perf_event.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/highmem.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <asm/apic.h>
  27. #include <asm/stacktrace.h>
  28. #include <asm/nmi.h>
  29. static u64 perf_event_mask __read_mostly;
  30. /* The maximal number of PEBS events: */
  31. #define MAX_PEBS_EVENTS 4
  32. /* The size of a BTS record in bytes: */
  33. #define BTS_RECORD_SIZE 24
  34. /* The size of a per-cpu BTS buffer in bytes: */
  35. #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
  36. /* The BTS overflow threshold in bytes from the end of the buffer: */
  37. #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
  38. /*
  39. * Bits in the debugctlmsr controlling branch tracing.
  40. */
  41. #define X86_DEBUGCTL_TR (1 << 6)
  42. #define X86_DEBUGCTL_BTS (1 << 7)
  43. #define X86_DEBUGCTL_BTINT (1 << 8)
  44. #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
  45. #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
  46. /*
  47. * A debug store configuration.
  48. *
  49. * We only support architectures that use 64bit fields.
  50. */
  51. struct debug_store {
  52. u64 bts_buffer_base;
  53. u64 bts_index;
  54. u64 bts_absolute_maximum;
  55. u64 bts_interrupt_threshold;
  56. u64 pebs_buffer_base;
  57. u64 pebs_index;
  58. u64 pebs_absolute_maximum;
  59. u64 pebs_interrupt_threshold;
  60. u64 pebs_event_reset[MAX_PEBS_EVENTS];
  61. };
  62. struct event_constraint {
  63. union {
  64. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  65. u64 idxmsk64[1];
  66. };
  67. int code;
  68. int cmask;
  69. int weight;
  70. };
  71. struct amd_nb {
  72. int nb_id; /* NorthBridge id */
  73. int refcnt; /* reference count */
  74. struct perf_event *owners[X86_PMC_IDX_MAX];
  75. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  76. };
  77. struct cpu_hw_events {
  78. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  79. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  80. unsigned long interrupts;
  81. int enabled;
  82. struct debug_store *ds;
  83. int n_events;
  84. int n_added;
  85. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  86. u64 tags[X86_PMC_IDX_MAX];
  87. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  88. struct amd_nb *amd_nb;
  89. };
  90. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  91. { .idxmsk64[0] = (n) }, \
  92. .code = (c), \
  93. .cmask = (m), \
  94. .weight = (w), \
  95. }
  96. #define EVENT_CONSTRAINT(c, n, m) \
  97. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  98. #define INTEL_EVENT_CONSTRAINT(c, n) \
  99. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
  100. #define FIXED_EVENT_CONSTRAINT(c, n) \
  101. EVENT_CONSTRAINT(c, n, INTEL_ARCH_FIXED_MASK)
  102. #define EVENT_CONSTRAINT_END \
  103. EVENT_CONSTRAINT(0, 0, 0)
  104. #define for_each_event_constraint(e, c) \
  105. for ((e) = (c); (e)->cmask; (e)++)
  106. /*
  107. * struct x86_pmu - generic x86 pmu
  108. */
  109. struct x86_pmu {
  110. const char *name;
  111. int version;
  112. int (*handle_irq)(struct pt_regs *);
  113. void (*disable_all)(void);
  114. void (*enable_all)(void);
  115. void (*enable)(struct hw_perf_event *, int);
  116. void (*disable)(struct hw_perf_event *, int);
  117. unsigned eventsel;
  118. unsigned perfctr;
  119. u64 (*event_map)(int);
  120. u64 (*raw_event)(u64);
  121. int max_events;
  122. int num_events;
  123. int num_events_fixed;
  124. int event_bits;
  125. u64 event_mask;
  126. int apic;
  127. u64 max_period;
  128. u64 intel_ctrl;
  129. void (*enable_bts)(u64 config);
  130. void (*disable_bts)(void);
  131. struct event_constraint *
  132. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  133. struct perf_event *event);
  134. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  135. struct perf_event *event);
  136. struct event_constraint *event_constraints;
  137. };
  138. static struct x86_pmu x86_pmu __read_mostly;
  139. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  140. .enabled = 1,
  141. };
  142. static int x86_perf_event_set_period(struct perf_event *event,
  143. struct hw_perf_event *hwc, int idx);
  144. /*
  145. * Generalized hw caching related hw_event table, filled
  146. * in on a per model basis. A value of 0 means
  147. * 'not supported', -1 means 'hw_event makes no sense on
  148. * this CPU', any other value means the raw hw_event
  149. * ID.
  150. */
  151. #define C(x) PERF_COUNT_HW_CACHE_##x
  152. static u64 __read_mostly hw_cache_event_ids
  153. [PERF_COUNT_HW_CACHE_MAX]
  154. [PERF_COUNT_HW_CACHE_OP_MAX]
  155. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  156. /*
  157. * Propagate event elapsed time into the generic event.
  158. * Can only be executed on the CPU where the event is active.
  159. * Returns the delta events processed.
  160. */
  161. static u64
  162. x86_perf_event_update(struct perf_event *event,
  163. struct hw_perf_event *hwc, int idx)
  164. {
  165. int shift = 64 - x86_pmu.event_bits;
  166. u64 prev_raw_count, new_raw_count;
  167. s64 delta;
  168. if (idx == X86_PMC_IDX_FIXED_BTS)
  169. return 0;
  170. /*
  171. * Careful: an NMI might modify the previous event value.
