
  4254. * If the task increased its priority or is running and
  4255. * lowered its priority, then reschedule its CPU:
  4256. */
  4257. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4258. resched_task(rq->curr);
  4259. }
  4260. out_unlock:
  4261. task_rq_unlock(rq, &flags);
  4262. }
  4263. EXPORT_SYMBOL(set_user_nice);
  4264. /*
  4265. * can_nice - check if a task can reduce its nice value
  4266. * @p: task
  4267. * @nice: nice value
  4268. */
  4269. int can_nice(const struct task_struct *p, const int nice)
  4270. {
  4271. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4272. int nice_rlim = 20 - nice;
  4273. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4274. capable(CAP_SYS_NICE));
  4275. }
  4276. #ifdef __ARCH_WANT_SYS_NICE
  4277. /*
  4278. * sys_nice - change the priority of the current process.
  4279. * @increment: priority increment
  4280. *
  4281. * sys_setpriority is a more generic, but much slower function that
  4282. * does similar things.
  4283. */
  4284. asmlinkage long sys_nice(int increment)
  4285. {
  4286. long nice, retval;
  4287. /*
  4288. * Setpriority might change our priority at the same moment.
  4289. * We don't have to worry. Conceptually one call occurs first
  4290. * and we have a single winner.
  4291. */
  4292. if (increment < -40)
  4293. increment = -40;
  4294. if (increment > 40)
  4295. increment = 40;
  4296. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4297. if (nice < -20)
  4298. nice = -20;
  4299. if (nice > 19)
  4300. nice = 19;
  4301. if (increment < 0 && !can_nice(current, nice))
  4302. return -EPERM;
  4303. retval = security_task_setnice(current, nice);
  4304. if (retval)
  4305. return retval;
  4306. set_user_nice(current, nice);
  4307. return 0;
  4308. }
  4309. #endif
  4310. /**
  4311. * task_prio - return the priority value of a given task.
  4312. * @p: the task in question.
  4313. *
  4314. * This is the priority value as seen by users in /proc.
  4315. * RT tasks are offset by -200. Normal tasks are centered
  4316. * around 0, value goes from -16 to +15.
  4317. */
  4318. int task_prio(const struct task_struct *p)
  4319. {
  4320. return p->prio - MAX_RT_PRIO;
  4321. }
  4322. /**
  4323. * task_nice - return the nice value of a given task.
  4324. * @p: the task in question.
  4325. */
  4326. int task_nice(const struct task_struct *p)
  4327. {
  4328. return TASK_NICE(p);
  4329. }
  4330. EXPORT_SYMBOL(task_nice);
  4331. /**
  4332. * idle_cpu - is a given cpu idle currently?
  4333. * @cpu: the processor in question.
  4334. */
  4335. int idle_cpu(int cpu)
  4336. {
  4337. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4338. }
  4339. /**
  4340. * idle_task - return the idle task for a given cpu.
  4341. * @cpu: the processor in question.
  4342. */
  4343. struct task_struct *idle_task(int cpu)
  4344. {
  4345. return cpu_rq(cpu)->idle;
  4346. }
  4347. /**
  4348. * find_process_by_pid - find a process with a matching PID value.
  4349. * @pid: the pid in question.
  4350. */
  4351. static struct task_struct *find_process_by_pid(pid_t pid)
  4352. {
  4353. return pid ? find_task_by_vpid(pid) : current;
  4354. }
  4355. /* Actually do priority change: must hold rq lock. */
  4356. static void
  4357. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4358. {
  4359. BUG_ON(p->se.on_rq);
  4360. p->policy = policy;
  4361. switch (p->policy) {
  4362. case SCHED_NORMAL:
  4363. case SCHED_BATCH:
  4364. case SCHED_IDLE:
  4365. p->sched_class = &fair_sched_class;
  4366. break;
  4367. case SCHED_FIFO:
  4368. case SCHED_RR:
  4369. p->sched_class = &rt_sched_class;
  4370. break;
  4371. }
  4372. p->rt_priority = prio;
  4373. p->normal_prio = normal_prio(p);
  4374. /* we are holding p->pi_lock already */
  4375. p->prio = rt_mutex_getprio(p);
  4376. set_load_weight(p);
  4377. }
  4378. static int __sched_setscheduler(struct task_struct *p, int policy,
  4379. struct sched_param *param, bool user)
  4380. {
  4381. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4382. unsigned long flags;
  4383. const struct sched_class *prev_class = p->sched_class;
  4384. struct rq *rq;
  4385. /* may grab non-irq protected spin_locks */
  4386. BUG_ON(in_interrupt());
  4387. recheck:
  4388. /* double check policy once rq lock held */
  4389. if (policy < 0)
  4390. policy = oldpolicy = p->policy;
  4391. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4392. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4393. policy != SCHED_IDLE)
  4394. return -EINVAL;
  4395. /*
  4396. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4397. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4398. * SCHED_BATCH and SCHED_IDLE is 0.
  4399. */
  4400. if (param->sched_priority < 0 ||
  4401. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4402. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4403. return -EINVAL;
  4404. if (rt_policy(policy) != (param->sched_priority != 0))
  4405. return -EINVAL;
  4406. /*
  4407. * Allow unprivileged RT tasks to decrease priority:
  4408. */
  4409. if (user && !capable(CAP_SYS_NICE)) {
  4410. if (rt_policy(policy)) {
  4411. unsigned long rlim_rtprio;
  4412. if (!lock_task_sighand(p, &flags))
  4413. return -ESRCH;
  4414. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4415. unlock_task_sighand(p, &flags);
  4416. /* can't set/change the rt policy */
  4417. if (policy != p->policy && !rlim_rtprio)
  4418. return -EPERM;
  4419. /* can't increase priority */
  4420. if (param->sched_priority > p->rt_priority &&
  4421. param->sched_priority > rlim_rtprio)
  4422. return -EPERM;
  4423. }
  4424. /*
  4425. * Like positive nice levels, dont allow tasks to
  4426. * move out of SCHED_IDLE either:
  4427. */
  4428. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4429. return -EPERM;
  4430. /* can't change other user's priorities */
  4431. if ((current->euid != p->euid) &&
  4432. (current->euid != p->uid))
  4433. return -EPERM;
  4434. }
  4435. if (user) {
  4436. #ifdef CONFIG_RT_GROUP_SCHED
  4437. /*
  4438. * Do not allow realtime tasks into groups that have no runtime
  4439. * assigned.
  4440. */
  4441. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4442. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4443. return -EPERM;
  4444. #endif
  4445. retval = security_task_setscheduler(p, policy, param);
  4446. if (retval)
  4447. return retval;
  4448. }
  4449. /*
  4450. * make sure no PI-waiters arrive (or leave) while we are
  4451. * changing the priority of the task:
  4452. */
  4453. spin_lock_irqsave(&p->pi_lock, flags);
  4454. /*
  4455. * To be able to change p->policy safely, the apropriate
  4456. * runqueue lock must be held.
  4457. */
  4458. rq = __task_rq_lock(p);
  4459. /* recheck policy now with rq lock held */
  4460. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4461. policy = oldpolicy = -1;
  4462. __task_rq_unlock(rq);
  4463. spin_unlock_irqrestore(&p->pi_lock, flags);
  4464. goto recheck;
  4465. }
  4466. update_rq_clock(rq);
  4467. on_rq = p->se.on_rq;
  4468. running = task_current(rq, p);
  4469. if (on_rq)
  4470. deactivate_task(rq, p, 0);
  4471. if (running)
  4472. p->sched_class->put_prev_task(rq, p);
  4473. oldprio = p->prio;
  4474. __setscheduler(rq, p, policy, param->sched_priority);
  4475. if (running)
  4476. p->sched_class->set_curr_task(rq);
  4477. if (on_rq) {
  4478. activate_task(rq, p, 0);
  4479. check_class_changed(rq, p, prev_class, oldprio, running);
  4480. }
  4481. __task_rq_unlock(rq);
  4482. spin_unlock_irqrestore(&p->pi_lock, flags);
  4483. rt_mutex_adjust_pi(p);
  4484. return 0;
  4485. }
  4486. /**
  4487. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4488. * @p: the task in question.
  4489. * @policy: new policy.
  4490. * @param: structure containing the new RT priority.
  4491. *
  4492. * NOTE that the task may be already dead.
  4493. */
  4494. int sched_setscheduler(struct task_struct *p, int policy,
  4495. struct sched_param *param)
  4496. {
  4497. return __sched_setscheduler(p, policy, param, true);
  4498. }
  4499. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4500. /**
  4501. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4502. * @p: the task in question.
  4503. * @policy: new policy.
  4504. * @param: structure containing the new RT priority.
  4505. *
  4506. * Just like sched_setscheduler, only don't bother checking if the
  4507. * current context has permission. For example, this is needed in
  4508. * stop_machine(): we create temporary high priority worker threads,
  4509. * but our caller might not have that capability.
  4510. */
  4511. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4512. struct sched_param *param)
  4513. {
  4514. return __sched_setscheduler(p, policy, param, false);
  4515. }
  4516. static int
  4517. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4518. {
  4519. struct sched_param lparam;
  4520. struct task_struct *p;
  4521. int retval;
  4522. if (!param || pid < 0)
  4523. return -EINVAL;
  4524. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4525. return -EFAULT;
  4526. rcu_read_lock();
  4527. retval = -ESRCH;
  4528. p = find_process_by_pid(pid);
  4529. if (p != NULL)
  4530. retval = sched_setscheduler(p, policy, &lparam);
  4531. rcu_read_unlock();
  4532. return retval;
  4533. }
  4534. /**
  4535. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4536. * @pid: the pid in question.
  4537. * @policy: new policy.
  4538. * @param: structure containing the new RT priority.
  4539. */
  4540. asmlinkage long
  4541. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4542. {
  4543. /* negative values for policy are not valid */
  4544. if (policy < 0)
  4545. return -EINVAL;
  4546. return do_sched_setscheduler(pid, policy, param);
  4547. }
  4548. /**
  4549. * sys_sched_setparam - set/change the RT priority of a thread
  4550. * @pid: the pid in question.
  4551. * @param: structure containing the new RT priority.
  4552. */
  4553. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4554. {
  4555. return do_sched_setscheduler(pid, -1, param);
  4556. }
  4557. /**
  4558. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4559. * @pid: the pid in question.
  4560. */
  4561. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4562. {
  4563. struct task_struct *p;
  4564. int retval;
  4565. if (pid < 0)
  4566. return -EINVAL;
  4567. retval = -ESRCH;
  4568. read_lock(&tasklist_lock);
  4569. p = find_process_by_pid(pid);
  4570. if (p) {
  4571. retval = security_task_getscheduler(p);
  4572. if (!retval)
  4573. retval = p->policy;
  4574. }
  4575. read_unlock(&tasklist_lock);
  4576. return retval;
  4577. }
  4578. /**
  4579. * sys_sched_getscheduler - get the RT priority of a thread
  4580. * @pid: the pid in question.
  4581. * @param: structure containing the RT priority.
  4582. */
  4583. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4584. {
  4585. struct sched_param lp;
  4586. struct task_struct *p;
  4587. int retval;
  4588. if (!param || pid < 0)
  4589. return -EINVAL;
  4590. read_lock(&tasklist_lock);
  4591. p = find_process_by_pid(pid);
  4592. retval = -ESRCH;
  4593. if (!p)
  4594. goto out_unlock;
  4595. retval = security_task_getscheduler(p);
  4596. if (retval)
  4597. goto out_unlock;
  4598. lp.sched_priority = p->rt_priority;
  4599. read_unlock(&tasklist_lock);
  4600. /*
  4601. * This one might sleep, we cannot do it with a spinlock held ...
  4602. */
  4603. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4604. return retval;
  4605. out_unlock:
  4606. read_unlock(&tasklist_lock);
  4607. return retval;
  4608. }
  4609. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4610. {
  4611. cpumask_t cpus_allowed;
  4612. cpumask_t new_mask = *in_mask;
  4613. struct task_struct *p;
  4614. int retval;
  4615. get_online_cpus();
  4616. read_lock(&tasklist_lock);
  4617. p = find_process_by_pid(pid);
  4618. if (!p) {
  4619. read_unlock(&tasklist_lock);
  4620. put_online_cpus();
  4621. return -ESRCH;
  4622. }
  4623. /*
  4624. * It is not safe to call set_cpus_allowed with the
  4625. * tasklist_lock held. We will bump the task_struct's
  4626. * usage count and then drop tasklist_lock.
  4627. */
  4628. get_task_struct(p);
  4629. read_unlock(&tasklist_lock);
  4630. retval = -EPERM;
  4631. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4632. !capable(CAP_SYS_NICE))
  4633. goto out_unlock;
  4634. retval = security_task_setscheduler(p, 0, NULL);
  4635. if (retval)
  4636. goto out_unlock;
  4637. cpuset_cpus_allowed(p, &cpus_allowed);
  4638. cpus_and(new_mask, new_mask, cpus_allowed);
  4639. again:
  4640. retval = set_cpus_allowed_ptr(p, &new_mask);
  4641. if (!retval) {
  4642. cpuset_cpus_allowed(p, &cpus_allowed);
  4643. if (!cpus_subset(new_mask, cpus_allowed)) {
  4644. /*
  4645. * We must have raced with a concurrent cpuset
  4646. * update. Just reset the cpus_allowed to the
  4647. * cpuset's cpus_allowed
  4648. */
  4649. new_mask = cpus_allowed;
  4650. goto again;
  4651. }
  4652. }
  4653. out_unlock:
  4654. put_task_struct(p);
  4655. put_online_cpus();
  4656. return retval;
  4657. }
  4658. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4659. cpumask_t *new_mask)
  4660. {
  4661. if (len < sizeof(cpumask_t)) {
  4662. memset(new_mask, 0, sizeof(cpumask_t));
  4663. } else if (len > sizeof(cpumask_t)) {
  4664. len = sizeof(cpumask_t);
  4665. }
  4666. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4667. }
  4668. /**
  4669. * sys_sched_setaffinity - set the cpu affinity of a process
  4670. * @pid: pid of the process
  4671. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4672. * @user_mask_ptr: user-space pointer to the new cpu mask
  4673. */
  4674. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4675. unsigned long __user *user_mask_ptr)
  4676. {
  4677. cpumask_t new_mask;
  4678. int retval;
  4679. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4680. if (retval)
  4681. return retval;
  4682. return sched_setaffinity(pid, &new_mask);
  4683. }
  4684. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4685. {
  4686. struct task_struct *p;
  4687. int retval;
  4688. get_online_cpus();
  4689. read_lock(&tasklist_lock);
  4690. retval = -ESRCH;
  4691. p = find_process_by_pid(pid);
  4692. if (!p)
  4693. goto out_unlock;
  4694. retval = security_task_getscheduler(p);
  4695. if (retval)
  4696. goto out_unlock;
  4697. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4698. out_unlock:
  4699. read_unlock(&tasklist_lock);
  4700. put_online_cpus();
  4701. return retval;
  4702. }
  4703. /**
  4704. * sys_sched_getaffinity - get the cpu affinity of a process
  4705. * @pid: pid of the process
  4706. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4707. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4708. */
  4709. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4710. unsigned long __user *user_mask_ptr)
  4711. {
  4712. int ret;
  4713. cpumask_t mask;
  4714. if (len < sizeof(cpumask_t))
  4715. return -EINVAL;
  4716. ret = sched_getaffinity(pid, &mask);
  4717. if (ret < 0)
  4718. return ret;
  4719. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4720. return -EFAULT;
  4721. return sizeof(cpumask_t);
  4722. }
  4723. /**
  4724. * sys_sched_yield - yield the current processor to other threads.
  4725. *
  4726. * This function yields the current CPU to other tasks. If there are no
  4727. * other threads running on this CPU then this function will return.
  4728. */
  4729. asmlinkage long sys_sched_yield(void)
  4730. {
  4731. struct rq *rq = this_rq_lock();
  4732. schedstat_inc(rq, yld_count);
  4733. current->sched_class->yield_task(rq);
  4734. /*
  4735. * Since we are going to call schedule() anyway, there's
  4736. * no need to preempt or enable interrupts:
  4737. */
  4738. __release(rq->lock);
  4739. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4740. _raw_spin_unlock(&rq->lock);
  4741. preempt_enable_no_resched();
  4742. schedule();
  4743. return 0;
  4744. }
  4745. static void __cond_resched(void)
  4746. {
  4747. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4748. __might_sleep(__FILE__, __LINE__);
  4749. #endif
  4750. /*
  4751. * The BKS might be reacquired before we have dropped
  4752. * PREEMPT_ACTIVE, which could trigger a second
  4753. * cond_resched() call.
