ll_rw_blk.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709
  1. /*
  2. * linux/drivers/block/ll_rw_blk.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  6. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  7. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  8. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  9. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10. */
  11. /*
  12. * This handles all read/write requests to block devices
  13. */
  14. #include <linux/config.h>
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/bio.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/mm.h>
  22. #include <linux/kernel_stat.h>
  23. #include <linux/string.h>
  24. #include <linux/init.h>
  25. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  26. #include <linux/completion.h>
  27. #include <linux/slab.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/blkdev.h>
  31. /*
  32. * for max sense size
  33. */
  34. #include <scsi/scsi_cmnd.h>
  35. static void blk_unplug_work(void *data);
  36. static void blk_unplug_timeout(unsigned long data);
  37. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  38. /*
  39. * For the allocated request tables
  40. */
  41. static kmem_cache_t *request_cachep;
  42. /*
  43. * For queue allocation
  44. */
  45. static kmem_cache_t *requestq_cachep;
  46. /*
  47. * For io context allocations
  48. */
  49. static kmem_cache_t *iocontext_cachep;
  50. static wait_queue_head_t congestion_wqh[2] = {
  51. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  52. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  53. };
  54. /*
  55. * Controlling structure to kblockd
  56. */
  57. static struct workqueue_struct *kblockd_workqueue;
  58. unsigned long blk_max_low_pfn, blk_max_pfn;
  59. EXPORT_SYMBOL(blk_max_low_pfn);
  60. EXPORT_SYMBOL(blk_max_pfn);
  61. /* Amount of time in which a process may batch requests */
  62. #define BLK_BATCH_TIME (HZ/50UL)
  63. /* Number of requests a "batching" process may submit */
  64. #define BLK_BATCH_REQ 32
  65. /*
  66. * Return the threshold (number of used requests) at which the queue is
  67. * considered to be congested. It include a little hysteresis to keep the
  68. * context switch rate down.
  69. */
  70. static inline int queue_congestion_on_threshold(struct request_queue *q)
  71. {
  72. return q->nr_congestion_on;
  73. }
  74. /*
  75. * The threshold at which a queue is considered to be uncongested
  76. */
  77. static inline int queue_congestion_off_threshold(struct request_queue *q)
  78. {
  79. return q->nr_congestion_off;
  80. }
  81. static void blk_queue_congestion_threshold(struct request_queue *q)
  82. {
  83. int nr;
  84. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  85. if (nr > q->nr_requests)
  86. nr = q->nr_requests;
  87. q->nr_congestion_on = nr;
  88. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  89. if (nr < 1)
  90. nr = 1;
  91. q->nr_congestion_off = nr;
  92. }
  93. /*
  94. * A queue has just exitted congestion. Note this in the global counter of
  95. * congested queues, and wake up anyone who was waiting for requests to be
  96. * put back.
  97. */
  98. static void clear_queue_congested(request_queue_t *q, int rw)
  99. {
  100. enum bdi_state bit;
  101. wait_queue_head_t *wqh = &congestion_wqh[rw];
  102. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  103. clear_bit(bit, &q->backing_dev_info.state);
  104. smp_mb__after_clear_bit();
  105. if (waitqueue_active(wqh))
  106. wake_up(wqh);
  107. }
  108. /*
  109. * A queue has just entered congestion. Flag that in the queue's VM-visible
  110. * state flags and increment the global gounter of congested queues.
  111. */
  112. static void set_queue_congested(request_queue_t *q, int rw)
  113. {
  114. enum bdi_state bit;
  115. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  116. set_bit(bit, &q->backing_dev_info.state);
  117. }
  118. /**
  119. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  120. * @bdev: device
  121. *
  122. * Locates the passed device's request queue and returns the address of its
  123. * backing_dev_info
  124. *
  125. * Will return NULL if the request queue cannot be located.
  126. */
  127. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  128. {
  129. struct backing_dev_info *ret = NULL;
  130. request_queue_t *q = bdev_get_queue(bdev);
  131. if (q)
  132. ret = &q->backing_dev_info;
  133. return ret;
  134. }
  135. EXPORT_SYMBOL(blk_get_backing_dev_info);
  136. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  137. {
  138. q->activity_fn = fn;
  139. q->activity_data = data;
  140. }
  141. EXPORT_SYMBOL(blk_queue_activity_fn);
  142. /**
  143. * blk_queue_prep_rq - set a prepare_request function for queue
  144. * @q: queue
  145. * @pfn: prepare_request function
  146. *
  147. * It's possible for a queue to register a prepare_request callback which
  148. * is invoked before the request is handed to the request_fn. The goal of
  149. * the function is to prepare a request for I/O, it can be used to build a
  150. * cdb from the request data for instance.
  151. *
  152. */
  153. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  154. {
  155. q->prep_rq_fn = pfn;
  156. }
  157. EXPORT_SYMBOL(blk_queue_prep_rq);
  158. /**
  159. * blk_queue_merge_bvec - set a merge_bvec function for queue
  160. * @q: queue
  161. * @mbfn: merge_bvec_fn
  162. *
  163. * Usually queues have static limitations on the max sectors or segments that
  164. * we can put in a request. Stacking drivers may have some settings that
  165. * are dynamic, and thus we have to query the queue whether it is ok to
  166. * add a new bio_vec to a bio at a given offset or not. If the block device
  167. * has such limitations, it needs to register a merge_bvec_fn to control
  168. * the size of bio's sent to it. Note that a block device *must* allow a
  169. * single page to be added to an empty bio. The block device driver may want
  170. * to use the bio_split() function to deal with these bio's. By default
  171. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  172. * honored.
  173. */
  174. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  175. {
  176. q->merge_bvec_fn = mbfn;
  177. }
  178. EXPORT_SYMBOL(blk_queue_merge_bvec);
  179. /**
  180. * blk_queue_make_request - define an alternate make_request function for a device
  181. * @q: the request queue for the device to be affected
  182. * @mfn: the alternate make_request function
  183. *
  184. * Description:
  185. * The normal way for &struct bios to be passed to a device
  186. * driver is for them to be collected into requests on a request
  187. * queue, and then to allow the device driver to select requests
  188. * off that queue when it is ready. This works well for many block
  189. * devices. However some block devices (typically virtual devices
  190. * such as md or lvm) do not benefit from the processing on the
  191. * request queue, and are served best by having the requests passed
  192. * directly to them. This can be achieved by providing a function
  193. * to blk_queue_make_request().
  194. *
  195. * Caveat:
  196. * The driver that does this *must* be able to deal appropriately
  197. * with buffers in "highmemory". This can be accomplished by either calling
  198. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  199. * blk_queue_bounce() to create a buffer in normal memory.
  200. **/
  201. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  202. {
  203. /*
  204. * set defaults
  205. */
  206. q->nr_requests = BLKDEV_MAX_RQ;
  207. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  208. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  209. q->make_request_fn = mfn;
  210. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  211. q->backing_dev_info.state = 0;
  212. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  213. blk_queue_max_sectors(q, MAX_SECTORS);
  214. blk_queue_hardsect_size(q, 512);
  215. blk_queue_dma_alignment(q, 511);
  216. blk_queue_congestion_threshold(q);
  217. q->nr_batching = BLK_BATCH_REQ;
  218. q->unplug_thresh = 4; /* hmm */
  219. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  220. if (q->unplug_delay == 0)
  221. q->unplug_delay = 1;
  222. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  223. q->unplug_timer.function = blk_unplug_timeout;
  224. q->unplug_timer.data = (unsigned long)q;
  225. /*
  226. * by default assume old behaviour and bounce for any highmem page
  227. */
  228. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  229. blk_queue_activity_fn(q, NULL, NULL);
  230. INIT_LIST_HEAD(&q->drain_list);
  231. }
  232. EXPORT_SYMBOL(blk_queue_make_request);
  233. static inline void rq_init(request_queue_t *q, struct request *rq)
  234. {
  235. INIT_LIST_HEAD(&rq->queuelist);
  236. rq->errors = 0;
  237. rq->rq_status = RQ_ACTIVE;
  238. rq->bio = rq->biotail = NULL;
  239. rq->ioprio = 0;
  240. rq->buffer = NULL;
  241. rq->ref_count = 1;
  242. rq->q = q;
  243. rq->waiting = NULL;
  244. rq->special = NULL;
  245. rq->data_len = 0;
  246. rq->data = NULL;
  247. rq->nr_phys_segments = 0;
  248. rq->sense = NULL;
  249. rq->end_io = NULL;
  250. rq->end_io_data = NULL;
  251. }
  252. /**
  253. * blk_queue_ordered - does this queue support ordered writes
  254. * @q: the request queue
  255. * @flag: see below
  256. *
  257. * Description:
  258. * For journalled file systems, doing ordered writes on a commit
  259. * block instead of explicitly doing wait_on_buffer (which is bad
  260. * for performance) can be a big win. Block drivers supporting this
  261. * feature should call this function and indicate so.
  262. *
  263. **/
  264. void blk_queue_ordered(request_queue_t *q, int flag)
  265. {
  266. switch (flag) {
  267. case QUEUE_ORDERED_NONE:
  268. if (q->flush_rq)
  269. kmem_cache_free(request_cachep, q->flush_rq);
  270. q->flush_rq = NULL;
  271. q->ordered = flag;
  272. break;
  273. case QUEUE_ORDERED_TAG:
  274. q->ordered = flag;
  275. break;
  276. case QUEUE_ORDERED_FLUSH:
  277. q->ordered = flag;
  278. if (!q->flush_rq)
  279. q->flush_rq = kmem_cache_alloc(request_cachep,
  280. GFP_KERNEL);
  281. break;
  282. default:
  283. printk("blk_queue_ordered: bad value %d\n", flag);
  284. break;
  285. }
  286. }
  287. EXPORT_SYMBOL(blk_queue_ordered);
  288. /**
  289. * blk_queue_issue_flush_fn - set function for issuing a flush
  290. * @q: the request queue
  291. * @iff: the function to be called issuing the flush
  292. *
  293. * Description:
  294. * If a driver supports issuing a flush command, the support is notified
  295. * to the block layer by defining it through this call.
  296. *
  297. **/
  298. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  299. {
  300. q->issue_flush_fn = iff;
  301. }
  302. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  303. /*
  304. * Cache flushing for ordered writes handling
  305. */
  306. static void blk_pre_flush_end_io(struct request *flush_rq)
  307. {
  308. struct request *rq = flush_rq->end_io_data;
  309. request_queue_t *q = rq->q;
  310. rq->flags |= REQ_BAR_PREFLUSH;
  311. if (!flush_rq->errors)
  312. elv_requeue_request(q, rq);
  313. else {
  314. q->end_flush_fn(q, flush_rq);
  315. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  316. q->request_fn(q);
  317. }
  318. }
  319. static void blk_post_flush_end_io(struct request *flush_rq)
  320. {
  321. struct request *rq = flush_rq->end_io_data;
  322. request_queue_t *q = rq->q;
  323. rq->flags |= REQ_BAR_POSTFLUSH;
  324. q->end_flush_fn(q, flush_rq);
  325. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  326. q->request_fn(q);
  327. }
  328. struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
  329. {
  330. struct request *flush_rq = q->flush_rq;
  331. BUG_ON(!blk_barrier_rq(rq));
  332. if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
  333. return NULL;
  334. rq_init(q, flush_rq);
  335. flush_rq->elevator_private = NULL;
  336. flush_rq->flags = REQ_BAR_FLUSH;
  337. flush_rq->rq_disk = rq->rq_disk;
  338. flush_rq->rl = NULL;
  339. /*
  340. * prepare_flush returns 0 if no flush is needed, just mark both
  341. * pre and post flush as done in that case
  342. */
  343. if (!q->prepare_flush_fn(q, flush_rq)) {
  344. rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
  345. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  346. return rq;
  347. }
  348. /*
  349. * some drivers dequeue requests right away, some only after io
  350. * completion. make sure the request is dequeued.
  351. */
  352. if (!list_empty(&rq->queuelist))
  353. blkdev_dequeue_request(rq);
  354. elv_deactivate_request(q, rq);
  355. flush_rq->end_io_data = rq;
  356. flush_rq->end_io = blk_pre_flush_end_io;
  357. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  358. return flush_rq;
  359. }
  360. static void blk_start_post_flush(request_queue_t *q, struct request *rq)
  361. {
  362. struct request *flush_rq = q->flush_rq;
  363. BUG_ON(!blk_barrier_rq(rq));
  364. rq_init(q, flush_rq);
  365. flush_rq->elevator_private = NULL;
  366. flush_rq->flags = REQ_BAR_FLUSH;
  367. flush_rq->rq_disk = rq->rq_disk;
  368. flush_rq->rl = NULL;
  369. if (q->prepare_flush_fn(q, flush_rq)) {
  370. flush_rq->end_io_data = rq;
  371. flush_rq->end_io = blk_post_flush_end_io;
  372. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  373. q->request_fn(q);
  374. }
  375. }
  376. static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
  377. int sectors)
  378. {
  379. if (sectors > rq->nr_sectors)
  380. sectors = rq->nr_sectors;
  381. rq->nr_sectors -= sectors;
  382. return rq->nr_sectors;
  383. }
  384. static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
  385. int sectors, int queue_locked)
  386. {
  387. if (q->ordered != QUEUE_ORDERED_FLUSH)
  388. return 0;
  389. if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
  390. return 0;
  391. if (blk_barrier_postflush(rq))
  392. return 0;
  393. if (!blk_check_end_barrier(q, rq, sectors)) {
  394. unsigned long flags = 0;
  395. if (!queue_locked)
  396. spin_lock_irqsave(q->queue_lock, flags);
  397. blk_start_post_flush(q, rq);
  398. if (!queue_locked)
  399. spin_unlock_irqrestore(q->queue_lock, flags);
  400. }
  401. return 1;
  402. }
  403. /**
  404. * blk_complete_barrier_rq - complete possible barrier request
  405. * @q: the request queue for the device
  406. * @rq: the request
  407. * @sectors: number of sectors to complete
  408. *
  409. * Description:
  410. * Used in driver end_io handling to determine whether to postpone
  411. * completion of a barrier request until a post flush has been done. This
  412. * is the unlocked variant, used if the caller doesn't already hold the
  413. * queue lock.
