spi_bfin5xx.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463
  1. /*
  2. * File: drivers/spi/bfin5xx_spi.c
  3. * Maintainer:
  4. * Bryan Wu <bryan.wu@analog.com>
  5. * Original Author:
  6. * Luke Yang (Analog Devices Inc.)
  7. *
  8. * Created: March. 10th 2006
  9. * Description: SPI controller driver for Blackfin BF5xx
  10. * Bugs: Enter bugs at http://blackfin.uclinux.org/
  11. *
  12. * Modified:
  13. * March 10, 2006 bfin5xx_spi.c Created. (Luke Yang)
  14. * August 7, 2006 added full duplex mode (Axel Weiss & Luke Yang)
  15. * July 17, 2007 add support for BF54x SPI0 controller (Bryan Wu)
  16. * July 30, 2007 add platfrom_resource interface to support multi-port
  17. * SPI controller (Bryan Wu)
  18. *
  19. * Copyright 2004-2007 Analog Devices Inc.
  20. *
  21. * This program is free software ; you can redistribute it and/or modify
  22. * it under the terms of the GNU General Public License as published by
  23. * the Free Software Foundation ; either version 2, or (at your option)
  24. * any later version.
  25. *
  26. * This program is distributed in the hope that it will be useful,
  27. * but WITHOUT ANY WARRANTY ; without even the implied warranty of
  28. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  29. * GNU General Public License for more details.
  30. *
  31. * You should have received a copy of the GNU General Public License
  32. * along with this program ; see the file COPYING.
  33. * If not, write to the Free Software Foundation,
  34. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  35. */
  36. #include <linux/init.h>
  37. #include <linux/module.h>
  38. #include <linux/delay.h>
  39. #include <linux/device.h>
  40. #include <linux/io.h>
  41. #include <linux/ioport.h>
  42. #include <linux/irq.h>
  43. #include <linux/errno.h>
  44. #include <linux/interrupt.h>
  45. #include <linux/platform_device.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/spi/spi.h>
  48. #include <linux/workqueue.h>
  49. #include <asm/dma.h>
  50. #include <asm/portmux.h>
  51. #include <asm/bfin5xx_spi.h>
  52. #define DRV_NAME "bfin-spi"
  53. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  54. #define DRV_DESC "Blackfin BF5xx on-chip SPI Contoller Driver"
  55. #define DRV_VERSION "1.0"
  56. MODULE_AUTHOR(DRV_AUTHOR);
  57. MODULE_DESCRIPTION(DRV_DESC);
  58. MODULE_LICENSE("GPL");
  59. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07) == 0)
  60. #define START_STATE ((void *)0)
  61. #define RUNNING_STATE ((void *)1)
  62. #define DONE_STATE ((void *)2)
  63. #define ERROR_STATE ((void *)-1)
  64. #define QUEUE_RUNNING 0
  65. #define QUEUE_STOPPED 1
  66. struct driver_data {
  67. /* Driver model hookup */
  68. struct platform_device *pdev;
  69. /* SPI framework hookup */
  70. struct spi_master *master;
  71. /* Regs base of SPI controller */
  72. u32 regs_base;
  73. /* BFIN hookup */
  74. struct bfin5xx_spi_master *master_info;
  75. /* Driver message queue */
  76. struct workqueue_struct *workqueue;
  77. struct work_struct pump_messages;
  78. spinlock_t lock;
  79. struct list_head queue;
  80. int busy;
  81. int run;
  82. /* Message Transfer pump */
  83. struct tasklet_struct pump_transfers;
  84. /* Current message transfer state info */
  85. struct spi_message *cur_msg;
  86. struct spi_transfer *cur_transfer;
  87. struct chip_data *cur_chip;
  88. size_t len_in_bytes;
  89. size_t len;
  90. void *tx;
  91. void *tx_end;
  92. void *rx;
  93. void *rx_end;
  94. /* DMA stuffs */
  95. int dma_channel;
  96. int dma_mapped;
  97. int dma_requested;
  98. dma_addr_t rx_dma;
  99. dma_addr_t tx_dma;
  100. size_t rx_map_len;
  101. size_t tx_map_len;
  102. u8 n_bytes;
  103. int cs_change;
  104. void (*write) (struct driver_data *);
  105. void (*read) (struct driver_data *);
  106. void (*duplex) (struct driver_data *);
  107. };
  108. struct chip_data {
  109. u16 ctl_reg;
  110. u16 baud;
  111. u16 flag;
  112. u8 chip_select_num;
  113. u8 n_bytes;
  114. u8 width; /* 0 or 1 */
  115. u8 enable_dma;
  116. u8 bits_per_word; /* 8 or 16 */
  117. u8 cs_change_per_word;
  118. u8 cs_chg_udelay;
  119. void (*write) (struct driver_data *);
  120. void (*read) (struct driver_data *);
  121. void (*duplex) (struct driver_data *);
  122. };
  123. #define DEFINE_SPI_REG(reg, off) \
  124. static inline u16 read_##reg(struct driver_data *drv_data) \
  125. { return bfin_read16(drv_data->regs_base + off); } \
  126. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  127. { bfin_write16(drv_data->regs_base + off, v); }
  128. DEFINE_SPI_REG(CTRL, 0x00)
  129. DEFINE_SPI_REG(FLAG, 0x04)
  130. DEFINE_SPI_REG(STAT, 0x08)
  131. DEFINE_SPI_REG(TDBR, 0x0C)
  132. DEFINE_SPI_REG(RDBR, 0x10)
  133. DEFINE_SPI_REG(BAUD, 0x14)
  134. DEFINE_SPI_REG(SHAW, 0x18)
  135. static void bfin_spi_enable(struct driver_data *drv_data)
  136. {
  137. u16 cr;
  138. cr = read_CTRL(drv_data);
  139. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  140. }
  141. static void bfin_spi_disable(struct driver_data *drv_data)
  142. {
  143. u16 cr;
  144. cr = read_CTRL(drv_data);
  145. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  146. }
  147. /* Caculate the SPI_BAUD register value based on input HZ */
  148. static u16 hz_to_spi_baud(u32 speed_hz)
  149. {
  150. u_long sclk = get_sclk();
  151. u16 spi_baud = (sclk / (2 * speed_hz));
  152. if ((sclk % (2 * speed_hz)) > 0)
  153. spi_baud++;
  154. return spi_baud;
  155. }
  156. static int flush(struct driver_data *drv_data)
  157. {
  158. unsigned long limit = loops_per_jiffy << 1;
  159. /* wait for stop and clear stat */
  160. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && limit--)
  161. continue;
  162. write_STAT(drv_data, BIT_STAT_CLR);
  163. return limit;
  164. }
  165. /* Chip select operation functions for cs_change flag */