  4754. */
  4755. do {
  4756. add_preempt_count(PREEMPT_ACTIVE);
  4757. schedule();
  4758. sub_preempt_count(PREEMPT_ACTIVE);
  4759. } while (need_resched());
  4760. }
  4761. int __sched _cond_resched(void)
  4762. {
  4763. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4764. system_state == SYSTEM_RUNNING) {
  4765. __cond_resched();
  4766. return 1;
  4767. }
  4768. return 0;
  4769. }
  4770. EXPORT_SYMBOL(_cond_resched);
  4771. /*
  4772. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4773. * call schedule, and on return reacquire the lock.
  4774. *
  4775. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4776. * operations here to prevent schedule() from being called twice (once via
  4777. * spin_unlock(), once by hand).
  4778. */
  4779. int cond_resched_lock(spinlock_t *lock)
  4780. {
  4781. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4782. int ret = 0;
  4783. if (spin_needbreak(lock) || resched) {
  4784. spin_unlock(lock);
  4785. if (resched && need_resched())
  4786. __cond_resched();
  4787. else
  4788. cpu_relax();
  4789. ret = 1;
  4790. spin_lock(lock);
  4791. }
  4792. return ret;
  4793. }
  4794. EXPORT_SYMBOL(cond_resched_lock);
  4795. int __sched cond_resched_softirq(void)
  4796. {
  4797. BUG_ON(!in_softirq());
  4798. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4799. local_bh_enable();
  4800. __cond_resched();
  4801. local_bh_disable();
  4802. return 1;
  4803. }
  4804. return 0;
  4805. }
  4806. EXPORT_SYMBOL(cond_resched_softirq);
  4807. /**
  4808. * yield - yield the current processor to other threads.
  4809. *
  4810. * This is a shortcut for kernel-space yielding - it marks the
  4811. * thread runnable and calls sys_sched_yield().
  4812. */
  4813. void __sched yield(void)
  4814. {
  4815. set_current_state(TASK_RUNNING);
  4816. sys_sched_yield();
  4817. }
  4818. EXPORT_SYMBOL(yield);
  4819. /*
  4820. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4821. * that process accounting knows that this is a task in IO wait state.
  4822. *
  4823. * But don't do that if it is a deliberate, throttling IO wait (this task
  4824. * has set its backing_dev_info: the queue against which it should throttle)
  4825. */
  4826. void __sched io_schedule(void)
  4827. {
  4828. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4829. delayacct_blkio_start();
  4830. atomic_inc(&rq->nr_iowait);
  4831. schedule();
  4832. atomic_dec(&rq->nr_iowait);
  4833. delayacct_blkio_end();
  4834. }
  4835. EXPORT_SYMBOL(io_schedule);
  4836. long __sched io_schedule_timeout(long timeout)
  4837. {
  4838. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4839. long ret;
  4840. delayacct_blkio_start();
  4841. atomic_inc(&rq->nr_iowait);
  4842. ret = schedule_timeout(timeout);
  4843. atomic_dec(&rq->nr_iowait);
  4844. delayacct_blkio_end();
  4845. return ret;
  4846. }
  4847. /**
  4848. * sys_sched_get_priority_max - return maximum RT priority.
  4849. * @policy: scheduling class.
  4850. *
  4851. * this syscall returns the maximum rt_priority that can be used
  4852. * by a given scheduling class.
  4853. */
  4854. asmlinkage long sys_sched_get_priority_max(int policy)
  4855. {
  4856. int ret = -EINVAL;
  4857. switch (policy) {
  4858. case SCHED_FIFO:
  4859. case SCHED_RR:
  4860. ret = MAX_USER_RT_PRIO-1;
  4861. break;
  4862. case SCHED_NORMAL:
  4863. case SCHED_BATCH:
  4864. case SCHED_IDLE:
  4865. ret = 0;
  4866. break;
  4867. }
  4868. return ret;
  4869. }
  4870. /**
  4871. * sys_sched_get_priority_min - return minimum RT priority.
  4872. * @policy: scheduling class.
  4873. *
  4874. * this syscall returns the minimum rt_priority that can be used
  4875. * by a given scheduling class.
  4876. */
  4877. asmlinkage long sys_sched_get_priority_min(int policy)
  4878. {
  4879. int ret = -EINVAL;
  4880. switch (policy) {
  4881. case SCHED_FIFO:
  4882. case SCHED_RR:
  4883. ret = 1;
  4884. break;
  4885. case SCHED_NORMAL:
  4886. case SCHED_BATCH:
  4887. case SCHED_IDLE:
  4888. ret = 0;
  4889. }
  4890. return ret;
  4891. }
  4892. /**
  4893. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4894. * @pid: pid of the process.
  4895. * @interval: userspace pointer to the timeslice value.
  4896. *
  4897. * this syscall writes the default timeslice value of a given process
  4898. * into the user-space timespec buffer. A value of '0' means infinity.
  4899. */
  4900. asmlinkage
  4901. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4902. {
  4903. struct task_struct *p;
  4904. unsigned int time_slice;
  4905. int retval;
  4906. struct timespec t;
  4907. if (pid < 0)
  4908. return -EINVAL;
  4909. retval = -ESRCH;
  4910. read_lock(&tasklist_lock);
  4911. p = find_process_by_pid(pid);
  4912. if (!p)
  4913. goto out_unlock;
  4914. retval = security_task_getscheduler(p);
  4915. if (retval)
  4916. goto out_unlock;
  4917. /*
  4918. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4919. * tasks that are on an otherwise idle runqueue:
  4920. */
  4921. time_slice = 0;
  4922. if (p->policy == SCHED_RR) {
  4923. time_slice = DEF_TIMESLICE;
  4924. } else if (p->policy != SCHED_FIFO) {
  4925. struct sched_entity *se = &p->se;
  4926. unsigned long flags;
  4927. struct rq *rq;
  4928. rq = task_rq_lock(p, &flags);
  4929. if (rq->cfs.load.weight)
  4930. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4931. task_rq_unlock(rq, &flags);
  4932. }
  4933. read_unlock(&tasklist_lock);
  4934. jiffies_to_timespec(time_slice, &t);
  4935. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4936. return retval;
  4937. out_unlock:
  4938. read_unlock(&tasklist_lock);
  4939. return retval;
  4940. }
  4941. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4942. void sched_show_task(struct task_struct *p)
  4943. {
  4944. unsigned long free = 0;
  4945. unsigned state;
  4946. state = p->state ? __ffs(p->state) + 1 : 0;
  4947. printk(KERN_INFO "%-13.13s %c", p->comm,
  4948. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4949. #if BITS_PER_LONG == 32
  4950. if (state == TASK_RUNNING)
  4951. printk(KERN_CONT " running ");
  4952. else
  4953. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4954. #else
  4955. if (state == TASK_RUNNING)
  4956. printk(KERN_CONT " running task ");
  4957. else
  4958. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4959. #endif
  4960. #ifdef CONFIG_DEBUG_STACK_USAGE
  4961. {
  4962. unsigned long *n = end_of_stack(p);
  4963. while (!*n)
  4964. n++;
  4965. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4966. }
  4967. #endif
  4968. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4969. task_pid_nr(p), task_pid_nr(p->real_parent));
  4970. show_stack(p, NULL);
  4971. }
  4972. void show_state_filter(unsigned long state_filter)
  4973. {
  4974. struct task_struct *g, *p;
  4975. #if BITS_PER_LONG == 32
  4976. printk(KERN_INFO
  4977. " task PC stack pid father\n");
  4978. #else
  4979. printk(KERN_INFO
  4980. " task PC stack pid father\n");
  4981. #endif
  4982. read_lock(&tasklist_lock);
  4983. do_each_thread(g, p) {
  4984. /*
  4985. * reset the NMI-timeout, listing all files on a slow
  4986. * console might take alot of time:
  4987. */
  4988. touch_nmi_watchdog();
  4989. if (!state_filter || (p->state & state_filter))
  4990. sched_show_task(p);
  4991. } while_each_thread(g, p);
  4992. touch_all_softlockup_watchdogs();
  4993. #ifdef CONFIG_SCHED_DEBUG
  4994. sysrq_sched_debug_show();
  4995. #endif
  4996. read_unlock(&tasklist_lock);
  4997. /*
  4998. * Only show locks if all tasks are dumped:
  4999. */
  5000. if (state_filter == -1)
  5001. debug_show_all_locks();
  5002. }
  5003. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5004. {
  5005. idle->sched_class = &idle_sched_class;
  5006. }
  5007. /**
  5008. * init_idle - set up an idle thread for a given CPU
  5009. * @idle: task in question
  5010. * @cpu: cpu the idle task belongs to
  5011. *
  5012. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5013. * flag, to make booting more robust.
  5014. */
  5015. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5016. {
  5017. struct rq *rq = cpu_rq(cpu);
  5018. unsigned long flags;
  5019. spin_lock_irqsave(&rq->lock, flags);
  5020. __sched_fork(idle);
  5021. idle->se.exec_start = sched_clock();
  5022. idle->prio = idle->normal_prio = MAX_PRIO;
  5023. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5024. __set_task_cpu(idle, cpu);
  5025. rq->curr = rq->idle = idle;
  5026. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5027. idle->oncpu = 1;
  5028. #endif
  5029. spin_unlock_irqrestore(&rq->lock, flags);
  5030. /* Set the preempt count _outside_ the spinlocks! */
  5031. #if defined(CONFIG_PREEMPT)
  5032. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5033. #else
  5034. task_thread_info(idle)->preempt_count = 0;
  5035. #endif
  5036. /*
  5037. * The idle tasks have their own, simple scheduling class:
  5038. */
  5039. idle->sched_class = &idle_sched_class;
  5040. }
  5041. /*
  5042. * In a system that switches off the HZ timer nohz_cpu_mask
  5043. * indicates which cpus entered this state. This is used
  5044. * in the rcu update to wait only for active cpus. For system
  5045. * which do not switch off the HZ timer nohz_cpu_mask should
  5046. * always be CPU_MASK_NONE.
  5047. */
  5048. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5049. /*
  5050. * Increase the granularity value when there are more CPUs,
  5051. * because with more CPUs the 'effective latency' as visible
  5052. * to users decreases. But the relationship is not linear,
  5053. * so pick a second-best guess by going with the log2 of the
  5054. * number of CPUs.
  5055. *
  5056. * This idea comes from the SD scheduler of Con Kolivas:
  5057. */
  5058. static inline void sched_init_granularity(void)
  5059. {
  5060. unsigned int factor = 1 + ilog2(num_online_cpus());
  5061. const unsigned long limit = 200000000;
  5062. sysctl_sched_min_granularity *= factor;
  5063. if (sysctl_sched_min_granularity > limit)
  5064. sysctl_sched_min_granularity = limit;
  5065. sysctl_sched_latency *= factor;
  5066. if (sysctl_sched_latency > limit)
  5067. sysctl_sched_latency = limit;
  5068. sysctl_sched_wakeup_granularity *= factor;
  5069. sysctl_sched_shares_ratelimit *= factor;
  5070. }
  5071. #ifdef CONFIG_SMP
  5072. /*
  5073. * This is how migration works:
  5074. *
  5075. * 1) we queue a struct migration_req structure in the source CPU's
  5076. * runqueue and wake up that CPU's migration thread.
  5077. * 2) we down() the locked semaphore => thread blocks.
  5078. * 3) migration thread wakes up (implicitly it forces the migrated
  5079. * thread off the CPU)
  5080. * 4) it gets the migration request and checks whether the migrated
  5081. * task is still in the wrong runqueue.
  5082. * 5) if it's in the wrong runqueue then the migration thread removes
  5083. * it and puts it into the right queue.
  5084. * 6) migration thread up()s the semaphore.
  5085. * 7) we wake up and the migration is done.
  5086. */
  5087. /*
  5088. * Change a given task's CPU affinity. Migrate the thread to a
  5089. * proper CPU and schedule it away if the CPU it's executing on
  5090. * is removed from the allowed bitmask.
  5091. *
  5092. * NOTE: the caller must have a valid reference to the task, the
  5093. * task must not exit() & deallocate itself prematurely. The
  5094. * call is not atomic; no spinlocks may be held.
  5095. */
  5096. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5097. {
  5098. struct migration_req req;
  5099. unsigned long flags;
  5100. struct rq *rq;
  5101. int ret = 0;
  5102. rq = task_rq_lock(p, &flags);
  5103. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5104. ret = -EINVAL;
  5105. goto out;
  5106. }
  5107. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5108. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5109. ret = -EINVAL;
  5110. goto out;
  5111. }
  5112. if (p->sched_class->set_cpus_allowed)
  5113. p->sched_class->set_cpus_allowed(p, new_mask);
  5114. else {
  5115. p->cpus_allowed = *new_mask;
  5116. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5117. }
  5118. /* Can the task run on the task's current CPU? If so, we're done */
  5119. if (cpu_isset(task_cpu(p), *new_mask))
  5120. goto out;
  5121. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5122. /* Need help from migration thread: drop lock and wait. */
  5123. task_rq_unlock(rq, &flags);
  5124. wake_up_process(rq->migration_thread);
  5125. wait_for_completion(&req.done);
  5126. tlb_migrate_finish(p->mm);
  5127. return 0;
  5128. }
  5129. out:
  5130. task_rq_unlock(rq, &flags);
  5131. return ret;
  5132. }
  5133. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5134. /*
  5135. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5136. * this because either it can't run here any more (set_cpus_allowed()
  5137. * away from this CPU, or CPU going down), or because we're
  5138. * attempting to rebalance this task on exec (sched_exec).
  5139. *
  5140. * So we race with normal scheduler movements, but that's OK, as long
  5141. * as the task is no longer on this CPU.
  5142. *
  5143. * Returns non-zero if task was successfully migrated.
  5144. */
  5145. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5146. {
  5147. struct rq *rq_dest, *rq_src;
  5148. int ret = 0, on_rq;
  5149. if (unlikely(!cpu_active(dest_cpu)))
  5150. return ret;
  5151. rq_src = cpu_rq(src_cpu);
  5152. rq_dest = cpu_rq(dest_cpu);
  5153. double_rq_lock(rq_src, rq_dest);
  5154. /* Already moved. */
  5155. if (task_cpu(p) != src_cpu)
  5156. goto done;
  5157. /* Affinity changed (again). */
  5158. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5159. goto fail;
  5160. on_rq = p->se.on_rq;
  5161. if (on_rq)
  5162. deactivate_task(rq_src, p, 0);
  5163. set_task_cpu(p, dest_cpu);
  5164. if (on_rq) {
  5165. activate_task(rq_dest, p, 0);
  5166. check_preempt_curr(rq_dest, p, 0);
  5167. }
  5168. done:
  5169. ret = 1;
  5170. fail:
  5171. double_rq_unlock(rq_src, rq_dest);
  5172. return ret;
  5173. }
  5174. /*
  5175. * migration_thread - this is a highprio system thread that performs
  5176. * thread migration by bumping thread off CPU then 'pushing' onto
  5177. * another runqueue.
  5178. */
  5179. static int migration_thread(void *data)
  5180. {
  5181. int cpu = (long)data;
  5182. struct rq *rq;
  5183. rq = cpu_rq(cpu);
  5184. BUG_ON(rq->migration_thread != current);
  5185. set_current_state(TASK_INTERRUPTIBLE);
  5186. while (!kthread_should_stop()) {
  5187. struct migration_req *req;
  5188. struct list_head *head;
  5189. spin_lock_irq(&rq->lock);
  5190. if (cpu_is_offline(cpu)) {
  5191. spin_unlock_irq(&rq->lock);
  5192. goto wait_to_die;
  5193. }
  5194. if (rq->active_balance) {
  5195. active_load_balance(rq, cpu);
  5196. rq->active_balance = 0;
  5197. }
  5198. head = &rq->migration_queue;
  5199. if (list_empty(head)) {
  5200. spin_unlock_irq(&rq->lock);
  5201. schedule();
  5202. set_current_state(TASK_INTERRUPTIBLE);
  5203. continue;
  5204. }
  5205. req = list_entry(head->next, struct migration_req, list);
  5206. list_del_init(head->next);
  5207. spin_unlock(&rq->lock);
  5208. __migrate_task(req->task, cpu, req->dest_cpu);
  5209. local_irq_enable();
  5210. complete(&req->done);
  5211. }
  5212. __set_current_state(TASK_RUNNING);
  5213. return 0;
  5214. wait_to_die:
  5215. /* Wait for kthread_stop */
  5216. set_current_state(TASK_INTERRUPTIBLE);
  5217. while (!kthread_should_stop()) {
  5218. schedule();
  5219. set_current_state(TASK_INTERRUPTIBLE);
  5220. }
  5221. __set_current_state(TASK_RUNNING);
  5222. return 0;
  5223. }
  5224. #ifdef CONFIG_HOTPLUG_CPU
  5225. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5226. {
  5227. int ret;
  5228. local_irq_disable();
  5229. ret = __migrate_task(p, src_cpu, dest_cpu);
  5230. local_irq_enable();
  5231. return ret;
  5232. }
  5233. /*
  5234. * Figure out where task on dead CPU should go, use force if necessary.
