process.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/prctl.h>
  6. #include <linux/slab.h>
  7. #include <linux/sched.h>
  8. #include <linux/module.h>
  9. #include <linux/pm.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/random.h>
  12. #include <trace/power.h>
  13. #include <asm/system.h>
  14. #include <asm/apic.h>
  15. #include <asm/syscalls.h>
  16. #include <asm/idle.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/i387.h>
  19. unsigned long idle_halt;
  20. EXPORT_SYMBOL(idle_halt);
  21. unsigned long idle_nomwait;
  22. EXPORT_SYMBOL(idle_nomwait);
  23. struct kmem_cache *task_xstate_cachep;
  24. DEFINE_TRACE(power_start);
  25. DEFINE_TRACE(power_end);
  26. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  27. {
  28. *dst = *src;
  29. if (src->thread.xstate) {
  30. dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
  31. GFP_KERNEL);
  32. if (!dst->thread.xstate)
  33. return -ENOMEM;
  34. WARN_ON((unsigned long)dst->thread.xstate & 15);
  35. memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
  36. }
  37. return 0;
  38. }
  39. void free_thread_xstate(struct task_struct *tsk)
  40. {
  41. if (tsk->thread.xstate) {
  42. kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
  43. tsk->thread.xstate = NULL;
  44. }
  45. }
  46. void free_thread_info(struct thread_info *ti)
  47. {
  48. free_thread_xstate(ti->task);
  49. free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  50. }
  51. void arch_task_cache_init(void)
  52. {
  53. task_xstate_cachep =
  54. kmem_cache_create("task_xstate", xstate_size,
  55. __alignof__(union thread_xstate),
  56. SLAB_PANIC, NULL);
  57. }
  58. /*
  59. * Free current thread data structures etc..
  60. */
  61. void exit_thread(void)
  62. {
  63. struct task_struct *me = current;
  64. struct thread_struct *t = &me->thread;
  65. unsigned long *bp = t->io_bitmap_ptr;
  66. if (bp) {
  67. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  68. t->io_bitmap_ptr = NULL;
  69. clear_thread_flag(TIF_IO_BITMAP);
  70. /*
  71. * Careful, clear this in the TSS too:
  72. */
  73. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  74. t->io_bitmap_max = 0;
  75. put_cpu();
  76. kfree(bp);
  77. }
  78. ds_exit_thread(current);
  79. }
  80. void flush_thread(void)
  81. {
  82. struct task_struct *tsk = current;
  83. #ifdef CONFIG_X86_64
  84. if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
  85. clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
  86. if (test_tsk_thread_flag(tsk, TIF_IA32)) {
  87. clear_tsk_thread_flag(tsk, TIF_IA32);
  88. } else {
  89. set_tsk_thread_flag(tsk, TIF_IA32);
  90. current_thread_info()->status |= TS_COMPAT;
  91. }
  92. }
  93. #endif
  94. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  95. tsk->thread.debugreg0 = 0;
  96. tsk->thread.debugreg1 = 0;
  97. tsk->thread.debugreg2 = 0;
  98. tsk->thread.debugreg3 = 0;
  99. tsk->thread.debugreg6 = 0;
  100. tsk->thread.debugreg7 = 0;
  101. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  102. /*
  103. * Forget coprocessor state..
  104. */
  105. tsk->fpu_counter = 0;
  106. clear_fpu(tsk);
  107. clear_used_math();
  108. }
  109. static void hard_disable_TSC(void)
  110. {
  111. write_cr4(read_cr4() | X86_CR4_TSD);
  112. }
  113. void disable_TSC(void)
  114. {
  115. preempt_disable();
  116. if (!test_and_set_thread_flag(TIF_NOTSC))
  117. /*
  118. * Must flip the CPU state synchronously with
  119. * TIF_NOTSC in the current running context.
  120. */
  121. hard_disable_TSC();
  122. preempt_enable();
  123. }
  124. static void hard_enable_TSC(void)
  125. {
  126. write_cr4(read_cr4() & ~X86_CR4_TSD);
  127. }
  128. static void enable_TSC(void)
  129. {
  130. preempt_disable();
  131. if (test_and_clear_thread_flag(TIF_NOTSC))
  132. /*
  133. * Must flip the CPU state synchronously with
  134. * TIF_NOTSC in the current running context.