  414. **/
  415. int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
  416. {
  417. return __blk_complete_barrier_rq(q, rq, sectors, 0);
  418. }
  419. EXPORT_SYMBOL(blk_complete_barrier_rq);
  420. /**
  421. * blk_complete_barrier_rq_locked - complete possible barrier request
  422. * @q: the request queue for the device
  423. * @rq: the request
  424. * @sectors: number of sectors to complete
  425. *
  426. * Description:
  427. * See blk_complete_barrier_rq(). This variant must be used if the caller
  428. * holds the queue lock.
  429. **/
  430. int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
  431. int sectors)
  432. {
  433. return __blk_complete_barrier_rq(q, rq, sectors, 1);
  434. }
  435. EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
  436. /**
  437. * blk_queue_bounce_limit - set bounce buffer limit for queue
  438. * @q: the request queue for the device
  439. * @dma_addr: bus address limit
  440. *
  441. * Description:
  442. * Different hardware can have different requirements as to what pages
  443. * it can do I/O directly to. A low level driver can call
  444. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  445. * buffers for doing I/O to pages residing above @page. By default
  446. * the block layer sets this to the highest numbered "low" memory page.
  447. **/
  448. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  449. {
  450. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  451. /*
  452. * set appropriate bounce gfp mask -- unfortunately we don't have a
  453. * full 4GB zone, so we have to resort to low memory for any bounces.
  454. * ISA has its own < 16MB zone.
  455. */
  456. if (bounce_pfn < blk_max_low_pfn) {
  457. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  458. init_emergency_isa_pool();
  459. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  460. } else
  461. q->bounce_gfp = GFP_NOIO;
  462. q->bounce_pfn = bounce_pfn;
  463. }
  464. EXPORT_SYMBOL(blk_queue_bounce_limit);
  465. /**
  466. * blk_queue_max_sectors - set max sectors for a request for this queue
  467. * @q: the request queue for the device
  468. * @max_sectors: max sectors in the usual 512b unit
  469. *
  470. * Description:
  471. * Enables a low level driver to set an upper limit on the size of
  472. * received requests.
  473. **/
  474. void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
  475. {
  476. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  477. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  478. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  479. }
  480. q->max_sectors = q->max_hw_sectors = max_sectors;
  481. }
  482. EXPORT_SYMBOL(blk_queue_max_sectors);
  483. /**
  484. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  485. * @q: the request queue for the device
  486. * @max_segments: max number of segments
  487. *
  488. * Description:
  489. * Enables a low level driver to set an upper limit on the number of
  490. * physical data segments in a request. This would be the largest sized
  491. * scatter list the driver could handle.
  492. **/
  493. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  494. {
  495. if (!max_segments) {
  496. max_segments = 1;
  497. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  498. }
  499. q->max_phys_segments = max_segments;
  500. }
  501. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  502. /**
  503. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  504. * @q: the request queue for the device
  505. * @max_segments: max number of segments
  506. *
  507. * Description:
  508. * Enables a low level driver to set an upper limit on the number of
  509. * hw data segments in a request. This would be the largest number of
  510. * address/length pairs the host adapter can actually give as once
  511. * to the device.
  512. **/
  513. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  514. {
  515. if (!max_segments) {
  516. max_segments = 1;
  517. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  518. }
  519. q->max_hw_segments = max_segments;
  520. }
  521. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  522. /**
  523. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  524. * @q: the request queue for the device
  525. * @max_size: max size of segment in bytes
  526. *
  527. * Description:
  528. * Enables a low level driver to set an upper limit on the size of a
  529. * coalesced segment
  530. **/
  531. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  532. {
  533. if (max_size < PAGE_CACHE_SIZE) {
  534. max_size = PAGE_CACHE_SIZE;
  535. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  536. }
  537. q->max_segment_size = max_size;
  538. }
  539. EXPORT_SYMBOL(blk_queue_max_segment_size);
  540. /**
  541. * blk_queue_hardsect_size - set hardware sector size for the queue
  542. * @q: the request queue for the device
  543. * @size: the hardware sector size, in bytes
  544. *
  545. * Description:
  546. * This should typically be set to the lowest possible sector size
  547. * that the hardware can operate on (possible without reverting to
  548. * even internal read-modify-write operations). Usually the default
  549. * of 512 covers most hardware.
  550. **/
  551. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  552. {
  553. q->hardsect_size = size;
  554. }
  555. EXPORT_SYMBOL(blk_queue_hardsect_size);
  556. /*
  557. * Returns the minimum that is _not_ zero, unless both are zero.
  558. */
  559. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  560. /**
  561. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  562. * @t: the stacking driver (top)
  563. * @b: the underlying device (bottom)
  564. **/
  565. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  566. {
  567. /* zero is "infinity" */
  568. t->max_sectors = t->max_hw_sectors =
  569. min_not_zero(t->max_sectors,b->max_sectors);
  570. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  571. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  572. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  573. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  574. }
  575. EXPORT_SYMBOL(blk_queue_stack_limits);
  576. /**
  577. * blk_queue_segment_boundary - set boundary rules for segment merging
  578. * @q: the request queue for the device
  579. * @mask: the memory boundary mask
  580. **/
  581. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  582. {
  583. if (mask < PAGE_CACHE_SIZE - 1) {
  584. mask = PAGE_CACHE_SIZE - 1;
  585. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  586. }
  587. q->seg_boundary_mask = mask;
  588. }
  589. EXPORT_SYMBOL(blk_queue_segment_boundary);
  590. /**
  591. * blk_queue_dma_alignment - set dma length and memory alignment
  592. * @q: the request queue for the device
  593. * @mask: alignment mask
  594. *
  595. * description:
  596. * set required memory and length aligment for direct dma transactions.
  597. * this is used when buiding direct io requests for the queue.
  598. *
  599. **/
  600. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  601. {
  602. q->dma_alignment = mask;
  603. }
  604. EXPORT_SYMBOL(blk_queue_dma_alignment);
  605. /**
  606. * blk_queue_find_tag - find a request by its tag and queue
  607. *
  608. * @q: The request queue for the device
  609. * @tag: The tag of the request
  610. *
  611. * Notes:
  612. * Should be used when a device returns a tag and you want to match
  613. * it with a request.
  614. *
  615. * no locks need be held.
  616. **/
  617. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  618. {
  619. struct blk_queue_tag *bqt = q->queue_tags;
  620. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  621. return NULL;
  622. return bqt->tag_index[tag];
  623. }
  624. EXPORT_SYMBOL(blk_queue_find_tag);
  625. /**
  626. * __blk_queue_free_tags - release tag maintenance info
  627. * @q: the request queue for the device
  628. *
  629. * Notes:
  630. * blk_cleanup_queue() will take care of calling this function, if tagging
  631. * has been used. So there's no need to call this directly.
  632. **/
  633. static void __blk_queue_free_tags(request_queue_t *q)
  634. {
  635. struct blk_queue_tag *bqt = q->queue_tags;
  636. if (!bqt)
  637. return;
  638. if (atomic_dec_and_test(&bqt->refcnt)) {
  639. BUG_ON(bqt->busy);
  640. BUG_ON(!list_empty(&bqt->busy_list));
  641. kfree(bqt->tag_index);
  642. bqt->tag_index = NULL;
  643. kfree(bqt->tag_map);
  644. bqt->tag_map = NULL;
  645. kfree(bqt);
  646. }
  647. q->queue_tags = NULL;
  648. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  649. }
  650. /**
  651. * blk_queue_free_tags - release tag maintenance info
  652. * @q: the request queue for the device
  653. *
  654. * Notes:
  655. * This is used to disabled tagged queuing to a device, yet leave
  656. * queue in function.
  657. **/
  658. void blk_queue_free_tags(request_queue_t *q)
  659. {
  660. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  661. }
  662. EXPORT_SYMBOL(blk_queue_free_tags);
  663. static int
  664. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  665. {
  666. struct request **tag_index;
  667. unsigned long *tag_map;
  668. int nr_ulongs;
  669. if (depth > q->nr_requests * 2) {
  670. depth = q->nr_requests * 2;
  671. printk(KERN_ERR "%s: adjusted depth to %d\n",
  672. __FUNCTION__, depth);
  673. }
  674. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  675. if (!tag_index)
  676. goto fail;
  677. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  678. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  679. if (!tag_map)
  680. goto fail;
  681. memset(tag_index, 0, depth * sizeof(struct request *));
  682. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  683. tags->real_max_depth = depth;
  684. tags->max_depth = depth;
  685. tags->tag_index = tag_index;
  686. tags->tag_map = tag_map;
  687. return 0;
  688. fail:
  689. kfree(tag_index);
  690. return -ENOMEM;
  691. }
  692. /**
  693. * blk_queue_init_tags - initialize the queue tag info
  694. * @q: the request queue for the device
  695. * @depth: the maximum queue depth supported
  696. * @tags: the tag to use
  697. **/
  698. int blk_queue_init_tags(request_queue_t *q, int depth,
  699. struct blk_queue_tag *tags)
  700. {
  701. int rc;
  702. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  703. if (!tags && !q->queue_tags) {
  704. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  705. if (!tags)
  706. goto fail;
  707. if (init_tag_map(q, tags, depth))
  708. goto fail;
  709. INIT_LIST_HEAD(&tags->busy_list);
  710. tags->busy = 0;
  711. atomic_set(&tags->refcnt, 1);
  712. } else if (q->queue_tags) {
  713. if ((rc = blk_queue_resize_tags(q, depth)))
  714. return rc;
  715. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  716. return 0;
  717. } else
  718. atomic_inc(&tags->refcnt);
  719. /*
  720. * assign it, all done
  721. */
  722. q->queue_tags = tags;
  723. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  724. return 0;
  725. fail:
  726. kfree(tags);
  727. return -ENOMEM;
  728. }
  729. EXPORT_SYMBOL(blk_queue_init_tags);
  730. /**
  731. * blk_queue_resize_tags - change the queueing depth
  732. * @q: the request queue for the device
  733. * @new_depth: the new max command queueing depth
  734. *
  735. * Notes:
  736. * Must be called with the queue lock held.
  737. **/
  738. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  739. {
  740. struct blk_queue_tag *bqt = q->queue_tags;
  741. struct request **tag_index;
  742. unsigned long *tag_map;
  743. int max_depth, nr_ulongs;
  744. if (!bqt)
  745. return -ENXIO;
  746. /*
  747. * if we already have large enough real_max_depth. just
  748. * adjust max_depth. *NOTE* as requests with tag value
  749. * between new_depth and real_max_depth can be in-flight, tag
  750. * map can not be shrunk blindly here.
  751. */
  752. if (new_depth <= bqt->real_max_depth) {
  753. bqt->max_depth = new_depth;
  754. return 0;
  755. }
  756. /*
  757. * save the old state info, so we can copy it back
  758. */
  759. tag_index = bqt->tag_index;
  760. tag_map = bqt->tag_map;
  761. max_depth = bqt->real_max_depth;
  762. if (init_tag_map(q, bqt, new_depth))
  763. return -ENOMEM;
  764. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  765. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  766. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  767. kfree(tag_index);
  768. kfree(tag_map);
  769. return 0;
  770. }
  771. EXPORT_SYMBOL(blk_queue_resize_tags);
  772. /**
  773. * blk_queue_end_tag - end tag operations for a request
  774. * @q: the request queue for the device
  775. * @rq: the request that has completed
  776. *
  777. * Description:
  778. * Typically called when end_that_request_first() returns 0, meaning
  779. * all transfers have been done for a request. It's important to call
  780. * this function before end_that_request_last(), as that will put the
  781. * request back on the free list thus corrupting the internal tag list.
  782. *
  783. * Notes:
  784. * queue lock must be held.
  785. **/
  786. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  787. {
  788. struct blk_queue_tag *bqt = q->queue_tags;
  789. int tag = rq->tag;
  790. BUG_ON(tag == -1);
  791. if (unlikely(tag >= bqt->real_max_depth))
  792. /*
  793. * This can happen after tag depth has been reduced.
  794. * FIXME: how about a warning or info message here?
  795. */
  796. return;
  797. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  798. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  799. __FUNCTION__, tag);
  800. return;
  801. }
  802. list_del_init(&rq->queuelist);
  803. rq->flags &= ~REQ_QUEUED;
  804. rq->tag = -1;
  805. if (unlikely(bqt->tag_index[tag] == NULL))
  806. printk(KERN_ERR "%s: tag %d is missing\n",
  807. __FUNCTION__, tag);
  808. bqt->tag_index[tag] = NULL;
  809. bqt->busy--;
  810. }
  811. EXPORT_SYMBOL(blk_queue_end_tag);
  812. /**
  813. * blk_queue_start_tag - find a free tag and assign it
  814. * @q: the request queue for the device
  815. * @rq: the block request that needs tagging
  816. *
  817. * Description:
  818. * This can either be used as a stand-alone helper, or possibly be
  819. * assigned as the queue &prep_rq_fn (in which case &struct request
  820. * automagically gets a tag assigned). Note that this function
  821. * assumes that any type of request can be queued! if this is not
  822. * true for your device, you must check the request type before
  823. * calling this function. The request will also be removed from
  824. * the request queue, so it's the drivers responsibility to readd
  825. * it if it should need to be restarted for some reason.
  826. *
  827. * Notes:
  828. * queue lock must be held.