  5235. * NOTE: interrupts should be disabled by the caller
  5236. */
  5237. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5238. {
  5239. unsigned long flags;
  5240. cpumask_t mask;
  5241. struct rq *rq;
  5242. int dest_cpu;
  5243. do {
  5244. /* On same node? */
  5245. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5246. cpus_and(mask, mask, p->cpus_allowed);
  5247. dest_cpu = any_online_cpu(mask);
  5248. /* On any allowed CPU? */
  5249. if (dest_cpu >= nr_cpu_ids)
  5250. dest_cpu = any_online_cpu(p->cpus_allowed);
  5251. /* No more Mr. Nice Guy. */
  5252. if (dest_cpu >= nr_cpu_ids) {
  5253. cpumask_t cpus_allowed;
  5254. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5255. /*
  5256. * Try to stay on the same cpuset, where the
  5257. * current cpuset may be a subset of all cpus.
  5258. * The cpuset_cpus_allowed_locked() variant of
  5259. * cpuset_cpus_allowed() will not block. It must be
  5260. * called within calls to cpuset_lock/cpuset_unlock.
  5261. */
  5262. rq = task_rq_lock(p, &flags);
  5263. p->cpus_allowed = cpus_allowed;
  5264. dest_cpu = any_online_cpu(p->cpus_allowed);
  5265. task_rq_unlock(rq, &flags);
  5266. /*
  5267. * Don't tell them about moving exiting tasks or
  5268. * kernel threads (both mm NULL), since they never
  5269. * leave kernel.
  5270. */
  5271. if (p->mm && printk_ratelimit()) {
  5272. printk(KERN_INFO "process %d (%s) no "
  5273. "longer affine to cpu%d\n",
  5274. task_pid_nr(p), p->comm, dead_cpu);
  5275. }
  5276. }
  5277. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5278. }
  5279. /*
  5280. * While a dead CPU has no uninterruptible tasks queued at this point,
  5281. * it might still have a nonzero ->nr_uninterruptible counter, because
  5282. * for performance reasons the counter is not stricly tracking tasks to
  5283. * their home CPUs. So we just add the counter to another CPU's counter,
  5284. * to keep the global sum constant after CPU-down:
  5285. */
  5286. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5287. {
  5288. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5289. unsigned long flags;
  5290. local_irq_save(flags);
  5291. double_rq_lock(rq_src, rq_dest);
  5292. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5293. rq_src->nr_uninterruptible = 0;
  5294. double_rq_unlock(rq_src, rq_dest);
  5295. local_irq_restore(flags);
  5296. }
  5297. /* Run through task list and migrate tasks from the dead cpu. */
  5298. static void migrate_live_tasks(int src_cpu)
  5299. {
  5300. struct task_struct *p, *t;
  5301. read_lock(&tasklist_lock);
  5302. do_each_thread(t, p) {
  5303. if (p == current)
  5304. continue;
  5305. if (task_cpu(p) == src_cpu)
  5306. move_task_off_dead_cpu(src_cpu, p);
  5307. } while_each_thread(t, p);
  5308. read_unlock(&tasklist_lock);
  5309. }
  5310. /*
  5311. * Schedules idle task to be the next runnable task on current CPU.
  5312. * It does so by boosting its priority to highest possible.
  5313. * Used by CPU offline code.
  5314. */
  5315. void sched_idle_next(void)
  5316. {
  5317. int this_cpu = smp_processor_id();
  5318. struct rq *rq = cpu_rq(this_cpu);
  5319. struct task_struct *p = rq->idle;
  5320. unsigned long flags;
  5321. /* cpu has to be offline */
  5322. BUG_ON(cpu_online(this_cpu));
  5323. /*
  5324. * Strictly not necessary since rest of the CPUs are stopped by now
  5325. * and interrupts disabled on the current cpu.
  5326. */
  5327. spin_lock_irqsave(&rq->lock, flags);
  5328. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5329. update_rq_clock(rq);
  5330. activate_task(rq, p, 0);
  5331. spin_unlock_irqrestore(&rq->lock, flags);
  5332. }
  5333. /*
  5334. * Ensures that the idle task is using init_mm right before its cpu goes
  5335. * offline.
  5336. */
  5337. void idle_task_exit(void)
  5338. {
  5339. struct mm_struct *mm = current->active_mm;
  5340. BUG_ON(cpu_online(smp_processor_id()));
  5341. if (mm != &init_mm)
  5342. switch_mm(mm, &init_mm, current);
  5343. mmdrop(mm);
  5344. }
  5345. /* called under rq->lock with disabled interrupts */
  5346. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5347. {
  5348. struct rq *rq = cpu_rq(dead_cpu);
  5349. /* Must be exiting, otherwise would be on tasklist. */
  5350. BUG_ON(!p->exit_state);
  5351. /* Cannot have done final schedule yet: would have vanished. */
  5352. BUG_ON(p->state == TASK_DEAD);
  5353. get_task_struct(p);
  5354. /*
  5355. * Drop lock around migration; if someone else moves it,
  5356. * that's OK. No task can be added to this CPU, so iteration is
  5357. * fine.
  5358. */
  5359. spin_unlock_irq(&rq->lock);
  5360. move_task_off_dead_cpu(dead_cpu, p);
  5361. spin_lock_irq(&rq->lock);
  5362. put_task_struct(p);
  5363. }
  5364. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5365. static void migrate_dead_tasks(unsigned int dead_cpu)
  5366. {
  5367. struct rq *rq = cpu_rq(dead_cpu);
  5368. struct task_struct *next;
  5369. for ( ; ; ) {
  5370. if (!rq->nr_running)
  5371. break;
  5372. update_rq_clock(rq);
  5373. next = pick_next_task(rq, rq->curr);
  5374. if (!next)
  5375. break;
  5376. next->sched_class->put_prev_task(rq, next);
  5377. migrate_dead(dead_cpu, next);
  5378. }
  5379. }
  5380. #endif /* CONFIG_HOTPLUG_CPU */
  5381. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5382. static struct ctl_table sd_ctl_dir[] = {
  5383. {
  5384. .procname = "sched_domain",
  5385. .mode = 0555,
  5386. },
  5387. {0, },
  5388. };
  5389. static struct ctl_table sd_ctl_root[] = {
  5390. {
  5391. .ctl_name = CTL_KERN,
  5392. .procname = "kernel",
  5393. .mode = 0555,
  5394. .child = sd_ctl_dir,
  5395. },
  5396. {0, },
  5397. };
  5398. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5399. {
  5400. struct ctl_table *entry =
  5401. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5402. return entry;
  5403. }
  5404. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5405. {
  5406. struct ctl_table *entry;
  5407. /*
  5408. * In the intermediate directories, both the child directory and
  5409. * procname are dynamically allocated and could fail but the mode
  5410. * will always be set. In the lowest directory the names are
  5411. * static strings and all have proc handlers.
  5412. */
  5413. for (entry = *tablep; entry->mode; entry++) {
  5414. if (entry->child)
  5415. sd_free_ctl_entry(&entry->child);
  5416. if (entry->proc_handler == NULL)
  5417. kfree(entry->procname);
  5418. }
  5419. kfree(*tablep);
  5420. *tablep = NULL;
  5421. }
  5422. static void
  5423. set_table_entry(struct ctl_table *entry,
  5424. const char *procname, void *data, int maxlen,
  5425. mode_t mode, proc_handler *proc_handler)
  5426. {
  5427. entry->procname = procname;
  5428. entry->data = data;
  5429. entry->maxlen = maxlen;
  5430. entry->mode = mode;
  5431. entry->proc_handler = proc_handler;
  5432. }
  5433. static struct ctl_table *
  5434. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5435. {
  5436. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5437. if (table == NULL)
  5438. return NULL;
  5439. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5440. sizeof(long), 0644, proc_doulongvec_minmax);
  5441. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5442. sizeof(long), 0644, proc_doulongvec_minmax);
  5443. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5444. sizeof(int), 0644, proc_dointvec_minmax);
  5445. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5446. sizeof(int), 0644, proc_dointvec_minmax);
  5447. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5448. sizeof(int), 0644, proc_dointvec_minmax);
  5449. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5450. sizeof(int), 0644, proc_dointvec_minmax);
  5451. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5452. sizeof(int), 0644, proc_dointvec_minmax);
  5453. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5454. sizeof(int), 0644, proc_dointvec_minmax);
  5455. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5456. sizeof(int), 0644, proc_dointvec_minmax);
  5457. set_table_entry(&table[9], "cache_nice_tries",
  5458. &sd->cache_nice_tries,
  5459. sizeof(int), 0644, proc_dointvec_minmax);
  5460. set_table_entry(&table[10], "flags", &sd->flags,
  5461. sizeof(int), 0644, proc_dointvec_minmax);
  5462. set_table_entry(&table[11], "name", sd->name,
  5463. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5464. /* &table[12] is terminator */
  5465. return table;
  5466. }
  5467. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5468. {
  5469. struct ctl_table *entry, *table;
  5470. struct sched_domain *sd;
  5471. int domain_num = 0, i;
  5472. char buf[32];
  5473. for_each_domain(cpu, sd)
  5474. domain_num++;
  5475. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5476. if (table == NULL)
  5477. return NULL;
  5478. i = 0;
  5479. for_each_domain(cpu, sd) {
  5480. snprintf(buf, 32, "domain%d", i);
  5481. entry->procname = kstrdup(buf, GFP_KERNEL);
  5482. entry->mode = 0555;
  5483. entry->child = sd_alloc_ctl_domain_table(sd);
  5484. entry++;
  5485. i++;
  5486. }
  5487. return table;
  5488. }
  5489. static struct ctl_table_header *sd_sysctl_header;
  5490. static void register_sched_domain_sysctl(void)
  5491. {
  5492. int i, cpu_num = num_online_cpus();
  5493. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5494. char buf[32];
  5495. WARN_ON(sd_ctl_dir[0].child);
  5496. sd_ctl_dir[0].child = entry;
  5497. if (entry == NULL)
  5498. return;
  5499. for_each_online_cpu(i) {
  5500. snprintf(buf, 32, "cpu%d", i);
  5501. entry->procname = kstrdup(buf, GFP_KERNEL);
  5502. entry->mode = 0555;
  5503. entry->child = sd_alloc_ctl_cpu_table(i);
  5504. entry++;
  5505. }
  5506. WARN_ON(sd_sysctl_header);
  5507. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5508. }
  5509. /* may be called multiple times per register */
  5510. static void unregister_sched_domain_sysctl(void)
  5511. {
  5512. if (sd_sysctl_header)
  5513. unregister_sysctl_table(sd_sysctl_header);
  5514. sd_sysctl_header = NULL;
  5515. if (sd_ctl_dir[0].child)
  5516. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5517. }
  5518. #else
  5519. static void register_sched_domain_sysctl(void)
  5520. {
  5521. }
  5522. static void unregister_sched_domain_sysctl(void)
  5523. {
  5524. }
  5525. #endif
  5526. static void set_rq_online(struct rq *rq)
  5527. {
  5528. if (!rq->online) {
  5529. const struct sched_class *class;
  5530. cpu_set(rq->cpu, rq->rd->online);
  5531. rq->online = 1;
  5532. for_each_class(class) {
  5533. if (class->rq_online)
  5534. class->rq_online(rq);
  5535. }
  5536. }
  5537. }
  5538. static void set_rq_offline(struct rq *rq)
  5539. {
  5540. if (rq->online) {
  5541. const struct sched_class *class;
  5542. for_each_class(class) {
  5543. if (class->rq_offline)
  5544. class->rq_offline(rq);
  5545. }
  5546. cpu_clear(rq->cpu, rq->rd->online);
  5547. rq->online = 0;
  5548. }
  5549. }
  5550. /*
  5551. * migration_call - callback that gets triggered when a CPU is added.
  5552. * Here we can start up the necessary migration thread for the new CPU.
  5553. */
  5554. static int __cpuinit
  5555. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5556. {
  5557. struct task_struct *p;
  5558. int cpu = (long)hcpu;
  5559. unsigned long flags;
  5560. struct rq *rq;
  5561. switch (action) {
  5562. case CPU_UP_PREPARE:
  5563. case CPU_UP_PREPARE_FROZEN:
  5564. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5565. if (IS_ERR(p))
  5566. return NOTIFY_BAD;
  5567. kthread_bind(p, cpu);
  5568. /* Must be high prio: stop_machine expects to yield to it. */
  5569. rq = task_rq_lock(p, &flags);
  5570. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5571. task_rq_unlock(rq, &flags);
  5572. cpu_rq(cpu)->migration_thread = p;
  5573. break;
  5574. case CPU_ONLINE:
  5575. case CPU_ONLINE_FROZEN:
  5576. /* Strictly unnecessary, as first user will wake it. */
  5577. wake_up_process(cpu_rq(cpu)->migration_thread);
  5578. /* Update our root-domain */
  5579. rq = cpu_rq(cpu);
  5580. spin_lock_irqsave(&rq->lock, flags);
  5581. if (rq->rd) {
  5582. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5583. set_rq_online(rq);
  5584. }
  5585. spin_unlock_irqrestore(&rq->lock, flags);
  5586. break;
  5587. #ifdef CONFIG_HOTPLUG_CPU
  5588. case CPU_UP_CANCELED:
  5589. case CPU_UP_CANCELED_FROZEN:
  5590. if (!cpu_rq(cpu)->migration_thread)
  5591. break;
  5592. /* Unbind it from offline cpu so it can run. Fall thru. */
  5593. kthread_bind(cpu_rq(cpu)->migration_thread,
  5594. any_online_cpu(cpu_online_map));
  5595. kthread_stop(cpu_rq(cpu)->migration_thread);
  5596. cpu_rq(cpu)->migration_thread = NULL;
  5597. break;
  5598. case CPU_DEAD:
  5599. case CPU_DEAD_FROZEN:
  5600. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5601. migrate_live_tasks(cpu);
  5602. rq = cpu_rq(cpu);
  5603. kthread_stop(rq->migration_thread);
  5604. rq->migration_thread = NULL;
  5605. /* Idle task back to normal (off runqueue, low prio) */
  5606. spin_lock_irq(&rq->lock);
  5607. update_rq_clock(rq);
  5608. deactivate_task(rq, rq->idle, 0);
  5609. rq->idle->static_prio = MAX_PRIO;
  5610. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5611. rq->idle->sched_class = &idle_sched_class;
  5612. migrate_dead_tasks(cpu);
  5613. spin_unlock_irq(&rq->lock);
  5614. cpuset_unlock();
  5615. migrate_nr_uninterruptible(rq);
  5616. BUG_ON(rq->nr_running != 0);
  5617. /*
  5618. * No need to migrate the tasks: it was best-effort if
  5619. * they didn't take sched_hotcpu_mutex. Just wake up
  5620. * the requestors.
  5621. */
  5622. spin_lock_irq(&rq->lock);
  5623. while (!list_empty(&rq->migration_queue)) {
  5624. struct migration_req *req;
  5625. req = list_entry(rq->migration_queue.next,
  5626. struct migration_req, list);
  5627. list_del_init(&req->list);
  5628. spin_unlock_irq(&rq->lock);
  5629. complete(&req->done);
  5630. spin_lock_irq(&rq->lock);
  5631. }
  5632. spin_unlock_irq(&rq->lock);
  5633. break;
  5634. case CPU_DYING:
  5635. case CPU_DYING_FROZEN:
  5636. /* Update our root-domain */
  5637. rq = cpu_rq(cpu);
  5638. spin_lock_irqsave(&rq->lock, flags);
  5639. if (rq->rd) {
  5640. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5641. set_rq_offline(rq);
  5642. }
  5643. spin_unlock_irqrestore(&rq->lock, flags);
  5644. break;
  5645. #endif
  5646. }
  5647. return NOTIFY_OK;
  5648. }
  5649. /* Register at highest priority so that task migration (migrate_all_tasks)
  5650. * happens before everything else.