  172. *
  173. * Our tactic to handle this is to first atomically read and
  174. * exchange a new raw count - then add that new-prev delta
  175. * count to the generic event atomically:
  176. */
  177. again:
  178. prev_raw_count = atomic64_read(&hwc->prev_count);
  179. rdmsrl(hwc->event_base + idx, new_raw_count);
  180. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  181. new_raw_count) != prev_raw_count)
  182. goto again;
  183. /*
  184. * Now we have the new raw value and have updated the prev
  185. * timestamp already. We can now calculate the elapsed delta
  186. * (event-)time and add that to the generic event.
  187. *
  188. * Careful, not all hw sign-extends above the physical width
  189. * of the count.
  190. */
  191. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  192. delta >>= shift;
  193. atomic64_add(delta, &event->count);
  194. atomic64_sub(delta, &hwc->period_left);
  195. return new_raw_count;
  196. }
  197. static atomic_t active_events;
  198. static DEFINE_MUTEX(pmc_reserve_mutex);
  199. static bool reserve_pmc_hardware(void)
  200. {
  201. #ifdef CONFIG_X86_LOCAL_APIC
  202. int i;
  203. if (nmi_watchdog == NMI_LOCAL_APIC)
  204. disable_lapic_nmi_watchdog();
  205. for (i = 0; i < x86_pmu.num_events; i++) {
  206. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  207. goto perfctr_fail;
  208. }
  209. for (i = 0; i < x86_pmu.num_events; i++) {
  210. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  211. goto eventsel_fail;
  212. }
  213. #endif
  214. return true;
  215. #ifdef CONFIG_X86_LOCAL_APIC
  216. eventsel_fail:
  217. for (i--; i >= 0; i--)
  218. release_evntsel_nmi(x86_pmu.eventsel + i);
  219. i = x86_pmu.num_events;
  220. perfctr_fail:
  221. for (i--; i >= 0; i--)
  222. release_perfctr_nmi(x86_pmu.perfctr + i);
  223. if (nmi_watchdog == NMI_LOCAL_APIC)
  224. enable_lapic_nmi_watchdog();
  225. return false;
  226. #endif
  227. }
  228. static void release_pmc_hardware(void)
  229. {
  230. #ifdef CONFIG_X86_LOCAL_APIC
  231. int i;
  232. for (i = 0; i < x86_pmu.num_events; i++) {
  233. release_perfctr_nmi(x86_pmu.perfctr + i);
  234. release_evntsel_nmi(x86_pmu.eventsel + i);
  235. }
  236. if (nmi_watchdog == NMI_LOCAL_APIC)
  237. enable_lapic_nmi_watchdog();
  238. #endif
  239. }
  240. static inline bool bts_available(void)
  241. {
  242. return x86_pmu.enable_bts != NULL;
  243. }
  244. static inline void init_debug_store_on_cpu(int cpu)
  245. {
  246. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  247. if (!ds)
  248. return;
  249. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
  250. (u32)((u64)(unsigned long)ds),
  251. (u32)((u64)(unsigned long)ds >> 32));
  252. }
  253. static inline void fini_debug_store_on_cpu(int cpu)
  254. {
  255. if (!per_cpu(cpu_hw_events, cpu).ds)
  256. return;
  257. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
  258. }
  259. static void release_bts_hardware(void)
  260. {
  261. int cpu;
  262. if (!bts_available())
  263. return;
  264. get_online_cpus();
  265. for_each_online_cpu(cpu)
  266. fini_debug_store_on_cpu(cpu);
  267. for_each_possible_cpu(cpu) {
  268. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  269. if (!ds)
  270. continue;
  271. per_cpu(cpu_hw_events, cpu).ds = NULL;
  272. kfree((void *)(unsigned long)ds->bts_buffer_base);
  273. kfree(ds);
  274. }
  275. put_online_cpus();
  276. }
  277. static int reserve_bts_hardware(void)
  278. {
  279. int cpu, err = 0;
  280. if (!bts_available())
  281. return 0;
  282. get_online_cpus();
  283. for_each_possible_cpu(cpu) {
  284. struct debug_store *ds;
  285. void *buffer;
  286. err = -ENOMEM;
  287. buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
  288. if (unlikely(!buffer))
  289. break;
  290. ds = kzalloc(sizeof(*ds), GFP_KERNEL);
  291. if (unlikely(!ds)) {
  292. kfree(buffer);
  293. break;
  294. }
  295. ds->bts_buffer_base = (u64)(unsigned long)buffer;
  296. ds->bts_index = ds->bts_buffer_base;
  297. ds->bts_absolute_maximum =
  298. ds->bts_buffer_base + BTS_BUFFER_SIZE;
  299. ds->bts_interrupt_threshold =
  300. ds->bts_absolute_maximum - BTS_OVFL_TH;
  301. per_cpu(cpu_hw_events, cpu).ds = ds;
  302. err = 0;
  303. }
  304. if (err)
  305. release_bts_hardware();
  306. else {
  307. for_each_online_cpu(cpu)
  308. init_debug_store_on_cpu(cpu);
  309. }
  310. put_online_cpus();
  311. return err;
  312. }
  313. static void hw_perf_event_destroy(struct perf_event *event)
  314. {
  315. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  316. release_pmc_hardware();
  317. release_bts_hardware();
  318. mutex_unlock(&pmc_reserve_mutex);
  319. }
  320. }
  321. static inline int x86_pmu_initialized(void)
  322. {
  323. return x86_pmu.handle_irq != NULL;
  324. }
  325. static inline int
  326. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  327. {
  328. unsigned int cache_type, cache_op, cache_result;
  329. u64 config, val;
  330. config = attr->config;
  331. cache_type = (config >> 0) & 0xff;
  332. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  333. return -EINVAL;
  334. cache_op = (config >> 8) & 0xff;
  335. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  336. return -EINVAL;
  337. cache_result = (config >> 16) & 0xff;
  338. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  339. return -EINVAL;
  340. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  341. if (val == 0)
  342. return -ENOENT;
  343. if (val == -1)
  344. return -EINVAL;
  345. hwc->config |= val;
  346. return 0;
  347. }
  348. /*
  349. * Setup the hardware configuration for a given attr_type
  350. */
  351. static int __hw_perf_event_init(struct perf_event *event)
  352. {
  353. struct perf_event_attr *attr = &event->attr;
  354. struct hw_perf_event *hwc = &event->hw;
  355. u64 config;
  356. int err;
  357. if (!x86_pmu_initialized())
  358. return -ENODEV;
  359. err = 0;
  360. if (!atomic_inc_not_zero(&active_events)) {
  361. mutex_lock(&pmc_reserve_mutex);
  362. if (atomic_read(&active_events) == 0) {
  363. if (!reserve_pmc_hardware())
  364. err = -EBUSY;
  365. else
  366. err = reserve_bts_hardware();
  367. }
  368. if (!err)
  369. atomic_inc(&active_events);
  370. mutex_unlock(&pmc_reserve_mutex);
  371. }
  372. if (err)
  373. return err;
  374. event->destroy = hw_perf_event_destroy;
  375. /*
  376. * Generate PMC IRQs:
  377. * (keep 'enabled' bit clear for now)
  378. */
  379. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  380. hwc->idx = -1;
  381. hwc->last_cpu = -1;
  382. hwc->last_tag = ~0ULL;
  383. /*
  384. * Count user and OS events unless requested not to.