  829. **/
  830. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  831. {
  832. struct blk_queue_tag *bqt = q->queue_tags;
  833. int tag;
  834. if (unlikely((rq->flags & REQ_QUEUED))) {
  835. printk(KERN_ERR
  836. "%s: request %p for device [%s] already tagged %d",
  837. __FUNCTION__, rq,
  838. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  839. BUG();
  840. }
  841. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  842. if (tag >= bqt->max_depth)
  843. return 1;
  844. __set_bit(tag, bqt->tag_map);
  845. rq->flags |= REQ_QUEUED;
  846. rq->tag = tag;
  847. bqt->tag_index[tag] = rq;
  848. blkdev_dequeue_request(rq);
  849. list_add(&rq->queuelist, &bqt->busy_list);
  850. bqt->busy++;
  851. return 0;
  852. }
  853. EXPORT_SYMBOL(blk_queue_start_tag);
  854. /**
  855. * blk_queue_invalidate_tags - invalidate all pending tags
  856. * @q: the request queue for the device
  857. *
  858. * Description:
  859. * Hardware conditions may dictate a need to stop all pending requests.
  860. * In this case, we will safely clear the block side of the tag queue and
  861. * readd all requests to the request queue in the right order.
  862. *
  863. * Notes:
  864. * queue lock must be held.
  865. **/
  866. void blk_queue_invalidate_tags(request_queue_t *q)
  867. {
  868. struct blk_queue_tag *bqt = q->queue_tags;
  869. struct list_head *tmp, *n;
  870. struct request *rq;
  871. list_for_each_safe(tmp, n, &bqt->busy_list) {
  872. rq = list_entry_rq(tmp);
  873. if (rq->tag == -1) {
  874. printk(KERN_ERR
  875. "%s: bad tag found on list\n", __FUNCTION__);
  876. list_del_init(&rq->queuelist);
  877. rq->flags &= ~REQ_QUEUED;
  878. } else
  879. blk_queue_end_tag(q, rq);
  880. rq->flags &= ~REQ_STARTED;
  881. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  882. }
  883. }
  884. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  885. static char *rq_flags[] = {
  886. "REQ_RW",
  887. "REQ_FAILFAST",
  888. "REQ_SOFTBARRIER",
  889. "REQ_HARDBARRIER",
  890. "REQ_CMD",
  891. "REQ_NOMERGE",
  892. "REQ_STARTED",
  893. "REQ_DONTPREP",
  894. "REQ_QUEUED",
  895. "REQ_PC",
  896. "REQ_BLOCK_PC",
  897. "REQ_SENSE",
  898. "REQ_FAILED",
  899. "REQ_QUIET",
  900. "REQ_SPECIAL",
  901. "REQ_DRIVE_CMD",
  902. "REQ_DRIVE_TASK",
  903. "REQ_DRIVE_TASKFILE",
  904. "REQ_PREEMPT",
  905. "REQ_PM_SUSPEND",
  906. "REQ_PM_RESUME",
  907. "REQ_PM_SHUTDOWN",
  908. };
  909. void blk_dump_rq_flags(struct request *rq, char *msg)
  910. {
  911. int bit;
  912. printk("%s: dev %s: flags = ", msg,
  913. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  914. bit = 0;
  915. do {
  916. if (rq->flags & (1 << bit))
  917. printk("%s ", rq_flags[bit]);
  918. bit++;
  919. } while (bit < __REQ_NR_BITS);
  920. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  921. rq->nr_sectors,
  922. rq->current_nr_sectors);
  923. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  924. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  925. printk("cdb: ");
  926. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  927. printk("%02x ", rq->cmd[bit]);
  928. printk("\n");
  929. }
  930. }
  931. EXPORT_SYMBOL(blk_dump_rq_flags);
  932. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  933. {
  934. struct bio_vec *bv, *bvprv = NULL;
  935. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  936. int high, highprv = 1;
  937. if (unlikely(!bio->bi_io_vec))
  938. return;
  939. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  940. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  941. bio_for_each_segment(bv, bio, i) {
  942. /*
  943. * the trick here is making sure that a high page is never
  944. * considered part of another segment, since that might
  945. * change with the bounce page.
  946. */
  947. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  948. if (high || highprv)
  949. goto new_hw_segment;
  950. if (cluster) {
  951. if (seg_size + bv->bv_len > q->max_segment_size)
  952. goto new_segment;
  953. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  954. goto new_segment;
  955. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  956. goto new_segment;
  957. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  958. goto new_hw_segment;
  959. seg_size += bv->bv_len;
  960. hw_seg_size += bv->bv_len;
  961. bvprv = bv;
  962. continue;
  963. }
  964. new_segment:
  965. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  966. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  967. hw_seg_size += bv->bv_len;
  968. } else {
  969. new_hw_segment:
  970. if (hw_seg_size > bio->bi_hw_front_size)
  971. bio->bi_hw_front_size = hw_seg_size;
  972. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  973. nr_hw_segs++;
  974. }
  975. nr_phys_segs++;
  976. bvprv = bv;
  977. seg_size = bv->bv_len;
  978. highprv = high;
  979. }
  980. if (hw_seg_size > bio->bi_hw_back_size)
  981. bio->bi_hw_back_size = hw_seg_size;
  982. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  983. bio->bi_hw_front_size = hw_seg_size;
  984. bio->bi_phys_segments = nr_phys_segs;
  985. bio->bi_hw_segments = nr_hw_segs;
  986. bio->bi_flags |= (1 << BIO_SEG_VALID);
  987. }
  988. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  989. struct bio *nxt)
  990. {
  991. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  992. return 0;
  993. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  994. return 0;
  995. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  996. return 0;
  997. /*
  998. * bio and nxt are contigous in memory, check if the queue allows
  999. * these two to be merged into one
  1000. */
  1001. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1002. return 1;
  1003. return 0;
  1004. }
  1005. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1006. struct bio *nxt)
  1007. {
  1008. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1009. blk_recount_segments(q, bio);
  1010. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1011. blk_recount_segments(q, nxt);
  1012. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1013. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1014. return 0;
  1015. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1016. return 0;
  1017. return 1;
  1018. }
  1019. /*
  1020. * map a request to scatterlist, return number of sg entries setup. Caller
  1021. * must make sure sg can hold rq->nr_phys_segments entries
  1022. */
  1023. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1024. {
  1025. struct bio_vec *bvec, *bvprv;
  1026. struct bio *bio;
  1027. int nsegs, i, cluster;
  1028. nsegs = 0;
  1029. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1030. /*
  1031. * for each bio in rq
  1032. */
  1033. bvprv = NULL;
  1034. rq_for_each_bio(bio, rq) {
  1035. /*
  1036. * for each segment in bio
  1037. */
  1038. bio_for_each_segment(bvec, bio, i) {
  1039. int nbytes = bvec->bv_len;
  1040. if (bvprv && cluster) {
  1041. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1042. goto new_segment;
  1043. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1044. goto new_segment;
  1045. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1046. goto new_segment;
  1047. sg[nsegs - 1].length += nbytes;
  1048. } else {
  1049. new_segment:
  1050. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1051. sg[nsegs].page = bvec->bv_page;
  1052. sg[nsegs].length = nbytes;
  1053. sg[nsegs].offset = bvec->bv_offset;
  1054. nsegs++;
  1055. }
  1056. bvprv = bvec;
  1057. } /* segments in bio */
  1058. } /* bios in rq */
  1059. return nsegs;
  1060. }
  1061. EXPORT_SYMBOL(blk_rq_map_sg);
  1062. /*
  1063. * the standard queue merge functions, can be overridden with device
  1064. * specific ones if so desired
  1065. */
  1066. static inline int ll_new_mergeable(request_queue_t *q,
  1067. struct request *req,
  1068. struct bio *bio)
  1069. {
  1070. int nr_phys_segs = bio_phys_segments(q, bio);
  1071. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1072. req->flags |= REQ_NOMERGE;
  1073. if (req == q->last_merge)
  1074. q->last_merge = NULL;
  1075. return 0;
  1076. }
  1077. /*
  1078. * A hw segment is just getting larger, bump just the phys
  1079. * counter.
  1080. */
  1081. req->nr_phys_segments += nr_phys_segs;
  1082. return 1;
  1083. }
  1084. static inline int ll_new_hw_segment(request_queue_t *q,
  1085. struct request *req,
  1086. struct bio *bio)
  1087. {
  1088. int nr_hw_segs = bio_hw_segments(q, bio);
  1089. int nr_phys_segs = bio_phys_segments(q, bio);
  1090. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1091. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1092. req->flags |= REQ_NOMERGE;
  1093. if (req == q->last_merge)
  1094. q->last_merge = NULL;
  1095. return 0;
  1096. }
  1097. /*
  1098. * This will form the start of a new hw segment. Bump both
  1099. * counters.
  1100. */
  1101. req->nr_hw_segments += nr_hw_segs;
  1102. req->nr_phys_segments += nr_phys_segs;
  1103. return 1;
  1104. }
  1105. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1106. struct bio *bio)
  1107. {
  1108. int len;
  1109. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1110. req->flags |= REQ_NOMERGE;
  1111. if (req == q->last_merge)
  1112. q->last_merge = NULL;
  1113. return 0;
  1114. }
  1115. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1116. blk_recount_segments(q, req->biotail);
  1117. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1118. blk_recount_segments(q, bio);
  1119. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1120. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1121. !BIOVEC_VIRT_OVERSIZE(len)) {
  1122. int mergeable = ll_new_mergeable(q, req, bio);
  1123. if (mergeable) {
  1124. if (req->nr_hw_segments == 1)
  1125. req->bio->bi_hw_front_size = len;
  1126. if (bio->bi_hw_segments == 1)
  1127. bio->bi_hw_back_size = len;
  1128. }
  1129. return mergeable;
  1130. }
  1131. return ll_new_hw_segment(q, req, bio);
  1132. }
  1133. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1134. struct bio *bio)
  1135. {
  1136. int len;
  1137. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1138. req->flags |= REQ_NOMERGE;
  1139. if (req == q->last_merge)
  1140. q->last_merge = NULL;
  1141. return 0;
  1142. }
  1143. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1144. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1145. blk_recount_segments(q, bio);
  1146. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1147. blk_recount_segments(q, req->bio);
  1148. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1149. !BIOVEC_VIRT_OVERSIZE(len)) {
  1150. int mergeable = ll_new_mergeable(q, req, bio);
  1151. if (mergeable) {
  1152. if (bio->bi_hw_segments == 1)
  1153. bio->bi_hw_front_size = len;
  1154. if (req->nr_hw_segments == 1)
  1155. req->biotail->bi_hw_back_size = len;
  1156. }
  1157. return mergeable;
  1158. }
  1159. return ll_new_hw_segment(q, req, bio);
  1160. }
  1161. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1162. struct request *next)
  1163. {
  1164. int total_phys_segments;
  1165. int total_hw_segments;
  1166. /*
  1167. * First check if the either of the requests are re-queued
  1168. * requests. Can't merge them if they are.
  1169. */
  1170. if (req->special || next->special)
  1171. return 0;
  1172. /*
  1173. * Will it become too large?
  1174. */
  1175. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1176. return 0;
  1177. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1178. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1179. total_phys_segments--;
  1180. if (total_phys_segments > q->max_phys_segments)
  1181. return 0;
  1182. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1183. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1184. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1185. /*
  1186. * propagate the combined length to the end of the requests
  1187. */
  1188. if (req->nr_hw_segments == 1)
  1189. req->bio->bi_hw_front_size = len;
  1190. if (next->nr_hw_segments == 1)
  1191. next->biotail->bi_hw_back_size = len;
  1192. total_hw_segments--;
  1193. }
  1194. if (total_hw_segments > q->max_hw_segments)
  1195. return 0;
  1196. /* Merge is OK... */
  1197. req->nr_phys_segments = total_phys_segments;
  1198. req->nr_hw_segments = total_hw_segments;
  1199. return 1;
  1200. }
  1201. /*
  1202. * "plug" the device if there are no outstanding requests: this will
  1203. * force the transfer to start only after we have put all the requests
  1204. * on the list.
  1205. *
  1206. * This is called with interrupts off and no requests on the queue and
  1207. * with the queue lock held.
  1208. */
  1209. void blk_plug_device(request_queue_t *q)
  1210. {
  1211. WARN_ON(!irqs_disabled());
  1212. /*
  1213. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1214. * which will restart the queueing
  1215. */
  1216. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1217. return;
  1218. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1219. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1220. }
  1221. EXPORT_SYMBOL(blk_plug_device);
  1222. /*
  1223. * remove the queue from the plugged list, if present. called with
  1224. * queue lock held and interrupts disabled.
  1225. */
  1226. int blk_remove_plug(request_queue_t *q)
  1227. {
  1228. WARN_ON(!irqs_disabled());
  1229. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1230. return 0;
  1231. del_timer(&q->unplug_timer);
  1232. return 1;
  1233. }
  1234. EXPORT_SYMBOL(blk_remove_plug);
  1235. /*
  1236. * remove the plug and let it rip..
  1237. */
  1238. void __generic_unplug_device(request_queue_t *q)
  1239. {
  1240. if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
  1241. return;
  1242. if (!blk_remove_plug(q))
  1243. return;
  1244. q->request_fn(q);
  1245. }
  1246. EXPORT_SYMBOL(__generic_unplug_device);
  1247. /**
  1248. * generic_unplug_device - fire a request queue
  1249. * @q: The &request_queue_t in question
  1250. *
  1251. * Description:
  1252. * Linux uses plugging to build bigger requests queues before letting
  1253. * the device have at them. If a queue is plugged, the I/O scheduler
  1254. * is still adding and merging requests on the queue. Once the queue
  1255. * gets unplugged, the request_fn defined for the queue is invoked and
  1256. * transfers started.