  5651. */
  5652. static struct notifier_block __cpuinitdata migration_notifier = {
  5653. .notifier_call = migration_call,
  5654. .priority = 10
  5655. };
  5656. static int __init migration_init(void)
  5657. {
  5658. void *cpu = (void *)(long)smp_processor_id();
  5659. int err;
  5660. /* Start one for the boot CPU: */
  5661. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5662. BUG_ON(err == NOTIFY_BAD);
  5663. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5664. register_cpu_notifier(&migration_notifier);
  5665. return err;
  5666. }
  5667. early_initcall(migration_init);
  5668. #endif
  5669. #ifdef CONFIG_SMP
  5670. #ifdef CONFIG_SCHED_DEBUG
  5671. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5672. {
  5673. switch (lvl) {
  5674. case SD_LV_NONE:
  5675. return "NONE";
  5676. case SD_LV_SIBLING:
  5677. return "SIBLING";
  5678. case SD_LV_MC:
  5679. return "MC";
  5680. case SD_LV_CPU:
  5681. return "CPU";
  5682. case SD_LV_NODE:
  5683. return "NODE";
  5684. case SD_LV_ALLNODES:
  5685. return "ALLNODES";
  5686. case SD_LV_MAX:
  5687. return "MAX";
  5688. }
  5689. return "MAX";
  5690. }
  5691. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5692. cpumask_t *groupmask)
  5693. {
  5694. struct sched_group *group = sd->groups;
  5695. char str[256];
  5696. cpulist_scnprintf(str, sizeof(str), sd->span);
  5697. cpus_clear(*groupmask);
  5698. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5699. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5700. printk("does not load-balance\n");
  5701. if (sd->parent)
  5702. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5703. " has parent");
  5704. return -1;
  5705. }
  5706. printk(KERN_CONT "span %s level %s\n",
  5707. str, sd_level_to_string(sd->level));
  5708. if (!cpu_isset(cpu, sd->span)) {
  5709. printk(KERN_ERR "ERROR: domain->span does not contain "
  5710. "CPU%d\n", cpu);
  5711. }
  5712. if (!cpu_isset(cpu, group->cpumask)) {
  5713. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5714. " CPU%d\n", cpu);
  5715. }
  5716. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5717. do {
  5718. if (!group) {
  5719. printk("\n");
  5720. printk(KERN_ERR "ERROR: group is NULL\n");
  5721. break;
  5722. }
  5723. if (!group->__cpu_power) {
  5724. printk(KERN_CONT "\n");
  5725. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5726. "set\n");
  5727. break;
  5728. }
  5729. if (!cpus_weight(group->cpumask)) {
  5730. printk(KERN_CONT "\n");
  5731. printk(KERN_ERR "ERROR: empty group\n");
  5732. break;
  5733. }
  5734. if (cpus_intersects(*groupmask, group->cpumask)) {
  5735. printk(KERN_CONT "\n");
  5736. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5737. break;
  5738. }
  5739. cpus_or(*groupmask, *groupmask, group->cpumask);
  5740. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5741. printk(KERN_CONT " %s", str);
  5742. group = group->next;
  5743. } while (group != sd->groups);
  5744. printk(KERN_CONT "\n");
  5745. if (!cpus_equal(sd->span, *groupmask))
  5746. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5747. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5748. printk(KERN_ERR "ERROR: parent span is not a superset "
  5749. "of domain->span\n");
  5750. return 0;
  5751. }
  5752. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5753. {
  5754. cpumask_t *groupmask;
  5755. int level = 0;
  5756. if (!sd) {
  5757. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5758. return;
  5759. }
  5760. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5761. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5762. if (!groupmask) {
  5763. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5764. return;
  5765. }
  5766. for (;;) {
  5767. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5768. break;
  5769. level++;
  5770. sd = sd->parent;
  5771. if (!sd)
  5772. break;
  5773. }
  5774. kfree(groupmask);
  5775. }
  5776. #else /* !CONFIG_SCHED_DEBUG */
  5777. # define sched_domain_debug(sd, cpu) do { } while (0)
  5778. #endif /* CONFIG_SCHED_DEBUG */
  5779. static int sd_degenerate(struct sched_domain *sd)
  5780. {
  5781. if (cpus_weight(sd->span) == 1)
  5782. return 1;
  5783. /* Following flags need at least 2 groups */
  5784. if (sd->flags & (SD_LOAD_BALANCE |
  5785. SD_BALANCE_NEWIDLE |
  5786. SD_BALANCE_FORK |
  5787. SD_BALANCE_EXEC |
  5788. SD_SHARE_CPUPOWER |
  5789. SD_SHARE_PKG_RESOURCES)) {
  5790. if (sd->groups != sd->groups->next)
  5791. return 0;
  5792. }
  5793. /* Following flags don't use groups */
  5794. if (sd->flags & (SD_WAKE_IDLE |
  5795. SD_WAKE_AFFINE |
  5796. SD_WAKE_BALANCE))
  5797. return 0;
  5798. return 1;
  5799. }
  5800. static int
  5801. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5802. {
  5803. unsigned long cflags = sd->flags, pflags = parent->flags;
  5804. if (sd_degenerate(parent))
  5805. return 1;
  5806. if (!cpus_equal(sd->span, parent->span))
  5807. return 0;
  5808. /* Does parent contain flags not in child? */
  5809. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5810. if (cflags & SD_WAKE_AFFINE)
  5811. pflags &= ~SD_WAKE_BALANCE;
  5812. /* Flags needing groups don't count if only 1 group in parent */
  5813. if (parent->groups == parent->groups->next) {
  5814. pflags &= ~(SD_LOAD_BALANCE |
  5815. SD_BALANCE_NEWIDLE |
  5816. SD_BALANCE_FORK |
  5817. SD_BALANCE_EXEC |
  5818. SD_SHARE_CPUPOWER |
  5819. SD_SHARE_PKG_RESOURCES);
  5820. }
  5821. if (~cflags & pflags)
  5822. return 0;
  5823. return 1;
  5824. }
  5825. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5826. {
  5827. unsigned long flags;
  5828. spin_lock_irqsave(&rq->lock, flags);
  5829. if (rq->rd) {
  5830. struct root_domain *old_rd = rq->rd;
  5831. if (cpu_isset(rq->cpu, old_rd->online))
  5832. set_rq_offline(rq);
  5833. cpu_clear(rq->cpu, old_rd->span);
  5834. if (atomic_dec_and_test(&old_rd->refcount))
  5835. kfree(old_rd);
  5836. }
  5837. atomic_inc(&rd->refcount);
  5838. rq->rd = rd;
  5839. cpu_set(rq->cpu, rd->span);
  5840. if (cpu_isset(rq->cpu, cpu_online_map))
  5841. set_rq_online(rq);
  5842. spin_unlock_irqrestore(&rq->lock, flags);
  5843. }
  5844. static void init_rootdomain(struct root_domain *rd)
  5845. {
  5846. memset(rd, 0, sizeof(*rd));
  5847. cpus_clear(rd->span);
  5848. cpus_clear(rd->online);
  5849. cpupri_init(&rd->cpupri);
  5850. }
  5851. static void init_defrootdomain(void)
  5852. {
  5853. init_rootdomain(&def_root_domain);
  5854. atomic_set(&def_root_domain.refcount, 1);
  5855. }
  5856. static struct root_domain *alloc_rootdomain(void)
  5857. {
  5858. struct root_domain *rd;
  5859. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5860. if (!rd)
  5861. return NULL;
  5862. init_rootdomain(rd);
  5863. return rd;
  5864. }
  5865. /*
  5866. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5867. * hold the hotplug lock.
  5868. */
  5869. static void
  5870. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5871. {
  5872. struct rq *rq = cpu_rq(cpu);
  5873. struct sched_domain *tmp;
  5874. /* Remove the sched domains which do not contribute to scheduling. */
  5875. for (tmp = sd; tmp; ) {
  5876. struct sched_domain *parent = tmp->parent;
  5877. if (!parent)
  5878. break;
  5879. if (sd_parent_degenerate(tmp, parent)) {
  5880. tmp->parent = parent->parent;
  5881. if (parent->parent)
  5882. parent->parent->child = tmp;
  5883. } else
  5884. tmp = tmp->parent;
  5885. }
  5886. if (sd && sd_degenerate(sd)) {
  5887. sd = sd->parent;
  5888. if (sd)
  5889. sd->child = NULL;
  5890. }
  5891. sched_domain_debug(sd, cpu);
  5892. rq_attach_root(rq, rd);
  5893. rcu_assign_pointer(rq->sd, sd);
  5894. }
  5895. /* cpus with isolated domains */
  5896. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5897. /* Setup the mask of cpus configured for isolated domains */
  5898. static int __init isolated_cpu_setup(char *str)
  5899. {
  5900. static int __initdata ints[NR_CPUS];
  5901. int i;
  5902. str = get_options(str, ARRAY_SIZE(ints), ints);
  5903. cpus_clear(cpu_isolated_map);
  5904. for (i = 1; i <= ints[0]; i++)
  5905. if (ints[i] < NR_CPUS)
  5906. cpu_set(ints[i], cpu_isolated_map);
  5907. return 1;
  5908. }
  5909. __setup("isolcpus=", isolated_cpu_setup);
  5910. /*
  5911. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5912. * to a function which identifies what group(along with sched group) a CPU
  5913. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5914. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5915. *
  5916. * init_sched_build_groups will build a circular linked list of the groups
  5917. * covered by the given span, and will set each group's ->cpumask correctly,
  5918. * and ->cpu_power to 0.
  5919. */
  5920. static void
  5921. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5922. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5923. struct sched_group **sg,
  5924. cpumask_t *tmpmask),
  5925. cpumask_t *covered, cpumask_t *tmpmask)
  5926. {
  5927. struct sched_group *first = NULL, *last = NULL;
  5928. int i;
  5929. cpus_clear(*covered);
  5930. for_each_cpu_mask_nr(i, *span) {
  5931. struct sched_group *sg;
  5932. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5933. int j;
  5934. if (cpu_isset(i, *covered))
  5935. continue;
  5936. cpus_clear(sg->cpumask);
  5937. sg->__cpu_power = 0;
  5938. for_each_cpu_mask_nr(j, *span) {
  5939. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5940. continue;
  5941. cpu_set(j, *covered);
  5942. cpu_set(j, sg->cpumask);
  5943. }
  5944. if (!first)
  5945. first = sg;
  5946. if (last)
  5947. last->next = sg;
  5948. last = sg;
  5949. }
  5950. last->next = first;
  5951. }
  5952. #define SD_NODES_PER_DOMAIN 16
  5953. #ifdef CONFIG_NUMA
  5954. /**
  5955. * find_next_best_node - find the next node to include in a sched_domain
  5956. * @node: node whose sched_domain we're building
  5957. * @used_nodes: nodes already in the sched_domain
  5958. *
  5959. * Find the next node to include in a given scheduling domain. Simply
  5960. * finds the closest node not already in the @used_nodes map.
  5961. *
  5962. * Should use nodemask_t.
  5963. */
  5964. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5965. {
  5966. int i, n, val, min_val, best_node = 0;
  5967. min_val = INT_MAX;
  5968. for (i = 0; i < nr_node_ids; i++) {
  5969. /* Start at @node */
  5970. n = (node + i) % nr_node_ids;
  5971. if (!nr_cpus_node(n))
  5972. continue;
  5973. /* Skip already used nodes */
  5974. if (node_isset(n, *used_nodes))
  5975. continue;
  5976. /* Simple min distance search */
  5977. val = node_distance(node, n);
  5978. if (val < min_val) {
  5979. min_val = val;
  5980. best_node = n;
  5981. }
  5982. }
  5983. node_set(best_node, *used_nodes);
  5984. return best_node;
  5985. }
  5986. /**
  5987. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5988. * @node: node whose cpumask we're constructing
  5989. * @span: resulting cpumask
  5990. *
  5991. * Given a node, construct a good cpumask for its sched_domain to span. It
  5992. * should be one that prevents unnecessary balancing, but also spreads tasks
  5993. * out optimally.
  5994. */
  5995. static void sched_domain_node_span(int node, cpumask_t *span)
  5996. {
  5997. nodemask_t used_nodes;
  5998. node_to_cpumask_ptr(nodemask, node);
  5999. int i;
  6000. cpus_clear(*span);
  6001. nodes_clear(used_nodes);
  6002. cpus_or(*span, *span, *nodemask);
  6003. node_set(node, used_nodes);
  6004. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6005. int next_node = find_next_best_node(node, &used_nodes);
  6006. node_to_cpumask_ptr_next(nodemask, next_node);
  6007. cpus_or(*span, *span, *nodemask);
  6008. }
  6009. }
  6010. #endif /* CONFIG_NUMA */
  6011. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6012. /*
  6013. * SMT sched-domains:
  6014. */
  6015. #ifdef CONFIG_SCHED_SMT
  6016. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6017. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6018. static int
  6019. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6020. cpumask_t *unused)
  6021. {
  6022. if (sg)
  6023. *sg = &per_cpu(sched_group_cpus, cpu);
  6024. return cpu;
  6025. }
  6026. #endif /* CONFIG_SCHED_SMT */
  6027. /*
  6028. * multi-core sched-domains:
  6029. */
  6030. #ifdef CONFIG_SCHED_MC
  6031. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6032. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6033. #endif /* CONFIG_SCHED_MC */
  6034. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6035. static int
  6036. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6037. cpumask_t *mask)
  6038. {
  6039. int group;
  6040. *mask = per_cpu(cpu_sibling_map, cpu);
  6041. cpus_and(*mask, *mask, *cpu_map);
  6042. group = first_cpu(*mask);
  6043. if (sg)
  6044. *sg = &per_cpu(sched_group_core, group);
  6045. return group;
  6046. }
  6047. #elif defined(CONFIG_SCHED_MC)
  6048. static int
  6049. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6050. cpumask_t *unused)
  6051. {
  6052. if (sg)
  6053. *sg = &per_cpu(sched_group_core, cpu);
  6054. return cpu;
  6055. }
  6056. #endif
  6057. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6058. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6059. static int
  6060. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6061. cpumask_t *mask)
  6062. {
  6063. int group;
  6064. #ifdef CONFIG_SCHED_MC
  6065. *mask = cpu_coregroup_map(cpu);
  6066. cpus_and(*mask, *mask, *cpu_map);
  6067. group = first_cpu(*mask);
  6068. #elif defined(CONFIG_SCHED_SMT)
  6069. *mask = per_cpu(cpu_sibling_map, cpu);
  6070. cpus_and(*mask, *mask, *cpu_map);
  6071. group = first_cpu(*mask);
  6072. #else
  6073. group = cpu;
  6074. #endif
  6075. if (sg)
  6076. *sg = &per_cpu(sched_group_phys, group);
  6077. return group;
  6078. }
  6079. #ifdef CONFIG_NUMA
  6080. /*
  6081. * The init_sched_build_groups can't handle what we want to do with node
  6082. * groups, so roll our own. Now each node has its own list of groups which
  6083. * gets dynamically allocated.
  6084. */
  6085. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6086. static struct sched_group ***sched_group_nodes_bycpu;
  6087. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6088. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6089. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6090. struct sched_group **sg, cpumask_t *nodemask)
  6091. {
  6092. int group;
  6093. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6094. cpus_and(*nodemask, *nodemask, *cpu_map);
  6095. group = first_cpu(*nodemask);
  6096. if (sg)
  6097. *sg = &per_cpu(sched_group_allnodes, group);
  6098. return group;
  6099. }
  6100. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6101. {
  6102. struct sched_group *sg = group_head;
  6103. int j;
  6104. if (!sg)
  6105. return;
  6106. do {
  6107. for_each_cpu_mask_nr(j, sg->cpumask) {
  6108. struct sched_domain *sd;
  6109. sd = &per_cpu(phys_domains, j);
  6110. if (j != first_cpu(sd->groups->cpumask)) {
  6111. /*
  6112. * Only add "power" once for each
  6113. * physical package.