  385. */
  386. if (!attr->exclude_user)
  387. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  388. if (!attr->exclude_kernel)
  389. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  390. if (!hwc->sample_period) {
  391. hwc->sample_period = x86_pmu.max_period;
  392. hwc->last_period = hwc->sample_period;
  393. atomic64_set(&hwc->period_left, hwc->sample_period);
  394. } else {
  395. /*
  396. * If we have a PMU initialized but no APIC
  397. * interrupts, we cannot sample hardware
  398. * events (user-space has to fall back and
  399. * sample via a hrtimer based software event):
  400. */
  401. if (!x86_pmu.apic)
  402. return -EOPNOTSUPP;
  403. }
  404. /*
  405. * Raw hw_event type provide the config in the hw_event structure
  406. */
  407. if (attr->type == PERF_TYPE_RAW) {
  408. hwc->config |= x86_pmu.raw_event(attr->config);
  409. return 0;
  410. }
  411. if (attr->type == PERF_TYPE_HW_CACHE)
  412. return set_ext_hw_attr(hwc, attr);
  413. if (attr->config >= x86_pmu.max_events)
  414. return -EINVAL;
  415. /*
  416. * The generic map:
  417. */
  418. config = x86_pmu.event_map(attr->config);
  419. if (config == 0)
  420. return -ENOENT;
  421. if (config == -1LL)
  422. return -EINVAL;
  423. /*
  424. * Branch tracing:
  425. */
  426. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  427. (hwc->sample_period == 1)) {
  428. /* BTS is not supported by this architecture. */
  429. if (!bts_available())
  430. return -EOPNOTSUPP;
  431. /* BTS is currently only allowed for user-mode. */
  432. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  433. return -EOPNOTSUPP;
  434. }
  435. hwc->config |= config;
  436. return 0;
  437. }
  438. static void x86_pmu_disable_all(void)
  439. {
  440. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  441. int idx;
  442. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  443. u64 val;
  444. if (!test_bit(idx, cpuc->active_mask))
  445. continue;
  446. rdmsrl(x86_pmu.eventsel + idx, val);
  447. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  448. continue;
  449. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  450. wrmsrl(x86_pmu.eventsel + idx, val);
  451. }
  452. }
  453. void hw_perf_disable(void)
  454. {
  455. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  456. if (!x86_pmu_initialized())
  457. return;
  458. if (!cpuc->enabled)
  459. return;
  460. cpuc->n_added = 0;
  461. cpuc->enabled = 0;
  462. barrier();
  463. x86_pmu.disable_all();
  464. }
  465. static void x86_pmu_enable_all(void)
  466. {
  467. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  468. int idx;
  469. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  470. struct perf_event *event = cpuc->events[idx];
  471. u64 val;
  472. if (!test_bit(idx, cpuc->active_mask))
  473. continue;
  474. val = event->hw.config;
  475. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  476. wrmsrl(x86_pmu.eventsel + idx, val);
  477. }
  478. }
  479. static const struct pmu pmu;
  480. static inline int is_x86_event(struct perf_event *event)
  481. {
  482. return event->pmu == &pmu;
  483. }
  484. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  485. {
  486. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  487. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  488. int i, j, w, wmax, num = 0;
  489. struct hw_perf_event *hwc;
  490. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  491. for (i = 0; i < n; i++) {
  492. constraints[i] =
  493. x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  494. }
  495. /*
  496. * fastpath, try to reuse previous register
  497. */
  498. for (i = 0; i < n; i++) {
  499. hwc = &cpuc->event_list[i]->hw;
  500. c = constraints[i];
  501. /* never assigned */
  502. if (hwc->idx == -1)
  503. break;
  504. /* constraint still honored */
  505. if (!test_bit(hwc->idx, c->idxmsk))
  506. break;
  507. /* not already used */
  508. if (test_bit(hwc->idx, used_mask))
  509. break;
  510. set_bit(hwc->idx, used_mask);
  511. if (assign)
  512. assign[i] = hwc->idx;
  513. }
  514. if (i == n)
  515. goto done;
  516. /*
  517. * begin slow path
  518. */
  519. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  520. /*
  521. * weight = number of possible counters
  522. *
  523. * 1 = most constrained, only works on one counter
  524. * wmax = least constrained, works on any counter
  525. *
  526. * assign events to counters starting with most
  527. * constrained events.