  135. */
  136. hard_enable_TSC();
  137. preempt_enable();
  138. }
  139. int get_tsc_mode(unsigned long adr)
  140. {
  141. unsigned int val;
  142. if (test_thread_flag(TIF_NOTSC))
  143. val = PR_TSC_SIGSEGV;
  144. else
  145. val = PR_TSC_ENABLE;
  146. return put_user(val, (unsigned int __user *)adr);
  147. }
  148. int set_tsc_mode(unsigned int val)
  149. {
  150. if (val == PR_TSC_SIGSEGV)
  151. disable_TSC();
  152. else if (val == PR_TSC_ENABLE)
  153. enable_TSC();
  154. else
  155. return -EINVAL;
  156. return 0;
  157. }
  158. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  159. struct tss_struct *tss)
  160. {
  161. struct thread_struct *prev, *next;
  162. prev = &prev_p->thread;
  163. next = &next_p->thread;
  164. if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
  165. test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
  166. ds_switch_to(prev_p, next_p);
  167. else if (next->debugctlmsr != prev->debugctlmsr)
  168. update_debugctlmsr(next->debugctlmsr);
  169. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  170. set_debugreg(next->debugreg0, 0);
  171. set_debugreg(next->debugreg1, 1);
  172. set_debugreg(next->debugreg2, 2);
  173. set_debugreg(next->debugreg3, 3);
  174. /* no 4 and 5 */
  175. set_debugreg(next->debugreg6, 6);
  176. set_debugreg(next->debugreg7, 7);
  177. }
  178. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  179. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  180. /* prev and next are different */
  181. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  182. hard_disable_TSC();
  183. else
  184. hard_enable_TSC();
  185. }
  186. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  187. /*
  188. * Copy the relevant range of the IO bitmap.
  189. * Normally this is 128 bytes or less:
  190. */
  191. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  192. max(prev->io_bitmap_max, next->io_bitmap_max));
  193. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  194. /*
  195. * Clear any possible leftover bits:
  196. */
  197. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  198. }
  199. }
  200. int sys_fork(struct pt_regs *regs)
  201. {
  202. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  203. }
  204. /*
  205. * This is trivial, and on the face of it looks like it
  206. * could equally well be done in user mode.
  207. *
  208. * Not so, for quite unobvious reasons - register pressure.
  209. * In user mode vfork() cannot have a stack frame, and if
  210. * done by calling the "clone()" system call directly, you
  211. * do not have enough call-clobbered registers to hold all
  212. * the information you need.
  213. */
  214. int sys_vfork(struct pt_regs *regs)
  215. {
  216. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  217. NULL, NULL);
  218. }
  219. /*
  220. * Idle related variables and functions
  221. */
  222. unsigned long boot_option_idle_override = 0;
  223. EXPORT_SYMBOL(boot_option_idle_override);
  224. /*
  225. * Powermanagement idle function, if any..
  226. */
  227. void (*pm_idle)(void);
  228. EXPORT_SYMBOL(pm_idle);
  229. #ifdef CONFIG_X86_32
  230. /*
  231. * This halt magic was a workaround for ancient floppy DMA
  232. * wreckage. It should be safe to remove.
  233. */
  234. static int hlt_counter;
  235. void disable_hlt(void)
  236. {
  237. hlt_counter++;
  238. }
  239. EXPORT_SYMBOL(disable_hlt);
  240. void enable_hlt(void)
  241. {
  242. hlt_counter--;
  243. }
  244. EXPORT_SYMBOL(enable_hlt);
  245. static inline int hlt_use_halt(void)
  246. {
  247. return (!hlt_counter && boot_cpu_data.hlt_works_ok);
  248. }
  249. #else
  250. static inline int hlt_use_halt(void)
  251. {
  252. return 1;
  253. }
  254. #endif
  255. /*
  256. * We use this if we don't have any better
  257. * idle routine..