  166. static void cs_active(struct driver_data *drv_data, struct chip_data *chip)
  167. {
  168. u16 flag = read_FLAG(drv_data);
  169. flag |= chip->flag;
  170. flag &= ~(chip->flag << 8);
  171. write_FLAG(drv_data, flag);
  172. }
  173. static void cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  174. {
  175. u16 flag = read_FLAG(drv_data);
  176. flag |= (chip->flag << 8);
  177. write_FLAG(drv_data, flag);
  178. }
  179. #define MAX_SPI_SSEL 7
  180. /* stop controller and re-config current chip*/
  181. static int restore_state(struct driver_data *drv_data)
  182. {
  183. struct chip_data *chip = drv_data->cur_chip;
  184. int ret = 0;
  185. /* Clear status and disable clock */
  186. write_STAT(drv_data, BIT_STAT_CLR);
  187. bfin_spi_disable(drv_data);
  188. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  189. /* Load the registers */
  190. cs_deactive(drv_data, chip);
  191. write_BAUD(drv_data, chip->baud);
  192. chip->ctl_reg &= (~BIT_CTL_TIMOD);
  193. chip->ctl_reg |= (chip->width << 8);
  194. write_CTRL(drv_data, chip->ctl_reg);
  195. bfin_spi_enable(drv_data);
  196. if (ret)
  197. dev_dbg(&drv_data->pdev->dev,
  198. ": request chip select number %d failed\n",
  199. chip->chip_select_num);
  200. return ret;
  201. }
  202. /* used to kick off transfer in rx mode */
  203. static unsigned short dummy_read(struct driver_data *drv_data)
  204. {
  205. unsigned short tmp;
  206. tmp = read_RDBR(drv_data);
  207. return tmp;
  208. }
  209. static void null_writer(struct driver_data *drv_data)
  210. {
  211. u8 n_bytes = drv_data->n_bytes;
  212. while (drv_data->tx < drv_data->tx_end) {
  213. write_TDBR(drv_data, 0);
  214. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  215. continue;
  216. drv_data->tx += n_bytes;
  217. }
  218. }
  219. static void null_reader(struct driver_data *drv_data)
  220. {
  221. u8 n_bytes = drv_data->n_bytes;
  222. dummy_read(drv_data);
  223. while (drv_data->rx < drv_data->rx_end) {
  224. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  225. continue;
  226. dummy_read(drv_data);
  227. drv_data->rx += n_bytes;
  228. }
  229. }
  230. static void u8_writer(struct driver_data *drv_data)
  231. {
  232. dev_dbg(&drv_data->pdev->dev,
  233. "cr8-s is 0x%x\n", read_STAT(drv_data));
  234. /* poll for SPI completion before start */
  235. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  236. continue;
  237. while (drv_data->tx < drv_data->tx_end) {
  238. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  239. while (read_STAT(drv_data) & BIT_STAT_TXS)
  240. continue;
  241. ++drv_data->tx;
  242. }
  243. }
  244. static void u8_cs_chg_writer(struct driver_data *drv_data)
  245. {
  246. struct chip_data *chip = drv_data->cur_chip;
  247. /* poll for SPI completion before start */
  248. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  249. continue;
  250. while (drv_data->tx < drv_data->tx_end) {
  251. cs_active(drv_data, chip);
  252. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  253. while (read_STAT(drv_data) & BIT_STAT_TXS)
  254. continue;
  255. cs_deactive(drv_data, chip);
  256. if (chip->cs_chg_udelay)
  257. udelay(chip->cs_chg_udelay);
  258. ++drv_data->tx;
  259. }
  260. }
  261. static void u8_reader(struct driver_data *drv_data)
  262. {
  263. dev_dbg(&drv_data->pdev->dev,
  264. "cr-8 is 0x%x\n", read_STAT(drv_data));
  265. /* poll for SPI completion before start */
  266. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  267. continue;
  268. /* clear TDBR buffer before read(else it will be shifted out) */
  269. write_TDBR(drv_data, 0xFFFF);
  270. dummy_read(drv_data);
  271. while (drv_data->rx < drv_data->rx_end - 1) {
  272. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  273. continue;
  274. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  275. ++drv_data->rx;
  276. }
  277. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  278. continue;
  279. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  280. ++drv_data->rx;
  281. }
  282. static void u8_cs_chg_reader(struct driver_data *drv_data)
  283. {
  284. struct chip_data *chip = drv_data->cur_chip;
  285. /* poll for SPI completion before start */
  286. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  287. continue;
  288. /* clear TDBR buffer before read(else it will be shifted out) */
  289. write_TDBR(drv_data, 0xFFFF);
  290. cs_active(drv_data, chip);
  291. dummy_read(drv_data);
  292. while (drv_data->rx < drv_data->rx_end - 1) {
  293. cs_deactive(drv_data, chip);
  294. if (chip->cs_chg_udelay)
  295. udelay(chip->cs_chg_udelay);
  296. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  297. continue;
  298. cs_active(drv_data, chip);
  299. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  300. ++drv_data->rx;
  301. }
  302. cs_deactive(drv_data, chip);
  303. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  304. continue;
  305. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  306. ++drv_data->rx;
  307. }
  308. static void u8_duplex(struct driver_data *drv_data)
  309. {
  310. /* poll for SPI completion before start */
  311. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  312. continue;
  313. /* in duplex mode, clk is triggered by writing of TDBR */
  314. while (drv_data->rx < drv_data->rx_end) {
  315. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  316. while (read_STAT(drv_data) & BIT_STAT_TXS)
  317. continue;
  318. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  319. continue;
  320. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  321. ++drv_data->rx;
  322. ++drv_data->tx;
  323. }
  324. }
  325. static void u8_cs_chg_duplex(struct driver_data *drv_data)
  326. {
  327. struct chip_data *chip = drv_data->cur_chip;
  328. /* poll for SPI completion before start */
  329. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  330. continue;