  528. */
  529. wmax = x86_pmu.num_events;
  530. /*
  531. * when fixed event counters are present,
  532. * wmax is incremented by 1 to account
  533. * for one more choice
  534. */
  535. if (x86_pmu.num_events_fixed)
  536. wmax++;
  537. for (w = 1, num = n; num && w <= wmax; w++) {
  538. /* for each event */
  539. for (i = 0; num && i < n; i++) {
  540. c = constraints[i];
  541. hwc = &cpuc->event_list[i]->hw;
  542. if (c->weight != w)
  543. continue;
  544. for_each_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  545. if (!test_bit(j, used_mask))
  546. break;
  547. }
  548. if (j == X86_PMC_IDX_MAX)
  549. break;
  550. set_bit(j, used_mask);
  551. if (assign)
  552. assign[i] = j;
  553. num--;
  554. }
  555. }
  556. done:
  557. /*
  558. * scheduling failed or is just a simulation,
  559. * free resources if necessary
  560. */
  561. if (!assign || num) {
  562. for (i = 0; i < n; i++) {
  563. if (x86_pmu.put_event_constraints)
  564. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  565. }
  566. }
  567. return num ? -ENOSPC : 0;
  568. }
  569. /*
  570. * dogrp: true if must collect siblings events (group)
  571. * returns total number of events and error code
  572. */
  573. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  574. {
  575. struct perf_event *event;
  576. int n, max_count;
  577. max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
  578. /* current number of events already accepted */
  579. n = cpuc->n_events;
  580. if (is_x86_event(leader)) {
  581. if (n >= max_count)
  582. return -ENOSPC;
  583. cpuc->event_list[n] = leader;
  584. n++;
  585. }
  586. if (!dogrp)
  587. return n;
  588. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  589. if (!is_x86_event(event) ||
  590. event->state <= PERF_EVENT_STATE_OFF)
  591. continue;
  592. if (n >= max_count)
  593. return -ENOSPC;
  594. cpuc->event_list[n] = event;
  595. n++;
  596. }
  597. return n;
  598. }
  599. static inline void x86_assign_hw_event(struct perf_event *event,
  600. struct cpu_hw_events *cpuc, int i)
  601. {
  602. struct hw_perf_event *hwc = &event->hw;
  603. hwc->idx = cpuc->assign[i];
  604. hwc->last_cpu = smp_processor_id();
  605. hwc->last_tag = ++cpuc->tags[i];
  606. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  607. hwc->config_base = 0;
  608. hwc->event_base = 0;
  609. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  610. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  611. /*
  612. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  613. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  614. */
  615. hwc->event_base =
  616. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  617. } else {
  618. hwc->config_base = x86_pmu.eventsel;
  619. hwc->event_base = x86_pmu.perfctr;
  620. }
  621. }
  622. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  623. struct cpu_hw_events *cpuc,
  624. int i)
  625. {
  626. return hwc->idx == cpuc->assign[i] &&
  627. hwc->last_cpu == smp_processor_id() &&
  628. hwc->last_tag == cpuc->tags[i];
  629. }
  630. static void x86_pmu_stop(struct perf_event *event);
  631. void hw_perf_enable(void)
  632. {
  633. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  634. struct perf_event *event;
  635. struct hw_perf_event *hwc;
  636. int i;
  637. if (!x86_pmu_initialized())
  638. return;
  639. if (cpuc->enabled)
  640. return;
  641. if (cpuc->n_added) {
  642. /*
  643. * apply assignment obtained either from
  644. * hw_perf_group_sched_in() or x86_pmu_enable()
  645. *
  646. * step1: save events moving to new counters
  647. * step2: reprogram moved events into new counters
  648. */
  649. for (i = 0; i < cpuc->n_events; i++) {
  650. event = cpuc->event_list[i];
  651. hwc = &event->hw;
  652. /*
  653. * we can avoid reprogramming counter if:
  654. * - assigned same counter as last time
  655. * - running on same CPU as last time
  656. * - no other event has used the counter since
  657. */
  658. if (hwc->idx == -1 ||
  659. match_prev_assignment(hwc, cpuc, i))
  660. continue;
  661. x86_pmu_stop(event);
  662. hwc->idx = -1;
  663. }
  664. for (i = 0; i < cpuc->n_events; i++) {
  665. event = cpuc->event_list[i];
  666. hwc = &event->hw;
  667. if (hwc->idx == -1) {
  668. x86_assign_hw_event(event, cpuc, i);
  669. x86_perf_event_set_period(event, hwc, hwc->idx);
  670. }
  671. /*
  672. * need to mark as active because x86_pmu_disable()
  673. * clear active_mask and events[] yet it preserves
  674. * idx
  675. */
  676. set_bit(hwc->idx, cpuc->active_mask);
  677. cpuc->events[hwc->idx] = event;
  678. x86_pmu.enable(hwc, hwc->idx);
  679. perf_event_update_userpage(event);
  680. }
  681. cpuc->n_added = 0;
  682. perf_events_lapic_init();
  683. }
  684. cpuc->enabled = 1;
  685. barrier();
  686. x86_pmu.enable_all();
  687. }
  688. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
  689. {
  690. (void)checking_wrmsrl(hwc->config_base + idx,
  691. hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
  692. }
  693. static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
  694. {
  695. (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
  696. }
  697. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  698. /*
  699. * Set the next IRQ period, based on the hwc->period_left value.