  1257. **/
  1258. void generic_unplug_device(request_queue_t *q)
  1259. {
  1260. spin_lock_irq(q->queue_lock);
  1261. __generic_unplug_device(q);
  1262. spin_unlock_irq(q->queue_lock);
  1263. }
  1264. EXPORT_SYMBOL(generic_unplug_device);
  1265. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1266. struct page *page)
  1267. {
  1268. request_queue_t *q = bdi->unplug_io_data;
  1269. /*
  1270. * devices don't necessarily have an ->unplug_fn defined
  1271. */
  1272. if (q->unplug_fn)
  1273. q->unplug_fn(q);
  1274. }
  1275. static void blk_unplug_work(void *data)
  1276. {
  1277. request_queue_t *q = data;
  1278. q->unplug_fn(q);
  1279. }
  1280. static void blk_unplug_timeout(unsigned long data)
  1281. {
  1282. request_queue_t *q = (request_queue_t *)data;
  1283. kblockd_schedule_work(&q->unplug_work);
  1284. }
  1285. /**
  1286. * blk_start_queue - restart a previously stopped queue
  1287. * @q: The &request_queue_t in question
  1288. *
  1289. * Description:
  1290. * blk_start_queue() will clear the stop flag on the queue, and call
  1291. * the request_fn for the queue if it was in a stopped state when
  1292. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1293. **/
  1294. void blk_start_queue(request_queue_t *q)
  1295. {
  1296. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1297. /*
  1298. * one level of recursion is ok and is much faster than kicking
  1299. * the unplug handling
  1300. */
  1301. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1302. q->request_fn(q);
  1303. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1304. } else {
  1305. blk_plug_device(q);
  1306. kblockd_schedule_work(&q->unplug_work);
  1307. }
  1308. }
  1309. EXPORT_SYMBOL(blk_start_queue);
  1310. /**
  1311. * blk_stop_queue - stop a queue
  1312. * @q: The &request_queue_t in question
  1313. *
  1314. * Description:
  1315. * The Linux block layer assumes that a block driver will consume all
  1316. * entries on the request queue when the request_fn strategy is called.
  1317. * Often this will not happen, because of hardware limitations (queue
  1318. * depth settings). If a device driver gets a 'queue full' response,
  1319. * or if it simply chooses not to queue more I/O at one point, it can
  1320. * call this function to prevent the request_fn from being called until
  1321. * the driver has signalled it's ready to go again. This happens by calling
  1322. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1323. **/
  1324. void blk_stop_queue(request_queue_t *q)
  1325. {
  1326. blk_remove_plug(q);
  1327. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1328. }
  1329. EXPORT_SYMBOL(blk_stop_queue);
  1330. /**
  1331. * blk_sync_queue - cancel any pending callbacks on a queue
  1332. * @q: the queue
  1333. *
  1334. * Description:
  1335. * The block layer may perform asynchronous callback activity
  1336. * on a queue, such as calling the unplug function after a timeout.
  1337. * A block device may call blk_sync_queue to ensure that any
  1338. * such activity is cancelled, thus allowing it to release resources
  1339. * the the callbacks might use. The caller must already have made sure
  1340. * that its ->make_request_fn will not re-add plugging prior to calling
  1341. * this function.
  1342. *
  1343. */
  1344. void blk_sync_queue(struct request_queue *q)
  1345. {
  1346. del_timer_sync(&q->unplug_timer);
  1347. kblockd_flush();
  1348. }
  1349. EXPORT_SYMBOL(blk_sync_queue);
  1350. /**
  1351. * blk_run_queue - run a single device queue
  1352. * @q: The queue to run
  1353. */
  1354. void blk_run_queue(struct request_queue *q)
  1355. {
  1356. unsigned long flags;
  1357. spin_lock_irqsave(q->queue_lock, flags);
  1358. blk_remove_plug(q);
  1359. if (!elv_queue_empty(q))
  1360. q->request_fn(q);
  1361. spin_unlock_irqrestore(q->queue_lock, flags);
  1362. }
  1363. EXPORT_SYMBOL(blk_run_queue);
  1364. /**
  1365. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1366. * @q: the request queue to be released
  1367. *
  1368. * Description:
  1369. * blk_cleanup_queue is the pair to blk_init_queue() or
  1370. * blk_queue_make_request(). It should be called when a request queue is
  1371. * being released; typically when a block device is being de-registered.
  1372. * Currently, its primary task it to free all the &struct request
  1373. * structures that were allocated to the queue and the queue itself.
  1374. *
  1375. * Caveat:
  1376. * Hopefully the low level driver will have finished any
  1377. * outstanding requests first...
  1378. **/
  1379. void blk_cleanup_queue(request_queue_t * q)
  1380. {
  1381. struct request_list *rl = &q->rq;
  1382. if (!atomic_dec_and_test(&q->refcnt))
  1383. return;
  1384. if (q->elevator)
  1385. elevator_exit(q->elevator);
  1386. blk_sync_queue(q);
  1387. if (rl->rq_pool)
  1388. mempool_destroy(rl->rq_pool);
  1389. if (q->queue_tags)
  1390. __blk_queue_free_tags(q);
  1391. blk_queue_ordered(q, QUEUE_ORDERED_NONE);
  1392. kmem_cache_free(requestq_cachep, q);
  1393. }
  1394. EXPORT_SYMBOL(blk_cleanup_queue);
  1395. static int blk_init_free_list(request_queue_t *q)
  1396. {
  1397. struct request_list *rl = &q->rq;
  1398. rl->count[READ] = rl->count[WRITE] = 0;
  1399. rl->starved[READ] = rl->starved[WRITE] = 0;
  1400. init_waitqueue_head(&rl->wait[READ]);
  1401. init_waitqueue_head(&rl->wait[WRITE]);
  1402. init_waitqueue_head(&rl->drain);
  1403. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1404. mempool_free_slab, request_cachep, q->node);
  1405. if (!rl->rq_pool)
  1406. return -ENOMEM;
  1407. return 0;
  1408. }
  1409. static int __make_request(request_queue_t *, struct bio *);
  1410. request_queue_t *blk_alloc_queue(int gfp_mask)
  1411. {
  1412. return blk_alloc_queue_node(gfp_mask, -1);
  1413. }
  1414. EXPORT_SYMBOL(blk_alloc_queue);
  1415. request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
  1416. {
  1417. request_queue_t *q;
  1418. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1419. if (!q)
  1420. return NULL;
  1421. memset(q, 0, sizeof(*q));
  1422. init_timer(&q->unplug_timer);
  1423. atomic_set(&q->refcnt, 1);
  1424. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1425. q->backing_dev_info.unplug_io_data = q;
  1426. return q;
  1427. }
  1428. EXPORT_SYMBOL(blk_alloc_queue_node);
  1429. /**
  1430. * blk_init_queue - prepare a request queue for use with a block device
  1431. * @rfn: The function to be called to process requests that have been
  1432. * placed on the queue.
  1433. * @lock: Request queue spin lock
  1434. *
  1435. * Description:
  1436. * If a block device wishes to use the standard request handling procedures,
  1437. * which sorts requests and coalesces adjacent requests, then it must
  1438. * call blk_init_queue(). The function @rfn will be called when there
  1439. * are requests on the queue that need to be processed. If the device
  1440. * supports plugging, then @rfn may not be called immediately when requests
  1441. * are available on the queue, but may be called at some time later instead.
  1442. * Plugged queues are generally unplugged when a buffer belonging to one
  1443. * of the requests on the queue is needed, or due to memory pressure.
  1444. *
  1445. * @rfn is not required, or even expected, to remove all requests off the
  1446. * queue, but only as many as it can handle at a time. If it does leave
  1447. * requests on the queue, it is responsible for arranging that the requests
  1448. * get dealt with eventually.
  1449. *
  1450. * The queue spin lock must be held while manipulating the requests on the
  1451. * request queue.
  1452. *
  1453. * Function returns a pointer to the initialized request queue, or NULL if
  1454. * it didn't succeed.
  1455. *
  1456. * Note:
  1457. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1458. * when the block device is deactivated (such as at module unload).
  1459. **/
  1460. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1461. {
  1462. return blk_init_queue_node(rfn, lock, -1);
  1463. }
  1464. EXPORT_SYMBOL(blk_init_queue);
  1465. request_queue_t *
  1466. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1467. {
  1468. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1469. if (!q)
  1470. return NULL;
  1471. q->node = node_id;
  1472. if (blk_init_free_list(q))
  1473. goto out_init;
  1474. /*
  1475. * if caller didn't supply a lock, they get per-queue locking with
  1476. * our embedded lock
  1477. */
  1478. if (!lock) {
  1479. spin_lock_init(&q->__queue_lock);
  1480. lock = &q->__queue_lock;
  1481. }
  1482. q->request_fn = rfn;
  1483. q->back_merge_fn = ll_back_merge_fn;
  1484. q->front_merge_fn = ll_front_merge_fn;
  1485. q->merge_requests_fn = ll_merge_requests_fn;
  1486. q->prep_rq_fn = NULL;
  1487. q->unplug_fn = generic_unplug_device;
  1488. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1489. q->queue_lock = lock;
  1490. blk_queue_segment_boundary(q, 0xffffffff);
  1491. blk_queue_make_request(q, __make_request);
  1492. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1493. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1494. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1495. /*
  1496. * all done
  1497. */
  1498. if (!elevator_init(q, NULL)) {
  1499. blk_queue_congestion_threshold(q);
  1500. return q;
  1501. }
  1502. blk_cleanup_queue(q);
  1503. out_init:
  1504. kmem_cache_free(requestq_cachep, q);
  1505. return NULL;
  1506. }
  1507. EXPORT_SYMBOL(blk_init_queue_node);
  1508. int blk_get_queue(request_queue_t *q)
  1509. {
  1510. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1511. atomic_inc(&q->refcnt);
  1512. return 0;
  1513. }
  1514. return 1;
  1515. }
  1516. EXPORT_SYMBOL(blk_get_queue);
  1517. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1518. {
  1519. elv_put_request(q, rq);
  1520. mempool_free(rq, q->rq.rq_pool);
  1521. }
  1522. static inline struct request *
  1523. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, int gfp_mask)
  1524. {
  1525. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1526. if (!rq)
  1527. return NULL;
  1528. /*
  1529. * first three bits are identical in rq->flags and bio->bi_rw,
  1530. * see bio.h and blkdev.h
  1531. */
  1532. rq->flags = rw;
  1533. if (!elv_set_request(q, rq, bio, gfp_mask))
  1534. return rq;
  1535. mempool_free(rq, q->rq.rq_pool);
  1536. return NULL;
  1537. }
  1538. /*
  1539. * ioc_batching returns true if the ioc is a valid batching request and
  1540. * should be given priority access to a request.
  1541. */
  1542. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1543. {
  1544. if (!ioc)
  1545. return 0;
  1546. /*
  1547. * Make sure the process is able to allocate at least 1 request
  1548. * even if the batch times out, otherwise we could theoretically
  1549. * lose wakeups.
  1550. */
  1551. return ioc->nr_batch_requests == q->nr_batching ||
  1552. (ioc->nr_batch_requests > 0
  1553. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1554. }
  1555. /*
  1556. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1557. * will cause the process to be a "batcher" on all queues in the system. This
  1558. * is the behaviour we want though - once it gets a wakeup it should be given
  1559. * a nice run.
  1560. */
  1561. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1562. {
  1563. if (!ioc || ioc_batching(q, ioc))
  1564. return;
  1565. ioc->nr_batch_requests = q->nr_batching;
  1566. ioc->last_waited = jiffies;
  1567. }
  1568. static void __freed_request(request_queue_t *q, int rw)
  1569. {
  1570. struct request_list *rl = &q->rq;
  1571. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1572. clear_queue_congested(q, rw);
  1573. if (rl->count[rw] + 1 <= q->nr_requests) {
  1574. if (waitqueue_active(&rl->wait[rw]))
  1575. wake_up(&rl->wait[rw]);
  1576. blk_clear_queue_full(q, rw);
  1577. }
  1578. }
  1579. /*
  1580. * A request has just been released. Account for it, update the full and
  1581. * congestion status, wake up any waiters. Called under q->queue_lock.
  1582. */
  1583. static void freed_request(request_queue_t *q, int rw)
  1584. {
  1585. struct request_list *rl = &q->rq;
  1586. rl->count[rw]--;
  1587. __freed_request(q, rw);
  1588. if (unlikely(rl->starved[rw ^ 1]))
  1589. __freed_request(q, rw ^ 1);
  1590. if (!rl->count[READ] && !rl->count[WRITE]) {
  1591. smp_mb();
  1592. if (unlikely(waitqueue_active(&rl->drain)))
  1593. wake_up(&rl->drain);
  1594. }
  1595. }
  1596. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1597. /*
  1598. * Get a free request, queue_lock must be held.
  1599. * Returns NULL on failure, with queue_lock held.
  1600. * Returns !NULL on success, with queue_lock *not held*.
  1601. */
  1602. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1603. int gfp_mask)
  1604. {
  1605. struct request *rq = NULL;
  1606. struct request_list *rl = &q->rq;
  1607. struct io_context *ioc = current_io_context(GFP_ATOMIC);
  1608. if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
  1609. goto out;
  1610. if (rl->count[rw]+1 >= q->nr_requests) {
  1611. /*
  1612. * The queue will fill after this allocation, so set it as
  1613. * full, and mark this process as "batching". This process
  1614. * will be allowed to complete a batch of requests, others
  1615. * will be blocked.