  331. while (drv_data->rx < drv_data->rx_end) {
  332. cs_active(drv_data, chip);
  333. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  334. while (read_STAT(drv_data) & BIT_STAT_TXS)
  335. continue;
  336. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  337. continue;
  338. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  339. cs_deactive(drv_data, chip);
  340. if (chip->cs_chg_udelay)
  341. udelay(chip->cs_chg_udelay);
  342. ++drv_data->rx;
  343. ++drv_data->tx;
  344. }
  345. }
  346. static void u16_writer(struct driver_data *drv_data)
  347. {
  348. dev_dbg(&drv_data->pdev->dev,
  349. "cr16 is 0x%x\n", read_STAT(drv_data));
  350. /* poll for SPI completion before start */
  351. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  352. continue;
  353. while (drv_data->tx < drv_data->tx_end) {
  354. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  355. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  356. continue;
  357. drv_data->tx += 2;
  358. }
  359. }
  360. static void u16_cs_chg_writer(struct driver_data *drv_data)
  361. {
  362. struct chip_data *chip = drv_data->cur_chip;
  363. /* poll for SPI completion before start */
  364. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  365. continue;
  366. while (drv_data->tx < drv_data->tx_end) {
  367. cs_active(drv_data, chip);
  368. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  369. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  370. continue;
  371. cs_deactive(drv_data, chip);
  372. if (chip->cs_chg_udelay)
  373. udelay(chip->cs_chg_udelay);
  374. drv_data->tx += 2;
  375. }
  376. }
  377. static void u16_reader(struct driver_data *drv_data)
  378. {
  379. dev_dbg(&drv_data->pdev->dev,
  380. "cr-16 is 0x%x\n", read_STAT(drv_data));
  381. /* poll for SPI completion before start */
  382. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  383. continue;
  384. /* clear TDBR buffer before read(else it will be shifted out) */
  385. write_TDBR(drv_data, 0xFFFF);
  386. dummy_read(drv_data);
  387. while (drv_data->rx < (drv_data->rx_end - 2)) {
  388. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  389. continue;
  390. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  391. drv_data->rx += 2;
  392. }
  393. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  394. continue;
  395. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  396. drv_data->rx += 2;
  397. }
  398. static void u16_cs_chg_reader(struct driver_data *drv_data)
  399. {
  400. struct chip_data *chip = drv_data->cur_chip;
  401. /* poll for SPI completion before start */
  402. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  403. continue;
  404. /* clear TDBR buffer before read(else it will be shifted out) */
  405. write_TDBR(drv_data, 0xFFFF);
  406. cs_active(drv_data, chip);
  407. dummy_read(drv_data);
  408. while (drv_data->rx < drv_data->rx_end) {
  409. cs_deactive(drv_data, chip);
  410. if (chip->cs_chg_udelay)
  411. udelay(chip->cs_chg_udelay);
  412. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  413. continue;
  414. cs_active(drv_data, chip);
  415. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  416. drv_data->rx += 2;
  417. }
  418. cs_deactive(drv_data, chip);
  419. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  420. continue;
  421. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  422. drv_data->rx += 2;
  423. }
  424. static void u16_duplex(struct driver_data *drv_data)
  425. {
  426. /* poll for SPI completion before start */
  427. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  428. continue;
  429. /* in duplex mode, clk is triggered by writing of TDBR */
  430. while (drv_data->tx < drv_data->tx_end) {
  431. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  432. while (read_STAT(drv_data) & BIT_STAT_TXS)
  433. continue;
  434. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  435. continue;
  436. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  437. drv_data->rx += 2;
  438. drv_data->tx += 2;
  439. }
  440. }
  441. static void u16_cs_chg_duplex(struct driver_data *drv_data)
  442. {
  443. struct chip_data *chip = drv_data->cur_chip;
  444. /* poll for SPI completion before start */
  445. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  446. continue;
  447. while (drv_data->tx < drv_data->tx_end) {
  448. cs_active(drv_data, chip);
  449. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  450. while (read_STAT(drv_data) & BIT_STAT_TXS)
  451. continue;
  452. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  453. continue;
  454. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  455. cs_deactive(drv_data, chip);
  456. if (chip->cs_chg_udelay)
  457. udelay(chip->cs_chg_udelay);
  458. drv_data->rx += 2;
  459. drv_data->tx += 2;
  460. }
  461. }
  462. /* test if ther is more transfer to be done */
  463. static void *next_transfer(struct driver_data *drv_data)
  464. {
  465. struct spi_message *msg = drv_data->cur_msg;
  466. struct spi_transfer *trans = drv_data->cur_transfer;
  467. /* Move to next transfer */
  468. if (trans->transfer_list.next != &msg->transfers) {
  469. drv_data->cur_transfer =
  470. list_entry(trans->transfer_list.next,
  471. struct spi_transfer, transfer_list);
  472. return RUNNING_STATE;
  473. } else
  474. return DONE_STATE;
  475. }
  476. /*
  477. * caller already set message->status;
  478. * dma and pio irqs are blocked give finished message back
  479. */
  480. static void giveback(struct driver_data *drv_data)
  481. {
  482. struct chip_data *chip = drv_data->cur_chip;
  483. struct spi_transfer *last_transfer;
  484. unsigned long flags;
  485. struct spi_message *msg;
  486. spin_lock_irqsave(&drv_data->lock, flags);
  487. msg = drv_data->cur_msg;
  488. drv_data->cur_msg = NULL;
  489. drv_data->cur_transfer = NULL;