  700. * To be called with the event disabled in hw:
  701. */
  702. static int
  703. x86_perf_event_set_period(struct perf_event *event,
  704. struct hw_perf_event *hwc, int idx)
  705. {
  706. s64 left = atomic64_read(&hwc->period_left);
  707. s64 period = hwc->sample_period;
  708. int err, ret = 0;
  709. if (idx == X86_PMC_IDX_FIXED_BTS)
  710. return 0;
  711. /*
  712. * If we are way outside a reasonable range then just skip forward:
  713. */
  714. if (unlikely(left <= -period)) {
  715. left = period;
  716. atomic64_set(&hwc->period_left, left);
  717. hwc->last_period = period;
  718. ret = 1;
  719. }
  720. if (unlikely(left <= 0)) {
  721. left += period;
  722. atomic64_set(&hwc->period_left, left);
  723. hwc->last_period = period;
  724. ret = 1;
  725. }
  726. /*
  727. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  728. */
  729. if (unlikely(left < 2))
  730. left = 2;
  731. if (left > x86_pmu.max_period)
  732. left = x86_pmu.max_period;
  733. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  734. /*
  735. * The hw event starts counting from this event offset,
  736. * mark it to be able to extra future deltas:
  737. */
  738. atomic64_set(&hwc->prev_count, (u64)-left);
  739. err = checking_wrmsrl(hwc->event_base + idx,
  740. (u64)(-left) & x86_pmu.event_mask);
  741. perf_event_update_userpage(event);
  742. return ret;
  743. }
  744. static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
  745. {
  746. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  747. if (cpuc->enabled)
  748. __x86_pmu_enable_event(hwc, idx);
  749. }
  750. /*
  751. * activate a single event
  752. *
  753. * The event is added to the group of enabled events
  754. * but only if it can be scehduled with existing events.
  755. *
  756. * Called with PMU disabled. If successful and return value 1,
  757. * then guaranteed to call perf_enable() and hw_perf_enable()
  758. */
  759. static int x86_pmu_enable(struct perf_event *event)
  760. {
  761. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  762. struct hw_perf_event *hwc;
  763. int assign[X86_PMC_IDX_MAX];
  764. int n, n0, ret;
  765. hwc = &event->hw;
  766. n0 = cpuc->n_events;
  767. n = collect_events(cpuc, event, false);
  768. if (n < 0)
  769. return n;
  770. ret = x86_schedule_events(cpuc, n, assign);
  771. if (ret)
  772. return ret;
  773. /*
  774. * copy new assignment, now we know it is possible
  775. * will be used by hw_perf_enable()
  776. */
  777. memcpy(cpuc->assign, assign, n*sizeof(int));
  778. cpuc->n_events = n;
  779. cpuc->n_added = n - n0;
  780. return 0;
  781. }
  782. static int x86_pmu_start(struct perf_event *event)
  783. {
  784. struct hw_perf_event *hwc = &event->hw;
  785. if (hwc->idx == -1)
  786. return -EAGAIN;
  787. x86_perf_event_set_period(event, hwc, hwc->idx);
  788. x86_pmu.enable(hwc, hwc->idx);
  789. return 0;
  790. }
  791. static void x86_pmu_unthrottle(struct perf_event *event)
  792. {
  793. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  794. struct hw_perf_event *hwc = &event->hw;
  795. if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
  796. cpuc->events[hwc->idx] != event))
  797. return;
  798. x86_pmu.enable(hwc, hwc->idx);
  799. }
  800. void perf_event_print_debug(void)
  801. {
  802. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  803. struct cpu_hw_events *cpuc;
  804. unsigned long flags;
  805. int cpu, idx;
  806. if (!x86_pmu.num_events)
  807. return;
  808. local_irq_save(flags);
  809. cpu = smp_processor_id();
  810. cpuc = &per_cpu(cpu_hw_events, cpu);
  811. if (x86_pmu.version >= 2) {
  812. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  813. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  814. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  815. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  816. pr_info("\n");
  817. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  818. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  819. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  820. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  821. }
  822. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  823. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  824. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  825. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  826. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  827. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  828. cpu, idx, pmc_ctrl);
  829. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  830. cpu, idx, pmc_count);
  831. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  832. cpu, idx, prev_left);
  833. }
  834. for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
  835. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  836. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  837. cpu, idx, pmc_count);
  838. }
  839. local_irq_restore(flags);
  840. }
  841. static void x86_pmu_stop(struct perf_event *event)
  842. {
  843. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  844. struct hw_perf_event *hwc = &event->hw;
  845. int idx = hwc->idx;
  846. /*
  847. * Must be done before we disable, otherwise the nmi handler
  848. * could reenable again:
  849. */
  850. clear_bit(idx, cpuc->active_mask);