  1616. */
  1617. if (!blk_queue_full(q, rw)) {
  1618. ioc_set_batching(q, ioc);
  1619. blk_set_queue_full(q, rw);
  1620. }
  1621. }
  1622. switch (elv_may_queue(q, rw, bio)) {
  1623. case ELV_MQUEUE_NO:
  1624. goto rq_starved;
  1625. case ELV_MQUEUE_MAY:
  1626. break;
  1627. case ELV_MQUEUE_MUST:
  1628. goto get_rq;
  1629. }
  1630. if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
  1631. /*
  1632. * The queue is full and the allocating process is not a
  1633. * "batcher", and not exempted by the IO scheduler
  1634. */
  1635. goto out;
  1636. }
  1637. get_rq:
  1638. /*
  1639. * Only allow batching queuers to allocate up to 50% over the defined
  1640. * limit of requests, otherwise we could have thousands of requests
  1641. * allocated with any setting of ->nr_requests
  1642. */
  1643. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1644. goto out;
  1645. rl->count[rw]++;
  1646. rl->starved[rw] = 0;
  1647. if (rl->count[rw] >= queue_congestion_on_threshold(q))
  1648. set_queue_congested(q, rw);
  1649. spin_unlock_irq(q->queue_lock);
  1650. rq = blk_alloc_request(q, rw, bio, gfp_mask);
  1651. if (!rq) {
  1652. /*
  1653. * Allocation failed presumably due to memory. Undo anything
  1654. * we might have messed up.
  1655. *
  1656. * Allocating task should really be put onto the front of the
  1657. * wait queue, but this is pretty rare.
  1658. */
  1659. spin_lock_irq(q->queue_lock);
  1660. freed_request(q, rw);
  1661. /*
  1662. * in the very unlikely event that allocation failed and no
  1663. * requests for this direction was pending, mark us starved
  1664. * so that freeing of a request in the other direction will
  1665. * notice us. another possible fix would be to split the
  1666. * rq mempool into READ and WRITE
  1667. */
  1668. rq_starved:
  1669. if (unlikely(rl->count[rw] == 0))
  1670. rl->starved[rw] = 1;
  1671. goto out;
  1672. }
  1673. if (ioc_batching(q, ioc))
  1674. ioc->nr_batch_requests--;
  1675. rq_init(q, rq);
  1676. rq->rl = rl;
  1677. out:
  1678. return rq;
  1679. }
  1680. /*
  1681. * No available requests for this queue, unplug the device and wait for some
  1682. * requests to become available.
  1683. *
  1684. * Called with q->queue_lock held, and returns with it unlocked.
  1685. */
  1686. static struct request *get_request_wait(request_queue_t *q, int rw,
  1687. struct bio *bio)
  1688. {
  1689. struct request *rq;
  1690. rq = get_request(q, rw, bio, GFP_NOIO);
  1691. while (!rq) {
  1692. DEFINE_WAIT(wait);
  1693. struct request_list *rl = &q->rq;
  1694. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1695. TASK_UNINTERRUPTIBLE);
  1696. rq = get_request(q, rw, bio, GFP_NOIO);
  1697. if (!rq) {
  1698. struct io_context *ioc;
  1699. __generic_unplug_device(q);
  1700. spin_unlock_irq(q->queue_lock);
  1701. io_schedule();
  1702. /*
  1703. * After sleeping, we become a "batching" process and
  1704. * will be able to allocate at least one request, and
  1705. * up to a big batch of them for a small period time.
  1706. * See ioc_batching, ioc_set_batching
  1707. */
  1708. ioc = current_io_context(GFP_NOIO);
  1709. ioc_set_batching(q, ioc);
  1710. spin_lock_irq(q->queue_lock);
  1711. }
  1712. finish_wait(&rl->wait[rw], &wait);
  1713. }
  1714. return rq;
  1715. }
  1716. struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
  1717. {
  1718. struct request *rq;
  1719. BUG_ON(rw != READ && rw != WRITE);
  1720. spin_lock_irq(q->queue_lock);
  1721. if (gfp_mask & __GFP_WAIT) {
  1722. rq = get_request_wait(q, rw, NULL);
  1723. } else {
  1724. rq = get_request(q, rw, NULL, gfp_mask);
  1725. if (!rq)
  1726. spin_unlock_irq(q->queue_lock);
  1727. }
  1728. /* q->queue_lock is unlocked at this point */
  1729. return rq;
  1730. }
  1731. EXPORT_SYMBOL(blk_get_request);
  1732. /**
  1733. * blk_requeue_request - put a request back on queue
  1734. * @q: request queue where request should be inserted
  1735. * @rq: request to be inserted
  1736. *
  1737. * Description:
  1738. * Drivers often keep queueing requests until the hardware cannot accept
  1739. * more, when that condition happens we need to put the request back
  1740. * on the queue. Must be called with queue lock held.
  1741. */
  1742. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1743. {
  1744. if (blk_rq_tagged(rq))
  1745. blk_queue_end_tag(q, rq);
  1746. elv_requeue_request(q, rq);
  1747. }
  1748. EXPORT_SYMBOL(blk_requeue_request);
  1749. /**
  1750. * blk_insert_request - insert a special request in to a request queue
  1751. * @q: request queue where request should be inserted
  1752. * @rq: request to be inserted
  1753. * @at_head: insert request at head or tail of queue
  1754. * @data: private data
  1755. *
  1756. * Description:
  1757. * Many block devices need to execute commands asynchronously, so they don't
  1758. * block the whole kernel from preemption during request execution. This is
  1759. * accomplished normally by inserting aritficial requests tagged as
  1760. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1761. * scheduled for actual execution by the request queue.
  1762. *
  1763. * We have the option of inserting the head or the tail of the queue.
  1764. * Typically we use the tail for new ioctls and so forth. We use the head
  1765. * of the queue for things like a QUEUE_FULL message from a device, or a
  1766. * host that is unable to accept a particular command.
  1767. */
  1768. void blk_insert_request(request_queue_t *q, struct request *rq,
  1769. int at_head, void *data)
  1770. {
  1771. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1772. unsigned long flags;
  1773. /*
  1774. * tell I/O scheduler that this isn't a regular read/write (ie it
  1775. * must not attempt merges on this) and that it acts as a soft
  1776. * barrier
  1777. */
  1778. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1779. rq->special = data;
  1780. spin_lock_irqsave(q->queue_lock, flags);
  1781. /*
  1782. * If command is tagged, release the tag
  1783. */
  1784. if (blk_rq_tagged(rq))
  1785. blk_queue_end_tag(q, rq);
  1786. drive_stat_acct(rq, rq->nr_sectors, 1);
  1787. __elv_add_request(q, rq, where, 0);
  1788. if (blk_queue_plugged(q))
  1789. __generic_unplug_device(q);
  1790. else
  1791. q->request_fn(q);
  1792. spin_unlock_irqrestore(q->queue_lock, flags);
  1793. }
  1794. EXPORT_SYMBOL(blk_insert_request);
  1795. /**
  1796. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1797. * @q: request queue where request should be inserted
  1798. * @rq: request structure to fill
  1799. * @ubuf: the user buffer
  1800. * @len: length of user data
  1801. *
  1802. * Description:
  1803. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1804. * a kernel bounce buffer is used.
  1805. *
  1806. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1807. * still in process context.
  1808. *
  1809. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1810. * before being submitted to the device, as pages mapped may be out of
  1811. * reach. It's the callers responsibility to make sure this happens. The
  1812. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1813. * unmapping.
  1814. */
  1815. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  1816. unsigned int len)
  1817. {
  1818. unsigned long uaddr;
  1819. struct bio *bio;
  1820. int reading;
  1821. if (len > (q->max_sectors << 9))
  1822. return -EINVAL;
  1823. if (!len || !ubuf)
  1824. return -EINVAL;
  1825. reading = rq_data_dir(rq) == READ;
  1826. /*
  1827. * if alignment requirement is satisfied, map in user pages for
  1828. * direct dma. else, set up kernel bounce buffers
  1829. */
  1830. uaddr = (unsigned long) ubuf;
  1831. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1832. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1833. else
  1834. bio = bio_copy_user(q, uaddr, len, reading);
  1835. if (!IS_ERR(bio)) {
  1836. rq->bio = rq->biotail = bio;
  1837. blk_rq_bio_prep(q, rq, bio);
  1838. rq->buffer = rq->data = NULL;
  1839. rq->data_len = len;
  1840. return 0;
  1841. }
  1842. /*
  1843. * bio is the err-ptr
  1844. */
  1845. return PTR_ERR(bio);
  1846. }
  1847. EXPORT_SYMBOL(blk_rq_map_user);
  1848. /**
  1849. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  1850. * @q: request queue where request should be inserted
  1851. * @rq: request to map data to
  1852. * @iov: pointer to the iovec
  1853. * @iov_count: number of elements in the iovec
  1854. *
  1855. * Description:
  1856. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1857. * a kernel bounce buffer is used.
  1858. *
  1859. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1860. * still in process context.
  1861. *
  1862. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1863. * before being submitted to the device, as pages mapped may be out of
  1864. * reach. It's the callers responsibility to make sure this happens. The
  1865. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1866. * unmapping.
  1867. */
  1868. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  1869. struct sg_iovec *iov, int iov_count)
  1870. {
  1871. struct bio *bio;
  1872. if (!iov || iov_count <= 0)
  1873. return -EINVAL;
  1874. /* we don't allow misaligned data like bio_map_user() does. If the
  1875. * user is using sg, they're expected to know the alignment constraints
  1876. * and respect them accordingly */
  1877. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  1878. if (IS_ERR(bio))
  1879. return PTR_ERR(bio);
  1880. rq->bio = rq->biotail = bio;
  1881. blk_rq_bio_prep(q, rq, bio);
  1882. rq->buffer = rq->data = NULL;
  1883. rq->data_len = bio->bi_size;
  1884. return 0;
  1885. }
  1886. EXPORT_SYMBOL(blk_rq_map_user_iov);
  1887. /**
  1888. * blk_rq_unmap_user - unmap a request with user data
  1889. * @bio: bio to be unmapped
  1890. * @ulen: length of user buffer
  1891. *
  1892. * Description:
  1893. * Unmap a bio previously mapped by blk_rq_map_user().
  1894. */
  1895. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  1896. {
  1897. int ret = 0;
  1898. if (bio) {
  1899. if (bio_flagged(bio, BIO_USER_MAPPED))
  1900. bio_unmap_user(bio);
  1901. else
  1902. ret = bio_uncopy_user(bio);
  1903. }
  1904. return 0;
  1905. }
  1906. EXPORT_SYMBOL(blk_rq_unmap_user);
  1907. /**
  1908. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  1909. * @q: request queue where request should be inserted
  1910. * @rq: request to fill
  1911. * @kbuf: the kernel buffer
  1912. * @len: length of user data
  1913. * @gfp_mask: memory allocation flags
  1914. */
  1915. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  1916. unsigned int len, unsigned int gfp_mask)
  1917. {
  1918. struct bio *bio;
  1919. if (len > (q->max_sectors << 9))
  1920. return -EINVAL;
  1921. if (!len || !kbuf)
  1922. return -EINVAL;
  1923. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  1924. if (IS_ERR(bio))
  1925. return PTR_ERR(bio);
  1926. if (rq_data_dir(rq) == WRITE)
  1927. bio->bi_rw |= (1 << BIO_RW);
  1928. rq->bio = rq->biotail = bio;
  1929. blk_rq_bio_prep(q, rq, bio);
  1930. rq->buffer = rq->data = NULL;
  1931. rq->data_len = len;
  1932. return 0;
  1933. }
  1934. EXPORT_SYMBOL(blk_rq_map_kern);
  1935. /**
  1936. * blk_execute_rq_nowait - insert a request into queue for execution
  1937. * @q: queue to insert the request in
  1938. * @bd_disk: matching gendisk
  1939. * @rq: request to insert
  1940. * @at_head: insert request at head or tail of queue
  1941. * @done: I/O completion handler
  1942. *
  1943. * Description:
  1944. * Insert a fully prepared request at the back of the io scheduler queue
  1945. * for execution. Don't wait for completion.
  1946. */
  1947. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  1948. struct request *rq, int at_head,
  1949. void (*done)(struct request *))
  1950. {
  1951. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1952. rq->rq_disk = bd_disk;
  1953. rq->flags |= REQ_NOMERGE;
  1954. rq->end_io = done;
  1955. elv_add_request(q, rq, where, 1);
  1956. generic_unplug_device(q);
  1957. }
  1958. /**
  1959. * blk_execute_rq - insert a request into queue for execution
  1960. * @q: queue to insert the request in
  1961. * @bd_disk: matching gendisk
  1962. * @rq: request to insert
  1963. * @at_head: insert request at head or tail of queue
  1964. *
  1965. * Description:
  1966. * Insert a fully prepared request at the back of the io scheduler queue
  1967. * for execution and wait for completion.
  1968. */
  1969. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  1970. struct request *rq, int at_head)
  1971. {
  1972. DECLARE_COMPLETION(wait);
  1973. char sense[SCSI_SENSE_BUFFERSIZE];
  1974. int err = 0;
  1975. /*
  1976. * we need an extra reference to the request, so we can look at
  1977. * it after io completion
  1978. */
  1979. rq->ref_count++;
  1980. if (!rq->sense) {
  1981. memset(sense, 0, sizeof(sense));
  1982. rq->sense = sense;
  1983. rq->sense_len = 0;
  1984. }
  1985. rq->waiting = &wait;
  1986. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  1987. wait_for_completion(&wait);
  1988. rq->waiting = NULL;
  1989. if (rq->errors)
  1990. err = -EIO;
  1991. return err;
  1992. }
  1993. EXPORT_SYMBOL(blk_execute_rq);
  1994. /**
  1995. * blkdev_issue_flush - queue a flush
  1996. * @bdev: blockdev to issue flush for
  1997. * @error_sector: error sector
  1998. *
  1999. * Description:
  2000. * Issue a flush for the block device in question. Caller can supply
  2001. * room for storing the error offset in case of a flush error, if they
  2002. * wish to. Caller must run wait_for_completion() on its own.