  490. drv_data->cur_chip = NULL;
  491. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  492. spin_unlock_irqrestore(&drv_data->lock, flags);
  493. last_transfer = list_entry(msg->transfers.prev,
  494. struct spi_transfer, transfer_list);
  495. msg->state = NULL;
  496. /* disable chip select signal. And not stop spi in autobuffer mode */
  497. if (drv_data->tx_dma != 0xFFFF) {
  498. cs_deactive(drv_data, chip);
  499. bfin_spi_disable(drv_data);
  500. }
  501. if (!drv_data->cs_change)
  502. cs_deactive(drv_data, chip);
  503. if (msg->complete)
  504. msg->complete(msg->context);
  505. }
  506. static irqreturn_t dma_irq_handler(int irq, void *dev_id)
  507. {
  508. struct driver_data *drv_data = (struct driver_data *)dev_id;
  509. struct chip_data *chip = drv_data->cur_chip;
  510. struct spi_message *msg = drv_data->cur_msg;
  511. dev_dbg(&drv_data->pdev->dev, "in dma_irq_handler\n");
  512. clear_dma_irqstat(drv_data->dma_channel);
  513. /* Wait for DMA to complete */
  514. while (get_dma_curr_irqstat(drv_data->dma_channel) & DMA_RUN)
  515. continue;
  516. /*
  517. * wait for the last transaction shifted out. HRM states:
  518. * at this point there may still be data in the SPI DMA FIFO waiting
  519. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  520. * register until it goes low for 2 successive reads
  521. */
  522. if (drv_data->tx != NULL) {
  523. while ((read_STAT(drv_data) & TXS) ||
  524. (read_STAT(drv_data) & TXS))
  525. continue;
  526. }
  527. while (!(read_STAT(drv_data) & SPIF))
  528. continue;
  529. msg->actual_length += drv_data->len_in_bytes;
  530. if (drv_data->cs_change)
  531. cs_deactive(drv_data, chip);
  532. /* Move to next transfer */
  533. msg->state = next_transfer(drv_data);
  534. /* Schedule transfer tasklet */
  535. tasklet_schedule(&drv_data->pump_transfers);
  536. /* free the irq handler before next transfer */
  537. dev_dbg(&drv_data->pdev->dev,
  538. "disable dma channel irq%d\n",
  539. drv_data->dma_channel);
  540. dma_disable_irq(drv_data->dma_channel);
  541. return IRQ_HANDLED;
  542. }
  543. static void pump_transfers(unsigned long data)
  544. {
  545. struct driver_data *drv_data = (struct driver_data *)data;
  546. struct spi_message *message = NULL;
  547. struct spi_transfer *transfer = NULL;
  548. struct spi_transfer *previous = NULL;
  549. struct chip_data *chip = NULL;
  550. u8 width;
  551. u16 cr, dma_width, dma_config;
  552. u32 tranf_success = 1;
  553. /* Get current state information */
  554. message = drv_data->cur_msg;
  555. transfer = drv_data->cur_transfer;
  556. chip = drv_data->cur_chip;
  557. /*
  558. * if msg is error or done, report it back using complete() callback
  559. */
  560. /* Handle for abort */
  561. if (message->state == ERROR_STATE) {
  562. message->status = -EIO;
  563. giveback(drv_data);
  564. return;
  565. }
  566. /* Handle end of message */
  567. if (message->state == DONE_STATE) {
  568. message->status = 0;
  569. giveback(drv_data);
  570. return;
  571. }
  572. /* Delay if requested at end of transfer */
  573. if (message->state == RUNNING_STATE) {
  574. previous = list_entry(transfer->transfer_list.prev,
  575. struct spi_transfer, transfer_list);
  576. if (previous->delay_usecs)
  577. udelay(previous->delay_usecs);
  578. }
  579. /* Setup the transfer state based on the type of transfer */
  580. if (flush(drv_data) == 0) {
  581. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  582. message->status = -EIO;
  583. giveback(drv_data);
  584. return;
  585. }
  586. if (transfer->tx_buf != NULL) {
  587. drv_data->tx = (void *)transfer->tx_buf;
  588. drv_data->tx_end = drv_data->tx + transfer->len;
  589. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  590. transfer->tx_buf, drv_data->tx_end);
  591. } else {
  592. drv_data->tx = NULL;
  593. }
  594. if (transfer->rx_buf != NULL) {
  595. drv_data->rx = transfer->rx_buf;
  596. drv_data->rx_end = drv_data->rx + transfer->len;
  597. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  598. transfer->rx_buf, drv_data->rx_end);
  599. } else {
  600. drv_data->rx = NULL;
  601. }
  602. drv_data->rx_dma = transfer->rx_dma;
  603. drv_data->tx_dma = transfer->tx_dma;
  604. drv_data->len_in_bytes = transfer->len;
  605. drv_data->cs_change = transfer->cs_change;
  606. width = chip->width;
  607. if (width == CFG_SPI_WORDSIZE16) {
  608. drv_data->len = (transfer->len) >> 1;
  609. } else {
  610. drv_data->len = transfer->len;
  611. }
  612. drv_data->write = drv_data->tx ? chip->write : null_writer;
  613. drv_data->read = drv_data->rx ? chip->read : null_reader;
  614. drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
  615. dev_dbg(&drv_data->pdev->dev, "transfer: ",
  616. "drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  617. drv_data->write, chip->write, null_writer);
  618. /* speed and width has been set on per message */
  619. message->state = RUNNING_STATE;
  620. dma_config = 0;
  621. write_STAT(drv_data, BIT_STAT_CLR);
  622. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  623. cs_active(drv_data, chip);
  624. dev_dbg(&drv_data->pdev->dev,
  625. "now pumping a transfer: width is %d, len is %d\n",
  626. width, transfer->len);
  627. /*
  628. * Try to map dma buffer and do a dma transfer if
  629. * successful use different way to r/w according to
  630. * drv_data->cur_chip->enable_dma
  631. */
  632. if (drv_data->cur_chip->enable_dma && drv_data->len > 6) {
  633. disable_dma(drv_data->dma_channel);
  634. clear_dma_irqstat(drv_data->dma_channel);
  635. /* config dma channel */
  636. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  637. if (width == CFG_SPI_WORDSIZE16) {
  638. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  639. set_dma_x_modify(drv_data->dma_channel, 2);
  640. dma_width = WDSIZE_16;
  641. } else {