  6114. */
  6115. continue;
  6116. }
  6117. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6118. }
  6119. sg = sg->next;
  6120. } while (sg != group_head);
  6121. }
  6122. #endif /* CONFIG_NUMA */
  6123. #ifdef CONFIG_NUMA
  6124. /* Free memory allocated for various sched_group structures */
  6125. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6126. {
  6127. int cpu, i;
  6128. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6129. struct sched_group **sched_group_nodes
  6130. = sched_group_nodes_bycpu[cpu];
  6131. if (!sched_group_nodes)
  6132. continue;
  6133. for (i = 0; i < nr_node_ids; i++) {
  6134. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6135. *nodemask = node_to_cpumask(i);
  6136. cpus_and(*nodemask, *nodemask, *cpu_map);
  6137. if (cpus_empty(*nodemask))
  6138. continue;
  6139. if (sg == NULL)
  6140. continue;
  6141. sg = sg->next;
  6142. next_sg:
  6143. oldsg = sg;
  6144. sg = sg->next;
  6145. kfree(oldsg);
  6146. if (oldsg != sched_group_nodes[i])
  6147. goto next_sg;
  6148. }
  6149. kfree(sched_group_nodes);
  6150. sched_group_nodes_bycpu[cpu] = NULL;
  6151. }
  6152. }
  6153. #else /* !CONFIG_NUMA */
  6154. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6155. {
  6156. }
  6157. #endif /* CONFIG_NUMA */
  6158. /*
  6159. * Initialize sched groups cpu_power.
  6160. *
  6161. * cpu_power indicates the capacity of sched group, which is used while
  6162. * distributing the load between different sched groups in a sched domain.
  6163. * Typically cpu_power for all the groups in a sched domain will be same unless
  6164. * there are asymmetries in the topology. If there are asymmetries, group
  6165. * having more cpu_power will pickup more load compared to the group having
  6166. * less cpu_power.
  6167. *
  6168. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6169. * the maximum number of tasks a group can handle in the presence of other idle
  6170. * or lightly loaded groups in the same sched domain.
  6171. */
  6172. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6173. {
  6174. struct sched_domain *child;
  6175. struct sched_group *group;
  6176. WARN_ON(!sd || !sd->groups);
  6177. if (cpu != first_cpu(sd->groups->cpumask))
  6178. return;
  6179. child = sd->child;
  6180. sd->groups->__cpu_power = 0;
  6181. /*
  6182. * For perf policy, if the groups in child domain share resources
  6183. * (for example cores sharing some portions of the cache hierarchy
  6184. * or SMT), then set this domain groups cpu_power such that each group
  6185. * can handle only one task, when there are other idle groups in the
  6186. * same sched domain.
  6187. */
  6188. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6189. (child->flags &
  6190. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6191. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6192. return;
  6193. }
  6194. /*
  6195. * add cpu_power of each child group to this groups cpu_power
  6196. */
  6197. group = child->groups;
  6198. do {
  6199. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6200. group = group->next;
  6201. } while (group != child->groups);
  6202. }
  6203. /*
  6204. * Initializers for schedule domains
  6205. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6206. */
  6207. #ifdef CONFIG_SCHED_DEBUG
  6208. # define SD_INIT_NAME(sd, type) sd->name = #type
  6209. #else
  6210. # define SD_INIT_NAME(sd, type) do { } while (0)
  6211. #endif
  6212. #define SD_INIT(sd, type) sd_init_##type(sd)
  6213. #define SD_INIT_FUNC(type) \
  6214. static noinline void sd_init_##type(struct sched_domain *sd) \
  6215. { \
  6216. memset(sd, 0, sizeof(*sd)); \
  6217. *sd = SD_##type##_INIT; \
  6218. sd->level = SD_LV_##type; \
  6219. SD_INIT_NAME(sd, type); \
  6220. }
  6221. SD_INIT_FUNC(CPU)
  6222. #ifdef CONFIG_NUMA
  6223. SD_INIT_FUNC(ALLNODES)
  6224. SD_INIT_FUNC(NODE)
  6225. #endif
  6226. #ifdef CONFIG_SCHED_SMT
  6227. SD_INIT_FUNC(SIBLING)
  6228. #endif
  6229. #ifdef CONFIG_SCHED_MC
  6230. SD_INIT_FUNC(MC)
  6231. #endif
  6232. /*
  6233. * To minimize stack usage kmalloc room for cpumasks and share the
  6234. * space as the usage in build_sched_domains() dictates. Used only
  6235. * if the amount of space is significant.
  6236. */
  6237. struct allmasks {
  6238. cpumask_t tmpmask; /* make this one first */
  6239. union {
  6240. cpumask_t nodemask;
  6241. cpumask_t this_sibling_map;
  6242. cpumask_t this_core_map;
  6243. };
  6244. cpumask_t send_covered;
  6245. #ifdef CONFIG_NUMA
  6246. cpumask_t domainspan;
  6247. cpumask_t covered;
  6248. cpumask_t notcovered;
  6249. #endif
  6250. };
  6251. #if NR_CPUS > 128
  6252. #define SCHED_CPUMASK_ALLOC 1
  6253. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6254. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6255. #else
  6256. #define SCHED_CPUMASK_ALLOC 0
  6257. #define SCHED_CPUMASK_FREE(v)
  6258. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6259. #endif
  6260. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6261. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6262. static int default_relax_domain_level = -1;
  6263. static int __init setup_relax_domain_level(char *str)
  6264. {
  6265. unsigned long val;
  6266. val = simple_strtoul(str, NULL, 0);
  6267. if (val < SD_LV_MAX)
  6268. default_relax_domain_level = val;
  6269. return 1;
  6270. }
  6271. __setup("relax_domain_level=", setup_relax_domain_level);
  6272. static void set_domain_attribute(struct sched_domain *sd,
  6273. struct sched_domain_attr *attr)
  6274. {
  6275. int request;
  6276. if (!attr || attr->relax_domain_level < 0) {
  6277. if (default_relax_domain_level < 0)
  6278. return;
  6279. else
  6280. request = default_relax_domain_level;
  6281. } else
  6282. request = attr->relax_domain_level;
  6283. if (request < sd->level) {
  6284. /* turn off idle balance on this domain */
  6285. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6286. } else {
  6287. /* turn on idle balance on this domain */
  6288. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6289. }
  6290. }
  6291. /*
  6292. * Build sched domains for a given set of cpus and attach the sched domains
  6293. * to the individual cpus
  6294. */
  6295. static int __build_sched_domains(const cpumask_t *cpu_map,
  6296. struct sched_domain_attr *attr)
  6297. {
  6298. int i;
  6299. struct root_domain *rd;
  6300. SCHED_CPUMASK_DECLARE(allmasks);
  6301. cpumask_t *tmpmask;
  6302. #ifdef CONFIG_NUMA
  6303. struct sched_group **sched_group_nodes = NULL;
  6304. int sd_allnodes = 0;
  6305. /*
  6306. * Allocate the per-node list of sched groups
  6307. */
  6308. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6309. GFP_KERNEL);
  6310. if (!sched_group_nodes) {
  6311. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6312. return -ENOMEM;
  6313. }
  6314. #endif
  6315. rd = alloc_rootdomain();
  6316. if (!rd) {
  6317. printk(KERN_WARNING "Cannot alloc root domain\n");
  6318. #ifdef CONFIG_NUMA
  6319. kfree(sched_group_nodes);
  6320. #endif
  6321. return -ENOMEM;
  6322. }
  6323. #if SCHED_CPUMASK_ALLOC
  6324. /* get space for all scratch cpumask variables */
  6325. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6326. if (!allmasks) {
  6327. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6328. kfree(rd);
  6329. #ifdef CONFIG_NUMA
  6330. kfree(sched_group_nodes);
  6331. #endif
  6332. return -ENOMEM;
  6333. }
  6334. #endif
  6335. tmpmask = (cpumask_t *)allmasks;
  6336. #ifdef CONFIG_NUMA
  6337. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6338. #endif
  6339. /*
  6340. * Set up domains for cpus specified by the cpu_map.
  6341. */
  6342. for_each_cpu_mask_nr(i, *cpu_map) {
  6343. struct sched_domain *sd = NULL, *p;
  6344. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6345. *nodemask = node_to_cpumask(cpu_to_node(i));
  6346. cpus_and(*nodemask, *nodemask, *cpu_map);
  6347. #ifdef CONFIG_NUMA
  6348. if (cpus_weight(*cpu_map) >
  6349. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6350. sd = &per_cpu(allnodes_domains, i);
  6351. SD_INIT(sd, ALLNODES);
  6352. set_domain_attribute(sd, attr);
  6353. sd->span = *cpu_map;
  6354. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6355. p = sd;
  6356. sd_allnodes = 1;
  6357. } else
  6358. p = NULL;
  6359. sd = &per_cpu(node_domains, i);
  6360. SD_INIT(sd, NODE);
  6361. set_domain_attribute(sd, attr);
  6362. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6363. sd->parent = p;
  6364. if (p)
  6365. p->child = sd;
  6366. cpus_and(sd->span, sd->span, *cpu_map);
  6367. #endif
  6368. p = sd;
  6369. sd = &per_cpu(phys_domains, i);
  6370. SD_INIT(sd, CPU);
  6371. set_domain_attribute(sd, attr);
  6372. sd->span = *nodemask;
  6373. sd->parent = p;
  6374. if (p)
  6375. p->child = sd;
  6376. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6377. #ifdef CONFIG_SCHED_MC
  6378. p = sd;
  6379. sd = &per_cpu(core_domains, i);
  6380. SD_INIT(sd, MC);
  6381. set_domain_attribute(sd, attr);
  6382. sd->span = cpu_coregroup_map(i);
  6383. cpus_and(sd->span, sd->span, *cpu_map);
  6384. sd->parent = p;
  6385. p->child = sd;
  6386. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6387. #endif
  6388. #ifdef CONFIG_SCHED_SMT
  6389. p = sd;
  6390. sd = &per_cpu(cpu_domains, i);
  6391. SD_INIT(sd, SIBLING);
  6392. set_domain_attribute(sd, attr);
  6393. sd->span = per_cpu(cpu_sibling_map, i);
  6394. cpus_and(sd->span, sd->span, *cpu_map);
  6395. sd->parent = p;
  6396. p->child = sd;
  6397. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6398. #endif
  6399. }
  6400. #ifdef CONFIG_SCHED_SMT
  6401. /* Set up CPU (sibling) groups */
  6402. for_each_cpu_mask_nr(i, *cpu_map) {
  6403. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6404. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6405. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6406. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6407. if (i != first_cpu(*this_sibling_map))
  6408. continue;
  6409. init_sched_build_groups(this_sibling_map, cpu_map,
  6410. &cpu_to_cpu_group,
  6411. send_covered, tmpmask);
  6412. }
  6413. #endif
  6414. #ifdef CONFIG_SCHED_MC
  6415. /* Set up multi-core groups */
  6416. for_each_cpu_mask_nr(i, *cpu_map) {
  6417. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6418. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6419. *this_core_map = cpu_coregroup_map(i);
  6420. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6421. if (i != first_cpu(*this_core_map))
  6422. continue;
  6423. init_sched_build_groups(this_core_map, cpu_map,
  6424. &cpu_to_core_group,
  6425. send_covered, tmpmask);
  6426. }
  6427. #endif
  6428. /* Set up physical groups */
  6429. for (i = 0; i < nr_node_ids; i++) {
  6430. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6431. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6432. *nodemask = node_to_cpumask(i);
  6433. cpus_and(*nodemask, *nodemask, *cpu_map);
  6434. if (cpus_empty(*nodemask))
  6435. continue;
  6436. init_sched_build_groups(nodemask, cpu_map,
  6437. &cpu_to_phys_group,
  6438. send_covered, tmpmask);
  6439. }
  6440. #ifdef CONFIG_NUMA
  6441. /* Set up node groups */
  6442. if (sd_allnodes) {
  6443. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6444. init_sched_build_groups(cpu_map, cpu_map,
  6445. &cpu_to_allnodes_group,
  6446. send_covered, tmpmask);
  6447. }
  6448. for (i = 0; i < nr_node_ids; i++) {
  6449. /* Set up node groups */
  6450. struct sched_group *sg, *prev;
  6451. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6452. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6453. SCHED_CPUMASK_VAR(covered, allmasks);
  6454. int j;
  6455. *nodemask = node_to_cpumask(i);
  6456. cpus_clear(*covered);
  6457. cpus_and(*nodemask, *nodemask, *cpu_map);
  6458. if (cpus_empty(*nodemask)) {
  6459. sched_group_nodes[i] = NULL;
  6460. continue;
  6461. }
  6462. sched_domain_node_span(i, domainspan);
  6463. cpus_and(*domainspan, *domainspan, *cpu_map);
  6464. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6465. if (!sg) {
  6466. printk(KERN_WARNING "Can not alloc domain group for "
  6467. "node %d\n", i);
  6468. goto error;
  6469. }
  6470. sched_group_nodes[i] = sg;
  6471. for_each_cpu_mask_nr(j, *nodemask) {
  6472. struct sched_domain *sd;
  6473. sd = &per_cpu(node_domains, j);
  6474. sd->groups = sg;
  6475. }
  6476. sg->__cpu_power = 0;
  6477. sg->cpumask = *nodemask;
  6478. sg->next = sg;
  6479. cpus_or(*covered, *covered, *nodemask);
  6480. prev = sg;
  6481. for (j = 0; j < nr_node_ids; j++) {
  6482. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6483. int n = (i + j) % nr_node_ids;
  6484. node_to_cpumask_ptr(pnodemask, n);
  6485. cpus_complement(*notcovered, *covered);
  6486. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6487. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6488. if (cpus_empty(*tmpmask))
  6489. break;
  6490. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6491. if (cpus_empty(*tmpmask))
  6492. continue;
  6493. sg = kmalloc_node(sizeof(struct sched_group),
  6494. GFP_KERNEL, i);
  6495. if (!sg) {
  6496. printk(KERN_WARNING
  6497. "Can not alloc domain group for node %d\n", j);
  6498. goto error;
  6499. }
  6500. sg->__cpu_power = 0;
  6501. sg->cpumask = *tmpmask;
  6502. sg->next = prev->next;
  6503. cpus_or(*covered, *covered, *tmpmask);
  6504. prev->next = sg;
  6505. prev = sg;
  6506. }
  6507. }
  6508. #endif
  6509. /* Calculate CPU power for physical packages and nodes */
  6510. #ifdef CONFIG_SCHED_SMT
  6511. for_each_cpu_mask_nr(i, *cpu_map) {
  6512. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6513. init_sched_groups_power(i, sd);
  6514. }
  6515. #endif
  6516. #ifdef CONFIG_SCHED_MC
  6517. for_each_cpu_mask_nr(i, *cpu_map) {
  6518. struct sched_domain *sd = &per_cpu(core_domains, i);
  6519. init_sched_groups_power(i, sd);
  6520. }
  6521. #endif
  6522. for_each_cpu_mask_nr(i, *cpu_map) {
  6523. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6524. init_sched_groups_power(i, sd);
  6525. }
  6526. #ifdef CONFIG_NUMA
  6527. for (i = 0; i < nr_node_ids; i++)
  6528. init_numa_sched_groups_power(sched_group_nodes[i]);
  6529. if (sd_allnodes) {
  6530. struct sched_group *sg;
  6531. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6532. tmpmask);
  6533. init_numa_sched_groups_power(sg);
  6534. }
  6535. #endif
  6536. /* Attach the domains */
  6537. for_each_cpu_mask_nr(i, *cpu_map) {
  6538. struct sched_domain *sd;
  6539. #ifdef CONFIG_SCHED_SMT
  6540. sd = &per_cpu(cpu_domains, i);
  6541. #elif defined(CONFIG_SCHED_MC)
  6542. sd = &per_cpu(core_domains, i);
  6543. #else
  6544. sd = &per_cpu(phys_domains, i);
  6545. #endif
  6546. cpu_attach_domain(sd, rd, i);
  6547. }
  6548. SCHED_CPUMASK_FREE((void *)allmasks);
  6549. return 0;
  6550. #ifdef CONFIG_NUMA
  6551. error:
  6552. free_sched_groups(cpu_map, tmpmask);
  6553. SCHED_CPUMASK_FREE((void *)allmasks);
  6554. kfree(rd);
  6555. return -ENOMEM;
  6556. #endif
  6557. }
  6558. static int build_sched_domains(const cpumask_t *cpu_map)
  6559. {
  6560. return __build_sched_domains(cpu_map, NULL);
  6561. }
  6562. static cpumask_t *doms_cur; /* current sched domains */
  6563. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6564. static struct sched_domain_attr *dattr_cur;
  6565. /* attribues of custom domains in 'doms_cur' */
  6566. /*
  6567. * Special case: If a kmalloc of a doms_cur partition (array of
  6568. * cpumask_t) fails, then fallback to a single sched domain,
  6569. * as determined by the single cpumask_t fallback_doms.