  2003. */
  2004. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2005. {
  2006. request_queue_t *q;
  2007. if (bdev->bd_disk == NULL)
  2008. return -ENXIO;
  2009. q = bdev_get_queue(bdev);
  2010. if (!q)
  2011. return -ENXIO;
  2012. if (!q->issue_flush_fn)
  2013. return -EOPNOTSUPP;
  2014. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2015. }
  2016. EXPORT_SYMBOL(blkdev_issue_flush);
  2017. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2018. {
  2019. int rw = rq_data_dir(rq);
  2020. if (!blk_fs_request(rq) || !rq->rq_disk)
  2021. return;
  2022. if (rw == READ) {
  2023. __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
  2024. if (!new_io)
  2025. __disk_stat_inc(rq->rq_disk, read_merges);
  2026. } else if (rw == WRITE) {
  2027. __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
  2028. if (!new_io)
  2029. __disk_stat_inc(rq->rq_disk, write_merges);
  2030. }
  2031. if (new_io) {
  2032. disk_round_stats(rq->rq_disk);
  2033. rq->rq_disk->in_flight++;
  2034. }
  2035. }
  2036. /*
  2037. * add-request adds a request to the linked list.
  2038. * queue lock is held and interrupts disabled, as we muck with the
  2039. * request queue list.
  2040. */
  2041. static inline void add_request(request_queue_t * q, struct request * req)
  2042. {
  2043. drive_stat_acct(req, req->nr_sectors, 1);
  2044. if (q->activity_fn)
  2045. q->activity_fn(q->activity_data, rq_data_dir(req));
  2046. /*
  2047. * elevator indicated where it wants this request to be
  2048. * inserted at elevator_merge time
  2049. */
  2050. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2051. }
  2052. /*
  2053. * disk_round_stats() - Round off the performance stats on a struct
  2054. * disk_stats.
  2055. *
  2056. * The average IO queue length and utilisation statistics are maintained
  2057. * by observing the current state of the queue length and the amount of
  2058. * time it has been in this state for.
  2059. *
  2060. * Normally, that accounting is done on IO completion, but that can result
  2061. * in more than a second's worth of IO being accounted for within any one
  2062. * second, leading to >100% utilisation. To deal with that, we call this
  2063. * function to do a round-off before returning the results when reading
  2064. * /proc/diskstats. This accounts immediately for all queue usage up to
  2065. * the current jiffies and restarts the counters again.
  2066. */
  2067. void disk_round_stats(struct gendisk *disk)
  2068. {
  2069. unsigned long now = jiffies;
  2070. __disk_stat_add(disk, time_in_queue,
  2071. disk->in_flight * (now - disk->stamp));
  2072. disk->stamp = now;
  2073. if (disk->in_flight)
  2074. __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
  2075. disk->stamp_idle = now;
  2076. }
  2077. /*
  2078. * queue lock must be held
  2079. */
  2080. static void __blk_put_request(request_queue_t *q, struct request *req)
  2081. {
  2082. struct request_list *rl = req->rl;
  2083. if (unlikely(!q))
  2084. return;
  2085. if (unlikely(--req->ref_count))
  2086. return;
  2087. req->rq_status = RQ_INACTIVE;
  2088. req->rl = NULL;
  2089. /*
  2090. * Request may not have originated from ll_rw_blk. if not,
  2091. * it didn't come out of our reserved rq pools
  2092. */
  2093. if (rl) {
  2094. int rw = rq_data_dir(req);
  2095. elv_completed_request(q, req);
  2096. BUG_ON(!list_empty(&req->queuelist));
  2097. blk_free_request(q, req);
  2098. freed_request(q, rw);
  2099. }
  2100. }
  2101. void blk_put_request(struct request *req)
  2102. {
  2103. /*
  2104. * if req->rl isn't set, this request didnt originate from the
  2105. * block layer, so it's safe to just disregard it
  2106. */
  2107. if (req->rl) {
  2108. unsigned long flags;
  2109. request_queue_t *q = req->q;
  2110. spin_lock_irqsave(q->queue_lock, flags);
  2111. __blk_put_request(q, req);
  2112. spin_unlock_irqrestore(q->queue_lock, flags);
  2113. }
  2114. }
  2115. EXPORT_SYMBOL(blk_put_request);
  2116. /**
  2117. * blk_end_sync_rq - executes a completion event on a request
  2118. * @rq: request to complete
  2119. */
  2120. void blk_end_sync_rq(struct request *rq)
  2121. {
  2122. struct completion *waiting = rq->waiting;
  2123. rq->waiting = NULL;
  2124. __blk_put_request(rq->q, rq);
  2125. /*
  2126. * complete last, if this is a stack request the process (and thus
  2127. * the rq pointer) could be invalid right after this complete()
  2128. */
  2129. complete(waiting);
  2130. }
  2131. EXPORT_SYMBOL(blk_end_sync_rq);
  2132. /**
  2133. * blk_congestion_wait - wait for a queue to become uncongested
  2134. * @rw: READ or WRITE
  2135. * @timeout: timeout in jiffies
  2136. *
  2137. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2138. * If no queues are congested then just wait for the next request to be
  2139. * returned.
  2140. */
  2141. long blk_congestion_wait(int rw, long timeout)
  2142. {
  2143. long ret;
  2144. DEFINE_WAIT(wait);
  2145. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2146. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2147. ret = io_schedule_timeout(timeout);
  2148. finish_wait(wqh, &wait);
  2149. return ret;
  2150. }
  2151. EXPORT_SYMBOL(blk_congestion_wait);
  2152. /*
  2153. * Has to be called with the request spinlock acquired
  2154. */
  2155. static int attempt_merge(request_queue_t *q, struct request *req,
  2156. struct request *next)
  2157. {
  2158. if (!rq_mergeable(req) || !rq_mergeable(next))
  2159. return 0;
  2160. /*
  2161. * not contigious
  2162. */
  2163. if (req->sector + req->nr_sectors != next->sector)
  2164. return 0;
  2165. if (rq_data_dir(req) != rq_data_dir(next)
  2166. || req->rq_disk != next->rq_disk
  2167. || next->waiting || next->special)
  2168. return 0;
  2169. /*
  2170. * If we are allowed to merge, then append bio list
  2171. * from next to rq and release next. merge_requests_fn
  2172. * will have updated segment counts, update sector
  2173. * counts here.
  2174. */
  2175. if (!q->merge_requests_fn(q, req, next))
  2176. return 0;
  2177. /*
  2178. * At this point we have either done a back merge
  2179. * or front merge. We need the smaller start_time of
  2180. * the merged requests to be the current request
  2181. * for accounting purposes.
  2182. */
  2183. if (time_after(req->start_time, next->start_time))
  2184. req->start_time = next->start_time;
  2185. req->biotail->bi_next = next->bio;
  2186. req->biotail = next->biotail;
  2187. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2188. elv_merge_requests(q, req, next);
  2189. if (req->rq_disk) {
  2190. disk_round_stats(req->rq_disk);
  2191. req->rq_disk->in_flight--;
  2192. }
  2193. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2194. __blk_put_request(q, next);
  2195. return 1;
  2196. }
  2197. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2198. {
  2199. struct request *next = elv_latter_request(q, rq);
  2200. if (next)
  2201. return attempt_merge(q, rq, next);
  2202. return 0;
  2203. }
  2204. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2205. {
  2206. struct request *prev = elv_former_request(q, rq);
  2207. if (prev)
  2208. return attempt_merge(q, prev, rq);
  2209. return 0;
  2210. }
  2211. /**
  2212. * blk_attempt_remerge - attempt to remerge active head with next request
  2213. * @q: The &request_queue_t belonging to the device
  2214. * @rq: The head request (usually)
  2215. *
  2216. * Description:
  2217. * For head-active devices, the queue can easily be unplugged so quickly
  2218. * that proper merging is not done on the front request. This may hurt
  2219. * performance greatly for some devices. The block layer cannot safely
  2220. * do merging on that first request for these queues, but the driver can
  2221. * call this function and make it happen any way. Only the driver knows
  2222. * when it is safe to do so.
  2223. **/
  2224. void blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2225. {
  2226. unsigned long flags;
  2227. spin_lock_irqsave(q->queue_lock, flags);
  2228. attempt_back_merge(q, rq);
  2229. spin_unlock_irqrestore(q->queue_lock, flags);
  2230. }
  2231. EXPORT_SYMBOL(blk_attempt_remerge);
  2232. static int __make_request(request_queue_t *q, struct bio *bio)
  2233. {
  2234. struct request *req;
  2235. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2236. unsigned short prio;
  2237. sector_t sector;
  2238. sector = bio->bi_sector;
  2239. nr_sectors = bio_sectors(bio);
  2240. cur_nr_sectors = bio_cur_sectors(bio);
  2241. prio = bio_prio(bio);
  2242. rw = bio_data_dir(bio);
  2243. sync = bio_sync(bio);
  2244. /*
  2245. * low level driver can indicate that it wants pages above a
  2246. * certain limit bounced to low memory (ie for highmem, or even
  2247. * ISA dma in theory)
  2248. */
  2249. blk_queue_bounce(q, &bio);
  2250. spin_lock_prefetch(q->queue_lock);
  2251. barrier = bio_barrier(bio);
  2252. if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
  2253. err = -EOPNOTSUPP;
  2254. goto end_io;
  2255. }
  2256. spin_lock_irq(q->queue_lock);
  2257. if (unlikely(barrier) || elv_queue_empty(q))
  2258. goto get_rq;
  2259. el_ret = elv_merge(q, &req, bio);
  2260. switch (el_ret) {
  2261. case ELEVATOR_BACK_MERGE:
  2262. BUG_ON(!rq_mergeable(req));
  2263. if (!q->back_merge_fn(q, req, bio))
  2264. break;
  2265. req->biotail->bi_next = bio;
  2266. req->biotail = bio;
  2267. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2268. req->ioprio = ioprio_best(req->ioprio, prio);
  2269. drive_stat_acct(req, nr_sectors, 0);
  2270. if (!attempt_back_merge(q, req))
  2271. elv_merged_request(q, req);
  2272. goto out;
  2273. case ELEVATOR_FRONT_MERGE:
  2274. BUG_ON(!rq_mergeable(req));
  2275. if (!q->front_merge_fn(q, req, bio))
  2276. break;
  2277. bio->bi_next = req->bio;
  2278. req->bio = bio;
  2279. /*
  2280. * may not be valid. if the low level driver said
  2281. * it didn't need a bounce buffer then it better
  2282. * not touch req->buffer either...
  2283. */
  2284. req->buffer = bio_data(bio);
  2285. req->current_nr_sectors = cur_nr_sectors;
  2286. req->hard_cur_sectors = cur_nr_sectors;
  2287. req->sector = req->hard_sector = sector;
  2288. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2289. req->ioprio = ioprio_best(req->ioprio, prio);
  2290. drive_stat_acct(req, nr_sectors, 0);
  2291. if (!attempt_front_merge(q, req))
  2292. elv_merged_request(q, req);
  2293. goto out;
  2294. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2295. default:
  2296. ;
  2297. }
  2298. get_rq:
  2299. /*
  2300. * Grab a free request. This is might sleep but can not fail.
  2301. * Returns with the queue unlocked.
  2302. */
  2303. req = get_request_wait(q, rw, bio);
  2304. /*
  2305. * After dropping the lock and possibly sleeping here, our request
  2306. * may now be mergeable after it had proven unmergeable (above).
  2307. * We don't worry about that case for efficiency. It won't happen
  2308. * often, and the elevators are able to handle it.
  2309. */
  2310. req->flags |= REQ_CMD;
  2311. /*
  2312. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2313. */
  2314. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2315. req->flags |= REQ_FAILFAST;
  2316. /*
  2317. * REQ_BARRIER implies no merging, but lets make it explicit
  2318. */
  2319. if (unlikely(barrier))
  2320. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2321. req->errors = 0;
  2322. req->hard_sector = req->sector = sector;
  2323. req->hard_nr_sectors = req->nr_sectors = nr_sectors;
  2324. req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
  2325. req->nr_phys_segments = bio_phys_segments(q, bio);
  2326. req->nr_hw_segments = bio_hw_segments(q, bio);
  2327. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2328. req->waiting = NULL;
  2329. req->bio = req->biotail = bio;
  2330. req->ioprio = prio;
  2331. req->rq_disk = bio->bi_bdev->bd_disk;
  2332. req->start_time = jiffies;
  2333. spin_lock_irq(q->queue_lock);
  2334. if (elv_queue_empty(q))
  2335. blk_plug_device(q);
  2336. add_request(q, req);
  2337. out:
  2338. if (sync)
  2339. __generic_unplug_device(q);
  2340. spin_unlock_irq(q->queue_lock);
  2341. return 0;
  2342. end_io:
  2343. bio_endio(bio, nr_sectors << 9, err);
  2344. return 0;
  2345. }
  2346. /*
  2347. * If bio->bi_dev is a partition, remap the location
  2348. */
  2349. static inline void blk_partition_remap(struct bio *bio)
  2350. {
  2351. struct block_device *bdev = bio->bi_bdev;
  2352. if (bdev != bdev->bd_contains) {
  2353. struct hd_struct *p = bdev->bd_part;
  2354. switch (bio_data_dir(bio)) {
  2355. case READ:
  2356. p->read_sectors += bio_sectors(bio);
  2357. p->reads++;
  2358. break;
  2359. case WRITE:
  2360. p->write_sectors += bio_sectors(bio);
  2361. p->writes++;
  2362. break;
  2363. }
  2364. bio->bi_sector += p->start_sect;
  2365. bio->bi_bdev = bdev->bd_contains;
  2366. }
  2367. }
  2368. void blk_finish_queue_drain(request_queue_t *q)
  2369. {
  2370. struct request_list *rl = &q->rq;
  2371. struct request *rq;
  2372. int requeued = 0;
  2373. spin_lock_irq(q->queue_lock);
  2374. clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2375. while (!list_empty(&q->drain_list)) {
  2376. rq = list_entry_rq(q->drain_list.next);
  2377. list_del_init(&rq->queuelist);
  2378. elv_requeue_request(q, rq);
  2379. requeued++;
  2380. }
  2381. if (requeued)
  2382. q->request_fn(q);
  2383. spin_unlock_irq(q->queue_lock);
  2384. wake_up(&rl->wait[0]);
  2385. wake_up(&rl->wait[1]);
  2386. wake_up(&rl->drain);
  2387. }
  2388. static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
  2389. {
  2390. int wait = rl->count[READ] + rl->count[WRITE];
  2391. if (dispatch)
  2392. wait += !list_empty(&q->queue_head);
  2393. return wait;
  2394. }
  2395. /*
  2396. * We rely on the fact that only requests allocated through blk_alloc_request()
  2397. * have io scheduler private data structures associated with them. Any other
  2398. * type of request (allocated on stack or through kmalloc()) should not go
  2399. * to the io scheduler core, but be attached to the queue head instead.