  642. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  643. set_dma_x_modify(drv_data->dma_channel, 1);
  644. dma_width = WDSIZE_8;
  645. }
  646. /* poll for SPI completion before start */
  647. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  648. continue;
  649. /* dirty hack for autobuffer DMA mode */
  650. if (drv_data->tx_dma == 0xFFFF) {
  651. dev_dbg(&drv_data->pdev->dev,
  652. "doing autobuffer DMA out.\n");
  653. /* set SPI transfer mode */
  654. write_CTRL(drv_data, (cr | CFG_SPI_DMAWRITE));
  655. /* no irq in autobuffer mode */
  656. dma_config =
  657. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  658. set_dma_config(drv_data->dma_channel, dma_config);
  659. set_dma_start_addr(drv_data->dma_channel,
  660. (unsigned long)drv_data->tx);
  661. enable_dma(drv_data->dma_channel);
  662. /* just return here, there can only be one transfer in this mode */
  663. message->status = 0;
  664. giveback(drv_data);
  665. return;
  666. }
  667. /* In dma mode, rx or tx must be NULL in one transfer */
  668. if (drv_data->rx != NULL) {
  669. /* set transfer mode, and enable SPI */
  670. dev_dbg(&drv_data->pdev->dev, "doing DMA in.\n");
  671. /* set SPI transfer mode */
  672. write_CTRL(drv_data, (cr | CFG_SPI_DMAREAD));
  673. /* clear tx reg soformer data is not shifted out */
  674. write_TDBR(drv_data, 0xFFFF);
  675. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  676. /* start dma */
  677. dma_enable_irq(drv_data->dma_channel);
  678. dma_config = (WNR | RESTART | dma_width | DI_EN);
  679. set_dma_config(drv_data->dma_channel, dma_config);
  680. set_dma_start_addr(drv_data->dma_channel,
  681. (unsigned long)drv_data->rx);
  682. enable_dma(drv_data->dma_channel);
  683. } else if (drv_data->tx != NULL) {
  684. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  685. /* set SPI transfer mode */
  686. write_CTRL(drv_data, (cr | CFG_SPI_DMAWRITE));
  687. /* start dma */
  688. dma_enable_irq(drv_data->dma_channel);
  689. dma_config = (RESTART | dma_width | DI_EN);
  690. set_dma_config(drv_data->dma_channel, dma_config);
  691. set_dma_start_addr(drv_data->dma_channel,
  692. (unsigned long)drv_data->tx);
  693. enable_dma(drv_data->dma_channel);
  694. }
  695. } else {
  696. /* IO mode write then read */
  697. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  698. if (drv_data->tx != NULL && drv_data->rx != NULL) {
  699. /* full duplex mode */
  700. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  701. (drv_data->rx_end - drv_data->rx));
  702. dev_dbg(&drv_data->pdev->dev,
  703. "IO duplex: cr is 0x%x\n", cr);
  704. /* set SPI transfer mode */
  705. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  706. drv_data->duplex(drv_data);
  707. if (drv_data->tx != drv_data->tx_end)
  708. tranf_success = 0;
  709. } else if (drv_data->tx != NULL) {
  710. /* write only half duplex */
  711. dev_dbg(&drv_data->pdev->dev,
  712. "IO write: cr is 0x%x\n", cr);
  713. /* set SPI transfer mode */
  714. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  715. drv_data->write(drv_data);
  716. if (drv_data->tx != drv_data->tx_end)
  717. tranf_success = 0;
  718. } else if (drv_data->rx != NULL) {
  719. /* read only half duplex */
  720. dev_dbg(&drv_data->pdev->dev,
  721. "IO read: cr is 0x%x\n", cr);
  722. /* set SPI transfer mode */
  723. write_CTRL(drv_data, (cr | CFG_SPI_READ));
  724. drv_data->read(drv_data);
  725. if (drv_data->rx != drv_data->rx_end)
  726. tranf_success = 0;
  727. }
  728. if (!tranf_success) {
  729. dev_dbg(&drv_data->pdev->dev,
  730. "IO write error!\n");
  731. message->state = ERROR_STATE;
  732. } else {
  733. /* Update total byte transfered */
  734. message->actual_length += drv_data->len;
  735. /* Move to next transfer of this msg */
  736. message->state = next_transfer(drv_data);
  737. }
  738. /* Schedule next transfer tasklet */
  739. tasklet_schedule(&drv_data->pump_transfers);
  740. }
  741. }
  742. /* pop a msg from queue and kick off real transfer */
  743. static void pump_messages(struct work_struct *work)
  744. {
  745. struct driver_data *drv_data;
  746. unsigned long flags;
  747. drv_data = container_of(work, struct driver_data, pump_messages);
  748. /* Lock queue and check for queue work */
  749. spin_lock_irqsave(&drv_data->lock, flags);
  750. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  751. /* pumper kicked off but no work to do */
  752. drv_data->busy = 0;
  753. spin_unlock_irqrestore(&drv_data->lock, flags);
  754. return;
  755. }
  756. /* Make sure we are not already running a message */
  757. if (drv_data->cur_msg) {
  758. spin_unlock_irqrestore(&drv_data->lock, flags);
  759. return;
  760. }
  761. /* Extract head of queue */
  762. drv_data->cur_msg = list_entry(drv_data->queue.next,
  763. struct spi_message, queue);
  764. /* Setup the SSP using the per chip configuration */
  765. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  766. if (restore_state(drv_data)) {
  767. spin_unlock_irqrestore(&drv_data->lock, flags);
  768. return;
  769. };
  770. list_del_init(&drv_data->cur_msg->queue);
  771. /* Initial message state */
  772. drv_data->cur_msg->state = START_STATE;
  773. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  774. struct spi_transfer, transfer_list);
  775. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  776. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  777. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  778. drv_data->cur_chip->ctl_reg);
  779. dev_dbg(&drv_data->pdev->dev,
  780. "the first transfer len is %d\n",
  781. drv_data->cur_transfer->len);
  782. /* Mark as busy and launch transfers */
  783. tasklet_schedule(&drv_data->pump_transfers);
  784. drv_data->busy = 1;
  785. spin_unlock_irqrestore(&drv_data->lock, flags);
  786. }
  787. /*
  788. * got a msg to transfer, queue it in drv_data->queue.