  851. x86_pmu.disable(hwc, idx);
  852. /*
  853. * Drain the remaining delta count out of a event
  854. * that we are disabling:
  855. */
  856. x86_perf_event_update(event, hwc, idx);
  857. cpuc->events[idx] = NULL;
  858. }
  859. static void x86_pmu_disable(struct perf_event *event)
  860. {
  861. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  862. int i;
  863. x86_pmu_stop(event);
  864. for (i = 0; i < cpuc->n_events; i++) {
  865. if (event == cpuc->event_list[i]) {
  866. if (x86_pmu.put_event_constraints)
  867. x86_pmu.put_event_constraints(cpuc, event);
  868. while (++i < cpuc->n_events)
  869. cpuc->event_list[i-1] = cpuc->event_list[i];
  870. --cpuc->n_events;
  871. break;
  872. }
  873. }
  874. perf_event_update_userpage(event);
  875. }
  876. static int x86_pmu_handle_irq(struct pt_regs *regs)
  877. {
  878. struct perf_sample_data data;
  879. struct cpu_hw_events *cpuc;
  880. struct perf_event *event;
  881. struct hw_perf_event *hwc;
  882. int idx, handled = 0;
  883. u64 val;
  884. data.addr = 0;
  885. data.raw = NULL;
  886. cpuc = &__get_cpu_var(cpu_hw_events);
  887. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  888. if (!test_bit(idx, cpuc->active_mask))
  889. continue;
  890. event = cpuc->events[idx];
  891. hwc = &event->hw;
  892. val = x86_perf_event_update(event, hwc, idx);
  893. if (val & (1ULL << (x86_pmu.event_bits - 1)))
  894. continue;
  895. /*
  896. * event overflow
  897. */
  898. handled = 1;
  899. data.period = event->hw.last_period;
  900. if (!x86_perf_event_set_period(event, hwc, idx))
  901. continue;
  902. if (perf_event_overflow(event, 1, &data, regs))
  903. x86_pmu.disable(hwc, idx);
  904. }
  905. if (handled)
  906. inc_irq_stat(apic_perf_irqs);
  907. return handled;
  908. }
  909. void smp_perf_pending_interrupt(struct pt_regs *regs)
  910. {
  911. irq_enter();
  912. ack_APIC_irq();
  913. inc_irq_stat(apic_pending_irqs);
  914. perf_event_do_pending();
  915. irq_exit();
  916. }
  917. void set_perf_event_pending(void)
  918. {
  919. #ifdef CONFIG_X86_LOCAL_APIC
  920. if (!x86_pmu.apic || !x86_pmu_initialized())
  921. return;
  922. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  923. #endif
  924. }
  925. void perf_events_lapic_init(void)
  926. {
  927. #ifdef CONFIG_X86_LOCAL_APIC
  928. if (!x86_pmu.apic || !x86_pmu_initialized())
  929. return;
  930. /*
  931. * Always use NMI for PMU
  932. */
  933. apic_write(APIC_LVTPC, APIC_DM_NMI);
  934. #endif
  935. }
  936. static int __kprobes
  937. perf_event_nmi_handler(struct notifier_block *self,
  938. unsigned long cmd, void *__args)
  939. {
  940. struct die_args *args = __args;
  941. struct pt_regs *regs;
  942. if (!atomic_read(&active_events))
  943. return NOTIFY_DONE;
  944. switch (cmd) {
  945. case DIE_NMI:
  946. case DIE_NMI_IPI:
  947. break;
  948. default:
  949. return NOTIFY_DONE;
  950. }
  951. regs = args->regs;
  952. #ifdef CONFIG_X86_LOCAL_APIC
  953. apic_write(APIC_LVTPC, APIC_DM_NMI);
  954. #endif
  955. /*
  956. * Can't rely on the handled return value to say it was our NMI, two
  957. * events could trigger 'simultaneously' raising two back-to-back NMIs.
  958. *
  959. * If the first NMI handles both, the latter will be empty and daze
  960. * the CPU.
  961. */
  962. x86_pmu.handle_irq(regs);
  963. return NOTIFY_STOP;
  964. }
  965. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  966. .notifier_call = perf_event_nmi_handler,
  967. .next = NULL,
  968. .priority = 1
  969. };
  970. static struct event_constraint unconstrained;
  971. static struct event_constraint emptyconstraint;
  972. static struct event_constraint *
  973. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  974. {
  975. struct event_constraint *c;
  976. if (x86_pmu.event_constraints) {
  977. for_each_event_constraint(c, x86_pmu.event_constraints) {
  978. if ((event->hw.config & c->cmask) == c->code)
  979. return c;
  980. }
  981. }
  982. return &unconstrained;
  983. }
  984. static int x86_event_sched_in(struct perf_event *event,
  985. struct perf_cpu_context *cpuctx)
  986. {
  987. int ret = 0;
  988. event->state = PERF_EVENT_STATE_ACTIVE;
  989. event->oncpu = smp_processor_id();
  990. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  991. if (!is_x86_event(event))
  992. ret = event->pmu->enable(event);
  993. if (!ret && !is_software_event(event))
  994. cpuctx->active_oncpu++;
  995. if (!ret && event->attr.exclusive)
  996. cpuctx->exclusive = 1;
  997. return ret;
  998. }
  999. static void x86_event_sched_out(struct perf_event *event,
  1000. struct perf_cpu_context *cpuctx)
  1001. {
  1002. event->state = PERF_EVENT_STATE_INACTIVE;
  1003. event->oncpu = -1;
  1004. if (!is_x86_event(event))
  1005. event->pmu->disable(event);
  1006. event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
  1007. if (!is_software_event(event))
  1008. cpuctx->active_oncpu--;
  1009. if (event->attr.exclusive || !cpuctx->active_oncpu)
  1010. cpuctx->exclusive = 0;
  1011. }
  1012. /*
  1013. * Called to enable a whole group of events.
  1014. * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
  1015. * Assumes the caller has disabled interrupts and has
  1016. * frozen the PMU with hw_perf_save_disable.