  2400. */
  2401. void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
  2402. {
  2403. struct request_list *rl = &q->rq;
  2404. DEFINE_WAIT(wait);
  2405. spin_lock_irq(q->queue_lock);
  2406. set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2407. while (wait_drain(q, rl, wait_dispatch)) {
  2408. prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
  2409. if (wait_drain(q, rl, wait_dispatch)) {
  2410. __generic_unplug_device(q);
  2411. spin_unlock_irq(q->queue_lock);
  2412. io_schedule();
  2413. spin_lock_irq(q->queue_lock);
  2414. }
  2415. finish_wait(&rl->drain, &wait);
  2416. }
  2417. spin_unlock_irq(q->queue_lock);
  2418. }
  2419. /*
  2420. * block waiting for the io scheduler being started again.
  2421. */
  2422. static inline void block_wait_queue_running(request_queue_t *q)
  2423. {
  2424. DEFINE_WAIT(wait);
  2425. while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
  2426. struct request_list *rl = &q->rq;
  2427. prepare_to_wait_exclusive(&rl->drain, &wait,
  2428. TASK_UNINTERRUPTIBLE);
  2429. /*
  2430. * re-check the condition. avoids using prepare_to_wait()
  2431. * in the fast path (queue is running)
  2432. */
  2433. if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
  2434. io_schedule();
  2435. finish_wait(&rl->drain, &wait);
  2436. }
  2437. }
  2438. static void handle_bad_sector(struct bio *bio)
  2439. {
  2440. char b[BDEVNAME_SIZE];
  2441. printk(KERN_INFO "attempt to access beyond end of device\n");
  2442. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2443. bdevname(bio->bi_bdev, b),
  2444. bio->bi_rw,
  2445. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2446. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2447. set_bit(BIO_EOF, &bio->bi_flags);
  2448. }
  2449. /**
  2450. * generic_make_request: hand a buffer to its device driver for I/O
  2451. * @bio: The bio describing the location in memory and on the device.
  2452. *
  2453. * generic_make_request() is used to make I/O requests of block
  2454. * devices. It is passed a &struct bio, which describes the I/O that needs
  2455. * to be done.
  2456. *
  2457. * generic_make_request() does not return any status. The
  2458. * success/failure status of the request, along with notification of
  2459. * completion, is delivered asynchronously through the bio->bi_end_io
  2460. * function described (one day) else where.
  2461. *
  2462. * The caller of generic_make_request must make sure that bi_io_vec
  2463. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2464. * set to describe the device address, and the
  2465. * bi_end_io and optionally bi_private are set to describe how
  2466. * completion notification should be signaled.
  2467. *
  2468. * generic_make_request and the drivers it calls may use bi_next if this
  2469. * bio happens to be merged with someone else, and may change bi_dev and
  2470. * bi_sector for remaps as it sees fit. So the values of these fields
  2471. * should NOT be depended on after the call to generic_make_request.
  2472. */
  2473. void generic_make_request(struct bio *bio)
  2474. {
  2475. request_queue_t *q;
  2476. sector_t maxsector;
  2477. int ret, nr_sectors = bio_sectors(bio);
  2478. might_sleep();
  2479. /* Test device or partition size, when known. */
  2480. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2481. if (maxsector) {
  2482. sector_t sector = bio->bi_sector;
  2483. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2484. /*
  2485. * This may well happen - the kernel calls bread()
  2486. * without checking the size of the device, e.g., when
  2487. * mounting a device.
  2488. */
  2489. handle_bad_sector(bio);
  2490. goto end_io;
  2491. }
  2492. }
  2493. /*
  2494. * Resolve the mapping until finished. (drivers are
  2495. * still free to implement/resolve their own stacking
  2496. * by explicitly returning 0)
  2497. *
  2498. * NOTE: we don't repeat the blk_size check for each new device.
  2499. * Stacking drivers are expected to know what they are doing.
  2500. */
  2501. do {
  2502. char b[BDEVNAME_SIZE];
  2503. q = bdev_get_queue(bio->bi_bdev);
  2504. if (!q) {
  2505. printk(KERN_ERR
  2506. "generic_make_request: Trying to access "
  2507. "nonexistent block-device %s (%Lu)\n",
  2508. bdevname(bio->bi_bdev, b),
  2509. (long long) bio->bi_sector);
  2510. end_io:
  2511. bio_endio(bio, bio->bi_size, -EIO);
  2512. break;
  2513. }
  2514. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2515. printk("bio too big device %s (%u > %u)\n",
  2516. bdevname(bio->bi_bdev, b),
  2517. bio_sectors(bio),
  2518. q->max_hw_sectors);
  2519. goto end_io;
  2520. }
  2521. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2522. goto end_io;
  2523. block_wait_queue_running(q);
  2524. /*
  2525. * If this device has partitions, remap block n
  2526. * of partition p to block n+start(p) of the disk.
  2527. */
  2528. blk_partition_remap(bio);
  2529. ret = q->make_request_fn(q, bio);
  2530. } while (ret);
  2531. }
  2532. EXPORT_SYMBOL(generic_make_request);
  2533. /**
  2534. * submit_bio: submit a bio to the block device layer for I/O
  2535. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2536. * @bio: The &struct bio which describes the I/O
  2537. *
  2538. * submit_bio() is very similar in purpose to generic_make_request(), and
  2539. * uses that function to do most of the work. Both are fairly rough
  2540. * interfaces, @bio must be presetup and ready for I/O.
  2541. *
  2542. */
  2543. void submit_bio(int rw, struct bio *bio)
  2544. {
  2545. int count = bio_sectors(bio);
  2546. BIO_BUG_ON(!bio->bi_size);
  2547. BIO_BUG_ON(!bio->bi_io_vec);
  2548. bio->bi_rw |= rw;
  2549. if (rw & WRITE)
  2550. mod_page_state(pgpgout, count);
  2551. else
  2552. mod_page_state(pgpgin, count);
  2553. if (unlikely(block_dump)) {
  2554. char b[BDEVNAME_SIZE];
  2555. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2556. current->comm, current->pid,
  2557. (rw & WRITE) ? "WRITE" : "READ",
  2558. (unsigned long long)bio->bi_sector,
  2559. bdevname(bio->bi_bdev,b));
  2560. }
  2561. generic_make_request(bio);
  2562. }
  2563. EXPORT_SYMBOL(submit_bio);
  2564. static void blk_recalc_rq_segments(struct request *rq)
  2565. {
  2566. struct bio *bio, *prevbio = NULL;
  2567. int nr_phys_segs, nr_hw_segs;
  2568. unsigned int phys_size, hw_size;
  2569. request_queue_t *q = rq->q;
  2570. if (!rq->bio)
  2571. return;
  2572. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2573. rq_for_each_bio(bio, rq) {
  2574. /* Force bio hw/phys segs to be recalculated. */
  2575. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2576. nr_phys_segs += bio_phys_segments(q, bio);
  2577. nr_hw_segs += bio_hw_segments(q, bio);
  2578. if (prevbio) {
  2579. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2580. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2581. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2582. pseg <= q->max_segment_size) {
  2583. nr_phys_segs--;
  2584. phys_size += prevbio->bi_size + bio->bi_size;
  2585. } else
  2586. phys_size = 0;
  2587. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2588. hseg <= q->max_segment_size) {
  2589. nr_hw_segs--;
  2590. hw_size += prevbio->bi_size + bio->bi_size;
  2591. } else
  2592. hw_size = 0;
  2593. }
  2594. prevbio = bio;
  2595. }
  2596. rq->nr_phys_segments = nr_phys_segs;
  2597. rq->nr_hw_segments = nr_hw_segs;
  2598. }
  2599. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2600. {
  2601. if (blk_fs_request(rq)) {
  2602. rq->hard_sector += nsect;
  2603. rq->hard_nr_sectors -= nsect;
  2604. /*
  2605. * Move the I/O submission pointers ahead if required.
  2606. */
  2607. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2608. (rq->sector <= rq->hard_sector)) {
  2609. rq->sector = rq->hard_sector;
  2610. rq->nr_sectors = rq->hard_nr_sectors;
  2611. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2612. rq->current_nr_sectors = rq->hard_cur_sectors;
  2613. rq->buffer = bio_data(rq->bio);
  2614. }
  2615. /*
  2616. * if total number of sectors is less than the first segment
  2617. * size, something has gone terribly wrong
  2618. */
  2619. if (rq->nr_sectors < rq->current_nr_sectors) {
  2620. printk("blk: request botched\n");
  2621. rq->nr_sectors = rq->current_nr_sectors;
  2622. }
  2623. }
  2624. }
  2625. static int __end_that_request_first(struct request *req, int uptodate,
  2626. int nr_bytes)
  2627. {
  2628. int total_bytes, bio_nbytes, error, next_idx = 0;
  2629. struct bio *bio;
  2630. /*
  2631. * extend uptodate bool to allow < 0 value to be direct io error
  2632. */
  2633. error = 0;
  2634. if (end_io_error(uptodate))
  2635. error = !uptodate ? -EIO : uptodate;
  2636. /*
  2637. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2638. * sense key with us all the way through
  2639. */
  2640. if (!blk_pc_request(req))
  2641. req->errors = 0;
  2642. if (!uptodate) {
  2643. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2644. printk("end_request: I/O error, dev %s, sector %llu\n",
  2645. req->rq_disk ? req->rq_disk->disk_name : "?",
  2646. (unsigned long long)req->sector);
  2647. }
  2648. total_bytes = bio_nbytes = 0;
  2649. while ((bio = req->bio) != NULL) {
  2650. int nbytes;
  2651. if (nr_bytes >= bio->bi_size) {
  2652. req->bio = bio->bi_next;
  2653. nbytes = bio->bi_size;
  2654. bio_endio(bio, nbytes, error);
  2655. next_idx = 0;
  2656. bio_nbytes = 0;
  2657. } else {
  2658. int idx = bio->bi_idx + next_idx;
  2659. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2660. blk_dump_rq_flags(req, "__end_that");
  2661. printk("%s: bio idx %d >= vcnt %d\n",
  2662. __FUNCTION__,
  2663. bio->bi_idx, bio->bi_vcnt);
  2664. break;
  2665. }
  2666. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2667. BIO_BUG_ON(nbytes > bio->bi_size);
  2668. /*
  2669. * not a complete bvec done
  2670. */
  2671. if (unlikely(nbytes > nr_bytes)) {
  2672. bio_nbytes += nr_bytes;
  2673. total_bytes += nr_bytes;
  2674. break;
  2675. }
  2676. /*
  2677. * advance to the next vector
  2678. */
  2679. next_idx++;
  2680. bio_nbytes += nbytes;
  2681. }
  2682. total_bytes += nbytes;
  2683. nr_bytes -= nbytes;
  2684. if ((bio = req->bio)) {
  2685. /*
  2686. * end more in this run, or just return 'not-done'
  2687. */
  2688. if (unlikely(nr_bytes <= 0))
  2689. break;
  2690. }
  2691. }
  2692. /*
  2693. * completely done
  2694. */
  2695. if (!req->bio)
  2696. return 0;
  2697. /*
  2698. * if the request wasn't completed, update state
  2699. */
  2700. if (bio_nbytes) {
  2701. bio_endio(bio, bio_nbytes, error);
  2702. bio->bi_idx += next_idx;
  2703. bio_iovec(bio)->bv_offset += nr_bytes;
  2704. bio_iovec(bio)->bv_len -= nr_bytes;
  2705. }
  2706. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2707. blk_recalc_rq_segments(req);
  2708. return 1;
  2709. }
  2710. /**
  2711. * end_that_request_first - end I/O on a request
  2712. * @req: the request being processed
  2713. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2714. * @nr_sectors: number of sectors to end I/O on
  2715. *
  2716. * Description:
  2717. * Ends I/O on a number of sectors attached to @req, and sets it up
  2718. * for the next range of segments (if any) in the cluster.
  2719. *
  2720. * Return:
  2721. * 0 - we are done with this request, call end_that_request_last()
  2722. * 1 - still buffers pending for this request
  2723. **/
  2724. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2725. {
  2726. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2727. }
  2728. EXPORT_SYMBOL(end_that_request_first);
  2729. /**
  2730. * end_that_request_chunk - end I/O on a request
  2731. * @req: the request being processed
  2732. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2733. * @nr_bytes: number of bytes to complete
  2734. *
  2735. * Description:
  2736. * Ends I/O on a number of bytes attached to @req, and sets it up
  2737. * for the next range of segments (if any). Like end_that_request_first(),
  2738. * but deals with bytes instead of sectors.