  789. * And kick off message pumper
  790. */
  791. static int transfer(struct spi_device *spi, struct spi_message *msg)
  792. {
  793. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  794. unsigned long flags;
  795. spin_lock_irqsave(&drv_data->lock, flags);
  796. if (drv_data->run == QUEUE_STOPPED) {
  797. spin_unlock_irqrestore(&drv_data->lock, flags);
  798. return -ESHUTDOWN;
  799. }
  800. msg->actual_length = 0;
  801. msg->status = -EINPROGRESS;
  802. msg->state = START_STATE;
  803. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  804. list_add_tail(&msg->queue, &drv_data->queue);
  805. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  806. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  807. spin_unlock_irqrestore(&drv_data->lock, flags);
  808. return 0;
  809. }
  810. #define MAX_SPI_SSEL 7
  811. static u16 ssel[3][MAX_SPI_SSEL] = {
  812. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  813. P_SPI0_SSEL4, P_SPI0_SSEL5,
  814. P_SPI0_SSEL6, P_SPI0_SSEL7},
  815. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  816. P_SPI1_SSEL4, P_SPI1_SSEL5,
  817. P_SPI1_SSEL6, P_SPI1_SSEL7},
  818. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  819. P_SPI2_SSEL4, P_SPI2_SSEL5,
  820. P_SPI2_SSEL6, P_SPI2_SSEL7},
  821. };
  822. /* first setup for new devices */
  823. static int setup(struct spi_device *spi)
  824. {
  825. struct bfin5xx_spi_chip *chip_info = NULL;
  826. struct chip_data *chip;
  827. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  828. u8 spi_flg;
  829. /* Abort device setup if requested features are not supported */
  830. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  831. dev_err(&spi->dev, "requested mode not fully supported\n");
  832. return -EINVAL;
  833. }
  834. /* Zero (the default) here means 8 bits */
  835. if (!spi->bits_per_word)
  836. spi->bits_per_word = 8;
  837. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  838. return -EINVAL;
  839. /* Only alloc (or use chip_info) on first setup */
  840. chip = spi_get_ctldata(spi);
  841. if (chip == NULL) {
  842. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  843. if (!chip)
  844. return -ENOMEM;
  845. chip->enable_dma = 0;
  846. chip_info = spi->controller_data;
  847. }
  848. /* chip_info isn't always needed */
  849. if (chip_info) {
  850. /* Make sure people stop trying to set fields via ctl_reg
  851. * when they should actually be using common SPI framework.
  852. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  853. * Not sure if a user actually needs/uses any of these,
  854. * but let's assume (for now) they do.
  855. */
  856. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  857. dev_err(&spi->dev, "do not set bits in ctl_reg "
  858. "that the SPI framework manages\n");
  859. return -EINVAL;
  860. }
  861. chip->enable_dma = chip_info->enable_dma != 0
  862. && drv_data->master_info->enable_dma;
  863. chip->ctl_reg = chip_info->ctl_reg;
  864. chip->bits_per_word = chip_info->bits_per_word;
  865. chip->cs_change_per_word = chip_info->cs_change_per_word;
  866. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  867. }
  868. /* translate common spi framework into our register */
  869. if (spi->mode & SPI_CPOL)
  870. chip->ctl_reg |= CPOL;
  871. if (spi->mode & SPI_CPHA)
  872. chip->ctl_reg |= CPHA;
  873. if (spi->mode & SPI_LSB_FIRST)
  874. chip->ctl_reg |= LSBF;
  875. /* we dont support running in slave mode (yet?) */
  876. chip->ctl_reg |= MSTR;
  877. /*
  878. * if any one SPI chip is registered and wants DMA, request the
  879. * DMA channel for it
  880. */
  881. if (chip->enable_dma && !drv_data->dma_requested) {
  882. /* register dma irq handler */
  883. if (request_dma(drv_data->dma_channel, "BF53x_SPI_DMA") < 0) {
  884. dev_dbg(&spi->dev,
  885. "Unable to request BlackFin SPI DMA channel\n");
  886. return -ENODEV;
  887. }
  888. if (set_dma_callback(drv_data->dma_channel,
  889. (void *)dma_irq_handler, drv_data) < 0) {
  890. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  891. return -EPERM;
  892. }
  893. dma_disable_irq(drv_data->dma_channel);
  894. drv_data->dma_requested = 1;
  895. }
  896. /*
  897. * Notice: for blackfin, the speed_hz is the value of register
  898. * SPI_BAUD, not the real baudrate
  899. */
  900. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  901. spi_flg = ~(1 << (spi->chip_select));
  902. chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
  903. chip->chip_select_num = spi->chip_select;
  904. switch (chip->bits_per_word) {
  905. case 8:
  906. chip->n_bytes = 1;
  907. chip->width = CFG_SPI_WORDSIZE8;
  908. chip->read = chip->cs_change_per_word ?