  1017. *
  1018. * called with PMU disabled. If successful and return value 1,
  1019. * then guaranteed to call perf_enable() and hw_perf_enable()
  1020. */
  1021. int hw_perf_group_sched_in(struct perf_event *leader,
  1022. struct perf_cpu_context *cpuctx,
  1023. struct perf_event_context *ctx)
  1024. {
  1025. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1026. struct perf_event *sub;
  1027. int assign[X86_PMC_IDX_MAX];
  1028. int n0, n1, ret;
  1029. /* n0 = total number of events */
  1030. n0 = collect_events(cpuc, leader, true);
  1031. if (n0 < 0)
  1032. return n0;
  1033. ret = x86_schedule_events(cpuc, n0, assign);
  1034. if (ret)
  1035. return ret;
  1036. ret = x86_event_sched_in(leader, cpuctx);
  1037. if (ret)
  1038. return ret;
  1039. n1 = 1;
  1040. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1041. if (sub->state > PERF_EVENT_STATE_OFF) {
  1042. ret = x86_event_sched_in(sub, cpuctx);
  1043. if (ret)
  1044. goto undo;
  1045. ++n1;
  1046. }
  1047. }
  1048. /*
  1049. * copy new assignment, now we know it is possible
  1050. * will be used by hw_perf_enable()
  1051. */
  1052. memcpy(cpuc->assign, assign, n0*sizeof(int));
  1053. cpuc->n_events = n0;
  1054. cpuc->n_added = n1;
  1055. ctx->nr_active += n1;
  1056. /*
  1057. * 1 means successful and events are active
  1058. * This is not quite true because we defer
  1059. * actual activation until hw_perf_enable() but
  1060. * this way we* ensure caller won't try to enable
  1061. * individual events
  1062. */
  1063. return 1;
  1064. undo:
  1065. x86_event_sched_out(leader, cpuctx);
  1066. n0 = 1;
  1067. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1068. if (sub->state == PERF_EVENT_STATE_ACTIVE) {
  1069. x86_event_sched_out(sub, cpuctx);
  1070. if (++n0 == n1)
  1071. break;
  1072. }
  1073. }
  1074. return ret;
  1075. }
  1076. #include "perf_event_amd.c"
  1077. #include "perf_event_p6.c"
  1078. #include "perf_event_intel.c"
  1079. static void __init pmu_check_apic(void)
  1080. {
  1081. if (cpu_has_apic)
  1082. return;
  1083. x86_pmu.apic = 0;
  1084. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1085. pr_info("no hardware sampling interrupt available.\n");
  1086. }
  1087. void __init init_hw_perf_events(void)
  1088. {
  1089. int err;
  1090. pr_info("Performance Events: ");
  1091. switch (boot_cpu_data.x86_vendor) {
  1092. case X86_VENDOR_INTEL:
  1093. err = intel_pmu_init();
  1094. break;
  1095. case X86_VENDOR_AMD:
  1096. err = amd_pmu_init();
  1097. break;
  1098. default:
  1099. return;
  1100. }
  1101. if (err != 0) {
  1102. pr_cont("no PMU driver, software events only.\n");
  1103. return;
  1104. }
  1105. pmu_check_apic();
  1106. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1107. if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
  1108. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1109. x86_pmu.num_events, X86_PMC_MAX_GENERIC);
  1110. x86_pmu.num_events = X86_PMC_MAX_GENERIC;
  1111. }
  1112. perf_event_mask = (1 << x86_pmu.num_events) - 1;
  1113. perf_max_events = x86_pmu.num_events;
  1114. if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
  1115. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1116. x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
  1117. x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
  1118. }
  1119. perf_event_mask |=
  1120. ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
  1121. x86_pmu.intel_ctrl = perf_event_mask;
  1122. perf_events_lapic_init();
  1123. register_die_notifier(&perf_event_nmi_notifier);
  1124. unconstrained = (struct event_constraint)
  1125. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
  1126. 0, x86_pmu.num_events);
  1127. pr_info("... version: %d\n", x86_pmu.version);
  1128. pr_info("... bit width: %d\n", x86_pmu.event_bits);
  1129. pr_info("... generic registers: %d\n", x86_pmu.num_events);
  1130. pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
  1131. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1132. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
  1133. pr_info("... event mask: %016Lx\n", perf_event_mask);
  1134. }
  1135. static inline void x86_pmu_read(struct perf_event *event)
  1136. {
  1137. x86_perf_event_update(event, &event->hw, event->hw.idx);
  1138. }
  1139. static const struct pmu pmu = {
  1140. .enable = x86_pmu_enable,
  1141. .disable = x86_pmu_disable,
  1142. .start = x86_pmu_start,
  1143. .stop = x86_pmu_stop,
  1144. .read = x86_pmu_read,
  1145. .unthrottle = x86_pmu_unthrottle,
  1146. };
  1147. /*
  1148. * validate a single event group
  1149. *
  1150. * validation include:
  1151. * - check events are compatible which each other
  1152. * - events do not compete for the same counter
  1153. * - number of events <= number of counters
  1154. *
  1155. * validation ensures the group can be loaded onto the
  1156. * PMU if it was the only group available.