  2739. *
  2740. * Return:
  2741. * 0 - we are done with this request, call end_that_request_last()
  2742. * 1 - still buffers pending for this request
  2743. **/
  2744. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2745. {
  2746. return __end_that_request_first(req, uptodate, nr_bytes);
  2747. }
  2748. EXPORT_SYMBOL(end_that_request_chunk);
  2749. /*
  2750. * queue lock must be held
  2751. */
  2752. void end_that_request_last(struct request *req)
  2753. {
  2754. struct gendisk *disk = req->rq_disk;
  2755. if (unlikely(laptop_mode) && blk_fs_request(req))
  2756. laptop_io_completion();
  2757. if (disk && blk_fs_request(req)) {
  2758. unsigned long duration = jiffies - req->start_time;
  2759. switch (rq_data_dir(req)) {
  2760. case WRITE:
  2761. __disk_stat_inc(disk, writes);
  2762. __disk_stat_add(disk, write_ticks, duration);
  2763. break;
  2764. case READ:
  2765. __disk_stat_inc(disk, reads);
  2766. __disk_stat_add(disk, read_ticks, duration);
  2767. break;
  2768. }
  2769. disk_round_stats(disk);
  2770. disk->in_flight--;
  2771. }
  2772. if (req->end_io)
  2773. req->end_io(req);
  2774. else
  2775. __blk_put_request(req->q, req);
  2776. }
  2777. EXPORT_SYMBOL(end_that_request_last);
  2778. void end_request(struct request *req, int uptodate)
  2779. {
  2780. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2781. add_disk_randomness(req->rq_disk);
  2782. blkdev_dequeue_request(req);
  2783. end_that_request_last(req);
  2784. }
  2785. }
  2786. EXPORT_SYMBOL(end_request);
  2787. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2788. {
  2789. /* first three bits are identical in rq->flags and bio->bi_rw */
  2790. rq->flags |= (bio->bi_rw & 7);
  2791. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2792. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2793. rq->current_nr_sectors = bio_cur_sectors(bio);
  2794. rq->hard_cur_sectors = rq->current_nr_sectors;
  2795. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2796. rq->buffer = bio_data(bio);
  2797. rq->bio = rq->biotail = bio;
  2798. }
  2799. EXPORT_SYMBOL(blk_rq_bio_prep);
  2800. int kblockd_schedule_work(struct work_struct *work)
  2801. {
  2802. return queue_work(kblockd_workqueue, work);
  2803. }
  2804. EXPORT_SYMBOL(kblockd_schedule_work);
  2805. void kblockd_flush(void)
  2806. {
  2807. flush_workqueue(kblockd_workqueue);
  2808. }
  2809. EXPORT_SYMBOL(kblockd_flush);
  2810. int __init blk_dev_init(void)
  2811. {
  2812. kblockd_workqueue = create_workqueue("kblockd");
  2813. if (!kblockd_workqueue)
  2814. panic("Failed to create kblockd\n");
  2815. request_cachep = kmem_cache_create("blkdev_requests",
  2816. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2817. requestq_cachep = kmem_cache_create("blkdev_queue",
  2818. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2819. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2820. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2821. blk_max_low_pfn = max_low_pfn;
  2822. blk_max_pfn = max_pfn;
  2823. return 0;
  2824. }
  2825. /*
  2826. * IO Context helper functions
  2827. */
  2828. void put_io_context(struct io_context *ioc)
  2829. {
  2830. if (ioc == NULL)
  2831. return;
  2832. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2833. if (atomic_dec_and_test(&ioc->refcount)) {
  2834. if (ioc->aic && ioc->aic->dtor)
  2835. ioc->aic->dtor(ioc->aic);
  2836. if (ioc->cic && ioc->cic->dtor)
  2837. ioc->cic->dtor(ioc->cic);
  2838. kmem_cache_free(iocontext_cachep, ioc);
  2839. }
  2840. }
  2841. EXPORT_SYMBOL(put_io_context);
  2842. /* Called by the exitting task */
  2843. void exit_io_context(void)
  2844. {
  2845. unsigned long flags;
  2846. struct io_context *ioc;
  2847. local_irq_save(flags);
  2848. task_lock(current);
  2849. ioc = current->io_context;
  2850. current->io_context = NULL;
  2851. ioc->task = NULL;
  2852. task_unlock(current);
  2853. local_irq_restore(flags);
  2854. if (ioc->aic && ioc->aic->exit)
  2855. ioc->aic->exit(ioc->aic);
  2856. if (ioc->cic && ioc->cic->exit)
  2857. ioc->cic->exit(ioc->cic);
  2858. put_io_context(ioc);
  2859. }
  2860. /*
  2861. * If the current task has no IO context then create one and initialise it.
  2862. * Otherwise, return its existing IO context.
  2863. *
  2864. * This returned IO context doesn't have a specifically elevated refcount,
  2865. * but since the current task itself holds a reference, the context can be
  2866. * used in general code, so long as it stays within `current` context.
  2867. */
  2868. struct io_context *current_io_context(int gfp_flags)
  2869. {
  2870. struct task_struct *tsk = current;
  2871. struct io_context *ret;
  2872. ret = tsk->io_context;
  2873. if (likely(ret))
  2874. return ret;
  2875. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2876. if (ret) {
  2877. atomic_set(&ret->refcount, 1);
  2878. ret->task = current;
  2879. ret->set_ioprio = NULL;
  2880. ret->last_waited = jiffies; /* doesn't matter... */
  2881. ret->nr_batch_requests = 0; /* because this is 0 */
  2882. ret->aic = NULL;
  2883. ret->cic = NULL;
  2884. tsk->io_context = ret;
  2885. }
  2886. return ret;
  2887. }
  2888. EXPORT_SYMBOL(current_io_context);
  2889. /*
  2890. * If the current task has no IO context then create one and initialise it.
  2891. * If it does have a context, take a ref on it.
  2892. *
  2893. * This is always called in the context of the task which submitted the I/O.
  2894. */
  2895. struct io_context *get_io_context(int gfp_flags)
  2896. {
  2897. struct io_context *ret;
  2898. ret = current_io_context(gfp_flags);
  2899. if (likely(ret))
  2900. atomic_inc(&ret->refcount);
  2901. return ret;
  2902. }
  2903. EXPORT_SYMBOL(get_io_context);
  2904. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  2905. {
  2906. struct io_context *src = *psrc;
  2907. struct io_context *dst = *pdst;
  2908. if (src) {
  2909. BUG_ON(atomic_read(&src->refcount) == 0);
  2910. atomic_inc(&src->refcount);
  2911. put_io_context(dst);
  2912. *pdst = src;
  2913. }
  2914. }
  2915. EXPORT_SYMBOL(copy_io_context);
  2916. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  2917. {
  2918. struct io_context *temp;
  2919. temp = *ioc1;
  2920. *ioc1 = *ioc2;
  2921. *ioc2 = temp;
  2922. }
  2923. EXPORT_SYMBOL(swap_io_context);
  2924. /*
  2925. * sysfs parts below
  2926. */
  2927. struct queue_sysfs_entry {
  2928. struct attribute attr;
  2929. ssize_t (*show)(struct request_queue *, char *);
  2930. ssize_t (*store)(struct request_queue *, const char *, size_t);
  2931. };
  2932. static ssize_t
  2933. queue_var_show(unsigned int var, char *page)
  2934. {
  2935. return sprintf(page, "%d\n", var);
  2936. }
  2937. static ssize_t
  2938. queue_var_store(unsigned long *var, const char *page, size_t count)
  2939. {
  2940. char *p = (char *) page;
  2941. *var = simple_strtoul(p, &p, 10);
  2942. return count;
  2943. }
  2944. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  2945. {
  2946. return queue_var_show(q->nr_requests, (page));
  2947. }
  2948. static ssize_t
  2949. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  2950. {
  2951. struct request_list *rl = &q->rq;
  2952. int ret = queue_var_store(&q->nr_requests, page, count);
  2953. if (q->nr_requests < BLKDEV_MIN_RQ)
  2954. q->nr_requests = BLKDEV_MIN_RQ;
  2955. blk_queue_congestion_threshold(q);
  2956. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  2957. set_queue_congested(q, READ);
  2958. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  2959. clear_queue_congested(q, READ);
  2960. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  2961. set_queue_congested(q, WRITE);
  2962. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  2963. clear_queue_congested(q, WRITE);
  2964. if (rl->count[READ] >= q->nr_requests) {
  2965. blk_set_queue_full(q, READ);
  2966. } else if (rl->count[READ]+1 <= q->nr_requests) {
  2967. blk_clear_queue_full(q, READ);
  2968. wake_up(&rl->wait[READ]);
  2969. }
  2970. if (rl->count[WRITE] >= q->nr_requests) {
  2971. blk_set_queue_full(q, WRITE);
  2972. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  2973. blk_clear_queue_full(q, WRITE);
  2974. wake_up(&rl->wait[WRITE]);
  2975. }
  2976. return ret;
  2977. }
  2978. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  2979. {
  2980. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2981. return queue_var_show(ra_kb, (page));
  2982. }
  2983. static ssize_t
  2984. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  2985. {
  2986. unsigned long ra_kb;
  2987. ssize_t ret = queue_var_store(&ra_kb, page, count);
  2988. spin_lock_irq(q->queue_lock);
  2989. if (ra_kb > (q->max_sectors >> 1))
  2990. ra_kb = (q->max_sectors >> 1);
  2991. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  2992. spin_unlock_irq(q->queue_lock);
  2993. return ret;
  2994. }
  2995. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  2996. {
  2997. int max_sectors_kb = q->max_sectors >> 1;
  2998. return queue_var_show(max_sectors_kb, (page));
  2999. }
  3000. static ssize_t
  3001. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3002. {
  3003. unsigned long max_sectors_kb,
  3004. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3005. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3006. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3007. int ra_kb;
  3008. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3009. return -EINVAL;
  3010. /*
  3011. * Take the queue lock to update the readahead and max_sectors
  3012. * values synchronously:
  3013. */
  3014. spin_lock_irq(q->queue_lock);
  3015. /*
  3016. * Trim readahead window as well, if necessary:
  3017. */
  3018. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3019. if (ra_kb > max_sectors_kb)
  3020. q->backing_dev_info.ra_pages =
  3021. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3022. q->max_sectors = max_sectors_kb << 1;
  3023. spin_unlock_irq(q->queue_lock);
  3024. return ret;
  3025. }
  3026. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3027. {
  3028. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3029. return queue_var_show(max_hw_sectors_kb, (page));
  3030. }
  3031. static struct queue_sysfs_entry queue_requests_entry = {
  3032. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3033. .show = queue_requests_show,
  3034. .store = queue_requests_store,
  3035. };
  3036. static struct queue_sysfs_entry queue_ra_entry = {
  3037. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3038. .show = queue_ra_show,
  3039. .store = queue_ra_store,
  3040. };
  3041. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3042. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3043. .show = queue_max_sectors_show,
  3044. .store = queue_max_sectors_store,
  3045. };
  3046. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3047. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3048. .show = queue_max_hw_sectors_show,
  3049. };
  3050. static struct queue_sysfs_entry queue_iosched_entry = {
  3051. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3052. .show = elv_iosched_show,
  3053. .store = elv_iosched_store,
  3054. };
  3055. static struct attribute *default_attrs[] = {
  3056. &queue_requests_entry.attr,
  3057. &queue_ra_entry.attr,
  3058. &queue_max_hw_sectors_entry.attr,
  3059. &queue_max_sectors_entry.attr,
  3060. &queue_iosched_entry.attr,
  3061. NULL,
  3062. };
  3063. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3064. static ssize_t
  3065. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3066. {
  3067. struct queue_sysfs_entry *entry = to_queue(attr);
  3068. struct request_queue *q;
  3069. q = container_of(kobj, struct request_queue, kobj);
  3070. if (!entry->show)
  3071. return -EIO;
  3072. return entry->show(q, page);
  3073. }
  3074. static ssize_t
  3075. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3076. const char *page, size_t length)
  3077. {
  3078. struct queue_sysfs_entry *entry = to_queue(attr);
  3079. struct request_queue *q;
  3080. q = container_of(kobj, struct request_queue, kobj);
  3081. if (!entry->store)
  3082. return -EIO;
  3083. return entry->store(q, page, length);
  3084. }
  3085. static struct sysfs_ops queue_sysfs_ops = {
  3086. .show = queue_attr_show,
  3087. .store = queue_attr_store,
  3088. };
  3089. static struct kobj_type queue_ktype = {
  3090. .sysfs_ops = &queue_sysfs_ops,
  3091. .default_attrs = default_attrs,
  3092. };
  3093. int blk_register_queue(struct gendisk *disk)
  3094. {
  3095. int ret;
  3096. request_queue_t *q = disk->queue;
  3097. if (!q || !q->request_fn)
  3098. return -ENXIO;
  3099. q->kobj.parent = kobject_get(&disk->kobj);
  3100. if (!q->kobj.parent)
  3101. return -EBUSY;
  3102. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3103. q->kobj.ktype = &queue_ktype;
  3104. ret = kobject_register(&q->kobj);
  3105. if (ret < 0)
  3106. return ret;
  3107. ret = elv_register_queue(q);
  3108. if (ret) {
  3109. kobject_unregister(&q->kobj);
  3110. return ret;
  3111. }
  3112. return 0;
  3113. }
  3114. void blk_unregister_queue(struct gendisk *disk)
  3115. {
  3116. request_queue_t *q = disk->queue;
  3117. if (q && q->request_fn) {
  3118. elv_unregister_queue(q);
  3119. kobject_unregister(&q->kobj);
  3120. kobject_put(&disk->kobj);
  3121. }
  3122. }