  909. u8_cs_chg_reader : u8_reader;
  910. chip->write = chip->cs_change_per_word ?
  911. u8_cs_chg_writer : u8_writer;
  912. chip->duplex = chip->cs_change_per_word ?
  913. u8_cs_chg_duplex : u8_duplex;
  914. break;
  915. case 16:
  916. chip->n_bytes = 2;
  917. chip->width = CFG_SPI_WORDSIZE16;
  918. chip->read = chip->cs_change_per_word ?
  919. u16_cs_chg_reader : u16_reader;
  920. chip->write = chip->cs_change_per_word ?
  921. u16_cs_chg_writer : u16_writer;
  922. chip->duplex = chip->cs_change_per_word ?
  923. u16_cs_chg_duplex : u16_duplex;
  924. break;
  925. default:
  926. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  927. chip->bits_per_word);
  928. kfree(chip);
  929. return -ENODEV;
  930. }
  931. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  932. spi->modalias, chip->width, chip->enable_dma);
  933. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  934. chip->ctl_reg, chip->flag);
  935. spi_set_ctldata(spi, chip);
  936. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  937. if ((chip->chip_select_num > 0)
  938. && (chip->chip_select_num <= spi->master->num_chipselect))
  939. peripheral_request(ssel[spi->master->bus_num]
  940. [chip->chip_select_num-1], DRV_NAME);
  941. return 0;
  942. }
  943. /*
  944. * callback for spi framework.
  945. * clean driver specific data
  946. */
  947. static void cleanup(struct spi_device *spi)
  948. {
  949. struct chip_data *chip = spi_get_ctldata(spi);
  950. if ((chip->chip_select_num > 0)
  951. && (chip->chip_select_num <= spi->master->num_chipselect))
  952. peripheral_free(ssel[spi->master->bus_num]
  953. [chip->chip_select_num-1]);
  954. kfree(chip);
  955. }
  956. static inline int init_queue(struct driver_data *drv_data)
  957. {
  958. INIT_LIST_HEAD(&drv_data->queue);
  959. spin_lock_init(&drv_data->lock);
  960. drv_data->run = QUEUE_STOPPED;
  961. drv_data->busy = 0;
  962. /* init transfer tasklet */
  963. tasklet_init(&drv_data->pump_transfers,
  964. pump_transfers, (unsigned long)drv_data);
  965. /* init messages workqueue */
  966. INIT_WORK(&drv_data->pump_messages, pump_messages);
  967. drv_data->workqueue =
  968. create_singlethread_workqueue(drv_data->master->dev.parent->bus_id);
  969. if (drv_data->workqueue == NULL)
  970. return -EBUSY;
  971. return 0;
  972. }
  973. static inline int start_queue(struct driver_data *drv_data)
  974. {
  975. unsigned long flags;
  976. spin_lock_irqsave(&drv_data->lock, flags);
  977. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  978. spin_unlock_irqrestore(&drv_data->lock, flags);
  979. return -EBUSY;
  980. }
  981. drv_data->run = QUEUE_RUNNING;
  982. drv_data->cur_msg = NULL;
  983. drv_data->cur_transfer = NULL;
  984. drv_data->cur_chip = NULL;
  985. spin_unlock_irqrestore(&drv_data->lock, flags);
  986. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  987. return 0;
  988. }
  989. static inline int stop_queue(struct driver_data *drv_data)
  990. {
  991. unsigned long flags;
  992. unsigned limit = 500;
  993. int status = 0;
  994. spin_lock_irqsave(&drv_data->lock, flags);
  995. /*
  996. * This is a bit lame, but is optimized for the common execution path.