  6570. */
  6571. static cpumask_t fallback_doms;
  6572. void __attribute__((weak)) arch_update_cpu_topology(void)
  6573. {
  6574. }
  6575. /*
  6576. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6577. * For now this just excludes isolated cpus, but could be used to
  6578. * exclude other special cases in the future.
  6579. */
  6580. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6581. {
  6582. int err;
  6583. arch_update_cpu_topology();
  6584. ndoms_cur = 1;
  6585. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6586. if (!doms_cur)
  6587. doms_cur = &fallback_doms;
  6588. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6589. dattr_cur = NULL;
  6590. err = build_sched_domains(doms_cur);
  6591. register_sched_domain_sysctl();
  6592. return err;
  6593. }
  6594. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6595. cpumask_t *tmpmask)
  6596. {
  6597. free_sched_groups(cpu_map, tmpmask);
  6598. }
  6599. /*
  6600. * Detach sched domains from a group of cpus specified in cpu_map
  6601. * These cpus will now be attached to the NULL domain
  6602. */
  6603. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6604. {
  6605. cpumask_t tmpmask;
  6606. int i;
  6607. unregister_sched_domain_sysctl();
  6608. for_each_cpu_mask_nr(i, *cpu_map)
  6609. cpu_attach_domain(NULL, &def_root_domain, i);
  6610. synchronize_sched();
  6611. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6612. }
  6613. /* handle null as "default" */
  6614. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6615. struct sched_domain_attr *new, int idx_new)
  6616. {
  6617. struct sched_domain_attr tmp;
  6618. /* fast path */
  6619. if (!new && !cur)
  6620. return 1;
  6621. tmp = SD_ATTR_INIT;
  6622. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6623. new ? (new + idx_new) : &tmp,
  6624. sizeof(struct sched_domain_attr));
  6625. }
  6626. /*
  6627. * Partition sched domains as specified by the 'ndoms_new'
  6628. * cpumasks in the array doms_new[] of cpumasks. This compares
  6629. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6630. * It destroys each deleted domain and builds each new domain.
  6631. *
  6632. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6633. * The masks don't intersect (don't overlap.) We should setup one
  6634. * sched domain for each mask. CPUs not in any of the cpumasks will
  6635. * not be load balanced. If the same cpumask appears both in the
  6636. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6637. * it as it is.
  6638. *
  6639. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6640. * ownership of it and will kfree it when done with it. If the caller
  6641. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6642. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6643. * the single partition 'fallback_doms', it also forces the domains
  6644. * to be rebuilt.
  6645. *
  6646. * If doms_new == NULL it will be replaced with cpu_online_map.
  6647. * ndoms_new == 0 is a special case for destroying existing domains,
  6648. * and it will not create the default domain.
  6649. *
  6650. * Call with hotplug lock held
  6651. */
  6652. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6653. struct sched_domain_attr *dattr_new)
  6654. {
  6655. int i, j, n;
  6656. mutex_lock(&sched_domains_mutex);
  6657. /* always unregister in case we don't destroy any domains */
  6658. unregister_sched_domain_sysctl();
  6659. n = doms_new ? ndoms_new : 0;
  6660. /* Destroy deleted domains */
  6661. for (i = 0; i < ndoms_cur; i++) {
  6662. for (j = 0; j < n; j++) {
  6663. if (cpus_equal(doms_cur[i], doms_new[j])
  6664. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6665. goto match1;
  6666. }
  6667. /* no match - a current sched domain not in new doms_new[] */
  6668. detach_destroy_domains(doms_cur + i);
  6669. match1:
  6670. ;
  6671. }
  6672. if (doms_new == NULL) {
  6673. ndoms_cur = 0;
  6674. doms_new = &fallback_doms;
  6675. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6676. dattr_new = NULL;
  6677. }
  6678. /* Build new domains */
  6679. for (i = 0; i < ndoms_new; i++) {
  6680. for (j = 0; j < ndoms_cur; j++) {
  6681. if (cpus_equal(doms_new[i], doms_cur[j])
  6682. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6683. goto match2;
  6684. }
  6685. /* no match - add a new doms_new */
  6686. __build_sched_domains(doms_new + i,
  6687. dattr_new ? dattr_new + i : NULL);
  6688. match2:
  6689. ;
  6690. }
  6691. /* Remember the new sched domains */
  6692. if (doms_cur != &fallback_doms)
  6693. kfree(doms_cur);
  6694. kfree(dattr_cur); /* kfree(NULL) is safe */
  6695. doms_cur = doms_new;
  6696. dattr_cur = dattr_new;
  6697. ndoms_cur = ndoms_new;
  6698. register_sched_domain_sysctl();
  6699. mutex_unlock(&sched_domains_mutex);
  6700. }
  6701. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6702. int arch_reinit_sched_domains(void)
  6703. {
  6704. get_online_cpus();
  6705. /* Destroy domains first to force the rebuild */
  6706. partition_sched_domains(0, NULL, NULL);
  6707. rebuild_sched_domains();
  6708. put_online_cpus();
  6709. return 0;
  6710. }
  6711. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6712. {
  6713. int ret;
  6714. if (buf[0] != '0' && buf[0] != '1')
  6715. return -EINVAL;
  6716. if (smt)
  6717. sched_smt_power_savings = (buf[0] == '1');
  6718. else
  6719. sched_mc_power_savings = (buf[0] == '1');
  6720. ret = arch_reinit_sched_domains();
  6721. return ret ? ret : count;
  6722. }
  6723. #ifdef CONFIG_SCHED_MC
  6724. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6725. char *page)
  6726. {
  6727. return sprintf(page, "%u\n", sched_mc_power_savings);
  6728. }
  6729. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6730. const char *buf, size_t count)
  6731. {
  6732. return sched_power_savings_store(buf, count, 0);
  6733. }
  6734. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6735. sched_mc_power_savings_show,
  6736. sched_mc_power_savings_store);
  6737. #endif
  6738. #ifdef CONFIG_SCHED_SMT
  6739. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6740. char *page)
  6741. {
  6742. return sprintf(page, "%u\n", sched_smt_power_savings);
  6743. }
  6744. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6745. const char *buf, size_t count)
  6746. {
  6747. return sched_power_savings_store(buf, count, 1);
  6748. }
  6749. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6750. sched_smt_power_savings_show,
  6751. sched_smt_power_savings_store);
  6752. #endif
  6753. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6754. {
  6755. int err = 0;
  6756. #ifdef CONFIG_SCHED_SMT
  6757. if (smt_capable())
  6758. err = sysfs_create_file(&cls->kset.kobj,
  6759. &attr_sched_smt_power_savings.attr);
  6760. #endif
  6761. #ifdef CONFIG_SCHED_MC
  6762. if (!err && mc_capable())
  6763. err = sysfs_create_file(&cls->kset.kobj,
  6764. &attr_sched_mc_power_savings.attr);
  6765. #endif
  6766. return err;
  6767. }
  6768. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6769. #ifndef CONFIG_CPUSETS
  6770. /*
  6771. * Add online and remove offline CPUs from the scheduler domains.
  6772. * When cpusets are enabled they take over this function.
  6773. */
  6774. static int update_sched_domains(struct notifier_block *nfb,
  6775. unsigned long action, void *hcpu)
  6776. {
  6777. switch (action) {
  6778. case CPU_ONLINE:
  6779. case CPU_ONLINE_FROZEN:
  6780. case CPU_DEAD:
  6781. case CPU_DEAD_FROZEN:
  6782. partition_sched_domains(1, NULL, NULL);
  6783. return NOTIFY_OK;
  6784. default:
  6785. return NOTIFY_DONE;
  6786. }
  6787. }
  6788. #endif
  6789. static int update_runtime(struct notifier_block *nfb,
  6790. unsigned long action, void *hcpu)
  6791. {
  6792. int cpu = (int)(long)hcpu;
  6793. switch (action) {
  6794. case CPU_DOWN_PREPARE:
  6795. case CPU_DOWN_PREPARE_FROZEN:
  6796. disable_runtime(cpu_rq(cpu));
  6797. return NOTIFY_OK;
  6798. case CPU_DOWN_FAILED:
  6799. case CPU_DOWN_FAILED_FROZEN:
  6800. case CPU_ONLINE:
  6801. case CPU_ONLINE_FROZEN:
  6802. enable_runtime(cpu_rq(cpu));
  6803. return NOTIFY_OK;
  6804. default:
  6805. return NOTIFY_DONE;
  6806. }
  6807. }
  6808. void __init sched_init_smp(void)
  6809. {
  6810. cpumask_t non_isolated_cpus;
  6811. #if defined(CONFIG_NUMA)
  6812. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6813. GFP_KERNEL);
  6814. BUG_ON(sched_group_nodes_bycpu == NULL);
  6815. #endif
  6816. get_online_cpus();
  6817. mutex_lock(&sched_domains_mutex);
  6818. arch_init_sched_domains(&cpu_online_map);
  6819. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6820. if (cpus_empty(non_isolated_cpus))
  6821. cpu_set(smp_processor_id(), non_isolated_cpus);
  6822. mutex_unlock(&sched_domains_mutex);
  6823. put_online_cpus();
  6824. #ifndef CONFIG_CPUSETS
  6825. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6826. hotcpu_notifier(update_sched_domains, 0);
  6827. #endif
  6828. /* RT runtime code needs to handle some hotplug events */
  6829. hotcpu_notifier(update_runtime, 0);
  6830. init_hrtick();
  6831. /* Move init over to a non-isolated CPU */
  6832. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6833. BUG();
  6834. sched_init_granularity();
  6835. }
  6836. #else
  6837. void __init sched_init_smp(void)
  6838. {
  6839. sched_init_granularity();
  6840. }
  6841. #endif /* CONFIG_SMP */
  6842. int in_sched_functions(unsigned long addr)
  6843. {
  6844. return in_lock_functions(addr) ||
  6845. (addr >= (unsigned long)__sched_text_start
  6846. && addr < (unsigned long)__sched_text_end);
  6847. }
  6848. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6849. {
  6850. cfs_rq->tasks_timeline = RB_ROOT;
  6851. INIT_LIST_HEAD(&cfs_rq->tasks);
  6852. #ifdef CONFIG_FAIR_GROUP_SCHED
  6853. cfs_rq->rq = rq;
  6854. #endif
  6855. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6856. }
  6857. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6858. {
  6859. struct rt_prio_array *array;
  6860. int i;
  6861. array = &rt_rq->active;
  6862. for (i = 0; i < MAX_RT_PRIO; i++) {
  6863. INIT_LIST_HEAD(array->queue + i);
  6864. __clear_bit(i, array->bitmap);
  6865. }
  6866. /* delimiter for bitsearch: */
  6867. __set_bit(MAX_RT_PRIO, array->bitmap);
  6868. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6869. rt_rq->highest_prio = MAX_RT_PRIO;
  6870. #endif
  6871. #ifdef CONFIG_SMP
  6872. rt_rq->rt_nr_migratory = 0;
  6873. rt_rq->overloaded = 0;
  6874. #endif
  6875. rt_rq->rt_time = 0;
  6876. rt_rq->rt_throttled = 0;
  6877. rt_rq->rt_runtime = 0;
  6878. spin_lock_init(&rt_rq->rt_runtime_lock);
  6879. #ifdef CONFIG_RT_GROUP_SCHED
  6880. rt_rq->rt_nr_boosted = 0;
  6881. rt_rq->rq = rq;
  6882. #endif
  6883. }
  6884. #ifdef CONFIG_FAIR_GROUP_SCHED
  6885. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6886. struct sched_entity *se, int cpu, int add,
  6887. struct sched_entity *parent)
  6888. {
  6889. struct rq *rq = cpu_rq(cpu);
  6890. tg->cfs_rq[cpu] = cfs_rq;
  6891. init_cfs_rq(cfs_rq, rq);
  6892. cfs_rq->tg = tg;
  6893. if (add)
  6894. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6895. tg->se[cpu] = se;
  6896. /* se could be NULL for init_task_group */
  6897. if (!se)
  6898. return;
  6899. if (!parent)
  6900. se->cfs_rq = &rq->cfs;
  6901. else
  6902. se->cfs_rq = parent->my_q;
  6903. se->my_q = cfs_rq;
  6904. se->load.weight = tg->shares;
  6905. se->load.inv_weight = 0;
  6906. se->parent = parent;
  6907. }
  6908. #endif
  6909. #ifdef CONFIG_RT_GROUP_SCHED
  6910. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6911. struct sched_rt_entity *rt_se, int cpu, int add,
  6912. struct sched_rt_entity *parent)
  6913. {
  6914. struct rq *rq = cpu_rq(cpu);
  6915. tg->rt_rq[cpu] = rt_rq;
  6916. init_rt_rq(rt_rq, rq);
  6917. rt_rq->tg = tg;
  6918. rt_rq->rt_se = rt_se;
  6919. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6920. if (add)
  6921. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6922. tg->rt_se[cpu] = rt_se;
  6923. if (!rt_se)
  6924. return;
  6925. if (!parent)
  6926. rt_se->rt_rq = &rq->rt;
  6927. else
  6928. rt_se->rt_rq = parent->my_q;
  6929. rt_se->my_q = rt_rq;
  6930. rt_se->parent = parent;
  6931. INIT_LIST_HEAD(&rt_se->run_list);
  6932. }
  6933. #endif
  6934. void __init sched_init(void)
  6935. {
  6936. int i, j;
  6937. unsigned long alloc_size = 0, ptr;
  6938. #ifdef CONFIG_FAIR_GROUP_SCHED
  6939. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6940. #endif
  6941. #ifdef CONFIG_RT_GROUP_SCHED
  6942. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6943. #endif
  6944. #ifdef CONFIG_USER_SCHED
  6945. alloc_size *= 2;
  6946. #endif
  6947. /*
  6948. * As sched_init() is called before page_alloc is setup,
  6949. * we use alloc_bootmem().
  6950. */
  6951. if (alloc_size) {
  6952. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6953. #ifdef CONFIG_FAIR_GROUP_SCHED
  6954. init_task_group.se = (struct sched_entity **)ptr;
  6955. ptr += nr_cpu_ids * sizeof(void **);
  6956. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6957. ptr += nr_cpu_ids * sizeof(void **);
  6958. #ifdef CONFIG_USER_SCHED
  6959. root_task_group.se = (struct sched_entity **)ptr;
  6960. ptr += nr_cpu_ids * sizeof(void **);
  6961. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6962. ptr += nr_cpu_ids * sizeof(void **);
  6963. #endif /* CONFIG_USER_SCHED */
  6964. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6965. #ifdef CONFIG_RT_GROUP_SCHED
  6966. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6967. ptr += nr_cpu_ids * sizeof(void **);
  6968. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6969. ptr += nr_cpu_ids * sizeof(void **);
  6970. #ifdef CONFIG_USER_SCHED
  6971. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6972. ptr += nr_cpu_ids * sizeof(void **);
  6973. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6974. ptr += nr_cpu_ids * sizeof(void **);
  6975. #endif /* CONFIG_USER_SCHED */
  6976. #endif /* CONFIG_RT_GROUP_SCHED */
  6977. }
  6978. #ifdef CONFIG_SMP
  6979. init_defrootdomain();
  6980. #endif
  6981. init_rt_bandwidth(&def_rt_bandwidth,
  6982. global_rt_period(), global_rt_runtime());
  6983. #ifdef CONFIG_RT_GROUP_SCHED
  6984. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6985. global_rt_period(), global_rt_runtime());
  6986. #ifdef CONFIG_USER_SCHED
  6987. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6988. global_rt_period(), RUNTIME_INF);
  6989. #endif /* CONFIG_USER_SCHED */
  6990. #endif /* CONFIG_RT_GROUP_SCHED */
  6991. #ifdef CONFIG_GROUP_SCHED
  6992. list_add(&init_task_group.list, &task_groups);
  6993. INIT_LIST_HEAD(&init_task_group.children);
  6994. #ifdef CONFIG_USER_SCHED
  6995. INIT_LIST_HEAD(&root_task_group.children);
  6996. init_task_group.parent = &root_task_group;
  6997. list_add(&init_task_group.siblings, &root_task_group.children);
  6998. #endif /* CONFIG_USER_SCHED */
  6999. #endif /* CONFIG_GROUP_SCHED */
  7000. for_each_possible_cpu(i) {
  7001. struct rq *rq;
  7002. rq = cpu_rq(i);
  7003. spin_lock_init(&rq->lock);
  7004. rq->nr_running = 0;
  7005. init_cfs_rq(&rq->cfs, rq);
  7006. init_rt_rq(&rq->rt, rq);
  7007. #ifdef CONFIG_FAIR_GROUP_SCHED
  7008. init_task_group.shares = init_task_group_load;
  7009. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7010. #ifdef CONFIG_CGROUP_SCHED
  7011. /*
  7012. * How much cpu bandwidth does init_task_group get?