  1157. */
  1158. static int validate_group(struct perf_event *event)
  1159. {
  1160. struct perf_event *leader = event->group_leader;
  1161. struct cpu_hw_events *fake_cpuc;
  1162. int ret, n;
  1163. ret = -ENOMEM;
  1164. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1165. if (!fake_cpuc)
  1166. goto out;
  1167. /*
  1168. * the event is not yet connected with its
  1169. * siblings therefore we must first collect
  1170. * existing siblings, then add the new event
  1171. * before we can simulate the scheduling
  1172. */
  1173. ret = -ENOSPC;
  1174. n = collect_events(fake_cpuc, leader, true);
  1175. if (n < 0)
  1176. goto out_free;
  1177. fake_cpuc->n_events = n;
  1178. n = collect_events(fake_cpuc, event, false);
  1179. if (n < 0)
  1180. goto out_free;
  1181. fake_cpuc->n_events = n;
  1182. ret = x86_schedule_events(fake_cpuc, n, NULL);
  1183. out_free:
  1184. kfree(fake_cpuc);
  1185. out:
  1186. return ret;
  1187. }
  1188. const struct pmu *hw_perf_event_init(struct perf_event *event)
  1189. {
  1190. const struct pmu *tmp;
  1191. int err;
  1192. err = __hw_perf_event_init(event);
  1193. if (!err) {
  1194. /*
  1195. * we temporarily connect event to its pmu
  1196. * such that validate_group() can classify
  1197. * it as an x86 event using is_x86_event()
  1198. */
  1199. tmp = event->pmu;
  1200. event->pmu = &pmu;
  1201. if (event->group_leader != event)
  1202. err = validate_group(event);
  1203. event->pmu = tmp;
  1204. }
  1205. if (err) {
  1206. if (event->destroy)
  1207. event->destroy(event);
  1208. return ERR_PTR(err);
  1209. }
  1210. return &pmu;
  1211. }
  1212. /*
  1213. * callchain support
  1214. */
  1215. static inline
  1216. void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1217. {
  1218. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1219. entry->ip[entry->nr++] = ip;
  1220. }
  1221. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  1222. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
  1223. static void
  1224. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1225. {
  1226. /* Ignore warnings */
  1227. }
  1228. static void backtrace_warning(void *data, char *msg)
  1229. {
  1230. /* Ignore warnings */
  1231. }
  1232. static int backtrace_stack(void *data, char *name)
  1233. {
  1234. return 0;
  1235. }
  1236. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1237. {
  1238. struct perf_callchain_entry *entry = data;
  1239. if (reliable)
  1240. callchain_store(entry, addr);
  1241. }
  1242. static const struct stacktrace_ops backtrace_ops = {
  1243. .warning = backtrace_warning,
  1244. .warning_symbol = backtrace_warning_symbol,
  1245. .stack = backtrace_stack,
  1246. .address = backtrace_address,
  1247. .walk_stack = print_context_stack_bp,
  1248. };
  1249. #include "../dumpstack.h"
  1250. static void
  1251. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1252. {
  1253. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1254. callchain_store(entry, regs->ip);
  1255. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1256. }
  1257. /*
  1258. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  1259. */
  1260. static unsigned long
  1261. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  1262. {
  1263. unsigned long offset, addr = (unsigned long)from;
  1264. int type = in_nmi() ? KM_NMI : KM_IRQ0;
  1265. unsigned long size, len = 0;
  1266. struct page *page;
  1267. void *map;
  1268. int ret;
  1269. do {
  1270. ret = __get_user_pages_fast(addr, 1, 0, &page);
  1271. if (!ret)
  1272. break;
  1273. offset = addr & (PAGE_SIZE - 1);
  1274. size = min(PAGE_SIZE - offset, n - len);
  1275. map = kmap_atomic(page, type);
  1276. memcpy(to, map+offset, size);
  1277. kunmap_atomic(map, type);
  1278. put_page(page);
  1279. len += size;
  1280. to += size;
  1281. addr += size;
  1282. } while (len < n);
  1283. return len;
  1284. }
  1285. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  1286. {
  1287. unsigned long bytes;
  1288. bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
  1289. return bytes == sizeof(*frame);
  1290. }
  1291. static void
  1292. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1293. {
  1294. struct stack_frame frame;
  1295. const void __user *fp;
  1296. if (!user_mode(regs))
  1297. regs = task_pt_regs(current);
  1298. fp = (void __user *)regs->bp;
  1299. callchain_store(entry, PERF_CONTEXT_USER);
  1300. callchain_store(entry, regs->ip);
  1301. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1302. frame.next_frame = NULL;
  1303. frame.return_address = 0;
  1304. if (!copy_stack_frame(fp, &frame))
  1305. break;
  1306. if ((unsigned long)fp < regs->sp)
  1307. break;
  1308. callchain_store(entry, frame.return_address);
  1309. fp = frame.next_frame;
  1310. }
  1311. }
  1312. static void
  1313. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1314. {
  1315. int is_user;
  1316. if (!regs)
  1317. return;
  1318. is_user = user_mode(regs);
  1319. if (is_user && current->state != TASK_RUNNING)
  1320. return;
  1321. if (!is_user)
  1322. perf_callchain_kernel(regs, entry);
  1323. if (current->mm)
  1324. perf_callchain_user(regs, entry);
  1325. }
  1326. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1327. {
  1328. struct perf_callchain_entry *entry;
  1329. if (in_nmi())
  1330. entry = &__get_cpu_var(pmc_nmi_entry);
  1331. else
  1332. entry = &__get_cpu_var(pmc_irq_entry);
  1333. entry->nr = 0;
  1334. perf_do_callchain(regs, entry);
  1335. return entry;
  1336. }
  1337. void hw_perf_event_setup_online(int cpu)
  1338. {
  1339. init_debug_store_on_cpu(cpu);
  1340. switch (boot_cpu_data.x86_vendor) {
  1341. case X86_VENDOR_AMD:
  1342. amd_pmu_cpu_online(cpu);
  1343. break;
  1344. default:
  1345. return;
  1346. }
  1347. }
  1348. void hw_perf_event_setup_offline(int cpu)
  1349. {
  1350. init_debug_store_on_cpu(cpu);
  1351. switch (boot_cpu_data.x86_vendor) {
  1352. case X86_VENDOR_AMD:
  1353. amd_pmu_cpu_offline(cpu);
  1354. break;
  1355. default:
  1356. return;
  1357. }
  1358. }