  258. */
  259. void default_idle(void)
  260. {
  261. if (hlt_use_halt()) {
  262. struct power_trace it;
  263. trace_power_start(&it, POWER_CSTATE, 1);
  264. current_thread_info()->status &= ~TS_POLLING;
  265. /*
  266. * TS_POLLING-cleared state must be visible before we
  267. * test NEED_RESCHED:
  268. */
  269. smp_mb();
  270. if (!need_resched())
  271. safe_halt(); /* enables interrupts racelessly */
  272. else
  273. local_irq_enable();
  274. current_thread_info()->status |= TS_POLLING;
  275. trace_power_end(&it);
  276. } else {
  277. local_irq_enable();
  278. /* loop is done by the caller */
  279. cpu_relax();
  280. }
  281. }
  282. #ifdef CONFIG_APM_MODULE
  283. EXPORT_SYMBOL(default_idle);
  284. #endif
  285. void stop_this_cpu(void *dummy)
  286. {
  287. local_irq_disable();
  288. /*
  289. * Remove this CPU:
  290. */
  291. set_cpu_online(smp_processor_id(), false);
  292. disable_local_APIC();
  293. for (;;) {
  294. if (hlt_works(smp_processor_id()))
  295. halt();
  296. }
  297. }
  298. static void do_nothing(void *unused)
  299. {
  300. }
  301. /*
  302. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  303. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  304. * handler on SMP systems.
  305. *
  306. * Caller must have changed pm_idle to the new value before the call. Old
  307. * pm_idle value will not be used by any CPU after the return of this function.
  308. */
  309. void cpu_idle_wait(void)
  310. {
  311. smp_mb();
  312. /* kick all the CPUs so that they exit out of pm_idle */
  313. smp_call_function(do_nothing, NULL, 1);
  314. }
  315. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  316. /*
  317. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  318. * which can obviate IPI to trigger checking of need_resched.
  319. * We execute MONITOR against need_resched and enter optimized wait state
  320. * through MWAIT. Whenever someone changes need_resched, we would be woken
  321. * up from MWAIT (without an IPI).
  322. *
  323. * New with Core Duo processors, MWAIT can take some hints based on CPU
  324. * capability.
  325. */
  326. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  327. {
  328. struct power_trace it;
  329. trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
  330. if (!need_resched()) {
  331. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  332. clflush((void *)&current_thread_info()->flags);
  333. __monitor((void *)&current_thread_info()->flags, 0, 0);
  334. smp_mb();
  335. if (!need_resched())
  336. __mwait(ax, cx);
  337. }
  338. trace_power_end(&it);
  339. }
  340. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  341. static void mwait_idle(void)
  342. {
  343. struct power_trace it;
  344. if (!need_resched()) {
  345. trace_power_start(&it, POWER_CSTATE, 1);
  346. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  347. clflush((void *)&current_thread_info()->flags);
  348. __monitor((void *)&current_thread_info()->flags, 0, 0);
  349. smp_mb();
  350. if (!need_resched())
  351. __sti_mwait(0, 0);
  352. else
  353. local_irq_enable();
  354. trace_power_end(&it);
  355. } else
  356. local_irq_enable();
  357. }
  358. /*
  359. * On SMP it's slightly faster (but much more power-consuming!)
  360. * to poll the ->work.need_resched flag instead of waiting for the
  361. * cross-CPU IPI to arrive. Use this option with caution.
  362. */
  363. static void poll_idle(void)
  364. {
  365. struct power_trace it;
  366. trace_power_start(&it, POWER_CSTATE, 0);
  367. local_irq_enable();
  368. while (!need_resched())
  369. cpu_relax();
  370. trace_power_end(&it);
  371. }
  372. /*
  373. * mwait selection logic:
  374. *
  375. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  376. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  377. * then depend on a clock divisor and current Pstate of the core. If
  378. * all cores of a processor are in halt state (C1) the processor can
  379. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  380. * happen.
  381. *
  382. * idle=mwait overrides this decision and forces the usage of mwait.