  7013. *
  7014. * In case of task-groups formed thr' the cgroup filesystem, it
  7015. * gets 100% of the cpu resources in the system. This overall
  7016. * system cpu resource is divided among the tasks of
  7017. * init_task_group and its child task-groups in a fair manner,
  7018. * based on each entity's (task or task-group's) weight
  7019. * (se->load.weight).
  7020. *
  7021. * In other words, if init_task_group has 10 tasks of weight
  7022. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7023. * then A0's share of the cpu resource is:
  7024. *
  7025. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7026. *
  7027. * We achieve this by letting init_task_group's tasks sit
  7028. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7029. */
  7030. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7031. #elif defined CONFIG_USER_SCHED
  7032. root_task_group.shares = NICE_0_LOAD;
  7033. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7034. /*
  7035. * In case of task-groups formed thr' the user id of tasks,
  7036. * init_task_group represents tasks belonging to root user.
  7037. * Hence it forms a sibling of all subsequent groups formed.
  7038. * In this case, init_task_group gets only a fraction of overall
  7039. * system cpu resource, based on the weight assigned to root
  7040. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7041. * by letting tasks of init_task_group sit in a separate cfs_rq
  7042. * (init_cfs_rq) and having one entity represent this group of
  7043. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7044. */
  7045. init_tg_cfs_entry(&init_task_group,
  7046. &per_cpu(init_cfs_rq, i),
  7047. &per_cpu(init_sched_entity, i), i, 1,
  7048. root_task_group.se[i]);
  7049. #endif
  7050. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7051. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7052. #ifdef CONFIG_RT_GROUP_SCHED
  7053. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7054. #ifdef CONFIG_CGROUP_SCHED
  7055. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7056. #elif defined CONFIG_USER_SCHED
  7057. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7058. init_tg_rt_entry(&init_task_group,
  7059. &per_cpu(init_rt_rq, i),
  7060. &per_cpu(init_sched_rt_entity, i), i, 1,
  7061. root_task_group.rt_se[i]);
  7062. #endif
  7063. #endif
  7064. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7065. rq->cpu_load[j] = 0;
  7066. #ifdef CONFIG_SMP
  7067. rq->sd = NULL;
  7068. rq->rd = NULL;
  7069. rq->active_balance = 0;
  7070. rq->next_balance = jiffies;
  7071. rq->push_cpu = 0;
  7072. rq->cpu = i;
  7073. rq->online = 0;
  7074. rq->migration_thread = NULL;
  7075. INIT_LIST_HEAD(&rq->migration_queue);
  7076. rq_attach_root(rq, &def_root_domain);
  7077. #endif
  7078. init_rq_hrtick(rq);
  7079. atomic_set(&rq->nr_iowait, 0);
  7080. }
  7081. set_load_weight(&init_task);
  7082. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7083. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7084. #endif
  7085. #ifdef CONFIG_SMP
  7086. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7087. #endif
  7088. #ifdef CONFIG_RT_MUTEXES
  7089. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7090. #endif
  7091. /*
  7092. * The boot idle thread does lazy MMU switching as well:
  7093. */
  7094. atomic_inc(&init_mm.mm_count);
  7095. enter_lazy_tlb(&init_mm, current);
  7096. /*
  7097. * Make us the idle thread. Technically, schedule() should not be
  7098. * called from this thread, however somewhere below it might be,
  7099. * but because we are the idle thread, we just pick up running again
  7100. * when this runqueue becomes "idle".
  7101. */
  7102. init_idle(current, smp_processor_id());
  7103. /*
  7104. * During early bootup we pretend to be a normal task:
  7105. */
  7106. current->sched_class = &fair_sched_class;
  7107. scheduler_running = 1;
  7108. }
  7109. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7110. void __might_sleep(char *file, int line)
  7111. {
  7112. #ifdef in_atomic
  7113. static unsigned long prev_jiffy; /* ratelimiting */
  7114. if ((!in_atomic() && !irqs_disabled()) ||
  7115. system_state != SYSTEM_RUNNING || oops_in_progress)
  7116. return;
  7117. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7118. return;
  7119. prev_jiffy = jiffies;
  7120. printk(KERN_ERR
  7121. "BUG: sleeping function called from invalid context at %s:%d\n",
  7122. file, line);
  7123. printk(KERN_ERR
  7124. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7125. in_atomic(), irqs_disabled(),
  7126. current->pid, current->comm);
  7127. debug_show_held_locks(current);
  7128. if (irqs_disabled())
  7129. print_irqtrace_events(current);
  7130. dump_stack();
  7131. #endif
  7132. }
  7133. EXPORT_SYMBOL(__might_sleep);
  7134. #endif
  7135. #ifdef CONFIG_MAGIC_SYSRQ
  7136. static void normalize_task(struct rq *rq, struct task_struct *p)
  7137. {
  7138. int on_rq;
  7139. update_rq_clock(rq);
  7140. on_rq = p->se.on_rq;
  7141. if (on_rq)
  7142. deactivate_task(rq, p, 0);
  7143. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7144. if (on_rq) {
  7145. activate_task(rq, p, 0);
  7146. resched_task(rq->curr);
  7147. }
  7148. }
  7149. void normalize_rt_tasks(void)
  7150. {
  7151. struct task_struct *g, *p;
  7152. unsigned long flags;
  7153. struct rq *rq;
  7154. read_lock_irqsave(&tasklist_lock, flags);
  7155. do_each_thread(g, p) {
  7156. /*
  7157. * Only normalize user tasks:
  7158. */
  7159. if (!p->mm)
  7160. continue;
  7161. p->se.exec_start = 0;
  7162. #ifdef CONFIG_SCHEDSTATS
  7163. p->se.wait_start = 0;
  7164. p->se.sleep_start = 0;
  7165. p->se.block_start = 0;
  7166. #endif
  7167. if (!rt_task(p)) {
  7168. /*
  7169. * Renice negative nice level userspace
  7170. * tasks back to 0:
  7171. */
  7172. if (TASK_NICE(p) < 0 && p->mm)
  7173. set_user_nice(p, 0);
  7174. continue;
  7175. }
  7176. spin_lock(&p->pi_lock);
  7177. rq = __task_rq_lock(p);
  7178. normalize_task(rq, p);
  7179. __task_rq_unlock(rq);
  7180. spin_unlock(&p->pi_lock);
  7181. } while_each_thread(g, p);
  7182. read_unlock_irqrestore(&tasklist_lock, flags);
  7183. }
  7184. #endif /* CONFIG_MAGIC_SYSRQ */
  7185. #ifdef CONFIG_IA64
  7186. /*
  7187. * These functions are only useful for the IA64 MCA handling.
  7188. *
  7189. * They can only be called when the whole system has been
  7190. * stopped - every CPU needs to be quiescent, and no scheduling
  7191. * activity can take place. Using them for anything else would
  7192. * be a serious bug, and as a result, they aren't even visible
  7193. * under any other configuration.
  7194. */
  7195. /**
  7196. * curr_task - return the current task for a given cpu.
  7197. * @cpu: the processor in question.
  7198. *
  7199. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7200. */
  7201. struct task_struct *curr_task(int cpu)
  7202. {
  7203. return cpu_curr(cpu);
  7204. }
  7205. /**
  7206. * set_curr_task - set the current task for a given cpu.
  7207. * @cpu: the processor in question.
  7208. * @p: the task pointer to set.
  7209. *
  7210. * Description: This function must only be used when non-maskable interrupts
  7211. * are serviced on a separate stack. It allows the architecture to switch the
  7212. * notion of the current task on a cpu in a non-blocking manner. This function
  7213. * must be called with all CPU's synchronized, and interrupts disabled, the
  7214. * and caller must save the original value of the current task (see
  7215. * curr_task() above) and restore that value before reenabling interrupts and
  7216. * re-starting the system.
  7217. *
  7218. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7219. */
  7220. void set_curr_task(int cpu, struct task_struct *p)
  7221. {
  7222. cpu_curr(cpu) = p;
  7223. }
  7224. #endif
  7225. #ifdef CONFIG_FAIR_GROUP_SCHED
  7226. static void free_fair_sched_group(struct task_group *tg)
  7227. {
  7228. int i;
  7229. for_each_possible_cpu(i) {
  7230. if (tg->cfs_rq)
  7231. kfree(tg->cfs_rq[i]);
  7232. if (tg->se)
  7233. kfree(tg->se[i]);
  7234. }
  7235. kfree(tg->cfs_rq);
  7236. kfree(tg->se);
  7237. }
  7238. static
  7239. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7240. {
  7241. struct cfs_rq *cfs_rq;
  7242. struct sched_entity *se, *parent_se;
  7243. struct rq *rq;
  7244. int i;
  7245. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7246. if (!tg->cfs_rq)
  7247. goto err;
  7248. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7249. if (!tg->se)
  7250. goto err;
  7251. tg->shares = NICE_0_LOAD;
  7252. for_each_possible_cpu(i) {
  7253. rq = cpu_rq(i);
  7254. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7255. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7256. if (!cfs_rq)
  7257. goto err;
  7258. se = kmalloc_node(sizeof(struct sched_entity),
  7259. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7260. if (!se)
  7261. goto err;
  7262. parent_se = parent ? parent->se[i] : NULL;
  7263. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7264. }
  7265. return 1;
  7266. err:
  7267. return 0;
  7268. }
  7269. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7270. {
  7271. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7272. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7273. }
  7274. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7275. {
  7276. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7277. }
  7278. #else /* !CONFG_FAIR_GROUP_SCHED */
  7279. static inline void free_fair_sched_group(struct task_group *tg)
  7280. {
  7281. }
  7282. static inline
  7283. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7284. {
  7285. return 1;
  7286. }
  7287. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7288. {
  7289. }
  7290. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7291. {
  7292. }
  7293. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7294. #ifdef CONFIG_RT_GROUP_SCHED
  7295. static void free_rt_sched_group(struct task_group *tg)
  7296. {
  7297. int i;
  7298. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7299. for_each_possible_cpu(i) {
  7300. if (tg->rt_rq)
  7301. kfree(tg->rt_rq[i]);
  7302. if (tg->rt_se)
  7303. kfree(tg->rt_se[i]);
  7304. }
  7305. kfree(tg->rt_rq);
  7306. kfree(tg->rt_se);
  7307. }
  7308. static
  7309. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7310. {
  7311. struct rt_rq *rt_rq;
  7312. struct sched_rt_entity *rt_se, *parent_se;
  7313. struct rq *rq;
  7314. int i;
  7315. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7316. if (!tg->rt_rq)
  7317. goto err;
  7318. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7319. if (!tg->rt_se)
  7320. goto err;
  7321. init_rt_bandwidth(&tg->rt_bandwidth,
  7322. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7323. for_each_possible_cpu(i) {
  7324. rq = cpu_rq(i);
  7325. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7326. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7327. if (!rt_rq)
  7328. goto err;
  7329. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7330. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7331. if (!rt_se)
  7332. goto err;
  7333. parent_se = parent ? parent->rt_se[i] : NULL;
  7334. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7335. }
  7336. return 1;
  7337. err:
  7338. return 0;
  7339. }
  7340. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7341. {
  7342. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7343. &cpu_rq(cpu)->leaf_rt_rq_list);
  7344. }
  7345. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7346. {
  7347. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7348. }
  7349. #else /* !CONFIG_RT_GROUP_SCHED */
  7350. static inline void free_rt_sched_group(struct task_group *tg)
  7351. {
  7352. }
  7353. static inline
  7354. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7355. {
  7356. return 1;
  7357. }
  7358. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7359. {
  7360. }
  7361. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7362. {
  7363. }
  7364. #endif /* CONFIG_RT_GROUP_SCHED */
  7365. #ifdef CONFIG_GROUP_SCHED
  7366. static void free_sched_group(struct task_group *tg)
  7367. {
  7368. free_fair_sched_group(tg);
  7369. free_rt_sched_group(tg);
  7370. kfree(tg);
  7371. }
  7372. /* allocate runqueue etc for a new task group */
  7373. struct task_group *sched_create_group(struct task_group *parent)
  7374. {
  7375. struct task_group *tg;
  7376. unsigned long flags;
  7377. int i;
  7378. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7379. if (!tg)
  7380. return ERR_PTR(-ENOMEM);
  7381. if (!alloc_fair_sched_group(tg, parent))
  7382. goto err;
  7383. if (!alloc_rt_sched_group(tg, parent))
  7384. goto err;
  7385. spin_lock_irqsave(&task_group_lock, flags);
  7386. for_each_possible_cpu(i) {
  7387. register_fair_sched_group(tg, i);
  7388. register_rt_sched_group(tg, i);
  7389. }
  7390. list_add_rcu(&tg->list, &task_groups);
  7391. WARN_ON(!parent); /* root should already exist */
  7392. tg->parent = parent;
  7393. INIT_LIST_HEAD(&tg->children);
  7394. list_add_rcu(&tg->siblings, &parent->children);
  7395. spin_unlock_irqrestore(&task_group_lock, flags);
  7396. return tg;
  7397. err:
  7398. free_sched_group(tg);
  7399. return ERR_PTR(-ENOMEM);
  7400. }
  7401. /* rcu callback to free various structures associated with a task group */
  7402. static void free_sched_group_rcu(struct rcu_head *rhp)
  7403. {
  7404. /* now it should be safe to free those cfs_rqs */
  7405. free_sched_group(container_of(rhp, struct task_group, rcu));
  7406. }
  7407. /* Destroy runqueue etc associated with a task group */
  7408. void sched_destroy_group(struct task_group *tg)
  7409. {
  7410. unsigned long flags;
  7411. int i;
  7412. spin_lock_irqsave(&task_group_lock, flags);
  7413. for_each_possible_cpu(i) {
  7414. unregister_fair_sched_group(tg, i);
  7415. unregister_rt_sched_group(tg, i);
  7416. }
  7417. list_del_rcu(&tg->list);
  7418. list_del_rcu(&tg->siblings);
  7419. spin_unlock_irqrestore(&task_group_lock, flags);
  7420. /* wait for possible concurrent references to cfs_rqs complete */
  7421. call_rcu(&tg->rcu, free_sched_group_rcu);
  7422. }
  7423. /* change task's runqueue when it moves between groups.
  7424. * The caller of this function should have put the task in its new group
  7425. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7426. * reflect its new group.
  7427. */
  7428. void sched_move_task(struct task_struct *tsk)
  7429. {
  7430. int on_rq, running;
  7431. unsigned long flags;
  7432. struct rq *rq;
  7433. rq = task_rq_lock(tsk, &flags);
  7434. update_rq_clock(rq);
  7435. running = task_current(rq, tsk);
  7436. on_rq = tsk->se.on_rq;
  7437. if (on_rq)
  7438. dequeue_task(rq, tsk, 0);
  7439. if (unlikely(running))
  7440. tsk->sched_class->put_prev_task(rq, tsk);
  7441. set_task_rq(tsk, task_cpu(tsk));
  7442. #ifdef CONFIG_FAIR_GROUP_SCHED
  7443. if (tsk->sched_class->moved_group)
  7444. tsk->sched_class->moved_group(tsk);
  7445. #endif
  7446. if (unlikely(running))
  7447. tsk->sched_class->set_curr_task(rq);
  7448. if (on_rq)
  7449. enqueue_task(rq, tsk, 0);
  7450. task_rq_unlock(rq, &flags);
  7451. }
  7452. #endif /* CONFIG_GROUP_SCHED */
  7453. #ifdef CONFIG_FAIR_GROUP_SCHED
  7454. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7455. {
  7456. struct cfs_rq *cfs_rq = se->cfs_rq;
  7457. int on_rq;
  7458. on_rq = se->on_rq;
  7459. if (on_rq)
  7460. dequeue_entity(cfs_rq, se, 0);
  7461. se->load.weight = shares;
  7462. se->load.inv_weight = 0;
  7463. if (on_rq)
  7464. enqueue_entity(cfs_rq, se, 0);
  7465. }
  7466. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7467. {
  7468. struct cfs_rq *cfs_rq = se->cfs_rq;
  7469. struct rq *rq = cfs_rq->rq;
  7470. unsigned long flags;
  7471. spin_lock_irqsave(&rq->lock, flags);
  7472. __set_se_shares(se, shares);
  7473. spin_unlock_irqrestore(&rq->lock, flags);
  7474. }
  7475. static DEFINE_MUTEX(shares_mutex);
  7476. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7477. {
  7478. int i;
  7479. unsigned long flags;
  7480. /*
  7481. * We can't change the weight of the root cgroup.