  997. * A wait_queue on the drv_data->busy could be used, but then the common
  998. * execution path (pump_messages) would be required to call wake_up or
  999. * friends on every SPI message. Do this instead
  1000. */
  1001. drv_data->run = QUEUE_STOPPED;
  1002. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1003. spin_unlock_irqrestore(&drv_data->lock, flags);
  1004. msleep(10);
  1005. spin_lock_irqsave(&drv_data->lock, flags);
  1006. }
  1007. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1008. status = -EBUSY;
  1009. spin_unlock_irqrestore(&drv_data->lock, flags);
  1010. return status;
  1011. }
  1012. static inline int destroy_queue(struct driver_data *drv_data)
  1013. {
  1014. int status;
  1015. status = stop_queue(drv_data);
  1016. if (status != 0)
  1017. return status;
  1018. destroy_workqueue(drv_data->workqueue);
  1019. return 0;
  1020. }
  1021. static int setup_pin_mux(int action, int bus_num)
  1022. {
  1023. u16 pin_req[3][4] = {
  1024. {P_SPI0_SCK, P_SPI0_MISO, P_SPI0_MOSI, 0},
  1025. {P_SPI1_SCK, P_SPI1_MISO, P_SPI1_MOSI, 0},
  1026. {P_SPI2_SCK, P_SPI2_MISO, P_SPI2_MOSI, 0},
  1027. };
  1028. if (action) {
  1029. if (peripheral_request_list(pin_req[bus_num], DRV_NAME))
  1030. return -EFAULT;
  1031. } else {
  1032. peripheral_free_list(pin_req[bus_num]);
  1033. }
  1034. return 0;
  1035. }
  1036. static int __init bfin5xx_spi_probe(struct platform_device *pdev)
  1037. {
  1038. struct device *dev = &pdev->dev;
  1039. struct bfin5xx_spi_master *platform_info;
  1040. struct spi_master *master;
  1041. struct driver_data *drv_data = 0;
  1042. struct resource *res;
  1043. int status = 0;
  1044. platform_info = dev->platform_data;
  1045. /* Allocate master with space for drv_data */
  1046. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1047. if (!master) {
  1048. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1049. return -ENOMEM;
  1050. }
  1051. drv_data = spi_master_get_devdata(master);
  1052. drv_data->master = master;
  1053. drv_data->master_info = platform_info;
  1054. drv_data->pdev = pdev;
  1055. master->bus_num = pdev->id;
  1056. master->num_chipselect = platform_info->num_chipselect;
  1057. master->cleanup = cleanup;
  1058. master->setup = setup;
  1059. master->transfer = transfer;
  1060. /* Find and map our resources */
  1061. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1062. if (res == NULL) {
  1063. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1064. status = -ENOENT;
  1065. goto out_error_get_res;
  1066. }
  1067. drv_data->regs_base = (u32) ioremap(res->start,
  1068. (res->end - res->start + 1));
  1069. if (!drv_data->regs_base) {
  1070. dev_err(dev, "Cannot map IO\n");
  1071. status = -ENXIO;
  1072. goto out_error_ioremap;
  1073. }
  1074. drv_data->dma_channel = platform_get_irq(pdev, 0);
  1075. if (drv_data->dma_channel < 0) {
  1076. dev_err(dev, "No DMA channel specified\n");
  1077. status = -ENOENT;
  1078. goto out_error_no_dma_ch;
  1079. }
  1080. /* Initial and start queue */
  1081. status = init_queue(drv_data);
  1082. if (status != 0) {
  1083. dev_err(dev, "problem initializing queue\n");
  1084. goto out_error_queue_alloc;
  1085. }
  1086. status = start_queue(drv_data);
  1087. if (status != 0) {
  1088. dev_err(dev, "problem starting queue\n");
  1089. goto out_error_queue_alloc;
  1090. }
  1091. /* Register with the SPI framework */
  1092. platform_set_drvdata(pdev, drv_data);
  1093. status = spi_register_master(master);
  1094. if (status != 0) {
  1095. dev_err(dev, "problem registering spi master\n");
  1096. goto out_error_queue_alloc;
  1097. }
  1098. if (setup_pin_mux(1, master->bus_num)) {
  1099. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1100. goto out_error;
  1101. }
  1102. dev_info(dev, "%s, Version %s, regs_base@0x%08x, dma channel@%d\n",
  1103. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1104. drv_data->dma_channel);
  1105. return status;
  1106. out_error_queue_alloc:
  1107. destroy_queue(drv_data);
  1108. out_error_no_dma_ch:
  1109. iounmap((void *) drv_data->regs_base);
  1110. out_error_ioremap:
  1111. out_error_get_res:
  1112. out_error:
  1113. spi_master_put(master);
  1114. return status;
  1115. }
  1116. /* stop hardware and remove the driver */
  1117. static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
  1118. {
  1119. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1120. int status = 0;
  1121. if (!drv_data)
  1122. return 0;
  1123. /* Remove the queue */
  1124. status = destroy_queue(drv_data);
  1125. if (status != 0)
  1126. return status;
  1127. /* Disable the SSP at the peripheral and SOC level */
  1128. bfin_spi_disable(drv_data);
  1129. /* Release DMA */
  1130. if (drv_data->master_info->enable_dma) {
  1131. if (dma_channel_active(drv_data->dma_channel))
  1132. free_dma(drv_data->dma_channel);
  1133. }
  1134. /* Disconnect from the SPI framework */
  1135. spi_unregister_master(drv_data->master);
  1136. setup_pin_mux(0, drv_data->master->bus_num);
  1137. /* Prevent double remove */
  1138. platform_set_drvdata(pdev, NULL);
  1139. return 0;
  1140. }
  1141. #ifdef CONFIG_PM
  1142. static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1143. {
  1144. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1145. int status = 0;
  1146. status = stop_queue(drv_data);
  1147. if (status != 0)
  1148. return status;
  1149. /* stop hardware */
  1150. bfin_spi_disable(drv_data);
  1151. return 0;
  1152. }
  1153. static int bfin5xx_spi_resume(struct platform_device *pdev)
  1154. {
  1155. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1156. int status = 0;
  1157. /* Enable the SPI interface */
  1158. bfin_spi_enable(drv_data);
  1159. /* Start the queue running */
  1160. status = start_queue(drv_data);
  1161. if (status != 0) {
  1162. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1163. return status;
  1164. }
  1165. return 0;
  1166. }
  1167. #else
  1168. #define bfin5xx_spi_suspend NULL
  1169. #define bfin5xx_spi_resume NULL
  1170. #endif /* CONFIG_PM */
  1171. MODULE_ALIAS("bfin-spi-master"); /* for platform bus hotplug */
  1172. static struct platform_driver bfin5xx_spi_driver = {
  1173. .driver = {
  1174. .name = DRV_NAME,
  1175. .owner = THIS_MODULE,
  1176. },
  1177. .suspend = bfin5xx_spi_suspend,
  1178. .resume = bfin5xx_spi_resume,
  1179. .remove = __devexit_p(bfin5xx_spi_remove),
  1180. };
  1181. static int __init bfin5xx_spi_init(void)
  1182. {
  1183. return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe);
  1184. }
  1185. module_init(bfin5xx_spi_init);
  1186. static void __exit bfin5xx_spi_exit(void)
  1187. {
  1188. platform_driver_unregister(&bfin5xx_spi_driver);
  1189. }
  1190. module_exit(bfin5xx_spi_exit);