  383. */
  384. static int __cpuinitdata force_mwait;
  385. #define MWAIT_INFO 0x05
  386. #define MWAIT_ECX_EXTENDED_INFO 0x01
  387. #define MWAIT_EDX_C1 0xf0
  388. static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
  389. {
  390. u32 eax, ebx, ecx, edx;
  391. if (force_mwait)
  392. return 1;
  393. if (c->cpuid_level < MWAIT_INFO)
  394. return 0;
  395. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  396. /* Check, whether EDX has extended info about MWAIT */
  397. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  398. return 1;
  399. /*
  400. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  401. * C1 supports MWAIT
  402. */
  403. return (edx & MWAIT_EDX_C1);
  404. }
  405. /*
  406. * Check for AMD CPUs, which have potentially C1E support
  407. */
  408. static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
  409. {
  410. if (c->x86_vendor != X86_VENDOR_AMD)
  411. return 0;
  412. if (c->x86 < 0x0F)
  413. return 0;
  414. /* Family 0x0f models < rev F do not have C1E */
  415. if (c->x86 == 0x0f && c->x86_model < 0x40)
  416. return 0;
  417. return 1;
  418. }
  419. static cpumask_var_t c1e_mask;
  420. static int c1e_detected;
  421. void c1e_remove_cpu(int cpu)
  422. {
  423. if (c1e_mask != NULL)
  424. cpumask_clear_cpu(cpu, c1e_mask);
  425. }
  426. /*
  427. * C1E aware idle routine. We check for C1E active in the interrupt
  428. * pending message MSR. If we detect C1E, then we handle it the same
  429. * way as C3 power states (local apic timer and TSC stop)
  430. */
  431. static void c1e_idle(void)
  432. {
  433. if (need_resched())
  434. return;
  435. if (!c1e_detected) {
  436. u32 lo, hi;
  437. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  438. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  439. c1e_detected = 1;
  440. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  441. mark_tsc_unstable("TSC halt in AMD C1E");
  442. printk(KERN_INFO "System has AMD C1E enabled\n");
  443. set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
  444. }
  445. }
  446. if (c1e_detected) {
  447. int cpu = smp_processor_id();
  448. if (!cpumask_test_cpu(cpu, c1e_mask)) {
  449. cpumask_set_cpu(cpu, c1e_mask);
  450. /*
  451. * Force broadcast so ACPI can not interfere. Needs
  452. * to run with interrupts enabled as it uses
  453. * smp_function_call.
  454. */
  455. local_irq_enable();
  456. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  457. &cpu);
  458. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  459. cpu);
  460. local_irq_disable();
  461. }
  462. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  463. default_idle();
  464. /*
  465. * The switch back from broadcast mode needs to be
  466. * called with interrupts disabled.
  467. */
  468. local_irq_disable();
  469. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  470. local_irq_enable();
  471. } else
  472. default_idle();
  473. }
  474. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  475. {
  476. #ifdef CONFIG_SMP
  477. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  478. printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
  479. " performance may degrade.\n");
  480. }
  481. #endif
  482. if (pm_idle)
  483. return;
  484. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  485. /*
  486. * One CPU supports mwait => All CPUs supports mwait
  487. */
  488. printk(KERN_INFO "using mwait in idle threads.\n");
  489. pm_idle = mwait_idle;
  490. } else if (check_c1e_idle(c)) {
  491. printk(KERN_INFO "using C1E aware idle routine\n");
  492. pm_idle = c1e_idle;
  493. } else
  494. pm_idle = default_idle;
  495. }
  496. void __init init_c1e_mask(void)
  497. {
  498. /* If we're using c1e_idle, we need to allocate c1e_mask. */
  499. if (pm_idle == c1e_idle) {
  500. alloc_cpumask_var(&c1e_mask, GFP_KERNEL);
  501. cpumask_clear(c1e_mask);
  502. }
  503. }
  504. static int __init idle_setup(char *str)
  505. {
  506. if (!str)
  507. return -EINVAL;
  508. if (!strcmp(str, "poll")) {
  509. printk("using polling idle threads.\n");
  510. pm_idle = poll_idle;
  511. } else if (!strcmp(str, "mwait"))
  512. force_mwait = 1;
  513. else if (!strcmp(str, "halt")) {
  514. /*
  515. * When the boot option of idle=halt is added, halt is
  516. * forced to be used for CPU idle. In such case CPU C2/C3
  517. * won't be used again.
  518. * To continue to load the CPU idle driver, don't touch
  519. * the boot_option_idle_override.
  520. */
  521. pm_idle = default_idle;
  522. idle_halt = 1;
  523. return 0;
  524. } else if (!strcmp(str, "nomwait")) {
  525. /*
  526. * If the boot option of "idle=nomwait" is added,
  527. * it means that mwait will be disabled for CPU C2/C3
  528. * states. In such case it won't touch the variable
  529. * of boot_option_idle_override.
  530. */
  531. idle_nomwait = 1;
  532. return 0;
  533. } else
  534. return -1;
  535. boot_option_idle_override = 1;
  536. return 0;
  537. }
  538. early_param("idle", idle_setup);
  539. unsigned long arch_align_stack(unsigned long sp)
  540. {
  541. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  542. sp -= get_random_int() % 8192;
  543. return sp & ~0xf;
  544. }
  545. unsigned long arch_randomize_brk(struct mm_struct *mm)
  546. {
  547. unsigned long range_end = mm->brk + 0x02000000;
  548. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  549. }