  7482. */
  7483. if (!tg->se[0])
  7484. return -EINVAL;
  7485. if (shares < MIN_SHARES)
  7486. shares = MIN_SHARES;
  7487. else if (shares > MAX_SHARES)
  7488. shares = MAX_SHARES;
  7489. mutex_lock(&shares_mutex);
  7490. if (tg->shares == shares)
  7491. goto done;
  7492. spin_lock_irqsave(&task_group_lock, flags);
  7493. for_each_possible_cpu(i)
  7494. unregister_fair_sched_group(tg, i);
  7495. list_del_rcu(&tg->siblings);
  7496. spin_unlock_irqrestore(&task_group_lock, flags);
  7497. /* wait for any ongoing reference to this group to finish */
  7498. synchronize_sched();
  7499. /*
  7500. * Now we are free to modify the group's share on each cpu
  7501. * w/o tripping rebalance_share or load_balance_fair.
  7502. */
  7503. tg->shares = shares;
  7504. for_each_possible_cpu(i) {
  7505. /*
  7506. * force a rebalance
  7507. */
  7508. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7509. set_se_shares(tg->se[i], shares);
  7510. }
  7511. /*
  7512. * Enable load balance activity on this group, by inserting it back on
  7513. * each cpu's rq->leaf_cfs_rq_list.
  7514. */
  7515. spin_lock_irqsave(&task_group_lock, flags);
  7516. for_each_possible_cpu(i)
  7517. register_fair_sched_group(tg, i);
  7518. list_add_rcu(&tg->siblings, &tg->parent->children);
  7519. spin_unlock_irqrestore(&task_group_lock, flags);
  7520. done:
  7521. mutex_unlock(&shares_mutex);
  7522. return 0;
  7523. }
  7524. unsigned long sched_group_shares(struct task_group *tg)
  7525. {
  7526. return tg->shares;
  7527. }
  7528. #endif
  7529. #ifdef CONFIG_RT_GROUP_SCHED
  7530. /*
  7531. * Ensure that the real time constraints are schedulable.
  7532. */
  7533. static DEFINE_MUTEX(rt_constraints_mutex);
  7534. static unsigned long to_ratio(u64 period, u64 runtime)
  7535. {
  7536. if (runtime == RUNTIME_INF)
  7537. return 1ULL << 20;
  7538. return div64_u64(runtime << 20, period);
  7539. }
  7540. /* Must be called with tasklist_lock held */
  7541. static inline int tg_has_rt_tasks(struct task_group *tg)
  7542. {
  7543. struct task_struct *g, *p;
  7544. do_each_thread(g, p) {
  7545. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7546. return 1;
  7547. } while_each_thread(g, p);
  7548. return 0;
  7549. }
  7550. struct rt_schedulable_data {
  7551. struct task_group *tg;
  7552. u64 rt_period;
  7553. u64 rt_runtime;
  7554. };
  7555. static int tg_schedulable(struct task_group *tg, void *data)
  7556. {
  7557. struct rt_schedulable_data *d = data;
  7558. struct task_group *child;
  7559. unsigned long total, sum = 0;
  7560. u64 period, runtime;
  7561. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7562. runtime = tg->rt_bandwidth.rt_runtime;
  7563. if (tg == d->tg) {
  7564. period = d->rt_period;
  7565. runtime = d->rt_runtime;
  7566. }
  7567. /*
  7568. * Cannot have more runtime than the period.
  7569. */
  7570. if (runtime > period && runtime != RUNTIME_INF)
  7571. return -EINVAL;
  7572. /*
  7573. * Ensure we don't starve existing RT tasks.
  7574. */
  7575. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7576. return -EBUSY;
  7577. total = to_ratio(period, runtime);
  7578. /*
  7579. * Nobody can have more than the global setting allows.
  7580. */
  7581. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7582. return -EINVAL;
  7583. /*
  7584. * The sum of our children's runtime should not exceed our own.
  7585. */
  7586. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7587. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7588. runtime = child->rt_bandwidth.rt_runtime;
  7589. if (child == d->tg) {
  7590. period = d->rt_period;
  7591. runtime = d->rt_runtime;
  7592. }
  7593. sum += to_ratio(period, runtime);
  7594. }
  7595. if (sum > total)
  7596. return -EINVAL;
  7597. return 0;
  7598. }
  7599. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7600. {
  7601. struct rt_schedulable_data data = {
  7602. .tg = tg,
  7603. .rt_period = period,
  7604. .rt_runtime = runtime,
  7605. };
  7606. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7607. }
  7608. static int tg_set_bandwidth(struct task_group *tg,
  7609. u64 rt_period, u64 rt_runtime)
  7610. {
  7611. int i, err = 0;
  7612. mutex_lock(&rt_constraints_mutex);
  7613. read_lock(&tasklist_lock);
  7614. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7615. if (err)
  7616. goto unlock;
  7617. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7618. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7619. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7620. for_each_possible_cpu(i) {
  7621. struct rt_rq *rt_rq = tg->rt_rq[i];
  7622. spin_lock(&rt_rq->rt_runtime_lock);
  7623. rt_rq->rt_runtime = rt_runtime;
  7624. spin_unlock(&rt_rq->rt_runtime_lock);
  7625. }
  7626. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7627. unlock:
  7628. read_unlock(&tasklist_lock);
  7629. mutex_unlock(&rt_constraints_mutex);
  7630. return err;
  7631. }
  7632. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7633. {
  7634. u64 rt_runtime, rt_period;
  7635. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7636. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7637. if (rt_runtime_us < 0)
  7638. rt_runtime = RUNTIME_INF;
  7639. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7640. }
  7641. long sched_group_rt_runtime(struct task_group *tg)
  7642. {
  7643. u64 rt_runtime_us;
  7644. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7645. return -1;
  7646. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7647. do_div(rt_runtime_us, NSEC_PER_USEC);
  7648. return rt_runtime_us;
  7649. }
  7650. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7651. {
  7652. u64 rt_runtime, rt_period;
  7653. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7654. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7655. if (rt_period == 0)
  7656. return -EINVAL;
  7657. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7658. }
  7659. long sched_group_rt_period(struct task_group *tg)
  7660. {
  7661. u64 rt_period_us;
  7662. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7663. do_div(rt_period_us, NSEC_PER_USEC);
  7664. return rt_period_us;
  7665. }
  7666. static int sched_rt_global_constraints(void)
  7667. {
  7668. u64 runtime, period;
  7669. int ret = 0;
  7670. if (sysctl_sched_rt_period <= 0)
  7671. return -EINVAL;
  7672. runtime = global_rt_runtime();
  7673. period = global_rt_period();
  7674. /*
  7675. * Sanity check on the sysctl variables.
  7676. */
  7677. if (runtime > period && runtime != RUNTIME_INF)
  7678. return -EINVAL;
  7679. mutex_lock(&rt_constraints_mutex);
  7680. read_lock(&tasklist_lock);
  7681. ret = __rt_schedulable(NULL, 0, 0);
  7682. read_unlock(&tasklist_lock);
  7683. mutex_unlock(&rt_constraints_mutex);
  7684. return ret;
  7685. }
  7686. #else /* !CONFIG_RT_GROUP_SCHED */
  7687. static int sched_rt_global_constraints(void)
  7688. {
  7689. unsigned long flags;
  7690. int i;
  7691. if (sysctl_sched_rt_period <= 0)
  7692. return -EINVAL;
  7693. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7694. for_each_possible_cpu(i) {
  7695. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7696. spin_lock(&rt_rq->rt_runtime_lock);
  7697. rt_rq->rt_runtime = global_rt_runtime();
  7698. spin_unlock(&rt_rq->rt_runtime_lock);
  7699. }
  7700. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7701. return 0;
  7702. }
  7703. #endif /* CONFIG_RT_GROUP_SCHED */
  7704. int sched_rt_handler(struct ctl_table *table, int write,
  7705. struct file *filp, void __user *buffer, size_t *lenp,
  7706. loff_t *ppos)
  7707. {
  7708. int ret;
  7709. int old_period, old_runtime;
  7710. static DEFINE_MUTEX(mutex);
  7711. mutex_lock(&mutex);
  7712. old_period = sysctl_sched_rt_period;
  7713. old_runtime = sysctl_sched_rt_runtime;
  7714. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7715. if (!ret && write) {
  7716. ret = sched_rt_global_constraints();
  7717. if (ret) {
  7718. sysctl_sched_rt_period = old_period;
  7719. sysctl_sched_rt_runtime = old_runtime;
  7720. } else {
  7721. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7722. def_rt_bandwidth.rt_period =
  7723. ns_to_ktime(global_rt_period());
  7724. }
  7725. }
  7726. mutex_unlock(&mutex);
  7727. return ret;
  7728. }
  7729. #ifdef CONFIG_CGROUP_SCHED
  7730. /* return corresponding task_group object of a cgroup */
  7731. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7732. {
  7733. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7734. struct task_group, css);
  7735. }
  7736. static struct cgroup_subsys_state *
  7737. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7738. {
  7739. struct task_group *tg, *parent;
  7740. if (!cgrp->parent) {
  7741. /* This is early initialization for the top cgroup */
  7742. return &init_task_group.css;
  7743. }
  7744. parent = cgroup_tg(cgrp->parent);
  7745. tg = sched_create_group(parent);
  7746. if (IS_ERR(tg))
  7747. return ERR_PTR(-ENOMEM);
  7748. return &tg->css;
  7749. }
  7750. static void
  7751. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7752. {
  7753. struct task_group *tg = cgroup_tg(cgrp);
  7754. sched_destroy_group(tg);
  7755. }
  7756. static int
  7757. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7758. struct task_struct *tsk)
  7759. {
  7760. #ifdef CONFIG_RT_GROUP_SCHED
  7761. /* Don't accept realtime tasks when there is no way for them to run */
  7762. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7763. return -EINVAL;
  7764. #else
  7765. /* We don't support RT-tasks being in separate groups */
  7766. if (tsk->sched_class != &fair_sched_class)
  7767. return -EINVAL;
  7768. #endif
  7769. return 0;
  7770. }
  7771. static void
  7772. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7773. struct cgroup *old_cont, struct task_struct *tsk)
  7774. {
  7775. sched_move_task(tsk);
  7776. }
  7777. #ifdef CONFIG_FAIR_GROUP_SCHED
  7778. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7779. u64 shareval)
  7780. {
  7781. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7782. }
  7783. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7784. {
  7785. struct task_group *tg = cgroup_tg(cgrp);
  7786. return (u64) tg->shares;
  7787. }
  7788. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7789. #ifdef CONFIG_RT_GROUP_SCHED
  7790. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7791. s64 val)
  7792. {
  7793. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7794. }
  7795. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7796. {
  7797. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7798. }
  7799. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7800. u64 rt_period_us)
  7801. {
  7802. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7803. }
  7804. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7805. {
  7806. return sched_group_rt_period(cgroup_tg(cgrp));
  7807. }
  7808. #endif /* CONFIG_RT_GROUP_SCHED */
  7809. static struct cftype cpu_files[] = {
  7810. #ifdef CONFIG_FAIR_GROUP_SCHED
  7811. {
  7812. .name = "shares",
  7813. .read_u64 = cpu_shares_read_u64,
  7814. .write_u64 = cpu_shares_write_u64,
  7815. },
  7816. #endif
  7817. #ifdef CONFIG_RT_GROUP_SCHED
  7818. {
  7819. .name = "rt_runtime_us",
  7820. .read_s64 = cpu_rt_runtime_read,
  7821. .write_s64 = cpu_rt_runtime_write,
  7822. },
  7823. {
  7824. .name = "rt_period_us",
  7825. .read_u64 = cpu_rt_period_read_uint,
  7826. .write_u64 = cpu_rt_period_write_uint,
  7827. },
  7828. #endif
  7829. };
  7830. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7831. {
  7832. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7833. }
  7834. struct cgroup_subsys cpu_cgroup_subsys = {
  7835. .name = "cpu",
  7836. .create = cpu_cgroup_create,
  7837. .destroy = cpu_cgroup_destroy,
  7838. .can_attach = cpu_cgroup_can_attach,
  7839. .attach = cpu_cgroup_attach,
  7840. .populate = cpu_cgroup_populate,
  7841. .subsys_id = cpu_cgroup_subsys_id,
  7842. .early_init = 1,
  7843. };
  7844. #endif /* CONFIG_CGROUP_SCHED */
  7845. #ifdef CONFIG_CGROUP_CPUACCT
  7846. /*
  7847. * CPU accounting code for task groups.
  7848. *
  7849. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7850. * (balbir@in.ibm.com).
  7851. */
  7852. /* track cpu usage of a group of tasks */
  7853. struct cpuacct {
  7854. struct cgroup_subsys_state css;
  7855. /* cpuusage holds pointer to a u64-type object on every cpu */
  7856. u64 *cpuusage;
  7857. };
  7858. struct cgroup_subsys cpuacct_subsys;
  7859. /* return cpu accounting group corresponding to this container */
  7860. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7861. {
  7862. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7863. struct cpuacct, css);
  7864. }
  7865. /* return cpu accounting group to which this task belongs */
  7866. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7867. {
  7868. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7869. struct cpuacct, css);
  7870. }
  7871. /* create a new cpu accounting group */
  7872. static struct cgroup_subsys_state *cpuacct_create(
  7873. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7874. {
  7875. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7876. if (!ca)
  7877. return ERR_PTR(-ENOMEM);
  7878. ca->cpuusage = alloc_percpu(u64);
  7879. if (!ca->cpuusage) {
  7880. kfree(ca);
  7881. return ERR_PTR(-ENOMEM);
  7882. }
  7883. return &ca->css;
  7884. }
  7885. /* destroy an existing cpu accounting group */
  7886. static void
  7887. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7888. {
  7889. struct cpuacct *ca = cgroup_ca(cgrp);
  7890. free_percpu(ca->cpuusage);
  7891. kfree(ca);
  7892. }
  7893. /* return total cpu usage (in nanoseconds) of a group */
  7894. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7895. {
  7896. struct cpuacct *ca = cgroup_ca(cgrp);
  7897. u64 totalcpuusage = 0;
  7898. int i;
  7899. for_each_possible_cpu(i) {
  7900. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7901. /*
  7902. * Take rq->lock to make 64-bit addition safe on 32-bit
  7903. * platforms.
  7904. */
  7905. spin_lock_irq(&cpu_rq(i)->lock);
  7906. totalcpuusage += *cpuusage;
  7907. spin_unlock_irq(&cpu_rq(i)->lock);
  7908. }
  7909. return totalcpuusage;
  7910. }
  7911. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7912. u64 reset)
  7913. {
  7914. struct cpuacct *ca = cgroup_ca(cgrp);
  7915. int err = 0;
  7916. int i;
  7917. if (reset) {
  7918. err = -EINVAL;
  7919. goto out;
  7920. }
  7921. for_each_possible_cpu(i) {
  7922. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7923. spin_lock_irq(&cpu_rq(i)->lock);
  7924. *cpuusage = 0;
  7925. spin_unlock_irq(&cpu_rq(i)->lock);
  7926. }
  7927. out:
  7928. return err;
  7929. }
  7930. static struct cftype files[] = {
  7931. {
  7932. .name = "usage",
  7933. .read_u64 = cpuusage_read,
  7934. .write_u64 = cpuusage_write,
  7935. },
  7936. };
  7937. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7938. {
  7939. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7940. }
  7941. /*
  7942. * charge this task's execution time to its accounting group.
  7943. *
  7944. * called with rq->lock held.
  7945. */
  7946. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7947. {
  7948. struct cpuacct *ca;
  7949. if (!cpuacct_subsys.active)
  7950. return;
  7951. ca = task_ca(tsk);
  7952. if (ca) {
  7953. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7954. *cpuusage += cputime;
  7955. }
  7956. }
  7957. struct cgroup_subsys cpuacct_subsys = {
  7958. .name = "cpuacct",
  7959. .create = cpuacct_create,
  7960. .destroy = cpuacct_destroy,
  7961. .populate = cpuacct_populate,
  7962. .subsys_id = cpuacct_subsys_id,
  7963. };
  7964. #endif /* CONFIG_CGROUP_CPUACCT */